]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
blk: make the bioset rescue_workqueue optional.
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146
4e4cbee9
CH
147 /* device mapper special case, should not leak out: */
148 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
149
2a842aca
CH
150 /* everything else not covered above: */
151 [BLK_STS_IOERR] = { -EIO, "I/O" },
152};
153
154blk_status_t errno_to_blk_status(int errno)
155{
156 int i;
157
158 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
159 if (blk_errors[i].errno == errno)
160 return (__force blk_status_t)i;
161 }
162
163 return BLK_STS_IOERR;
164}
165EXPORT_SYMBOL_GPL(errno_to_blk_status);
166
167int blk_status_to_errno(blk_status_t status)
168{
169 int idx = (__force int)status;
170
171 if (WARN_ON_ONCE(idx > ARRAY_SIZE(blk_errors)))
172 return -EIO;
173 return blk_errors[idx].errno;
174}
175EXPORT_SYMBOL_GPL(blk_status_to_errno);
176
177static void print_req_error(struct request *req, blk_status_t status)
178{
179 int idx = (__force int)status;
180
181 if (WARN_ON_ONCE(idx > ARRAY_SIZE(blk_errors)))
182 return;
183
184 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
185 __func__, blk_errors[idx].name, req->rq_disk ?
186 req->rq_disk->disk_name : "?",
187 (unsigned long long)blk_rq_pos(req));
188}
189
5bb23a68 190static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 191 unsigned int nbytes, blk_status_t error)
1da177e4 192{
78d8e58a 193 if (error)
4e4cbee9 194 bio->bi_status = error;
797e7dbb 195
e8064021 196 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 197 bio_set_flag(bio, BIO_QUIET);
08bafc03 198
f79ea416 199 bio_advance(bio, nbytes);
7ba1ba12 200
143a87f4 201 /* don't actually finish bio if it's part of flush sequence */
e8064021 202 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 203 bio_endio(bio);
1da177e4 204}
1da177e4 205
1da177e4
LT
206void blk_dump_rq_flags(struct request *rq, char *msg)
207{
aebf526b
CH
208 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
209 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 210 (unsigned long long) rq->cmd_flags);
1da177e4 211
83096ebf
TH
212 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
213 (unsigned long long)blk_rq_pos(rq),
214 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
215 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
216 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 217}
1da177e4
LT
218EXPORT_SYMBOL(blk_dump_rq_flags);
219
3cca6dc1 220static void blk_delay_work(struct work_struct *work)
1da177e4 221{
3cca6dc1 222 struct request_queue *q;
1da177e4 223
3cca6dc1
JA
224 q = container_of(work, struct request_queue, delay_work.work);
225 spin_lock_irq(q->queue_lock);
24ecfbe2 226 __blk_run_queue(q);
3cca6dc1 227 spin_unlock_irq(q->queue_lock);
1da177e4 228}
1da177e4
LT
229
230/**
3cca6dc1
JA
231 * blk_delay_queue - restart queueing after defined interval
232 * @q: The &struct request_queue in question
233 * @msecs: Delay in msecs
1da177e4
LT
234 *
235 * Description:
3cca6dc1
JA
236 * Sometimes queueing needs to be postponed for a little while, to allow
237 * resources to come back. This function will make sure that queueing is
70460571 238 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
239 */
240void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 241{
70460571
BVA
242 if (likely(!blk_queue_dead(q)))
243 queue_delayed_work(kblockd_workqueue, &q->delay_work,
244 msecs_to_jiffies(msecs));
2ad8b1ef 245}
3cca6dc1 246EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 247
21491412
JA
248/**
249 * blk_start_queue_async - asynchronously restart a previously stopped queue
250 * @q: The &struct request_queue in question
251 *
252 * Description:
253 * blk_start_queue_async() will clear the stop flag on the queue, and
254 * ensure that the request_fn for the queue is run from an async
255 * context.
256 **/
257void blk_start_queue_async(struct request_queue *q)
258{
259 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
260 blk_run_queue_async(q);
261}
262EXPORT_SYMBOL(blk_start_queue_async);
263
1da177e4
LT
264/**
265 * blk_start_queue - restart a previously stopped queue
165125e1 266 * @q: The &struct request_queue in question
1da177e4
LT
267 *
268 * Description:
269 * blk_start_queue() will clear the stop flag on the queue, and call
270 * the request_fn for the queue if it was in a stopped state when
271 * entered. Also see blk_stop_queue(). Queue lock must be held.
272 **/
165125e1 273void blk_start_queue(struct request_queue *q)
1da177e4 274{
a038e253
PBG
275 WARN_ON(!irqs_disabled());
276
75ad23bc 277 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 278 __blk_run_queue(q);
1da177e4 279}
1da177e4
LT
280EXPORT_SYMBOL(blk_start_queue);
281
282/**
283 * blk_stop_queue - stop a queue
165125e1 284 * @q: The &struct request_queue in question
1da177e4
LT
285 *
286 * Description:
287 * The Linux block layer assumes that a block driver will consume all
288 * entries on the request queue when the request_fn strategy is called.
289 * Often this will not happen, because of hardware limitations (queue
290 * depth settings). If a device driver gets a 'queue full' response,
291 * or if it simply chooses not to queue more I/O at one point, it can
292 * call this function to prevent the request_fn from being called until
293 * the driver has signalled it's ready to go again. This happens by calling
294 * blk_start_queue() to restart queue operations. Queue lock must be held.
295 **/
165125e1 296void blk_stop_queue(struct request_queue *q)
1da177e4 297{
136b5721 298 cancel_delayed_work(&q->delay_work);
75ad23bc 299 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
300}
301EXPORT_SYMBOL(blk_stop_queue);
302
303/**
304 * blk_sync_queue - cancel any pending callbacks on a queue
305 * @q: the queue
306 *
307 * Description:
308 * The block layer may perform asynchronous callback activity
309 * on a queue, such as calling the unplug function after a timeout.
310 * A block device may call blk_sync_queue to ensure that any
311 * such activity is cancelled, thus allowing it to release resources
59c51591 312 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
313 * that its ->make_request_fn will not re-add plugging prior to calling
314 * this function.
315 *
da527770 316 * This function does not cancel any asynchronous activity arising
da3dae54 317 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 318 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 319 *
1da177e4
LT
320 */
321void blk_sync_queue(struct request_queue *q)
322{
70ed28b9 323 del_timer_sync(&q->timeout);
f04c1fe7
ML
324
325 if (q->mq_ops) {
326 struct blk_mq_hw_ctx *hctx;
327 int i;
328
21c6e939 329 queue_for_each_hw_ctx(q, hctx, i)
9f993737 330 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
331 } else {
332 cancel_delayed_work_sync(&q->delay_work);
333 }
1da177e4
LT
334}
335EXPORT_SYMBOL(blk_sync_queue);
336
c246e80d
BVA
337/**
338 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
339 * @q: The queue to run
340 *
341 * Description:
342 * Invoke request handling on a queue if there are any pending requests.
343 * May be used to restart request handling after a request has completed.
344 * This variant runs the queue whether or not the queue has been
345 * stopped. Must be called with the queue lock held and interrupts
346 * disabled. See also @blk_run_queue.
347 */
348inline void __blk_run_queue_uncond(struct request_queue *q)
349{
350 if (unlikely(blk_queue_dead(q)))
351 return;
352
24faf6f6
BVA
353 /*
354 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
355 * the queue lock internally. As a result multiple threads may be
356 * running such a request function concurrently. Keep track of the
357 * number of active request_fn invocations such that blk_drain_queue()
358 * can wait until all these request_fn calls have finished.
359 */
360 q->request_fn_active++;
c246e80d 361 q->request_fn(q);
24faf6f6 362 q->request_fn_active--;
c246e80d 363}
a7928c15 364EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 365
1da177e4 366/**
80a4b58e 367 * __blk_run_queue - run a single device queue
1da177e4 368 * @q: The queue to run
80a4b58e
JA
369 *
370 * Description:
371 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 372 * held and interrupts disabled.
1da177e4 373 */
24ecfbe2 374void __blk_run_queue(struct request_queue *q)
1da177e4 375{
a538cd03
TH
376 if (unlikely(blk_queue_stopped(q)))
377 return;
378
c246e80d 379 __blk_run_queue_uncond(q);
75ad23bc
NP
380}
381EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 382
24ecfbe2
CH
383/**
384 * blk_run_queue_async - run a single device queue in workqueue context
385 * @q: The queue to run
386 *
387 * Description:
388 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 389 * of us. The caller must hold the queue lock.
24ecfbe2
CH
390 */
391void blk_run_queue_async(struct request_queue *q)
392{
70460571 393 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 394 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 395}
c21e6beb 396EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 397
75ad23bc
NP
398/**
399 * blk_run_queue - run a single device queue
400 * @q: The queue to run
80a4b58e
JA
401 *
402 * Description:
403 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 404 * May be used to restart queueing when a request has completed.
75ad23bc
NP
405 */
406void blk_run_queue(struct request_queue *q)
407{
408 unsigned long flags;
409
410 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 411 __blk_run_queue(q);
1da177e4
LT
412 spin_unlock_irqrestore(q->queue_lock, flags);
413}
414EXPORT_SYMBOL(blk_run_queue);
415
165125e1 416void blk_put_queue(struct request_queue *q)
483f4afc
AV
417{
418 kobject_put(&q->kobj);
419}
d86e0e83 420EXPORT_SYMBOL(blk_put_queue);
483f4afc 421
e3c78ca5 422/**
807592a4 423 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 424 * @q: queue to drain
c9a929dd 425 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 426 *
c9a929dd
TH
427 * Drain requests from @q. If @drain_all is set, all requests are drained.
428 * If not, only ELVPRIV requests are drained. The caller is responsible
429 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 430 */
807592a4
BVA
431static void __blk_drain_queue(struct request_queue *q, bool drain_all)
432 __releases(q->queue_lock)
433 __acquires(q->queue_lock)
e3c78ca5 434{
458f27a9
AH
435 int i;
436
807592a4
BVA
437 lockdep_assert_held(q->queue_lock);
438
e3c78ca5 439 while (true) {
481a7d64 440 bool drain = false;
e3c78ca5 441
b855b04a
TH
442 /*
443 * The caller might be trying to drain @q before its
444 * elevator is initialized.
445 */
446 if (q->elevator)
447 elv_drain_elevator(q);
448
5efd6113 449 blkcg_drain_queue(q);
e3c78ca5 450
4eabc941
TH
451 /*
452 * This function might be called on a queue which failed
b855b04a
TH
453 * driver init after queue creation or is not yet fully
454 * active yet. Some drivers (e.g. fd and loop) get unhappy
455 * in such cases. Kick queue iff dispatch queue has
456 * something on it and @q has request_fn set.
4eabc941 457 */
b855b04a 458 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 459 __blk_run_queue(q);
c9a929dd 460
8a5ecdd4 461 drain |= q->nr_rqs_elvpriv;
24faf6f6 462 drain |= q->request_fn_active;
481a7d64
TH
463
464 /*
465 * Unfortunately, requests are queued at and tracked from
466 * multiple places and there's no single counter which can
467 * be drained. Check all the queues and counters.
468 */
469 if (drain_all) {
e97c293c 470 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
471 drain |= !list_empty(&q->queue_head);
472 for (i = 0; i < 2; i++) {
8a5ecdd4 473 drain |= q->nr_rqs[i];
481a7d64 474 drain |= q->in_flight[i];
7c94e1c1
ML
475 if (fq)
476 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
477 }
478 }
e3c78ca5 479
481a7d64 480 if (!drain)
e3c78ca5 481 break;
807592a4
BVA
482
483 spin_unlock_irq(q->queue_lock);
484
e3c78ca5 485 msleep(10);
807592a4
BVA
486
487 spin_lock_irq(q->queue_lock);
e3c78ca5 488 }
458f27a9
AH
489
490 /*
491 * With queue marked dead, any woken up waiter will fail the
492 * allocation path, so the wakeup chaining is lost and we're
493 * left with hung waiters. We need to wake up those waiters.
494 */
495 if (q->request_fn) {
a051661c
TH
496 struct request_list *rl;
497
a051661c
TH
498 blk_queue_for_each_rl(rl, q)
499 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
500 wake_up_all(&rl->wait[i]);
458f27a9 501 }
e3c78ca5
TH
502}
503
d732580b
TH
504/**
505 * blk_queue_bypass_start - enter queue bypass mode
506 * @q: queue of interest
507 *
508 * In bypass mode, only the dispatch FIFO queue of @q is used. This
509 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 510 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
511 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
512 * inside queue or RCU read lock.
d732580b
TH
513 */
514void blk_queue_bypass_start(struct request_queue *q)
515{
516 spin_lock_irq(q->queue_lock);
776687bc 517 q->bypass_depth++;
d732580b
TH
518 queue_flag_set(QUEUE_FLAG_BYPASS, q);
519 spin_unlock_irq(q->queue_lock);
520
776687bc
TH
521 /*
522 * Queues start drained. Skip actual draining till init is
523 * complete. This avoids lenghty delays during queue init which
524 * can happen many times during boot.
525 */
526 if (blk_queue_init_done(q)) {
807592a4
BVA
527 spin_lock_irq(q->queue_lock);
528 __blk_drain_queue(q, false);
529 spin_unlock_irq(q->queue_lock);
530
b82d4b19
TH
531 /* ensure blk_queue_bypass() is %true inside RCU read lock */
532 synchronize_rcu();
533 }
d732580b
TH
534}
535EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
536
537/**
538 * blk_queue_bypass_end - leave queue bypass mode
539 * @q: queue of interest
540 *
541 * Leave bypass mode and restore the normal queueing behavior.
542 */
543void blk_queue_bypass_end(struct request_queue *q)
544{
545 spin_lock_irq(q->queue_lock);
546 if (!--q->bypass_depth)
547 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
548 WARN_ON_ONCE(q->bypass_depth < 0);
549 spin_unlock_irq(q->queue_lock);
550}
551EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
552
aed3ea94
JA
553void blk_set_queue_dying(struct request_queue *q)
554{
1b856086
BVA
555 spin_lock_irq(q->queue_lock);
556 queue_flag_set(QUEUE_FLAG_DYING, q);
557 spin_unlock_irq(q->queue_lock);
aed3ea94 558
d3cfb2a0
ML
559 /*
560 * When queue DYING flag is set, we need to block new req
561 * entering queue, so we call blk_freeze_queue_start() to
562 * prevent I/O from crossing blk_queue_enter().
563 */
564 blk_freeze_queue_start(q);
565
aed3ea94
JA
566 if (q->mq_ops)
567 blk_mq_wake_waiters(q);
568 else {
569 struct request_list *rl;
570
bbfc3c5d 571 spin_lock_irq(q->queue_lock);
aed3ea94
JA
572 blk_queue_for_each_rl(rl, q) {
573 if (rl->rq_pool) {
574 wake_up(&rl->wait[BLK_RW_SYNC]);
575 wake_up(&rl->wait[BLK_RW_ASYNC]);
576 }
577 }
bbfc3c5d 578 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
579 }
580}
581EXPORT_SYMBOL_GPL(blk_set_queue_dying);
582
c9a929dd
TH
583/**
584 * blk_cleanup_queue - shutdown a request queue
585 * @q: request queue to shutdown
586 *
c246e80d
BVA
587 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
588 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 589 */
6728cb0e 590void blk_cleanup_queue(struct request_queue *q)
483f4afc 591{
c9a929dd 592 spinlock_t *lock = q->queue_lock;
e3335de9 593
3f3299d5 594 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 595 mutex_lock(&q->sysfs_lock);
aed3ea94 596 blk_set_queue_dying(q);
c9a929dd 597 spin_lock_irq(lock);
6ecf23af 598
80fd9979 599 /*
3f3299d5 600 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
601 * that, unlike blk_queue_bypass_start(), we aren't performing
602 * synchronize_rcu() after entering bypass mode to avoid the delay
603 * as some drivers create and destroy a lot of queues while
604 * probing. This is still safe because blk_release_queue() will be
605 * called only after the queue refcnt drops to zero and nothing,
606 * RCU or not, would be traversing the queue by then.
607 */
6ecf23af
TH
608 q->bypass_depth++;
609 queue_flag_set(QUEUE_FLAG_BYPASS, q);
610
c9a929dd
TH
611 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
612 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 613 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
614 spin_unlock_irq(lock);
615 mutex_unlock(&q->sysfs_lock);
616
c246e80d
BVA
617 /*
618 * Drain all requests queued before DYING marking. Set DEAD flag to
619 * prevent that q->request_fn() gets invoked after draining finished.
620 */
3ef28e83 621 blk_freeze_queue(q);
9c1051aa
OS
622 spin_lock_irq(lock);
623 if (!q->mq_ops)
43a5e4e2 624 __blk_drain_queue(q, true);
c246e80d 625 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 626 spin_unlock_irq(lock);
c9a929dd 627
5a48fc14
DW
628 /* for synchronous bio-based driver finish in-flight integrity i/o */
629 blk_flush_integrity();
630
c9a929dd 631 /* @q won't process any more request, flush async actions */
dc3b17cc 632 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
633 blk_sync_queue(q);
634
45a9c9d9
BVA
635 if (q->mq_ops)
636 blk_mq_free_queue(q);
3ef28e83 637 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 638
5e5cfac0
AH
639 spin_lock_irq(lock);
640 if (q->queue_lock != &q->__queue_lock)
641 q->queue_lock = &q->__queue_lock;
642 spin_unlock_irq(lock);
643
c9a929dd 644 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
645 blk_put_queue(q);
646}
1da177e4
LT
647EXPORT_SYMBOL(blk_cleanup_queue);
648
271508db 649/* Allocate memory local to the request queue */
6d247d7f 650static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 651{
6d247d7f
CH
652 struct request_queue *q = data;
653
654 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
655}
656
6d247d7f 657static void free_request_simple(void *element, void *data)
271508db
DR
658{
659 kmem_cache_free(request_cachep, element);
660}
661
6d247d7f
CH
662static void *alloc_request_size(gfp_t gfp_mask, void *data)
663{
664 struct request_queue *q = data;
665 struct request *rq;
666
667 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
668 q->node);
669 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
670 kfree(rq);
671 rq = NULL;
672 }
673 return rq;
674}
675
676static void free_request_size(void *element, void *data)
677{
678 struct request_queue *q = data;
679
680 if (q->exit_rq_fn)
681 q->exit_rq_fn(q, element);
682 kfree(element);
683}
684
5b788ce3
TH
685int blk_init_rl(struct request_list *rl, struct request_queue *q,
686 gfp_t gfp_mask)
1da177e4 687{
1abec4fd
MS
688 if (unlikely(rl->rq_pool))
689 return 0;
690
5b788ce3 691 rl->q = q;
1faa16d2
JA
692 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
693 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
694 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
695 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 696
6d247d7f
CH
697 if (q->cmd_size) {
698 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
699 alloc_request_size, free_request_size,
700 q, gfp_mask, q->node);
701 } else {
702 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
703 alloc_request_simple, free_request_simple,
704 q, gfp_mask, q->node);
705 }
1da177e4
LT
706 if (!rl->rq_pool)
707 return -ENOMEM;
708
b425e504
BVA
709 if (rl != &q->root_rl)
710 WARN_ON_ONCE(!blk_get_queue(q));
711
1da177e4
LT
712 return 0;
713}
714
b425e504 715void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 716{
b425e504 717 if (rl->rq_pool) {
5b788ce3 718 mempool_destroy(rl->rq_pool);
b425e504
BVA
719 if (rl != &q->root_rl)
720 blk_put_queue(q);
721 }
5b788ce3
TH
722}
723
165125e1 724struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 725{
c304a51b 726 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
727}
728EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 729
6f3b0e8b 730int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
731{
732 while (true) {
733 int ret;
734
735 if (percpu_ref_tryget_live(&q->q_usage_counter))
736 return 0;
737
6f3b0e8b 738 if (nowait)
3ef28e83
DW
739 return -EBUSY;
740
5ed61d3f 741 /*
1671d522 742 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 743 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
744 * .q_usage_counter and reading .mq_freeze_depth or
745 * queue dying flag, otherwise the following wait may
746 * never return if the two reads are reordered.
5ed61d3f
ML
747 */
748 smp_rmb();
749
3ef28e83
DW
750 ret = wait_event_interruptible(q->mq_freeze_wq,
751 !atomic_read(&q->mq_freeze_depth) ||
752 blk_queue_dying(q));
753 if (blk_queue_dying(q))
754 return -ENODEV;
755 if (ret)
756 return ret;
757 }
758}
759
760void blk_queue_exit(struct request_queue *q)
761{
762 percpu_ref_put(&q->q_usage_counter);
763}
764
765static void blk_queue_usage_counter_release(struct percpu_ref *ref)
766{
767 struct request_queue *q =
768 container_of(ref, struct request_queue, q_usage_counter);
769
770 wake_up_all(&q->mq_freeze_wq);
771}
772
287922eb
CH
773static void blk_rq_timed_out_timer(unsigned long data)
774{
775 struct request_queue *q = (struct request_queue *)data;
776
777 kblockd_schedule_work(&q->timeout_work);
778}
779
165125e1 780struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 781{
165125e1 782 struct request_queue *q;
1946089a 783
8324aa91 784 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 785 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
786 if (!q)
787 return NULL;
788
00380a40 789 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 790 if (q->id < 0)
3d2936f4 791 goto fail_q;
a73f730d 792
47e0fb46
N
793 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, (BIOSET_NEED_BVECS |
794 BIOSET_NEED_RESCUER));
54efd50b
KO
795 if (!q->bio_split)
796 goto fail_id;
797
d03f6cdc
JK
798 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
799 if (!q->backing_dev_info)
800 goto fail_split;
801
a83b576c
JA
802 q->stats = blk_alloc_queue_stats();
803 if (!q->stats)
804 goto fail_stats;
805
dc3b17cc 806 q->backing_dev_info->ra_pages =
09cbfeaf 807 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
808 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
809 q->backing_dev_info->name = "block";
5151412d 810 q->node = node_id;
0989a025 811
dc3b17cc 812 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 813 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 814 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 815 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 816 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 817 INIT_LIST_HEAD(&q->icq_list);
4eef3049 818#ifdef CONFIG_BLK_CGROUP
e8989fae 819 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 820#endif
3cca6dc1 821 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 822
8324aa91 823 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 824
483f4afc 825 mutex_init(&q->sysfs_lock);
e7e72bf6 826 spin_lock_init(&q->__queue_lock);
483f4afc 827
c94a96ac
VG
828 /*
829 * By default initialize queue_lock to internal lock and driver can
830 * override it later if need be.
831 */
832 q->queue_lock = &q->__queue_lock;
833
b82d4b19
TH
834 /*
835 * A queue starts its life with bypass turned on to avoid
836 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
837 * init. The initial bypass will be finished when the queue is
838 * registered by blk_register_queue().
b82d4b19
TH
839 */
840 q->bypass_depth = 1;
841 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
842
320ae51f
JA
843 init_waitqueue_head(&q->mq_freeze_wq);
844
3ef28e83
DW
845 /*
846 * Init percpu_ref in atomic mode so that it's faster to shutdown.
847 * See blk_register_queue() for details.
848 */
849 if (percpu_ref_init(&q->q_usage_counter,
850 blk_queue_usage_counter_release,
851 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 852 goto fail_bdi;
f51b802c 853
3ef28e83
DW
854 if (blkcg_init_queue(q))
855 goto fail_ref;
856
1da177e4 857 return q;
a73f730d 858
3ef28e83
DW
859fail_ref:
860 percpu_ref_exit(&q->q_usage_counter);
fff4996b 861fail_bdi:
a83b576c
JA
862 blk_free_queue_stats(q->stats);
863fail_stats:
d03f6cdc 864 bdi_put(q->backing_dev_info);
54efd50b
KO
865fail_split:
866 bioset_free(q->bio_split);
a73f730d
TH
867fail_id:
868 ida_simple_remove(&blk_queue_ida, q->id);
869fail_q:
870 kmem_cache_free(blk_requestq_cachep, q);
871 return NULL;
1da177e4 872}
1946089a 873EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
874
875/**
876 * blk_init_queue - prepare a request queue for use with a block device
877 * @rfn: The function to be called to process requests that have been
878 * placed on the queue.
879 * @lock: Request queue spin lock
880 *
881 * Description:
882 * If a block device wishes to use the standard request handling procedures,
883 * which sorts requests and coalesces adjacent requests, then it must
884 * call blk_init_queue(). The function @rfn will be called when there
885 * are requests on the queue that need to be processed. If the device
886 * supports plugging, then @rfn may not be called immediately when requests
887 * are available on the queue, but may be called at some time later instead.
888 * Plugged queues are generally unplugged when a buffer belonging to one
889 * of the requests on the queue is needed, or due to memory pressure.
890 *
891 * @rfn is not required, or even expected, to remove all requests off the
892 * queue, but only as many as it can handle at a time. If it does leave
893 * requests on the queue, it is responsible for arranging that the requests
894 * get dealt with eventually.
895 *
896 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
897 * request queue; this lock will be taken also from interrupt context, so irq
898 * disabling is needed for it.
1da177e4 899 *
710027a4 900 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
901 * it didn't succeed.
902 *
903 * Note:
904 * blk_init_queue() must be paired with a blk_cleanup_queue() call
905 * when the block device is deactivated (such as at module unload).
906 **/
1946089a 907
165125e1 908struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 909{
c304a51b 910 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
911}
912EXPORT_SYMBOL(blk_init_queue);
913
165125e1 914struct request_queue *
1946089a
CL
915blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
916{
5ea708d1 917 struct request_queue *q;
1da177e4 918
5ea708d1
CH
919 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
920 if (!q)
c86d1b8a
MS
921 return NULL;
922
5ea708d1
CH
923 q->request_fn = rfn;
924 if (lock)
925 q->queue_lock = lock;
926 if (blk_init_allocated_queue(q) < 0) {
927 blk_cleanup_queue(q);
928 return NULL;
929 }
18741986 930
7982e90c 931 return q;
01effb0d
MS
932}
933EXPORT_SYMBOL(blk_init_queue_node);
934
dece1635 935static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 936
1da177e4 937
5ea708d1
CH
938int blk_init_allocated_queue(struct request_queue *q)
939{
6d247d7f 940 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 941 if (!q->fq)
5ea708d1 942 return -ENOMEM;
7982e90c 943
6d247d7f
CH
944 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
945 goto out_free_flush_queue;
7982e90c 946
a051661c 947 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 948 goto out_exit_flush_rq;
1da177e4 949
287922eb 950 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 951 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 952
f3b144aa
JA
953 /*
954 * This also sets hw/phys segments, boundary and size
955 */
c20e8de2 956 blk_queue_make_request(q, blk_queue_bio);
1da177e4 957
44ec9542
AS
958 q->sg_reserved_size = INT_MAX;
959
eb1c160b
TS
960 /* Protect q->elevator from elevator_change */
961 mutex_lock(&q->sysfs_lock);
962
b82d4b19 963 /* init elevator */
eb1c160b
TS
964 if (elevator_init(q, NULL)) {
965 mutex_unlock(&q->sysfs_lock);
6d247d7f 966 goto out_exit_flush_rq;
eb1c160b
TS
967 }
968
969 mutex_unlock(&q->sysfs_lock);
5ea708d1 970 return 0;
eb1c160b 971
6d247d7f
CH
972out_exit_flush_rq:
973 if (q->exit_rq_fn)
974 q->exit_rq_fn(q, q->fq->flush_rq);
975out_free_flush_queue:
ba483388 976 blk_free_flush_queue(q->fq);
5ea708d1 977 return -ENOMEM;
1da177e4 978}
5151412d 979EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 980
09ac46c4 981bool blk_get_queue(struct request_queue *q)
1da177e4 982{
3f3299d5 983 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
984 __blk_get_queue(q);
985 return true;
1da177e4
LT
986 }
987
09ac46c4 988 return false;
1da177e4 989}
d86e0e83 990EXPORT_SYMBOL(blk_get_queue);
1da177e4 991
5b788ce3 992static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 993{
e8064021 994 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 995 elv_put_request(rl->q, rq);
f1f8cc94 996 if (rq->elv.icq)
11a3122f 997 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
998 }
999
5b788ce3 1000 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1001}
1002
1da177e4
LT
1003/*
1004 * ioc_batching returns true if the ioc is a valid batching request and
1005 * should be given priority access to a request.
1006 */
165125e1 1007static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1008{
1009 if (!ioc)
1010 return 0;
1011
1012 /*
1013 * Make sure the process is able to allocate at least 1 request
1014 * even if the batch times out, otherwise we could theoretically
1015 * lose wakeups.
1016 */
1017 return ioc->nr_batch_requests == q->nr_batching ||
1018 (ioc->nr_batch_requests > 0
1019 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1020}
1021
1022/*
1023 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1024 * will cause the process to be a "batcher" on all queues in the system. This
1025 * is the behaviour we want though - once it gets a wakeup it should be given
1026 * a nice run.
1027 */
165125e1 1028static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1029{
1030 if (!ioc || ioc_batching(q, ioc))
1031 return;
1032
1033 ioc->nr_batch_requests = q->nr_batching;
1034 ioc->last_waited = jiffies;
1035}
1036
5b788ce3 1037static void __freed_request(struct request_list *rl, int sync)
1da177e4 1038{
5b788ce3 1039 struct request_queue *q = rl->q;
1da177e4 1040
d40f75a0
TH
1041 if (rl->count[sync] < queue_congestion_off_threshold(q))
1042 blk_clear_congested(rl, sync);
1da177e4 1043
1faa16d2
JA
1044 if (rl->count[sync] + 1 <= q->nr_requests) {
1045 if (waitqueue_active(&rl->wait[sync]))
1046 wake_up(&rl->wait[sync]);
1da177e4 1047
5b788ce3 1048 blk_clear_rl_full(rl, sync);
1da177e4
LT
1049 }
1050}
1051
1052/*
1053 * A request has just been released. Account for it, update the full and
1054 * congestion status, wake up any waiters. Called under q->queue_lock.
1055 */
e8064021
CH
1056static void freed_request(struct request_list *rl, bool sync,
1057 req_flags_t rq_flags)
1da177e4 1058{
5b788ce3 1059 struct request_queue *q = rl->q;
1da177e4 1060
8a5ecdd4 1061 q->nr_rqs[sync]--;
1faa16d2 1062 rl->count[sync]--;
e8064021 1063 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1064 q->nr_rqs_elvpriv--;
1da177e4 1065
5b788ce3 1066 __freed_request(rl, sync);
1da177e4 1067
1faa16d2 1068 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1069 __freed_request(rl, sync ^ 1);
1da177e4
LT
1070}
1071
e3a2b3f9
JA
1072int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1073{
1074 struct request_list *rl;
d40f75a0 1075 int on_thresh, off_thresh;
e3a2b3f9
JA
1076
1077 spin_lock_irq(q->queue_lock);
1078 q->nr_requests = nr;
1079 blk_queue_congestion_threshold(q);
d40f75a0
TH
1080 on_thresh = queue_congestion_on_threshold(q);
1081 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1082
d40f75a0
TH
1083 blk_queue_for_each_rl(rl, q) {
1084 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1085 blk_set_congested(rl, BLK_RW_SYNC);
1086 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1087 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1088
d40f75a0
TH
1089 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1090 blk_set_congested(rl, BLK_RW_ASYNC);
1091 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1092 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1093
e3a2b3f9
JA
1094 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1095 blk_set_rl_full(rl, BLK_RW_SYNC);
1096 } else {
1097 blk_clear_rl_full(rl, BLK_RW_SYNC);
1098 wake_up(&rl->wait[BLK_RW_SYNC]);
1099 }
1100
1101 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1102 blk_set_rl_full(rl, BLK_RW_ASYNC);
1103 } else {
1104 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1105 wake_up(&rl->wait[BLK_RW_ASYNC]);
1106 }
1107 }
1108
1109 spin_unlock_irq(q->queue_lock);
1110 return 0;
1111}
1112
da8303c6 1113/**
a06e05e6 1114 * __get_request - get a free request
5b788ce3 1115 * @rl: request list to allocate from
ef295ecf 1116 * @op: operation and flags
da8303c6
TH
1117 * @bio: bio to allocate request for (can be %NULL)
1118 * @gfp_mask: allocation mask
1119 *
1120 * Get a free request from @q. This function may fail under memory
1121 * pressure or if @q is dead.
1122 *
da3dae54 1123 * Must be called with @q->queue_lock held and,
a492f075
JL
1124 * Returns ERR_PTR on failure, with @q->queue_lock held.
1125 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1126 */
ef295ecf
CH
1127static struct request *__get_request(struct request_list *rl, unsigned int op,
1128 struct bio *bio, gfp_t gfp_mask)
1da177e4 1129{
5b788ce3 1130 struct request_queue *q = rl->q;
b679281a 1131 struct request *rq;
7f4b35d1
TH
1132 struct elevator_type *et = q->elevator->type;
1133 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1134 struct io_cq *icq = NULL;
ef295ecf 1135 const bool is_sync = op_is_sync(op);
75eb6c37 1136 int may_queue;
e8064021 1137 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1138
3f3299d5 1139 if (unlikely(blk_queue_dying(q)))
a492f075 1140 return ERR_PTR(-ENODEV);
da8303c6 1141
ef295ecf 1142 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1143 if (may_queue == ELV_MQUEUE_NO)
1144 goto rq_starved;
1145
1faa16d2
JA
1146 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1147 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1148 /*
1149 * The queue will fill after this allocation, so set
1150 * it as full, and mark this process as "batching".
1151 * This process will be allowed to complete a batch of
1152 * requests, others will be blocked.
1153 */
5b788ce3 1154 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1155 ioc_set_batching(q, ioc);
5b788ce3 1156 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1157 } else {
1158 if (may_queue != ELV_MQUEUE_MUST
1159 && !ioc_batching(q, ioc)) {
1160 /*
1161 * The queue is full and the allocating
1162 * process is not a "batcher", and not
1163 * exempted by the IO scheduler
1164 */
a492f075 1165 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1166 }
1167 }
1da177e4 1168 }
d40f75a0 1169 blk_set_congested(rl, is_sync);
1da177e4
LT
1170 }
1171
082cf69e
JA
1172 /*
1173 * Only allow batching queuers to allocate up to 50% over the defined
1174 * limit of requests, otherwise we could have thousands of requests
1175 * allocated with any setting of ->nr_requests
1176 */
1faa16d2 1177 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1178 return ERR_PTR(-ENOMEM);
fd782a4a 1179
8a5ecdd4 1180 q->nr_rqs[is_sync]++;
1faa16d2
JA
1181 rl->count[is_sync]++;
1182 rl->starved[is_sync] = 0;
cb98fc8b 1183
f1f8cc94
TH
1184 /*
1185 * Decide whether the new request will be managed by elevator. If
e8064021 1186 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1187 * prevent the current elevator from being destroyed until the new
1188 * request is freed. This guarantees icq's won't be destroyed and
1189 * makes creating new ones safe.
1190 *
e6f7f93d
CH
1191 * Flush requests do not use the elevator so skip initialization.
1192 * This allows a request to share the flush and elevator data.
1193 *
f1f8cc94
TH
1194 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1195 * it will be created after releasing queue_lock.
1196 */
e6f7f93d 1197 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1198 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1199 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1200 if (et->icq_cache && ioc)
1201 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1202 }
cb98fc8b 1203
f253b86b 1204 if (blk_queue_io_stat(q))
e8064021 1205 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1206 spin_unlock_irq(q->queue_lock);
1207
29e2b09a 1208 /* allocate and init request */
5b788ce3 1209 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1210 if (!rq)
b679281a 1211 goto fail_alloc;
1da177e4 1212
29e2b09a 1213 blk_rq_init(q, rq);
a051661c 1214 blk_rq_set_rl(rq, rl);
ef295ecf 1215 rq->cmd_flags = op;
e8064021 1216 rq->rq_flags = rq_flags;
29e2b09a 1217
aaf7c680 1218 /* init elvpriv */
e8064021 1219 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1220 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1221 if (ioc)
1222 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1223 if (!icq)
1224 goto fail_elvpriv;
29e2b09a 1225 }
aaf7c680
TH
1226
1227 rq->elv.icq = icq;
1228 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1229 goto fail_elvpriv;
1230
1231 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1232 if (icq)
1233 get_io_context(icq->ioc);
1234 }
aaf7c680 1235out:
88ee5ef1
JA
1236 /*
1237 * ioc may be NULL here, and ioc_batching will be false. That's
1238 * OK, if the queue is under the request limit then requests need
1239 * not count toward the nr_batch_requests limit. There will always
1240 * be some limit enforced by BLK_BATCH_TIME.
1241 */
1da177e4
LT
1242 if (ioc_batching(q, ioc))
1243 ioc->nr_batch_requests--;
6728cb0e 1244
e6a40b09 1245 trace_block_getrq(q, bio, op);
1da177e4 1246 return rq;
b679281a 1247
aaf7c680
TH
1248fail_elvpriv:
1249 /*
1250 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1251 * and may fail indefinitely under memory pressure and thus
1252 * shouldn't stall IO. Treat this request as !elvpriv. This will
1253 * disturb iosched and blkcg but weird is bettern than dead.
1254 */
7b2b10e0 1255 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1256 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1257
e8064021 1258 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1259 rq->elv.icq = NULL;
1260
1261 spin_lock_irq(q->queue_lock);
8a5ecdd4 1262 q->nr_rqs_elvpriv--;
aaf7c680
TH
1263 spin_unlock_irq(q->queue_lock);
1264 goto out;
1265
b679281a
TH
1266fail_alloc:
1267 /*
1268 * Allocation failed presumably due to memory. Undo anything we
1269 * might have messed up.
1270 *
1271 * Allocating task should really be put onto the front of the wait
1272 * queue, but this is pretty rare.
1273 */
1274 spin_lock_irq(q->queue_lock);
e8064021 1275 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1276
1277 /*
1278 * in the very unlikely event that allocation failed and no
1279 * requests for this direction was pending, mark us starved so that
1280 * freeing of a request in the other direction will notice
1281 * us. another possible fix would be to split the rq mempool into
1282 * READ and WRITE
1283 */
1284rq_starved:
1285 if (unlikely(rl->count[is_sync] == 0))
1286 rl->starved[is_sync] = 1;
a492f075 1287 return ERR_PTR(-ENOMEM);
1da177e4
LT
1288}
1289
da8303c6 1290/**
a06e05e6 1291 * get_request - get a free request
da8303c6 1292 * @q: request_queue to allocate request from
ef295ecf 1293 * @op: operation and flags
da8303c6 1294 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1295 * @gfp_mask: allocation mask
da8303c6 1296 *
d0164adc
MG
1297 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1298 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1299 *
da3dae54 1300 * Must be called with @q->queue_lock held and,
a492f075
JL
1301 * Returns ERR_PTR on failure, with @q->queue_lock held.
1302 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1303 */
ef295ecf
CH
1304static struct request *get_request(struct request_queue *q, unsigned int op,
1305 struct bio *bio, gfp_t gfp_mask)
1da177e4 1306{
ef295ecf 1307 const bool is_sync = op_is_sync(op);
a06e05e6 1308 DEFINE_WAIT(wait);
a051661c 1309 struct request_list *rl;
1da177e4 1310 struct request *rq;
a051661c
TH
1311
1312 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1313retry:
ef295ecf 1314 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1315 if (!IS_ERR(rq))
a06e05e6 1316 return rq;
1da177e4 1317
d0164adc 1318 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1319 blk_put_rl(rl);
a492f075 1320 return rq;
a051661c 1321 }
1da177e4 1322
a06e05e6
TH
1323 /* wait on @rl and retry */
1324 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1325 TASK_UNINTERRUPTIBLE);
1da177e4 1326
e6a40b09 1327 trace_block_sleeprq(q, bio, op);
1da177e4 1328
a06e05e6
TH
1329 spin_unlock_irq(q->queue_lock);
1330 io_schedule();
d6344532 1331
a06e05e6
TH
1332 /*
1333 * After sleeping, we become a "batching" process and will be able
1334 * to allocate at least one request, and up to a big batch of them
1335 * for a small period time. See ioc_batching, ioc_set_batching
1336 */
a06e05e6 1337 ioc_set_batching(q, current->io_context);
05caf8db 1338
a06e05e6
TH
1339 spin_lock_irq(q->queue_lock);
1340 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1341
a06e05e6 1342 goto retry;
1da177e4
LT
1343}
1344
320ae51f
JA
1345static struct request *blk_old_get_request(struct request_queue *q, int rw,
1346 gfp_t gfp_mask)
1da177e4
LT
1347{
1348 struct request *rq;
1349
7f4b35d1
TH
1350 /* create ioc upfront */
1351 create_io_context(gfp_mask, q->node);
1352
d6344532 1353 spin_lock_irq(q->queue_lock);
ef295ecf 1354 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1355 if (IS_ERR(rq)) {
da8303c6 1356 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1357 return rq;
1358 }
1da177e4 1359
0c4de0f3
CH
1360 /* q->queue_lock is unlocked at this point */
1361 rq->__data_len = 0;
1362 rq->__sector = (sector_t) -1;
1363 rq->bio = rq->biotail = NULL;
1da177e4
LT
1364 return rq;
1365}
320ae51f
JA
1366
1367struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1368{
1369 if (q->mq_ops)
6f3b0e8b
CH
1370 return blk_mq_alloc_request(q, rw,
1371 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1372 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1373 else
1374 return blk_old_get_request(q, rw, gfp_mask);
1375}
1da177e4
LT
1376EXPORT_SYMBOL(blk_get_request);
1377
1378/**
1379 * blk_requeue_request - put a request back on queue
1380 * @q: request queue where request should be inserted
1381 * @rq: request to be inserted
1382 *
1383 * Description:
1384 * Drivers often keep queueing requests until the hardware cannot accept
1385 * more, when that condition happens we need to put the request back
1386 * on the queue. Must be called with queue lock held.
1387 */
165125e1 1388void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1389{
242f9dcb
JA
1390 blk_delete_timer(rq);
1391 blk_clear_rq_complete(rq);
5f3ea37c 1392 trace_block_rq_requeue(q, rq);
87760e5e 1393 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1394
e8064021 1395 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1396 blk_queue_end_tag(q, rq);
1397
ba396a6c
JB
1398 BUG_ON(blk_queued_rq(rq));
1399
1da177e4
LT
1400 elv_requeue_request(q, rq);
1401}
1da177e4
LT
1402EXPORT_SYMBOL(blk_requeue_request);
1403
73c10101
JA
1404static void add_acct_request(struct request_queue *q, struct request *rq,
1405 int where)
1406{
320ae51f 1407 blk_account_io_start(rq, true);
7eaceacc 1408 __elv_add_request(q, rq, where);
73c10101
JA
1409}
1410
074a7aca
TH
1411static void part_round_stats_single(int cpu, struct hd_struct *part,
1412 unsigned long now)
1413{
7276d02e
JA
1414 int inflight;
1415
074a7aca
TH
1416 if (now == part->stamp)
1417 return;
1418
7276d02e
JA
1419 inflight = part_in_flight(part);
1420 if (inflight) {
074a7aca 1421 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1422 inflight * (now - part->stamp));
074a7aca
TH
1423 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1424 }
1425 part->stamp = now;
1426}
1427
1428/**
496aa8a9
RD
1429 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1430 * @cpu: cpu number for stats access
1431 * @part: target partition
1da177e4
LT
1432 *
1433 * The average IO queue length and utilisation statistics are maintained
1434 * by observing the current state of the queue length and the amount of
1435 * time it has been in this state for.
1436 *
1437 * Normally, that accounting is done on IO completion, but that can result
1438 * in more than a second's worth of IO being accounted for within any one
1439 * second, leading to >100% utilisation. To deal with that, we call this
1440 * function to do a round-off before returning the results when reading
1441 * /proc/diskstats. This accounts immediately for all queue usage up to
1442 * the current jiffies and restarts the counters again.
1443 */
c9959059 1444void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1445{
1446 unsigned long now = jiffies;
1447
074a7aca
TH
1448 if (part->partno)
1449 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1450 part_round_stats_single(cpu, part, now);
6f2576af 1451}
074a7aca 1452EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1453
47fafbc7 1454#ifdef CONFIG_PM
c8158819
LM
1455static void blk_pm_put_request(struct request *rq)
1456{
e8064021 1457 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1458 pm_runtime_mark_last_busy(rq->q->dev);
1459}
1460#else
1461static inline void blk_pm_put_request(struct request *rq) {}
1462#endif
1463
1da177e4
LT
1464/*
1465 * queue lock must be held
1466 */
165125e1 1467void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1468{
e8064021
CH
1469 req_flags_t rq_flags = req->rq_flags;
1470
1da177e4
LT
1471 if (unlikely(!q))
1472 return;
1da177e4 1473
6f5ba581
CH
1474 if (q->mq_ops) {
1475 blk_mq_free_request(req);
1476 return;
1477 }
1478
c8158819
LM
1479 blk_pm_put_request(req);
1480
8922e16c
TH
1481 elv_completed_request(q, req);
1482
1cd96c24
BH
1483 /* this is a bio leak */
1484 WARN_ON(req->bio != NULL);
1485
87760e5e
JA
1486 wbt_done(q->rq_wb, &req->issue_stat);
1487
1da177e4
LT
1488 /*
1489 * Request may not have originated from ll_rw_blk. if not,
1490 * it didn't come out of our reserved rq pools
1491 */
e8064021 1492 if (rq_flags & RQF_ALLOCED) {
a051661c 1493 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1494 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1495
1da177e4 1496 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1497 BUG_ON(ELV_ON_HASH(req));
1da177e4 1498
a051661c 1499 blk_free_request(rl, req);
e8064021 1500 freed_request(rl, sync, rq_flags);
a051661c 1501 blk_put_rl(rl);
1da177e4
LT
1502 }
1503}
6e39b69e
MC
1504EXPORT_SYMBOL_GPL(__blk_put_request);
1505
1da177e4
LT
1506void blk_put_request(struct request *req)
1507{
165125e1 1508 struct request_queue *q = req->q;
8922e16c 1509
320ae51f
JA
1510 if (q->mq_ops)
1511 blk_mq_free_request(req);
1512 else {
1513 unsigned long flags;
1514
1515 spin_lock_irqsave(q->queue_lock, flags);
1516 __blk_put_request(q, req);
1517 spin_unlock_irqrestore(q->queue_lock, flags);
1518 }
1da177e4 1519}
1da177e4
LT
1520EXPORT_SYMBOL(blk_put_request);
1521
320ae51f
JA
1522bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1523 struct bio *bio)
73c10101 1524{
1eff9d32 1525 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1526
73c10101
JA
1527 if (!ll_back_merge_fn(q, req, bio))
1528 return false;
1529
8c1cf6bb 1530 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1531
1532 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1533 blk_rq_set_mixed_merge(req);
1534
1535 req->biotail->bi_next = bio;
1536 req->biotail = bio;
4f024f37 1537 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1538 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1539
320ae51f 1540 blk_account_io_start(req, false);
73c10101
JA
1541 return true;
1542}
1543
320ae51f
JA
1544bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1545 struct bio *bio)
73c10101 1546{
1eff9d32 1547 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1548
73c10101
JA
1549 if (!ll_front_merge_fn(q, req, bio))
1550 return false;
1551
8c1cf6bb 1552 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1553
1554 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1555 blk_rq_set_mixed_merge(req);
1556
73c10101
JA
1557 bio->bi_next = req->bio;
1558 req->bio = bio;
1559
4f024f37
KO
1560 req->__sector = bio->bi_iter.bi_sector;
1561 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1562 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1563
320ae51f 1564 blk_account_io_start(req, false);
73c10101
JA
1565 return true;
1566}
1567
1e739730
CH
1568bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1569 struct bio *bio)
1570{
1571 unsigned short segments = blk_rq_nr_discard_segments(req);
1572
1573 if (segments >= queue_max_discard_segments(q))
1574 goto no_merge;
1575 if (blk_rq_sectors(req) + bio_sectors(bio) >
1576 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1577 goto no_merge;
1578
1579 req->biotail->bi_next = bio;
1580 req->biotail = bio;
1581 req->__data_len += bio->bi_iter.bi_size;
1582 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1583 req->nr_phys_segments = segments + 1;
1584
1585 blk_account_io_start(req, false);
1586 return true;
1587no_merge:
1588 req_set_nomerge(q, req);
1589 return false;
1590}
1591
bd87b589 1592/**
320ae51f 1593 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1594 * @q: request_queue new bio is being queued at
1595 * @bio: new bio being queued
1596 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1597 * @same_queue_rq: pointer to &struct request that gets filled in when
1598 * another request associated with @q is found on the plug list
1599 * (optional, may be %NULL)
bd87b589
TH
1600 *
1601 * Determine whether @bio being queued on @q can be merged with a request
1602 * on %current's plugged list. Returns %true if merge was successful,
1603 * otherwise %false.
1604 *
07c2bd37
TH
1605 * Plugging coalesces IOs from the same issuer for the same purpose without
1606 * going through @q->queue_lock. As such it's more of an issuing mechanism
1607 * than scheduling, and the request, while may have elvpriv data, is not
1608 * added on the elevator at this point. In addition, we don't have
1609 * reliable access to the elevator outside queue lock. Only check basic
1610 * merging parameters without querying the elevator.
da41a589
RE
1611 *
1612 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1613 */
320ae51f 1614bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1615 unsigned int *request_count,
1616 struct request **same_queue_rq)
73c10101
JA
1617{
1618 struct blk_plug *plug;
1619 struct request *rq;
92f399c7 1620 struct list_head *plug_list;
73c10101 1621
bd87b589 1622 plug = current->plug;
73c10101 1623 if (!plug)
34fe7c05 1624 return false;
56ebdaf2 1625 *request_count = 0;
73c10101 1626
92f399c7
SL
1627 if (q->mq_ops)
1628 plug_list = &plug->mq_list;
1629 else
1630 plug_list = &plug->list;
1631
1632 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1633 bool merged = false;
73c10101 1634
5b3f341f 1635 if (rq->q == q) {
1b2e19f1 1636 (*request_count)++;
5b3f341f
SL
1637 /*
1638 * Only blk-mq multiple hardware queues case checks the
1639 * rq in the same queue, there should be only one such
1640 * rq in a queue
1641 **/
1642 if (same_queue_rq)
1643 *same_queue_rq = rq;
1644 }
56ebdaf2 1645
07c2bd37 1646 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1647 continue;
1648
34fe7c05
CH
1649 switch (blk_try_merge(rq, bio)) {
1650 case ELEVATOR_BACK_MERGE:
1651 merged = bio_attempt_back_merge(q, rq, bio);
1652 break;
1653 case ELEVATOR_FRONT_MERGE:
1654 merged = bio_attempt_front_merge(q, rq, bio);
1655 break;
1e739730
CH
1656 case ELEVATOR_DISCARD_MERGE:
1657 merged = bio_attempt_discard_merge(q, rq, bio);
1658 break;
34fe7c05
CH
1659 default:
1660 break;
73c10101 1661 }
34fe7c05
CH
1662
1663 if (merged)
1664 return true;
73c10101 1665 }
34fe7c05
CH
1666
1667 return false;
73c10101
JA
1668}
1669
0809e3ac
JM
1670unsigned int blk_plug_queued_count(struct request_queue *q)
1671{
1672 struct blk_plug *plug;
1673 struct request *rq;
1674 struct list_head *plug_list;
1675 unsigned int ret = 0;
1676
1677 plug = current->plug;
1678 if (!plug)
1679 goto out;
1680
1681 if (q->mq_ops)
1682 plug_list = &plug->mq_list;
1683 else
1684 plug_list = &plug->list;
1685
1686 list_for_each_entry(rq, plug_list, queuelist) {
1687 if (rq->q == q)
1688 ret++;
1689 }
1690out:
1691 return ret;
1692}
1693
da8d7f07 1694void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1695{
0be0dee6
BVA
1696 struct io_context *ioc = rq_ioc(bio);
1697
1eff9d32 1698 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1699 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1700
4f024f37 1701 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1702 if (ioprio_valid(bio_prio(bio)))
1703 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1704 else if (ioc)
1705 req->ioprio = ioc->ioprio;
1706 else
1707 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
bc1c56fd 1708 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1709}
da8d7f07 1710EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1711
dece1635 1712static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1713{
73c10101 1714 struct blk_plug *plug;
34fe7c05 1715 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1716 struct request *req, *free;
56ebdaf2 1717 unsigned int request_count = 0;
87760e5e 1718 unsigned int wb_acct;
1da177e4 1719
1da177e4
LT
1720 /*
1721 * low level driver can indicate that it wants pages above a
1722 * certain limit bounced to low memory (ie for highmem, or even
1723 * ISA dma in theory)
1724 */
1725 blk_queue_bounce(q, &bio);
1726
af67c31f 1727 blk_queue_split(q, &bio);
23688bf4 1728
ffecfd1a 1729 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4e4cbee9 1730 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1731 bio_endio(bio);
dece1635 1732 return BLK_QC_T_NONE;
ffecfd1a
DW
1733 }
1734
f73f44eb 1735 if (op_is_flush(bio->bi_opf)) {
73c10101 1736 spin_lock_irq(q->queue_lock);
ae1b1539 1737 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1738 goto get_rq;
1739 }
1740
73c10101
JA
1741 /*
1742 * Check if we can merge with the plugged list before grabbing
1743 * any locks.
1744 */
0809e3ac
JM
1745 if (!blk_queue_nomerges(q)) {
1746 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1747 return BLK_QC_T_NONE;
0809e3ac
JM
1748 } else
1749 request_count = blk_plug_queued_count(q);
1da177e4 1750
73c10101 1751 spin_lock_irq(q->queue_lock);
2056a782 1752
34fe7c05
CH
1753 switch (elv_merge(q, &req, bio)) {
1754 case ELEVATOR_BACK_MERGE:
1755 if (!bio_attempt_back_merge(q, req, bio))
1756 break;
1757 elv_bio_merged(q, req, bio);
1758 free = attempt_back_merge(q, req);
1759 if (free)
1760 __blk_put_request(q, free);
1761 else
1762 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1763 goto out_unlock;
1764 case ELEVATOR_FRONT_MERGE:
1765 if (!bio_attempt_front_merge(q, req, bio))
1766 break;
1767 elv_bio_merged(q, req, bio);
1768 free = attempt_front_merge(q, req);
1769 if (free)
1770 __blk_put_request(q, free);
1771 else
1772 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1773 goto out_unlock;
1774 default:
1775 break;
1da177e4
LT
1776 }
1777
450991bc 1778get_rq:
87760e5e
JA
1779 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1780
1da177e4 1781 /*
450991bc 1782 * Grab a free request. This is might sleep but can not fail.
d6344532 1783 * Returns with the queue unlocked.
450991bc 1784 */
ef295ecf 1785 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1786 if (IS_ERR(req)) {
87760e5e 1787 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1788 if (PTR_ERR(req) == -ENOMEM)
1789 bio->bi_status = BLK_STS_RESOURCE;
1790 else
1791 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1792 bio_endio(bio);
da8303c6
TH
1793 goto out_unlock;
1794 }
d6344532 1795
87760e5e
JA
1796 wbt_track(&req->issue_stat, wb_acct);
1797
450991bc
NP
1798 /*
1799 * After dropping the lock and possibly sleeping here, our request
1800 * may now be mergeable after it had proven unmergeable (above).
1801 * We don't worry about that case for efficiency. It won't happen
1802 * often, and the elevators are able to handle it.
1da177e4 1803 */
da8d7f07 1804 blk_init_request_from_bio(req, bio);
1da177e4 1805
9562ad9a 1806 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1807 req->cpu = raw_smp_processor_id();
73c10101
JA
1808
1809 plug = current->plug;
721a9602 1810 if (plug) {
dc6d36c9
JA
1811 /*
1812 * If this is the first request added after a plug, fire
7aef2e78 1813 * of a plug trace.
0a6219a9
ML
1814 *
1815 * @request_count may become stale because of schedule
1816 * out, so check plug list again.
dc6d36c9 1817 */
0a6219a9 1818 if (!request_count || list_empty(&plug->list))
dc6d36c9 1819 trace_block_plug(q);
3540d5e8 1820 else {
50d24c34
SL
1821 struct request *last = list_entry_rq(plug->list.prev);
1822 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1823 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1824 blk_flush_plug_list(plug, false);
019ceb7d
SL
1825 trace_block_plug(q);
1826 }
73c10101 1827 }
73c10101 1828 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1829 blk_account_io_start(req, true);
73c10101
JA
1830 } else {
1831 spin_lock_irq(q->queue_lock);
1832 add_acct_request(q, req, where);
24ecfbe2 1833 __blk_run_queue(q);
73c10101
JA
1834out_unlock:
1835 spin_unlock_irq(q->queue_lock);
1836 }
dece1635
JA
1837
1838 return BLK_QC_T_NONE;
1da177e4
LT
1839}
1840
1841/*
1842 * If bio->bi_dev is a partition, remap the location
1843 */
1844static inline void blk_partition_remap(struct bio *bio)
1845{
1846 struct block_device *bdev = bio->bi_bdev;
1847
778889d8
ST
1848 /*
1849 * Zone reset does not include bi_size so bio_sectors() is always 0.
1850 * Include a test for the reset op code and perform the remap if needed.
1851 */
1852 if (bdev != bdev->bd_contains &&
1853 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1854 struct hd_struct *p = bdev->bd_part;
1855
4f024f37 1856 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1857 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1858
d07335e5
MS
1859 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1860 bdev->bd_dev,
4f024f37 1861 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1862 }
1863}
1864
1da177e4
LT
1865static void handle_bad_sector(struct bio *bio)
1866{
1867 char b[BDEVNAME_SIZE];
1868
1869 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1870 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1871 bdevname(bio->bi_bdev, b),
1eff9d32 1872 bio->bi_opf,
f73a1c7d 1873 (unsigned long long)bio_end_sector(bio),
77304d2a 1874 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1875}
1876
c17bb495
AM
1877#ifdef CONFIG_FAIL_MAKE_REQUEST
1878
1879static DECLARE_FAULT_ATTR(fail_make_request);
1880
1881static int __init setup_fail_make_request(char *str)
1882{
1883 return setup_fault_attr(&fail_make_request, str);
1884}
1885__setup("fail_make_request=", setup_fail_make_request);
1886
b2c9cd37 1887static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1888{
b2c9cd37 1889 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1890}
1891
1892static int __init fail_make_request_debugfs(void)
1893{
dd48c085
AM
1894 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1895 NULL, &fail_make_request);
1896
21f9fcd8 1897 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1898}
1899
1900late_initcall(fail_make_request_debugfs);
1901
1902#else /* CONFIG_FAIL_MAKE_REQUEST */
1903
b2c9cd37
AM
1904static inline bool should_fail_request(struct hd_struct *part,
1905 unsigned int bytes)
c17bb495 1906{
b2c9cd37 1907 return false;
c17bb495
AM
1908}
1909
1910#endif /* CONFIG_FAIL_MAKE_REQUEST */
1911
c07e2b41
JA
1912/*
1913 * Check whether this bio extends beyond the end of the device.
1914 */
1915static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1916{
1917 sector_t maxsector;
1918
1919 if (!nr_sectors)
1920 return 0;
1921
1922 /* Test device or partition size, when known. */
77304d2a 1923 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1924 if (maxsector) {
4f024f37 1925 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1926
1927 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1928 /*
1929 * This may well happen - the kernel calls bread()
1930 * without checking the size of the device, e.g., when
1931 * mounting a device.
1932 */
1933 handle_bad_sector(bio);
1934 return 1;
1935 }
1936 }
1937
1938 return 0;
1939}
1940
27a84d54
CH
1941static noinline_for_stack bool
1942generic_make_request_checks(struct bio *bio)
1da177e4 1943{
165125e1 1944 struct request_queue *q;
5a7bbad2 1945 int nr_sectors = bio_sectors(bio);
4e4cbee9 1946 blk_status_t status = BLK_STS_IOERR;
5a7bbad2
CH
1947 char b[BDEVNAME_SIZE];
1948 struct hd_struct *part;
1da177e4
LT
1949
1950 might_sleep();
1da177e4 1951
c07e2b41
JA
1952 if (bio_check_eod(bio, nr_sectors))
1953 goto end_io;
1da177e4 1954
5a7bbad2
CH
1955 q = bdev_get_queue(bio->bi_bdev);
1956 if (unlikely(!q)) {
1957 printk(KERN_ERR
1958 "generic_make_request: Trying to access "
1959 "nonexistent block-device %s (%Lu)\n",
1960 bdevname(bio->bi_bdev, b),
4f024f37 1961 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1962 goto end_io;
1963 }
c17bb495 1964
5a7bbad2 1965 part = bio->bi_bdev->bd_part;
4f024f37 1966 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1967 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1968 bio->bi_iter.bi_size))
5a7bbad2 1969 goto end_io;
2056a782 1970
5a7bbad2
CH
1971 /*
1972 * If this device has partitions, remap block n
1973 * of partition p to block n+start(p) of the disk.
1974 */
1975 blk_partition_remap(bio);
2056a782 1976
5a7bbad2
CH
1977 if (bio_check_eod(bio, nr_sectors))
1978 goto end_io;
1e87901e 1979
5a7bbad2
CH
1980 /*
1981 * Filter flush bio's early so that make_request based
1982 * drivers without flush support don't have to worry
1983 * about them.
1984 */
f3a8ab7d 1985 if (op_is_flush(bio->bi_opf) &&
c888a8f9 1986 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1987 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 1988 if (!nr_sectors) {
4e4cbee9 1989 status = BLK_STS_OK;
51fd77bd
JA
1990 goto end_io;
1991 }
5a7bbad2 1992 }
5ddfe969 1993
288dab8a
CH
1994 switch (bio_op(bio)) {
1995 case REQ_OP_DISCARD:
1996 if (!blk_queue_discard(q))
1997 goto not_supported;
1998 break;
1999 case REQ_OP_SECURE_ERASE:
2000 if (!blk_queue_secure_erase(q))
2001 goto not_supported;
2002 break;
2003 case REQ_OP_WRITE_SAME:
2004 if (!bdev_write_same(bio->bi_bdev))
2005 goto not_supported;
58886785 2006 break;
2d253440
ST
2007 case REQ_OP_ZONE_REPORT:
2008 case REQ_OP_ZONE_RESET:
2009 if (!bdev_is_zoned(bio->bi_bdev))
2010 goto not_supported;
288dab8a 2011 break;
a6f0788e
CK
2012 case REQ_OP_WRITE_ZEROES:
2013 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
2014 goto not_supported;
2015 break;
288dab8a
CH
2016 default:
2017 break;
5a7bbad2 2018 }
01edede4 2019
7f4b35d1
TH
2020 /*
2021 * Various block parts want %current->io_context and lazy ioc
2022 * allocation ends up trading a lot of pain for a small amount of
2023 * memory. Just allocate it upfront. This may fail and block
2024 * layer knows how to live with it.
2025 */
2026 create_io_context(GFP_ATOMIC, q->node);
2027
ae118896
TH
2028 if (!blkcg_bio_issue_check(q, bio))
2029 return false;
27a84d54 2030
fbbaf700
N
2031 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2032 trace_block_bio_queue(q, bio);
2033 /* Now that enqueuing has been traced, we need to trace
2034 * completion as well.
2035 */
2036 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2037 }
27a84d54 2038 return true;
a7384677 2039
288dab8a 2040not_supported:
4e4cbee9 2041 status = BLK_STS_NOTSUPP;
a7384677 2042end_io:
4e4cbee9 2043 bio->bi_status = status;
4246a0b6 2044 bio_endio(bio);
27a84d54 2045 return false;
1da177e4
LT
2046}
2047
27a84d54
CH
2048/**
2049 * generic_make_request - hand a buffer to its device driver for I/O
2050 * @bio: The bio describing the location in memory and on the device.
2051 *
2052 * generic_make_request() is used to make I/O requests of block
2053 * devices. It is passed a &struct bio, which describes the I/O that needs
2054 * to be done.
2055 *
2056 * generic_make_request() does not return any status. The
2057 * success/failure status of the request, along with notification of
2058 * completion, is delivered asynchronously through the bio->bi_end_io
2059 * function described (one day) else where.
2060 *
2061 * The caller of generic_make_request must make sure that bi_io_vec
2062 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2063 * set to describe the device address, and the
2064 * bi_end_io and optionally bi_private are set to describe how
2065 * completion notification should be signaled.
2066 *
2067 * generic_make_request and the drivers it calls may use bi_next if this
2068 * bio happens to be merged with someone else, and may resubmit the bio to
2069 * a lower device by calling into generic_make_request recursively, which
2070 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2071 */
dece1635 2072blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2073{
f5fe1b51
N
2074 /*
2075 * bio_list_on_stack[0] contains bios submitted by the current
2076 * make_request_fn.
2077 * bio_list_on_stack[1] contains bios that were submitted before
2078 * the current make_request_fn, but that haven't been processed
2079 * yet.
2080 */
2081 struct bio_list bio_list_on_stack[2];
dece1635 2082 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2083
27a84d54 2084 if (!generic_make_request_checks(bio))
dece1635 2085 goto out;
27a84d54
CH
2086
2087 /*
2088 * We only want one ->make_request_fn to be active at a time, else
2089 * stack usage with stacked devices could be a problem. So use
2090 * current->bio_list to keep a list of requests submited by a
2091 * make_request_fn function. current->bio_list is also used as a
2092 * flag to say if generic_make_request is currently active in this
2093 * task or not. If it is NULL, then no make_request is active. If
2094 * it is non-NULL, then a make_request is active, and new requests
2095 * should be added at the tail
2096 */
bddd87c7 2097 if (current->bio_list) {
f5fe1b51 2098 bio_list_add(&current->bio_list[0], bio);
dece1635 2099 goto out;
d89d8796 2100 }
27a84d54 2101
d89d8796
NB
2102 /* following loop may be a bit non-obvious, and so deserves some
2103 * explanation.
2104 * Before entering the loop, bio->bi_next is NULL (as all callers
2105 * ensure that) so we have a list with a single bio.
2106 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2107 * we assign bio_list to a pointer to the bio_list_on_stack,
2108 * thus initialising the bio_list of new bios to be
27a84d54 2109 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2110 * through a recursive call to generic_make_request. If it
2111 * did, we find a non-NULL value in bio_list and re-enter the loop
2112 * from the top. In this case we really did just take the bio
bddd87c7 2113 * of the top of the list (no pretending) and so remove it from
27a84d54 2114 * bio_list, and call into ->make_request() again.
d89d8796
NB
2115 */
2116 BUG_ON(bio->bi_next);
f5fe1b51
N
2117 bio_list_init(&bio_list_on_stack[0]);
2118 current->bio_list = bio_list_on_stack;
d89d8796 2119 do {
27a84d54
CH
2120 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2121
6f3b0e8b 2122 if (likely(blk_queue_enter(q, false) == 0)) {
79bd9959
N
2123 struct bio_list lower, same;
2124
2125 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2126 bio_list_on_stack[1] = bio_list_on_stack[0];
2127 bio_list_init(&bio_list_on_stack[0]);
dece1635 2128 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2129
2130 blk_queue_exit(q);
27a84d54 2131
79bd9959
N
2132 /* sort new bios into those for a lower level
2133 * and those for the same level
2134 */
2135 bio_list_init(&lower);
2136 bio_list_init(&same);
f5fe1b51 2137 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
79bd9959
N
2138 if (q == bdev_get_queue(bio->bi_bdev))
2139 bio_list_add(&same, bio);
2140 else
2141 bio_list_add(&lower, bio);
2142 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2143 bio_list_merge(&bio_list_on_stack[0], &lower);
2144 bio_list_merge(&bio_list_on_stack[0], &same);
2145 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2146 } else {
3ef28e83 2147 bio_io_error(bio);
3ef28e83 2148 }
f5fe1b51 2149 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2150 } while (bio);
bddd87c7 2151 current->bio_list = NULL; /* deactivate */
dece1635
JA
2152
2153out:
2154 return ret;
d89d8796 2155}
1da177e4
LT
2156EXPORT_SYMBOL(generic_make_request);
2157
2158/**
710027a4 2159 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2160 * @bio: The &struct bio which describes the I/O
2161 *
2162 * submit_bio() is very similar in purpose to generic_make_request(), and
2163 * uses that function to do most of the work. Both are fairly rough
710027a4 2164 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2165 *
2166 */
4e49ea4a 2167blk_qc_t submit_bio(struct bio *bio)
1da177e4 2168{
bf2de6f5
JA
2169 /*
2170 * If it's a regular read/write or a barrier with data attached,
2171 * go through the normal accounting stuff before submission.
2172 */
e2a60da7 2173 if (bio_has_data(bio)) {
4363ac7c
MP
2174 unsigned int count;
2175
95fe6c1a 2176 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2177 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2178 else
2179 count = bio_sectors(bio);
2180
a8ebb056 2181 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2182 count_vm_events(PGPGOUT, count);
2183 } else {
4f024f37 2184 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2185 count_vm_events(PGPGIN, count);
2186 }
2187
2188 if (unlikely(block_dump)) {
2189 char b[BDEVNAME_SIZE];
8dcbdc74 2190 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2191 current->comm, task_pid_nr(current),
a8ebb056 2192 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2193 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2194 bdevname(bio->bi_bdev, b),
2195 count);
bf2de6f5 2196 }
1da177e4
LT
2197 }
2198
dece1635 2199 return generic_make_request(bio);
1da177e4 2200}
1da177e4
LT
2201EXPORT_SYMBOL(submit_bio);
2202
82124d60 2203/**
bf4e6b4e
HR
2204 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2205 * for new the queue limits
82124d60
KU
2206 * @q: the queue
2207 * @rq: the request being checked
2208 *
2209 * Description:
2210 * @rq may have been made based on weaker limitations of upper-level queues
2211 * in request stacking drivers, and it may violate the limitation of @q.
2212 * Since the block layer and the underlying device driver trust @rq
2213 * after it is inserted to @q, it should be checked against @q before
2214 * the insertion using this generic function.
2215 *
82124d60 2216 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2217 * limits when retrying requests on other queues. Those requests need
2218 * to be checked against the new queue limits again during dispatch.
82124d60 2219 */
bf4e6b4e
HR
2220static int blk_cloned_rq_check_limits(struct request_queue *q,
2221 struct request *rq)
82124d60 2222{
8fe0d473 2223 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2224 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2225 return -EIO;
2226 }
2227
2228 /*
2229 * queue's settings related to segment counting like q->bounce_pfn
2230 * may differ from that of other stacking queues.
2231 * Recalculate it to check the request correctly on this queue's
2232 * limitation.
2233 */
2234 blk_recalc_rq_segments(rq);
8a78362c 2235 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2236 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2237 return -EIO;
2238 }
2239
2240 return 0;
2241}
82124d60
KU
2242
2243/**
2244 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2245 * @q: the queue to submit the request
2246 * @rq: the request being queued
2247 */
2a842aca 2248blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2249{
2250 unsigned long flags;
4853abaa 2251 int where = ELEVATOR_INSERT_BACK;
82124d60 2252
bf4e6b4e 2253 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2254 return BLK_STS_IOERR;
82124d60 2255
b2c9cd37
AM
2256 if (rq->rq_disk &&
2257 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2258 return BLK_STS_IOERR;
82124d60 2259
7fb4898e
KB
2260 if (q->mq_ops) {
2261 if (blk_queue_io_stat(q))
2262 blk_account_io_start(rq, true);
bd6737f1 2263 blk_mq_sched_insert_request(rq, false, true, false, false);
2a842aca 2264 return BLK_STS_OK;
7fb4898e
KB
2265 }
2266
82124d60 2267 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2268 if (unlikely(blk_queue_dying(q))) {
8ba61435 2269 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2270 return BLK_STS_IOERR;
8ba61435 2271 }
82124d60
KU
2272
2273 /*
2274 * Submitting request must be dequeued before calling this function
2275 * because it will be linked to another request_queue
2276 */
2277 BUG_ON(blk_queued_rq(rq));
2278
f73f44eb 2279 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2280 where = ELEVATOR_INSERT_FLUSH;
2281
2282 add_acct_request(q, rq, where);
e67b77c7
JM
2283 if (where == ELEVATOR_INSERT_FLUSH)
2284 __blk_run_queue(q);
82124d60
KU
2285 spin_unlock_irqrestore(q->queue_lock, flags);
2286
2a842aca 2287 return BLK_STS_OK;
82124d60
KU
2288}
2289EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2290
80a761fd
TH
2291/**
2292 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2293 * @rq: request to examine
2294 *
2295 * Description:
2296 * A request could be merge of IOs which require different failure
2297 * handling. This function determines the number of bytes which
2298 * can be failed from the beginning of the request without
2299 * crossing into area which need to be retried further.
2300 *
2301 * Return:
2302 * The number of bytes to fail.
2303 *
2304 * Context:
2305 * queue_lock must be held.
2306 */
2307unsigned int blk_rq_err_bytes(const struct request *rq)
2308{
2309 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2310 unsigned int bytes = 0;
2311 struct bio *bio;
2312
e8064021 2313 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2314 return blk_rq_bytes(rq);
2315
2316 /*
2317 * Currently the only 'mixing' which can happen is between
2318 * different fastfail types. We can safely fail portions
2319 * which have all the failfast bits that the first one has -
2320 * the ones which are at least as eager to fail as the first
2321 * one.
2322 */
2323 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2324 if ((bio->bi_opf & ff) != ff)
80a761fd 2325 break;
4f024f37 2326 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2327 }
2328
2329 /* this could lead to infinite loop */
2330 BUG_ON(blk_rq_bytes(rq) && !bytes);
2331 return bytes;
2332}
2333EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2334
320ae51f 2335void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2336{
c2553b58 2337 if (blk_do_io_stat(req)) {
bc58ba94
JA
2338 const int rw = rq_data_dir(req);
2339 struct hd_struct *part;
2340 int cpu;
2341
2342 cpu = part_stat_lock();
09e099d4 2343 part = req->part;
bc58ba94
JA
2344 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2345 part_stat_unlock();
2346 }
2347}
2348
320ae51f 2349void blk_account_io_done(struct request *req)
bc58ba94 2350{
bc58ba94 2351 /*
dd4c133f
TH
2352 * Account IO completion. flush_rq isn't accounted as a
2353 * normal IO on queueing nor completion. Accounting the
2354 * containing request is enough.
bc58ba94 2355 */
e8064021 2356 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2357 unsigned long duration = jiffies - req->start_time;
2358 const int rw = rq_data_dir(req);
2359 struct hd_struct *part;
2360 int cpu;
2361
2362 cpu = part_stat_lock();
09e099d4 2363 part = req->part;
bc58ba94
JA
2364
2365 part_stat_inc(cpu, part, ios[rw]);
2366 part_stat_add(cpu, part, ticks[rw], duration);
2367 part_round_stats(cpu, part);
316d315b 2368 part_dec_in_flight(part, rw);
bc58ba94 2369
6c23a968 2370 hd_struct_put(part);
bc58ba94
JA
2371 part_stat_unlock();
2372 }
2373}
2374
47fafbc7 2375#ifdef CONFIG_PM
c8158819
LM
2376/*
2377 * Don't process normal requests when queue is suspended
2378 * or in the process of suspending/resuming
2379 */
2380static struct request *blk_pm_peek_request(struct request_queue *q,
2381 struct request *rq)
2382{
2383 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2384 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2385 return NULL;
2386 else
2387 return rq;
2388}
2389#else
2390static inline struct request *blk_pm_peek_request(struct request_queue *q,
2391 struct request *rq)
2392{
2393 return rq;
2394}
2395#endif
2396
320ae51f
JA
2397void blk_account_io_start(struct request *rq, bool new_io)
2398{
2399 struct hd_struct *part;
2400 int rw = rq_data_dir(rq);
2401 int cpu;
2402
2403 if (!blk_do_io_stat(rq))
2404 return;
2405
2406 cpu = part_stat_lock();
2407
2408 if (!new_io) {
2409 part = rq->part;
2410 part_stat_inc(cpu, part, merges[rw]);
2411 } else {
2412 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2413 if (!hd_struct_try_get(part)) {
2414 /*
2415 * The partition is already being removed,
2416 * the request will be accounted on the disk only
2417 *
2418 * We take a reference on disk->part0 although that
2419 * partition will never be deleted, so we can treat
2420 * it as any other partition.
2421 */
2422 part = &rq->rq_disk->part0;
2423 hd_struct_get(part);
2424 }
2425 part_round_stats(cpu, part);
2426 part_inc_in_flight(part, rw);
2427 rq->part = part;
2428 }
2429
2430 part_stat_unlock();
2431}
2432
3bcddeac 2433/**
9934c8c0
TH
2434 * blk_peek_request - peek at the top of a request queue
2435 * @q: request queue to peek at
2436 *
2437 * Description:
2438 * Return the request at the top of @q. The returned request
2439 * should be started using blk_start_request() before LLD starts
2440 * processing it.
2441 *
2442 * Return:
2443 * Pointer to the request at the top of @q if available. Null
2444 * otherwise.
2445 *
2446 * Context:
2447 * queue_lock must be held.
2448 */
2449struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2450{
2451 struct request *rq;
2452 int ret;
2453
2454 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2455
2456 rq = blk_pm_peek_request(q, rq);
2457 if (!rq)
2458 break;
2459
e8064021 2460 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2461 /*
2462 * This is the first time the device driver
2463 * sees this request (possibly after
2464 * requeueing). Notify IO scheduler.
2465 */
e8064021 2466 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2467 elv_activate_rq(q, rq);
2468
2469 /*
2470 * just mark as started even if we don't start
2471 * it, a request that has been delayed should
2472 * not be passed by new incoming requests
2473 */
e8064021 2474 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2475 trace_block_rq_issue(q, rq);
2476 }
2477
2478 if (!q->boundary_rq || q->boundary_rq == rq) {
2479 q->end_sector = rq_end_sector(rq);
2480 q->boundary_rq = NULL;
2481 }
2482
e8064021 2483 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2484 break;
2485
2e46e8b2 2486 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2487 /*
2488 * make sure space for the drain appears we
2489 * know we can do this because max_hw_segments
2490 * has been adjusted to be one fewer than the
2491 * device can handle
2492 */
2493 rq->nr_phys_segments++;
2494 }
2495
2496 if (!q->prep_rq_fn)
2497 break;
2498
2499 ret = q->prep_rq_fn(q, rq);
2500 if (ret == BLKPREP_OK) {
2501 break;
2502 } else if (ret == BLKPREP_DEFER) {
2503 /*
2504 * the request may have been (partially) prepped.
2505 * we need to keep this request in the front to
e8064021 2506 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2507 * prevent other fs requests from passing this one.
2508 */
2e46e8b2 2509 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2510 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2511 /*
2512 * remove the space for the drain we added
2513 * so that we don't add it again
2514 */
2515 --rq->nr_phys_segments;
2516 }
2517
2518 rq = NULL;
2519 break;
0fb5b1fb 2520 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2521 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2522 /*
2523 * Mark this request as started so we don't trigger
2524 * any debug logic in the end I/O path.
2525 */
2526 blk_start_request(rq);
2a842aca
CH
2527 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2528 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2529 } else {
2530 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2531 break;
2532 }
2533 }
2534
2535 return rq;
2536}
9934c8c0 2537EXPORT_SYMBOL(blk_peek_request);
158dbda0 2538
9934c8c0 2539void blk_dequeue_request(struct request *rq)
158dbda0 2540{
9934c8c0
TH
2541 struct request_queue *q = rq->q;
2542
158dbda0
TH
2543 BUG_ON(list_empty(&rq->queuelist));
2544 BUG_ON(ELV_ON_HASH(rq));
2545
2546 list_del_init(&rq->queuelist);
2547
2548 /*
2549 * the time frame between a request being removed from the lists
2550 * and to it is freed is accounted as io that is in progress at
2551 * the driver side.
2552 */
9195291e 2553 if (blk_account_rq(rq)) {
0a7ae2ff 2554 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2555 set_io_start_time_ns(rq);
2556 }
158dbda0
TH
2557}
2558
9934c8c0
TH
2559/**
2560 * blk_start_request - start request processing on the driver
2561 * @req: request to dequeue
2562 *
2563 * Description:
2564 * Dequeue @req and start timeout timer on it. This hands off the
2565 * request to the driver.
2566 *
2567 * Block internal functions which don't want to start timer should
2568 * call blk_dequeue_request().
2569 *
2570 * Context:
2571 * queue_lock must be held.
2572 */
2573void blk_start_request(struct request *req)
2574{
2575 blk_dequeue_request(req);
2576
cf43e6be 2577 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2578 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2579 req->rq_flags |= RQF_STATS;
87760e5e 2580 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2581 }
2582
4912aa6c 2583 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2584 blk_add_timer(req);
2585}
2586EXPORT_SYMBOL(blk_start_request);
2587
2588/**
2589 * blk_fetch_request - fetch a request from a request queue
2590 * @q: request queue to fetch a request from
2591 *
2592 * Description:
2593 * Return the request at the top of @q. The request is started on
2594 * return and LLD can start processing it immediately.
2595 *
2596 * Return:
2597 * Pointer to the request at the top of @q if available. Null
2598 * otherwise.
2599 *
2600 * Context:
2601 * queue_lock must be held.
2602 */
2603struct request *blk_fetch_request(struct request_queue *q)
2604{
2605 struct request *rq;
2606
2607 rq = blk_peek_request(q);
2608 if (rq)
2609 blk_start_request(rq);
2610 return rq;
2611}
2612EXPORT_SYMBOL(blk_fetch_request);
2613
3bcddeac 2614/**
2e60e022 2615 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2616 * @req: the request being processed
2a842aca 2617 * @error: block status code
8ebf9756 2618 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2619 *
2620 * Description:
8ebf9756
RD
2621 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2622 * the request structure even if @req doesn't have leftover.
2623 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2624 *
2625 * This special helper function is only for request stacking drivers
2626 * (e.g. request-based dm) so that they can handle partial completion.
2627 * Actual device drivers should use blk_end_request instead.
2628 *
2629 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2630 * %false return from this function.
3bcddeac
KU
2631 *
2632 * Return:
2e60e022
TH
2633 * %false - this request doesn't have any more data
2634 * %true - this request has more data
3bcddeac 2635 **/
2a842aca
CH
2636bool blk_update_request(struct request *req, blk_status_t error,
2637 unsigned int nr_bytes)
1da177e4 2638{
f79ea416 2639 int total_bytes;
1da177e4 2640
2a842aca 2641 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2642
2e60e022
TH
2643 if (!req->bio)
2644 return false;
2645
2a842aca
CH
2646 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2647 !(req->rq_flags & RQF_QUIET)))
2648 print_req_error(req, error);
1da177e4 2649
bc58ba94 2650 blk_account_io_completion(req, nr_bytes);
d72d904a 2651
f79ea416
KO
2652 total_bytes = 0;
2653 while (req->bio) {
2654 struct bio *bio = req->bio;
4f024f37 2655 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2656
4f024f37 2657 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2658 req->bio = bio->bi_next;
1da177e4 2659
fbbaf700
N
2660 /* Completion has already been traced */
2661 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2662 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2663
f79ea416
KO
2664 total_bytes += bio_bytes;
2665 nr_bytes -= bio_bytes;
1da177e4 2666
f79ea416
KO
2667 if (!nr_bytes)
2668 break;
1da177e4
LT
2669 }
2670
2671 /*
2672 * completely done
2673 */
2e60e022
TH
2674 if (!req->bio) {
2675 /*
2676 * Reset counters so that the request stacking driver
2677 * can find how many bytes remain in the request
2678 * later.
2679 */
a2dec7b3 2680 req->__data_len = 0;
2e60e022
TH
2681 return false;
2682 }
1da177e4 2683
a2dec7b3 2684 req->__data_len -= total_bytes;
2e46e8b2
TH
2685
2686 /* update sector only for requests with clear definition of sector */
57292b58 2687 if (!blk_rq_is_passthrough(req))
a2dec7b3 2688 req->__sector += total_bytes >> 9;
2e46e8b2 2689
80a761fd 2690 /* mixed attributes always follow the first bio */
e8064021 2691 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2692 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2693 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2694 }
2695
ed6565e7
CH
2696 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2697 /*
2698 * If total number of sectors is less than the first segment
2699 * size, something has gone terribly wrong.
2700 */
2701 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2702 blk_dump_rq_flags(req, "request botched");
2703 req->__data_len = blk_rq_cur_bytes(req);
2704 }
2e46e8b2 2705
ed6565e7
CH
2706 /* recalculate the number of segments */
2707 blk_recalc_rq_segments(req);
2708 }
2e46e8b2 2709
2e60e022 2710 return true;
1da177e4 2711}
2e60e022 2712EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2713
2a842aca 2714static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
2715 unsigned int nr_bytes,
2716 unsigned int bidi_bytes)
5efccd17 2717{
2e60e022
TH
2718 if (blk_update_request(rq, error, nr_bytes))
2719 return true;
5efccd17 2720
2e60e022
TH
2721 /* Bidi request must be completed as a whole */
2722 if (unlikely(blk_bidi_rq(rq)) &&
2723 blk_update_request(rq->next_rq, error, bidi_bytes))
2724 return true;
5efccd17 2725
e2e1a148
JA
2726 if (blk_queue_add_random(rq->q))
2727 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2728
2729 return false;
1da177e4
LT
2730}
2731
28018c24
JB
2732/**
2733 * blk_unprep_request - unprepare a request
2734 * @req: the request
2735 *
2736 * This function makes a request ready for complete resubmission (or
2737 * completion). It happens only after all error handling is complete,
2738 * so represents the appropriate moment to deallocate any resources
2739 * that were allocated to the request in the prep_rq_fn. The queue
2740 * lock is held when calling this.
2741 */
2742void blk_unprep_request(struct request *req)
2743{
2744 struct request_queue *q = req->q;
2745
e8064021 2746 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2747 if (q->unprep_rq_fn)
2748 q->unprep_rq_fn(q, req);
2749}
2750EXPORT_SYMBOL_GPL(blk_unprep_request);
2751
1da177e4
LT
2752/*
2753 * queue lock must be held
2754 */
2a842aca 2755void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 2756{
cf43e6be
JA
2757 struct request_queue *q = req->q;
2758
2759 if (req->rq_flags & RQF_STATS)
34dbad5d 2760 blk_stat_add(req);
cf43e6be 2761
e8064021 2762 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2763 blk_queue_end_tag(q, req);
b8286239 2764
ba396a6c 2765 BUG_ON(blk_queued_rq(req));
1da177e4 2766
57292b58 2767 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2768 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2769
e78042e5
MA
2770 blk_delete_timer(req);
2771
e8064021 2772 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2773 blk_unprep_request(req);
2774
bc58ba94 2775 blk_account_io_done(req);
b8286239 2776
87760e5e
JA
2777 if (req->end_io) {
2778 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2779 req->end_io(req, error);
87760e5e 2780 } else {
b8286239
KU
2781 if (blk_bidi_rq(req))
2782 __blk_put_request(req->next_rq->q, req->next_rq);
2783
cf43e6be 2784 __blk_put_request(q, req);
b8286239 2785 }
1da177e4 2786}
12120077 2787EXPORT_SYMBOL(blk_finish_request);
1da177e4 2788
3b11313a 2789/**
2e60e022
TH
2790 * blk_end_bidi_request - Complete a bidi request
2791 * @rq: the request to complete
2a842aca 2792 * @error: block status code
2e60e022
TH
2793 * @nr_bytes: number of bytes to complete @rq
2794 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2795 *
2796 * Description:
e3a04fe3 2797 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2798 * Drivers that supports bidi can safely call this member for any
2799 * type of request, bidi or uni. In the later case @bidi_bytes is
2800 * just ignored.
336cdb40
KU
2801 *
2802 * Return:
2e60e022
TH
2803 * %false - we are done with this request
2804 * %true - still buffers pending for this request
a0cd1285 2805 **/
2a842aca 2806static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
2807 unsigned int nr_bytes, unsigned int bidi_bytes)
2808{
336cdb40 2809 struct request_queue *q = rq->q;
2e60e022 2810 unsigned long flags;
32fab448 2811
2e60e022
TH
2812 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2813 return true;
32fab448 2814
336cdb40 2815 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2816 blk_finish_request(rq, error);
336cdb40
KU
2817 spin_unlock_irqrestore(q->queue_lock, flags);
2818
2e60e022 2819 return false;
32fab448
KU
2820}
2821
336cdb40 2822/**
2e60e022
TH
2823 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2824 * @rq: the request to complete
2a842aca 2825 * @error: block status code
e3a04fe3
KU
2826 * @nr_bytes: number of bytes to complete @rq
2827 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2828 *
2829 * Description:
2e60e022
TH
2830 * Identical to blk_end_bidi_request() except that queue lock is
2831 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2832 *
2833 * Return:
2e60e022
TH
2834 * %false - we are done with this request
2835 * %true - still buffers pending for this request
336cdb40 2836 **/
2a842aca 2837static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 2838 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2839{
2e60e022
TH
2840 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2841 return true;
336cdb40 2842
2e60e022 2843 blk_finish_request(rq, error);
336cdb40 2844
2e60e022 2845 return false;
336cdb40 2846}
e19a3ab0
KU
2847
2848/**
2849 * blk_end_request - Helper function for drivers to complete the request.
2850 * @rq: the request being processed
2a842aca 2851 * @error: block status code
e19a3ab0
KU
2852 * @nr_bytes: number of bytes to complete
2853 *
2854 * Description:
2855 * Ends I/O on a number of bytes attached to @rq.
2856 * If @rq has leftover, sets it up for the next range of segments.
2857 *
2858 * Return:
b1f74493
FT
2859 * %false - we are done with this request
2860 * %true - still buffers pending for this request
e19a3ab0 2861 **/
2a842aca
CH
2862bool blk_end_request(struct request *rq, blk_status_t error,
2863 unsigned int nr_bytes)
e19a3ab0 2864{
b1f74493 2865 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2866}
56ad1740 2867EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2868
2869/**
b1f74493
FT
2870 * blk_end_request_all - Helper function for drives to finish the request.
2871 * @rq: the request to finish
2a842aca 2872 * @error: block status code
336cdb40
KU
2873 *
2874 * Description:
b1f74493
FT
2875 * Completely finish @rq.
2876 */
2a842aca 2877void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 2878{
b1f74493
FT
2879 bool pending;
2880 unsigned int bidi_bytes = 0;
336cdb40 2881
b1f74493
FT
2882 if (unlikely(blk_bidi_rq(rq)))
2883 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2884
b1f74493
FT
2885 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2886 BUG_ON(pending);
2887}
56ad1740 2888EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2889
e3a04fe3 2890/**
b1f74493
FT
2891 * __blk_end_request - Helper function for drivers to complete the request.
2892 * @rq: the request being processed
2a842aca 2893 * @error: block status code
b1f74493 2894 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2895 *
2896 * Description:
b1f74493 2897 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2898 *
2899 * Return:
b1f74493
FT
2900 * %false - we are done with this request
2901 * %true - still buffers pending for this request
e3a04fe3 2902 **/
2a842aca
CH
2903bool __blk_end_request(struct request *rq, blk_status_t error,
2904 unsigned int nr_bytes)
e3a04fe3 2905{
b1f74493 2906 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2907}
56ad1740 2908EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2909
32fab448 2910/**
b1f74493
FT
2911 * __blk_end_request_all - Helper function for drives to finish the request.
2912 * @rq: the request to finish
2a842aca 2913 * @error: block status code
32fab448
KU
2914 *
2915 * Description:
b1f74493 2916 * Completely finish @rq. Must be called with queue lock held.
32fab448 2917 */
2a842aca 2918void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 2919{
b1f74493
FT
2920 bool pending;
2921 unsigned int bidi_bytes = 0;
2922
2923 if (unlikely(blk_bidi_rq(rq)))
2924 bidi_bytes = blk_rq_bytes(rq->next_rq);
2925
2926 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2927 BUG_ON(pending);
32fab448 2928}
56ad1740 2929EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2930
e19a3ab0 2931/**
b1f74493
FT
2932 * __blk_end_request_cur - Helper function to finish the current request chunk.
2933 * @rq: the request to finish the current chunk for
2a842aca 2934 * @error: block status code
e19a3ab0
KU
2935 *
2936 * Description:
b1f74493
FT
2937 * Complete the current consecutively mapped chunk from @rq. Must
2938 * be called with queue lock held.
e19a3ab0
KU
2939 *
2940 * Return:
b1f74493
FT
2941 * %false - we are done with this request
2942 * %true - still buffers pending for this request
2943 */
2a842aca 2944bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 2945{
b1f74493 2946 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2947}
56ad1740 2948EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2949
86db1e29
JA
2950void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2951 struct bio *bio)
1da177e4 2952{
b4f42e28 2953 if (bio_has_data(bio))
fb2dce86 2954 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2955
4f024f37 2956 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2957 rq->bio = rq->biotail = bio;
1da177e4 2958
66846572
N
2959 if (bio->bi_bdev)
2960 rq->rq_disk = bio->bi_bdev->bd_disk;
2961}
1da177e4 2962
2d4dc890
IL
2963#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2964/**
2965 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2966 * @rq: the request to be flushed
2967 *
2968 * Description:
2969 * Flush all pages in @rq.
2970 */
2971void rq_flush_dcache_pages(struct request *rq)
2972{
2973 struct req_iterator iter;
7988613b 2974 struct bio_vec bvec;
2d4dc890
IL
2975
2976 rq_for_each_segment(bvec, rq, iter)
7988613b 2977 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2978}
2979EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2980#endif
2981
ef9e3fac
KU
2982/**
2983 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2984 * @q : the queue of the device being checked
2985 *
2986 * Description:
2987 * Check if underlying low-level drivers of a device are busy.
2988 * If the drivers want to export their busy state, they must set own
2989 * exporting function using blk_queue_lld_busy() first.
2990 *
2991 * Basically, this function is used only by request stacking drivers
2992 * to stop dispatching requests to underlying devices when underlying
2993 * devices are busy. This behavior helps more I/O merging on the queue
2994 * of the request stacking driver and prevents I/O throughput regression
2995 * on burst I/O load.
2996 *
2997 * Return:
2998 * 0 - Not busy (The request stacking driver should dispatch request)
2999 * 1 - Busy (The request stacking driver should stop dispatching request)
3000 */
3001int blk_lld_busy(struct request_queue *q)
3002{
3003 if (q->lld_busy_fn)
3004 return q->lld_busy_fn(q);
3005
3006 return 0;
3007}
3008EXPORT_SYMBOL_GPL(blk_lld_busy);
3009
78d8e58a
MS
3010/**
3011 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3012 * @rq: the clone request to be cleaned up
3013 *
3014 * Description:
3015 * Free all bios in @rq for a cloned request.
3016 */
3017void blk_rq_unprep_clone(struct request *rq)
3018{
3019 struct bio *bio;
3020
3021 while ((bio = rq->bio) != NULL) {
3022 rq->bio = bio->bi_next;
3023
3024 bio_put(bio);
3025 }
3026}
3027EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3028
3029/*
3030 * Copy attributes of the original request to the clone request.
3031 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3032 */
3033static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3034{
3035 dst->cpu = src->cpu;
b0fd271d
KU
3036 dst->__sector = blk_rq_pos(src);
3037 dst->__data_len = blk_rq_bytes(src);
3038 dst->nr_phys_segments = src->nr_phys_segments;
3039 dst->ioprio = src->ioprio;
3040 dst->extra_len = src->extra_len;
78d8e58a
MS
3041}
3042
3043/**
3044 * blk_rq_prep_clone - Helper function to setup clone request
3045 * @rq: the request to be setup
3046 * @rq_src: original request to be cloned
3047 * @bs: bio_set that bios for clone are allocated from
3048 * @gfp_mask: memory allocation mask for bio
3049 * @bio_ctr: setup function to be called for each clone bio.
3050 * Returns %0 for success, non %0 for failure.
3051 * @data: private data to be passed to @bio_ctr
3052 *
3053 * Description:
3054 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3055 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3056 * are not copied, and copying such parts is the caller's responsibility.
3057 * Also, pages which the original bios are pointing to are not copied
3058 * and the cloned bios just point same pages.
3059 * So cloned bios must be completed before original bios, which means
3060 * the caller must complete @rq before @rq_src.
3061 */
3062int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3063 struct bio_set *bs, gfp_t gfp_mask,
3064 int (*bio_ctr)(struct bio *, struct bio *, void *),
3065 void *data)
3066{
3067 struct bio *bio, *bio_src;
3068
3069 if (!bs)
3070 bs = fs_bio_set;
3071
3072 __rq_for_each_bio(bio_src, rq_src) {
3073 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3074 if (!bio)
3075 goto free_and_out;
3076
3077 if (bio_ctr && bio_ctr(bio, bio_src, data))
3078 goto free_and_out;
3079
3080 if (rq->bio) {
3081 rq->biotail->bi_next = bio;
3082 rq->biotail = bio;
3083 } else
3084 rq->bio = rq->biotail = bio;
3085 }
3086
3087 __blk_rq_prep_clone(rq, rq_src);
3088
3089 return 0;
3090
3091free_and_out:
3092 if (bio)
3093 bio_put(bio);
3094 blk_rq_unprep_clone(rq);
3095
3096 return -ENOMEM;
b0fd271d
KU
3097}
3098EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3099
59c3d45e 3100int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3101{
3102 return queue_work(kblockd_workqueue, work);
3103}
1da177e4
LT
3104EXPORT_SYMBOL(kblockd_schedule_work);
3105
ee63cfa7
JA
3106int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3107{
3108 return queue_work_on(cpu, kblockd_workqueue, work);
3109}
3110EXPORT_SYMBOL(kblockd_schedule_work_on);
3111
818cd1cb
JA
3112int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3113 unsigned long delay)
3114{
3115 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3116}
3117EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3118
59c3d45e
JA
3119int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3120 unsigned long delay)
e43473b7
VG
3121{
3122 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3123}
3124EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3125
8ab14595
JA
3126int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3127 unsigned long delay)
3128{
3129 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3130}
3131EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3132
75df7136
SJ
3133/**
3134 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3135 * @plug: The &struct blk_plug that needs to be initialized
3136 *
3137 * Description:
3138 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3139 * pending I/O should the task end up blocking between blk_start_plug() and
3140 * blk_finish_plug(). This is important from a performance perspective, but
3141 * also ensures that we don't deadlock. For instance, if the task is blocking
3142 * for a memory allocation, memory reclaim could end up wanting to free a
3143 * page belonging to that request that is currently residing in our private
3144 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3145 * this kind of deadlock.
3146 */
73c10101
JA
3147void blk_start_plug(struct blk_plug *plug)
3148{
3149 struct task_struct *tsk = current;
3150
dd6cf3e1
SL
3151 /*
3152 * If this is a nested plug, don't actually assign it.
3153 */
3154 if (tsk->plug)
3155 return;
3156
73c10101 3157 INIT_LIST_HEAD(&plug->list);
320ae51f 3158 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3159 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3160 /*
dd6cf3e1
SL
3161 * Store ordering should not be needed here, since a potential
3162 * preempt will imply a full memory barrier
73c10101 3163 */
dd6cf3e1 3164 tsk->plug = plug;
73c10101
JA
3165}
3166EXPORT_SYMBOL(blk_start_plug);
3167
3168static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3169{
3170 struct request *rqa = container_of(a, struct request, queuelist);
3171 struct request *rqb = container_of(b, struct request, queuelist);
3172
975927b9
JM
3173 return !(rqa->q < rqb->q ||
3174 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3175}
3176
49cac01e
JA
3177/*
3178 * If 'from_schedule' is true, then postpone the dispatch of requests
3179 * until a safe kblockd context. We due this to avoid accidental big
3180 * additional stack usage in driver dispatch, in places where the originally
3181 * plugger did not intend it.
3182 */
f6603783 3183static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3184 bool from_schedule)
99e22598 3185 __releases(q->queue_lock)
94b5eb28 3186{
49cac01e 3187 trace_block_unplug(q, depth, !from_schedule);
99e22598 3188
70460571 3189 if (from_schedule)
24ecfbe2 3190 blk_run_queue_async(q);
70460571 3191 else
24ecfbe2 3192 __blk_run_queue(q);
70460571 3193 spin_unlock(q->queue_lock);
94b5eb28
JA
3194}
3195
74018dc3 3196static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3197{
3198 LIST_HEAD(callbacks);
3199
2a7d5559
SL
3200 while (!list_empty(&plug->cb_list)) {
3201 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3202
2a7d5559
SL
3203 while (!list_empty(&callbacks)) {
3204 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3205 struct blk_plug_cb,
3206 list);
2a7d5559 3207 list_del(&cb->list);
74018dc3 3208 cb->callback(cb, from_schedule);
2a7d5559 3209 }
048c9374
N
3210 }
3211}
3212
9cbb1750
N
3213struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3214 int size)
3215{
3216 struct blk_plug *plug = current->plug;
3217 struct blk_plug_cb *cb;
3218
3219 if (!plug)
3220 return NULL;
3221
3222 list_for_each_entry(cb, &plug->cb_list, list)
3223 if (cb->callback == unplug && cb->data == data)
3224 return cb;
3225
3226 /* Not currently on the callback list */
3227 BUG_ON(size < sizeof(*cb));
3228 cb = kzalloc(size, GFP_ATOMIC);
3229 if (cb) {
3230 cb->data = data;
3231 cb->callback = unplug;
3232 list_add(&cb->list, &plug->cb_list);
3233 }
3234 return cb;
3235}
3236EXPORT_SYMBOL(blk_check_plugged);
3237
49cac01e 3238void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3239{
3240 struct request_queue *q;
3241 unsigned long flags;
3242 struct request *rq;
109b8129 3243 LIST_HEAD(list);
94b5eb28 3244 unsigned int depth;
73c10101 3245
74018dc3 3246 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3247
3248 if (!list_empty(&plug->mq_list))
3249 blk_mq_flush_plug_list(plug, from_schedule);
3250
73c10101
JA
3251 if (list_empty(&plug->list))
3252 return;
3253
109b8129
N
3254 list_splice_init(&plug->list, &list);
3255
422765c2 3256 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3257
3258 q = NULL;
94b5eb28 3259 depth = 0;
18811272
JA
3260
3261 /*
3262 * Save and disable interrupts here, to avoid doing it for every
3263 * queue lock we have to take.
3264 */
73c10101 3265 local_irq_save(flags);
109b8129
N
3266 while (!list_empty(&list)) {
3267 rq = list_entry_rq(list.next);
73c10101 3268 list_del_init(&rq->queuelist);
73c10101
JA
3269 BUG_ON(!rq->q);
3270 if (rq->q != q) {
99e22598
JA
3271 /*
3272 * This drops the queue lock
3273 */
3274 if (q)
49cac01e 3275 queue_unplugged(q, depth, from_schedule);
73c10101 3276 q = rq->q;
94b5eb28 3277 depth = 0;
73c10101
JA
3278 spin_lock(q->queue_lock);
3279 }
8ba61435
TH
3280
3281 /*
3282 * Short-circuit if @q is dead
3283 */
3f3299d5 3284 if (unlikely(blk_queue_dying(q))) {
2a842aca 3285 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3286 continue;
3287 }
3288
73c10101
JA
3289 /*
3290 * rq is already accounted, so use raw insert
3291 */
f73f44eb 3292 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3293 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3294 else
3295 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3296
3297 depth++;
73c10101
JA
3298 }
3299
99e22598
JA
3300 /*
3301 * This drops the queue lock
3302 */
3303 if (q)
49cac01e 3304 queue_unplugged(q, depth, from_schedule);
73c10101 3305
73c10101
JA
3306 local_irq_restore(flags);
3307}
73c10101
JA
3308
3309void blk_finish_plug(struct blk_plug *plug)
3310{
dd6cf3e1
SL
3311 if (plug != current->plug)
3312 return;
f6603783 3313 blk_flush_plug_list(plug, false);
73c10101 3314
dd6cf3e1 3315 current->plug = NULL;
73c10101 3316}
88b996cd 3317EXPORT_SYMBOL(blk_finish_plug);
73c10101 3318
47fafbc7 3319#ifdef CONFIG_PM
6c954667
LM
3320/**
3321 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3322 * @q: the queue of the device
3323 * @dev: the device the queue belongs to
3324 *
3325 * Description:
3326 * Initialize runtime-PM-related fields for @q and start auto suspend for
3327 * @dev. Drivers that want to take advantage of request-based runtime PM
3328 * should call this function after @dev has been initialized, and its
3329 * request queue @q has been allocated, and runtime PM for it can not happen
3330 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3331 * cases, driver should call this function before any I/O has taken place.
3332 *
3333 * This function takes care of setting up using auto suspend for the device,
3334 * the autosuspend delay is set to -1 to make runtime suspend impossible
3335 * until an updated value is either set by user or by driver. Drivers do
3336 * not need to touch other autosuspend settings.
3337 *
3338 * The block layer runtime PM is request based, so only works for drivers
3339 * that use request as their IO unit instead of those directly use bio's.
3340 */
3341void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3342{
3343 q->dev = dev;
3344 q->rpm_status = RPM_ACTIVE;
3345 pm_runtime_set_autosuspend_delay(q->dev, -1);
3346 pm_runtime_use_autosuspend(q->dev);
3347}
3348EXPORT_SYMBOL(blk_pm_runtime_init);
3349
3350/**
3351 * blk_pre_runtime_suspend - Pre runtime suspend check
3352 * @q: the queue of the device
3353 *
3354 * Description:
3355 * This function will check if runtime suspend is allowed for the device
3356 * by examining if there are any requests pending in the queue. If there
3357 * are requests pending, the device can not be runtime suspended; otherwise,
3358 * the queue's status will be updated to SUSPENDING and the driver can
3359 * proceed to suspend the device.
3360 *
3361 * For the not allowed case, we mark last busy for the device so that
3362 * runtime PM core will try to autosuspend it some time later.
3363 *
3364 * This function should be called near the start of the device's
3365 * runtime_suspend callback.
3366 *
3367 * Return:
3368 * 0 - OK to runtime suspend the device
3369 * -EBUSY - Device should not be runtime suspended
3370 */
3371int blk_pre_runtime_suspend(struct request_queue *q)
3372{
3373 int ret = 0;
3374
4fd41a85
KX
3375 if (!q->dev)
3376 return ret;
3377
6c954667
LM
3378 spin_lock_irq(q->queue_lock);
3379 if (q->nr_pending) {
3380 ret = -EBUSY;
3381 pm_runtime_mark_last_busy(q->dev);
3382 } else {
3383 q->rpm_status = RPM_SUSPENDING;
3384 }
3385 spin_unlock_irq(q->queue_lock);
3386 return ret;
3387}
3388EXPORT_SYMBOL(blk_pre_runtime_suspend);
3389
3390/**
3391 * blk_post_runtime_suspend - Post runtime suspend processing
3392 * @q: the queue of the device
3393 * @err: return value of the device's runtime_suspend function
3394 *
3395 * Description:
3396 * Update the queue's runtime status according to the return value of the
3397 * device's runtime suspend function and mark last busy for the device so
3398 * that PM core will try to auto suspend the device at a later time.
3399 *
3400 * This function should be called near the end of the device's
3401 * runtime_suspend callback.
3402 */
3403void blk_post_runtime_suspend(struct request_queue *q, int err)
3404{
4fd41a85
KX
3405 if (!q->dev)
3406 return;
3407
6c954667
LM
3408 spin_lock_irq(q->queue_lock);
3409 if (!err) {
3410 q->rpm_status = RPM_SUSPENDED;
3411 } else {
3412 q->rpm_status = RPM_ACTIVE;
3413 pm_runtime_mark_last_busy(q->dev);
3414 }
3415 spin_unlock_irq(q->queue_lock);
3416}
3417EXPORT_SYMBOL(blk_post_runtime_suspend);
3418
3419/**
3420 * blk_pre_runtime_resume - Pre runtime resume processing
3421 * @q: the queue of the device
3422 *
3423 * Description:
3424 * Update the queue's runtime status to RESUMING in preparation for the
3425 * runtime resume of the device.
3426 *
3427 * This function should be called near the start of the device's
3428 * runtime_resume callback.
3429 */
3430void blk_pre_runtime_resume(struct request_queue *q)
3431{
4fd41a85
KX
3432 if (!q->dev)
3433 return;
3434
6c954667
LM
3435 spin_lock_irq(q->queue_lock);
3436 q->rpm_status = RPM_RESUMING;
3437 spin_unlock_irq(q->queue_lock);
3438}
3439EXPORT_SYMBOL(blk_pre_runtime_resume);
3440
3441/**
3442 * blk_post_runtime_resume - Post runtime resume processing
3443 * @q: the queue of the device
3444 * @err: return value of the device's runtime_resume function
3445 *
3446 * Description:
3447 * Update the queue's runtime status according to the return value of the
3448 * device's runtime_resume function. If it is successfully resumed, process
3449 * the requests that are queued into the device's queue when it is resuming
3450 * and then mark last busy and initiate autosuspend for it.
3451 *
3452 * This function should be called near the end of the device's
3453 * runtime_resume callback.
3454 */
3455void blk_post_runtime_resume(struct request_queue *q, int err)
3456{
4fd41a85
KX
3457 if (!q->dev)
3458 return;
3459
6c954667
LM
3460 spin_lock_irq(q->queue_lock);
3461 if (!err) {
3462 q->rpm_status = RPM_ACTIVE;
3463 __blk_run_queue(q);
3464 pm_runtime_mark_last_busy(q->dev);
c60855cd 3465 pm_request_autosuspend(q->dev);
6c954667
LM
3466 } else {
3467 q->rpm_status = RPM_SUSPENDED;
3468 }
3469 spin_unlock_irq(q->queue_lock);
3470}
3471EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3472
3473/**
3474 * blk_set_runtime_active - Force runtime status of the queue to be active
3475 * @q: the queue of the device
3476 *
3477 * If the device is left runtime suspended during system suspend the resume
3478 * hook typically resumes the device and corrects runtime status
3479 * accordingly. However, that does not affect the queue runtime PM status
3480 * which is still "suspended". This prevents processing requests from the
3481 * queue.
3482 *
3483 * This function can be used in driver's resume hook to correct queue
3484 * runtime PM status and re-enable peeking requests from the queue. It
3485 * should be called before first request is added to the queue.
3486 */
3487void blk_set_runtime_active(struct request_queue *q)
3488{
3489 spin_lock_irq(q->queue_lock);
3490 q->rpm_status = RPM_ACTIVE;
3491 pm_runtime_mark_last_busy(q->dev);
3492 pm_request_autosuspend(q->dev);
3493 spin_unlock_irq(q->queue_lock);
3494}
3495EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3496#endif
3497
1da177e4
LT
3498int __init blk_dev_init(void)
3499{
ef295ecf
CH
3500 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3501 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3502 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3503 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3504 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3505
89b90be2
TH
3506 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3507 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3508 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3509 if (!kblockd_workqueue)
3510 panic("Failed to create kblockd\n");
3511
3512 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3513 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3514
c2789bd4 3515 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3516 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3517
18fbda91
OS
3518#ifdef CONFIG_DEBUG_FS
3519 blk_debugfs_root = debugfs_create_dir("block", NULL);
3520#endif
3521
d38ecf93 3522 return 0;
1da177e4 3523}