]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-core.c
block: drop unnecessary blk_get/put_queue() in scsi_cmd_ioctl() and blk_get_tg()
[mirror_ubuntu-zesty-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
55782138
LZ
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/block.h>
1da177e4 34
8324aa91
JA
35#include "blk.h"
36
d07335e5 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 40
1da177e4
LT
41/*
42 * For the allocated request tables
43 */
5ece6c52 44static struct kmem_cache *request_cachep;
1da177e4
LT
45
46/*
47 * For queue allocation
48 */
6728cb0e 49struct kmem_cache *blk_requestq_cachep;
1da177e4 50
1da177e4
LT
51/*
52 * Controlling structure to kblockd
53 */
ff856bad 54static struct workqueue_struct *kblockd_workqueue;
1da177e4 55
26b8256e
JA
56static void drive_stat_acct(struct request *rq, int new_io)
57{
28f13702 58 struct hd_struct *part;
26b8256e 59 int rw = rq_data_dir(rq);
c9959059 60 int cpu;
26b8256e 61
c2553b58 62 if (!blk_do_io_stat(rq))
26b8256e
JA
63 return;
64
074a7aca 65 cpu = part_stat_lock();
c9959059 66
09e099d4
JM
67 if (!new_io) {
68 part = rq->part;
074a7aca 69 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
70 } else {
71 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 72 if (!hd_struct_try_get(part)) {
09e099d4
JM
73 /*
74 * The partition is already being removed,
75 * the request will be accounted on the disk only
76 *
77 * We take a reference on disk->part0 although that
78 * partition will never be deleted, so we can treat
79 * it as any other partition.
80 */
81 part = &rq->rq_disk->part0;
6c23a968 82 hd_struct_get(part);
09e099d4 83 }
074a7aca 84 part_round_stats(cpu, part);
316d315b 85 part_inc_in_flight(part, rw);
09e099d4 86 rq->part = part;
26b8256e 87 }
e71bf0d0 88
074a7aca 89 part_stat_unlock();
26b8256e
JA
90}
91
8324aa91 92void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
93{
94 int nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 if (nr > q->nr_requests)
98 nr = q->nr_requests;
99 q->nr_congestion_on = nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
102 if (nr < 1)
103 nr = 1;
104 q->nr_congestion_off = nr;
105}
106
1da177e4
LT
107/**
108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
109 * @bdev: device
110 *
111 * Locates the passed device's request queue and returns the address of its
112 * backing_dev_info
113 *
114 * Will return NULL if the request queue cannot be located.
115 */
116struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117{
118 struct backing_dev_info *ret = NULL;
165125e1 119 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
120
121 if (q)
122 ret = &q->backing_dev_info;
123 return ret;
124}
1da177e4
LT
125EXPORT_SYMBOL(blk_get_backing_dev_info);
126
2a4aa30c 127void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 128{
1afb20f3
FT
129 memset(rq, 0, sizeof(*rq));
130
1da177e4 131 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 132 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 133 rq->cpu = -1;
63a71386 134 rq->q = q;
a2dec7b3 135 rq->__sector = (sector_t) -1;
2e662b65
JA
136 INIT_HLIST_NODE(&rq->hash);
137 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 138 rq->cmd = rq->__cmd;
e2494e1b 139 rq->cmd_len = BLK_MAX_CDB;
63a71386 140 rq->tag = -1;
1da177e4 141 rq->ref_count = 1;
b243ddcb 142 rq->start_time = jiffies;
9195291e 143 set_start_time_ns(rq);
09e099d4 144 rq->part = NULL;
1da177e4 145}
2a4aa30c 146EXPORT_SYMBOL(blk_rq_init);
1da177e4 147
5bb23a68
N
148static void req_bio_endio(struct request *rq, struct bio *bio,
149 unsigned int nbytes, int error)
1da177e4 150{
143a87f4
TH
151 if (error)
152 clear_bit(BIO_UPTODATE, &bio->bi_flags);
153 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
154 error = -EIO;
797e7dbb 155
143a87f4
TH
156 if (unlikely(nbytes > bio->bi_size)) {
157 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
158 __func__, nbytes, bio->bi_size);
159 nbytes = bio->bi_size;
5bb23a68 160 }
797e7dbb 161
143a87f4
TH
162 if (unlikely(rq->cmd_flags & REQ_QUIET))
163 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 164
143a87f4
TH
165 bio->bi_size -= nbytes;
166 bio->bi_sector += (nbytes >> 9);
7ba1ba12 167
143a87f4
TH
168 if (bio_integrity(bio))
169 bio_integrity_advance(bio, nbytes);
7ba1ba12 170
143a87f4
TH
171 /* don't actually finish bio if it's part of flush sequence */
172 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
173 bio_endio(bio, error);
1da177e4 174}
1da177e4 175
1da177e4
LT
176void blk_dump_rq_flags(struct request *rq, char *msg)
177{
178 int bit;
179
6728cb0e 180 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
181 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
182 rq->cmd_flags);
1da177e4 183
83096ebf
TH
184 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
185 (unsigned long long)blk_rq_pos(rq),
186 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 187 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 188 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 189
33659ebb 190 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 191 printk(KERN_INFO " cdb: ");
d34c87e4 192 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
193 printk("%02x ", rq->cmd[bit]);
194 printk("\n");
195 }
196}
1da177e4
LT
197EXPORT_SYMBOL(blk_dump_rq_flags);
198
3cca6dc1 199static void blk_delay_work(struct work_struct *work)
1da177e4 200{
3cca6dc1 201 struct request_queue *q;
1da177e4 202
3cca6dc1
JA
203 q = container_of(work, struct request_queue, delay_work.work);
204 spin_lock_irq(q->queue_lock);
24ecfbe2 205 __blk_run_queue(q);
3cca6dc1 206 spin_unlock_irq(q->queue_lock);
1da177e4 207}
1da177e4
LT
208
209/**
3cca6dc1
JA
210 * blk_delay_queue - restart queueing after defined interval
211 * @q: The &struct request_queue in question
212 * @msecs: Delay in msecs
1da177e4
LT
213 *
214 * Description:
3cca6dc1
JA
215 * Sometimes queueing needs to be postponed for a little while, to allow
216 * resources to come back. This function will make sure that queueing is
217 * restarted around the specified time.
218 */
219void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 220{
4521cc4e
JA
221 queue_delayed_work(kblockd_workqueue, &q->delay_work,
222 msecs_to_jiffies(msecs));
2ad8b1ef 223}
3cca6dc1 224EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 225
1da177e4
LT
226/**
227 * blk_start_queue - restart a previously stopped queue
165125e1 228 * @q: The &struct request_queue in question
1da177e4
LT
229 *
230 * Description:
231 * blk_start_queue() will clear the stop flag on the queue, and call
232 * the request_fn for the queue if it was in a stopped state when
233 * entered. Also see blk_stop_queue(). Queue lock must be held.
234 **/
165125e1 235void blk_start_queue(struct request_queue *q)
1da177e4 236{
a038e253
PBG
237 WARN_ON(!irqs_disabled());
238
75ad23bc 239 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 240 __blk_run_queue(q);
1da177e4 241}
1da177e4
LT
242EXPORT_SYMBOL(blk_start_queue);
243
244/**
245 * blk_stop_queue - stop a queue
165125e1 246 * @q: The &struct request_queue in question
1da177e4
LT
247 *
248 * Description:
249 * The Linux block layer assumes that a block driver will consume all
250 * entries on the request queue when the request_fn strategy is called.
251 * Often this will not happen, because of hardware limitations (queue
252 * depth settings). If a device driver gets a 'queue full' response,
253 * or if it simply chooses not to queue more I/O at one point, it can
254 * call this function to prevent the request_fn from being called until
255 * the driver has signalled it's ready to go again. This happens by calling
256 * blk_start_queue() to restart queue operations. Queue lock must be held.
257 **/
165125e1 258void blk_stop_queue(struct request_queue *q)
1da177e4 259{
ad3d9d7e 260 __cancel_delayed_work(&q->delay_work);
75ad23bc 261 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
262}
263EXPORT_SYMBOL(blk_stop_queue);
264
265/**
266 * blk_sync_queue - cancel any pending callbacks on a queue
267 * @q: the queue
268 *
269 * Description:
270 * The block layer may perform asynchronous callback activity
271 * on a queue, such as calling the unplug function after a timeout.
272 * A block device may call blk_sync_queue to ensure that any
273 * such activity is cancelled, thus allowing it to release resources
59c51591 274 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
275 * that its ->make_request_fn will not re-add plugging prior to calling
276 * this function.
277 *
da527770
VG
278 * This function does not cancel any asynchronous activity arising
279 * out of elevator or throttling code. That would require elevaotor_exit()
280 * and blk_throtl_exit() to be called with queue lock initialized.
281 *
1da177e4
LT
282 */
283void blk_sync_queue(struct request_queue *q)
284{
70ed28b9 285 del_timer_sync(&q->timeout);
3cca6dc1 286 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
287}
288EXPORT_SYMBOL(blk_sync_queue);
289
290/**
80a4b58e 291 * __blk_run_queue - run a single device queue
1da177e4 292 * @q: The queue to run
80a4b58e
JA
293 *
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 296 * held and interrupts disabled.
1da177e4 297 */
24ecfbe2 298void __blk_run_queue(struct request_queue *q)
1da177e4 299{
a538cd03
TH
300 if (unlikely(blk_queue_stopped(q)))
301 return;
302
c21e6beb 303 q->request_fn(q);
75ad23bc
NP
304}
305EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 306
24ecfbe2
CH
307/**
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
310 *
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313 * of us.
314 */
315void blk_run_queue_async(struct request_queue *q)
316{
3ec717b7
SL
317 if (likely(!blk_queue_stopped(q))) {
318 __cancel_delayed_work(&q->delay_work);
24ecfbe2 319 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 320 }
24ecfbe2 321}
c21e6beb 322EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 323
75ad23bc
NP
324/**
325 * blk_run_queue - run a single device queue
326 * @q: The queue to run
80a4b58e
JA
327 *
328 * Description:
329 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 330 * May be used to restart queueing when a request has completed.
75ad23bc
NP
331 */
332void blk_run_queue(struct request_queue *q)
333{
334 unsigned long flags;
335
336 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 337 __blk_run_queue(q);
1da177e4
LT
338 spin_unlock_irqrestore(q->queue_lock, flags);
339}
340EXPORT_SYMBOL(blk_run_queue);
341
165125e1 342void blk_put_queue(struct request_queue *q)
483f4afc
AV
343{
344 kobject_put(&q->kobj);
345}
d86e0e83 346EXPORT_SYMBOL(blk_put_queue);
483f4afc 347
c94a96ac 348/*
777eb1bf
HR
349 * Note: If a driver supplied the queue lock, it is disconnected
350 * by this function. The actual state of the lock doesn't matter
351 * here as the request_queue isn't accessible after this point
352 * (QUEUE_FLAG_DEAD is set) and no other requests will be queued.
c94a96ac 353 */
6728cb0e 354void blk_cleanup_queue(struct request_queue *q)
483f4afc 355{
e3335de9
JA
356 /*
357 * We know we have process context here, so we can be a little
358 * cautious and ensure that pending block actions on this device
359 * are done before moving on. Going into this function, we should
360 * not have processes doing IO to this device.
361 */
362 blk_sync_queue(q);
363
31373d09 364 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 365 mutex_lock(&q->sysfs_lock);
75ad23bc 366 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
367 mutex_unlock(&q->sysfs_lock);
368
777eb1bf
HR
369 if (q->queue_lock != &q->__queue_lock)
370 q->queue_lock = &q->__queue_lock;
da527770 371
483f4afc
AV
372 blk_put_queue(q);
373}
1da177e4
LT
374EXPORT_SYMBOL(blk_cleanup_queue);
375
165125e1 376static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
377{
378 struct request_list *rl = &q->rq;
379
1abec4fd
MS
380 if (unlikely(rl->rq_pool))
381 return 0;
382
1faa16d2
JA
383 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
384 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 385 rl->elvpriv = 0;
1faa16d2
JA
386 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
387 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 388
1946089a
CL
389 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
390 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
391
392 if (!rl->rq_pool)
393 return -ENOMEM;
394
395 return 0;
396}
397
165125e1 398struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 399{
1946089a
CL
400 return blk_alloc_queue_node(gfp_mask, -1);
401}
402EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 403
165125e1 404struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 405{
165125e1 406 struct request_queue *q;
e0bf68dd 407 int err;
1946089a 408
8324aa91 409 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 410 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
411 if (!q)
412 return NULL;
413
0989a025
JA
414 q->backing_dev_info.ra_pages =
415 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
416 q->backing_dev_info.state = 0;
417 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 418 q->backing_dev_info.name = "block";
0989a025 419
e0bf68dd
PZ
420 err = bdi_init(&q->backing_dev_info);
421 if (err) {
8324aa91 422 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
423 return NULL;
424 }
425
e43473b7
VG
426 if (blk_throtl_init(q)) {
427 kmem_cache_free(blk_requestq_cachep, q);
428 return NULL;
429 }
430
31373d09
MG
431 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
432 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
433 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
434 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
435 INIT_LIST_HEAD(&q->flush_queue[0]);
436 INIT_LIST_HEAD(&q->flush_queue[1]);
437 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 438 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 439
8324aa91 440 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 441
483f4afc 442 mutex_init(&q->sysfs_lock);
e7e72bf6 443 spin_lock_init(&q->__queue_lock);
483f4afc 444
c94a96ac
VG
445 /*
446 * By default initialize queue_lock to internal lock and driver can
447 * override it later if need be.
448 */
449 q->queue_lock = &q->__queue_lock;
450
1da177e4
LT
451 return q;
452}
1946089a 453EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
454
455/**
456 * blk_init_queue - prepare a request queue for use with a block device
457 * @rfn: The function to be called to process requests that have been
458 * placed on the queue.
459 * @lock: Request queue spin lock
460 *
461 * Description:
462 * If a block device wishes to use the standard request handling procedures,
463 * which sorts requests and coalesces adjacent requests, then it must
464 * call blk_init_queue(). The function @rfn will be called when there
465 * are requests on the queue that need to be processed. If the device
466 * supports plugging, then @rfn may not be called immediately when requests
467 * are available on the queue, but may be called at some time later instead.
468 * Plugged queues are generally unplugged when a buffer belonging to one
469 * of the requests on the queue is needed, or due to memory pressure.
470 *
471 * @rfn is not required, or even expected, to remove all requests off the
472 * queue, but only as many as it can handle at a time. If it does leave
473 * requests on the queue, it is responsible for arranging that the requests
474 * get dealt with eventually.
475 *
476 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
477 * request queue; this lock will be taken also from interrupt context, so irq
478 * disabling is needed for it.
1da177e4 479 *
710027a4 480 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
481 * it didn't succeed.
482 *
483 * Note:
484 * blk_init_queue() must be paired with a blk_cleanup_queue() call
485 * when the block device is deactivated (such as at module unload).
486 **/
1946089a 487
165125e1 488struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 489{
1946089a
CL
490 return blk_init_queue_node(rfn, lock, -1);
491}
492EXPORT_SYMBOL(blk_init_queue);
493
165125e1 494struct request_queue *
1946089a
CL
495blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
496{
c86d1b8a 497 struct request_queue *uninit_q, *q;
1da177e4 498
c86d1b8a
MS
499 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
500 if (!uninit_q)
501 return NULL;
502
503 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
504 if (!q)
505 blk_cleanup_queue(uninit_q);
506
507 return q;
01effb0d
MS
508}
509EXPORT_SYMBOL(blk_init_queue_node);
510
511struct request_queue *
512blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
513 spinlock_t *lock)
514{
515 return blk_init_allocated_queue_node(q, rfn, lock, -1);
516}
517EXPORT_SYMBOL(blk_init_allocated_queue);
518
519struct request_queue *
520blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
521 spinlock_t *lock, int node_id)
522{
1da177e4
LT
523 if (!q)
524 return NULL;
525
1946089a 526 q->node = node_id;
c86d1b8a 527 if (blk_init_free_list(q))
8669aafd 528 return NULL;
1da177e4
LT
529
530 q->request_fn = rfn;
1da177e4 531 q->prep_rq_fn = NULL;
28018c24 532 q->unprep_rq_fn = NULL;
bc58ba94 533 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
534
535 /* Override internal queue lock with supplied lock pointer */
536 if (lock)
537 q->queue_lock = lock;
1da177e4 538
f3b144aa
JA
539 /*
540 * This also sets hw/phys segments, boundary and size
541 */
c20e8de2 542 blk_queue_make_request(q, blk_queue_bio);
1da177e4 543
44ec9542
AS
544 q->sg_reserved_size = INT_MAX;
545
1da177e4
LT
546 /*
547 * all done
548 */
549 if (!elevator_init(q, NULL)) {
550 blk_queue_congestion_threshold(q);
551 return q;
552 }
553
1da177e4
LT
554 return NULL;
555}
01effb0d 556EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 557
165125e1 558int blk_get_queue(struct request_queue *q)
1da177e4 559{
fde6ad22 560 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 561 kobject_get(&q->kobj);
1da177e4
LT
562 return 0;
563 }
564
565 return 1;
566}
d86e0e83 567EXPORT_SYMBOL(blk_get_queue);
1da177e4 568
165125e1 569static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 570{
4aff5e23 571 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 572 elv_put_request(q, rq);
1da177e4
LT
573 mempool_free(rq, q->rq.rq_pool);
574}
575
1ea25ecb 576static struct request *
75eb6c37 577blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
1da177e4
LT
578{
579 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
580
581 if (!rq)
582 return NULL;
583
2a4aa30c 584 blk_rq_init(q, rq);
1afb20f3 585
42dad764 586 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 587
75eb6c37
TH
588 if ((flags & REQ_ELVPRIV) &&
589 unlikely(elv_set_request(q, rq, gfp_mask))) {
590 mempool_free(rq, q->rq.rq_pool);
591 return NULL;
cb98fc8b 592 }
1da177e4 593
cb98fc8b 594 return rq;
1da177e4
LT
595}
596
597/*
598 * ioc_batching returns true if the ioc is a valid batching request and
599 * should be given priority access to a request.
600 */
165125e1 601static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
602{
603 if (!ioc)
604 return 0;
605
606 /*
607 * Make sure the process is able to allocate at least 1 request
608 * even if the batch times out, otherwise we could theoretically
609 * lose wakeups.
610 */
611 return ioc->nr_batch_requests == q->nr_batching ||
612 (ioc->nr_batch_requests > 0
613 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
614}
615
616/*
617 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
618 * will cause the process to be a "batcher" on all queues in the system. This
619 * is the behaviour we want though - once it gets a wakeup it should be given
620 * a nice run.
621 */
165125e1 622static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
623{
624 if (!ioc || ioc_batching(q, ioc))
625 return;
626
627 ioc->nr_batch_requests = q->nr_batching;
628 ioc->last_waited = jiffies;
629}
630
1faa16d2 631static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
632{
633 struct request_list *rl = &q->rq;
634
1faa16d2
JA
635 if (rl->count[sync] < queue_congestion_off_threshold(q))
636 blk_clear_queue_congested(q, sync);
1da177e4 637
1faa16d2
JA
638 if (rl->count[sync] + 1 <= q->nr_requests) {
639 if (waitqueue_active(&rl->wait[sync]))
640 wake_up(&rl->wait[sync]);
1da177e4 641
1faa16d2 642 blk_clear_queue_full(q, sync);
1da177e4
LT
643 }
644}
645
646/*
647 * A request has just been released. Account for it, update the full and
648 * congestion status, wake up any waiters. Called under q->queue_lock.
649 */
75eb6c37 650static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
651{
652 struct request_list *rl = &q->rq;
75eb6c37 653 int sync = rw_is_sync(flags);
1da177e4 654
1faa16d2 655 rl->count[sync]--;
75eb6c37 656 if (flags & REQ_ELVPRIV)
cb98fc8b 657 rl->elvpriv--;
1da177e4 658
1faa16d2 659 __freed_request(q, sync);
1da177e4 660
1faa16d2
JA
661 if (unlikely(rl->starved[sync ^ 1]))
662 __freed_request(q, sync ^ 1);
1da177e4
LT
663}
664
9d5a4e94
MS
665/*
666 * Determine if elevator data should be initialized when allocating the
667 * request associated with @bio.
668 */
669static bool blk_rq_should_init_elevator(struct bio *bio)
670{
671 if (!bio)
672 return true;
673
674 /*
675 * Flush requests do not use the elevator so skip initialization.
676 * This allows a request to share the flush and elevator data.
677 */
678 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
679 return false;
680
681 return true;
682}
683
1da177e4 684/*
d6344532
NP
685 * Get a free request, queue_lock must be held.
686 * Returns NULL on failure, with queue_lock held.
687 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 688 */
165125e1 689static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 690 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
691{
692 struct request *rq = NULL;
693 struct request_list *rl = &q->rq;
88ee5ef1 694 struct io_context *ioc = NULL;
1faa16d2 695 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 696 int may_queue;
88ee5ef1 697
7749a8d4 698 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
699 if (may_queue == ELV_MQUEUE_NO)
700 goto rq_starved;
701
1faa16d2
JA
702 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
703 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 704 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
705 /*
706 * The queue will fill after this allocation, so set
707 * it as full, and mark this process as "batching".
708 * This process will be allowed to complete a batch of
709 * requests, others will be blocked.
710 */
1faa16d2 711 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 712 ioc_set_batching(q, ioc);
1faa16d2 713 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
714 } else {
715 if (may_queue != ELV_MQUEUE_MUST
716 && !ioc_batching(q, ioc)) {
717 /*
718 * The queue is full and the allocating
719 * process is not a "batcher", and not
720 * exempted by the IO scheduler
721 */
722 goto out;
723 }
724 }
1da177e4 725 }
1faa16d2 726 blk_set_queue_congested(q, is_sync);
1da177e4
LT
727 }
728
082cf69e
JA
729 /*
730 * Only allow batching queuers to allocate up to 50% over the defined
731 * limit of requests, otherwise we could have thousands of requests
732 * allocated with any setting of ->nr_requests
733 */
1faa16d2 734 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 735 goto out;
fd782a4a 736
1faa16d2
JA
737 rl->count[is_sync]++;
738 rl->starved[is_sync] = 0;
cb98fc8b 739
75eb6c37
TH
740 if (blk_rq_should_init_elevator(bio) &&
741 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
742 rw_flags |= REQ_ELVPRIV;
743 rl->elvpriv++;
9d5a4e94 744 }
cb98fc8b 745
f253b86b
JA
746 if (blk_queue_io_stat(q))
747 rw_flags |= REQ_IO_STAT;
1da177e4
LT
748 spin_unlock_irq(q->queue_lock);
749
75eb6c37 750 rq = blk_alloc_request(q, rw_flags, gfp_mask);
88ee5ef1 751 if (unlikely(!rq)) {
1da177e4
LT
752 /*
753 * Allocation failed presumably due to memory. Undo anything
754 * we might have messed up.
755 *
756 * Allocating task should really be put onto the front of the
757 * wait queue, but this is pretty rare.
758 */
759 spin_lock_irq(q->queue_lock);
75eb6c37 760 freed_request(q, rw_flags);
1da177e4
LT
761
762 /*
763 * in the very unlikely event that allocation failed and no
764 * requests for this direction was pending, mark us starved
765 * so that freeing of a request in the other direction will
766 * notice us. another possible fix would be to split the
767 * rq mempool into READ and WRITE
768 */
769rq_starved:
1faa16d2
JA
770 if (unlikely(rl->count[is_sync] == 0))
771 rl->starved[is_sync] = 1;
1da177e4 772
1da177e4
LT
773 goto out;
774 }
775
88ee5ef1
JA
776 /*
777 * ioc may be NULL here, and ioc_batching will be false. That's
778 * OK, if the queue is under the request limit then requests need
779 * not count toward the nr_batch_requests limit. There will always
780 * be some limit enforced by BLK_BATCH_TIME.
781 */
1da177e4
LT
782 if (ioc_batching(q, ioc))
783 ioc->nr_batch_requests--;
6728cb0e 784
1faa16d2 785 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 786out:
1da177e4
LT
787 return rq;
788}
789
790/*
7eaceacc
JA
791 * No available requests for this queue, wait for some requests to become
792 * available.
d6344532
NP
793 *
794 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 795 */
165125e1 796static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 797 struct bio *bio)
1da177e4 798{
1faa16d2 799 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
800 struct request *rq;
801
7749a8d4 802 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
803 while (!rq) {
804 DEFINE_WAIT(wait);
05caf8db 805 struct io_context *ioc;
1da177e4
LT
806 struct request_list *rl = &q->rq;
807
1faa16d2 808 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
809 TASK_UNINTERRUPTIBLE);
810
1faa16d2 811 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 812
05caf8db
ZY
813 spin_unlock_irq(q->queue_lock);
814 io_schedule();
1da177e4 815
05caf8db
ZY
816 /*
817 * After sleeping, we become a "batching" process and
818 * will be able to allocate at least one request, and
819 * up to a big batch of them for a small period time.
820 * See ioc_batching, ioc_set_batching
821 */
822 ioc = current_io_context(GFP_NOIO, q->node);
823 ioc_set_batching(q, ioc);
d6344532 824
05caf8db 825 spin_lock_irq(q->queue_lock);
1faa16d2 826 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
827
828 rq = get_request(q, rw_flags, bio, GFP_NOIO);
829 };
1da177e4
LT
830
831 return rq;
832}
833
165125e1 834struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
835{
836 struct request *rq;
837
bfe159a5
JB
838 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
839 return NULL;
840
1da177e4
LT
841 BUG_ON(rw != READ && rw != WRITE);
842
d6344532
NP
843 spin_lock_irq(q->queue_lock);
844 if (gfp_mask & __GFP_WAIT) {
22e2c507 845 rq = get_request_wait(q, rw, NULL);
d6344532 846 } else {
22e2c507 847 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
848 if (!rq)
849 spin_unlock_irq(q->queue_lock);
850 }
851 /* q->queue_lock is unlocked at this point */
1da177e4
LT
852
853 return rq;
854}
1da177e4
LT
855EXPORT_SYMBOL(blk_get_request);
856
dc72ef4a 857/**
79eb63e9 858 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 859 * @q: target request queue
79eb63e9
BH
860 * @bio: The bio describing the memory mappings that will be submitted for IO.
861 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 862 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 863 *
79eb63e9
BH
864 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
865 * type commands. Where the struct request needs to be farther initialized by
866 * the caller. It is passed a &struct bio, which describes the memory info of
867 * the I/O transfer.
dc72ef4a 868 *
79eb63e9
BH
869 * The caller of blk_make_request must make sure that bi_io_vec
870 * are set to describe the memory buffers. That bio_data_dir() will return
871 * the needed direction of the request. (And all bio's in the passed bio-chain
872 * are properly set accordingly)
873 *
874 * If called under none-sleepable conditions, mapped bio buffers must not
875 * need bouncing, by calling the appropriate masked or flagged allocator,
876 * suitable for the target device. Otherwise the call to blk_queue_bounce will
877 * BUG.
53674ac5
JA
878 *
879 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
880 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
881 * anything but the first bio in the chain. Otherwise you risk waiting for IO
882 * completion of a bio that hasn't been submitted yet, thus resulting in a
883 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
884 * of bio_alloc(), as that avoids the mempool deadlock.
885 * If possible a big IO should be split into smaller parts when allocation
886 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 887 */
79eb63e9
BH
888struct request *blk_make_request(struct request_queue *q, struct bio *bio,
889 gfp_t gfp_mask)
dc72ef4a 890{
79eb63e9
BH
891 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
892
893 if (unlikely(!rq))
894 return ERR_PTR(-ENOMEM);
895
896 for_each_bio(bio) {
897 struct bio *bounce_bio = bio;
898 int ret;
899
900 blk_queue_bounce(q, &bounce_bio);
901 ret = blk_rq_append_bio(q, rq, bounce_bio);
902 if (unlikely(ret)) {
903 blk_put_request(rq);
904 return ERR_PTR(ret);
905 }
906 }
907
908 return rq;
dc72ef4a 909}
79eb63e9 910EXPORT_SYMBOL(blk_make_request);
dc72ef4a 911
1da177e4
LT
912/**
913 * blk_requeue_request - put a request back on queue
914 * @q: request queue where request should be inserted
915 * @rq: request to be inserted
916 *
917 * Description:
918 * Drivers often keep queueing requests until the hardware cannot accept
919 * more, when that condition happens we need to put the request back
920 * on the queue. Must be called with queue lock held.
921 */
165125e1 922void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 923{
242f9dcb
JA
924 blk_delete_timer(rq);
925 blk_clear_rq_complete(rq);
5f3ea37c 926 trace_block_rq_requeue(q, rq);
2056a782 927
1da177e4
LT
928 if (blk_rq_tagged(rq))
929 blk_queue_end_tag(q, rq);
930
ba396a6c
JB
931 BUG_ON(blk_queued_rq(rq));
932
1da177e4
LT
933 elv_requeue_request(q, rq);
934}
1da177e4
LT
935EXPORT_SYMBOL(blk_requeue_request);
936
73c10101
JA
937static void add_acct_request(struct request_queue *q, struct request *rq,
938 int where)
939{
940 drive_stat_acct(rq, 1);
7eaceacc 941 __elv_add_request(q, rq, where);
73c10101
JA
942}
943
1da177e4 944/**
710027a4 945 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
946 * @q: request queue where request should be inserted
947 * @rq: request to be inserted
948 * @at_head: insert request at head or tail of queue
949 * @data: private data
1da177e4
LT
950 *
951 * Description:
952 * Many block devices need to execute commands asynchronously, so they don't
953 * block the whole kernel from preemption during request execution. This is
954 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
955 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
956 * be scheduled for actual execution by the request queue.
1da177e4
LT
957 *
958 * We have the option of inserting the head or the tail of the queue.
959 * Typically we use the tail for new ioctls and so forth. We use the head
960 * of the queue for things like a QUEUE_FULL message from a device, or a
961 * host that is unable to accept a particular command.
962 */
165125e1 963void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 964 int at_head, void *data)
1da177e4 965{
867d1191 966 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
967 unsigned long flags;
968
969 /*
970 * tell I/O scheduler that this isn't a regular read/write (ie it
971 * must not attempt merges on this) and that it acts as a soft
972 * barrier
973 */
4aff5e23 974 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
975
976 rq->special = data;
977
978 spin_lock_irqsave(q->queue_lock, flags);
979
980 /*
981 * If command is tagged, release the tag
982 */
867d1191
TH
983 if (blk_rq_tagged(rq))
984 blk_queue_end_tag(q, rq);
1da177e4 985
73c10101 986 add_acct_request(q, rq, where);
24ecfbe2 987 __blk_run_queue(q);
1da177e4
LT
988 spin_unlock_irqrestore(q->queue_lock, flags);
989}
1da177e4
LT
990EXPORT_SYMBOL(blk_insert_request);
991
074a7aca
TH
992static void part_round_stats_single(int cpu, struct hd_struct *part,
993 unsigned long now)
994{
995 if (now == part->stamp)
996 return;
997
316d315b 998 if (part_in_flight(part)) {
074a7aca 999 __part_stat_add(cpu, part, time_in_queue,
316d315b 1000 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1001 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1002 }
1003 part->stamp = now;
1004}
1005
1006/**
496aa8a9
RD
1007 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1008 * @cpu: cpu number for stats access
1009 * @part: target partition
1da177e4
LT
1010 *
1011 * The average IO queue length and utilisation statistics are maintained
1012 * by observing the current state of the queue length and the amount of
1013 * time it has been in this state for.
1014 *
1015 * Normally, that accounting is done on IO completion, but that can result
1016 * in more than a second's worth of IO being accounted for within any one
1017 * second, leading to >100% utilisation. To deal with that, we call this
1018 * function to do a round-off before returning the results when reading
1019 * /proc/diskstats. This accounts immediately for all queue usage up to
1020 * the current jiffies and restarts the counters again.
1021 */
c9959059 1022void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1023{
1024 unsigned long now = jiffies;
1025
074a7aca
TH
1026 if (part->partno)
1027 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1028 part_round_stats_single(cpu, part, now);
6f2576af 1029}
074a7aca 1030EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1031
1da177e4
LT
1032/*
1033 * queue lock must be held
1034 */
165125e1 1035void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1036{
1da177e4
LT
1037 if (unlikely(!q))
1038 return;
1039 if (unlikely(--req->ref_count))
1040 return;
1041
8922e16c
TH
1042 elv_completed_request(q, req);
1043
1cd96c24
BH
1044 /* this is a bio leak */
1045 WARN_ON(req->bio != NULL);
1046
1da177e4
LT
1047 /*
1048 * Request may not have originated from ll_rw_blk. if not,
1049 * it didn't come out of our reserved rq pools
1050 */
49171e5c 1051 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1052 unsigned int flags = req->cmd_flags;
1da177e4 1053
1da177e4 1054 BUG_ON(!list_empty(&req->queuelist));
9817064b 1055 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1056
1057 blk_free_request(q, req);
75eb6c37 1058 freed_request(q, flags);
1da177e4
LT
1059 }
1060}
6e39b69e
MC
1061EXPORT_SYMBOL_GPL(__blk_put_request);
1062
1da177e4
LT
1063void blk_put_request(struct request *req)
1064{
8922e16c 1065 unsigned long flags;
165125e1 1066 struct request_queue *q = req->q;
8922e16c 1067
52a93ba8
FT
1068 spin_lock_irqsave(q->queue_lock, flags);
1069 __blk_put_request(q, req);
1070 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1071}
1da177e4
LT
1072EXPORT_SYMBOL(blk_put_request);
1073
66ac0280
CH
1074/**
1075 * blk_add_request_payload - add a payload to a request
1076 * @rq: request to update
1077 * @page: page backing the payload
1078 * @len: length of the payload.
1079 *
1080 * This allows to later add a payload to an already submitted request by
1081 * a block driver. The driver needs to take care of freeing the payload
1082 * itself.
1083 *
1084 * Note that this is a quite horrible hack and nothing but handling of
1085 * discard requests should ever use it.
1086 */
1087void blk_add_request_payload(struct request *rq, struct page *page,
1088 unsigned int len)
1089{
1090 struct bio *bio = rq->bio;
1091
1092 bio->bi_io_vec->bv_page = page;
1093 bio->bi_io_vec->bv_offset = 0;
1094 bio->bi_io_vec->bv_len = len;
1095
1096 bio->bi_size = len;
1097 bio->bi_vcnt = 1;
1098 bio->bi_phys_segments = 1;
1099
1100 rq->__data_len = rq->resid_len = len;
1101 rq->nr_phys_segments = 1;
1102 rq->buffer = bio_data(bio);
1103}
1104EXPORT_SYMBOL_GPL(blk_add_request_payload);
1105
73c10101
JA
1106static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1107 struct bio *bio)
1108{
1109 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1110
73c10101
JA
1111 if (!ll_back_merge_fn(q, req, bio))
1112 return false;
1113
1114 trace_block_bio_backmerge(q, bio);
1115
1116 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1117 blk_rq_set_mixed_merge(req);
1118
1119 req->biotail->bi_next = bio;
1120 req->biotail = bio;
1121 req->__data_len += bio->bi_size;
1122 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1123
1124 drive_stat_acct(req, 0);
95cf3dd9 1125 elv_bio_merged(q, req, bio);
73c10101
JA
1126 return true;
1127}
1128
1129static bool bio_attempt_front_merge(struct request_queue *q,
1130 struct request *req, struct bio *bio)
1131{
1132 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1133
73c10101
JA
1134 if (!ll_front_merge_fn(q, req, bio))
1135 return false;
1136
1137 trace_block_bio_frontmerge(q, bio);
1138
1139 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1140 blk_rq_set_mixed_merge(req);
1141
73c10101
JA
1142 bio->bi_next = req->bio;
1143 req->bio = bio;
1144
1145 /*
1146 * may not be valid. if the low level driver said
1147 * it didn't need a bounce buffer then it better
1148 * not touch req->buffer either...
1149 */
1150 req->buffer = bio_data(bio);
1151 req->__sector = bio->bi_sector;
1152 req->__data_len += bio->bi_size;
1153 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1154
1155 drive_stat_acct(req, 0);
95cf3dd9 1156 elv_bio_merged(q, req, bio);
73c10101
JA
1157 return true;
1158}
1159
1160/*
1161 * Attempts to merge with the plugged list in the current process. Returns
25985edc 1162 * true if merge was successful, otherwise false.
73c10101
JA
1163 */
1164static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
56ebdaf2 1165 struct bio *bio, unsigned int *request_count)
73c10101
JA
1166{
1167 struct blk_plug *plug;
1168 struct request *rq;
1169 bool ret = false;
1170
1171 plug = tsk->plug;
1172 if (!plug)
1173 goto out;
56ebdaf2 1174 *request_count = 0;
73c10101
JA
1175
1176 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1177 int el_ret;
1178
56ebdaf2
SL
1179 (*request_count)++;
1180
73c10101
JA
1181 if (rq->q != q)
1182 continue;
1183
1184 el_ret = elv_try_merge(rq, bio);
1185 if (el_ret == ELEVATOR_BACK_MERGE) {
1186 ret = bio_attempt_back_merge(q, rq, bio);
1187 if (ret)
1188 break;
1189 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1190 ret = bio_attempt_front_merge(q, rq, bio);
1191 if (ret)
1192 break;
1193 }
1194 }
1195out:
1196 return ret;
1197}
1198
86db1e29 1199void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1200{
c7c22e4d 1201 req->cpu = bio->bi_comp_cpu;
4aff5e23 1202 req->cmd_type = REQ_TYPE_FS;
52d9e675 1203
7b6d91da
CH
1204 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1205 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1206 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1207
52d9e675 1208 req->errors = 0;
a2dec7b3 1209 req->__sector = bio->bi_sector;
52d9e675 1210 req->ioprio = bio_prio(bio);
bc1c56fd 1211 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1212}
1213
5a7bbad2 1214void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1215{
5e00d1b5 1216 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1217 struct blk_plug *plug;
1218 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1219 struct request *req;
56ebdaf2 1220 unsigned int request_count = 0;
1da177e4 1221
1da177e4
LT
1222 /*
1223 * low level driver can indicate that it wants pages above a
1224 * certain limit bounced to low memory (ie for highmem, or even
1225 * ISA dma in theory)
1226 */
1227 blk_queue_bounce(q, &bio);
1228
4fed947c 1229 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1230 spin_lock_irq(q->queue_lock);
ae1b1539 1231 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1232 goto get_rq;
1233 }
1234
73c10101
JA
1235 /*
1236 * Check if we can merge with the plugged list before grabbing
1237 * any locks.
1238 */
56ebdaf2 1239 if (attempt_plug_merge(current, q, bio, &request_count))
5a7bbad2 1240 return;
1da177e4 1241
73c10101 1242 spin_lock_irq(q->queue_lock);
2056a782 1243
73c10101
JA
1244 el_ret = elv_merge(q, &req, bio);
1245 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101
JA
1246 if (bio_attempt_back_merge(q, req, bio)) {
1247 if (!attempt_back_merge(q, req))
1248 elv_merged_request(q, req, el_ret);
1249 goto out_unlock;
1250 }
1251 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101
JA
1252 if (bio_attempt_front_merge(q, req, bio)) {
1253 if (!attempt_front_merge(q, req))
1254 elv_merged_request(q, req, el_ret);
1255 goto out_unlock;
80a761fd 1256 }
1da177e4
LT
1257 }
1258
450991bc 1259get_rq:
7749a8d4
JA
1260 /*
1261 * This sync check and mask will be re-done in init_request_from_bio(),
1262 * but we need to set it earlier to expose the sync flag to the
1263 * rq allocator and io schedulers.
1264 */
1265 rw_flags = bio_data_dir(bio);
1266 if (sync)
7b6d91da 1267 rw_flags |= REQ_SYNC;
7749a8d4 1268
1da177e4 1269 /*
450991bc 1270 * Grab a free request. This is might sleep but can not fail.
d6344532 1271 * Returns with the queue unlocked.
450991bc 1272 */
7749a8d4 1273 req = get_request_wait(q, rw_flags, bio);
d6344532 1274
450991bc
NP
1275 /*
1276 * After dropping the lock and possibly sleeping here, our request
1277 * may now be mergeable after it had proven unmergeable (above).
1278 * We don't worry about that case for efficiency. It won't happen
1279 * often, and the elevators are able to handle it.
1da177e4 1280 */
52d9e675 1281 init_request_from_bio(req, bio);
1da177e4 1282
c7c22e4d 1283 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
5757a6d7 1284 bio_flagged(bio, BIO_CPU_AFFINE))
11ccf116 1285 req->cpu = raw_smp_processor_id();
73c10101
JA
1286
1287 plug = current->plug;
721a9602 1288 if (plug) {
dc6d36c9
JA
1289 /*
1290 * If this is the first request added after a plug, fire
1291 * of a plug trace. If others have been added before, check
1292 * if we have multiple devices in this plug. If so, make a
1293 * note to sort the list before dispatch.
1294 */
1295 if (list_empty(&plug->list))
1296 trace_block_plug(q);
1297 else if (!plug->should_sort) {
73c10101
JA
1298 struct request *__rq;
1299
1300 __rq = list_entry_rq(plug->list.prev);
1301 if (__rq->q != q)
1302 plug->should_sort = 1;
1303 }
56ebdaf2 1304 if (request_count >= BLK_MAX_REQUEST_COUNT)
55c022bb 1305 blk_flush_plug_list(plug, false);
73c10101
JA
1306 list_add_tail(&req->queuelist, &plug->list);
1307 drive_stat_acct(req, 1);
1308 } else {
1309 spin_lock_irq(q->queue_lock);
1310 add_acct_request(q, req, where);
24ecfbe2 1311 __blk_run_queue(q);
73c10101
JA
1312out_unlock:
1313 spin_unlock_irq(q->queue_lock);
1314 }
1da177e4 1315}
c20e8de2 1316EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1317
1318/*
1319 * If bio->bi_dev is a partition, remap the location
1320 */
1321static inline void blk_partition_remap(struct bio *bio)
1322{
1323 struct block_device *bdev = bio->bi_bdev;
1324
bf2de6f5 1325 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1326 struct hd_struct *p = bdev->bd_part;
1327
1da177e4
LT
1328 bio->bi_sector += p->start_sect;
1329 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1330
d07335e5
MS
1331 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1332 bdev->bd_dev,
1333 bio->bi_sector - p->start_sect);
1da177e4
LT
1334 }
1335}
1336
1da177e4
LT
1337static void handle_bad_sector(struct bio *bio)
1338{
1339 char b[BDEVNAME_SIZE];
1340
1341 printk(KERN_INFO "attempt to access beyond end of device\n");
1342 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1343 bdevname(bio->bi_bdev, b),
1344 bio->bi_rw,
1345 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1346 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1347
1348 set_bit(BIO_EOF, &bio->bi_flags);
1349}
1350
c17bb495
AM
1351#ifdef CONFIG_FAIL_MAKE_REQUEST
1352
1353static DECLARE_FAULT_ATTR(fail_make_request);
1354
1355static int __init setup_fail_make_request(char *str)
1356{
1357 return setup_fault_attr(&fail_make_request, str);
1358}
1359__setup("fail_make_request=", setup_fail_make_request);
1360
b2c9cd37 1361static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1362{
b2c9cd37 1363 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1364}
1365
1366static int __init fail_make_request_debugfs(void)
1367{
dd48c085
AM
1368 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1369 NULL, &fail_make_request);
1370
1371 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1372}
1373
1374late_initcall(fail_make_request_debugfs);
1375
1376#else /* CONFIG_FAIL_MAKE_REQUEST */
1377
b2c9cd37
AM
1378static inline bool should_fail_request(struct hd_struct *part,
1379 unsigned int bytes)
c17bb495 1380{
b2c9cd37 1381 return false;
c17bb495
AM
1382}
1383
1384#endif /* CONFIG_FAIL_MAKE_REQUEST */
1385
c07e2b41
JA
1386/*
1387 * Check whether this bio extends beyond the end of the device.
1388 */
1389static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1390{
1391 sector_t maxsector;
1392
1393 if (!nr_sectors)
1394 return 0;
1395
1396 /* Test device or partition size, when known. */
77304d2a 1397 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1398 if (maxsector) {
1399 sector_t sector = bio->bi_sector;
1400
1401 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1402 /*
1403 * This may well happen - the kernel calls bread()
1404 * without checking the size of the device, e.g., when
1405 * mounting a device.
1406 */
1407 handle_bad_sector(bio);
1408 return 1;
1409 }
1410 }
1411
1412 return 0;
1413}
1414
27a84d54
CH
1415static noinline_for_stack bool
1416generic_make_request_checks(struct bio *bio)
1da177e4 1417{
165125e1 1418 struct request_queue *q;
5a7bbad2 1419 int nr_sectors = bio_sectors(bio);
51fd77bd 1420 int err = -EIO;
5a7bbad2
CH
1421 char b[BDEVNAME_SIZE];
1422 struct hd_struct *part;
1da177e4
LT
1423
1424 might_sleep();
1da177e4 1425
c07e2b41
JA
1426 if (bio_check_eod(bio, nr_sectors))
1427 goto end_io;
1da177e4 1428
5a7bbad2
CH
1429 q = bdev_get_queue(bio->bi_bdev);
1430 if (unlikely(!q)) {
1431 printk(KERN_ERR
1432 "generic_make_request: Trying to access "
1433 "nonexistent block-device %s (%Lu)\n",
1434 bdevname(bio->bi_bdev, b),
1435 (long long) bio->bi_sector);
1436 goto end_io;
1437 }
c17bb495 1438
5a7bbad2
CH
1439 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1440 nr_sectors > queue_max_hw_sectors(q))) {
1441 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1442 bdevname(bio->bi_bdev, b),
1443 bio_sectors(bio),
1444 queue_max_hw_sectors(q));
1445 goto end_io;
1446 }
1da177e4 1447
5a7bbad2
CH
1448 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1449 goto end_io;
7ba1ba12 1450
5a7bbad2
CH
1451 part = bio->bi_bdev->bd_part;
1452 if (should_fail_request(part, bio->bi_size) ||
1453 should_fail_request(&part_to_disk(part)->part0,
1454 bio->bi_size))
1455 goto end_io;
2056a782 1456
5a7bbad2
CH
1457 /*
1458 * If this device has partitions, remap block n
1459 * of partition p to block n+start(p) of the disk.
1460 */
1461 blk_partition_remap(bio);
2056a782 1462
5a7bbad2
CH
1463 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1464 goto end_io;
a7384677 1465
5a7bbad2
CH
1466 if (bio_check_eod(bio, nr_sectors))
1467 goto end_io;
1e87901e 1468
5a7bbad2
CH
1469 /*
1470 * Filter flush bio's early so that make_request based
1471 * drivers without flush support don't have to worry
1472 * about them.
1473 */
1474 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1475 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1476 if (!nr_sectors) {
1477 err = 0;
51fd77bd
JA
1478 goto end_io;
1479 }
5a7bbad2 1480 }
5ddfe969 1481
5a7bbad2
CH
1482 if ((bio->bi_rw & REQ_DISCARD) &&
1483 (!blk_queue_discard(q) ||
1484 ((bio->bi_rw & REQ_SECURE) &&
1485 !blk_queue_secdiscard(q)))) {
1486 err = -EOPNOTSUPP;
1487 goto end_io;
1488 }
01edede4 1489
5a7bbad2
CH
1490 if (blk_throtl_bio(q, &bio))
1491 goto end_io;
a7384677 1492
5a7bbad2
CH
1493 /* if bio = NULL, bio has been throttled and will be submitted later. */
1494 if (!bio)
27a84d54
CH
1495 return false;
1496
5a7bbad2 1497 trace_block_bio_queue(q, bio);
27a84d54 1498 return true;
a7384677
TH
1499
1500end_io:
1501 bio_endio(bio, err);
27a84d54 1502 return false;
1da177e4
LT
1503}
1504
27a84d54
CH
1505/**
1506 * generic_make_request - hand a buffer to its device driver for I/O
1507 * @bio: The bio describing the location in memory and on the device.
1508 *
1509 * generic_make_request() is used to make I/O requests of block
1510 * devices. It is passed a &struct bio, which describes the I/O that needs
1511 * to be done.
1512 *
1513 * generic_make_request() does not return any status. The
1514 * success/failure status of the request, along with notification of
1515 * completion, is delivered asynchronously through the bio->bi_end_io
1516 * function described (one day) else where.
1517 *
1518 * The caller of generic_make_request must make sure that bi_io_vec
1519 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1520 * set to describe the device address, and the
1521 * bi_end_io and optionally bi_private are set to describe how
1522 * completion notification should be signaled.
1523 *
1524 * generic_make_request and the drivers it calls may use bi_next if this
1525 * bio happens to be merged with someone else, and may resubmit the bio to
1526 * a lower device by calling into generic_make_request recursively, which
1527 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1528 */
1529void generic_make_request(struct bio *bio)
1530{
bddd87c7
AM
1531 struct bio_list bio_list_on_stack;
1532
27a84d54
CH
1533 if (!generic_make_request_checks(bio))
1534 return;
1535
1536 /*
1537 * We only want one ->make_request_fn to be active at a time, else
1538 * stack usage with stacked devices could be a problem. So use
1539 * current->bio_list to keep a list of requests submited by a
1540 * make_request_fn function. current->bio_list is also used as a
1541 * flag to say if generic_make_request is currently active in this
1542 * task or not. If it is NULL, then no make_request is active. If
1543 * it is non-NULL, then a make_request is active, and new requests
1544 * should be added at the tail
1545 */
bddd87c7 1546 if (current->bio_list) {
bddd87c7 1547 bio_list_add(current->bio_list, bio);
d89d8796
NB
1548 return;
1549 }
27a84d54 1550
d89d8796
NB
1551 /* following loop may be a bit non-obvious, and so deserves some
1552 * explanation.
1553 * Before entering the loop, bio->bi_next is NULL (as all callers
1554 * ensure that) so we have a list with a single bio.
1555 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1556 * we assign bio_list to a pointer to the bio_list_on_stack,
1557 * thus initialising the bio_list of new bios to be
27a84d54 1558 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1559 * through a recursive call to generic_make_request. If it
1560 * did, we find a non-NULL value in bio_list and re-enter the loop
1561 * from the top. In this case we really did just take the bio
bddd87c7 1562 * of the top of the list (no pretending) and so remove it from
27a84d54 1563 * bio_list, and call into ->make_request() again.
d89d8796
NB
1564 */
1565 BUG_ON(bio->bi_next);
bddd87c7
AM
1566 bio_list_init(&bio_list_on_stack);
1567 current->bio_list = &bio_list_on_stack;
d89d8796 1568 do {
27a84d54
CH
1569 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1570
1571 q->make_request_fn(q, bio);
1572
bddd87c7 1573 bio = bio_list_pop(current->bio_list);
d89d8796 1574 } while (bio);
bddd87c7 1575 current->bio_list = NULL; /* deactivate */
d89d8796 1576}
1da177e4
LT
1577EXPORT_SYMBOL(generic_make_request);
1578
1579/**
710027a4 1580 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1581 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1582 * @bio: The &struct bio which describes the I/O
1583 *
1584 * submit_bio() is very similar in purpose to generic_make_request(), and
1585 * uses that function to do most of the work. Both are fairly rough
710027a4 1586 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1587 *
1588 */
1589void submit_bio(int rw, struct bio *bio)
1590{
1591 int count = bio_sectors(bio);
1592
22e2c507 1593 bio->bi_rw |= rw;
1da177e4 1594
bf2de6f5
JA
1595 /*
1596 * If it's a regular read/write or a barrier with data attached,
1597 * go through the normal accounting stuff before submission.
1598 */
3ffb52e7 1599 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1600 if (rw & WRITE) {
1601 count_vm_events(PGPGOUT, count);
1602 } else {
1603 task_io_account_read(bio->bi_size);
1604 count_vm_events(PGPGIN, count);
1605 }
1606
1607 if (unlikely(block_dump)) {
1608 char b[BDEVNAME_SIZE];
8dcbdc74 1609 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1610 current->comm, task_pid_nr(current),
bf2de6f5
JA
1611 (rw & WRITE) ? "WRITE" : "READ",
1612 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1613 bdevname(bio->bi_bdev, b),
1614 count);
bf2de6f5 1615 }
1da177e4
LT
1616 }
1617
1618 generic_make_request(bio);
1619}
1da177e4
LT
1620EXPORT_SYMBOL(submit_bio);
1621
82124d60
KU
1622/**
1623 * blk_rq_check_limits - Helper function to check a request for the queue limit
1624 * @q: the queue
1625 * @rq: the request being checked
1626 *
1627 * Description:
1628 * @rq may have been made based on weaker limitations of upper-level queues
1629 * in request stacking drivers, and it may violate the limitation of @q.
1630 * Since the block layer and the underlying device driver trust @rq
1631 * after it is inserted to @q, it should be checked against @q before
1632 * the insertion using this generic function.
1633 *
1634 * This function should also be useful for request stacking drivers
eef35c2d 1635 * in some cases below, so export this function.
82124d60
KU
1636 * Request stacking drivers like request-based dm may change the queue
1637 * limits while requests are in the queue (e.g. dm's table swapping).
1638 * Such request stacking drivers should check those requests agaist
1639 * the new queue limits again when they dispatch those requests,
1640 * although such checkings are also done against the old queue limits
1641 * when submitting requests.
1642 */
1643int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1644{
3383977f
S
1645 if (rq->cmd_flags & REQ_DISCARD)
1646 return 0;
1647
ae03bf63
MP
1648 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1649 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1650 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1651 return -EIO;
1652 }
1653
1654 /*
1655 * queue's settings related to segment counting like q->bounce_pfn
1656 * may differ from that of other stacking queues.
1657 * Recalculate it to check the request correctly on this queue's
1658 * limitation.
1659 */
1660 blk_recalc_rq_segments(rq);
8a78362c 1661 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1662 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1663 return -EIO;
1664 }
1665
1666 return 0;
1667}
1668EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1669
1670/**
1671 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1672 * @q: the queue to submit the request
1673 * @rq: the request being queued
1674 */
1675int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1676{
1677 unsigned long flags;
4853abaa 1678 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1679
1680 if (blk_rq_check_limits(q, rq))
1681 return -EIO;
1682
b2c9cd37
AM
1683 if (rq->rq_disk &&
1684 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1685 return -EIO;
82124d60
KU
1686
1687 spin_lock_irqsave(q->queue_lock, flags);
1688
1689 /*
1690 * Submitting request must be dequeued before calling this function
1691 * because it will be linked to another request_queue
1692 */
1693 BUG_ON(blk_queued_rq(rq));
1694
4853abaa
JM
1695 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1696 where = ELEVATOR_INSERT_FLUSH;
1697
1698 add_acct_request(q, rq, where);
82124d60
KU
1699 spin_unlock_irqrestore(q->queue_lock, flags);
1700
1701 return 0;
1702}
1703EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1704
80a761fd
TH
1705/**
1706 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1707 * @rq: request to examine
1708 *
1709 * Description:
1710 * A request could be merge of IOs which require different failure
1711 * handling. This function determines the number of bytes which
1712 * can be failed from the beginning of the request without
1713 * crossing into area which need to be retried further.
1714 *
1715 * Return:
1716 * The number of bytes to fail.
1717 *
1718 * Context:
1719 * queue_lock must be held.
1720 */
1721unsigned int blk_rq_err_bytes(const struct request *rq)
1722{
1723 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1724 unsigned int bytes = 0;
1725 struct bio *bio;
1726
1727 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1728 return blk_rq_bytes(rq);
1729
1730 /*
1731 * Currently the only 'mixing' which can happen is between
1732 * different fastfail types. We can safely fail portions
1733 * which have all the failfast bits that the first one has -
1734 * the ones which are at least as eager to fail as the first
1735 * one.
1736 */
1737 for (bio = rq->bio; bio; bio = bio->bi_next) {
1738 if ((bio->bi_rw & ff) != ff)
1739 break;
1740 bytes += bio->bi_size;
1741 }
1742
1743 /* this could lead to infinite loop */
1744 BUG_ON(blk_rq_bytes(rq) && !bytes);
1745 return bytes;
1746}
1747EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1748
bc58ba94
JA
1749static void blk_account_io_completion(struct request *req, unsigned int bytes)
1750{
c2553b58 1751 if (blk_do_io_stat(req)) {
bc58ba94
JA
1752 const int rw = rq_data_dir(req);
1753 struct hd_struct *part;
1754 int cpu;
1755
1756 cpu = part_stat_lock();
09e099d4 1757 part = req->part;
bc58ba94
JA
1758 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1759 part_stat_unlock();
1760 }
1761}
1762
1763static void blk_account_io_done(struct request *req)
1764{
bc58ba94 1765 /*
dd4c133f
TH
1766 * Account IO completion. flush_rq isn't accounted as a
1767 * normal IO on queueing nor completion. Accounting the
1768 * containing request is enough.
bc58ba94 1769 */
414b4ff5 1770 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1771 unsigned long duration = jiffies - req->start_time;
1772 const int rw = rq_data_dir(req);
1773 struct hd_struct *part;
1774 int cpu;
1775
1776 cpu = part_stat_lock();
09e099d4 1777 part = req->part;
bc58ba94
JA
1778
1779 part_stat_inc(cpu, part, ios[rw]);
1780 part_stat_add(cpu, part, ticks[rw], duration);
1781 part_round_stats(cpu, part);
316d315b 1782 part_dec_in_flight(part, rw);
bc58ba94 1783
6c23a968 1784 hd_struct_put(part);
bc58ba94
JA
1785 part_stat_unlock();
1786 }
1787}
1788
3bcddeac 1789/**
9934c8c0
TH
1790 * blk_peek_request - peek at the top of a request queue
1791 * @q: request queue to peek at
1792 *
1793 * Description:
1794 * Return the request at the top of @q. The returned request
1795 * should be started using blk_start_request() before LLD starts
1796 * processing it.
1797 *
1798 * Return:
1799 * Pointer to the request at the top of @q if available. Null
1800 * otherwise.
1801 *
1802 * Context:
1803 * queue_lock must be held.
1804 */
1805struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1806{
1807 struct request *rq;
1808 int ret;
1809
1810 while ((rq = __elv_next_request(q)) != NULL) {
1811 if (!(rq->cmd_flags & REQ_STARTED)) {
1812 /*
1813 * This is the first time the device driver
1814 * sees this request (possibly after
1815 * requeueing). Notify IO scheduler.
1816 */
33659ebb 1817 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1818 elv_activate_rq(q, rq);
1819
1820 /*
1821 * just mark as started even if we don't start
1822 * it, a request that has been delayed should
1823 * not be passed by new incoming requests
1824 */
1825 rq->cmd_flags |= REQ_STARTED;
1826 trace_block_rq_issue(q, rq);
1827 }
1828
1829 if (!q->boundary_rq || q->boundary_rq == rq) {
1830 q->end_sector = rq_end_sector(rq);
1831 q->boundary_rq = NULL;
1832 }
1833
1834 if (rq->cmd_flags & REQ_DONTPREP)
1835 break;
1836
2e46e8b2 1837 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1838 /*
1839 * make sure space for the drain appears we
1840 * know we can do this because max_hw_segments
1841 * has been adjusted to be one fewer than the
1842 * device can handle
1843 */
1844 rq->nr_phys_segments++;
1845 }
1846
1847 if (!q->prep_rq_fn)
1848 break;
1849
1850 ret = q->prep_rq_fn(q, rq);
1851 if (ret == BLKPREP_OK) {
1852 break;
1853 } else if (ret == BLKPREP_DEFER) {
1854 /*
1855 * the request may have been (partially) prepped.
1856 * we need to keep this request in the front to
1857 * avoid resource deadlock. REQ_STARTED will
1858 * prevent other fs requests from passing this one.
1859 */
2e46e8b2 1860 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1861 !(rq->cmd_flags & REQ_DONTPREP)) {
1862 /*
1863 * remove the space for the drain we added
1864 * so that we don't add it again
1865 */
1866 --rq->nr_phys_segments;
1867 }
1868
1869 rq = NULL;
1870 break;
1871 } else if (ret == BLKPREP_KILL) {
1872 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1873 /*
1874 * Mark this request as started so we don't trigger
1875 * any debug logic in the end I/O path.
1876 */
1877 blk_start_request(rq);
40cbbb78 1878 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1879 } else {
1880 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1881 break;
1882 }
1883 }
1884
1885 return rq;
1886}
9934c8c0 1887EXPORT_SYMBOL(blk_peek_request);
158dbda0 1888
9934c8c0 1889void blk_dequeue_request(struct request *rq)
158dbda0 1890{
9934c8c0
TH
1891 struct request_queue *q = rq->q;
1892
158dbda0
TH
1893 BUG_ON(list_empty(&rq->queuelist));
1894 BUG_ON(ELV_ON_HASH(rq));
1895
1896 list_del_init(&rq->queuelist);
1897
1898 /*
1899 * the time frame between a request being removed from the lists
1900 * and to it is freed is accounted as io that is in progress at
1901 * the driver side.
1902 */
9195291e 1903 if (blk_account_rq(rq)) {
0a7ae2ff 1904 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1905 set_io_start_time_ns(rq);
1906 }
158dbda0
TH
1907}
1908
9934c8c0
TH
1909/**
1910 * blk_start_request - start request processing on the driver
1911 * @req: request to dequeue
1912 *
1913 * Description:
1914 * Dequeue @req and start timeout timer on it. This hands off the
1915 * request to the driver.
1916 *
1917 * Block internal functions which don't want to start timer should
1918 * call blk_dequeue_request().
1919 *
1920 * Context:
1921 * queue_lock must be held.
1922 */
1923void blk_start_request(struct request *req)
1924{
1925 blk_dequeue_request(req);
1926
1927 /*
5f49f631
TH
1928 * We are now handing the request to the hardware, initialize
1929 * resid_len to full count and add the timeout handler.
9934c8c0 1930 */
5f49f631 1931 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1932 if (unlikely(blk_bidi_rq(req)))
1933 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1934
9934c8c0
TH
1935 blk_add_timer(req);
1936}
1937EXPORT_SYMBOL(blk_start_request);
1938
1939/**
1940 * blk_fetch_request - fetch a request from a request queue
1941 * @q: request queue to fetch a request from
1942 *
1943 * Description:
1944 * Return the request at the top of @q. The request is started on
1945 * return and LLD can start processing it immediately.
1946 *
1947 * Return:
1948 * Pointer to the request at the top of @q if available. Null
1949 * otherwise.
1950 *
1951 * Context:
1952 * queue_lock must be held.
1953 */
1954struct request *blk_fetch_request(struct request_queue *q)
1955{
1956 struct request *rq;
1957
1958 rq = blk_peek_request(q);
1959 if (rq)
1960 blk_start_request(rq);
1961 return rq;
1962}
1963EXPORT_SYMBOL(blk_fetch_request);
1964
3bcddeac 1965/**
2e60e022 1966 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1967 * @req: the request being processed
710027a4 1968 * @error: %0 for success, < %0 for error
8ebf9756 1969 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1970 *
1971 * Description:
8ebf9756
RD
1972 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1973 * the request structure even if @req doesn't have leftover.
1974 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1975 *
1976 * This special helper function is only for request stacking drivers
1977 * (e.g. request-based dm) so that they can handle partial completion.
1978 * Actual device drivers should use blk_end_request instead.
1979 *
1980 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1981 * %false return from this function.
3bcddeac
KU
1982 *
1983 * Return:
2e60e022
TH
1984 * %false - this request doesn't have any more data
1985 * %true - this request has more data
3bcddeac 1986 **/
2e60e022 1987bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 1988{
5450d3e1 1989 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1990 struct bio *bio;
1991
2e60e022
TH
1992 if (!req->bio)
1993 return false;
1994
5f3ea37c 1995 trace_block_rq_complete(req->q, req);
2056a782 1996
1da177e4 1997 /*
6f41469c
TH
1998 * For fs requests, rq is just carrier of independent bio's
1999 * and each partial completion should be handled separately.
2000 * Reset per-request error on each partial completion.
2001 *
2002 * TODO: tj: This is too subtle. It would be better to let
2003 * low level drivers do what they see fit.
1da177e4 2004 */
33659ebb 2005 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2006 req->errors = 0;
2007
33659ebb
CH
2008 if (error && req->cmd_type == REQ_TYPE_FS &&
2009 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2010 char *error_type;
2011
2012 switch (error) {
2013 case -ENOLINK:
2014 error_type = "recoverable transport";
2015 break;
2016 case -EREMOTEIO:
2017 error_type = "critical target";
2018 break;
2019 case -EBADE:
2020 error_type = "critical nexus";
2021 break;
2022 case -EIO:
2023 default:
2024 error_type = "I/O";
2025 break;
2026 }
2027 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2028 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2029 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2030 }
2031
bc58ba94 2032 blk_account_io_completion(req, nr_bytes);
d72d904a 2033
1da177e4
LT
2034 total_bytes = bio_nbytes = 0;
2035 while ((bio = req->bio) != NULL) {
2036 int nbytes;
2037
2038 if (nr_bytes >= bio->bi_size) {
2039 req->bio = bio->bi_next;
2040 nbytes = bio->bi_size;
5bb23a68 2041 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2042 next_idx = 0;
2043 bio_nbytes = 0;
2044 } else {
2045 int idx = bio->bi_idx + next_idx;
2046
af498d7f 2047 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2048 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2049 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2050 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2051 break;
2052 }
2053
2054 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2055 BIO_BUG_ON(nbytes > bio->bi_size);
2056
2057 /*
2058 * not a complete bvec done
2059 */
2060 if (unlikely(nbytes > nr_bytes)) {
2061 bio_nbytes += nr_bytes;
2062 total_bytes += nr_bytes;
2063 break;
2064 }
2065
2066 /*
2067 * advance to the next vector
2068 */
2069 next_idx++;
2070 bio_nbytes += nbytes;
2071 }
2072
2073 total_bytes += nbytes;
2074 nr_bytes -= nbytes;
2075
6728cb0e
JA
2076 bio = req->bio;
2077 if (bio) {
1da177e4
LT
2078 /*
2079 * end more in this run, or just return 'not-done'
2080 */
2081 if (unlikely(nr_bytes <= 0))
2082 break;
2083 }
2084 }
2085
2086 /*
2087 * completely done
2088 */
2e60e022
TH
2089 if (!req->bio) {
2090 /*
2091 * Reset counters so that the request stacking driver
2092 * can find how many bytes remain in the request
2093 * later.
2094 */
a2dec7b3 2095 req->__data_len = 0;
2e60e022
TH
2096 return false;
2097 }
1da177e4
LT
2098
2099 /*
2100 * if the request wasn't completed, update state
2101 */
2102 if (bio_nbytes) {
5bb23a68 2103 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2104 bio->bi_idx += next_idx;
2105 bio_iovec(bio)->bv_offset += nr_bytes;
2106 bio_iovec(bio)->bv_len -= nr_bytes;
2107 }
2108
a2dec7b3 2109 req->__data_len -= total_bytes;
2e46e8b2
TH
2110 req->buffer = bio_data(req->bio);
2111
2112 /* update sector only for requests with clear definition of sector */
33659ebb 2113 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2114 req->__sector += total_bytes >> 9;
2e46e8b2 2115
80a761fd
TH
2116 /* mixed attributes always follow the first bio */
2117 if (req->cmd_flags & REQ_MIXED_MERGE) {
2118 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2119 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2120 }
2121
2e46e8b2
TH
2122 /*
2123 * If total number of sectors is less than the first segment
2124 * size, something has gone terribly wrong.
2125 */
2126 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2127 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2128 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2129 }
2130
2131 /* recalculate the number of segments */
1da177e4 2132 blk_recalc_rq_segments(req);
2e46e8b2 2133
2e60e022 2134 return true;
1da177e4 2135}
2e60e022 2136EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2137
2e60e022
TH
2138static bool blk_update_bidi_request(struct request *rq, int error,
2139 unsigned int nr_bytes,
2140 unsigned int bidi_bytes)
5efccd17 2141{
2e60e022
TH
2142 if (blk_update_request(rq, error, nr_bytes))
2143 return true;
5efccd17 2144
2e60e022
TH
2145 /* Bidi request must be completed as a whole */
2146 if (unlikely(blk_bidi_rq(rq)) &&
2147 blk_update_request(rq->next_rq, error, bidi_bytes))
2148 return true;
5efccd17 2149
e2e1a148
JA
2150 if (blk_queue_add_random(rq->q))
2151 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2152
2153 return false;
1da177e4
LT
2154}
2155
28018c24
JB
2156/**
2157 * blk_unprep_request - unprepare a request
2158 * @req: the request
2159 *
2160 * This function makes a request ready for complete resubmission (or
2161 * completion). It happens only after all error handling is complete,
2162 * so represents the appropriate moment to deallocate any resources
2163 * that were allocated to the request in the prep_rq_fn. The queue
2164 * lock is held when calling this.
2165 */
2166void blk_unprep_request(struct request *req)
2167{
2168 struct request_queue *q = req->q;
2169
2170 req->cmd_flags &= ~REQ_DONTPREP;
2171 if (q->unprep_rq_fn)
2172 q->unprep_rq_fn(q, req);
2173}
2174EXPORT_SYMBOL_GPL(blk_unprep_request);
2175
1da177e4
LT
2176/*
2177 * queue lock must be held
2178 */
2e60e022 2179static void blk_finish_request(struct request *req, int error)
1da177e4 2180{
b8286239
KU
2181 if (blk_rq_tagged(req))
2182 blk_queue_end_tag(req->q, req);
2183
ba396a6c 2184 BUG_ON(blk_queued_rq(req));
1da177e4 2185
33659ebb 2186 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2187 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2188
e78042e5
MA
2189 blk_delete_timer(req);
2190
28018c24
JB
2191 if (req->cmd_flags & REQ_DONTPREP)
2192 blk_unprep_request(req);
2193
2194
bc58ba94 2195 blk_account_io_done(req);
b8286239 2196
1da177e4 2197 if (req->end_io)
8ffdc655 2198 req->end_io(req, error);
b8286239
KU
2199 else {
2200 if (blk_bidi_rq(req))
2201 __blk_put_request(req->next_rq->q, req->next_rq);
2202
1da177e4 2203 __blk_put_request(req->q, req);
b8286239 2204 }
1da177e4
LT
2205}
2206
3b11313a 2207/**
2e60e022
TH
2208 * blk_end_bidi_request - Complete a bidi request
2209 * @rq: the request to complete
2210 * @error: %0 for success, < %0 for error
2211 * @nr_bytes: number of bytes to complete @rq
2212 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2213 *
2214 * Description:
e3a04fe3 2215 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2216 * Drivers that supports bidi can safely call this member for any
2217 * type of request, bidi or uni. In the later case @bidi_bytes is
2218 * just ignored.
336cdb40
KU
2219 *
2220 * Return:
2e60e022
TH
2221 * %false - we are done with this request
2222 * %true - still buffers pending for this request
a0cd1285 2223 **/
b1f74493 2224static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2225 unsigned int nr_bytes, unsigned int bidi_bytes)
2226{
336cdb40 2227 struct request_queue *q = rq->q;
2e60e022 2228 unsigned long flags;
32fab448 2229
2e60e022
TH
2230 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2231 return true;
32fab448 2232
336cdb40 2233 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2234 blk_finish_request(rq, error);
336cdb40
KU
2235 spin_unlock_irqrestore(q->queue_lock, flags);
2236
2e60e022 2237 return false;
32fab448
KU
2238}
2239
336cdb40 2240/**
2e60e022
TH
2241 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2242 * @rq: the request to complete
710027a4 2243 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2244 * @nr_bytes: number of bytes to complete @rq
2245 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2246 *
2247 * Description:
2e60e022
TH
2248 * Identical to blk_end_bidi_request() except that queue lock is
2249 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2250 *
2251 * Return:
2e60e022
TH
2252 * %false - we are done with this request
2253 * %true - still buffers pending for this request
336cdb40 2254 **/
4853abaa 2255bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2256 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2257{
2e60e022
TH
2258 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2259 return true;
336cdb40 2260
2e60e022 2261 blk_finish_request(rq, error);
336cdb40 2262
2e60e022 2263 return false;
336cdb40 2264}
e19a3ab0
KU
2265
2266/**
2267 * blk_end_request - Helper function for drivers to complete the request.
2268 * @rq: the request being processed
710027a4 2269 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2270 * @nr_bytes: number of bytes to complete
2271 *
2272 * Description:
2273 * Ends I/O on a number of bytes attached to @rq.
2274 * If @rq has leftover, sets it up for the next range of segments.
2275 *
2276 * Return:
b1f74493
FT
2277 * %false - we are done with this request
2278 * %true - still buffers pending for this request
e19a3ab0 2279 **/
b1f74493 2280bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2281{
b1f74493 2282 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2283}
56ad1740 2284EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2285
2286/**
b1f74493
FT
2287 * blk_end_request_all - Helper function for drives to finish the request.
2288 * @rq: the request to finish
8ebf9756 2289 * @error: %0 for success, < %0 for error
336cdb40
KU
2290 *
2291 * Description:
b1f74493
FT
2292 * Completely finish @rq.
2293 */
2294void blk_end_request_all(struct request *rq, int error)
336cdb40 2295{
b1f74493
FT
2296 bool pending;
2297 unsigned int bidi_bytes = 0;
336cdb40 2298
b1f74493
FT
2299 if (unlikely(blk_bidi_rq(rq)))
2300 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2301
b1f74493
FT
2302 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2303 BUG_ON(pending);
2304}
56ad1740 2305EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2306
b1f74493
FT
2307/**
2308 * blk_end_request_cur - Helper function to finish the current request chunk.
2309 * @rq: the request to finish the current chunk for
8ebf9756 2310 * @error: %0 for success, < %0 for error
b1f74493
FT
2311 *
2312 * Description:
2313 * Complete the current consecutively mapped chunk from @rq.
2314 *
2315 * Return:
2316 * %false - we are done with this request
2317 * %true - still buffers pending for this request
2318 */
2319bool blk_end_request_cur(struct request *rq, int error)
2320{
2321 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2322}
56ad1740 2323EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2324
80a761fd
TH
2325/**
2326 * blk_end_request_err - Finish a request till the next failure boundary.
2327 * @rq: the request to finish till the next failure boundary for
2328 * @error: must be negative errno
2329 *
2330 * Description:
2331 * Complete @rq till the next failure boundary.
2332 *
2333 * Return:
2334 * %false - we are done with this request
2335 * %true - still buffers pending for this request
2336 */
2337bool blk_end_request_err(struct request *rq, int error)
2338{
2339 WARN_ON(error >= 0);
2340 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2341}
2342EXPORT_SYMBOL_GPL(blk_end_request_err);
2343
e3a04fe3 2344/**
b1f74493
FT
2345 * __blk_end_request - Helper function for drivers to complete the request.
2346 * @rq: the request being processed
2347 * @error: %0 for success, < %0 for error
2348 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2349 *
2350 * Description:
b1f74493 2351 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2352 *
2353 * Return:
b1f74493
FT
2354 * %false - we are done with this request
2355 * %true - still buffers pending for this request
e3a04fe3 2356 **/
b1f74493 2357bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2358{
b1f74493 2359 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2360}
56ad1740 2361EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2362
32fab448 2363/**
b1f74493
FT
2364 * __blk_end_request_all - Helper function for drives to finish the request.
2365 * @rq: the request to finish
8ebf9756 2366 * @error: %0 for success, < %0 for error
32fab448
KU
2367 *
2368 * Description:
b1f74493 2369 * Completely finish @rq. Must be called with queue lock held.
32fab448 2370 */
b1f74493 2371void __blk_end_request_all(struct request *rq, int error)
32fab448 2372{
b1f74493
FT
2373 bool pending;
2374 unsigned int bidi_bytes = 0;
2375
2376 if (unlikely(blk_bidi_rq(rq)))
2377 bidi_bytes = blk_rq_bytes(rq->next_rq);
2378
2379 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2380 BUG_ON(pending);
32fab448 2381}
56ad1740 2382EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2383
e19a3ab0 2384/**
b1f74493
FT
2385 * __blk_end_request_cur - Helper function to finish the current request chunk.
2386 * @rq: the request to finish the current chunk for
8ebf9756 2387 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2388 *
2389 * Description:
b1f74493
FT
2390 * Complete the current consecutively mapped chunk from @rq. Must
2391 * be called with queue lock held.
e19a3ab0
KU
2392 *
2393 * Return:
b1f74493
FT
2394 * %false - we are done with this request
2395 * %true - still buffers pending for this request
2396 */
2397bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2398{
b1f74493 2399 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2400}
56ad1740 2401EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2402
80a761fd
TH
2403/**
2404 * __blk_end_request_err - Finish a request till the next failure boundary.
2405 * @rq: the request to finish till the next failure boundary for
2406 * @error: must be negative errno
2407 *
2408 * Description:
2409 * Complete @rq till the next failure boundary. Must be called
2410 * with queue lock held.
2411 *
2412 * Return:
2413 * %false - we are done with this request
2414 * %true - still buffers pending for this request
2415 */
2416bool __blk_end_request_err(struct request *rq, int error)
2417{
2418 WARN_ON(error >= 0);
2419 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2420}
2421EXPORT_SYMBOL_GPL(__blk_end_request_err);
2422
86db1e29
JA
2423void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2424 struct bio *bio)
1da177e4 2425{
a82afdfc 2426 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2427 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2428
fb2dce86
DW
2429 if (bio_has_data(bio)) {
2430 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2431 rq->buffer = bio_data(bio);
2432 }
a2dec7b3 2433 rq->__data_len = bio->bi_size;
1da177e4 2434 rq->bio = rq->biotail = bio;
1da177e4 2435
66846572
N
2436 if (bio->bi_bdev)
2437 rq->rq_disk = bio->bi_bdev->bd_disk;
2438}
1da177e4 2439
2d4dc890
IL
2440#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2441/**
2442 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2443 * @rq: the request to be flushed
2444 *
2445 * Description:
2446 * Flush all pages in @rq.
2447 */
2448void rq_flush_dcache_pages(struct request *rq)
2449{
2450 struct req_iterator iter;
2451 struct bio_vec *bvec;
2452
2453 rq_for_each_segment(bvec, rq, iter)
2454 flush_dcache_page(bvec->bv_page);
2455}
2456EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2457#endif
2458
ef9e3fac
KU
2459/**
2460 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2461 * @q : the queue of the device being checked
2462 *
2463 * Description:
2464 * Check if underlying low-level drivers of a device are busy.
2465 * If the drivers want to export their busy state, they must set own
2466 * exporting function using blk_queue_lld_busy() first.
2467 *
2468 * Basically, this function is used only by request stacking drivers
2469 * to stop dispatching requests to underlying devices when underlying
2470 * devices are busy. This behavior helps more I/O merging on the queue
2471 * of the request stacking driver and prevents I/O throughput regression
2472 * on burst I/O load.
2473 *
2474 * Return:
2475 * 0 - Not busy (The request stacking driver should dispatch request)
2476 * 1 - Busy (The request stacking driver should stop dispatching request)
2477 */
2478int blk_lld_busy(struct request_queue *q)
2479{
2480 if (q->lld_busy_fn)
2481 return q->lld_busy_fn(q);
2482
2483 return 0;
2484}
2485EXPORT_SYMBOL_GPL(blk_lld_busy);
2486
b0fd271d
KU
2487/**
2488 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2489 * @rq: the clone request to be cleaned up
2490 *
2491 * Description:
2492 * Free all bios in @rq for a cloned request.
2493 */
2494void blk_rq_unprep_clone(struct request *rq)
2495{
2496 struct bio *bio;
2497
2498 while ((bio = rq->bio) != NULL) {
2499 rq->bio = bio->bi_next;
2500
2501 bio_put(bio);
2502 }
2503}
2504EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2505
2506/*
2507 * Copy attributes of the original request to the clone request.
2508 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2509 */
2510static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2511{
2512 dst->cpu = src->cpu;
3a2edd0d 2513 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2514 dst->cmd_type = src->cmd_type;
2515 dst->__sector = blk_rq_pos(src);
2516 dst->__data_len = blk_rq_bytes(src);
2517 dst->nr_phys_segments = src->nr_phys_segments;
2518 dst->ioprio = src->ioprio;
2519 dst->extra_len = src->extra_len;
2520}
2521
2522/**
2523 * blk_rq_prep_clone - Helper function to setup clone request
2524 * @rq: the request to be setup
2525 * @rq_src: original request to be cloned
2526 * @bs: bio_set that bios for clone are allocated from
2527 * @gfp_mask: memory allocation mask for bio
2528 * @bio_ctr: setup function to be called for each clone bio.
2529 * Returns %0 for success, non %0 for failure.
2530 * @data: private data to be passed to @bio_ctr
2531 *
2532 * Description:
2533 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2534 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2535 * are not copied, and copying such parts is the caller's responsibility.
2536 * Also, pages which the original bios are pointing to are not copied
2537 * and the cloned bios just point same pages.
2538 * So cloned bios must be completed before original bios, which means
2539 * the caller must complete @rq before @rq_src.
2540 */
2541int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2542 struct bio_set *bs, gfp_t gfp_mask,
2543 int (*bio_ctr)(struct bio *, struct bio *, void *),
2544 void *data)
2545{
2546 struct bio *bio, *bio_src;
2547
2548 if (!bs)
2549 bs = fs_bio_set;
2550
2551 blk_rq_init(NULL, rq);
2552
2553 __rq_for_each_bio(bio_src, rq_src) {
2554 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2555 if (!bio)
2556 goto free_and_out;
2557
2558 __bio_clone(bio, bio_src);
2559
2560 if (bio_integrity(bio_src) &&
7878cba9 2561 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2562 goto free_and_out;
2563
2564 if (bio_ctr && bio_ctr(bio, bio_src, data))
2565 goto free_and_out;
2566
2567 if (rq->bio) {
2568 rq->biotail->bi_next = bio;
2569 rq->biotail = bio;
2570 } else
2571 rq->bio = rq->biotail = bio;
2572 }
2573
2574 __blk_rq_prep_clone(rq, rq_src);
2575
2576 return 0;
2577
2578free_and_out:
2579 if (bio)
2580 bio_free(bio, bs);
2581 blk_rq_unprep_clone(rq);
2582
2583 return -ENOMEM;
2584}
2585EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2586
18887ad9 2587int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2588{
2589 return queue_work(kblockd_workqueue, work);
2590}
1da177e4
LT
2591EXPORT_SYMBOL(kblockd_schedule_work);
2592
e43473b7
VG
2593int kblockd_schedule_delayed_work(struct request_queue *q,
2594 struct delayed_work *dwork, unsigned long delay)
2595{
2596 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2597}
2598EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2599
73c10101
JA
2600#define PLUG_MAGIC 0x91827364
2601
75df7136
SJ
2602/**
2603 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2604 * @plug: The &struct blk_plug that needs to be initialized
2605 *
2606 * Description:
2607 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2608 * pending I/O should the task end up blocking between blk_start_plug() and
2609 * blk_finish_plug(). This is important from a performance perspective, but
2610 * also ensures that we don't deadlock. For instance, if the task is blocking
2611 * for a memory allocation, memory reclaim could end up wanting to free a
2612 * page belonging to that request that is currently residing in our private
2613 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2614 * this kind of deadlock.
2615 */
73c10101
JA
2616void blk_start_plug(struct blk_plug *plug)
2617{
2618 struct task_struct *tsk = current;
2619
2620 plug->magic = PLUG_MAGIC;
2621 INIT_LIST_HEAD(&plug->list);
048c9374 2622 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2623 plug->should_sort = 0;
2624
2625 /*
2626 * If this is a nested plug, don't actually assign it. It will be
2627 * flushed on its own.
2628 */
2629 if (!tsk->plug) {
2630 /*
2631 * Store ordering should not be needed here, since a potential
2632 * preempt will imply a full memory barrier
2633 */
2634 tsk->plug = plug;
2635 }
2636}
2637EXPORT_SYMBOL(blk_start_plug);
2638
2639static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2640{
2641 struct request *rqa = container_of(a, struct request, queuelist);
2642 struct request *rqb = container_of(b, struct request, queuelist);
2643
f83e8261 2644 return !(rqa->q <= rqb->q);
73c10101
JA
2645}
2646
49cac01e
JA
2647/*
2648 * If 'from_schedule' is true, then postpone the dispatch of requests
2649 * until a safe kblockd context. We due this to avoid accidental big
2650 * additional stack usage in driver dispatch, in places where the originally
2651 * plugger did not intend it.
2652 */
f6603783 2653static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2654 bool from_schedule)
99e22598 2655 __releases(q->queue_lock)
94b5eb28 2656{
49cac01e 2657 trace_block_unplug(q, depth, !from_schedule);
99e22598
JA
2658
2659 /*
2660 * If we are punting this to kblockd, then we can safely drop
2661 * the queue_lock before waking kblockd (which needs to take
2662 * this lock).
2663 */
2664 if (from_schedule) {
2665 spin_unlock(q->queue_lock);
24ecfbe2 2666 blk_run_queue_async(q);
99e22598 2667 } else {
24ecfbe2 2668 __blk_run_queue(q);
99e22598
JA
2669 spin_unlock(q->queue_lock);
2670 }
2671
94b5eb28
JA
2672}
2673
048c9374
N
2674static void flush_plug_callbacks(struct blk_plug *plug)
2675{
2676 LIST_HEAD(callbacks);
2677
2678 if (list_empty(&plug->cb_list))
2679 return;
2680
2681 list_splice_init(&plug->cb_list, &callbacks);
2682
2683 while (!list_empty(&callbacks)) {
2684 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2685 struct blk_plug_cb,
2686 list);
2687 list_del(&cb->list);
2688 cb->callback(cb);
2689 }
2690}
2691
49cac01e 2692void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2693{
2694 struct request_queue *q;
2695 unsigned long flags;
2696 struct request *rq;
109b8129 2697 LIST_HEAD(list);
94b5eb28 2698 unsigned int depth;
73c10101
JA
2699
2700 BUG_ON(plug->magic != PLUG_MAGIC);
2701
048c9374 2702 flush_plug_callbacks(plug);
73c10101
JA
2703 if (list_empty(&plug->list))
2704 return;
2705
109b8129
N
2706 list_splice_init(&plug->list, &list);
2707
2708 if (plug->should_sort) {
2709 list_sort(NULL, &list, plug_rq_cmp);
2710 plug->should_sort = 0;
2711 }
73c10101
JA
2712
2713 q = NULL;
94b5eb28 2714 depth = 0;
18811272
JA
2715
2716 /*
2717 * Save and disable interrupts here, to avoid doing it for every
2718 * queue lock we have to take.
2719 */
73c10101 2720 local_irq_save(flags);
109b8129
N
2721 while (!list_empty(&list)) {
2722 rq = list_entry_rq(list.next);
73c10101 2723 list_del_init(&rq->queuelist);
73c10101
JA
2724 BUG_ON(!rq->q);
2725 if (rq->q != q) {
99e22598
JA
2726 /*
2727 * This drops the queue lock
2728 */
2729 if (q)
49cac01e 2730 queue_unplugged(q, depth, from_schedule);
73c10101 2731 q = rq->q;
94b5eb28 2732 depth = 0;
73c10101
JA
2733 spin_lock(q->queue_lock);
2734 }
73c10101
JA
2735 /*
2736 * rq is already accounted, so use raw insert
2737 */
401a18e9
JA
2738 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2739 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2740 else
2741 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2742
2743 depth++;
73c10101
JA
2744 }
2745
99e22598
JA
2746 /*
2747 * This drops the queue lock
2748 */
2749 if (q)
49cac01e 2750 queue_unplugged(q, depth, from_schedule);
73c10101 2751
73c10101
JA
2752 local_irq_restore(flags);
2753}
73c10101
JA
2754
2755void blk_finish_plug(struct blk_plug *plug)
2756{
f6603783 2757 blk_flush_plug_list(plug, false);
73c10101 2758
88b996cd
CH
2759 if (plug == current->plug)
2760 current->plug = NULL;
73c10101 2761}
88b996cd 2762EXPORT_SYMBOL(blk_finish_plug);
73c10101 2763
1da177e4
LT
2764int __init blk_dev_init(void)
2765{
9eb55b03
NK
2766 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2767 sizeof(((struct request *)0)->cmd_flags));
2768
89b90be2
TH
2769 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2770 kblockd_workqueue = alloc_workqueue("kblockd",
2771 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2772 if (!kblockd_workqueue)
2773 panic("Failed to create kblockd\n");
2774
2775 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2776 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2777
8324aa91 2778 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2779 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2780
d38ecf93 2781 return 0;
1da177e4 2782}