]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-core.c
block: initial patch for on-stack per-task plugging
[mirror_ubuntu-zesty-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
55782138
LZ
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/block.h>
1da177e4 34
8324aa91
JA
35#include "blk.h"
36
d07335e5 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 40
165125e1 41static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
42
43/*
44 * For the allocated request tables
45 */
5ece6c52 46static struct kmem_cache *request_cachep;
1da177e4
LT
47
48/*
49 * For queue allocation
50 */
6728cb0e 51struct kmem_cache *blk_requestq_cachep;
1da177e4 52
1da177e4
LT
53/*
54 * Controlling structure to kblockd
55 */
ff856bad 56static struct workqueue_struct *kblockd_workqueue;
1da177e4 57
26b8256e
JA
58static void drive_stat_acct(struct request *rq, int new_io)
59{
28f13702 60 struct hd_struct *part;
26b8256e 61 int rw = rq_data_dir(rq);
c9959059 62 int cpu;
26b8256e 63
c2553b58 64 if (!blk_do_io_stat(rq))
26b8256e
JA
65 return;
66
074a7aca 67 cpu = part_stat_lock();
c9959059 68
09e099d4
JM
69 if (!new_io) {
70 part = rq->part;
074a7aca 71 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
72 } else {
73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 74 if (!hd_struct_try_get(part)) {
09e099d4
JM
75 /*
76 * The partition is already being removed,
77 * the request will be accounted on the disk only
78 *
79 * We take a reference on disk->part0 although that
80 * partition will never be deleted, so we can treat
81 * it as any other partition.
82 */
83 part = &rq->rq_disk->part0;
6c23a968 84 hd_struct_get(part);
09e099d4 85 }
074a7aca 86 part_round_stats(cpu, part);
316d315b 87 part_inc_in_flight(part, rw);
09e099d4 88 rq->part = part;
26b8256e 89 }
e71bf0d0 90
074a7aca 91 part_stat_unlock();
26b8256e
JA
92}
93
8324aa91 94void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
95{
96 int nr;
97
98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests)
100 nr = q->nr_requests;
101 q->nr_congestion_on = nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 if (nr < 1)
105 nr = 1;
106 q->nr_congestion_off = nr;
107}
108
1da177e4
LT
109/**
110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111 * @bdev: device
112 *
113 * Locates the passed device's request queue and returns the address of its
114 * backing_dev_info
115 *
116 * Will return NULL if the request queue cannot be located.
117 */
118struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119{
120 struct backing_dev_info *ret = NULL;
165125e1 121 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
122
123 if (q)
124 ret = &q->backing_dev_info;
125 return ret;
126}
1da177e4
LT
127EXPORT_SYMBOL(blk_get_backing_dev_info);
128
2a4aa30c 129void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 130{
1afb20f3
FT
131 memset(rq, 0, sizeof(*rq));
132
1da177e4 133 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 134 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 135 rq->cpu = -1;
63a71386 136 rq->q = q;
a2dec7b3 137 rq->__sector = (sector_t) -1;
2e662b65
JA
138 INIT_HLIST_NODE(&rq->hash);
139 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 140 rq->cmd = rq->__cmd;
e2494e1b 141 rq->cmd_len = BLK_MAX_CDB;
63a71386 142 rq->tag = -1;
1da177e4 143 rq->ref_count = 1;
b243ddcb 144 rq->start_time = jiffies;
9195291e 145 set_start_time_ns(rq);
09e099d4 146 rq->part = NULL;
1da177e4 147}
2a4aa30c 148EXPORT_SYMBOL(blk_rq_init);
1da177e4 149
5bb23a68
N
150static void req_bio_endio(struct request *rq, struct bio *bio,
151 unsigned int nbytes, int error)
1da177e4 152{
143a87f4
TH
153 if (error)
154 clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 error = -EIO;
157
158 if (unlikely(nbytes > bio->bi_size)) {
159 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 __func__, nbytes, bio->bi_size);
161 nbytes = bio->bi_size;
5bb23a68 162 }
143a87f4
TH
163
164 if (unlikely(rq->cmd_flags & REQ_QUIET))
165 set_bit(BIO_QUIET, &bio->bi_flags);
166
167 bio->bi_size -= nbytes;
168 bio->bi_sector += (nbytes >> 9);
169
170 if (bio_integrity(bio))
171 bio_integrity_advance(bio, nbytes);
172
173 /* don't actually finish bio if it's part of flush sequence */
174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 bio_endio(bio, error);
1da177e4 176}
1da177e4 177
1da177e4
LT
178void blk_dump_rq_flags(struct request *rq, char *msg)
179{
180 int bit;
181
6728cb0e 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags);
1da177e4 185
83096ebf
TH
186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
187 (unsigned long long)blk_rq_pos(rq),
188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 191
33659ebb 192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 193 printk(KERN_INFO " cdb: ");
d34c87e4 194 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
195 printk("%02x ", rq->cmd[bit]);
196 printk("\n");
197 }
198}
1da177e4
LT
199EXPORT_SYMBOL(blk_dump_rq_flags);
200
3cca6dc1
JA
201static void blk_delay_work(struct work_struct *work)
202{
203 struct request_queue *q;
204
205 q = container_of(work, struct request_queue, delay_work.work);
206 spin_lock_irq(q->queue_lock);
73c10101 207 __blk_run_queue(q);
3cca6dc1
JA
208 spin_unlock_irq(q->queue_lock);
209}
210
211/**
212 * blk_delay_queue - restart queueing after defined interval
213 * @q: The &struct request_queue in question
214 * @msecs: Delay in msecs
215 *
216 * Description:
217 * Sometimes queueing needs to be postponed for a little while, to allow
218 * resources to come back. This function will make sure that queueing is
219 * restarted around the specified time.
220 */
221void blk_delay_queue(struct request_queue *q, unsigned long msecs)
222{
223 schedule_delayed_work(&q->delay_work, msecs_to_jiffies(msecs));
224}
225EXPORT_SYMBOL(blk_delay_queue);
226
1da177e4
LT
227/*
228 * "plug" the device if there are no outstanding requests: this will
229 * force the transfer to start only after we have put all the requests
230 * on the list.
231 *
232 * This is called with interrupts off and no requests on the queue and
233 * with the queue lock held.
234 */
165125e1 235void blk_plug_device(struct request_queue *q)
1da177e4
LT
236{
237 WARN_ON(!irqs_disabled());
238
239 /*
240 * don't plug a stopped queue, it must be paired with blk_start_queue()
241 * which will restart the queueing
242 */
7daac490 243 if (blk_queue_stopped(q))
1da177e4
LT
244 return;
245
e48ec690 246 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 247 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 248 trace_block_plug(q);
2056a782 249 }
1da177e4 250}
1da177e4
LT
251EXPORT_SYMBOL(blk_plug_device);
252
6c5e0c4d
JA
253/**
254 * blk_plug_device_unlocked - plug a device without queue lock held
255 * @q: The &struct request_queue to plug
256 *
257 * Description:
258 * Like @blk_plug_device(), but grabs the queue lock and disables
259 * interrupts.
260 **/
261void blk_plug_device_unlocked(struct request_queue *q)
262{
263 unsigned long flags;
264
265 spin_lock_irqsave(q->queue_lock, flags);
266 blk_plug_device(q);
267 spin_unlock_irqrestore(q->queue_lock, flags);
268}
269EXPORT_SYMBOL(blk_plug_device_unlocked);
270
1da177e4
LT
271/*
272 * remove the queue from the plugged list, if present. called with
273 * queue lock held and interrupts disabled.
274 */
165125e1 275int blk_remove_plug(struct request_queue *q)
1da177e4
LT
276{
277 WARN_ON(!irqs_disabled());
278
e48ec690 279 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
280 return 0;
281
282 del_timer(&q->unplug_timer);
283 return 1;
284}
1da177e4
LT
285EXPORT_SYMBOL(blk_remove_plug);
286
287/*
288 * remove the plug and let it rip..
289 */
165125e1 290void __generic_unplug_device(struct request_queue *q)
1da177e4 291{
7daac490 292 if (unlikely(blk_queue_stopped(q)))
1da177e4 293 return;
a31a9738 294 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
295 return;
296
22e2c507 297 q->request_fn(q);
1da177e4 298}
1da177e4
LT
299
300/**
301 * generic_unplug_device - fire a request queue
165125e1 302 * @q: The &struct request_queue in question
1da177e4
LT
303 *
304 * Description:
305 * Linux uses plugging to build bigger requests queues before letting
306 * the device have at them. If a queue is plugged, the I/O scheduler
307 * is still adding and merging requests on the queue. Once the queue
308 * gets unplugged, the request_fn defined for the queue is invoked and
309 * transfers started.
310 **/
165125e1 311void generic_unplug_device(struct request_queue *q)
1da177e4 312{
dbaf2c00
JA
313 if (blk_queue_plugged(q)) {
314 spin_lock_irq(q->queue_lock);
315 __generic_unplug_device(q);
316 spin_unlock_irq(q->queue_lock);
317 }
1da177e4
LT
318}
319EXPORT_SYMBOL(generic_unplug_device);
320
321static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
322 struct page *page)
323{
165125e1 324 struct request_queue *q = bdi->unplug_io_data;
1da177e4 325
2ad8b1ef 326 blk_unplug(q);
1da177e4
LT
327}
328
86db1e29 329void blk_unplug_work(struct work_struct *work)
1da177e4 330{
165125e1
JA
331 struct request_queue *q =
332 container_of(work, struct request_queue, unplug_work);
1da177e4 333
5f3ea37c 334 trace_block_unplug_io(q);
1da177e4
LT
335 q->unplug_fn(q);
336}
337
86db1e29 338void blk_unplug_timeout(unsigned long data)
1da177e4 339{
165125e1 340 struct request_queue *q = (struct request_queue *)data;
1da177e4 341
5f3ea37c 342 trace_block_unplug_timer(q);
18887ad9 343 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
344}
345
2ad8b1ef
AB
346void blk_unplug(struct request_queue *q)
347{
348 /*
349 * devices don't necessarily have an ->unplug_fn defined
350 */
351 if (q->unplug_fn) {
5f3ea37c 352 trace_block_unplug_io(q);
2ad8b1ef
AB
353 q->unplug_fn(q);
354 }
355}
356EXPORT_SYMBOL(blk_unplug);
357
1da177e4
LT
358/**
359 * blk_start_queue - restart a previously stopped queue
165125e1 360 * @q: The &struct request_queue in question
1da177e4
LT
361 *
362 * Description:
363 * blk_start_queue() will clear the stop flag on the queue, and call
364 * the request_fn for the queue if it was in a stopped state when
365 * entered. Also see blk_stop_queue(). Queue lock must be held.
366 **/
165125e1 367void blk_start_queue(struct request_queue *q)
1da177e4 368{
a038e253
PBG
369 WARN_ON(!irqs_disabled());
370
75ad23bc 371 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 372 __blk_run_queue(q);
1da177e4 373}
1da177e4
LT
374EXPORT_SYMBOL(blk_start_queue);
375
376/**
377 * blk_stop_queue - stop a queue
165125e1 378 * @q: The &struct request_queue in question
1da177e4
LT
379 *
380 * Description:
381 * The Linux block layer assumes that a block driver will consume all
382 * entries on the request queue when the request_fn strategy is called.
383 * Often this will not happen, because of hardware limitations (queue
384 * depth settings). If a device driver gets a 'queue full' response,
385 * or if it simply chooses not to queue more I/O at one point, it can
386 * call this function to prevent the request_fn from being called until
387 * the driver has signalled it's ready to go again. This happens by calling
388 * blk_start_queue() to restart queue operations. Queue lock must be held.
389 **/
165125e1 390void blk_stop_queue(struct request_queue *q)
1da177e4
LT
391{
392 blk_remove_plug(q);
3cca6dc1 393 cancel_delayed_work(&q->delay_work);
75ad23bc 394 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
395}
396EXPORT_SYMBOL(blk_stop_queue);
397
398/**
399 * blk_sync_queue - cancel any pending callbacks on a queue
400 * @q: the queue
401 *
402 * Description:
403 * The block layer may perform asynchronous callback activity
404 * on a queue, such as calling the unplug function after a timeout.
405 * A block device may call blk_sync_queue to ensure that any
406 * such activity is cancelled, thus allowing it to release resources
59c51591 407 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
408 * that its ->make_request_fn will not re-add plugging prior to calling
409 * this function.
410 *
411 */
412void blk_sync_queue(struct request_queue *q)
413{
414 del_timer_sync(&q->unplug_timer);
70ed28b9 415 del_timer_sync(&q->timeout);
64d01dc9 416 cancel_work_sync(&q->unplug_work);
e43473b7 417 throtl_shutdown_timer_wq(q);
3cca6dc1 418 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
419}
420EXPORT_SYMBOL(blk_sync_queue);
421
422/**
80a4b58e 423 * __blk_run_queue - run a single device queue
1da177e4 424 * @q: The queue to run
80a4b58e
JA
425 *
426 * Description:
427 * See @blk_run_queue. This variant must be called with the queue lock
428 * held and interrupts disabled.
429 *
1da177e4 430 */
75ad23bc 431void __blk_run_queue(struct request_queue *q)
1da177e4 432{
1da177e4 433 blk_remove_plug(q);
dac07ec1 434
a538cd03
TH
435 if (unlikely(blk_queue_stopped(q)))
436 return;
437
438 if (elv_queue_empty(q))
439 return;
440
dac07ec1
JA
441 /*
442 * Only recurse once to avoid overrunning the stack, let the unplug
443 * handling reinvoke the handler shortly if we already got there.
444 */
a538cd03
TH
445 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
446 q->request_fn(q);
447 queue_flag_clear(QUEUE_FLAG_REENTER, q);
448 } else {
449 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
450 kblockd_schedule_work(q, &q->unplug_work);
451 }
75ad23bc
NP
452}
453EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 454
75ad23bc
NP
455/**
456 * blk_run_queue - run a single device queue
457 * @q: The queue to run
80a4b58e
JA
458 *
459 * Description:
460 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 461 * May be used to restart queueing when a request has completed.
75ad23bc
NP
462 */
463void blk_run_queue(struct request_queue *q)
464{
465 unsigned long flags;
466
467 spin_lock_irqsave(q->queue_lock, flags);
468 __blk_run_queue(q);
1da177e4
LT
469 spin_unlock_irqrestore(q->queue_lock, flags);
470}
471EXPORT_SYMBOL(blk_run_queue);
472
165125e1 473void blk_put_queue(struct request_queue *q)
483f4afc
AV
474{
475 kobject_put(&q->kobj);
476}
483f4afc 477
6728cb0e 478void blk_cleanup_queue(struct request_queue *q)
483f4afc 479{
e3335de9
JA
480 /*
481 * We know we have process context here, so we can be a little
482 * cautious and ensure that pending block actions on this device
483 * are done before moving on. Going into this function, we should
484 * not have processes doing IO to this device.
485 */
486 blk_sync_queue(q);
487
31373d09 488 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 489 mutex_lock(&q->sysfs_lock);
75ad23bc 490 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
491 mutex_unlock(&q->sysfs_lock);
492
493 if (q->elevator)
494 elevator_exit(q->elevator);
495
496 blk_put_queue(q);
497}
1da177e4
LT
498EXPORT_SYMBOL(blk_cleanup_queue);
499
165125e1 500static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
501{
502 struct request_list *rl = &q->rq;
503
1abec4fd
MS
504 if (unlikely(rl->rq_pool))
505 return 0;
506
1faa16d2
JA
507 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
508 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 509 rl->elvpriv = 0;
1faa16d2
JA
510 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
511 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 512
1946089a
CL
513 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
514 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
515
516 if (!rl->rq_pool)
517 return -ENOMEM;
518
519 return 0;
520}
521
165125e1 522struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 523{
1946089a
CL
524 return blk_alloc_queue_node(gfp_mask, -1);
525}
526EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 527
165125e1 528struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 529{
165125e1 530 struct request_queue *q;
e0bf68dd 531 int err;
1946089a 532
8324aa91 533 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 534 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
535 if (!q)
536 return NULL;
537
e0bf68dd
PZ
538 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
539 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
540 q->backing_dev_info.ra_pages =
541 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
542 q->backing_dev_info.state = 0;
543 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 544 q->backing_dev_info.name = "block";
0989a025 545
e0bf68dd
PZ
546 err = bdi_init(&q->backing_dev_info);
547 if (err) {
8324aa91 548 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
549 return NULL;
550 }
551
e43473b7
VG
552 if (blk_throtl_init(q)) {
553 kmem_cache_free(blk_requestq_cachep, q);
554 return NULL;
555 }
556
31373d09
MG
557 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
558 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 559 init_timer(&q->unplug_timer);
242f9dcb
JA
560 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
561 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
562 INIT_LIST_HEAD(&q->flush_queue[0]);
563 INIT_LIST_HEAD(&q->flush_queue[1]);
564 INIT_LIST_HEAD(&q->flush_data_in_flight);
713ada9b 565 INIT_WORK(&q->unplug_work, blk_unplug_work);
3cca6dc1 566 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 567
8324aa91 568 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 569
483f4afc 570 mutex_init(&q->sysfs_lock);
e7e72bf6 571 spin_lock_init(&q->__queue_lock);
483f4afc 572
1da177e4
LT
573 return q;
574}
1946089a 575EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
576
577/**
578 * blk_init_queue - prepare a request queue for use with a block device
579 * @rfn: The function to be called to process requests that have been
580 * placed on the queue.
581 * @lock: Request queue spin lock
582 *
583 * Description:
584 * If a block device wishes to use the standard request handling procedures,
585 * which sorts requests and coalesces adjacent requests, then it must
586 * call blk_init_queue(). The function @rfn will be called when there
587 * are requests on the queue that need to be processed. If the device
588 * supports plugging, then @rfn may not be called immediately when requests
589 * are available on the queue, but may be called at some time later instead.
590 * Plugged queues are generally unplugged when a buffer belonging to one
591 * of the requests on the queue is needed, or due to memory pressure.
592 *
593 * @rfn is not required, or even expected, to remove all requests off the
594 * queue, but only as many as it can handle at a time. If it does leave
595 * requests on the queue, it is responsible for arranging that the requests
596 * get dealt with eventually.
597 *
598 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
599 * request queue; this lock will be taken also from interrupt context, so irq
600 * disabling is needed for it.
1da177e4 601 *
710027a4 602 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
603 * it didn't succeed.
604 *
605 * Note:
606 * blk_init_queue() must be paired with a blk_cleanup_queue() call
607 * when the block device is deactivated (such as at module unload).
608 **/
1946089a 609
165125e1 610struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 611{
1946089a
CL
612 return blk_init_queue_node(rfn, lock, -1);
613}
614EXPORT_SYMBOL(blk_init_queue);
615
165125e1 616struct request_queue *
1946089a
CL
617blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
618{
c86d1b8a 619 struct request_queue *uninit_q, *q;
1da177e4 620
c86d1b8a
MS
621 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
622 if (!uninit_q)
623 return NULL;
624
625 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
626 if (!q)
627 blk_cleanup_queue(uninit_q);
628
629 return q;
01effb0d
MS
630}
631EXPORT_SYMBOL(blk_init_queue_node);
632
633struct request_queue *
634blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
635 spinlock_t *lock)
636{
637 return blk_init_allocated_queue_node(q, rfn, lock, -1);
638}
639EXPORT_SYMBOL(blk_init_allocated_queue);
640
641struct request_queue *
642blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
643 spinlock_t *lock, int node_id)
644{
1da177e4
LT
645 if (!q)
646 return NULL;
647
1946089a 648 q->node = node_id;
c86d1b8a 649 if (blk_init_free_list(q))
8669aafd 650 return NULL;
1da177e4
LT
651
652 q->request_fn = rfn;
1da177e4 653 q->prep_rq_fn = NULL;
28018c24 654 q->unprep_rq_fn = NULL;
1da177e4 655 q->unplug_fn = generic_unplug_device;
bc58ba94 656 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
657 q->queue_lock = lock;
658
f3b144aa
JA
659 /*
660 * This also sets hw/phys segments, boundary and size
661 */
1da177e4 662 blk_queue_make_request(q, __make_request);
1da177e4 663
44ec9542
AS
664 q->sg_reserved_size = INT_MAX;
665
1da177e4
LT
666 /*
667 * all done
668 */
669 if (!elevator_init(q, NULL)) {
670 blk_queue_congestion_threshold(q);
671 return q;
672 }
673
1da177e4
LT
674 return NULL;
675}
01effb0d 676EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 677
165125e1 678int blk_get_queue(struct request_queue *q)
1da177e4 679{
fde6ad22 680 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 681 kobject_get(&q->kobj);
1da177e4
LT
682 return 0;
683 }
684
685 return 1;
686}
1da177e4 687
165125e1 688static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 689{
73c10101
JA
690 BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
691
4aff5e23 692 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 693 elv_put_request(q, rq);
1da177e4
LT
694 mempool_free(rq, q->rq.rq_pool);
695}
696
1ea25ecb 697static struct request *
42dad764 698blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
699{
700 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
701
702 if (!rq)
703 return NULL;
704
2a4aa30c 705 blk_rq_init(q, rq);
1afb20f3 706
42dad764 707 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 708
cb98fc8b 709 if (priv) {
cb78b285 710 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
711 mempool_free(rq, q->rq.rq_pool);
712 return NULL;
713 }
4aff5e23 714 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 715 }
1da177e4 716
cb98fc8b 717 return rq;
1da177e4
LT
718}
719
720/*
721 * ioc_batching returns true if the ioc is a valid batching request and
722 * should be given priority access to a request.
723 */
165125e1 724static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
725{
726 if (!ioc)
727 return 0;
728
729 /*
730 * Make sure the process is able to allocate at least 1 request
731 * even if the batch times out, otherwise we could theoretically
732 * lose wakeups.
733 */
734 return ioc->nr_batch_requests == q->nr_batching ||
735 (ioc->nr_batch_requests > 0
736 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
737}
738
739/*
740 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
741 * will cause the process to be a "batcher" on all queues in the system. This
742 * is the behaviour we want though - once it gets a wakeup it should be given
743 * a nice run.
744 */
165125e1 745static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
746{
747 if (!ioc || ioc_batching(q, ioc))
748 return;
749
750 ioc->nr_batch_requests = q->nr_batching;
751 ioc->last_waited = jiffies;
752}
753
1faa16d2 754static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
755{
756 struct request_list *rl = &q->rq;
757
1faa16d2
JA
758 if (rl->count[sync] < queue_congestion_off_threshold(q))
759 blk_clear_queue_congested(q, sync);
1da177e4 760
1faa16d2
JA
761 if (rl->count[sync] + 1 <= q->nr_requests) {
762 if (waitqueue_active(&rl->wait[sync]))
763 wake_up(&rl->wait[sync]);
1da177e4 764
1faa16d2 765 blk_clear_queue_full(q, sync);
1da177e4
LT
766 }
767}
768
769/*
770 * A request has just been released. Account for it, update the full and
771 * congestion status, wake up any waiters. Called under q->queue_lock.
772 */
1faa16d2 773static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
774{
775 struct request_list *rl = &q->rq;
776
1faa16d2 777 rl->count[sync]--;
cb98fc8b
TH
778 if (priv)
779 rl->elvpriv--;
1da177e4 780
1faa16d2 781 __freed_request(q, sync);
1da177e4 782
1faa16d2
JA
783 if (unlikely(rl->starved[sync ^ 1]))
784 __freed_request(q, sync ^ 1);
1da177e4
LT
785}
786
9d5a4e94
MS
787/*
788 * Determine if elevator data should be initialized when allocating the
789 * request associated with @bio.
790 */
791static bool blk_rq_should_init_elevator(struct bio *bio)
792{
793 if (!bio)
794 return true;
795
796 /*
797 * Flush requests do not use the elevator so skip initialization.
798 * This allows a request to share the flush and elevator data.
799 */
800 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
801 return false;
802
803 return true;
804}
805
1da177e4 806/*
d6344532
NP
807 * Get a free request, queue_lock must be held.
808 * Returns NULL on failure, with queue_lock held.
809 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 810 */
165125e1 811static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 812 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
813{
814 struct request *rq = NULL;
815 struct request_list *rl = &q->rq;
88ee5ef1 816 struct io_context *ioc = NULL;
1faa16d2 817 const bool is_sync = rw_is_sync(rw_flags) != 0;
9d5a4e94 818 int may_queue, priv = 0;
88ee5ef1 819
7749a8d4 820 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
821 if (may_queue == ELV_MQUEUE_NO)
822 goto rq_starved;
823
1faa16d2
JA
824 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
825 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 826 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
827 /*
828 * The queue will fill after this allocation, so set
829 * it as full, and mark this process as "batching".
830 * This process will be allowed to complete a batch of
831 * requests, others will be blocked.
832 */
1faa16d2 833 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 834 ioc_set_batching(q, ioc);
1faa16d2 835 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
836 } else {
837 if (may_queue != ELV_MQUEUE_MUST
838 && !ioc_batching(q, ioc)) {
839 /*
840 * The queue is full and the allocating
841 * process is not a "batcher", and not
842 * exempted by the IO scheduler
843 */
844 goto out;
845 }
846 }
1da177e4 847 }
1faa16d2 848 blk_set_queue_congested(q, is_sync);
1da177e4
LT
849 }
850
082cf69e
JA
851 /*
852 * Only allow batching queuers to allocate up to 50% over the defined
853 * limit of requests, otherwise we could have thousands of requests
854 * allocated with any setting of ->nr_requests
855 */
1faa16d2 856 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 857 goto out;
fd782a4a 858
1faa16d2
JA
859 rl->count[is_sync]++;
860 rl->starved[is_sync] = 0;
cb98fc8b 861
9d5a4e94
MS
862 if (blk_rq_should_init_elevator(bio)) {
863 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
864 if (priv)
865 rl->elvpriv++;
866 }
cb98fc8b 867
f253b86b
JA
868 if (blk_queue_io_stat(q))
869 rw_flags |= REQ_IO_STAT;
1da177e4
LT
870 spin_unlock_irq(q->queue_lock);
871
7749a8d4 872 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 873 if (unlikely(!rq)) {
1da177e4
LT
874 /*
875 * Allocation failed presumably due to memory. Undo anything
876 * we might have messed up.
877 *
878 * Allocating task should really be put onto the front of the
879 * wait queue, but this is pretty rare.
880 */
881 spin_lock_irq(q->queue_lock);
1faa16d2 882 freed_request(q, is_sync, priv);
1da177e4
LT
883
884 /*
885 * in the very unlikely event that allocation failed and no
886 * requests for this direction was pending, mark us starved
887 * so that freeing of a request in the other direction will
888 * notice us. another possible fix would be to split the
889 * rq mempool into READ and WRITE
890 */
891rq_starved:
1faa16d2
JA
892 if (unlikely(rl->count[is_sync] == 0))
893 rl->starved[is_sync] = 1;
1da177e4 894
1da177e4
LT
895 goto out;
896 }
897
88ee5ef1
JA
898 /*
899 * ioc may be NULL here, and ioc_batching will be false. That's
900 * OK, if the queue is under the request limit then requests need
901 * not count toward the nr_batch_requests limit. There will always
902 * be some limit enforced by BLK_BATCH_TIME.
903 */
1da177e4
LT
904 if (ioc_batching(q, ioc))
905 ioc->nr_batch_requests--;
6728cb0e 906
1faa16d2 907 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 908out:
1da177e4
LT
909 return rq;
910}
911
912/*
913 * No available requests for this queue, unplug the device and wait for some
914 * requests to become available.
d6344532
NP
915 *
916 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 917 */
165125e1 918static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 919 struct bio *bio)
1da177e4 920{
1faa16d2 921 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
922 struct request *rq;
923
7749a8d4 924 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
925 while (!rq) {
926 DEFINE_WAIT(wait);
05caf8db 927 struct io_context *ioc;
1da177e4
LT
928 struct request_list *rl = &q->rq;
929
1faa16d2 930 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
931 TASK_UNINTERRUPTIBLE);
932
1faa16d2 933 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 934
05caf8db
ZY
935 __generic_unplug_device(q);
936 spin_unlock_irq(q->queue_lock);
937 io_schedule();
1da177e4 938
05caf8db
ZY
939 /*
940 * After sleeping, we become a "batching" process and
941 * will be able to allocate at least one request, and
942 * up to a big batch of them for a small period time.
943 * See ioc_batching, ioc_set_batching
944 */
945 ioc = current_io_context(GFP_NOIO, q->node);
946 ioc_set_batching(q, ioc);
d6344532 947
05caf8db 948 spin_lock_irq(q->queue_lock);
1faa16d2 949 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
950
951 rq = get_request(q, rw_flags, bio, GFP_NOIO);
952 };
1da177e4
LT
953
954 return rq;
955}
956
165125e1 957struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
958{
959 struct request *rq;
960
961 BUG_ON(rw != READ && rw != WRITE);
962
d6344532
NP
963 spin_lock_irq(q->queue_lock);
964 if (gfp_mask & __GFP_WAIT) {
22e2c507 965 rq = get_request_wait(q, rw, NULL);
d6344532 966 } else {
22e2c507 967 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
968 if (!rq)
969 spin_unlock_irq(q->queue_lock);
970 }
971 /* q->queue_lock is unlocked at this point */
1da177e4
LT
972
973 return rq;
974}
1da177e4
LT
975EXPORT_SYMBOL(blk_get_request);
976
dc72ef4a 977/**
79eb63e9 978 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 979 * @q: target request queue
79eb63e9
BH
980 * @bio: The bio describing the memory mappings that will be submitted for IO.
981 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 982 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 983 *
79eb63e9
BH
984 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
985 * type commands. Where the struct request needs to be farther initialized by
986 * the caller. It is passed a &struct bio, which describes the memory info of
987 * the I/O transfer.
dc72ef4a 988 *
79eb63e9
BH
989 * The caller of blk_make_request must make sure that bi_io_vec
990 * are set to describe the memory buffers. That bio_data_dir() will return
991 * the needed direction of the request. (And all bio's in the passed bio-chain
992 * are properly set accordingly)
993 *
994 * If called under none-sleepable conditions, mapped bio buffers must not
995 * need bouncing, by calling the appropriate masked or flagged allocator,
996 * suitable for the target device. Otherwise the call to blk_queue_bounce will
997 * BUG.
53674ac5
JA
998 *
999 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1000 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1001 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1002 * completion of a bio that hasn't been submitted yet, thus resulting in a
1003 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1004 * of bio_alloc(), as that avoids the mempool deadlock.
1005 * If possible a big IO should be split into smaller parts when allocation
1006 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1007 */
79eb63e9
BH
1008struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1009 gfp_t gfp_mask)
dc72ef4a 1010{
79eb63e9
BH
1011 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1012
1013 if (unlikely(!rq))
1014 return ERR_PTR(-ENOMEM);
1015
1016 for_each_bio(bio) {
1017 struct bio *bounce_bio = bio;
1018 int ret;
1019
1020 blk_queue_bounce(q, &bounce_bio);
1021 ret = blk_rq_append_bio(q, rq, bounce_bio);
1022 if (unlikely(ret)) {
1023 blk_put_request(rq);
1024 return ERR_PTR(ret);
1025 }
1026 }
1027
1028 return rq;
dc72ef4a 1029}
79eb63e9 1030EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1031
1da177e4
LT
1032/**
1033 * blk_requeue_request - put a request back on queue
1034 * @q: request queue where request should be inserted
1035 * @rq: request to be inserted
1036 *
1037 * Description:
1038 * Drivers often keep queueing requests until the hardware cannot accept
1039 * more, when that condition happens we need to put the request back
1040 * on the queue. Must be called with queue lock held.
1041 */
165125e1 1042void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1043{
242f9dcb
JA
1044 blk_delete_timer(rq);
1045 blk_clear_rq_complete(rq);
5f3ea37c 1046 trace_block_rq_requeue(q, rq);
2056a782 1047
1da177e4
LT
1048 if (blk_rq_tagged(rq))
1049 blk_queue_end_tag(q, rq);
1050
ba396a6c
JB
1051 BUG_ON(blk_queued_rq(rq));
1052
1da177e4
LT
1053 elv_requeue_request(q, rq);
1054}
1da177e4
LT
1055EXPORT_SYMBOL(blk_requeue_request);
1056
73c10101
JA
1057static void add_acct_request(struct request_queue *q, struct request *rq,
1058 int where)
1059{
1060 drive_stat_acct(rq, 1);
1061 __elv_add_request(q, rq, where, 0);
1062}
1063
1da177e4 1064/**
710027a4 1065 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
1066 * @q: request queue where request should be inserted
1067 * @rq: request to be inserted
1068 * @at_head: insert request at head or tail of queue
1069 * @data: private data
1da177e4
LT
1070 *
1071 * Description:
1072 * Many block devices need to execute commands asynchronously, so they don't
1073 * block the whole kernel from preemption during request execution. This is
1074 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1075 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1076 * be scheduled for actual execution by the request queue.
1da177e4
LT
1077 *
1078 * We have the option of inserting the head or the tail of the queue.
1079 * Typically we use the tail for new ioctls and so forth. We use the head
1080 * of the queue for things like a QUEUE_FULL message from a device, or a
1081 * host that is unable to accept a particular command.
1082 */
165125e1 1083void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1084 int at_head, void *data)
1da177e4 1085{
867d1191 1086 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1087 unsigned long flags;
1088
1089 /*
1090 * tell I/O scheduler that this isn't a regular read/write (ie it
1091 * must not attempt merges on this) and that it acts as a soft
1092 * barrier
1093 */
4aff5e23 1094 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1095
1096 rq->special = data;
1097
1098 spin_lock_irqsave(q->queue_lock, flags);
1099
1100 /*
1101 * If command is tagged, release the tag
1102 */
867d1191
TH
1103 if (blk_rq_tagged(rq))
1104 blk_queue_end_tag(q, rq);
1da177e4 1105
73c10101 1106 add_acct_request(q, rq, where);
a7f55792 1107 __blk_run_queue(q);
1da177e4
LT
1108 spin_unlock_irqrestore(q->queue_lock, flags);
1109}
1da177e4
LT
1110EXPORT_SYMBOL(blk_insert_request);
1111
074a7aca
TH
1112static void part_round_stats_single(int cpu, struct hd_struct *part,
1113 unsigned long now)
1114{
1115 if (now == part->stamp)
1116 return;
1117
316d315b 1118 if (part_in_flight(part)) {
074a7aca 1119 __part_stat_add(cpu, part, time_in_queue,
316d315b 1120 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1121 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1122 }
1123 part->stamp = now;
1124}
1125
1126/**
496aa8a9
RD
1127 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1128 * @cpu: cpu number for stats access
1129 * @part: target partition
1da177e4
LT
1130 *
1131 * The average IO queue length and utilisation statistics are maintained
1132 * by observing the current state of the queue length and the amount of
1133 * time it has been in this state for.
1134 *
1135 * Normally, that accounting is done on IO completion, but that can result
1136 * in more than a second's worth of IO being accounted for within any one
1137 * second, leading to >100% utilisation. To deal with that, we call this
1138 * function to do a round-off before returning the results when reading
1139 * /proc/diskstats. This accounts immediately for all queue usage up to
1140 * the current jiffies and restarts the counters again.
1141 */
c9959059 1142void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1143{
1144 unsigned long now = jiffies;
1145
074a7aca
TH
1146 if (part->partno)
1147 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1148 part_round_stats_single(cpu, part, now);
6f2576af 1149}
074a7aca 1150EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1151
1da177e4
LT
1152/*
1153 * queue lock must be held
1154 */
165125e1 1155void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1156{
1da177e4
LT
1157 if (unlikely(!q))
1158 return;
1159 if (unlikely(--req->ref_count))
1160 return;
1161
8922e16c
TH
1162 elv_completed_request(q, req);
1163
1cd96c24
BH
1164 /* this is a bio leak */
1165 WARN_ON(req->bio != NULL);
1166
1da177e4
LT
1167 /*
1168 * Request may not have originated from ll_rw_blk. if not,
1169 * it didn't come out of our reserved rq pools
1170 */
49171e5c 1171 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1172 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1173 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1174
1da177e4 1175 BUG_ON(!list_empty(&req->queuelist));
9817064b 1176 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1177
1178 blk_free_request(q, req);
1faa16d2 1179 freed_request(q, is_sync, priv);
1da177e4
LT
1180 }
1181}
6e39b69e
MC
1182EXPORT_SYMBOL_GPL(__blk_put_request);
1183
1da177e4
LT
1184void blk_put_request(struct request *req)
1185{
8922e16c 1186 unsigned long flags;
165125e1 1187 struct request_queue *q = req->q;
8922e16c 1188
52a93ba8
FT
1189 spin_lock_irqsave(q->queue_lock, flags);
1190 __blk_put_request(q, req);
1191 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1192}
1da177e4
LT
1193EXPORT_SYMBOL(blk_put_request);
1194
66ac0280
CH
1195/**
1196 * blk_add_request_payload - add a payload to a request
1197 * @rq: request to update
1198 * @page: page backing the payload
1199 * @len: length of the payload.
1200 *
1201 * This allows to later add a payload to an already submitted request by
1202 * a block driver. The driver needs to take care of freeing the payload
1203 * itself.
1204 *
1205 * Note that this is a quite horrible hack and nothing but handling of
1206 * discard requests should ever use it.
1207 */
1208void blk_add_request_payload(struct request *rq, struct page *page,
1209 unsigned int len)
1210{
1211 struct bio *bio = rq->bio;
1212
1213 bio->bi_io_vec->bv_page = page;
1214 bio->bi_io_vec->bv_offset = 0;
1215 bio->bi_io_vec->bv_len = len;
1216
1217 bio->bi_size = len;
1218 bio->bi_vcnt = 1;
1219 bio->bi_phys_segments = 1;
1220
1221 rq->__data_len = rq->resid_len = len;
1222 rq->nr_phys_segments = 1;
1223 rq->buffer = bio_data(bio);
1224}
1225EXPORT_SYMBOL_GPL(blk_add_request_payload);
1226
73c10101
JA
1227static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1228 struct bio *bio)
1229{
1230 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1231
1232 /*
1233 * Debug stuff, kill later
1234 */
1235 if (!rq_mergeable(req)) {
1236 blk_dump_rq_flags(req, "back");
1237 return false;
1238 }
1239
1240 if (!ll_back_merge_fn(q, req, bio))
1241 return false;
1242
1243 trace_block_bio_backmerge(q, bio);
1244
1245 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1246 blk_rq_set_mixed_merge(req);
1247
1248 req->biotail->bi_next = bio;
1249 req->biotail = bio;
1250 req->__data_len += bio->bi_size;
1251 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1252
1253 drive_stat_acct(req, 0);
1254 return true;
1255}
1256
1257static bool bio_attempt_front_merge(struct request_queue *q,
1258 struct request *req, struct bio *bio)
1259{
1260 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1261 sector_t sector;
1262
1263 /*
1264 * Debug stuff, kill later
1265 */
1266 if (!rq_mergeable(req)) {
1267 blk_dump_rq_flags(req, "front");
1268 return false;
1269 }
1270
1271 if (!ll_front_merge_fn(q, req, bio))
1272 return false;
1273
1274 trace_block_bio_frontmerge(q, bio);
1275
1276 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1277 blk_rq_set_mixed_merge(req);
1278
1279 sector = bio->bi_sector;
1280
1281 bio->bi_next = req->bio;
1282 req->bio = bio;
1283
1284 /*
1285 * may not be valid. if the low level driver said
1286 * it didn't need a bounce buffer then it better
1287 * not touch req->buffer either...
1288 */
1289 req->buffer = bio_data(bio);
1290 req->__sector = bio->bi_sector;
1291 req->__data_len += bio->bi_size;
1292 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1293
1294 drive_stat_acct(req, 0);
1295 return true;
1296}
1297
1298/*
1299 * Attempts to merge with the plugged list in the current process. Returns
1300 * true if merge was succesful, otherwise false.
1301 */
1302static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1303 struct bio *bio)
1304{
1305 struct blk_plug *plug;
1306 struct request *rq;
1307 bool ret = false;
1308
1309 plug = tsk->plug;
1310 if (!plug)
1311 goto out;
1312
1313 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1314 int el_ret;
1315
1316 if (rq->q != q)
1317 continue;
1318
1319 el_ret = elv_try_merge(rq, bio);
1320 if (el_ret == ELEVATOR_BACK_MERGE) {
1321 ret = bio_attempt_back_merge(q, rq, bio);
1322 if (ret)
1323 break;
1324 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1325 ret = bio_attempt_front_merge(q, rq, bio);
1326 if (ret)
1327 break;
1328 }
1329 }
1330out:
1331 return ret;
1332}
1333
86db1e29 1334void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1335{
c7c22e4d 1336 req->cpu = bio->bi_comp_cpu;
4aff5e23 1337 req->cmd_type = REQ_TYPE_FS;
52d9e675 1338
7b6d91da
CH
1339 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1340 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1341 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1342
52d9e675 1343 req->errors = 0;
a2dec7b3 1344 req->__sector = bio->bi_sector;
52d9e675 1345 req->ioprio = bio_prio(bio);
bc1c56fd 1346 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1347}
1348
165125e1 1349static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1350{
5e00d1b5 1351 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1352 struct blk_plug *plug;
1353 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1354 struct request *req;
1da177e4 1355
1da177e4
LT
1356 /*
1357 * low level driver can indicate that it wants pages above a
1358 * certain limit bounced to low memory (ie for highmem, or even
1359 * ISA dma in theory)
1360 */
1361 blk_queue_bounce(q, &bio);
1362
4fed947c 1363 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1364 spin_lock_irq(q->queue_lock);
ae1b1539 1365 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1366 goto get_rq;
1367 }
1368
73c10101
JA
1369 /*
1370 * Check if we can merge with the plugged list before grabbing
1371 * any locks.
1372 */
1373 if (attempt_plug_merge(current, q, bio))
6728cb0e 1374 goto out;
1da177e4 1375
73c10101 1376 spin_lock_irq(q->queue_lock);
2056a782 1377
73c10101
JA
1378 el_ret = elv_merge(q, &req, bio);
1379 if (el_ret == ELEVATOR_BACK_MERGE) {
1380 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1381 if (bio_attempt_back_merge(q, req, bio)) {
1382 if (!attempt_back_merge(q, req))
1383 elv_merged_request(q, req, el_ret);
1384 goto out_unlock;
1385 }
1386 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1387 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1388 if (bio_attempt_front_merge(q, req, bio)) {
1389 if (!attempt_front_merge(q, req))
1390 elv_merged_request(q, req, el_ret);
1391 goto out_unlock;
80a761fd 1392 }
1da177e4
LT
1393 }
1394
450991bc 1395get_rq:
7749a8d4
JA
1396 /*
1397 * This sync check and mask will be re-done in init_request_from_bio(),
1398 * but we need to set it earlier to expose the sync flag to the
1399 * rq allocator and io schedulers.
1400 */
1401 rw_flags = bio_data_dir(bio);
1402 if (sync)
7b6d91da 1403 rw_flags |= REQ_SYNC;
7749a8d4 1404
1da177e4 1405 /*
450991bc 1406 * Grab a free request. This is might sleep but can not fail.
d6344532 1407 * Returns with the queue unlocked.
450991bc 1408 */
7749a8d4 1409 req = get_request_wait(q, rw_flags, bio);
d6344532 1410
450991bc
NP
1411 /*
1412 * After dropping the lock and possibly sleeping here, our request
1413 * may now be mergeable after it had proven unmergeable (above).
1414 * We don't worry about that case for efficiency. It won't happen
1415 * often, and the elevators are able to handle it.
1da177e4 1416 */
52d9e675 1417 init_request_from_bio(req, bio);
1da177e4 1418
c7c22e4d 1419 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
73c10101
JA
1420 bio_flagged(bio, BIO_CPU_AFFINE)) {
1421 req->cpu = blk_cpu_to_group(get_cpu());
1422 put_cpu();
1423 }
1424
1425 plug = current->plug;
1426 if (plug && !sync) {
1427 if (!plug->should_sort && !list_empty(&plug->list)) {
1428 struct request *__rq;
1429
1430 __rq = list_entry_rq(plug->list.prev);
1431 if (__rq->q != q)
1432 plug->should_sort = 1;
1433 }
1434 /*
1435 * Debug flag, kill later
1436 */
1437 req->cmd_flags |= REQ_ON_PLUG;
1438 list_add_tail(&req->queuelist, &plug->list);
1439 drive_stat_acct(req, 1);
1440 } else {
1441 spin_lock_irq(q->queue_lock);
1442 add_acct_request(q, req, where);
1443 __blk_run_queue(q);
1444out_unlock:
1445 spin_unlock_irq(q->queue_lock);
1446 }
1da177e4 1447out:
1da177e4 1448 return 0;
1da177e4
LT
1449}
1450
1451/*
1452 * If bio->bi_dev is a partition, remap the location
1453 */
1454static inline void blk_partition_remap(struct bio *bio)
1455{
1456 struct block_device *bdev = bio->bi_bdev;
1457
bf2de6f5 1458 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1459 struct hd_struct *p = bdev->bd_part;
1460
1da177e4
LT
1461 bio->bi_sector += p->start_sect;
1462 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1463
d07335e5
MS
1464 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1465 bdev->bd_dev,
1466 bio->bi_sector - p->start_sect);
1da177e4
LT
1467 }
1468}
1469
1da177e4
LT
1470static void handle_bad_sector(struct bio *bio)
1471{
1472 char b[BDEVNAME_SIZE];
1473
1474 printk(KERN_INFO "attempt to access beyond end of device\n");
1475 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1476 bdevname(bio->bi_bdev, b),
1477 bio->bi_rw,
1478 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1479 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1480
1481 set_bit(BIO_EOF, &bio->bi_flags);
1482}
1483
c17bb495
AM
1484#ifdef CONFIG_FAIL_MAKE_REQUEST
1485
1486static DECLARE_FAULT_ATTR(fail_make_request);
1487
1488static int __init setup_fail_make_request(char *str)
1489{
1490 return setup_fault_attr(&fail_make_request, str);
1491}
1492__setup("fail_make_request=", setup_fail_make_request);
1493
1494static int should_fail_request(struct bio *bio)
1495{
eddb2e26
TH
1496 struct hd_struct *part = bio->bi_bdev->bd_part;
1497
1498 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1499 return should_fail(&fail_make_request, bio->bi_size);
1500
1501 return 0;
1502}
1503
1504static int __init fail_make_request_debugfs(void)
1505{
1506 return init_fault_attr_dentries(&fail_make_request,
1507 "fail_make_request");
1508}
1509
1510late_initcall(fail_make_request_debugfs);
1511
1512#else /* CONFIG_FAIL_MAKE_REQUEST */
1513
1514static inline int should_fail_request(struct bio *bio)
1515{
1516 return 0;
1517}
1518
1519#endif /* CONFIG_FAIL_MAKE_REQUEST */
1520
c07e2b41
JA
1521/*
1522 * Check whether this bio extends beyond the end of the device.
1523 */
1524static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1525{
1526 sector_t maxsector;
1527
1528 if (!nr_sectors)
1529 return 0;
1530
1531 /* Test device or partition size, when known. */
77304d2a 1532 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1533 if (maxsector) {
1534 sector_t sector = bio->bi_sector;
1535
1536 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1537 /*
1538 * This may well happen - the kernel calls bread()
1539 * without checking the size of the device, e.g., when
1540 * mounting a device.
1541 */
1542 handle_bad_sector(bio);
1543 return 1;
1544 }
1545 }
1546
1547 return 0;
1548}
1549
1da177e4 1550/**
710027a4 1551 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1552 * @bio: The bio describing the location in memory and on the device.
1553 *
1554 * generic_make_request() is used to make I/O requests of block
1555 * devices. It is passed a &struct bio, which describes the I/O that needs
1556 * to be done.
1557 *
1558 * generic_make_request() does not return any status. The
1559 * success/failure status of the request, along with notification of
1560 * completion, is delivered asynchronously through the bio->bi_end_io
1561 * function described (one day) else where.
1562 *
1563 * The caller of generic_make_request must make sure that bi_io_vec
1564 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1565 * set to describe the device address, and the
1566 * bi_end_io and optionally bi_private are set to describe how
1567 * completion notification should be signaled.
1568 *
1569 * generic_make_request and the drivers it calls may use bi_next if this
1570 * bio happens to be merged with someone else, and may change bi_dev and
1571 * bi_sector for remaps as it sees fit. So the values of these fields
1572 * should NOT be depended on after the call to generic_make_request.
1573 */
d89d8796 1574static inline void __generic_make_request(struct bio *bio)
1da177e4 1575{
165125e1 1576 struct request_queue *q;
5ddfe969 1577 sector_t old_sector;
1da177e4 1578 int ret, nr_sectors = bio_sectors(bio);
2056a782 1579 dev_t old_dev;
51fd77bd 1580 int err = -EIO;
1da177e4
LT
1581
1582 might_sleep();
1da177e4 1583
c07e2b41
JA
1584 if (bio_check_eod(bio, nr_sectors))
1585 goto end_io;
1da177e4
LT
1586
1587 /*
1588 * Resolve the mapping until finished. (drivers are
1589 * still free to implement/resolve their own stacking
1590 * by explicitly returning 0)
1591 *
1592 * NOTE: we don't repeat the blk_size check for each new device.
1593 * Stacking drivers are expected to know what they are doing.
1594 */
5ddfe969 1595 old_sector = -1;
2056a782 1596 old_dev = 0;
1da177e4
LT
1597 do {
1598 char b[BDEVNAME_SIZE];
1599
1600 q = bdev_get_queue(bio->bi_bdev);
a7384677 1601 if (unlikely(!q)) {
1da177e4
LT
1602 printk(KERN_ERR
1603 "generic_make_request: Trying to access "
1604 "nonexistent block-device %s (%Lu)\n",
1605 bdevname(bio->bi_bdev, b),
1606 (long long) bio->bi_sector);
a7384677 1607 goto end_io;
1da177e4
LT
1608 }
1609
7b6d91da 1610 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1611 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1612 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1613 bdevname(bio->bi_bdev, b),
1614 bio_sectors(bio),
1615 queue_max_hw_sectors(q));
1da177e4
LT
1616 goto end_io;
1617 }
1618
fde6ad22 1619 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1620 goto end_io;
1621
c17bb495
AM
1622 if (should_fail_request(bio))
1623 goto end_io;
1624
1da177e4
LT
1625 /*
1626 * If this device has partitions, remap block n
1627 * of partition p to block n+start(p) of the disk.
1628 */
1629 blk_partition_remap(bio);
1630
7ba1ba12
MP
1631 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1632 goto end_io;
1633
5ddfe969 1634 if (old_sector != -1)
d07335e5 1635 trace_block_bio_remap(q, bio, old_dev, old_sector);
2056a782 1636
5ddfe969 1637 old_sector = bio->bi_sector;
2056a782
JA
1638 old_dev = bio->bi_bdev->bd_dev;
1639
c07e2b41
JA
1640 if (bio_check_eod(bio, nr_sectors))
1641 goto end_io;
a7384677 1642
1e87901e
TH
1643 /*
1644 * Filter flush bio's early so that make_request based
1645 * drivers without flush support don't have to worry
1646 * about them.
1647 */
1648 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1649 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1650 if (!nr_sectors) {
1651 err = 0;
1652 goto end_io;
1653 }
1654 }
1655
8d57a98c
AH
1656 if ((bio->bi_rw & REQ_DISCARD) &&
1657 (!blk_queue_discard(q) ||
1658 ((bio->bi_rw & REQ_SECURE) &&
1659 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1660 err = -EOPNOTSUPP;
1661 goto end_io;
1662 }
5ddfe969 1663
e43473b7
VG
1664 blk_throtl_bio(q, &bio);
1665
1666 /*
1667 * If bio = NULL, bio has been throttled and will be submitted
1668 * later.
1669 */
1670 if (!bio)
1671 break;
1672
01edede4
MK
1673 trace_block_bio_queue(q, bio);
1674
1da177e4
LT
1675 ret = q->make_request_fn(q, bio);
1676 } while (ret);
a7384677
TH
1677
1678 return;
1679
1680end_io:
1681 bio_endio(bio, err);
1da177e4
LT
1682}
1683
d89d8796
NB
1684/*
1685 * We only want one ->make_request_fn to be active at a time,
1686 * else stack usage with stacked devices could be a problem.
bddd87c7 1687 * So use current->bio_list to keep a list of requests
d89d8796 1688 * submited by a make_request_fn function.
bddd87c7 1689 * current->bio_list is also used as a flag to say if
d89d8796
NB
1690 * generic_make_request is currently active in this task or not.
1691 * If it is NULL, then no make_request is active. If it is non-NULL,
1692 * then a make_request is active, and new requests should be added
1693 * at the tail
1694 */
1695void generic_make_request(struct bio *bio)
1696{
bddd87c7
AM
1697 struct bio_list bio_list_on_stack;
1698
1699 if (current->bio_list) {
d89d8796 1700 /* make_request is active */
bddd87c7 1701 bio_list_add(current->bio_list, bio);
d89d8796
NB
1702 return;
1703 }
1704 /* following loop may be a bit non-obvious, and so deserves some
1705 * explanation.
1706 * Before entering the loop, bio->bi_next is NULL (as all callers
1707 * ensure that) so we have a list with a single bio.
1708 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1709 * we assign bio_list to a pointer to the bio_list_on_stack,
1710 * thus initialising the bio_list of new bios to be
d89d8796
NB
1711 * added. __generic_make_request may indeed add some more bios
1712 * through a recursive call to generic_make_request. If it
1713 * did, we find a non-NULL value in bio_list and re-enter the loop
1714 * from the top. In this case we really did just take the bio
bddd87c7
AM
1715 * of the top of the list (no pretending) and so remove it from
1716 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1717 *
1718 * The loop was structured like this to make only one call to
1719 * __generic_make_request (which is important as it is large and
1720 * inlined) and to keep the structure simple.
1721 */
1722 BUG_ON(bio->bi_next);
bddd87c7
AM
1723 bio_list_init(&bio_list_on_stack);
1724 current->bio_list = &bio_list_on_stack;
d89d8796 1725 do {
d89d8796 1726 __generic_make_request(bio);
bddd87c7 1727 bio = bio_list_pop(current->bio_list);
d89d8796 1728 } while (bio);
bddd87c7 1729 current->bio_list = NULL; /* deactivate */
d89d8796 1730}
1da177e4
LT
1731EXPORT_SYMBOL(generic_make_request);
1732
1733/**
710027a4 1734 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1735 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1736 * @bio: The &struct bio which describes the I/O
1737 *
1738 * submit_bio() is very similar in purpose to generic_make_request(), and
1739 * uses that function to do most of the work. Both are fairly rough
710027a4 1740 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1741 *
1742 */
1743void submit_bio(int rw, struct bio *bio)
1744{
1745 int count = bio_sectors(bio);
1746
22e2c507 1747 bio->bi_rw |= rw;
1da177e4 1748
bf2de6f5
JA
1749 /*
1750 * If it's a regular read/write or a barrier with data attached,
1751 * go through the normal accounting stuff before submission.
1752 */
3ffb52e7 1753 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1754 if (rw & WRITE) {
1755 count_vm_events(PGPGOUT, count);
1756 } else {
1757 task_io_account_read(bio->bi_size);
1758 count_vm_events(PGPGIN, count);
1759 }
1760
1761 if (unlikely(block_dump)) {
1762 char b[BDEVNAME_SIZE];
8dcbdc74 1763 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1764 current->comm, task_pid_nr(current),
bf2de6f5
JA
1765 (rw & WRITE) ? "WRITE" : "READ",
1766 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1767 bdevname(bio->bi_bdev, b),
1768 count);
bf2de6f5 1769 }
1da177e4
LT
1770 }
1771
1772 generic_make_request(bio);
1773}
1da177e4
LT
1774EXPORT_SYMBOL(submit_bio);
1775
82124d60
KU
1776/**
1777 * blk_rq_check_limits - Helper function to check a request for the queue limit
1778 * @q: the queue
1779 * @rq: the request being checked
1780 *
1781 * Description:
1782 * @rq may have been made based on weaker limitations of upper-level queues
1783 * in request stacking drivers, and it may violate the limitation of @q.
1784 * Since the block layer and the underlying device driver trust @rq
1785 * after it is inserted to @q, it should be checked against @q before
1786 * the insertion using this generic function.
1787 *
1788 * This function should also be useful for request stacking drivers
eef35c2d 1789 * in some cases below, so export this function.
82124d60
KU
1790 * Request stacking drivers like request-based dm may change the queue
1791 * limits while requests are in the queue (e.g. dm's table swapping).
1792 * Such request stacking drivers should check those requests agaist
1793 * the new queue limits again when they dispatch those requests,
1794 * although such checkings are also done against the old queue limits
1795 * when submitting requests.
1796 */
1797int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1798{
3383977f
S
1799 if (rq->cmd_flags & REQ_DISCARD)
1800 return 0;
1801
ae03bf63
MP
1802 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1803 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1804 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1805 return -EIO;
1806 }
1807
1808 /*
1809 * queue's settings related to segment counting like q->bounce_pfn
1810 * may differ from that of other stacking queues.
1811 * Recalculate it to check the request correctly on this queue's
1812 * limitation.
1813 */
1814 blk_recalc_rq_segments(rq);
8a78362c 1815 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1816 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1817 return -EIO;
1818 }
1819
1820 return 0;
1821}
1822EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1823
1824/**
1825 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1826 * @q: the queue to submit the request
1827 * @rq: the request being queued
1828 */
1829int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1830{
1831 unsigned long flags;
1832
1833 if (blk_rq_check_limits(q, rq))
1834 return -EIO;
1835
1836#ifdef CONFIG_FAIL_MAKE_REQUEST
1837 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1838 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1839 return -EIO;
1840#endif
1841
1842 spin_lock_irqsave(q->queue_lock, flags);
1843
1844 /*
1845 * Submitting request must be dequeued before calling this function
1846 * because it will be linked to another request_queue
1847 */
1848 BUG_ON(blk_queued_rq(rq));
1849
73c10101 1850 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
82124d60
KU
1851 spin_unlock_irqrestore(q->queue_lock, flags);
1852
1853 return 0;
1854}
1855EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1856
80a761fd
TH
1857/**
1858 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1859 * @rq: request to examine
1860 *
1861 * Description:
1862 * A request could be merge of IOs which require different failure
1863 * handling. This function determines the number of bytes which
1864 * can be failed from the beginning of the request without
1865 * crossing into area which need to be retried further.
1866 *
1867 * Return:
1868 * The number of bytes to fail.
1869 *
1870 * Context:
1871 * queue_lock must be held.
1872 */
1873unsigned int blk_rq_err_bytes(const struct request *rq)
1874{
1875 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1876 unsigned int bytes = 0;
1877 struct bio *bio;
1878
1879 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1880 return blk_rq_bytes(rq);
1881
1882 /*
1883 * Currently the only 'mixing' which can happen is between
1884 * different fastfail types. We can safely fail portions
1885 * which have all the failfast bits that the first one has -
1886 * the ones which are at least as eager to fail as the first
1887 * one.
1888 */
1889 for (bio = rq->bio; bio; bio = bio->bi_next) {
1890 if ((bio->bi_rw & ff) != ff)
1891 break;
1892 bytes += bio->bi_size;
1893 }
1894
1895 /* this could lead to infinite loop */
1896 BUG_ON(blk_rq_bytes(rq) && !bytes);
1897 return bytes;
1898}
1899EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1900
bc58ba94
JA
1901static void blk_account_io_completion(struct request *req, unsigned int bytes)
1902{
c2553b58 1903 if (blk_do_io_stat(req)) {
bc58ba94
JA
1904 const int rw = rq_data_dir(req);
1905 struct hd_struct *part;
1906 int cpu;
1907
1908 cpu = part_stat_lock();
09e099d4 1909 part = req->part;
bc58ba94
JA
1910 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1911 part_stat_unlock();
1912 }
1913}
1914
1915static void blk_account_io_done(struct request *req)
1916{
bc58ba94 1917 /*
dd4c133f
TH
1918 * Account IO completion. flush_rq isn't accounted as a
1919 * normal IO on queueing nor completion. Accounting the
1920 * containing request is enough.
bc58ba94 1921 */
414b4ff5 1922 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1923 unsigned long duration = jiffies - req->start_time;
1924 const int rw = rq_data_dir(req);
1925 struct hd_struct *part;
1926 int cpu;
1927
1928 cpu = part_stat_lock();
09e099d4 1929 part = req->part;
bc58ba94
JA
1930
1931 part_stat_inc(cpu, part, ios[rw]);
1932 part_stat_add(cpu, part, ticks[rw], duration);
1933 part_round_stats(cpu, part);
316d315b 1934 part_dec_in_flight(part, rw);
bc58ba94 1935
6c23a968 1936 hd_struct_put(part);
bc58ba94
JA
1937 part_stat_unlock();
1938 }
1939}
1940
3bcddeac 1941/**
9934c8c0
TH
1942 * blk_peek_request - peek at the top of a request queue
1943 * @q: request queue to peek at
1944 *
1945 * Description:
1946 * Return the request at the top of @q. The returned request
1947 * should be started using blk_start_request() before LLD starts
1948 * processing it.
1949 *
1950 * Return:
1951 * Pointer to the request at the top of @q if available. Null
1952 * otherwise.
1953 *
1954 * Context:
1955 * queue_lock must be held.
1956 */
1957struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1958{
1959 struct request *rq;
1960 int ret;
1961
1962 while ((rq = __elv_next_request(q)) != NULL) {
1963 if (!(rq->cmd_flags & REQ_STARTED)) {
1964 /*
1965 * This is the first time the device driver
1966 * sees this request (possibly after
1967 * requeueing). Notify IO scheduler.
1968 */
33659ebb 1969 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1970 elv_activate_rq(q, rq);
1971
1972 /*
1973 * just mark as started even if we don't start
1974 * it, a request that has been delayed should
1975 * not be passed by new incoming requests
1976 */
1977 rq->cmd_flags |= REQ_STARTED;
1978 trace_block_rq_issue(q, rq);
1979 }
1980
1981 if (!q->boundary_rq || q->boundary_rq == rq) {
1982 q->end_sector = rq_end_sector(rq);
1983 q->boundary_rq = NULL;
1984 }
1985
1986 if (rq->cmd_flags & REQ_DONTPREP)
1987 break;
1988
2e46e8b2 1989 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1990 /*
1991 * make sure space for the drain appears we
1992 * know we can do this because max_hw_segments
1993 * has been adjusted to be one fewer than the
1994 * device can handle
1995 */
1996 rq->nr_phys_segments++;
1997 }
1998
1999 if (!q->prep_rq_fn)
2000 break;
2001
2002 ret = q->prep_rq_fn(q, rq);
2003 if (ret == BLKPREP_OK) {
2004 break;
2005 } else if (ret == BLKPREP_DEFER) {
2006 /*
2007 * the request may have been (partially) prepped.
2008 * we need to keep this request in the front to
2009 * avoid resource deadlock. REQ_STARTED will
2010 * prevent other fs requests from passing this one.
2011 */
2e46e8b2 2012 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2013 !(rq->cmd_flags & REQ_DONTPREP)) {
2014 /*
2015 * remove the space for the drain we added
2016 * so that we don't add it again
2017 */
2018 --rq->nr_phys_segments;
2019 }
2020
2021 rq = NULL;
2022 break;
2023 } else if (ret == BLKPREP_KILL) {
2024 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2025 /*
2026 * Mark this request as started so we don't trigger
2027 * any debug logic in the end I/O path.
2028 */
2029 blk_start_request(rq);
40cbbb78 2030 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2031 } else {
2032 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2033 break;
2034 }
2035 }
2036
2037 return rq;
2038}
9934c8c0 2039EXPORT_SYMBOL(blk_peek_request);
158dbda0 2040
9934c8c0 2041void blk_dequeue_request(struct request *rq)
158dbda0 2042{
9934c8c0
TH
2043 struct request_queue *q = rq->q;
2044
158dbda0
TH
2045 BUG_ON(list_empty(&rq->queuelist));
2046 BUG_ON(ELV_ON_HASH(rq));
2047
2048 list_del_init(&rq->queuelist);
2049
2050 /*
2051 * the time frame between a request being removed from the lists
2052 * and to it is freed is accounted as io that is in progress at
2053 * the driver side.
2054 */
9195291e 2055 if (blk_account_rq(rq)) {
0a7ae2ff 2056 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2057 set_io_start_time_ns(rq);
2058 }
158dbda0
TH
2059}
2060
9934c8c0
TH
2061/**
2062 * blk_start_request - start request processing on the driver
2063 * @req: request to dequeue
2064 *
2065 * Description:
2066 * Dequeue @req and start timeout timer on it. This hands off the
2067 * request to the driver.
2068 *
2069 * Block internal functions which don't want to start timer should
2070 * call blk_dequeue_request().
2071 *
2072 * Context:
2073 * queue_lock must be held.
2074 */
2075void blk_start_request(struct request *req)
2076{
2077 blk_dequeue_request(req);
2078
2079 /*
5f49f631
TH
2080 * We are now handing the request to the hardware, initialize
2081 * resid_len to full count and add the timeout handler.
9934c8c0 2082 */
5f49f631 2083 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2084 if (unlikely(blk_bidi_rq(req)))
2085 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2086
9934c8c0
TH
2087 blk_add_timer(req);
2088}
2089EXPORT_SYMBOL(blk_start_request);
2090
2091/**
2092 * blk_fetch_request - fetch a request from a request queue
2093 * @q: request queue to fetch a request from
2094 *
2095 * Description:
2096 * Return the request at the top of @q. The request is started on
2097 * return and LLD can start processing it immediately.
2098 *
2099 * Return:
2100 * Pointer to the request at the top of @q if available. Null
2101 * otherwise.
2102 *
2103 * Context:
2104 * queue_lock must be held.
2105 */
2106struct request *blk_fetch_request(struct request_queue *q)
2107{
2108 struct request *rq;
2109
2110 rq = blk_peek_request(q);
2111 if (rq)
2112 blk_start_request(rq);
2113 return rq;
2114}
2115EXPORT_SYMBOL(blk_fetch_request);
2116
3bcddeac 2117/**
2e60e022 2118 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2119 * @req: the request being processed
710027a4 2120 * @error: %0 for success, < %0 for error
8ebf9756 2121 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2122 *
2123 * Description:
8ebf9756
RD
2124 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2125 * the request structure even if @req doesn't have leftover.
2126 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2127 *
2128 * This special helper function is only for request stacking drivers
2129 * (e.g. request-based dm) so that they can handle partial completion.
2130 * Actual device drivers should use blk_end_request instead.
2131 *
2132 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2133 * %false return from this function.
3bcddeac
KU
2134 *
2135 * Return:
2e60e022
TH
2136 * %false - this request doesn't have any more data
2137 * %true - this request has more data
3bcddeac 2138 **/
2e60e022 2139bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2140{
5450d3e1 2141 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2142 struct bio *bio;
2143
2e60e022
TH
2144 if (!req->bio)
2145 return false;
2146
5f3ea37c 2147 trace_block_rq_complete(req->q, req);
2056a782 2148
1da177e4 2149 /*
6f41469c
TH
2150 * For fs requests, rq is just carrier of independent bio's
2151 * and each partial completion should be handled separately.
2152 * Reset per-request error on each partial completion.
2153 *
2154 * TODO: tj: This is too subtle. It would be better to let
2155 * low level drivers do what they see fit.
1da177e4 2156 */
33659ebb 2157 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2158 req->errors = 0;
2159
33659ebb
CH
2160 if (error && req->cmd_type == REQ_TYPE_FS &&
2161 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2162 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2163 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2164 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2165 }
2166
bc58ba94 2167 blk_account_io_completion(req, nr_bytes);
d72d904a 2168
1da177e4
LT
2169 total_bytes = bio_nbytes = 0;
2170 while ((bio = req->bio) != NULL) {
2171 int nbytes;
2172
2173 if (nr_bytes >= bio->bi_size) {
2174 req->bio = bio->bi_next;
2175 nbytes = bio->bi_size;
5bb23a68 2176 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2177 next_idx = 0;
2178 bio_nbytes = 0;
2179 } else {
2180 int idx = bio->bi_idx + next_idx;
2181
af498d7f 2182 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2183 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2184 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2185 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2186 break;
2187 }
2188
2189 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2190 BIO_BUG_ON(nbytes > bio->bi_size);
2191
2192 /*
2193 * not a complete bvec done
2194 */
2195 if (unlikely(nbytes > nr_bytes)) {
2196 bio_nbytes += nr_bytes;
2197 total_bytes += nr_bytes;
2198 break;
2199 }
2200
2201 /*
2202 * advance to the next vector
2203 */
2204 next_idx++;
2205 bio_nbytes += nbytes;
2206 }
2207
2208 total_bytes += nbytes;
2209 nr_bytes -= nbytes;
2210
6728cb0e
JA
2211 bio = req->bio;
2212 if (bio) {
1da177e4
LT
2213 /*
2214 * end more in this run, or just return 'not-done'
2215 */
2216 if (unlikely(nr_bytes <= 0))
2217 break;
2218 }
2219 }
2220
2221 /*
2222 * completely done
2223 */
2e60e022
TH
2224 if (!req->bio) {
2225 /*
2226 * Reset counters so that the request stacking driver
2227 * can find how many bytes remain in the request
2228 * later.
2229 */
a2dec7b3 2230 req->__data_len = 0;
2e60e022
TH
2231 return false;
2232 }
1da177e4
LT
2233
2234 /*
2235 * if the request wasn't completed, update state
2236 */
2237 if (bio_nbytes) {
5bb23a68 2238 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2239 bio->bi_idx += next_idx;
2240 bio_iovec(bio)->bv_offset += nr_bytes;
2241 bio_iovec(bio)->bv_len -= nr_bytes;
2242 }
2243
a2dec7b3 2244 req->__data_len -= total_bytes;
2e46e8b2
TH
2245 req->buffer = bio_data(req->bio);
2246
2247 /* update sector only for requests with clear definition of sector */
33659ebb 2248 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2249 req->__sector += total_bytes >> 9;
2e46e8b2 2250
80a761fd
TH
2251 /* mixed attributes always follow the first bio */
2252 if (req->cmd_flags & REQ_MIXED_MERGE) {
2253 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2254 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2255 }
2256
2e46e8b2
TH
2257 /*
2258 * If total number of sectors is less than the first segment
2259 * size, something has gone terribly wrong.
2260 */
2261 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2262 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2263 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2264 }
2265
2266 /* recalculate the number of segments */
1da177e4 2267 blk_recalc_rq_segments(req);
2e46e8b2 2268
2e60e022 2269 return true;
1da177e4 2270}
2e60e022 2271EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2272
2e60e022
TH
2273static bool blk_update_bidi_request(struct request *rq, int error,
2274 unsigned int nr_bytes,
2275 unsigned int bidi_bytes)
5efccd17 2276{
2e60e022
TH
2277 if (blk_update_request(rq, error, nr_bytes))
2278 return true;
5efccd17 2279
2e60e022
TH
2280 /* Bidi request must be completed as a whole */
2281 if (unlikely(blk_bidi_rq(rq)) &&
2282 blk_update_request(rq->next_rq, error, bidi_bytes))
2283 return true;
5efccd17 2284
e2e1a148
JA
2285 if (blk_queue_add_random(rq->q))
2286 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2287
2288 return false;
1da177e4
LT
2289}
2290
28018c24
JB
2291/**
2292 * blk_unprep_request - unprepare a request
2293 * @req: the request
2294 *
2295 * This function makes a request ready for complete resubmission (or
2296 * completion). It happens only after all error handling is complete,
2297 * so represents the appropriate moment to deallocate any resources
2298 * that were allocated to the request in the prep_rq_fn. The queue
2299 * lock is held when calling this.
2300 */
2301void blk_unprep_request(struct request *req)
2302{
2303 struct request_queue *q = req->q;
2304
2305 req->cmd_flags &= ~REQ_DONTPREP;
2306 if (q->unprep_rq_fn)
2307 q->unprep_rq_fn(q, req);
2308}
2309EXPORT_SYMBOL_GPL(blk_unprep_request);
2310
1da177e4
LT
2311/*
2312 * queue lock must be held
2313 */
2e60e022 2314static void blk_finish_request(struct request *req, int error)
1da177e4 2315{
b8286239
KU
2316 if (blk_rq_tagged(req))
2317 blk_queue_end_tag(req->q, req);
2318
ba396a6c 2319 BUG_ON(blk_queued_rq(req));
1da177e4 2320
33659ebb 2321 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2322 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2323
e78042e5
MA
2324 blk_delete_timer(req);
2325
28018c24
JB
2326 if (req->cmd_flags & REQ_DONTPREP)
2327 blk_unprep_request(req);
2328
2329
bc58ba94 2330 blk_account_io_done(req);
b8286239 2331
1da177e4 2332 if (req->end_io)
8ffdc655 2333 req->end_io(req, error);
b8286239
KU
2334 else {
2335 if (blk_bidi_rq(req))
2336 __blk_put_request(req->next_rq->q, req->next_rq);
2337
1da177e4 2338 __blk_put_request(req->q, req);
b8286239 2339 }
1da177e4
LT
2340}
2341
3b11313a 2342/**
2e60e022
TH
2343 * blk_end_bidi_request - Complete a bidi request
2344 * @rq: the request to complete
2345 * @error: %0 for success, < %0 for error
2346 * @nr_bytes: number of bytes to complete @rq
2347 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2348 *
2349 * Description:
e3a04fe3 2350 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2351 * Drivers that supports bidi can safely call this member for any
2352 * type of request, bidi or uni. In the later case @bidi_bytes is
2353 * just ignored.
336cdb40
KU
2354 *
2355 * Return:
2e60e022
TH
2356 * %false - we are done with this request
2357 * %true - still buffers pending for this request
a0cd1285 2358 **/
b1f74493 2359static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2360 unsigned int nr_bytes, unsigned int bidi_bytes)
2361{
336cdb40 2362 struct request_queue *q = rq->q;
2e60e022 2363 unsigned long flags;
32fab448 2364
2e60e022
TH
2365 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2366 return true;
32fab448 2367
336cdb40 2368 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2369 blk_finish_request(rq, error);
336cdb40
KU
2370 spin_unlock_irqrestore(q->queue_lock, flags);
2371
2e60e022 2372 return false;
32fab448
KU
2373}
2374
336cdb40 2375/**
2e60e022
TH
2376 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2377 * @rq: the request to complete
710027a4 2378 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2379 * @nr_bytes: number of bytes to complete @rq
2380 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2381 *
2382 * Description:
2e60e022
TH
2383 * Identical to blk_end_bidi_request() except that queue lock is
2384 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2385 *
2386 * Return:
2e60e022
TH
2387 * %false - we are done with this request
2388 * %true - still buffers pending for this request
336cdb40 2389 **/
b1f74493
FT
2390static bool __blk_end_bidi_request(struct request *rq, int error,
2391 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2392{
2e60e022
TH
2393 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2394 return true;
336cdb40 2395
2e60e022 2396 blk_finish_request(rq, error);
336cdb40 2397
2e60e022 2398 return false;
336cdb40 2399}
e19a3ab0
KU
2400
2401/**
2402 * blk_end_request - Helper function for drivers to complete the request.
2403 * @rq: the request being processed
710027a4 2404 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2405 * @nr_bytes: number of bytes to complete
2406 *
2407 * Description:
2408 * Ends I/O on a number of bytes attached to @rq.
2409 * If @rq has leftover, sets it up for the next range of segments.
2410 *
2411 * Return:
b1f74493
FT
2412 * %false - we are done with this request
2413 * %true - still buffers pending for this request
e19a3ab0 2414 **/
b1f74493 2415bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2416{
b1f74493 2417 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2418}
56ad1740 2419EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2420
2421/**
b1f74493
FT
2422 * blk_end_request_all - Helper function for drives to finish the request.
2423 * @rq: the request to finish
8ebf9756 2424 * @error: %0 for success, < %0 for error
336cdb40
KU
2425 *
2426 * Description:
b1f74493
FT
2427 * Completely finish @rq.
2428 */
2429void blk_end_request_all(struct request *rq, int error)
336cdb40 2430{
b1f74493
FT
2431 bool pending;
2432 unsigned int bidi_bytes = 0;
336cdb40 2433
b1f74493
FT
2434 if (unlikely(blk_bidi_rq(rq)))
2435 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2436
b1f74493
FT
2437 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2438 BUG_ON(pending);
2439}
56ad1740 2440EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2441
b1f74493
FT
2442/**
2443 * blk_end_request_cur - Helper function to finish the current request chunk.
2444 * @rq: the request to finish the current chunk for
8ebf9756 2445 * @error: %0 for success, < %0 for error
b1f74493
FT
2446 *
2447 * Description:
2448 * Complete the current consecutively mapped chunk from @rq.
2449 *
2450 * Return:
2451 * %false - we are done with this request
2452 * %true - still buffers pending for this request
2453 */
2454bool blk_end_request_cur(struct request *rq, int error)
2455{
2456 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2457}
56ad1740 2458EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2459
80a761fd
TH
2460/**
2461 * blk_end_request_err - Finish a request till the next failure boundary.
2462 * @rq: the request to finish till the next failure boundary for
2463 * @error: must be negative errno
2464 *
2465 * Description:
2466 * Complete @rq till the next failure boundary.
2467 *
2468 * Return:
2469 * %false - we are done with this request
2470 * %true - still buffers pending for this request
2471 */
2472bool blk_end_request_err(struct request *rq, int error)
2473{
2474 WARN_ON(error >= 0);
2475 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2476}
2477EXPORT_SYMBOL_GPL(blk_end_request_err);
2478
e3a04fe3 2479/**
b1f74493
FT
2480 * __blk_end_request - Helper function for drivers to complete the request.
2481 * @rq: the request being processed
2482 * @error: %0 for success, < %0 for error
2483 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2484 *
2485 * Description:
b1f74493 2486 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2487 *
2488 * Return:
b1f74493
FT
2489 * %false - we are done with this request
2490 * %true - still buffers pending for this request
e3a04fe3 2491 **/
b1f74493 2492bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2493{
b1f74493 2494 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2495}
56ad1740 2496EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2497
32fab448 2498/**
b1f74493
FT
2499 * __blk_end_request_all - Helper function for drives to finish the request.
2500 * @rq: the request to finish
8ebf9756 2501 * @error: %0 for success, < %0 for error
32fab448
KU
2502 *
2503 * Description:
b1f74493 2504 * Completely finish @rq. Must be called with queue lock held.
32fab448 2505 */
b1f74493 2506void __blk_end_request_all(struct request *rq, int error)
32fab448 2507{
b1f74493
FT
2508 bool pending;
2509 unsigned int bidi_bytes = 0;
2510
2511 if (unlikely(blk_bidi_rq(rq)))
2512 bidi_bytes = blk_rq_bytes(rq->next_rq);
2513
2514 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2515 BUG_ON(pending);
32fab448 2516}
56ad1740 2517EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2518
e19a3ab0 2519/**
b1f74493
FT
2520 * __blk_end_request_cur - Helper function to finish the current request chunk.
2521 * @rq: the request to finish the current chunk for
8ebf9756 2522 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2523 *
2524 * Description:
b1f74493
FT
2525 * Complete the current consecutively mapped chunk from @rq. Must
2526 * be called with queue lock held.
e19a3ab0
KU
2527 *
2528 * Return:
b1f74493
FT
2529 * %false - we are done with this request
2530 * %true - still buffers pending for this request
2531 */
2532bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2533{
b1f74493 2534 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2535}
56ad1740 2536EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2537
80a761fd
TH
2538/**
2539 * __blk_end_request_err - Finish a request till the next failure boundary.
2540 * @rq: the request to finish till the next failure boundary for
2541 * @error: must be negative errno
2542 *
2543 * Description:
2544 * Complete @rq till the next failure boundary. Must be called
2545 * with queue lock held.
2546 *
2547 * Return:
2548 * %false - we are done with this request
2549 * %true - still buffers pending for this request
2550 */
2551bool __blk_end_request_err(struct request *rq, int error)
2552{
2553 WARN_ON(error >= 0);
2554 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2555}
2556EXPORT_SYMBOL_GPL(__blk_end_request_err);
2557
86db1e29
JA
2558void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2559 struct bio *bio)
1da177e4 2560{
a82afdfc 2561 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2562 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2563
fb2dce86
DW
2564 if (bio_has_data(bio)) {
2565 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2566 rq->buffer = bio_data(bio);
2567 }
a2dec7b3 2568 rq->__data_len = bio->bi_size;
1da177e4 2569 rq->bio = rq->biotail = bio;
1da177e4 2570
66846572
N
2571 if (bio->bi_bdev)
2572 rq->rq_disk = bio->bi_bdev->bd_disk;
2573}
1da177e4 2574
2d4dc890
IL
2575#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2576/**
2577 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2578 * @rq: the request to be flushed
2579 *
2580 * Description:
2581 * Flush all pages in @rq.
2582 */
2583void rq_flush_dcache_pages(struct request *rq)
2584{
2585 struct req_iterator iter;
2586 struct bio_vec *bvec;
2587
2588 rq_for_each_segment(bvec, rq, iter)
2589 flush_dcache_page(bvec->bv_page);
2590}
2591EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2592#endif
2593
ef9e3fac
KU
2594/**
2595 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2596 * @q : the queue of the device being checked
2597 *
2598 * Description:
2599 * Check if underlying low-level drivers of a device are busy.
2600 * If the drivers want to export their busy state, they must set own
2601 * exporting function using blk_queue_lld_busy() first.
2602 *
2603 * Basically, this function is used only by request stacking drivers
2604 * to stop dispatching requests to underlying devices when underlying
2605 * devices are busy. This behavior helps more I/O merging on the queue
2606 * of the request stacking driver and prevents I/O throughput regression
2607 * on burst I/O load.
2608 *
2609 * Return:
2610 * 0 - Not busy (The request stacking driver should dispatch request)
2611 * 1 - Busy (The request stacking driver should stop dispatching request)
2612 */
2613int blk_lld_busy(struct request_queue *q)
2614{
2615 if (q->lld_busy_fn)
2616 return q->lld_busy_fn(q);
2617
2618 return 0;
2619}
2620EXPORT_SYMBOL_GPL(blk_lld_busy);
2621
b0fd271d
KU
2622/**
2623 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2624 * @rq: the clone request to be cleaned up
2625 *
2626 * Description:
2627 * Free all bios in @rq for a cloned request.
2628 */
2629void blk_rq_unprep_clone(struct request *rq)
2630{
2631 struct bio *bio;
2632
2633 while ((bio = rq->bio) != NULL) {
2634 rq->bio = bio->bi_next;
2635
2636 bio_put(bio);
2637 }
2638}
2639EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2640
2641/*
2642 * Copy attributes of the original request to the clone request.
2643 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2644 */
2645static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2646{
2647 dst->cpu = src->cpu;
3a2edd0d 2648 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2649 dst->cmd_type = src->cmd_type;
2650 dst->__sector = blk_rq_pos(src);
2651 dst->__data_len = blk_rq_bytes(src);
2652 dst->nr_phys_segments = src->nr_phys_segments;
2653 dst->ioprio = src->ioprio;
2654 dst->extra_len = src->extra_len;
2655}
2656
2657/**
2658 * blk_rq_prep_clone - Helper function to setup clone request
2659 * @rq: the request to be setup
2660 * @rq_src: original request to be cloned
2661 * @bs: bio_set that bios for clone are allocated from
2662 * @gfp_mask: memory allocation mask for bio
2663 * @bio_ctr: setup function to be called for each clone bio.
2664 * Returns %0 for success, non %0 for failure.
2665 * @data: private data to be passed to @bio_ctr
2666 *
2667 * Description:
2668 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2669 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2670 * are not copied, and copying such parts is the caller's responsibility.
2671 * Also, pages which the original bios are pointing to are not copied
2672 * and the cloned bios just point same pages.
2673 * So cloned bios must be completed before original bios, which means
2674 * the caller must complete @rq before @rq_src.
2675 */
2676int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2677 struct bio_set *bs, gfp_t gfp_mask,
2678 int (*bio_ctr)(struct bio *, struct bio *, void *),
2679 void *data)
2680{
2681 struct bio *bio, *bio_src;
2682
2683 if (!bs)
2684 bs = fs_bio_set;
2685
2686 blk_rq_init(NULL, rq);
2687
2688 __rq_for_each_bio(bio_src, rq_src) {
2689 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2690 if (!bio)
2691 goto free_and_out;
2692
2693 __bio_clone(bio, bio_src);
2694
2695 if (bio_integrity(bio_src) &&
7878cba9 2696 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2697 goto free_and_out;
2698
2699 if (bio_ctr && bio_ctr(bio, bio_src, data))
2700 goto free_and_out;
2701
2702 if (rq->bio) {
2703 rq->biotail->bi_next = bio;
2704 rq->biotail = bio;
2705 } else
2706 rq->bio = rq->biotail = bio;
2707 }
2708
2709 __blk_rq_prep_clone(rq, rq_src);
2710
2711 return 0;
2712
2713free_and_out:
2714 if (bio)
2715 bio_free(bio, bs);
2716 blk_rq_unprep_clone(rq);
2717
2718 return -ENOMEM;
2719}
2720EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2721
18887ad9 2722int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2723{
2724 return queue_work(kblockd_workqueue, work);
2725}
1da177e4
LT
2726EXPORT_SYMBOL(kblockd_schedule_work);
2727
e43473b7
VG
2728int kblockd_schedule_delayed_work(struct request_queue *q,
2729 struct delayed_work *dwork, unsigned long delay)
2730{
2731 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2732}
2733EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2734
73c10101
JA
2735#define PLUG_MAGIC 0x91827364
2736
2737void blk_start_plug(struct blk_plug *plug)
2738{
2739 struct task_struct *tsk = current;
2740
2741 plug->magic = PLUG_MAGIC;
2742 INIT_LIST_HEAD(&plug->list);
2743 plug->should_sort = 0;
2744
2745 /*
2746 * If this is a nested plug, don't actually assign it. It will be
2747 * flushed on its own.
2748 */
2749 if (!tsk->plug) {
2750 /*
2751 * Store ordering should not be needed here, since a potential
2752 * preempt will imply a full memory barrier
2753 */
2754 tsk->plug = plug;
2755 }
2756}
2757EXPORT_SYMBOL(blk_start_plug);
2758
2759static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2760{
2761 struct request *rqa = container_of(a, struct request, queuelist);
2762 struct request *rqb = container_of(b, struct request, queuelist);
2763
2764 return !(rqa->q == rqb->q);
2765}
2766
2767static void flush_plug_list(struct blk_plug *plug)
2768{
2769 struct request_queue *q;
2770 unsigned long flags;
2771 struct request *rq;
2772
2773 BUG_ON(plug->magic != PLUG_MAGIC);
2774
2775 if (list_empty(&plug->list))
2776 return;
2777
2778 if (plug->should_sort)
2779 list_sort(NULL, &plug->list, plug_rq_cmp);
2780
2781 q = NULL;
2782 local_irq_save(flags);
2783 while (!list_empty(&plug->list)) {
2784 rq = list_entry_rq(plug->list.next);
2785 list_del_init(&rq->queuelist);
2786 BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG));
2787 BUG_ON(!rq->q);
2788 if (rq->q != q) {
2789 if (q) {
2790 __blk_run_queue(q);
2791 spin_unlock(q->queue_lock);
2792 }
2793 q = rq->q;
2794 spin_lock(q->queue_lock);
2795 }
2796 rq->cmd_flags &= ~REQ_ON_PLUG;
2797
2798 /*
2799 * rq is already accounted, so use raw insert
2800 */
2801 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT, 0);
2802 }
2803
2804 if (q) {
2805 __blk_run_queue(q);
2806 spin_unlock(q->queue_lock);
2807 }
2808
2809 BUG_ON(!list_empty(&plug->list));
2810 local_irq_restore(flags);
2811}
2812
2813static void __blk_finish_plug(struct task_struct *tsk, struct blk_plug *plug)
2814{
2815 flush_plug_list(plug);
2816
2817 if (plug == tsk->plug)
2818 tsk->plug = NULL;
2819}
2820
2821void blk_finish_plug(struct blk_plug *plug)
2822{
2823 if (plug)
2824 __blk_finish_plug(current, plug);
2825}
2826EXPORT_SYMBOL(blk_finish_plug);
2827
2828void __blk_flush_plug(struct task_struct *tsk, struct blk_plug *plug)
2829{
2830 __blk_finish_plug(tsk, plug);
2831 tsk->plug = plug;
2832}
2833EXPORT_SYMBOL(__blk_flush_plug);
2834
1da177e4
LT
2835int __init blk_dev_init(void)
2836{
9eb55b03
NK
2837 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2838 sizeof(((struct request *)0)->cmd_flags));
2839
89b90be2
TH
2840 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2841 kblockd_workqueue = alloc_workqueue("kblockd",
2842 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2843 if (!kblockd_workqueue)
2844 panic("Failed to create kblockd\n");
2845
2846 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2847 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2848
8324aa91 2849 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2850 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2851
d38ecf93 2852 return 0;
1da177e4 2853}