]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
scsi/osd: open code blk_make_request
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
d674d414 54struct kmem_cache *request_cachep;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
d40f75a0
TH
66static void blk_clear_congested(struct request_list *rl, int sync)
67{
d40f75a0
TH
68#ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70#else
482cf79c
TH
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
77#endif
78}
79
80static void blk_set_congested(struct request_list *rl, int sync)
81{
d40f75a0
TH
82#ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84#else
482cf79c
TH
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
88#endif
89}
90
8324aa91 91void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
92{
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104}
105
1da177e4
LT
106/**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
1da177e4
LT
113 */
114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115{
165125e1 116 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 117
ff9ea323 118 return &q->backing_dev_info;
1da177e4 119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386 129 rq->q = q;
a2dec7b3 130 rq->__sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
e2494e1b 134 rq->cmd_len = BLK_MAX_CDB;
63a71386 135 rq->tag = -1;
b243ddcb 136 rq->start_time = jiffies;
9195291e 137 set_start_time_ns(rq);
09e099d4 138 rq->part = NULL;
1da177e4 139}
2a4aa30c 140EXPORT_SYMBOL(blk_rq_init);
1da177e4 141
5bb23a68
N
142static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
1da177e4 144{
78d8e58a 145 if (error)
4246a0b6 146 bio->bi_error = error;
797e7dbb 147
143a87f4 148 if (unlikely(rq->cmd_flags & REQ_QUIET))
b7c44ed9 149 bio_set_flag(bio, BIO_QUIET);
08bafc03 150
f79ea416 151 bio_advance(bio, nbytes);
7ba1ba12 152
143a87f4 153 /* don't actually finish bio if it's part of flush sequence */
78d8e58a 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
4246a0b6 155 bio_endio(bio);
1da177e4 156}
1da177e4 157
1da177e4
LT
158void blk_dump_rq_flags(struct request *rq, char *msg)
159{
160 int bit;
161
5953316d 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 164 (unsigned long long) rq->cmd_flags);
1da177e4 165
83096ebf
TH
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 171
33659ebb 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 173 printk(KERN_INFO " cdb: ");
d34c87e4 174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178}
1da177e4
LT
179EXPORT_SYMBOL(blk_dump_rq_flags);
180
3cca6dc1 181static void blk_delay_work(struct work_struct *work)
1da177e4 182{
3cca6dc1 183 struct request_queue *q;
1da177e4 184
3cca6dc1
JA
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
24ecfbe2 187 __blk_run_queue(q);
3cca6dc1 188 spin_unlock_irq(q->queue_lock);
1da177e4 189}
1da177e4
LT
190
191/**
3cca6dc1
JA
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
1da177e4
LT
195 *
196 * Description:
3cca6dc1
JA
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
70460571 199 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
200 */
201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 202{
70460571
BVA
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
2ad8b1ef 206}
3cca6dc1 207EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 208
21491412
JA
209/**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218void blk_start_queue_async(struct request_queue *q)
219{
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222}
223EXPORT_SYMBOL(blk_start_queue_async);
224
1da177e4
LT
225/**
226 * blk_start_queue - restart a previously stopped queue
165125e1 227 * @q: The &struct request_queue in question
1da177e4
LT
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
165125e1 234void blk_start_queue(struct request_queue *q)
1da177e4 235{
a038e253
PBG
236 WARN_ON(!irqs_disabled());
237
75ad23bc 238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 239 __blk_run_queue(q);
1da177e4 240}
1da177e4
LT
241EXPORT_SYMBOL(blk_start_queue);
242
243/**
244 * blk_stop_queue - stop a queue
165125e1 245 * @q: The &struct request_queue in question
1da177e4
LT
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
165125e1 257void blk_stop_queue(struct request_queue *q)
1da177e4 258{
136b5721 259 cancel_delayed_work(&q->delay_work);
75ad23bc 260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
261}
262EXPORT_SYMBOL(blk_stop_queue);
263
264/**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
59c51591 273 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
da527770 277 * This function does not cancel any asynchronous activity arising
da3dae54 278 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 279 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 280 *
1da177e4
LT
281 */
282void blk_sync_queue(struct request_queue *q)
283{
70ed28b9 284 del_timer_sync(&q->timeout);
f04c1fe7
ML
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
70f4db63
CH
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
f04c1fe7
ML
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
1da177e4
LT
297}
298EXPORT_SYMBOL(blk_sync_queue);
299
c246e80d
BVA
300/**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311inline void __blk_run_queue_uncond(struct request_queue *q)
312{
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
24faf6f6
BVA
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
c246e80d 324 q->request_fn(q);
24faf6f6 325 q->request_fn_active--;
c246e80d 326}
a7928c15 327EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 328
1da177e4 329/**
80a4b58e 330 * __blk_run_queue - run a single device queue
1da177e4 331 * @q: The queue to run
80a4b58e
JA
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 335 * held and interrupts disabled.
1da177e4 336 */
24ecfbe2 337void __blk_run_queue(struct request_queue *q)
1da177e4 338{
a538cd03
TH
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
c246e80d 342 __blk_run_queue_uncond(q);
75ad23bc
NP
343}
344EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 345
24ecfbe2
CH
346/**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 352 * of us. The caller must hold the queue lock.
24ecfbe2
CH
353 */
354void blk_run_queue_async(struct request_queue *q)
355{
70460571 356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 358}
c21e6beb 359EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 360
75ad23bc
NP
361/**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
80a4b58e
JA
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 367 * May be used to restart queueing when a request has completed.
75ad23bc
NP
368 */
369void blk_run_queue(struct request_queue *q)
370{
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 374 __blk_run_queue(q);
1da177e4
LT
375 spin_unlock_irqrestore(q->queue_lock, flags);
376}
377EXPORT_SYMBOL(blk_run_queue);
378
165125e1 379void blk_put_queue(struct request_queue *q)
483f4afc
AV
380{
381 kobject_put(&q->kobj);
382}
d86e0e83 383EXPORT_SYMBOL(blk_put_queue);
483f4afc 384
e3c78ca5 385/**
807592a4 386 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 387 * @q: queue to drain
c9a929dd 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 389 *
c9a929dd
TH
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 393 */
807592a4
BVA
394static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
e3c78ca5 397{
458f27a9
AH
398 int i;
399
807592a4
BVA
400 lockdep_assert_held(q->queue_lock);
401
e3c78ca5 402 while (true) {
481a7d64 403 bool drain = false;
e3c78ca5 404
b855b04a
TH
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
5efd6113 412 blkcg_drain_queue(q);
e3c78ca5 413
4eabc941
TH
414 /*
415 * This function might be called on a queue which failed
b855b04a
TH
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
4eabc941 420 */
b855b04a 421 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 422 __blk_run_queue(q);
c9a929dd 423
8a5ecdd4 424 drain |= q->nr_rqs_elvpriv;
24faf6f6 425 drain |= q->request_fn_active;
481a7d64
TH
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
e97c293c 433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
8a5ecdd4 436 drain |= q->nr_rqs[i];
481a7d64 437 drain |= q->in_flight[i];
7c94e1c1
ML
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
440 }
441 }
e3c78ca5 442
481a7d64 443 if (!drain)
e3c78ca5 444 break;
807592a4
BVA
445
446 spin_unlock_irq(q->queue_lock);
447
e3c78ca5 448 msleep(10);
807592a4
BVA
449
450 spin_lock_irq(q->queue_lock);
e3c78ca5 451 }
458f27a9
AH
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
a051661c
TH
459 struct request_list *rl;
460
a051661c
TH
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
458f27a9 464 }
e3c78ca5
TH
465}
466
d732580b
TH
467/**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 473 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
d732580b
TH
476 */
477void blk_queue_bypass_start(struct request_queue *q)
478{
479 spin_lock_irq(q->queue_lock);
776687bc 480 q->bypass_depth++;
d732580b
TH
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
776687bc
TH
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
807592a4
BVA
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
b82d4b19
TH
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
d732580b
TH
497}
498EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500/**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506void blk_queue_bypass_end(struct request_queue *q)
507{
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513}
514EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
aed3ea94
JA
516void blk_set_queue_dying(struct request_queue *q)
517{
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532}
533EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
c9a929dd
TH
535/**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
c246e80d
BVA
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 541 */
6728cb0e 542void blk_cleanup_queue(struct request_queue *q)
483f4afc 543{
c9a929dd 544 spinlock_t *lock = q->queue_lock;
e3335de9 545
3f3299d5 546 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 547 mutex_lock(&q->sysfs_lock);
aed3ea94 548 blk_set_queue_dying(q);
c9a929dd 549 spin_lock_irq(lock);
6ecf23af 550
80fd9979 551 /*
3f3299d5 552 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
6ecf23af
TH
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
c9a929dd
TH
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 565 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
c246e80d
BVA
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
3ef28e83
DW
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
43a5e4e2 576 __blk_drain_queue(q, true);
c246e80d 577 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 578 spin_unlock_irq(lock);
c9a929dd 579
5a48fc14
DW
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
c9a929dd
TH
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
45a9c9d9
BVA
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
3ef28e83 589 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 590
5e5cfac0
AH
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
b02176f3 596 bdi_unregister(&q->backing_dev_info);
6cd18e71 597
c9a929dd 598 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
599 blk_put_queue(q);
600}
1da177e4
LT
601EXPORT_SYMBOL(blk_cleanup_queue);
602
271508db
DR
603/* Allocate memory local to the request queue */
604static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605{
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608}
609
610static void free_request_struct(void *element, void *unused)
611{
612 kmem_cache_free(request_cachep, element);
613}
614
5b788ce3
TH
615int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
1da177e4 617{
1abec4fd
MS
618 if (unlikely(rl->rq_pool))
619 return 0;
620
5b788ce3 621 rl->q = q;
1faa16d2
JA
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 626
271508db
DR
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
1da177e4
LT
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635}
636
5b788ce3
TH
637void blk_exit_rl(struct request_list *rl)
638{
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641}
642
165125e1 643struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 644{
c304a51b 645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
646}
647EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 648
6f3b0e8b 649int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
650{
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
6f3b0e8b 657 if (nowait)
3ef28e83
DW
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668}
669
670void blk_queue_exit(struct request_queue *q)
671{
672 percpu_ref_put(&q->q_usage_counter);
673}
674
675static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676{
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681}
682
287922eb
CH
683static void blk_rq_timed_out_timer(unsigned long data)
684{
685 struct request_queue *q = (struct request_queue *)data;
686
687 kblockd_schedule_work(&q->timeout_work);
688}
689
165125e1 690struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 691{
165125e1 692 struct request_queue *q;
e0bf68dd 693 int err;
1946089a 694
8324aa91 695 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 696 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
697 if (!q)
698 return NULL;
699
00380a40 700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 701 if (q->id < 0)
3d2936f4 702 goto fail_q;
a73f730d 703
54efd50b
KO
704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 if (!q->bio_split)
706 goto fail_id;
707
0989a025 708 q->backing_dev_info.ra_pages =
09cbfeaf 709 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
89e9b9e0 710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 711 q->backing_dev_info.name = "block";
5151412d 712 q->node = node_id;
0989a025 713
e0bf68dd 714 err = bdi_init(&q->backing_dev_info);
a73f730d 715 if (err)
54efd50b 716 goto fail_split;
e0bf68dd 717
31373d09
MG
718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 721 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 722 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 723 INIT_LIST_HEAD(&q->icq_list);
4eef3049 724#ifdef CONFIG_BLK_CGROUP
e8989fae 725 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 726#endif
3cca6dc1 727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 728
8324aa91 729 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 730
483f4afc 731 mutex_init(&q->sysfs_lock);
e7e72bf6 732 spin_lock_init(&q->__queue_lock);
483f4afc 733
c94a96ac
VG
734 /*
735 * By default initialize queue_lock to internal lock and driver can
736 * override it later if need be.
737 */
738 q->queue_lock = &q->__queue_lock;
739
b82d4b19
TH
740 /*
741 * A queue starts its life with bypass turned on to avoid
742 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
743 * init. The initial bypass will be finished when the queue is
744 * registered by blk_register_queue().
b82d4b19
TH
745 */
746 q->bypass_depth = 1;
747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748
320ae51f
JA
749 init_waitqueue_head(&q->mq_freeze_wq);
750
3ef28e83
DW
751 /*
752 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 * See blk_register_queue() for details.
754 */
755 if (percpu_ref_init(&q->q_usage_counter,
756 blk_queue_usage_counter_release,
757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 758 goto fail_bdi;
f51b802c 759
3ef28e83
DW
760 if (blkcg_init_queue(q))
761 goto fail_ref;
762
1da177e4 763 return q;
a73f730d 764
3ef28e83
DW
765fail_ref:
766 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
767fail_bdi:
768 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
769fail_split:
770 bioset_free(q->bio_split);
a73f730d
TH
771fail_id:
772 ida_simple_remove(&blk_queue_ida, q->id);
773fail_q:
774 kmem_cache_free(blk_requestq_cachep, q);
775 return NULL;
1da177e4 776}
1946089a 777EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
778
779/**
780 * blk_init_queue - prepare a request queue for use with a block device
781 * @rfn: The function to be called to process requests that have been
782 * placed on the queue.
783 * @lock: Request queue spin lock
784 *
785 * Description:
786 * If a block device wishes to use the standard request handling procedures,
787 * which sorts requests and coalesces adjacent requests, then it must
788 * call blk_init_queue(). The function @rfn will be called when there
789 * are requests on the queue that need to be processed. If the device
790 * supports plugging, then @rfn may not be called immediately when requests
791 * are available on the queue, but may be called at some time later instead.
792 * Plugged queues are generally unplugged when a buffer belonging to one
793 * of the requests on the queue is needed, or due to memory pressure.
794 *
795 * @rfn is not required, or even expected, to remove all requests off the
796 * queue, but only as many as it can handle at a time. If it does leave
797 * requests on the queue, it is responsible for arranging that the requests
798 * get dealt with eventually.
799 *
800 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
801 * request queue; this lock will be taken also from interrupt context, so irq
802 * disabling is needed for it.
1da177e4 803 *
710027a4 804 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
805 * it didn't succeed.
806 *
807 * Note:
808 * blk_init_queue() must be paired with a blk_cleanup_queue() call
809 * when the block device is deactivated (such as at module unload).
810 **/
1946089a 811
165125e1 812struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 813{
c304a51b 814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
815}
816EXPORT_SYMBOL(blk_init_queue);
817
165125e1 818struct request_queue *
1946089a
CL
819blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820{
c86d1b8a 821 struct request_queue *uninit_q, *q;
1da177e4 822
c86d1b8a
MS
823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 if (!uninit_q)
825 return NULL;
826
5151412d 827 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 828 if (!q)
7982e90c 829 blk_cleanup_queue(uninit_q);
18741986 830
7982e90c 831 return q;
01effb0d
MS
832}
833EXPORT_SYMBOL(blk_init_queue_node);
834
dece1635 835static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 836
01effb0d
MS
837struct request_queue *
838blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 spinlock_t *lock)
01effb0d 840{
1da177e4
LT
841 if (!q)
842 return NULL;
843
f70ced09 844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 845 if (!q->fq)
7982e90c
MS
846 return NULL;
847
a051661c 848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 849 goto fail;
1da177e4 850
287922eb 851 INIT_WORK(&q->timeout_work, blk_timeout_work);
1da177e4 852 q->request_fn = rfn;
1da177e4 853 q->prep_rq_fn = NULL;
28018c24 854 q->unprep_rq_fn = NULL;
60ea8226 855 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
856
857 /* Override internal queue lock with supplied lock pointer */
858 if (lock)
859 q->queue_lock = lock;
1da177e4 860
f3b144aa
JA
861 /*
862 * This also sets hw/phys segments, boundary and size
863 */
c20e8de2 864 blk_queue_make_request(q, blk_queue_bio);
1da177e4 865
44ec9542
AS
866 q->sg_reserved_size = INT_MAX;
867
eb1c160b
TS
868 /* Protect q->elevator from elevator_change */
869 mutex_lock(&q->sysfs_lock);
870
b82d4b19 871 /* init elevator */
eb1c160b
TS
872 if (elevator_init(q, NULL)) {
873 mutex_unlock(&q->sysfs_lock);
708f04d2 874 goto fail;
eb1c160b
TS
875 }
876
877 mutex_unlock(&q->sysfs_lock);
878
b82d4b19 879 return q;
708f04d2
DJ
880
881fail:
ba483388 882 blk_free_flush_queue(q->fq);
708f04d2 883 return NULL;
1da177e4 884}
5151412d 885EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 886
09ac46c4 887bool blk_get_queue(struct request_queue *q)
1da177e4 888{
3f3299d5 889 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
890 __blk_get_queue(q);
891 return true;
1da177e4
LT
892 }
893
09ac46c4 894 return false;
1da177e4 895}
d86e0e83 896EXPORT_SYMBOL(blk_get_queue);
1da177e4 897
5b788ce3 898static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 899{
f1f8cc94 900 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 901 elv_put_request(rl->q, rq);
f1f8cc94 902 if (rq->elv.icq)
11a3122f 903 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
904 }
905
5b788ce3 906 mempool_free(rq, rl->rq_pool);
1da177e4
LT
907}
908
1da177e4
LT
909/*
910 * ioc_batching returns true if the ioc is a valid batching request and
911 * should be given priority access to a request.
912 */
165125e1 913static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
914{
915 if (!ioc)
916 return 0;
917
918 /*
919 * Make sure the process is able to allocate at least 1 request
920 * even if the batch times out, otherwise we could theoretically
921 * lose wakeups.
922 */
923 return ioc->nr_batch_requests == q->nr_batching ||
924 (ioc->nr_batch_requests > 0
925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926}
927
928/*
929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930 * will cause the process to be a "batcher" on all queues in the system. This
931 * is the behaviour we want though - once it gets a wakeup it should be given
932 * a nice run.
933 */
165125e1 934static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
935{
936 if (!ioc || ioc_batching(q, ioc))
937 return;
938
939 ioc->nr_batch_requests = q->nr_batching;
940 ioc->last_waited = jiffies;
941}
942
5b788ce3 943static void __freed_request(struct request_list *rl, int sync)
1da177e4 944{
5b788ce3 945 struct request_queue *q = rl->q;
1da177e4 946
d40f75a0
TH
947 if (rl->count[sync] < queue_congestion_off_threshold(q))
948 blk_clear_congested(rl, sync);
1da177e4 949
1faa16d2
JA
950 if (rl->count[sync] + 1 <= q->nr_requests) {
951 if (waitqueue_active(&rl->wait[sync]))
952 wake_up(&rl->wait[sync]);
1da177e4 953
5b788ce3 954 blk_clear_rl_full(rl, sync);
1da177e4
LT
955 }
956}
957
958/*
959 * A request has just been released. Account for it, update the full and
960 * congestion status, wake up any waiters. Called under q->queue_lock.
961 */
e6a40b09 962static void freed_request(struct request_list *rl, int op, unsigned int flags)
1da177e4 963{
5b788ce3 964 struct request_queue *q = rl->q;
d9d8c5c4 965 int sync = rw_is_sync(op, flags);
1da177e4 966
8a5ecdd4 967 q->nr_rqs[sync]--;
1faa16d2 968 rl->count[sync]--;
75eb6c37 969 if (flags & REQ_ELVPRIV)
8a5ecdd4 970 q->nr_rqs_elvpriv--;
1da177e4 971
5b788ce3 972 __freed_request(rl, sync);
1da177e4 973
1faa16d2 974 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 975 __freed_request(rl, sync ^ 1);
1da177e4
LT
976}
977
e3a2b3f9
JA
978int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979{
980 struct request_list *rl;
d40f75a0 981 int on_thresh, off_thresh;
e3a2b3f9
JA
982
983 spin_lock_irq(q->queue_lock);
984 q->nr_requests = nr;
985 blk_queue_congestion_threshold(q);
d40f75a0
TH
986 on_thresh = queue_congestion_on_threshold(q);
987 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 988
d40f75a0
TH
989 blk_queue_for_each_rl(rl, q) {
990 if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 blk_set_congested(rl, BLK_RW_SYNC);
992 else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 994
d40f75a0
TH
995 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 blk_set_congested(rl, BLK_RW_ASYNC);
997 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 999
e3a2b3f9
JA
1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 blk_set_rl_full(rl, BLK_RW_SYNC);
1002 } else {
1003 blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 wake_up(&rl->wait[BLK_RW_SYNC]);
1005 }
1006
1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 } else {
1010 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 }
1013 }
1014
1015 spin_unlock_irq(q->queue_lock);
1016 return 0;
1017}
1018
9d5a4e94
MS
1019/*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023static bool blk_rq_should_init_elevator(struct bio *bio)
1024{
1025 if (!bio)
1026 return true;
1027
1028 /*
1029 * Flush requests do not use the elevator so skip initialization.
1030 * This allows a request to share the flush and elevator data.
1031 */
28a8f0d3 1032 if (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA))
9d5a4e94
MS
1033 return false;
1034
1035 return true;
1036}
1037
852c788f
TH
1038/**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio. May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045static struct io_context *rq_ioc(struct bio *bio)
1046{
1047#ifdef CONFIG_BLK_CGROUP
1048 if (bio && bio->bi_ioc)
1049 return bio->bi_ioc;
1050#endif
1051 return current->io_context;
1052}
1053
da8303c6 1054/**
a06e05e6 1055 * __get_request - get a free request
5b788ce3 1056 * @rl: request list to allocate from
e6a40b09
MC
1057 * @op: REQ_OP_READ/REQ_OP_WRITE
1058 * @op_flags: rq_flag_bits
da8303c6
TH
1059 * @bio: bio to allocate request for (can be %NULL)
1060 * @gfp_mask: allocation mask
1061 *
1062 * Get a free request from @q. This function may fail under memory
1063 * pressure or if @q is dead.
1064 *
da3dae54 1065 * Must be called with @q->queue_lock held and,
a492f075
JL
1066 * Returns ERR_PTR on failure, with @q->queue_lock held.
1067 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1068 */
e6a40b09
MC
1069static struct request *__get_request(struct request_list *rl, int op,
1070 int op_flags, struct bio *bio,
1071 gfp_t gfp_mask)
1da177e4 1072{
5b788ce3 1073 struct request_queue *q = rl->q;
b679281a 1074 struct request *rq;
7f4b35d1
TH
1075 struct elevator_type *et = q->elevator->type;
1076 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1077 struct io_cq *icq = NULL;
d9d8c5c4 1078 const bool is_sync = rw_is_sync(op, op_flags) != 0;
75eb6c37 1079 int may_queue;
88ee5ef1 1080
3f3299d5 1081 if (unlikely(blk_queue_dying(q)))
a492f075 1082 return ERR_PTR(-ENODEV);
da8303c6 1083
ba568ea0 1084 may_queue = elv_may_queue(q, op, op_flags);
88ee5ef1
JA
1085 if (may_queue == ELV_MQUEUE_NO)
1086 goto rq_starved;
1087
1faa16d2
JA
1088 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1089 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1090 /*
1091 * The queue will fill after this allocation, so set
1092 * it as full, and mark this process as "batching".
1093 * This process will be allowed to complete a batch of
1094 * requests, others will be blocked.
1095 */
5b788ce3 1096 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1097 ioc_set_batching(q, ioc);
5b788ce3 1098 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1099 } else {
1100 if (may_queue != ELV_MQUEUE_MUST
1101 && !ioc_batching(q, ioc)) {
1102 /*
1103 * The queue is full and the allocating
1104 * process is not a "batcher", and not
1105 * exempted by the IO scheduler
1106 */
a492f075 1107 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1108 }
1109 }
1da177e4 1110 }
d40f75a0 1111 blk_set_congested(rl, is_sync);
1da177e4
LT
1112 }
1113
082cf69e
JA
1114 /*
1115 * Only allow batching queuers to allocate up to 50% over the defined
1116 * limit of requests, otherwise we could have thousands of requests
1117 * allocated with any setting of ->nr_requests
1118 */
1faa16d2 1119 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1120 return ERR_PTR(-ENOMEM);
fd782a4a 1121
8a5ecdd4 1122 q->nr_rqs[is_sync]++;
1faa16d2
JA
1123 rl->count[is_sync]++;
1124 rl->starved[is_sync] = 0;
cb98fc8b 1125
f1f8cc94
TH
1126 /*
1127 * Decide whether the new request will be managed by elevator. If
e6a40b09 1128 * so, mark @op_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1129 * prevent the current elevator from being destroyed until the new
1130 * request is freed. This guarantees icq's won't be destroyed and
1131 * makes creating new ones safe.
1132 *
1133 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1134 * it will be created after releasing queue_lock.
1135 */
d732580b 1136 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
e6a40b09 1137 op_flags |= REQ_ELVPRIV;
8a5ecdd4 1138 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1139 if (et->icq_cache && ioc)
1140 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1141 }
cb98fc8b 1142
f253b86b 1143 if (blk_queue_io_stat(q))
e6a40b09 1144 op_flags |= REQ_IO_STAT;
1da177e4
LT
1145 spin_unlock_irq(q->queue_lock);
1146
29e2b09a 1147 /* allocate and init request */
5b788ce3 1148 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1149 if (!rq)
b679281a 1150 goto fail_alloc;
1da177e4 1151
29e2b09a 1152 blk_rq_init(q, rq);
a051661c 1153 blk_rq_set_rl(rq, rl);
e6a40b09 1154 req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED);
29e2b09a 1155
aaf7c680 1156 /* init elvpriv */
e6a40b09 1157 if (op_flags & REQ_ELVPRIV) {
aaf7c680 1158 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1159 if (ioc)
1160 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1161 if (!icq)
1162 goto fail_elvpriv;
29e2b09a 1163 }
aaf7c680
TH
1164
1165 rq->elv.icq = icq;
1166 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1167 goto fail_elvpriv;
1168
1169 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1170 if (icq)
1171 get_io_context(icq->ioc);
1172 }
aaf7c680 1173out:
88ee5ef1
JA
1174 /*
1175 * ioc may be NULL here, and ioc_batching will be false. That's
1176 * OK, if the queue is under the request limit then requests need
1177 * not count toward the nr_batch_requests limit. There will always
1178 * be some limit enforced by BLK_BATCH_TIME.
1179 */
1da177e4
LT
1180 if (ioc_batching(q, ioc))
1181 ioc->nr_batch_requests--;
6728cb0e 1182
e6a40b09 1183 trace_block_getrq(q, bio, op);
1da177e4 1184 return rq;
b679281a 1185
aaf7c680
TH
1186fail_elvpriv:
1187 /*
1188 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1189 * and may fail indefinitely under memory pressure and thus
1190 * shouldn't stall IO. Treat this request as !elvpriv. This will
1191 * disturb iosched and blkcg but weird is bettern than dead.
1192 */
7b2b10e0
RE
1193 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1194 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1195
1196 rq->cmd_flags &= ~REQ_ELVPRIV;
1197 rq->elv.icq = NULL;
1198
1199 spin_lock_irq(q->queue_lock);
8a5ecdd4 1200 q->nr_rqs_elvpriv--;
aaf7c680
TH
1201 spin_unlock_irq(q->queue_lock);
1202 goto out;
1203
b679281a
TH
1204fail_alloc:
1205 /*
1206 * Allocation failed presumably due to memory. Undo anything we
1207 * might have messed up.
1208 *
1209 * Allocating task should really be put onto the front of the wait
1210 * queue, but this is pretty rare.
1211 */
1212 spin_lock_irq(q->queue_lock);
e6a40b09 1213 freed_request(rl, op, op_flags);
b679281a
TH
1214
1215 /*
1216 * in the very unlikely event that allocation failed and no
1217 * requests for this direction was pending, mark us starved so that
1218 * freeing of a request in the other direction will notice
1219 * us. another possible fix would be to split the rq mempool into
1220 * READ and WRITE
1221 */
1222rq_starved:
1223 if (unlikely(rl->count[is_sync] == 0))
1224 rl->starved[is_sync] = 1;
a492f075 1225 return ERR_PTR(-ENOMEM);
1da177e4
LT
1226}
1227
da8303c6 1228/**
a06e05e6 1229 * get_request - get a free request
da8303c6 1230 * @q: request_queue to allocate request from
e6a40b09
MC
1231 * @op: REQ_OP_READ/REQ_OP_WRITE
1232 * @op_flags: rq_flag_bits
da8303c6 1233 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1234 * @gfp_mask: allocation mask
da8303c6 1235 *
d0164adc
MG
1236 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1237 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1238 *
da3dae54 1239 * Must be called with @q->queue_lock held and,
a492f075
JL
1240 * Returns ERR_PTR on failure, with @q->queue_lock held.
1241 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1242 */
e6a40b09
MC
1243static struct request *get_request(struct request_queue *q, int op,
1244 int op_flags, struct bio *bio,
1245 gfp_t gfp_mask)
1da177e4 1246{
d9d8c5c4 1247 const bool is_sync = rw_is_sync(op, op_flags) != 0;
a06e05e6 1248 DEFINE_WAIT(wait);
a051661c 1249 struct request_list *rl;
1da177e4 1250 struct request *rq;
a051661c
TH
1251
1252 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1253retry:
e6a40b09 1254 rq = __get_request(rl, op, op_flags, bio, gfp_mask);
a492f075 1255 if (!IS_ERR(rq))
a06e05e6 1256 return rq;
1da177e4 1257
d0164adc 1258 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1259 blk_put_rl(rl);
a492f075 1260 return rq;
a051661c 1261 }
1da177e4 1262
a06e05e6
TH
1263 /* wait on @rl and retry */
1264 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1265 TASK_UNINTERRUPTIBLE);
1da177e4 1266
e6a40b09 1267 trace_block_sleeprq(q, bio, op);
1da177e4 1268
a06e05e6
TH
1269 spin_unlock_irq(q->queue_lock);
1270 io_schedule();
d6344532 1271
a06e05e6
TH
1272 /*
1273 * After sleeping, we become a "batching" process and will be able
1274 * to allocate at least one request, and up to a big batch of them
1275 * for a small period time. See ioc_batching, ioc_set_batching
1276 */
a06e05e6 1277 ioc_set_batching(q, current->io_context);
05caf8db 1278
a06e05e6
TH
1279 spin_lock_irq(q->queue_lock);
1280 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1281
a06e05e6 1282 goto retry;
1da177e4
LT
1283}
1284
320ae51f
JA
1285static struct request *blk_old_get_request(struct request_queue *q, int rw,
1286 gfp_t gfp_mask)
1da177e4
LT
1287{
1288 struct request *rq;
1289
1290 BUG_ON(rw != READ && rw != WRITE);
1291
7f4b35d1
TH
1292 /* create ioc upfront */
1293 create_io_context(gfp_mask, q->node);
1294
d6344532 1295 spin_lock_irq(q->queue_lock);
e6a40b09 1296 rq = get_request(q, rw, 0, NULL, gfp_mask);
0c4de0f3 1297 if (IS_ERR(rq)) {
da8303c6 1298 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1299 return rq;
1300 }
1da177e4 1301
0c4de0f3
CH
1302 /* q->queue_lock is unlocked at this point */
1303 rq->__data_len = 0;
1304 rq->__sector = (sector_t) -1;
1305 rq->bio = rq->biotail = NULL;
1da177e4
LT
1306 return rq;
1307}
320ae51f
JA
1308
1309struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1310{
1311 if (q->mq_ops)
6f3b0e8b
CH
1312 return blk_mq_alloc_request(q, rw,
1313 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1314 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1315 else
1316 return blk_old_get_request(q, rw, gfp_mask);
1317}
1da177e4
LT
1318EXPORT_SYMBOL(blk_get_request);
1319
f27b087b 1320/**
da3dae54 1321 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1322 * @rq: request to be initialized
1323 *
1324 */
1325void blk_rq_set_block_pc(struct request *rq)
1326{
1327 rq->cmd_type = REQ_TYPE_BLOCK_PC;
f27b087b 1328 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1329}
1330EXPORT_SYMBOL(blk_rq_set_block_pc);
1331
1da177e4
LT
1332/**
1333 * blk_requeue_request - put a request back on queue
1334 * @q: request queue where request should be inserted
1335 * @rq: request to be inserted
1336 *
1337 * Description:
1338 * Drivers often keep queueing requests until the hardware cannot accept
1339 * more, when that condition happens we need to put the request back
1340 * on the queue. Must be called with queue lock held.
1341 */
165125e1 1342void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1343{
242f9dcb
JA
1344 blk_delete_timer(rq);
1345 blk_clear_rq_complete(rq);
5f3ea37c 1346 trace_block_rq_requeue(q, rq);
2056a782 1347
125c99bc 1348 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1349 blk_queue_end_tag(q, rq);
1350
ba396a6c
JB
1351 BUG_ON(blk_queued_rq(rq));
1352
1da177e4
LT
1353 elv_requeue_request(q, rq);
1354}
1da177e4
LT
1355EXPORT_SYMBOL(blk_requeue_request);
1356
73c10101
JA
1357static void add_acct_request(struct request_queue *q, struct request *rq,
1358 int where)
1359{
320ae51f 1360 blk_account_io_start(rq, true);
7eaceacc 1361 __elv_add_request(q, rq, where);
73c10101
JA
1362}
1363
074a7aca
TH
1364static void part_round_stats_single(int cpu, struct hd_struct *part,
1365 unsigned long now)
1366{
7276d02e
JA
1367 int inflight;
1368
074a7aca
TH
1369 if (now == part->stamp)
1370 return;
1371
7276d02e
JA
1372 inflight = part_in_flight(part);
1373 if (inflight) {
074a7aca 1374 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1375 inflight * (now - part->stamp));
074a7aca
TH
1376 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1377 }
1378 part->stamp = now;
1379}
1380
1381/**
496aa8a9
RD
1382 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1383 * @cpu: cpu number for stats access
1384 * @part: target partition
1da177e4
LT
1385 *
1386 * The average IO queue length and utilisation statistics are maintained
1387 * by observing the current state of the queue length and the amount of
1388 * time it has been in this state for.
1389 *
1390 * Normally, that accounting is done on IO completion, but that can result
1391 * in more than a second's worth of IO being accounted for within any one
1392 * second, leading to >100% utilisation. To deal with that, we call this
1393 * function to do a round-off before returning the results when reading
1394 * /proc/diskstats. This accounts immediately for all queue usage up to
1395 * the current jiffies and restarts the counters again.
1396 */
c9959059 1397void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1398{
1399 unsigned long now = jiffies;
1400
074a7aca
TH
1401 if (part->partno)
1402 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1403 part_round_stats_single(cpu, part, now);
6f2576af 1404}
074a7aca 1405EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1406
47fafbc7 1407#ifdef CONFIG_PM
c8158819
LM
1408static void blk_pm_put_request(struct request *rq)
1409{
1410 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1411 pm_runtime_mark_last_busy(rq->q->dev);
1412}
1413#else
1414static inline void blk_pm_put_request(struct request *rq) {}
1415#endif
1416
1da177e4
LT
1417/*
1418 * queue lock must be held
1419 */
165125e1 1420void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1421{
1da177e4
LT
1422 if (unlikely(!q))
1423 return;
1da177e4 1424
6f5ba581
CH
1425 if (q->mq_ops) {
1426 blk_mq_free_request(req);
1427 return;
1428 }
1429
c8158819
LM
1430 blk_pm_put_request(req);
1431
8922e16c
TH
1432 elv_completed_request(q, req);
1433
1cd96c24
BH
1434 /* this is a bio leak */
1435 WARN_ON(req->bio != NULL);
1436
1da177e4
LT
1437 /*
1438 * Request may not have originated from ll_rw_blk. if not,
1439 * it didn't come out of our reserved rq pools
1440 */
49171e5c 1441 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1442 unsigned int flags = req->cmd_flags;
e6a40b09 1443 int op = req_op(req);
a051661c 1444 struct request_list *rl = blk_rq_rl(req);
1da177e4 1445
1da177e4 1446 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1447 BUG_ON(ELV_ON_HASH(req));
1da177e4 1448
a051661c 1449 blk_free_request(rl, req);
e6a40b09 1450 freed_request(rl, op, flags);
a051661c 1451 blk_put_rl(rl);
1da177e4
LT
1452 }
1453}
6e39b69e
MC
1454EXPORT_SYMBOL_GPL(__blk_put_request);
1455
1da177e4
LT
1456void blk_put_request(struct request *req)
1457{
165125e1 1458 struct request_queue *q = req->q;
8922e16c 1459
320ae51f
JA
1460 if (q->mq_ops)
1461 blk_mq_free_request(req);
1462 else {
1463 unsigned long flags;
1464
1465 spin_lock_irqsave(q->queue_lock, flags);
1466 __blk_put_request(q, req);
1467 spin_unlock_irqrestore(q->queue_lock, flags);
1468 }
1da177e4 1469}
1da177e4
LT
1470EXPORT_SYMBOL(blk_put_request);
1471
66ac0280
CH
1472/**
1473 * blk_add_request_payload - add a payload to a request
1474 * @rq: request to update
1475 * @page: page backing the payload
37e58237 1476 * @offset: offset in page
66ac0280
CH
1477 * @len: length of the payload.
1478 *
1479 * This allows to later add a payload to an already submitted request by
1480 * a block driver. The driver needs to take care of freeing the payload
1481 * itself.
1482 *
1483 * Note that this is a quite horrible hack and nothing but handling of
1484 * discard requests should ever use it.
1485 */
1486void blk_add_request_payload(struct request *rq, struct page *page,
37e58237 1487 int offset, unsigned int len)
66ac0280
CH
1488{
1489 struct bio *bio = rq->bio;
1490
1491 bio->bi_io_vec->bv_page = page;
37e58237 1492 bio->bi_io_vec->bv_offset = offset;
66ac0280
CH
1493 bio->bi_io_vec->bv_len = len;
1494
4f024f37 1495 bio->bi_iter.bi_size = len;
66ac0280
CH
1496 bio->bi_vcnt = 1;
1497 bio->bi_phys_segments = 1;
1498
1499 rq->__data_len = rq->resid_len = len;
1500 rq->nr_phys_segments = 1;
66ac0280
CH
1501}
1502EXPORT_SYMBOL_GPL(blk_add_request_payload);
1503
320ae51f
JA
1504bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1505 struct bio *bio)
73c10101
JA
1506{
1507 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1508
73c10101
JA
1509 if (!ll_back_merge_fn(q, req, bio))
1510 return false;
1511
8c1cf6bb 1512 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1513
1514 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1515 blk_rq_set_mixed_merge(req);
1516
1517 req->biotail->bi_next = bio;
1518 req->biotail = bio;
4f024f37 1519 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1520 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1521
320ae51f 1522 blk_account_io_start(req, false);
73c10101
JA
1523 return true;
1524}
1525
320ae51f
JA
1526bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1527 struct bio *bio)
73c10101
JA
1528{
1529 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1530
73c10101
JA
1531 if (!ll_front_merge_fn(q, req, bio))
1532 return false;
1533
8c1cf6bb 1534 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1535
1536 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1537 blk_rq_set_mixed_merge(req);
1538
73c10101
JA
1539 bio->bi_next = req->bio;
1540 req->bio = bio;
1541
4f024f37
KO
1542 req->__sector = bio->bi_iter.bi_sector;
1543 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1544 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1545
320ae51f 1546 blk_account_io_start(req, false);
73c10101
JA
1547 return true;
1548}
1549
bd87b589 1550/**
320ae51f 1551 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1552 * @q: request_queue new bio is being queued at
1553 * @bio: new bio being queued
1554 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1555 * @same_queue_rq: pointer to &struct request that gets filled in when
1556 * another request associated with @q is found on the plug list
1557 * (optional, may be %NULL)
bd87b589
TH
1558 *
1559 * Determine whether @bio being queued on @q can be merged with a request
1560 * on %current's plugged list. Returns %true if merge was successful,
1561 * otherwise %false.
1562 *
07c2bd37
TH
1563 * Plugging coalesces IOs from the same issuer for the same purpose without
1564 * going through @q->queue_lock. As such it's more of an issuing mechanism
1565 * than scheduling, and the request, while may have elvpriv data, is not
1566 * added on the elevator at this point. In addition, we don't have
1567 * reliable access to the elevator outside queue lock. Only check basic
1568 * merging parameters without querying the elevator.
da41a589
RE
1569 *
1570 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1571 */
320ae51f 1572bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1573 unsigned int *request_count,
1574 struct request **same_queue_rq)
73c10101
JA
1575{
1576 struct blk_plug *plug;
1577 struct request *rq;
1578 bool ret = false;
92f399c7 1579 struct list_head *plug_list;
73c10101 1580
bd87b589 1581 plug = current->plug;
73c10101
JA
1582 if (!plug)
1583 goto out;
56ebdaf2 1584 *request_count = 0;
73c10101 1585
92f399c7
SL
1586 if (q->mq_ops)
1587 plug_list = &plug->mq_list;
1588 else
1589 plug_list = &plug->list;
1590
1591 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1592 int el_ret;
1593
5b3f341f 1594 if (rq->q == q) {
1b2e19f1 1595 (*request_count)++;
5b3f341f
SL
1596 /*
1597 * Only blk-mq multiple hardware queues case checks the
1598 * rq in the same queue, there should be only one such
1599 * rq in a queue
1600 **/
1601 if (same_queue_rq)
1602 *same_queue_rq = rq;
1603 }
56ebdaf2 1604
07c2bd37 1605 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1606 continue;
1607
050c8ea8 1608 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1609 if (el_ret == ELEVATOR_BACK_MERGE) {
1610 ret = bio_attempt_back_merge(q, rq, bio);
1611 if (ret)
1612 break;
1613 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1614 ret = bio_attempt_front_merge(q, rq, bio);
1615 if (ret)
1616 break;
1617 }
1618 }
1619out:
1620 return ret;
1621}
1622
0809e3ac
JM
1623unsigned int blk_plug_queued_count(struct request_queue *q)
1624{
1625 struct blk_plug *plug;
1626 struct request *rq;
1627 struct list_head *plug_list;
1628 unsigned int ret = 0;
1629
1630 plug = current->plug;
1631 if (!plug)
1632 goto out;
1633
1634 if (q->mq_ops)
1635 plug_list = &plug->mq_list;
1636 else
1637 plug_list = &plug->list;
1638
1639 list_for_each_entry(rq, plug_list, queuelist) {
1640 if (rq->q == q)
1641 ret++;
1642 }
1643out:
1644 return ret;
1645}
1646
86db1e29 1647void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1648{
4aff5e23 1649 req->cmd_type = REQ_TYPE_FS;
52d9e675 1650
7b6d91da
CH
1651 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1652 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1653 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1654
52d9e675 1655 req->errors = 0;
4f024f37 1656 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1657 req->ioprio = bio_prio(bio);
bc1c56fd 1658 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1659}
1660
dece1635 1661static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1662{
5e00d1b5 1663 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101 1664 struct blk_plug *plug;
e6a40b09 1665 int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT;
73c10101 1666 struct request *req;
56ebdaf2 1667 unsigned int request_count = 0;
1da177e4 1668
1da177e4
LT
1669 /*
1670 * low level driver can indicate that it wants pages above a
1671 * certain limit bounced to low memory (ie for highmem, or even
1672 * ISA dma in theory)
1673 */
1674 blk_queue_bounce(q, &bio);
1675
23688bf4
JN
1676 blk_queue_split(q, &bio, q->bio_split);
1677
ffecfd1a 1678 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1679 bio->bi_error = -EIO;
1680 bio_endio(bio);
dece1635 1681 return BLK_QC_T_NONE;
ffecfd1a
DW
1682 }
1683
28a8f0d3 1684 if (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA)) {
73c10101 1685 spin_lock_irq(q->queue_lock);
ae1b1539 1686 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1687 goto get_rq;
1688 }
1689
73c10101
JA
1690 /*
1691 * Check if we can merge with the plugged list before grabbing
1692 * any locks.
1693 */
0809e3ac
JM
1694 if (!blk_queue_nomerges(q)) {
1695 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1696 return BLK_QC_T_NONE;
0809e3ac
JM
1697 } else
1698 request_count = blk_plug_queued_count(q);
1da177e4 1699
73c10101 1700 spin_lock_irq(q->queue_lock);
2056a782 1701
73c10101
JA
1702 el_ret = elv_merge(q, &req, bio);
1703 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1704 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1705 elv_bio_merged(q, req, bio);
73c10101
JA
1706 if (!attempt_back_merge(q, req))
1707 elv_merged_request(q, req, el_ret);
1708 goto out_unlock;
1709 }
1710 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1711 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1712 elv_bio_merged(q, req, bio);
73c10101
JA
1713 if (!attempt_front_merge(q, req))
1714 elv_merged_request(q, req, el_ret);
1715 goto out_unlock;
80a761fd 1716 }
1da177e4
LT
1717 }
1718
450991bc 1719get_rq:
7749a8d4
JA
1720 /*
1721 * This sync check and mask will be re-done in init_request_from_bio(),
1722 * but we need to set it earlier to expose the sync flag to the
1723 * rq allocator and io schedulers.
1724 */
7749a8d4 1725 if (sync)
7b6d91da 1726 rw_flags |= REQ_SYNC;
7749a8d4 1727
1da177e4 1728 /*
450991bc 1729 * Grab a free request. This is might sleep but can not fail.
d6344532 1730 * Returns with the queue unlocked.
450991bc 1731 */
e6a40b09 1732 req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO);
a492f075 1733 if (IS_ERR(req)) {
4246a0b6
CH
1734 bio->bi_error = PTR_ERR(req);
1735 bio_endio(bio);
da8303c6
TH
1736 goto out_unlock;
1737 }
d6344532 1738
450991bc
NP
1739 /*
1740 * After dropping the lock and possibly sleeping here, our request
1741 * may now be mergeable after it had proven unmergeable (above).
1742 * We don't worry about that case for efficiency. It won't happen
1743 * often, and the elevators are able to handle it.
1da177e4 1744 */
52d9e675 1745 init_request_from_bio(req, bio);
1da177e4 1746
9562ad9a 1747 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1748 req->cpu = raw_smp_processor_id();
73c10101
JA
1749
1750 plug = current->plug;
721a9602 1751 if (plug) {
dc6d36c9
JA
1752 /*
1753 * If this is the first request added after a plug, fire
7aef2e78 1754 * of a plug trace.
dc6d36c9 1755 */
7aef2e78 1756 if (!request_count)
dc6d36c9 1757 trace_block_plug(q);
3540d5e8 1758 else {
019ceb7d 1759 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1760 blk_flush_plug_list(plug, false);
019ceb7d
SL
1761 trace_block_plug(q);
1762 }
73c10101 1763 }
73c10101 1764 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1765 blk_account_io_start(req, true);
73c10101
JA
1766 } else {
1767 spin_lock_irq(q->queue_lock);
1768 add_acct_request(q, req, where);
24ecfbe2 1769 __blk_run_queue(q);
73c10101
JA
1770out_unlock:
1771 spin_unlock_irq(q->queue_lock);
1772 }
dece1635
JA
1773
1774 return BLK_QC_T_NONE;
1da177e4
LT
1775}
1776
1777/*
1778 * If bio->bi_dev is a partition, remap the location
1779 */
1780static inline void blk_partition_remap(struct bio *bio)
1781{
1782 struct block_device *bdev = bio->bi_bdev;
1783
bf2de6f5 1784 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1785 struct hd_struct *p = bdev->bd_part;
1786
4f024f37 1787 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1788 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1789
d07335e5
MS
1790 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1791 bdev->bd_dev,
4f024f37 1792 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1793 }
1794}
1795
1da177e4
LT
1796static void handle_bad_sector(struct bio *bio)
1797{
1798 char b[BDEVNAME_SIZE];
1799
1800 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1801 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4
LT
1802 bdevname(bio->bi_bdev, b),
1803 bio->bi_rw,
f73a1c7d 1804 (unsigned long long)bio_end_sector(bio),
77304d2a 1805 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1806}
1807
c17bb495
AM
1808#ifdef CONFIG_FAIL_MAKE_REQUEST
1809
1810static DECLARE_FAULT_ATTR(fail_make_request);
1811
1812static int __init setup_fail_make_request(char *str)
1813{
1814 return setup_fault_attr(&fail_make_request, str);
1815}
1816__setup("fail_make_request=", setup_fail_make_request);
1817
b2c9cd37 1818static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1819{
b2c9cd37 1820 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1821}
1822
1823static int __init fail_make_request_debugfs(void)
1824{
dd48c085
AM
1825 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1826 NULL, &fail_make_request);
1827
21f9fcd8 1828 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1829}
1830
1831late_initcall(fail_make_request_debugfs);
1832
1833#else /* CONFIG_FAIL_MAKE_REQUEST */
1834
b2c9cd37
AM
1835static inline bool should_fail_request(struct hd_struct *part,
1836 unsigned int bytes)
c17bb495 1837{
b2c9cd37 1838 return false;
c17bb495
AM
1839}
1840
1841#endif /* CONFIG_FAIL_MAKE_REQUEST */
1842
c07e2b41
JA
1843/*
1844 * Check whether this bio extends beyond the end of the device.
1845 */
1846static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1847{
1848 sector_t maxsector;
1849
1850 if (!nr_sectors)
1851 return 0;
1852
1853 /* Test device or partition size, when known. */
77304d2a 1854 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1855 if (maxsector) {
4f024f37 1856 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1857
1858 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1859 /*
1860 * This may well happen - the kernel calls bread()
1861 * without checking the size of the device, e.g., when
1862 * mounting a device.
1863 */
1864 handle_bad_sector(bio);
1865 return 1;
1866 }
1867 }
1868
1869 return 0;
1870}
1871
27a84d54
CH
1872static noinline_for_stack bool
1873generic_make_request_checks(struct bio *bio)
1da177e4 1874{
165125e1 1875 struct request_queue *q;
5a7bbad2 1876 int nr_sectors = bio_sectors(bio);
51fd77bd 1877 int err = -EIO;
5a7bbad2
CH
1878 char b[BDEVNAME_SIZE];
1879 struct hd_struct *part;
1da177e4
LT
1880
1881 might_sleep();
1da177e4 1882
c07e2b41
JA
1883 if (bio_check_eod(bio, nr_sectors))
1884 goto end_io;
1da177e4 1885
5a7bbad2
CH
1886 q = bdev_get_queue(bio->bi_bdev);
1887 if (unlikely(!q)) {
1888 printk(KERN_ERR
1889 "generic_make_request: Trying to access "
1890 "nonexistent block-device %s (%Lu)\n",
1891 bdevname(bio->bi_bdev, b),
4f024f37 1892 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1893 goto end_io;
1894 }
c17bb495 1895
5a7bbad2 1896 part = bio->bi_bdev->bd_part;
4f024f37 1897 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1898 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1899 bio->bi_iter.bi_size))
5a7bbad2 1900 goto end_io;
2056a782 1901
5a7bbad2
CH
1902 /*
1903 * If this device has partitions, remap block n
1904 * of partition p to block n+start(p) of the disk.
1905 */
1906 blk_partition_remap(bio);
2056a782 1907
5a7bbad2
CH
1908 if (bio_check_eod(bio, nr_sectors))
1909 goto end_io;
1e87901e 1910
5a7bbad2
CH
1911 /*
1912 * Filter flush bio's early so that make_request based
1913 * drivers without flush support don't have to worry
1914 * about them.
1915 */
28a8f0d3 1916 if ((bio->bi_rw & (REQ_PREFLUSH | REQ_FUA)) &&
c888a8f9 1917 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
28a8f0d3 1918 bio->bi_rw &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1919 if (!nr_sectors) {
1920 err = 0;
51fd77bd
JA
1921 goto end_io;
1922 }
5a7bbad2 1923 }
5ddfe969 1924
288dab8a
CH
1925 switch (bio_op(bio)) {
1926 case REQ_OP_DISCARD:
1927 if (!blk_queue_discard(q))
1928 goto not_supported;
1929 break;
1930 case REQ_OP_SECURE_ERASE:
1931 if (!blk_queue_secure_erase(q))
1932 goto not_supported;
1933 break;
1934 case REQ_OP_WRITE_SAME:
1935 if (!bdev_write_same(bio->bi_bdev))
1936 goto not_supported;
1937 break;
1938 default:
1939 break;
5a7bbad2 1940 }
01edede4 1941
7f4b35d1
TH
1942 /*
1943 * Various block parts want %current->io_context and lazy ioc
1944 * allocation ends up trading a lot of pain for a small amount of
1945 * memory. Just allocate it upfront. This may fail and block
1946 * layer knows how to live with it.
1947 */
1948 create_io_context(GFP_ATOMIC, q->node);
1949
ae118896
TH
1950 if (!blkcg_bio_issue_check(q, bio))
1951 return false;
27a84d54 1952
5a7bbad2 1953 trace_block_bio_queue(q, bio);
27a84d54 1954 return true;
a7384677 1955
288dab8a
CH
1956not_supported:
1957 err = -EOPNOTSUPP;
a7384677 1958end_io:
4246a0b6
CH
1959 bio->bi_error = err;
1960 bio_endio(bio);
27a84d54 1961 return false;
1da177e4
LT
1962}
1963
27a84d54
CH
1964/**
1965 * generic_make_request - hand a buffer to its device driver for I/O
1966 * @bio: The bio describing the location in memory and on the device.
1967 *
1968 * generic_make_request() is used to make I/O requests of block
1969 * devices. It is passed a &struct bio, which describes the I/O that needs
1970 * to be done.
1971 *
1972 * generic_make_request() does not return any status. The
1973 * success/failure status of the request, along with notification of
1974 * completion, is delivered asynchronously through the bio->bi_end_io
1975 * function described (one day) else where.
1976 *
1977 * The caller of generic_make_request must make sure that bi_io_vec
1978 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1979 * set to describe the device address, and the
1980 * bi_end_io and optionally bi_private are set to describe how
1981 * completion notification should be signaled.
1982 *
1983 * generic_make_request and the drivers it calls may use bi_next if this
1984 * bio happens to be merged with someone else, and may resubmit the bio to
1985 * a lower device by calling into generic_make_request recursively, which
1986 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1987 */
dece1635 1988blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1989{
bddd87c7 1990 struct bio_list bio_list_on_stack;
dece1635 1991 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1992
27a84d54 1993 if (!generic_make_request_checks(bio))
dece1635 1994 goto out;
27a84d54
CH
1995
1996 /*
1997 * We only want one ->make_request_fn to be active at a time, else
1998 * stack usage with stacked devices could be a problem. So use
1999 * current->bio_list to keep a list of requests submited by a
2000 * make_request_fn function. current->bio_list is also used as a
2001 * flag to say if generic_make_request is currently active in this
2002 * task or not. If it is NULL, then no make_request is active. If
2003 * it is non-NULL, then a make_request is active, and new requests
2004 * should be added at the tail
2005 */
bddd87c7 2006 if (current->bio_list) {
bddd87c7 2007 bio_list_add(current->bio_list, bio);
dece1635 2008 goto out;
d89d8796 2009 }
27a84d54 2010
d89d8796
NB
2011 /* following loop may be a bit non-obvious, and so deserves some
2012 * explanation.
2013 * Before entering the loop, bio->bi_next is NULL (as all callers
2014 * ensure that) so we have a list with a single bio.
2015 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2016 * we assign bio_list to a pointer to the bio_list_on_stack,
2017 * thus initialising the bio_list of new bios to be
27a84d54 2018 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2019 * through a recursive call to generic_make_request. If it
2020 * did, we find a non-NULL value in bio_list and re-enter the loop
2021 * from the top. In this case we really did just take the bio
bddd87c7 2022 * of the top of the list (no pretending) and so remove it from
27a84d54 2023 * bio_list, and call into ->make_request() again.
d89d8796
NB
2024 */
2025 BUG_ON(bio->bi_next);
bddd87c7
AM
2026 bio_list_init(&bio_list_on_stack);
2027 current->bio_list = &bio_list_on_stack;
d89d8796 2028 do {
27a84d54
CH
2029 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2030
6f3b0e8b 2031 if (likely(blk_queue_enter(q, false) == 0)) {
dece1635 2032 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2033
2034 blk_queue_exit(q);
27a84d54 2035
3ef28e83
DW
2036 bio = bio_list_pop(current->bio_list);
2037 } else {
2038 struct bio *bio_next = bio_list_pop(current->bio_list);
2039
2040 bio_io_error(bio);
2041 bio = bio_next;
2042 }
d89d8796 2043 } while (bio);
bddd87c7 2044 current->bio_list = NULL; /* deactivate */
dece1635
JA
2045
2046out:
2047 return ret;
d89d8796 2048}
1da177e4
LT
2049EXPORT_SYMBOL(generic_make_request);
2050
2051/**
710027a4 2052 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2053 * @bio: The &struct bio which describes the I/O
2054 *
2055 * submit_bio() is very similar in purpose to generic_make_request(), and
2056 * uses that function to do most of the work. Both are fairly rough
710027a4 2057 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2058 *
2059 */
4e49ea4a 2060blk_qc_t submit_bio(struct bio *bio)
1da177e4 2061{
bf2de6f5
JA
2062 /*
2063 * If it's a regular read/write or a barrier with data attached,
2064 * go through the normal accounting stuff before submission.
2065 */
e2a60da7 2066 if (bio_has_data(bio)) {
4363ac7c
MP
2067 unsigned int count;
2068
95fe6c1a 2069 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2070 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2071 else
2072 count = bio_sectors(bio);
2073
a8ebb056 2074 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2075 count_vm_events(PGPGOUT, count);
2076 } else {
4f024f37 2077 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2078 count_vm_events(PGPGIN, count);
2079 }
2080
2081 if (unlikely(block_dump)) {
2082 char b[BDEVNAME_SIZE];
8dcbdc74 2083 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2084 current->comm, task_pid_nr(current),
a8ebb056 2085 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2086 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2087 bdevname(bio->bi_bdev, b),
2088 count);
bf2de6f5 2089 }
1da177e4
LT
2090 }
2091
dece1635 2092 return generic_make_request(bio);
1da177e4 2093}
1da177e4
LT
2094EXPORT_SYMBOL(submit_bio);
2095
82124d60 2096/**
bf4e6b4e
HR
2097 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2098 * for new the queue limits
82124d60
KU
2099 * @q: the queue
2100 * @rq: the request being checked
2101 *
2102 * Description:
2103 * @rq may have been made based on weaker limitations of upper-level queues
2104 * in request stacking drivers, and it may violate the limitation of @q.
2105 * Since the block layer and the underlying device driver trust @rq
2106 * after it is inserted to @q, it should be checked against @q before
2107 * the insertion using this generic function.
2108 *
82124d60 2109 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2110 * limits when retrying requests on other queues. Those requests need
2111 * to be checked against the new queue limits again during dispatch.
82124d60 2112 */
bf4e6b4e
HR
2113static int blk_cloned_rq_check_limits(struct request_queue *q,
2114 struct request *rq)
82124d60 2115{
8fe0d473 2116 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2117 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2118 return -EIO;
2119 }
2120
2121 /*
2122 * queue's settings related to segment counting like q->bounce_pfn
2123 * may differ from that of other stacking queues.
2124 * Recalculate it to check the request correctly on this queue's
2125 * limitation.
2126 */
2127 blk_recalc_rq_segments(rq);
8a78362c 2128 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2129 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2130 return -EIO;
2131 }
2132
2133 return 0;
2134}
82124d60
KU
2135
2136/**
2137 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2138 * @q: the queue to submit the request
2139 * @rq: the request being queued
2140 */
2141int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2142{
2143 unsigned long flags;
4853abaa 2144 int where = ELEVATOR_INSERT_BACK;
82124d60 2145
bf4e6b4e 2146 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2147 return -EIO;
2148
b2c9cd37
AM
2149 if (rq->rq_disk &&
2150 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2151 return -EIO;
82124d60 2152
7fb4898e
KB
2153 if (q->mq_ops) {
2154 if (blk_queue_io_stat(q))
2155 blk_account_io_start(rq, true);
6acfe68b 2156 blk_mq_insert_request(rq, false, true, false);
7fb4898e
KB
2157 return 0;
2158 }
2159
82124d60 2160 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2161 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2162 spin_unlock_irqrestore(q->queue_lock, flags);
2163 return -ENODEV;
2164 }
82124d60
KU
2165
2166 /*
2167 * Submitting request must be dequeued before calling this function
2168 * because it will be linked to another request_queue
2169 */
2170 BUG_ON(blk_queued_rq(rq));
2171
28a8f0d3 2172 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
4853abaa
JM
2173 where = ELEVATOR_INSERT_FLUSH;
2174
2175 add_acct_request(q, rq, where);
e67b77c7
JM
2176 if (where == ELEVATOR_INSERT_FLUSH)
2177 __blk_run_queue(q);
82124d60
KU
2178 spin_unlock_irqrestore(q->queue_lock, flags);
2179
2180 return 0;
2181}
2182EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2183
80a761fd
TH
2184/**
2185 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2186 * @rq: request to examine
2187 *
2188 * Description:
2189 * A request could be merge of IOs which require different failure
2190 * handling. This function determines the number of bytes which
2191 * can be failed from the beginning of the request without
2192 * crossing into area which need to be retried further.
2193 *
2194 * Return:
2195 * The number of bytes to fail.
2196 *
2197 * Context:
2198 * queue_lock must be held.
2199 */
2200unsigned int blk_rq_err_bytes(const struct request *rq)
2201{
2202 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2203 unsigned int bytes = 0;
2204 struct bio *bio;
2205
2206 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2207 return blk_rq_bytes(rq);
2208
2209 /*
2210 * Currently the only 'mixing' which can happen is between
2211 * different fastfail types. We can safely fail portions
2212 * which have all the failfast bits that the first one has -
2213 * the ones which are at least as eager to fail as the first
2214 * one.
2215 */
2216 for (bio = rq->bio; bio; bio = bio->bi_next) {
2217 if ((bio->bi_rw & ff) != ff)
2218 break;
4f024f37 2219 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2220 }
2221
2222 /* this could lead to infinite loop */
2223 BUG_ON(blk_rq_bytes(rq) && !bytes);
2224 return bytes;
2225}
2226EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2227
320ae51f 2228void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2229{
c2553b58 2230 if (blk_do_io_stat(req)) {
bc58ba94
JA
2231 const int rw = rq_data_dir(req);
2232 struct hd_struct *part;
2233 int cpu;
2234
2235 cpu = part_stat_lock();
09e099d4 2236 part = req->part;
bc58ba94
JA
2237 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2238 part_stat_unlock();
2239 }
2240}
2241
320ae51f 2242void blk_account_io_done(struct request *req)
bc58ba94 2243{
bc58ba94 2244 /*
dd4c133f
TH
2245 * Account IO completion. flush_rq isn't accounted as a
2246 * normal IO on queueing nor completion. Accounting the
2247 * containing request is enough.
bc58ba94 2248 */
414b4ff5 2249 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2250 unsigned long duration = jiffies - req->start_time;
2251 const int rw = rq_data_dir(req);
2252 struct hd_struct *part;
2253 int cpu;
2254
2255 cpu = part_stat_lock();
09e099d4 2256 part = req->part;
bc58ba94
JA
2257
2258 part_stat_inc(cpu, part, ios[rw]);
2259 part_stat_add(cpu, part, ticks[rw], duration);
2260 part_round_stats(cpu, part);
316d315b 2261 part_dec_in_flight(part, rw);
bc58ba94 2262
6c23a968 2263 hd_struct_put(part);
bc58ba94
JA
2264 part_stat_unlock();
2265 }
2266}
2267
47fafbc7 2268#ifdef CONFIG_PM
c8158819
LM
2269/*
2270 * Don't process normal requests when queue is suspended
2271 * or in the process of suspending/resuming
2272 */
2273static struct request *blk_pm_peek_request(struct request_queue *q,
2274 struct request *rq)
2275{
2276 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2277 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2278 return NULL;
2279 else
2280 return rq;
2281}
2282#else
2283static inline struct request *blk_pm_peek_request(struct request_queue *q,
2284 struct request *rq)
2285{
2286 return rq;
2287}
2288#endif
2289
320ae51f
JA
2290void blk_account_io_start(struct request *rq, bool new_io)
2291{
2292 struct hd_struct *part;
2293 int rw = rq_data_dir(rq);
2294 int cpu;
2295
2296 if (!blk_do_io_stat(rq))
2297 return;
2298
2299 cpu = part_stat_lock();
2300
2301 if (!new_io) {
2302 part = rq->part;
2303 part_stat_inc(cpu, part, merges[rw]);
2304 } else {
2305 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2306 if (!hd_struct_try_get(part)) {
2307 /*
2308 * The partition is already being removed,
2309 * the request will be accounted on the disk only
2310 *
2311 * We take a reference on disk->part0 although that
2312 * partition will never be deleted, so we can treat
2313 * it as any other partition.
2314 */
2315 part = &rq->rq_disk->part0;
2316 hd_struct_get(part);
2317 }
2318 part_round_stats(cpu, part);
2319 part_inc_in_flight(part, rw);
2320 rq->part = part;
2321 }
2322
2323 part_stat_unlock();
2324}
2325
3bcddeac 2326/**
9934c8c0
TH
2327 * blk_peek_request - peek at the top of a request queue
2328 * @q: request queue to peek at
2329 *
2330 * Description:
2331 * Return the request at the top of @q. The returned request
2332 * should be started using blk_start_request() before LLD starts
2333 * processing it.
2334 *
2335 * Return:
2336 * Pointer to the request at the top of @q if available. Null
2337 * otherwise.
2338 *
2339 * Context:
2340 * queue_lock must be held.
2341 */
2342struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2343{
2344 struct request *rq;
2345 int ret;
2346
2347 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2348
2349 rq = blk_pm_peek_request(q, rq);
2350 if (!rq)
2351 break;
2352
158dbda0
TH
2353 if (!(rq->cmd_flags & REQ_STARTED)) {
2354 /*
2355 * This is the first time the device driver
2356 * sees this request (possibly after
2357 * requeueing). Notify IO scheduler.
2358 */
33659ebb 2359 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2360 elv_activate_rq(q, rq);
2361
2362 /*
2363 * just mark as started even if we don't start
2364 * it, a request that has been delayed should
2365 * not be passed by new incoming requests
2366 */
2367 rq->cmd_flags |= REQ_STARTED;
2368 trace_block_rq_issue(q, rq);
2369 }
2370
2371 if (!q->boundary_rq || q->boundary_rq == rq) {
2372 q->end_sector = rq_end_sector(rq);
2373 q->boundary_rq = NULL;
2374 }
2375
2376 if (rq->cmd_flags & REQ_DONTPREP)
2377 break;
2378
2e46e8b2 2379 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2380 /*
2381 * make sure space for the drain appears we
2382 * know we can do this because max_hw_segments
2383 * has been adjusted to be one fewer than the
2384 * device can handle
2385 */
2386 rq->nr_phys_segments++;
2387 }
2388
2389 if (!q->prep_rq_fn)
2390 break;
2391
2392 ret = q->prep_rq_fn(q, rq);
2393 if (ret == BLKPREP_OK) {
2394 break;
2395 } else if (ret == BLKPREP_DEFER) {
2396 /*
2397 * the request may have been (partially) prepped.
2398 * we need to keep this request in the front to
2399 * avoid resource deadlock. REQ_STARTED will
2400 * prevent other fs requests from passing this one.
2401 */
2e46e8b2 2402 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2403 !(rq->cmd_flags & REQ_DONTPREP)) {
2404 /*
2405 * remove the space for the drain we added
2406 * so that we don't add it again
2407 */
2408 --rq->nr_phys_segments;
2409 }
2410
2411 rq = NULL;
2412 break;
0fb5b1fb
MP
2413 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2414 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2415
158dbda0 2416 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2417 /*
2418 * Mark this request as started so we don't trigger
2419 * any debug logic in the end I/O path.
2420 */
2421 blk_start_request(rq);
0fb5b1fb 2422 __blk_end_request_all(rq, err);
158dbda0
TH
2423 } else {
2424 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2425 break;
2426 }
2427 }
2428
2429 return rq;
2430}
9934c8c0 2431EXPORT_SYMBOL(blk_peek_request);
158dbda0 2432
9934c8c0 2433void blk_dequeue_request(struct request *rq)
158dbda0 2434{
9934c8c0
TH
2435 struct request_queue *q = rq->q;
2436
158dbda0
TH
2437 BUG_ON(list_empty(&rq->queuelist));
2438 BUG_ON(ELV_ON_HASH(rq));
2439
2440 list_del_init(&rq->queuelist);
2441
2442 /*
2443 * the time frame between a request being removed from the lists
2444 * and to it is freed is accounted as io that is in progress at
2445 * the driver side.
2446 */
9195291e 2447 if (blk_account_rq(rq)) {
0a7ae2ff 2448 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2449 set_io_start_time_ns(rq);
2450 }
158dbda0
TH
2451}
2452
9934c8c0
TH
2453/**
2454 * blk_start_request - start request processing on the driver
2455 * @req: request to dequeue
2456 *
2457 * Description:
2458 * Dequeue @req and start timeout timer on it. This hands off the
2459 * request to the driver.
2460 *
2461 * Block internal functions which don't want to start timer should
2462 * call blk_dequeue_request().
2463 *
2464 * Context:
2465 * queue_lock must be held.
2466 */
2467void blk_start_request(struct request *req)
2468{
2469 blk_dequeue_request(req);
2470
2471 /*
5f49f631
TH
2472 * We are now handing the request to the hardware, initialize
2473 * resid_len to full count and add the timeout handler.
9934c8c0 2474 */
5f49f631 2475 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2476 if (unlikely(blk_bidi_rq(req)))
2477 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2478
4912aa6c 2479 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2480 blk_add_timer(req);
2481}
2482EXPORT_SYMBOL(blk_start_request);
2483
2484/**
2485 * blk_fetch_request - fetch a request from a request queue
2486 * @q: request queue to fetch a request from
2487 *
2488 * Description:
2489 * Return the request at the top of @q. The request is started on
2490 * return and LLD can start processing it immediately.
2491 *
2492 * Return:
2493 * Pointer to the request at the top of @q if available. Null
2494 * otherwise.
2495 *
2496 * Context:
2497 * queue_lock must be held.
2498 */
2499struct request *blk_fetch_request(struct request_queue *q)
2500{
2501 struct request *rq;
2502
2503 rq = blk_peek_request(q);
2504 if (rq)
2505 blk_start_request(rq);
2506 return rq;
2507}
2508EXPORT_SYMBOL(blk_fetch_request);
2509
3bcddeac 2510/**
2e60e022 2511 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2512 * @req: the request being processed
710027a4 2513 * @error: %0 for success, < %0 for error
8ebf9756 2514 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2515 *
2516 * Description:
8ebf9756
RD
2517 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2518 * the request structure even if @req doesn't have leftover.
2519 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2520 *
2521 * This special helper function is only for request stacking drivers
2522 * (e.g. request-based dm) so that they can handle partial completion.
2523 * Actual device drivers should use blk_end_request instead.
2524 *
2525 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2526 * %false return from this function.
3bcddeac
KU
2527 *
2528 * Return:
2e60e022
TH
2529 * %false - this request doesn't have any more data
2530 * %true - this request has more data
3bcddeac 2531 **/
2e60e022 2532bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2533{
f79ea416 2534 int total_bytes;
1da177e4 2535
4a0efdc9
HR
2536 trace_block_rq_complete(req->q, req, nr_bytes);
2537
2e60e022
TH
2538 if (!req->bio)
2539 return false;
2540
1da177e4 2541 /*
6f41469c
TH
2542 * For fs requests, rq is just carrier of independent bio's
2543 * and each partial completion should be handled separately.
2544 * Reset per-request error on each partial completion.
2545 *
2546 * TODO: tj: This is too subtle. It would be better to let
2547 * low level drivers do what they see fit.
1da177e4 2548 */
33659ebb 2549 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2550 req->errors = 0;
2551
33659ebb
CH
2552 if (error && req->cmd_type == REQ_TYPE_FS &&
2553 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2554 char *error_type;
2555
2556 switch (error) {
2557 case -ENOLINK:
2558 error_type = "recoverable transport";
2559 break;
2560 case -EREMOTEIO:
2561 error_type = "critical target";
2562 break;
2563 case -EBADE:
2564 error_type = "critical nexus";
2565 break;
d1ffc1f8
HR
2566 case -ETIMEDOUT:
2567 error_type = "timeout";
2568 break;
a9d6ceb8
HR
2569 case -ENOSPC:
2570 error_type = "critical space allocation";
2571 break;
7e782af5
HR
2572 case -ENODATA:
2573 error_type = "critical medium";
2574 break;
79775567
HR
2575 case -EIO:
2576 default:
2577 error_type = "I/O";
2578 break;
2579 }
ef3ecb66
RE
2580 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2581 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2582 req->rq_disk->disk_name : "?",
2583 (unsigned long long)blk_rq_pos(req));
2584
1da177e4
LT
2585 }
2586
bc58ba94 2587 blk_account_io_completion(req, nr_bytes);
d72d904a 2588
f79ea416
KO
2589 total_bytes = 0;
2590 while (req->bio) {
2591 struct bio *bio = req->bio;
4f024f37 2592 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2593
4f024f37 2594 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2595 req->bio = bio->bi_next;
1da177e4 2596
f79ea416 2597 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2598
f79ea416
KO
2599 total_bytes += bio_bytes;
2600 nr_bytes -= bio_bytes;
1da177e4 2601
f79ea416
KO
2602 if (!nr_bytes)
2603 break;
1da177e4
LT
2604 }
2605
2606 /*
2607 * completely done
2608 */
2e60e022
TH
2609 if (!req->bio) {
2610 /*
2611 * Reset counters so that the request stacking driver
2612 * can find how many bytes remain in the request
2613 * later.
2614 */
a2dec7b3 2615 req->__data_len = 0;
2e60e022
TH
2616 return false;
2617 }
1da177e4 2618
a2dec7b3 2619 req->__data_len -= total_bytes;
2e46e8b2
TH
2620
2621 /* update sector only for requests with clear definition of sector */
e2a60da7 2622 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2623 req->__sector += total_bytes >> 9;
2e46e8b2 2624
80a761fd
TH
2625 /* mixed attributes always follow the first bio */
2626 if (req->cmd_flags & REQ_MIXED_MERGE) {
2627 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2628 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2629 }
2630
2e46e8b2
TH
2631 /*
2632 * If total number of sectors is less than the first segment
2633 * size, something has gone terribly wrong.
2634 */
2635 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2636 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2637 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2638 }
2639
2640 /* recalculate the number of segments */
1da177e4 2641 blk_recalc_rq_segments(req);
2e46e8b2 2642
2e60e022 2643 return true;
1da177e4 2644}
2e60e022 2645EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2646
2e60e022
TH
2647static bool blk_update_bidi_request(struct request *rq, int error,
2648 unsigned int nr_bytes,
2649 unsigned int bidi_bytes)
5efccd17 2650{
2e60e022
TH
2651 if (blk_update_request(rq, error, nr_bytes))
2652 return true;
5efccd17 2653
2e60e022
TH
2654 /* Bidi request must be completed as a whole */
2655 if (unlikely(blk_bidi_rq(rq)) &&
2656 blk_update_request(rq->next_rq, error, bidi_bytes))
2657 return true;
5efccd17 2658
e2e1a148
JA
2659 if (blk_queue_add_random(rq->q))
2660 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2661
2662 return false;
1da177e4
LT
2663}
2664
28018c24
JB
2665/**
2666 * blk_unprep_request - unprepare a request
2667 * @req: the request
2668 *
2669 * This function makes a request ready for complete resubmission (or
2670 * completion). It happens only after all error handling is complete,
2671 * so represents the appropriate moment to deallocate any resources
2672 * that were allocated to the request in the prep_rq_fn. The queue
2673 * lock is held when calling this.
2674 */
2675void blk_unprep_request(struct request *req)
2676{
2677 struct request_queue *q = req->q;
2678
2679 req->cmd_flags &= ~REQ_DONTPREP;
2680 if (q->unprep_rq_fn)
2681 q->unprep_rq_fn(q, req);
2682}
2683EXPORT_SYMBOL_GPL(blk_unprep_request);
2684
1da177e4
LT
2685/*
2686 * queue lock must be held
2687 */
12120077 2688void blk_finish_request(struct request *req, int error)
1da177e4 2689{
125c99bc 2690 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2691 blk_queue_end_tag(req->q, req);
2692
ba396a6c 2693 BUG_ON(blk_queued_rq(req));
1da177e4 2694
33659ebb 2695 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2696 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2697
e78042e5
MA
2698 blk_delete_timer(req);
2699
28018c24
JB
2700 if (req->cmd_flags & REQ_DONTPREP)
2701 blk_unprep_request(req);
2702
bc58ba94 2703 blk_account_io_done(req);
b8286239 2704
1da177e4 2705 if (req->end_io)
8ffdc655 2706 req->end_io(req, error);
b8286239
KU
2707 else {
2708 if (blk_bidi_rq(req))
2709 __blk_put_request(req->next_rq->q, req->next_rq);
2710
1da177e4 2711 __blk_put_request(req->q, req);
b8286239 2712 }
1da177e4 2713}
12120077 2714EXPORT_SYMBOL(blk_finish_request);
1da177e4 2715
3b11313a 2716/**
2e60e022
TH
2717 * blk_end_bidi_request - Complete a bidi request
2718 * @rq: the request to complete
2719 * @error: %0 for success, < %0 for error
2720 * @nr_bytes: number of bytes to complete @rq
2721 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2722 *
2723 * Description:
e3a04fe3 2724 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2725 * Drivers that supports bidi can safely call this member for any
2726 * type of request, bidi or uni. In the later case @bidi_bytes is
2727 * just ignored.
336cdb40
KU
2728 *
2729 * Return:
2e60e022
TH
2730 * %false - we are done with this request
2731 * %true - still buffers pending for this request
a0cd1285 2732 **/
b1f74493 2733static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2734 unsigned int nr_bytes, unsigned int bidi_bytes)
2735{
336cdb40 2736 struct request_queue *q = rq->q;
2e60e022 2737 unsigned long flags;
32fab448 2738
2e60e022
TH
2739 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2740 return true;
32fab448 2741
336cdb40 2742 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2743 blk_finish_request(rq, error);
336cdb40
KU
2744 spin_unlock_irqrestore(q->queue_lock, flags);
2745
2e60e022 2746 return false;
32fab448
KU
2747}
2748
336cdb40 2749/**
2e60e022
TH
2750 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2751 * @rq: the request to complete
710027a4 2752 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2753 * @nr_bytes: number of bytes to complete @rq
2754 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2755 *
2756 * Description:
2e60e022
TH
2757 * Identical to blk_end_bidi_request() except that queue lock is
2758 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2759 *
2760 * Return:
2e60e022
TH
2761 * %false - we are done with this request
2762 * %true - still buffers pending for this request
336cdb40 2763 **/
4853abaa 2764bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2765 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2766{
2e60e022
TH
2767 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2768 return true;
336cdb40 2769
2e60e022 2770 blk_finish_request(rq, error);
336cdb40 2771
2e60e022 2772 return false;
336cdb40 2773}
e19a3ab0
KU
2774
2775/**
2776 * blk_end_request - Helper function for drivers to complete the request.
2777 * @rq: the request being processed
710027a4 2778 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2779 * @nr_bytes: number of bytes to complete
2780 *
2781 * Description:
2782 * Ends I/O on a number of bytes attached to @rq.
2783 * If @rq has leftover, sets it up for the next range of segments.
2784 *
2785 * Return:
b1f74493
FT
2786 * %false - we are done with this request
2787 * %true - still buffers pending for this request
e19a3ab0 2788 **/
b1f74493 2789bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2790{
b1f74493 2791 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2792}
56ad1740 2793EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2794
2795/**
b1f74493
FT
2796 * blk_end_request_all - Helper function for drives to finish the request.
2797 * @rq: the request to finish
8ebf9756 2798 * @error: %0 for success, < %0 for error
336cdb40
KU
2799 *
2800 * Description:
b1f74493
FT
2801 * Completely finish @rq.
2802 */
2803void blk_end_request_all(struct request *rq, int error)
336cdb40 2804{
b1f74493
FT
2805 bool pending;
2806 unsigned int bidi_bytes = 0;
336cdb40 2807
b1f74493
FT
2808 if (unlikely(blk_bidi_rq(rq)))
2809 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2810
b1f74493
FT
2811 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2812 BUG_ON(pending);
2813}
56ad1740 2814EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2815
b1f74493
FT
2816/**
2817 * blk_end_request_cur - Helper function to finish the current request chunk.
2818 * @rq: the request to finish the current chunk for
8ebf9756 2819 * @error: %0 for success, < %0 for error
b1f74493
FT
2820 *
2821 * Description:
2822 * Complete the current consecutively mapped chunk from @rq.
2823 *
2824 * Return:
2825 * %false - we are done with this request
2826 * %true - still buffers pending for this request
2827 */
2828bool blk_end_request_cur(struct request *rq, int error)
2829{
2830 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2831}
56ad1740 2832EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2833
80a761fd
TH
2834/**
2835 * blk_end_request_err - Finish a request till the next failure boundary.
2836 * @rq: the request to finish till the next failure boundary for
2837 * @error: must be negative errno
2838 *
2839 * Description:
2840 * Complete @rq till the next failure boundary.
2841 *
2842 * Return:
2843 * %false - we are done with this request
2844 * %true - still buffers pending for this request
2845 */
2846bool blk_end_request_err(struct request *rq, int error)
2847{
2848 WARN_ON(error >= 0);
2849 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2850}
2851EXPORT_SYMBOL_GPL(blk_end_request_err);
2852
e3a04fe3 2853/**
b1f74493
FT
2854 * __blk_end_request - Helper function for drivers to complete the request.
2855 * @rq: the request being processed
2856 * @error: %0 for success, < %0 for error
2857 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2858 *
2859 * Description:
b1f74493 2860 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2861 *
2862 * Return:
b1f74493
FT
2863 * %false - we are done with this request
2864 * %true - still buffers pending for this request
e3a04fe3 2865 **/
b1f74493 2866bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2867{
b1f74493 2868 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2869}
56ad1740 2870EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2871
32fab448 2872/**
b1f74493
FT
2873 * __blk_end_request_all - Helper function for drives to finish the request.
2874 * @rq: the request to finish
8ebf9756 2875 * @error: %0 for success, < %0 for error
32fab448
KU
2876 *
2877 * Description:
b1f74493 2878 * Completely finish @rq. Must be called with queue lock held.
32fab448 2879 */
b1f74493 2880void __blk_end_request_all(struct request *rq, int error)
32fab448 2881{
b1f74493
FT
2882 bool pending;
2883 unsigned int bidi_bytes = 0;
2884
2885 if (unlikely(blk_bidi_rq(rq)))
2886 bidi_bytes = blk_rq_bytes(rq->next_rq);
2887
2888 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2889 BUG_ON(pending);
32fab448 2890}
56ad1740 2891EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2892
e19a3ab0 2893/**
b1f74493
FT
2894 * __blk_end_request_cur - Helper function to finish the current request chunk.
2895 * @rq: the request to finish the current chunk for
8ebf9756 2896 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2897 *
2898 * Description:
b1f74493
FT
2899 * Complete the current consecutively mapped chunk from @rq. Must
2900 * be called with queue lock held.
e19a3ab0
KU
2901 *
2902 * Return:
b1f74493
FT
2903 * %false - we are done with this request
2904 * %true - still buffers pending for this request
2905 */
2906bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2907{
b1f74493 2908 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2909}
56ad1740 2910EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2911
80a761fd
TH
2912/**
2913 * __blk_end_request_err - Finish a request till the next failure boundary.
2914 * @rq: the request to finish till the next failure boundary for
2915 * @error: must be negative errno
2916 *
2917 * Description:
2918 * Complete @rq till the next failure boundary. Must be called
2919 * with queue lock held.
2920 *
2921 * Return:
2922 * %false - we are done with this request
2923 * %true - still buffers pending for this request
2924 */
2925bool __blk_end_request_err(struct request *rq, int error)
2926{
2927 WARN_ON(error >= 0);
2928 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2929}
2930EXPORT_SYMBOL_GPL(__blk_end_request_err);
2931
86db1e29
JA
2932void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2933 struct bio *bio)
1da177e4 2934{
4993b77d 2935 req_set_op(rq, bio_op(bio));
1da177e4 2936
b4f42e28 2937 if (bio_has_data(bio))
fb2dce86 2938 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2939
4f024f37 2940 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2941 rq->bio = rq->biotail = bio;
1da177e4 2942
66846572
N
2943 if (bio->bi_bdev)
2944 rq->rq_disk = bio->bi_bdev->bd_disk;
2945}
1da177e4 2946
2d4dc890
IL
2947#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2948/**
2949 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2950 * @rq: the request to be flushed
2951 *
2952 * Description:
2953 * Flush all pages in @rq.
2954 */
2955void rq_flush_dcache_pages(struct request *rq)
2956{
2957 struct req_iterator iter;
7988613b 2958 struct bio_vec bvec;
2d4dc890
IL
2959
2960 rq_for_each_segment(bvec, rq, iter)
7988613b 2961 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2962}
2963EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2964#endif
2965
ef9e3fac
KU
2966/**
2967 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2968 * @q : the queue of the device being checked
2969 *
2970 * Description:
2971 * Check if underlying low-level drivers of a device are busy.
2972 * If the drivers want to export their busy state, they must set own
2973 * exporting function using blk_queue_lld_busy() first.
2974 *
2975 * Basically, this function is used only by request stacking drivers
2976 * to stop dispatching requests to underlying devices when underlying
2977 * devices are busy. This behavior helps more I/O merging on the queue
2978 * of the request stacking driver and prevents I/O throughput regression
2979 * on burst I/O load.
2980 *
2981 * Return:
2982 * 0 - Not busy (The request stacking driver should dispatch request)
2983 * 1 - Busy (The request stacking driver should stop dispatching request)
2984 */
2985int blk_lld_busy(struct request_queue *q)
2986{
2987 if (q->lld_busy_fn)
2988 return q->lld_busy_fn(q);
2989
2990 return 0;
2991}
2992EXPORT_SYMBOL_GPL(blk_lld_busy);
2993
78d8e58a
MS
2994/**
2995 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2996 * @rq: the clone request to be cleaned up
2997 *
2998 * Description:
2999 * Free all bios in @rq for a cloned request.
3000 */
3001void blk_rq_unprep_clone(struct request *rq)
3002{
3003 struct bio *bio;
3004
3005 while ((bio = rq->bio) != NULL) {
3006 rq->bio = bio->bi_next;
3007
3008 bio_put(bio);
3009 }
3010}
3011EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3012
3013/*
3014 * Copy attributes of the original request to the clone request.
3015 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3016 */
3017static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3018{
3019 dst->cpu = src->cpu;
4993b77d
MC
3020 req_set_op_attrs(dst, req_op(src),
3021 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE);
b0fd271d
KU
3022 dst->cmd_type = src->cmd_type;
3023 dst->__sector = blk_rq_pos(src);
3024 dst->__data_len = blk_rq_bytes(src);
3025 dst->nr_phys_segments = src->nr_phys_segments;
3026 dst->ioprio = src->ioprio;
3027 dst->extra_len = src->extra_len;
78d8e58a
MS
3028}
3029
3030/**
3031 * blk_rq_prep_clone - Helper function to setup clone request
3032 * @rq: the request to be setup
3033 * @rq_src: original request to be cloned
3034 * @bs: bio_set that bios for clone are allocated from
3035 * @gfp_mask: memory allocation mask for bio
3036 * @bio_ctr: setup function to be called for each clone bio.
3037 * Returns %0 for success, non %0 for failure.
3038 * @data: private data to be passed to @bio_ctr
3039 *
3040 * Description:
3041 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3042 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3043 * are not copied, and copying such parts is the caller's responsibility.
3044 * Also, pages which the original bios are pointing to are not copied
3045 * and the cloned bios just point same pages.
3046 * So cloned bios must be completed before original bios, which means
3047 * the caller must complete @rq before @rq_src.
3048 */
3049int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3050 struct bio_set *bs, gfp_t gfp_mask,
3051 int (*bio_ctr)(struct bio *, struct bio *, void *),
3052 void *data)
3053{
3054 struct bio *bio, *bio_src;
3055
3056 if (!bs)
3057 bs = fs_bio_set;
3058
3059 __rq_for_each_bio(bio_src, rq_src) {
3060 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3061 if (!bio)
3062 goto free_and_out;
3063
3064 if (bio_ctr && bio_ctr(bio, bio_src, data))
3065 goto free_and_out;
3066
3067 if (rq->bio) {
3068 rq->biotail->bi_next = bio;
3069 rq->biotail = bio;
3070 } else
3071 rq->bio = rq->biotail = bio;
3072 }
3073
3074 __blk_rq_prep_clone(rq, rq_src);
3075
3076 return 0;
3077
3078free_and_out:
3079 if (bio)
3080 bio_put(bio);
3081 blk_rq_unprep_clone(rq);
3082
3083 return -ENOMEM;
b0fd271d
KU
3084}
3085EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3086
59c3d45e 3087int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3088{
3089 return queue_work(kblockd_workqueue, work);
3090}
1da177e4
LT
3091EXPORT_SYMBOL(kblockd_schedule_work);
3092
59c3d45e
JA
3093int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3094 unsigned long delay)
e43473b7
VG
3095{
3096 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3097}
3098EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3099
8ab14595
JA
3100int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3101 unsigned long delay)
3102{
3103 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3104}
3105EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3106
75df7136
SJ
3107/**
3108 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3109 * @plug: The &struct blk_plug that needs to be initialized
3110 *
3111 * Description:
3112 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3113 * pending I/O should the task end up blocking between blk_start_plug() and
3114 * blk_finish_plug(). This is important from a performance perspective, but
3115 * also ensures that we don't deadlock. For instance, if the task is blocking
3116 * for a memory allocation, memory reclaim could end up wanting to free a
3117 * page belonging to that request that is currently residing in our private
3118 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3119 * this kind of deadlock.
3120 */
73c10101
JA
3121void blk_start_plug(struct blk_plug *plug)
3122{
3123 struct task_struct *tsk = current;
3124
dd6cf3e1
SL
3125 /*
3126 * If this is a nested plug, don't actually assign it.
3127 */
3128 if (tsk->plug)
3129 return;
3130
73c10101 3131 INIT_LIST_HEAD(&plug->list);
320ae51f 3132 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3133 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3134 /*
dd6cf3e1
SL
3135 * Store ordering should not be needed here, since a potential
3136 * preempt will imply a full memory barrier
73c10101 3137 */
dd6cf3e1 3138 tsk->plug = plug;
73c10101
JA
3139}
3140EXPORT_SYMBOL(blk_start_plug);
3141
3142static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3143{
3144 struct request *rqa = container_of(a, struct request, queuelist);
3145 struct request *rqb = container_of(b, struct request, queuelist);
3146
975927b9
JM
3147 return !(rqa->q < rqb->q ||
3148 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3149}
3150
49cac01e
JA
3151/*
3152 * If 'from_schedule' is true, then postpone the dispatch of requests
3153 * until a safe kblockd context. We due this to avoid accidental big
3154 * additional stack usage in driver dispatch, in places where the originally
3155 * plugger did not intend it.
3156 */
f6603783 3157static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3158 bool from_schedule)
99e22598 3159 __releases(q->queue_lock)
94b5eb28 3160{
49cac01e 3161 trace_block_unplug(q, depth, !from_schedule);
99e22598 3162
70460571 3163 if (from_schedule)
24ecfbe2 3164 blk_run_queue_async(q);
70460571 3165 else
24ecfbe2 3166 __blk_run_queue(q);
70460571 3167 spin_unlock(q->queue_lock);
94b5eb28
JA
3168}
3169
74018dc3 3170static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3171{
3172 LIST_HEAD(callbacks);
3173
2a7d5559
SL
3174 while (!list_empty(&plug->cb_list)) {
3175 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3176
2a7d5559
SL
3177 while (!list_empty(&callbacks)) {
3178 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3179 struct blk_plug_cb,
3180 list);
2a7d5559 3181 list_del(&cb->list);
74018dc3 3182 cb->callback(cb, from_schedule);
2a7d5559 3183 }
048c9374
N
3184 }
3185}
3186
9cbb1750
N
3187struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3188 int size)
3189{
3190 struct blk_plug *plug = current->plug;
3191 struct blk_plug_cb *cb;
3192
3193 if (!plug)
3194 return NULL;
3195
3196 list_for_each_entry(cb, &plug->cb_list, list)
3197 if (cb->callback == unplug && cb->data == data)
3198 return cb;
3199
3200 /* Not currently on the callback list */
3201 BUG_ON(size < sizeof(*cb));
3202 cb = kzalloc(size, GFP_ATOMIC);
3203 if (cb) {
3204 cb->data = data;
3205 cb->callback = unplug;
3206 list_add(&cb->list, &plug->cb_list);
3207 }
3208 return cb;
3209}
3210EXPORT_SYMBOL(blk_check_plugged);
3211
49cac01e 3212void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3213{
3214 struct request_queue *q;
3215 unsigned long flags;
3216 struct request *rq;
109b8129 3217 LIST_HEAD(list);
94b5eb28 3218 unsigned int depth;
73c10101 3219
74018dc3 3220 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3221
3222 if (!list_empty(&plug->mq_list))
3223 blk_mq_flush_plug_list(plug, from_schedule);
3224
73c10101
JA
3225 if (list_empty(&plug->list))
3226 return;
3227
109b8129
N
3228 list_splice_init(&plug->list, &list);
3229
422765c2 3230 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3231
3232 q = NULL;
94b5eb28 3233 depth = 0;
18811272
JA
3234
3235 /*
3236 * Save and disable interrupts here, to avoid doing it for every
3237 * queue lock we have to take.
3238 */
73c10101 3239 local_irq_save(flags);
109b8129
N
3240 while (!list_empty(&list)) {
3241 rq = list_entry_rq(list.next);
73c10101 3242 list_del_init(&rq->queuelist);
73c10101
JA
3243 BUG_ON(!rq->q);
3244 if (rq->q != q) {
99e22598
JA
3245 /*
3246 * This drops the queue lock
3247 */
3248 if (q)
49cac01e 3249 queue_unplugged(q, depth, from_schedule);
73c10101 3250 q = rq->q;
94b5eb28 3251 depth = 0;
73c10101
JA
3252 spin_lock(q->queue_lock);
3253 }
8ba61435
TH
3254
3255 /*
3256 * Short-circuit if @q is dead
3257 */
3f3299d5 3258 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3259 __blk_end_request_all(rq, -ENODEV);
3260 continue;
3261 }
3262
73c10101
JA
3263 /*
3264 * rq is already accounted, so use raw insert
3265 */
28a8f0d3 3266 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
401a18e9
JA
3267 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3268 else
3269 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3270
3271 depth++;
73c10101
JA
3272 }
3273
99e22598
JA
3274 /*
3275 * This drops the queue lock
3276 */
3277 if (q)
49cac01e 3278 queue_unplugged(q, depth, from_schedule);
73c10101 3279
73c10101
JA
3280 local_irq_restore(flags);
3281}
73c10101
JA
3282
3283void blk_finish_plug(struct blk_plug *plug)
3284{
dd6cf3e1
SL
3285 if (plug != current->plug)
3286 return;
f6603783 3287 blk_flush_plug_list(plug, false);
73c10101 3288
dd6cf3e1 3289 current->plug = NULL;
73c10101 3290}
88b996cd 3291EXPORT_SYMBOL(blk_finish_plug);
73c10101 3292
05229bee
JA
3293bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3294{
3295 struct blk_plug *plug;
3296 long state;
3297
3298 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3299 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3300 return false;
3301
3302 plug = current->plug;
3303 if (plug)
3304 blk_flush_plug_list(plug, false);
3305
3306 state = current->state;
3307 while (!need_resched()) {
3308 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3309 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3310 int ret;
3311
3312 hctx->poll_invoked++;
3313
3314 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3315 if (ret > 0) {
3316 hctx->poll_success++;
3317 set_current_state(TASK_RUNNING);
3318 return true;
3319 }
3320
3321 if (signal_pending_state(state, current))
3322 set_current_state(TASK_RUNNING);
3323
3324 if (current->state == TASK_RUNNING)
3325 return true;
3326 if (ret < 0)
3327 break;
3328 cpu_relax();
3329 }
3330
3331 return false;
3332}
9645c1a2 3333EXPORT_SYMBOL_GPL(blk_poll);
05229bee 3334
47fafbc7 3335#ifdef CONFIG_PM
6c954667
LM
3336/**
3337 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3338 * @q: the queue of the device
3339 * @dev: the device the queue belongs to
3340 *
3341 * Description:
3342 * Initialize runtime-PM-related fields for @q and start auto suspend for
3343 * @dev. Drivers that want to take advantage of request-based runtime PM
3344 * should call this function after @dev has been initialized, and its
3345 * request queue @q has been allocated, and runtime PM for it can not happen
3346 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3347 * cases, driver should call this function before any I/O has taken place.
3348 *
3349 * This function takes care of setting up using auto suspend for the device,
3350 * the autosuspend delay is set to -1 to make runtime suspend impossible
3351 * until an updated value is either set by user or by driver. Drivers do
3352 * not need to touch other autosuspend settings.
3353 *
3354 * The block layer runtime PM is request based, so only works for drivers
3355 * that use request as their IO unit instead of those directly use bio's.
3356 */
3357void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3358{
3359 q->dev = dev;
3360 q->rpm_status = RPM_ACTIVE;
3361 pm_runtime_set_autosuspend_delay(q->dev, -1);
3362 pm_runtime_use_autosuspend(q->dev);
3363}
3364EXPORT_SYMBOL(blk_pm_runtime_init);
3365
3366/**
3367 * blk_pre_runtime_suspend - Pre runtime suspend check
3368 * @q: the queue of the device
3369 *
3370 * Description:
3371 * This function will check if runtime suspend is allowed for the device
3372 * by examining if there are any requests pending in the queue. If there
3373 * are requests pending, the device can not be runtime suspended; otherwise,
3374 * the queue's status will be updated to SUSPENDING and the driver can
3375 * proceed to suspend the device.
3376 *
3377 * For the not allowed case, we mark last busy for the device so that
3378 * runtime PM core will try to autosuspend it some time later.
3379 *
3380 * This function should be called near the start of the device's
3381 * runtime_suspend callback.
3382 *
3383 * Return:
3384 * 0 - OK to runtime suspend the device
3385 * -EBUSY - Device should not be runtime suspended
3386 */
3387int blk_pre_runtime_suspend(struct request_queue *q)
3388{
3389 int ret = 0;
3390
4fd41a85
KX
3391 if (!q->dev)
3392 return ret;
3393
6c954667
LM
3394 spin_lock_irq(q->queue_lock);
3395 if (q->nr_pending) {
3396 ret = -EBUSY;
3397 pm_runtime_mark_last_busy(q->dev);
3398 } else {
3399 q->rpm_status = RPM_SUSPENDING;
3400 }
3401 spin_unlock_irq(q->queue_lock);
3402 return ret;
3403}
3404EXPORT_SYMBOL(blk_pre_runtime_suspend);
3405
3406/**
3407 * blk_post_runtime_suspend - Post runtime suspend processing
3408 * @q: the queue of the device
3409 * @err: return value of the device's runtime_suspend function
3410 *
3411 * Description:
3412 * Update the queue's runtime status according to the return value of the
3413 * device's runtime suspend function and mark last busy for the device so
3414 * that PM core will try to auto suspend the device at a later time.
3415 *
3416 * This function should be called near the end of the device's
3417 * runtime_suspend callback.
3418 */
3419void blk_post_runtime_suspend(struct request_queue *q, int err)
3420{
4fd41a85
KX
3421 if (!q->dev)
3422 return;
3423
6c954667
LM
3424 spin_lock_irq(q->queue_lock);
3425 if (!err) {
3426 q->rpm_status = RPM_SUSPENDED;
3427 } else {
3428 q->rpm_status = RPM_ACTIVE;
3429 pm_runtime_mark_last_busy(q->dev);
3430 }
3431 spin_unlock_irq(q->queue_lock);
3432}
3433EXPORT_SYMBOL(blk_post_runtime_suspend);
3434
3435/**
3436 * blk_pre_runtime_resume - Pre runtime resume processing
3437 * @q: the queue of the device
3438 *
3439 * Description:
3440 * Update the queue's runtime status to RESUMING in preparation for the
3441 * runtime resume of the device.
3442 *
3443 * This function should be called near the start of the device's
3444 * runtime_resume callback.
3445 */
3446void blk_pre_runtime_resume(struct request_queue *q)
3447{
4fd41a85
KX
3448 if (!q->dev)
3449 return;
3450
6c954667
LM
3451 spin_lock_irq(q->queue_lock);
3452 q->rpm_status = RPM_RESUMING;
3453 spin_unlock_irq(q->queue_lock);
3454}
3455EXPORT_SYMBOL(blk_pre_runtime_resume);
3456
3457/**
3458 * blk_post_runtime_resume - Post runtime resume processing
3459 * @q: the queue of the device
3460 * @err: return value of the device's runtime_resume function
3461 *
3462 * Description:
3463 * Update the queue's runtime status according to the return value of the
3464 * device's runtime_resume function. If it is successfully resumed, process
3465 * the requests that are queued into the device's queue when it is resuming
3466 * and then mark last busy and initiate autosuspend for it.
3467 *
3468 * This function should be called near the end of the device's
3469 * runtime_resume callback.
3470 */
3471void blk_post_runtime_resume(struct request_queue *q, int err)
3472{
4fd41a85
KX
3473 if (!q->dev)
3474 return;
3475
6c954667
LM
3476 spin_lock_irq(q->queue_lock);
3477 if (!err) {
3478 q->rpm_status = RPM_ACTIVE;
3479 __blk_run_queue(q);
3480 pm_runtime_mark_last_busy(q->dev);
c60855cd 3481 pm_request_autosuspend(q->dev);
6c954667
LM
3482 } else {
3483 q->rpm_status = RPM_SUSPENDED;
3484 }
3485 spin_unlock_irq(q->queue_lock);
3486}
3487EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3488
3489/**
3490 * blk_set_runtime_active - Force runtime status of the queue to be active
3491 * @q: the queue of the device
3492 *
3493 * If the device is left runtime suspended during system suspend the resume
3494 * hook typically resumes the device and corrects runtime status
3495 * accordingly. However, that does not affect the queue runtime PM status
3496 * which is still "suspended". This prevents processing requests from the
3497 * queue.
3498 *
3499 * This function can be used in driver's resume hook to correct queue
3500 * runtime PM status and re-enable peeking requests from the queue. It
3501 * should be called before first request is added to the queue.
3502 */
3503void blk_set_runtime_active(struct request_queue *q)
3504{
3505 spin_lock_irq(q->queue_lock);
3506 q->rpm_status = RPM_ACTIVE;
3507 pm_runtime_mark_last_busy(q->dev);
3508 pm_request_autosuspend(q->dev);
3509 spin_unlock_irq(q->queue_lock);
3510}
3511EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3512#endif
3513
1da177e4
LT
3514int __init blk_dev_init(void)
3515{
9eb55b03 3516 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
0762b23d 3517 FIELD_SIZEOF(struct request, cmd_flags));
9eb55b03 3518
89b90be2
TH
3519 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3520 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3521 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3522 if (!kblockd_workqueue)
3523 panic("Failed to create kblockd\n");
3524
3525 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3526 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3527
c2789bd4 3528 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3529 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3530
d38ecf93 3531 return 0;
1da177e4 3532}