]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-core.c
blkio: Increment the blkio cgroup stats for real now
[mirror_ubuntu-zesty-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
83096ebf 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
c9959059 68
28f13702 69 if (!new_io)
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
28f13702 71 else {
074a7aca 72 part_round_stats(cpu, part);
316d315b 73 part_inc_in_flight(part, rw);
26b8256e 74 }
e71bf0d0 75
074a7aca 76 part_stat_unlock();
26b8256e
JA
77}
78
8324aa91 79void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
80{
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92}
93
1da177e4
LT
94/**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104{
105 struct backing_dev_info *ret = NULL;
165125e1 106 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111}
1da177e4
LT
112EXPORT_SYMBOL(blk_get_backing_dev_info);
113
2a4aa30c 114void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 115{
1afb20f3
FT
116 memset(rq, 0, sizeof(*rq));
117
1da177e4 118 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 119 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 120 rq->cpu = -1;
63a71386 121 rq->q = q;
a2dec7b3 122 rq->__sector = (sector_t) -1;
2e662b65
JA
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 125 rq->cmd = rq->__cmd;
e2494e1b 126 rq->cmd_len = BLK_MAX_CDB;
63a71386 127 rq->tag = -1;
1da177e4 128 rq->ref_count = 1;
b243ddcb 129 rq->start_time = jiffies;
9195291e 130 set_start_time_ns(rq);
1da177e4 131}
2a4aa30c 132EXPORT_SYMBOL(blk_rq_init);
1da177e4 133
5bb23a68
N
134static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
1da177e4 136{
165125e1 137 struct request_queue *q = rq->q;
797e7dbb 138
5bb23a68
N
139 if (&q->bar_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
797e7dbb 144
5bb23a68 145 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 147 __func__, nbytes, bio->bi_size);
5bb23a68
N
148 nbytes = bio->bi_size;
149 }
797e7dbb 150
08bafc03
KM
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
153
5bb23a68
N
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
156
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
159
5bb23a68 160 if (bio->bi_size == 0)
6712ecf8 161 bio_endio(bio, error);
5bb23a68
N
162 } else {
163
164 /*
165 * Okay, this is the barrier request in progress, just
166 * record the error;
167 */
168 if (error && !q->orderr)
169 q->orderr = error;
170 }
1da177e4 171}
1da177e4 172
1da177e4
LT
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
6728cb0e 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
1da177e4 180
83096ebf
TH
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 186
4aff5e23 187 if (blk_pc_request(rq)) {
6728cb0e 188 printk(KERN_INFO " cdb: ");
d34c87e4 189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
1da177e4
LT
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
1da177e4
LT
196/*
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
199 * on the list.
200 *
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
203 */
165125e1 204void blk_plug_device(struct request_queue *q)
1da177e4
LT
205{
206 WARN_ON(!irqs_disabled());
207
208 /*
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
211 */
7daac490 212 if (blk_queue_stopped(q))
1da177e4
LT
213 return;
214
e48ec690 215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 217 trace_block_plug(q);
2056a782 218 }
1da177e4 219}
1da177e4
LT
220EXPORT_SYMBOL(blk_plug_device);
221
6c5e0c4d
JA
222/**
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
225 *
226 * Description:
227 * Like @blk_plug_device(), but grabs the queue lock and disables
228 * interrupts.
229 **/
230void blk_plug_device_unlocked(struct request_queue *q)
231{
232 unsigned long flags;
233
234 spin_lock_irqsave(q->queue_lock, flags);
235 blk_plug_device(q);
236 spin_unlock_irqrestore(q->queue_lock, flags);
237}
238EXPORT_SYMBOL(blk_plug_device_unlocked);
239
1da177e4
LT
240/*
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
243 */
165125e1 244int blk_remove_plug(struct request_queue *q)
1da177e4
LT
245{
246 WARN_ON(!irqs_disabled());
247
e48ec690 248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
249 return 0;
250
251 del_timer(&q->unplug_timer);
252 return 1;
253}
1da177e4
LT
254EXPORT_SYMBOL(blk_remove_plug);
255
256/*
257 * remove the plug and let it rip..
258 */
165125e1 259void __generic_unplug_device(struct request_queue *q)
1da177e4 260{
7daac490 261 if (unlikely(blk_queue_stopped(q)))
1da177e4 262 return;
a31a9738 263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
264 return;
265
22e2c507 266 q->request_fn(q);
1da177e4 267}
1da177e4
LT
268
269/**
270 * generic_unplug_device - fire a request queue
165125e1 271 * @q: The &struct request_queue in question
1da177e4
LT
272 *
273 * Description:
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
278 * transfers started.
279 **/
165125e1 280void generic_unplug_device(struct request_queue *q)
1da177e4 281{
dbaf2c00
JA
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
286 }
1da177e4
LT
287}
288EXPORT_SYMBOL(generic_unplug_device);
289
290static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 struct page *page)
292{
165125e1 293 struct request_queue *q = bdi->unplug_io_data;
1da177e4 294
2ad8b1ef 295 blk_unplug(q);
1da177e4
LT
296}
297
86db1e29 298void blk_unplug_work(struct work_struct *work)
1da177e4 299{
165125e1
JA
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
1da177e4 302
5f3ea37c 303 trace_block_unplug_io(q);
1da177e4
LT
304 q->unplug_fn(q);
305}
306
86db1e29 307void blk_unplug_timeout(unsigned long data)
1da177e4 308{
165125e1 309 struct request_queue *q = (struct request_queue *)data;
1da177e4 310
5f3ea37c 311 trace_block_unplug_timer(q);
18887ad9 312 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
313}
314
2ad8b1ef
AB
315void blk_unplug(struct request_queue *q)
316{
317 /*
318 * devices don't necessarily have an ->unplug_fn defined
319 */
320 if (q->unplug_fn) {
5f3ea37c 321 trace_block_unplug_io(q);
2ad8b1ef
AB
322 q->unplug_fn(q);
323 }
324}
325EXPORT_SYMBOL(blk_unplug);
326
1da177e4
LT
327/**
328 * blk_start_queue - restart a previously stopped queue
165125e1 329 * @q: The &struct request_queue in question
1da177e4
LT
330 *
331 * Description:
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
335 **/
165125e1 336void blk_start_queue(struct request_queue *q)
1da177e4 337{
a038e253
PBG
338 WARN_ON(!irqs_disabled());
339
75ad23bc 340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 341 __blk_run_queue(q);
1da177e4 342}
1da177e4
LT
343EXPORT_SYMBOL(blk_start_queue);
344
345/**
346 * blk_stop_queue - stop a queue
165125e1 347 * @q: The &struct request_queue in question
1da177e4
LT
348 *
349 * Description:
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
358 **/
165125e1 359void blk_stop_queue(struct request_queue *q)
1da177e4
LT
360{
361 blk_remove_plug(q);
75ad23bc 362 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
363}
364EXPORT_SYMBOL(blk_stop_queue);
365
366/**
367 * blk_sync_queue - cancel any pending callbacks on a queue
368 * @q: the queue
369 *
370 * Description:
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
59c51591 375 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
376 * that its ->make_request_fn will not re-add plugging prior to calling
377 * this function.
378 *
379 */
380void blk_sync_queue(struct request_queue *q)
381{
382 del_timer_sync(&q->unplug_timer);
70ed28b9 383 del_timer_sync(&q->timeout);
64d01dc9 384 cancel_work_sync(&q->unplug_work);
1da177e4
LT
385}
386EXPORT_SYMBOL(blk_sync_queue);
387
388/**
80a4b58e 389 * __blk_run_queue - run a single device queue
1da177e4 390 * @q: The queue to run
80a4b58e
JA
391 *
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
395 *
1da177e4 396 */
75ad23bc 397void __blk_run_queue(struct request_queue *q)
1da177e4 398{
1da177e4 399 blk_remove_plug(q);
dac07ec1 400
a538cd03
TH
401 if (unlikely(blk_queue_stopped(q)))
402 return;
403
404 if (elv_queue_empty(q))
405 return;
406
dac07ec1
JA
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
a538cd03
TH
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
417 }
75ad23bc
NP
418}
419EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 420
75ad23bc
NP
421/**
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
80a4b58e
JA
424 *
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 427 * May be used to restart queueing when a request has completed.
75ad23bc
NP
428 */
429void blk_run_queue(struct request_queue *q)
430{
431 unsigned long flags;
432
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
1da177e4
LT
435 spin_unlock_irqrestore(q->queue_lock, flags);
436}
437EXPORT_SYMBOL(blk_run_queue);
438
165125e1 439void blk_put_queue(struct request_queue *q)
483f4afc
AV
440{
441 kobject_put(&q->kobj);
442}
483f4afc 443
6728cb0e 444void blk_cleanup_queue(struct request_queue *q)
483f4afc 445{
e3335de9
JA
446 /*
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
451 */
452 blk_sync_queue(q);
453
483f4afc 454 mutex_lock(&q->sysfs_lock);
75ad23bc 455 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
456 mutex_unlock(&q->sysfs_lock);
457
458 if (q->elevator)
459 elevator_exit(q->elevator);
460
461 blk_put_queue(q);
462}
1da177e4
LT
463EXPORT_SYMBOL(blk_cleanup_queue);
464
165125e1 465static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
466{
467 struct request_list *rl = &q->rq;
468
1faa16d2
JA
469 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
470 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 471 rl->elvpriv = 0;
1faa16d2
JA
472 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
473 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 474
1946089a
CL
475 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
476 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
477
478 if (!rl->rq_pool)
479 return -ENOMEM;
480
481 return 0;
482}
483
165125e1 484struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 485{
1946089a
CL
486 return blk_alloc_queue_node(gfp_mask, -1);
487}
488EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 489
165125e1 490struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 491{
165125e1 492 struct request_queue *q;
e0bf68dd 493 int err;
1946089a 494
8324aa91 495 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 496 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
497 if (!q)
498 return NULL;
499
e0bf68dd
PZ
500 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
501 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
502 q->backing_dev_info.ra_pages =
503 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
504 q->backing_dev_info.state = 0;
505 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 506 q->backing_dev_info.name = "block";
0989a025 507
e0bf68dd
PZ
508 err = bdi_init(&q->backing_dev_info);
509 if (err) {
8324aa91 510 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
511 return NULL;
512 }
513
1da177e4 514 init_timer(&q->unplug_timer);
242f9dcb
JA
515 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
516 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 517 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 518
8324aa91 519 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 520
483f4afc 521 mutex_init(&q->sysfs_lock);
e7e72bf6 522 spin_lock_init(&q->__queue_lock);
483f4afc 523
1da177e4
LT
524 return q;
525}
1946089a 526EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
527
528/**
529 * blk_init_queue - prepare a request queue for use with a block device
530 * @rfn: The function to be called to process requests that have been
531 * placed on the queue.
532 * @lock: Request queue spin lock
533 *
534 * Description:
535 * If a block device wishes to use the standard request handling procedures,
536 * which sorts requests and coalesces adjacent requests, then it must
537 * call blk_init_queue(). The function @rfn will be called when there
538 * are requests on the queue that need to be processed. If the device
539 * supports plugging, then @rfn may not be called immediately when requests
540 * are available on the queue, but may be called at some time later instead.
541 * Plugged queues are generally unplugged when a buffer belonging to one
542 * of the requests on the queue is needed, or due to memory pressure.
543 *
544 * @rfn is not required, or even expected, to remove all requests off the
545 * queue, but only as many as it can handle at a time. If it does leave
546 * requests on the queue, it is responsible for arranging that the requests
547 * get dealt with eventually.
548 *
549 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
550 * request queue; this lock will be taken also from interrupt context, so irq
551 * disabling is needed for it.
1da177e4 552 *
710027a4 553 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
554 * it didn't succeed.
555 *
556 * Note:
557 * blk_init_queue() must be paired with a blk_cleanup_queue() call
558 * when the block device is deactivated (such as at module unload).
559 **/
1946089a 560
165125e1 561struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 562{
1946089a
CL
563 return blk_init_queue_node(rfn, lock, -1);
564}
565EXPORT_SYMBOL(blk_init_queue);
566
165125e1 567struct request_queue *
1946089a
CL
568blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
569{
165125e1 570 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
571
572 if (!q)
573 return NULL;
574
1946089a 575 q->node = node_id;
8669aafd 576 if (blk_init_free_list(q)) {
8324aa91 577 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
578 return NULL;
579 }
1da177e4
LT
580
581 q->request_fn = rfn;
1da177e4
LT
582 q->prep_rq_fn = NULL;
583 q->unplug_fn = generic_unplug_device;
bc58ba94 584 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
585 q->queue_lock = lock;
586
f3b144aa
JA
587 /*
588 * This also sets hw/phys segments, boundary and size
589 */
1da177e4 590 blk_queue_make_request(q, __make_request);
1da177e4 591
44ec9542
AS
592 q->sg_reserved_size = INT_MAX;
593
1da177e4
LT
594 /*
595 * all done
596 */
597 if (!elevator_init(q, NULL)) {
598 blk_queue_congestion_threshold(q);
599 return q;
600 }
601
8669aafd 602 blk_put_queue(q);
1da177e4
LT
603 return NULL;
604}
1946089a 605EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 606
165125e1 607int blk_get_queue(struct request_queue *q)
1da177e4 608{
fde6ad22 609 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 610 kobject_get(&q->kobj);
1da177e4
LT
611 return 0;
612 }
613
614 return 1;
615}
1da177e4 616
165125e1 617static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 618{
4aff5e23 619 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 620 elv_put_request(q, rq);
1da177e4
LT
621 mempool_free(rq, q->rq.rq_pool);
622}
623
1ea25ecb 624static struct request *
42dad764 625blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
626{
627 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
628
629 if (!rq)
630 return NULL;
631
2a4aa30c 632 blk_rq_init(q, rq);
1afb20f3 633
42dad764 634 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 635
cb98fc8b 636 if (priv) {
cb78b285 637 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
638 mempool_free(rq, q->rq.rq_pool);
639 return NULL;
640 }
4aff5e23 641 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 642 }
1da177e4 643
cb98fc8b 644 return rq;
1da177e4
LT
645}
646
647/*
648 * ioc_batching returns true if the ioc is a valid batching request and
649 * should be given priority access to a request.
650 */
165125e1 651static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
652{
653 if (!ioc)
654 return 0;
655
656 /*
657 * Make sure the process is able to allocate at least 1 request
658 * even if the batch times out, otherwise we could theoretically
659 * lose wakeups.
660 */
661 return ioc->nr_batch_requests == q->nr_batching ||
662 (ioc->nr_batch_requests > 0
663 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
664}
665
666/*
667 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
668 * will cause the process to be a "batcher" on all queues in the system. This
669 * is the behaviour we want though - once it gets a wakeup it should be given
670 * a nice run.
671 */
165125e1 672static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
673{
674 if (!ioc || ioc_batching(q, ioc))
675 return;
676
677 ioc->nr_batch_requests = q->nr_batching;
678 ioc->last_waited = jiffies;
679}
680
1faa16d2 681static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
682{
683 struct request_list *rl = &q->rq;
684
1faa16d2
JA
685 if (rl->count[sync] < queue_congestion_off_threshold(q))
686 blk_clear_queue_congested(q, sync);
1da177e4 687
1faa16d2
JA
688 if (rl->count[sync] + 1 <= q->nr_requests) {
689 if (waitqueue_active(&rl->wait[sync]))
690 wake_up(&rl->wait[sync]);
1da177e4 691
1faa16d2 692 blk_clear_queue_full(q, sync);
1da177e4
LT
693 }
694}
695
696/*
697 * A request has just been released. Account for it, update the full and
698 * congestion status, wake up any waiters. Called under q->queue_lock.
699 */
1faa16d2 700static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
701{
702 struct request_list *rl = &q->rq;
703
1faa16d2 704 rl->count[sync]--;
cb98fc8b
TH
705 if (priv)
706 rl->elvpriv--;
1da177e4 707
1faa16d2 708 __freed_request(q, sync);
1da177e4 709
1faa16d2
JA
710 if (unlikely(rl->starved[sync ^ 1]))
711 __freed_request(q, sync ^ 1);
1da177e4
LT
712}
713
1da177e4 714/*
d6344532
NP
715 * Get a free request, queue_lock must be held.
716 * Returns NULL on failure, with queue_lock held.
717 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 718 */
165125e1 719static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 720 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
721{
722 struct request *rq = NULL;
723 struct request_list *rl = &q->rq;
88ee5ef1 724 struct io_context *ioc = NULL;
1faa16d2 725 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
726 int may_queue, priv;
727
7749a8d4 728 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
729 if (may_queue == ELV_MQUEUE_NO)
730 goto rq_starved;
731
1faa16d2
JA
732 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
733 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 734 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
735 /*
736 * The queue will fill after this allocation, so set
737 * it as full, and mark this process as "batching".
738 * This process will be allowed to complete a batch of
739 * requests, others will be blocked.
740 */
1faa16d2 741 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 742 ioc_set_batching(q, ioc);
1faa16d2 743 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
744 } else {
745 if (may_queue != ELV_MQUEUE_MUST
746 && !ioc_batching(q, ioc)) {
747 /*
748 * The queue is full and the allocating
749 * process is not a "batcher", and not
750 * exempted by the IO scheduler
751 */
752 goto out;
753 }
754 }
1da177e4 755 }
1faa16d2 756 blk_set_queue_congested(q, is_sync);
1da177e4
LT
757 }
758
082cf69e
JA
759 /*
760 * Only allow batching queuers to allocate up to 50% over the defined
761 * limit of requests, otherwise we could have thousands of requests
762 * allocated with any setting of ->nr_requests
763 */
1faa16d2 764 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 765 goto out;
fd782a4a 766
1faa16d2
JA
767 rl->count[is_sync]++;
768 rl->starved[is_sync] = 0;
cb98fc8b 769
64521d1a 770 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
771 if (priv)
772 rl->elvpriv++;
773
42dad764
JM
774 if (blk_queue_io_stat(q))
775 rw_flags |= REQ_IO_STAT;
1da177e4
LT
776 spin_unlock_irq(q->queue_lock);
777
7749a8d4 778 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 779 if (unlikely(!rq)) {
1da177e4
LT
780 /*
781 * Allocation failed presumably due to memory. Undo anything
782 * we might have messed up.
783 *
784 * Allocating task should really be put onto the front of the
785 * wait queue, but this is pretty rare.
786 */
787 spin_lock_irq(q->queue_lock);
1faa16d2 788 freed_request(q, is_sync, priv);
1da177e4
LT
789
790 /*
791 * in the very unlikely event that allocation failed and no
792 * requests for this direction was pending, mark us starved
793 * so that freeing of a request in the other direction will
794 * notice us. another possible fix would be to split the
795 * rq mempool into READ and WRITE
796 */
797rq_starved:
1faa16d2
JA
798 if (unlikely(rl->count[is_sync] == 0))
799 rl->starved[is_sync] = 1;
1da177e4 800
1da177e4
LT
801 goto out;
802 }
803
88ee5ef1
JA
804 /*
805 * ioc may be NULL here, and ioc_batching will be false. That's
806 * OK, if the queue is under the request limit then requests need
807 * not count toward the nr_batch_requests limit. There will always
808 * be some limit enforced by BLK_BATCH_TIME.
809 */
1da177e4
LT
810 if (ioc_batching(q, ioc))
811 ioc->nr_batch_requests--;
6728cb0e 812
1faa16d2 813 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 814out:
1da177e4
LT
815 return rq;
816}
817
818/*
819 * No available requests for this queue, unplug the device and wait for some
820 * requests to become available.
d6344532
NP
821 *
822 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 823 */
165125e1 824static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 825 struct bio *bio)
1da177e4 826{
1faa16d2 827 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
828 struct request *rq;
829
7749a8d4 830 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
831 while (!rq) {
832 DEFINE_WAIT(wait);
05caf8db 833 struct io_context *ioc;
1da177e4
LT
834 struct request_list *rl = &q->rq;
835
1faa16d2 836 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
837 TASK_UNINTERRUPTIBLE);
838
1faa16d2 839 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 840
05caf8db
ZY
841 __generic_unplug_device(q);
842 spin_unlock_irq(q->queue_lock);
843 io_schedule();
1da177e4 844
05caf8db
ZY
845 /*
846 * After sleeping, we become a "batching" process and
847 * will be able to allocate at least one request, and
848 * up to a big batch of them for a small period time.
849 * See ioc_batching, ioc_set_batching
850 */
851 ioc = current_io_context(GFP_NOIO, q->node);
852 ioc_set_batching(q, ioc);
d6344532 853
05caf8db 854 spin_lock_irq(q->queue_lock);
1faa16d2 855 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
856
857 rq = get_request(q, rw_flags, bio, GFP_NOIO);
858 };
1da177e4
LT
859
860 return rq;
861}
862
165125e1 863struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
864{
865 struct request *rq;
866
867 BUG_ON(rw != READ && rw != WRITE);
868
d6344532
NP
869 spin_lock_irq(q->queue_lock);
870 if (gfp_mask & __GFP_WAIT) {
22e2c507 871 rq = get_request_wait(q, rw, NULL);
d6344532 872 } else {
22e2c507 873 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
874 if (!rq)
875 spin_unlock_irq(q->queue_lock);
876 }
877 /* q->queue_lock is unlocked at this point */
1da177e4
LT
878
879 return rq;
880}
1da177e4
LT
881EXPORT_SYMBOL(blk_get_request);
882
dc72ef4a 883/**
79eb63e9 884 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 885 * @q: target request queue
79eb63e9
BH
886 * @bio: The bio describing the memory mappings that will be submitted for IO.
887 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 888 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 889 *
79eb63e9
BH
890 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
891 * type commands. Where the struct request needs to be farther initialized by
892 * the caller. It is passed a &struct bio, which describes the memory info of
893 * the I/O transfer.
dc72ef4a 894 *
79eb63e9
BH
895 * The caller of blk_make_request must make sure that bi_io_vec
896 * are set to describe the memory buffers. That bio_data_dir() will return
897 * the needed direction of the request. (And all bio's in the passed bio-chain
898 * are properly set accordingly)
899 *
900 * If called under none-sleepable conditions, mapped bio buffers must not
901 * need bouncing, by calling the appropriate masked or flagged allocator,
902 * suitable for the target device. Otherwise the call to blk_queue_bounce will
903 * BUG.
53674ac5
JA
904 *
905 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
906 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
907 * anything but the first bio in the chain. Otherwise you risk waiting for IO
908 * completion of a bio that hasn't been submitted yet, thus resulting in a
909 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
910 * of bio_alloc(), as that avoids the mempool deadlock.
911 * If possible a big IO should be split into smaller parts when allocation
912 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 913 */
79eb63e9
BH
914struct request *blk_make_request(struct request_queue *q, struct bio *bio,
915 gfp_t gfp_mask)
dc72ef4a 916{
79eb63e9
BH
917 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
918
919 if (unlikely(!rq))
920 return ERR_PTR(-ENOMEM);
921
922 for_each_bio(bio) {
923 struct bio *bounce_bio = bio;
924 int ret;
925
926 blk_queue_bounce(q, &bounce_bio);
927 ret = blk_rq_append_bio(q, rq, bounce_bio);
928 if (unlikely(ret)) {
929 blk_put_request(rq);
930 return ERR_PTR(ret);
931 }
932 }
933
934 return rq;
dc72ef4a 935}
79eb63e9 936EXPORT_SYMBOL(blk_make_request);
dc72ef4a 937
1da177e4
LT
938/**
939 * blk_requeue_request - put a request back on queue
940 * @q: request queue where request should be inserted
941 * @rq: request to be inserted
942 *
943 * Description:
944 * Drivers often keep queueing requests until the hardware cannot accept
945 * more, when that condition happens we need to put the request back
946 * on the queue. Must be called with queue lock held.
947 */
165125e1 948void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 949{
242f9dcb
JA
950 blk_delete_timer(rq);
951 blk_clear_rq_complete(rq);
5f3ea37c 952 trace_block_rq_requeue(q, rq);
2056a782 953
1da177e4
LT
954 if (blk_rq_tagged(rq))
955 blk_queue_end_tag(q, rq);
956
ba396a6c
JB
957 BUG_ON(blk_queued_rq(rq));
958
1da177e4
LT
959 elv_requeue_request(q, rq);
960}
1da177e4
LT
961EXPORT_SYMBOL(blk_requeue_request);
962
963/**
710027a4 964 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
965 * @q: request queue where request should be inserted
966 * @rq: request to be inserted
967 * @at_head: insert request at head or tail of queue
968 * @data: private data
1da177e4
LT
969 *
970 * Description:
971 * Many block devices need to execute commands asynchronously, so they don't
972 * block the whole kernel from preemption during request execution. This is
973 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
974 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
975 * be scheduled for actual execution by the request queue.
1da177e4
LT
976 *
977 * We have the option of inserting the head or the tail of the queue.
978 * Typically we use the tail for new ioctls and so forth. We use the head
979 * of the queue for things like a QUEUE_FULL message from a device, or a
980 * host that is unable to accept a particular command.
981 */
165125e1 982void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 983 int at_head, void *data)
1da177e4 984{
867d1191 985 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
986 unsigned long flags;
987
988 /*
989 * tell I/O scheduler that this isn't a regular read/write (ie it
990 * must not attempt merges on this) and that it acts as a soft
991 * barrier
992 */
4aff5e23 993 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
994
995 rq->special = data;
996
997 spin_lock_irqsave(q->queue_lock, flags);
998
999 /*
1000 * If command is tagged, release the tag
1001 */
867d1191
TH
1002 if (blk_rq_tagged(rq))
1003 blk_queue_end_tag(q, rq);
1da177e4 1004
b238b3d4 1005 drive_stat_acct(rq, 1);
867d1191 1006 __elv_add_request(q, rq, where, 0);
a7f55792 1007 __blk_run_queue(q);
1da177e4
LT
1008 spin_unlock_irqrestore(q->queue_lock, flags);
1009}
1da177e4
LT
1010EXPORT_SYMBOL(blk_insert_request);
1011
1da177e4
LT
1012/*
1013 * add-request adds a request to the linked list.
1014 * queue lock is held and interrupts disabled, as we muck with the
1015 * request queue list.
1016 */
6728cb0e 1017static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 1018{
b238b3d4 1019 drive_stat_acct(req, 1);
1da177e4 1020
1da177e4
LT
1021 /*
1022 * elevator indicated where it wants this request to be
1023 * inserted at elevator_merge time
1024 */
1025 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1026}
6728cb0e 1027
074a7aca
TH
1028static void part_round_stats_single(int cpu, struct hd_struct *part,
1029 unsigned long now)
1030{
1031 if (now == part->stamp)
1032 return;
1033
316d315b 1034 if (part_in_flight(part)) {
074a7aca 1035 __part_stat_add(cpu, part, time_in_queue,
316d315b 1036 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1037 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1038 }
1039 part->stamp = now;
1040}
1041
1042/**
496aa8a9
RD
1043 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1044 * @cpu: cpu number for stats access
1045 * @part: target partition
1da177e4
LT
1046 *
1047 * The average IO queue length and utilisation statistics are maintained
1048 * by observing the current state of the queue length and the amount of
1049 * time it has been in this state for.
1050 *
1051 * Normally, that accounting is done on IO completion, but that can result
1052 * in more than a second's worth of IO being accounted for within any one
1053 * second, leading to >100% utilisation. To deal with that, we call this
1054 * function to do a round-off before returning the results when reading
1055 * /proc/diskstats. This accounts immediately for all queue usage up to
1056 * the current jiffies and restarts the counters again.
1057 */
c9959059 1058void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1059{
1060 unsigned long now = jiffies;
1061
074a7aca
TH
1062 if (part->partno)
1063 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1064 part_round_stats_single(cpu, part, now);
6f2576af 1065}
074a7aca 1066EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1067
1da177e4
LT
1068/*
1069 * queue lock must be held
1070 */
165125e1 1071void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1072{
1da177e4
LT
1073 if (unlikely(!q))
1074 return;
1075 if (unlikely(--req->ref_count))
1076 return;
1077
8922e16c
TH
1078 elv_completed_request(q, req);
1079
1cd96c24
BH
1080 /* this is a bio leak */
1081 WARN_ON(req->bio != NULL);
1082
1da177e4
LT
1083 /*
1084 * Request may not have originated from ll_rw_blk. if not,
1085 * it didn't come out of our reserved rq pools
1086 */
49171e5c 1087 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1088 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1089 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1090
1da177e4 1091 BUG_ON(!list_empty(&req->queuelist));
9817064b 1092 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1093
1094 blk_free_request(q, req);
1faa16d2 1095 freed_request(q, is_sync, priv);
1da177e4
LT
1096 }
1097}
6e39b69e
MC
1098EXPORT_SYMBOL_GPL(__blk_put_request);
1099
1da177e4
LT
1100void blk_put_request(struct request *req)
1101{
8922e16c 1102 unsigned long flags;
165125e1 1103 struct request_queue *q = req->q;
8922e16c 1104
52a93ba8
FT
1105 spin_lock_irqsave(q->queue_lock, flags);
1106 __blk_put_request(q, req);
1107 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1108}
1da177e4
LT
1109EXPORT_SYMBOL(blk_put_request);
1110
86db1e29 1111void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1112{
c7c22e4d 1113 req->cpu = bio->bi_comp_cpu;
4aff5e23 1114 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1115
1116 /*
a82afdfc
TH
1117 * Inherit FAILFAST from bio (for read-ahead, and explicit
1118 * FAILFAST). FAILFAST flags are identical for req and bio.
52d9e675 1119 */
1f98a13f 1120 if (bio_rw_flagged(bio, BIO_RW_AHEAD))
a82afdfc
TH
1121 req->cmd_flags |= REQ_FAILFAST_MASK;
1122 else
1123 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
52d9e675 1124
1f98a13f 1125 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
e17fc0a1 1126 req->cmd_flags |= REQ_DISCARD;
1f98a13f 1127 if (bio_rw_flagged(bio, BIO_RW_BARRIER))
e17fc0a1 1128 req->cmd_flags |= REQ_SOFTBARRIER;
1f98a13f 1129 } else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)))
e4025f6c 1130 req->cmd_flags |= REQ_HARDBARRIER;
52d9e675 1131
1f98a13f 1132 if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
4aff5e23 1133 req->cmd_flags |= REQ_RW_SYNC;
1f98a13f 1134 if (bio_rw_flagged(bio, BIO_RW_META))
5404bc7a 1135 req->cmd_flags |= REQ_RW_META;
1f98a13f 1136 if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
aeb6fafb 1137 req->cmd_flags |= REQ_NOIDLE;
b31dc66a 1138
52d9e675 1139 req->errors = 0;
a2dec7b3 1140 req->__sector = bio->bi_sector;
52d9e675 1141 req->ioprio = bio_prio(bio);
bc1c56fd 1142 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1143}
1144
644b2d99
JA
1145/*
1146 * Only disabling plugging for non-rotational devices if it does tagging
1147 * as well, otherwise we do need the proper merging
1148 */
1149static inline bool queue_should_plug(struct request_queue *q)
1150{
79da0644 1151 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1152}
1153
165125e1 1154static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1155{
450991bc 1156 struct request *req;
2e46e8b2
TH
1157 int el_ret;
1158 unsigned int bytes = bio->bi_size;
51da90fc 1159 const unsigned short prio = bio_prio(bio);
1f98a13f
JA
1160 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1161 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
80a761fd 1162 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
7749a8d4 1163 int rw_flags;
1da177e4 1164
6cafb12d 1165 if (bio_rw_flagged(bio, BIO_RW_BARRIER) &&
db64f680
N
1166 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1167 bio_endio(bio, -EOPNOTSUPP);
1168 return 0;
1169 }
1da177e4
LT
1170 /*
1171 * low level driver can indicate that it wants pages above a
1172 * certain limit bounced to low memory (ie for highmem, or even
1173 * ISA dma in theory)
1174 */
1175 blk_queue_bounce(q, &bio);
1176
1da177e4
LT
1177 spin_lock_irq(q->queue_lock);
1178
1f98a13f 1179 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1da177e4
LT
1180 goto get_rq;
1181
1182 el_ret = elv_merge(q, &req, bio);
1183 switch (el_ret) {
6728cb0e
JA
1184 case ELEVATOR_BACK_MERGE:
1185 BUG_ON(!rq_mergeable(req));
1da177e4 1186
6728cb0e
JA
1187 if (!ll_back_merge_fn(q, req, bio))
1188 break;
1da177e4 1189
5f3ea37c 1190 trace_block_bio_backmerge(q, bio);
2056a782 1191
80a761fd
TH
1192 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1193 blk_rq_set_mixed_merge(req);
1194
6728cb0e
JA
1195 req->biotail->bi_next = bio;
1196 req->biotail = bio;
a2dec7b3 1197 req->__data_len += bytes;
6728cb0e 1198 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1199 if (!blk_rq_cpu_valid(req))
1200 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1201 drive_stat_acct(req, 0);
1202 if (!attempt_back_merge(q, req))
1203 elv_merged_request(q, req, el_ret);
1204 goto out;
1da177e4 1205
6728cb0e
JA
1206 case ELEVATOR_FRONT_MERGE:
1207 BUG_ON(!rq_mergeable(req));
1da177e4 1208
6728cb0e
JA
1209 if (!ll_front_merge_fn(q, req, bio))
1210 break;
1da177e4 1211
5f3ea37c 1212 trace_block_bio_frontmerge(q, bio);
2056a782 1213
80a761fd
TH
1214 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1215 blk_rq_set_mixed_merge(req);
1216 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1217 req->cmd_flags |= ff;
1218 }
1219
6728cb0e
JA
1220 bio->bi_next = req->bio;
1221 req->bio = bio;
1da177e4 1222
6728cb0e
JA
1223 /*
1224 * may not be valid. if the low level driver said
1225 * it didn't need a bounce buffer then it better
1226 * not touch req->buffer either...
1227 */
1228 req->buffer = bio_data(bio);
a2dec7b3
TH
1229 req->__sector = bio->bi_sector;
1230 req->__data_len += bytes;
6728cb0e 1231 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1232 if (!blk_rq_cpu_valid(req))
1233 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1234 drive_stat_acct(req, 0);
1235 if (!attempt_front_merge(q, req))
1236 elv_merged_request(q, req, el_ret);
1237 goto out;
1238
1239 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1240 default:
1241 ;
1da177e4
LT
1242 }
1243
450991bc 1244get_rq:
7749a8d4
JA
1245 /*
1246 * This sync check and mask will be re-done in init_request_from_bio(),
1247 * but we need to set it earlier to expose the sync flag to the
1248 * rq allocator and io schedulers.
1249 */
1250 rw_flags = bio_data_dir(bio);
1251 if (sync)
1252 rw_flags |= REQ_RW_SYNC;
1253
1da177e4 1254 /*
450991bc 1255 * Grab a free request. This is might sleep but can not fail.
d6344532 1256 * Returns with the queue unlocked.
450991bc 1257 */
7749a8d4 1258 req = get_request_wait(q, rw_flags, bio);
d6344532 1259
450991bc
NP
1260 /*
1261 * After dropping the lock and possibly sleeping here, our request
1262 * may now be mergeable after it had proven unmergeable (above).
1263 * We don't worry about that case for efficiency. It won't happen
1264 * often, and the elevators are able to handle it.
1da177e4 1265 */
52d9e675 1266 init_request_from_bio(req, bio);
1da177e4 1267
450991bc 1268 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1269 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1270 bio_flagged(bio, BIO_CPU_AFFINE))
1271 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1272 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1273 blk_plug_device(q);
1da177e4
LT
1274 add_request(q, req);
1275out:
644b2d99 1276 if (unplug || !queue_should_plug(q))
1da177e4 1277 __generic_unplug_device(q);
1da177e4
LT
1278 spin_unlock_irq(q->queue_lock);
1279 return 0;
1da177e4
LT
1280}
1281
1282/*
1283 * If bio->bi_dev is a partition, remap the location
1284 */
1285static inline void blk_partition_remap(struct bio *bio)
1286{
1287 struct block_device *bdev = bio->bi_bdev;
1288
bf2de6f5 1289 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1290 struct hd_struct *p = bdev->bd_part;
1291
1da177e4
LT
1292 bio->bi_sector += p->start_sect;
1293 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1294
5f3ea37c 1295 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1296 bdev->bd_dev,
c7149d6b 1297 bio->bi_sector - p->start_sect);
1da177e4
LT
1298 }
1299}
1300
1da177e4
LT
1301static void handle_bad_sector(struct bio *bio)
1302{
1303 char b[BDEVNAME_SIZE];
1304
1305 printk(KERN_INFO "attempt to access beyond end of device\n");
1306 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1307 bdevname(bio->bi_bdev, b),
1308 bio->bi_rw,
1309 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1310 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1311
1312 set_bit(BIO_EOF, &bio->bi_flags);
1313}
1314
c17bb495
AM
1315#ifdef CONFIG_FAIL_MAKE_REQUEST
1316
1317static DECLARE_FAULT_ATTR(fail_make_request);
1318
1319static int __init setup_fail_make_request(char *str)
1320{
1321 return setup_fault_attr(&fail_make_request, str);
1322}
1323__setup("fail_make_request=", setup_fail_make_request);
1324
1325static int should_fail_request(struct bio *bio)
1326{
eddb2e26
TH
1327 struct hd_struct *part = bio->bi_bdev->bd_part;
1328
1329 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1330 return should_fail(&fail_make_request, bio->bi_size);
1331
1332 return 0;
1333}
1334
1335static int __init fail_make_request_debugfs(void)
1336{
1337 return init_fault_attr_dentries(&fail_make_request,
1338 "fail_make_request");
1339}
1340
1341late_initcall(fail_make_request_debugfs);
1342
1343#else /* CONFIG_FAIL_MAKE_REQUEST */
1344
1345static inline int should_fail_request(struct bio *bio)
1346{
1347 return 0;
1348}
1349
1350#endif /* CONFIG_FAIL_MAKE_REQUEST */
1351
c07e2b41
JA
1352/*
1353 * Check whether this bio extends beyond the end of the device.
1354 */
1355static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1356{
1357 sector_t maxsector;
1358
1359 if (!nr_sectors)
1360 return 0;
1361
1362 /* Test device or partition size, when known. */
1363 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1364 if (maxsector) {
1365 sector_t sector = bio->bi_sector;
1366
1367 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1368 /*
1369 * This may well happen - the kernel calls bread()
1370 * without checking the size of the device, e.g., when
1371 * mounting a device.
1372 */
1373 handle_bad_sector(bio);
1374 return 1;
1375 }
1376 }
1377
1378 return 0;
1379}
1380
1da177e4 1381/**
710027a4 1382 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1383 * @bio: The bio describing the location in memory and on the device.
1384 *
1385 * generic_make_request() is used to make I/O requests of block
1386 * devices. It is passed a &struct bio, which describes the I/O that needs
1387 * to be done.
1388 *
1389 * generic_make_request() does not return any status. The
1390 * success/failure status of the request, along with notification of
1391 * completion, is delivered asynchronously through the bio->bi_end_io
1392 * function described (one day) else where.
1393 *
1394 * The caller of generic_make_request must make sure that bi_io_vec
1395 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1396 * set to describe the device address, and the
1397 * bi_end_io and optionally bi_private are set to describe how
1398 * completion notification should be signaled.
1399 *
1400 * generic_make_request and the drivers it calls may use bi_next if this
1401 * bio happens to be merged with someone else, and may change bi_dev and
1402 * bi_sector for remaps as it sees fit. So the values of these fields
1403 * should NOT be depended on after the call to generic_make_request.
1404 */
d89d8796 1405static inline void __generic_make_request(struct bio *bio)
1da177e4 1406{
165125e1 1407 struct request_queue *q;
5ddfe969 1408 sector_t old_sector;
1da177e4 1409 int ret, nr_sectors = bio_sectors(bio);
2056a782 1410 dev_t old_dev;
51fd77bd 1411 int err = -EIO;
1da177e4
LT
1412
1413 might_sleep();
1da177e4 1414
c07e2b41
JA
1415 if (bio_check_eod(bio, nr_sectors))
1416 goto end_io;
1da177e4
LT
1417
1418 /*
1419 * Resolve the mapping until finished. (drivers are
1420 * still free to implement/resolve their own stacking
1421 * by explicitly returning 0)
1422 *
1423 * NOTE: we don't repeat the blk_size check for each new device.
1424 * Stacking drivers are expected to know what they are doing.
1425 */
5ddfe969 1426 old_sector = -1;
2056a782 1427 old_dev = 0;
1da177e4
LT
1428 do {
1429 char b[BDEVNAME_SIZE];
1430
1431 q = bdev_get_queue(bio->bi_bdev);
a7384677 1432 if (unlikely(!q)) {
1da177e4
LT
1433 printk(KERN_ERR
1434 "generic_make_request: Trying to access "
1435 "nonexistent block-device %s (%Lu)\n",
1436 bdevname(bio->bi_bdev, b),
1437 (long long) bio->bi_sector);
a7384677 1438 goto end_io;
1da177e4
LT
1439 }
1440
67efc925
CH
1441 if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1442 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1443 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1444 bdevname(bio->bi_bdev, b),
1445 bio_sectors(bio),
1446 queue_max_hw_sectors(q));
1da177e4
LT
1447 goto end_io;
1448 }
1449
fde6ad22 1450 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1451 goto end_io;
1452
c17bb495
AM
1453 if (should_fail_request(bio))
1454 goto end_io;
1455
1da177e4
LT
1456 /*
1457 * If this device has partitions, remap block n
1458 * of partition p to block n+start(p) of the disk.
1459 */
1460 blk_partition_remap(bio);
1461
7ba1ba12
MP
1462 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1463 goto end_io;
1464
5ddfe969 1465 if (old_sector != -1)
22a7c31a 1466 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1467
5ddfe969 1468 old_sector = bio->bi_sector;
2056a782
JA
1469 old_dev = bio->bi_bdev->bd_dev;
1470
c07e2b41
JA
1471 if (bio_check_eod(bio, nr_sectors))
1472 goto end_io;
a7384677 1473
1f98a13f 1474 if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
c15227de 1475 !blk_queue_discard(q)) {
51fd77bd
JA
1476 err = -EOPNOTSUPP;
1477 goto end_io;
1478 }
5ddfe969 1479
01edede4
MK
1480 trace_block_bio_queue(q, bio);
1481
1da177e4
LT
1482 ret = q->make_request_fn(q, bio);
1483 } while (ret);
a7384677
TH
1484
1485 return;
1486
1487end_io:
1488 bio_endio(bio, err);
1da177e4
LT
1489}
1490
d89d8796
NB
1491/*
1492 * We only want one ->make_request_fn to be active at a time,
1493 * else stack usage with stacked devices could be a problem.
bddd87c7 1494 * So use current->bio_list to keep a list of requests
d89d8796 1495 * submited by a make_request_fn function.
bddd87c7 1496 * current->bio_list is also used as a flag to say if
d89d8796
NB
1497 * generic_make_request is currently active in this task or not.
1498 * If it is NULL, then no make_request is active. If it is non-NULL,
1499 * then a make_request is active, and new requests should be added
1500 * at the tail
1501 */
1502void generic_make_request(struct bio *bio)
1503{
bddd87c7
AM
1504 struct bio_list bio_list_on_stack;
1505
1506 if (current->bio_list) {
d89d8796 1507 /* make_request is active */
bddd87c7 1508 bio_list_add(current->bio_list, bio);
d89d8796
NB
1509 return;
1510 }
1511 /* following loop may be a bit non-obvious, and so deserves some
1512 * explanation.
1513 * Before entering the loop, bio->bi_next is NULL (as all callers
1514 * ensure that) so we have a list with a single bio.
1515 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1516 * we assign bio_list to a pointer to the bio_list_on_stack,
1517 * thus initialising the bio_list of new bios to be
d89d8796
NB
1518 * added. __generic_make_request may indeed add some more bios
1519 * through a recursive call to generic_make_request. If it
1520 * did, we find a non-NULL value in bio_list and re-enter the loop
1521 * from the top. In this case we really did just take the bio
bddd87c7
AM
1522 * of the top of the list (no pretending) and so remove it from
1523 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1524 *
1525 * The loop was structured like this to make only one call to
1526 * __generic_make_request (which is important as it is large and
1527 * inlined) and to keep the structure simple.
1528 */
1529 BUG_ON(bio->bi_next);
bddd87c7
AM
1530 bio_list_init(&bio_list_on_stack);
1531 current->bio_list = &bio_list_on_stack;
d89d8796 1532 do {
d89d8796 1533 __generic_make_request(bio);
bddd87c7 1534 bio = bio_list_pop(current->bio_list);
d89d8796 1535 } while (bio);
bddd87c7 1536 current->bio_list = NULL; /* deactivate */
d89d8796 1537}
1da177e4
LT
1538EXPORT_SYMBOL(generic_make_request);
1539
1540/**
710027a4 1541 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1542 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1543 * @bio: The &struct bio which describes the I/O
1544 *
1545 * submit_bio() is very similar in purpose to generic_make_request(), and
1546 * uses that function to do most of the work. Both are fairly rough
710027a4 1547 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1548 *
1549 */
1550void submit_bio(int rw, struct bio *bio)
1551{
1552 int count = bio_sectors(bio);
1553
22e2c507 1554 bio->bi_rw |= rw;
1da177e4 1555
bf2de6f5
JA
1556 /*
1557 * If it's a regular read/write or a barrier with data attached,
1558 * go through the normal accounting stuff before submission.
1559 */
a9c701e5 1560 if (bio_has_data(bio)) {
bf2de6f5
JA
1561 if (rw & WRITE) {
1562 count_vm_events(PGPGOUT, count);
1563 } else {
1564 task_io_account_read(bio->bi_size);
1565 count_vm_events(PGPGIN, count);
1566 }
1567
1568 if (unlikely(block_dump)) {
1569 char b[BDEVNAME_SIZE];
1570 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1571 current->comm, task_pid_nr(current),
bf2de6f5
JA
1572 (rw & WRITE) ? "WRITE" : "READ",
1573 (unsigned long long)bio->bi_sector,
6728cb0e 1574 bdevname(bio->bi_bdev, b));
bf2de6f5 1575 }
1da177e4
LT
1576 }
1577
1578 generic_make_request(bio);
1579}
1da177e4
LT
1580EXPORT_SYMBOL(submit_bio);
1581
82124d60
KU
1582/**
1583 * blk_rq_check_limits - Helper function to check a request for the queue limit
1584 * @q: the queue
1585 * @rq: the request being checked
1586 *
1587 * Description:
1588 * @rq may have been made based on weaker limitations of upper-level queues
1589 * in request stacking drivers, and it may violate the limitation of @q.
1590 * Since the block layer and the underlying device driver trust @rq
1591 * after it is inserted to @q, it should be checked against @q before
1592 * the insertion using this generic function.
1593 *
1594 * This function should also be useful for request stacking drivers
1595 * in some cases below, so export this fuction.
1596 * Request stacking drivers like request-based dm may change the queue
1597 * limits while requests are in the queue (e.g. dm's table swapping).
1598 * Such request stacking drivers should check those requests agaist
1599 * the new queue limits again when they dispatch those requests,
1600 * although such checkings are also done against the old queue limits
1601 * when submitting requests.
1602 */
1603int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1604{
ae03bf63
MP
1605 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1606 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1607 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1608 return -EIO;
1609 }
1610
1611 /*
1612 * queue's settings related to segment counting like q->bounce_pfn
1613 * may differ from that of other stacking queues.
1614 * Recalculate it to check the request correctly on this queue's
1615 * limitation.
1616 */
1617 blk_recalc_rq_segments(rq);
8a78362c 1618 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1619 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1620 return -EIO;
1621 }
1622
1623 return 0;
1624}
1625EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1626
1627/**
1628 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1629 * @q: the queue to submit the request
1630 * @rq: the request being queued
1631 */
1632int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1633{
1634 unsigned long flags;
1635
1636 if (blk_rq_check_limits(q, rq))
1637 return -EIO;
1638
1639#ifdef CONFIG_FAIL_MAKE_REQUEST
1640 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1641 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1642 return -EIO;
1643#endif
1644
1645 spin_lock_irqsave(q->queue_lock, flags);
1646
1647 /*
1648 * Submitting request must be dequeued before calling this function
1649 * because it will be linked to another request_queue
1650 */
1651 BUG_ON(blk_queued_rq(rq));
1652
1653 drive_stat_acct(rq, 1);
1654 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1655
1656 spin_unlock_irqrestore(q->queue_lock, flags);
1657
1658 return 0;
1659}
1660EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1661
80a761fd
TH
1662/**
1663 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1664 * @rq: request to examine
1665 *
1666 * Description:
1667 * A request could be merge of IOs which require different failure
1668 * handling. This function determines the number of bytes which
1669 * can be failed from the beginning of the request without
1670 * crossing into area which need to be retried further.
1671 *
1672 * Return:
1673 * The number of bytes to fail.
1674 *
1675 * Context:
1676 * queue_lock must be held.
1677 */
1678unsigned int blk_rq_err_bytes(const struct request *rq)
1679{
1680 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1681 unsigned int bytes = 0;
1682 struct bio *bio;
1683
1684 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1685 return blk_rq_bytes(rq);
1686
1687 /*
1688 * Currently the only 'mixing' which can happen is between
1689 * different fastfail types. We can safely fail portions
1690 * which have all the failfast bits that the first one has -
1691 * the ones which are at least as eager to fail as the first
1692 * one.
1693 */
1694 for (bio = rq->bio; bio; bio = bio->bi_next) {
1695 if ((bio->bi_rw & ff) != ff)
1696 break;
1697 bytes += bio->bi_size;
1698 }
1699
1700 /* this could lead to infinite loop */
1701 BUG_ON(blk_rq_bytes(rq) && !bytes);
1702 return bytes;
1703}
1704EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1705
bc58ba94
JA
1706static void blk_account_io_completion(struct request *req, unsigned int bytes)
1707{
c2553b58 1708 if (blk_do_io_stat(req)) {
bc58ba94
JA
1709 const int rw = rq_data_dir(req);
1710 struct hd_struct *part;
1711 int cpu;
1712
1713 cpu = part_stat_lock();
83096ebf 1714 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1715 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1716 part_stat_unlock();
1717 }
1718}
1719
1720static void blk_account_io_done(struct request *req)
1721{
bc58ba94
JA
1722 /*
1723 * Account IO completion. bar_rq isn't accounted as a normal
1724 * IO on queueing nor completion. Accounting the containing
1725 * request is enough.
1726 */
c2553b58 1727 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
bc58ba94
JA
1728 unsigned long duration = jiffies - req->start_time;
1729 const int rw = rq_data_dir(req);
1730 struct hd_struct *part;
1731 int cpu;
1732
1733 cpu = part_stat_lock();
83096ebf 1734 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1735
1736 part_stat_inc(cpu, part, ios[rw]);
1737 part_stat_add(cpu, part, ticks[rw], duration);
1738 part_round_stats(cpu, part);
316d315b 1739 part_dec_in_flight(part, rw);
bc58ba94
JA
1740
1741 part_stat_unlock();
1742 }
1743}
1744
3bcddeac 1745/**
9934c8c0
TH
1746 * blk_peek_request - peek at the top of a request queue
1747 * @q: request queue to peek at
1748 *
1749 * Description:
1750 * Return the request at the top of @q. The returned request
1751 * should be started using blk_start_request() before LLD starts
1752 * processing it.
1753 *
1754 * Return:
1755 * Pointer to the request at the top of @q if available. Null
1756 * otherwise.
1757 *
1758 * Context:
1759 * queue_lock must be held.
1760 */
1761struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1762{
1763 struct request *rq;
1764 int ret;
1765
1766 while ((rq = __elv_next_request(q)) != NULL) {
1767 if (!(rq->cmd_flags & REQ_STARTED)) {
1768 /*
1769 * This is the first time the device driver
1770 * sees this request (possibly after
1771 * requeueing). Notify IO scheduler.
1772 */
1773 if (blk_sorted_rq(rq))
1774 elv_activate_rq(q, rq);
1775
1776 /*
1777 * just mark as started even if we don't start
1778 * it, a request that has been delayed should
1779 * not be passed by new incoming requests
1780 */
1781 rq->cmd_flags |= REQ_STARTED;
1782 trace_block_rq_issue(q, rq);
1783 }
1784
1785 if (!q->boundary_rq || q->boundary_rq == rq) {
1786 q->end_sector = rq_end_sector(rq);
1787 q->boundary_rq = NULL;
1788 }
1789
1790 if (rq->cmd_flags & REQ_DONTPREP)
1791 break;
1792
2e46e8b2 1793 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1794 /*
1795 * make sure space for the drain appears we
1796 * know we can do this because max_hw_segments
1797 * has been adjusted to be one fewer than the
1798 * device can handle
1799 */
1800 rq->nr_phys_segments++;
1801 }
1802
1803 if (!q->prep_rq_fn)
1804 break;
1805
1806 ret = q->prep_rq_fn(q, rq);
1807 if (ret == BLKPREP_OK) {
1808 break;
1809 } else if (ret == BLKPREP_DEFER) {
1810 /*
1811 * the request may have been (partially) prepped.
1812 * we need to keep this request in the front to
1813 * avoid resource deadlock. REQ_STARTED will
1814 * prevent other fs requests from passing this one.
1815 */
2e46e8b2 1816 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1817 !(rq->cmd_flags & REQ_DONTPREP)) {
1818 /*
1819 * remove the space for the drain we added
1820 * so that we don't add it again
1821 */
1822 --rq->nr_phys_segments;
1823 }
1824
1825 rq = NULL;
1826 break;
1827 } else if (ret == BLKPREP_KILL) {
1828 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1829 /*
1830 * Mark this request as started so we don't trigger
1831 * any debug logic in the end I/O path.
1832 */
1833 blk_start_request(rq);
40cbbb78 1834 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1835 } else {
1836 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1837 break;
1838 }
1839 }
1840
1841 return rq;
1842}
9934c8c0 1843EXPORT_SYMBOL(blk_peek_request);
158dbda0 1844
9934c8c0 1845void blk_dequeue_request(struct request *rq)
158dbda0 1846{
9934c8c0
TH
1847 struct request_queue *q = rq->q;
1848
158dbda0
TH
1849 BUG_ON(list_empty(&rq->queuelist));
1850 BUG_ON(ELV_ON_HASH(rq));
1851
1852 list_del_init(&rq->queuelist);
1853
1854 /*
1855 * the time frame between a request being removed from the lists
1856 * and to it is freed is accounted as io that is in progress at
1857 * the driver side.
1858 */
9195291e 1859 if (blk_account_rq(rq)) {
0a7ae2ff 1860 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1861 set_io_start_time_ns(rq);
1862 }
158dbda0
TH
1863}
1864
9934c8c0
TH
1865/**
1866 * blk_start_request - start request processing on the driver
1867 * @req: request to dequeue
1868 *
1869 * Description:
1870 * Dequeue @req and start timeout timer on it. This hands off the
1871 * request to the driver.
1872 *
1873 * Block internal functions which don't want to start timer should
1874 * call blk_dequeue_request().
1875 *
1876 * Context:
1877 * queue_lock must be held.
1878 */
1879void blk_start_request(struct request *req)
1880{
1881 blk_dequeue_request(req);
1882
1883 /*
5f49f631
TH
1884 * We are now handing the request to the hardware, initialize
1885 * resid_len to full count and add the timeout handler.
9934c8c0 1886 */
5f49f631 1887 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1888 if (unlikely(blk_bidi_rq(req)))
1889 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1890
9934c8c0
TH
1891 blk_add_timer(req);
1892}
1893EXPORT_SYMBOL(blk_start_request);
1894
1895/**
1896 * blk_fetch_request - fetch a request from a request queue
1897 * @q: request queue to fetch a request from
1898 *
1899 * Description:
1900 * Return the request at the top of @q. The request is started on
1901 * return and LLD can start processing it immediately.
1902 *
1903 * Return:
1904 * Pointer to the request at the top of @q if available. Null
1905 * otherwise.
1906 *
1907 * Context:
1908 * queue_lock must be held.
1909 */
1910struct request *blk_fetch_request(struct request_queue *q)
1911{
1912 struct request *rq;
1913
1914 rq = blk_peek_request(q);
1915 if (rq)
1916 blk_start_request(rq);
1917 return rq;
1918}
1919EXPORT_SYMBOL(blk_fetch_request);
1920
3bcddeac 1921/**
2e60e022 1922 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1923 * @req: the request being processed
710027a4 1924 * @error: %0 for success, < %0 for error
8ebf9756 1925 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1926 *
1927 * Description:
8ebf9756
RD
1928 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1929 * the request structure even if @req doesn't have leftover.
1930 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1931 *
1932 * This special helper function is only for request stacking drivers
1933 * (e.g. request-based dm) so that they can handle partial completion.
1934 * Actual device drivers should use blk_end_request instead.
1935 *
1936 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1937 * %false return from this function.
3bcddeac
KU
1938 *
1939 * Return:
2e60e022
TH
1940 * %false - this request doesn't have any more data
1941 * %true - this request has more data
3bcddeac 1942 **/
2e60e022 1943bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 1944{
5450d3e1 1945 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1946 struct bio *bio;
1947
2e60e022
TH
1948 if (!req->bio)
1949 return false;
1950
5f3ea37c 1951 trace_block_rq_complete(req->q, req);
2056a782 1952
1da177e4 1953 /*
6f41469c
TH
1954 * For fs requests, rq is just carrier of independent bio's
1955 * and each partial completion should be handled separately.
1956 * Reset per-request error on each partial completion.
1957 *
1958 * TODO: tj: This is too subtle. It would be better to let
1959 * low level drivers do what they see fit.
1da177e4 1960 */
6f41469c 1961 if (blk_fs_request(req))
1da177e4
LT
1962 req->errors = 0;
1963
6728cb0e
JA
1964 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1965 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 1966 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 1967 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
1968 }
1969
bc58ba94 1970 blk_account_io_completion(req, nr_bytes);
d72d904a 1971
1da177e4
LT
1972 total_bytes = bio_nbytes = 0;
1973 while ((bio = req->bio) != NULL) {
1974 int nbytes;
1975
1976 if (nr_bytes >= bio->bi_size) {
1977 req->bio = bio->bi_next;
1978 nbytes = bio->bi_size;
5bb23a68 1979 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1980 next_idx = 0;
1981 bio_nbytes = 0;
1982 } else {
1983 int idx = bio->bi_idx + next_idx;
1984
af498d7f 1985 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 1986 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1987 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 1988 __func__, idx, bio->bi_vcnt);
1da177e4
LT
1989 break;
1990 }
1991
1992 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1993 BIO_BUG_ON(nbytes > bio->bi_size);
1994
1995 /*
1996 * not a complete bvec done
1997 */
1998 if (unlikely(nbytes > nr_bytes)) {
1999 bio_nbytes += nr_bytes;
2000 total_bytes += nr_bytes;
2001 break;
2002 }
2003
2004 /*
2005 * advance to the next vector
2006 */
2007 next_idx++;
2008 bio_nbytes += nbytes;
2009 }
2010
2011 total_bytes += nbytes;
2012 nr_bytes -= nbytes;
2013
6728cb0e
JA
2014 bio = req->bio;
2015 if (bio) {
1da177e4
LT
2016 /*
2017 * end more in this run, or just return 'not-done'
2018 */
2019 if (unlikely(nr_bytes <= 0))
2020 break;
2021 }
2022 }
2023
2024 /*
2025 * completely done
2026 */
2e60e022
TH
2027 if (!req->bio) {
2028 /*
2029 * Reset counters so that the request stacking driver
2030 * can find how many bytes remain in the request
2031 * later.
2032 */
a2dec7b3 2033 req->__data_len = 0;
2e60e022
TH
2034 return false;
2035 }
1da177e4
LT
2036
2037 /*
2038 * if the request wasn't completed, update state
2039 */
2040 if (bio_nbytes) {
5bb23a68 2041 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2042 bio->bi_idx += next_idx;
2043 bio_iovec(bio)->bv_offset += nr_bytes;
2044 bio_iovec(bio)->bv_len -= nr_bytes;
2045 }
2046
a2dec7b3 2047 req->__data_len -= total_bytes;
2e46e8b2
TH
2048 req->buffer = bio_data(req->bio);
2049
2050 /* update sector only for requests with clear definition of sector */
2051 if (blk_fs_request(req) || blk_discard_rq(req))
a2dec7b3 2052 req->__sector += total_bytes >> 9;
2e46e8b2 2053
80a761fd
TH
2054 /* mixed attributes always follow the first bio */
2055 if (req->cmd_flags & REQ_MIXED_MERGE) {
2056 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2057 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2058 }
2059
2e46e8b2
TH
2060 /*
2061 * If total number of sectors is less than the first segment
2062 * size, something has gone terribly wrong.
2063 */
2064 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2065 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2066 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2067 }
2068
2069 /* recalculate the number of segments */
1da177e4 2070 blk_recalc_rq_segments(req);
2e46e8b2 2071
2e60e022 2072 return true;
1da177e4 2073}
2e60e022 2074EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2075
2e60e022
TH
2076static bool blk_update_bidi_request(struct request *rq, int error,
2077 unsigned int nr_bytes,
2078 unsigned int bidi_bytes)
5efccd17 2079{
2e60e022
TH
2080 if (blk_update_request(rq, error, nr_bytes))
2081 return true;
5efccd17 2082
2e60e022
TH
2083 /* Bidi request must be completed as a whole */
2084 if (unlikely(blk_bidi_rq(rq)) &&
2085 blk_update_request(rq->next_rq, error, bidi_bytes))
2086 return true;
5efccd17 2087
2e60e022
TH
2088 add_disk_randomness(rq->rq_disk);
2089
2090 return false;
1da177e4
LT
2091}
2092
1da177e4
LT
2093/*
2094 * queue lock must be held
2095 */
2e60e022 2096static void blk_finish_request(struct request *req, int error)
1da177e4 2097{
b8286239
KU
2098 if (blk_rq_tagged(req))
2099 blk_queue_end_tag(req->q, req);
2100
ba396a6c 2101 BUG_ON(blk_queued_rq(req));
1da177e4
LT
2102
2103 if (unlikely(laptop_mode) && blk_fs_request(req))
2104 laptop_io_completion();
2105
e78042e5
MA
2106 blk_delete_timer(req);
2107
bc58ba94 2108 blk_account_io_done(req);
b8286239 2109
1da177e4 2110 if (req->end_io)
8ffdc655 2111 req->end_io(req, error);
b8286239
KU
2112 else {
2113 if (blk_bidi_rq(req))
2114 __blk_put_request(req->next_rq->q, req->next_rq);
2115
1da177e4 2116 __blk_put_request(req->q, req);
b8286239 2117 }
1da177e4
LT
2118}
2119
3b11313a 2120/**
2e60e022
TH
2121 * blk_end_bidi_request - Complete a bidi request
2122 * @rq: the request to complete
2123 * @error: %0 for success, < %0 for error
2124 * @nr_bytes: number of bytes to complete @rq
2125 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2126 *
2127 * Description:
e3a04fe3 2128 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2129 * Drivers that supports bidi can safely call this member for any
2130 * type of request, bidi or uni. In the later case @bidi_bytes is
2131 * just ignored.
336cdb40
KU
2132 *
2133 * Return:
2e60e022
TH
2134 * %false - we are done with this request
2135 * %true - still buffers pending for this request
a0cd1285 2136 **/
b1f74493 2137static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2138 unsigned int nr_bytes, unsigned int bidi_bytes)
2139{
336cdb40 2140 struct request_queue *q = rq->q;
2e60e022 2141 unsigned long flags;
32fab448 2142
2e60e022
TH
2143 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2144 return true;
32fab448 2145
336cdb40 2146 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2147 blk_finish_request(rq, error);
336cdb40
KU
2148 spin_unlock_irqrestore(q->queue_lock, flags);
2149
2e60e022 2150 return false;
32fab448
KU
2151}
2152
336cdb40 2153/**
2e60e022
TH
2154 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2155 * @rq: the request to complete
710027a4 2156 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2157 * @nr_bytes: number of bytes to complete @rq
2158 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2159 *
2160 * Description:
2e60e022
TH
2161 * Identical to blk_end_bidi_request() except that queue lock is
2162 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2163 *
2164 * Return:
2e60e022
TH
2165 * %false - we are done with this request
2166 * %true - still buffers pending for this request
336cdb40 2167 **/
b1f74493
FT
2168static bool __blk_end_bidi_request(struct request *rq, int error,
2169 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2170{
2e60e022
TH
2171 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2172 return true;
336cdb40 2173
2e60e022 2174 blk_finish_request(rq, error);
336cdb40 2175
2e60e022 2176 return false;
336cdb40 2177}
e19a3ab0
KU
2178
2179/**
2180 * blk_end_request - Helper function for drivers to complete the request.
2181 * @rq: the request being processed
710027a4 2182 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2183 * @nr_bytes: number of bytes to complete
2184 *
2185 * Description:
2186 * Ends I/O on a number of bytes attached to @rq.
2187 * If @rq has leftover, sets it up for the next range of segments.
2188 *
2189 * Return:
b1f74493
FT
2190 * %false - we are done with this request
2191 * %true - still buffers pending for this request
e19a3ab0 2192 **/
b1f74493 2193bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2194{
b1f74493 2195 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2196}
56ad1740 2197EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2198
2199/**
b1f74493
FT
2200 * blk_end_request_all - Helper function for drives to finish the request.
2201 * @rq: the request to finish
8ebf9756 2202 * @error: %0 for success, < %0 for error
336cdb40
KU
2203 *
2204 * Description:
b1f74493
FT
2205 * Completely finish @rq.
2206 */
2207void blk_end_request_all(struct request *rq, int error)
336cdb40 2208{
b1f74493
FT
2209 bool pending;
2210 unsigned int bidi_bytes = 0;
336cdb40 2211
b1f74493
FT
2212 if (unlikely(blk_bidi_rq(rq)))
2213 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2214
b1f74493
FT
2215 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2216 BUG_ON(pending);
2217}
56ad1740 2218EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2219
b1f74493
FT
2220/**
2221 * blk_end_request_cur - Helper function to finish the current request chunk.
2222 * @rq: the request to finish the current chunk for
8ebf9756 2223 * @error: %0 for success, < %0 for error
b1f74493
FT
2224 *
2225 * Description:
2226 * Complete the current consecutively mapped chunk from @rq.
2227 *
2228 * Return:
2229 * %false - we are done with this request
2230 * %true - still buffers pending for this request
2231 */
2232bool blk_end_request_cur(struct request *rq, int error)
2233{
2234 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2235}
56ad1740 2236EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2237
80a761fd
TH
2238/**
2239 * blk_end_request_err - Finish a request till the next failure boundary.
2240 * @rq: the request to finish till the next failure boundary for
2241 * @error: must be negative errno
2242 *
2243 * Description:
2244 * Complete @rq till the next failure boundary.
2245 *
2246 * Return:
2247 * %false - we are done with this request
2248 * %true - still buffers pending for this request
2249 */
2250bool blk_end_request_err(struct request *rq, int error)
2251{
2252 WARN_ON(error >= 0);
2253 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2254}
2255EXPORT_SYMBOL_GPL(blk_end_request_err);
2256
e3a04fe3 2257/**
b1f74493
FT
2258 * __blk_end_request - Helper function for drivers to complete the request.
2259 * @rq: the request being processed
2260 * @error: %0 for success, < %0 for error
2261 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2262 *
2263 * Description:
b1f74493 2264 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2265 *
2266 * Return:
b1f74493
FT
2267 * %false - we are done with this request
2268 * %true - still buffers pending for this request
e3a04fe3 2269 **/
b1f74493 2270bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2271{
b1f74493 2272 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2273}
56ad1740 2274EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2275
32fab448 2276/**
b1f74493
FT
2277 * __blk_end_request_all - Helper function for drives to finish the request.
2278 * @rq: the request to finish
8ebf9756 2279 * @error: %0 for success, < %0 for error
32fab448
KU
2280 *
2281 * Description:
b1f74493 2282 * Completely finish @rq. Must be called with queue lock held.
32fab448 2283 */
b1f74493 2284void __blk_end_request_all(struct request *rq, int error)
32fab448 2285{
b1f74493
FT
2286 bool pending;
2287 unsigned int bidi_bytes = 0;
2288
2289 if (unlikely(blk_bidi_rq(rq)))
2290 bidi_bytes = blk_rq_bytes(rq->next_rq);
2291
2292 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2293 BUG_ON(pending);
32fab448 2294}
56ad1740 2295EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2296
e19a3ab0 2297/**
b1f74493
FT
2298 * __blk_end_request_cur - Helper function to finish the current request chunk.
2299 * @rq: the request to finish the current chunk for
8ebf9756 2300 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2301 *
2302 * Description:
b1f74493
FT
2303 * Complete the current consecutively mapped chunk from @rq. Must
2304 * be called with queue lock held.
e19a3ab0
KU
2305 *
2306 * Return:
b1f74493
FT
2307 * %false - we are done with this request
2308 * %true - still buffers pending for this request
2309 */
2310bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2311{
b1f74493 2312 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2313}
56ad1740 2314EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2315
80a761fd
TH
2316/**
2317 * __blk_end_request_err - Finish a request till the next failure boundary.
2318 * @rq: the request to finish till the next failure boundary for
2319 * @error: must be negative errno
2320 *
2321 * Description:
2322 * Complete @rq till the next failure boundary. Must be called
2323 * with queue lock held.
2324 *
2325 * Return:
2326 * %false - we are done with this request
2327 * %true - still buffers pending for this request
2328 */
2329bool __blk_end_request_err(struct request *rq, int error)
2330{
2331 WARN_ON(error >= 0);
2332 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2333}
2334EXPORT_SYMBOL_GPL(__blk_end_request_err);
2335
86db1e29
JA
2336void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2337 struct bio *bio)
1da177e4 2338{
a82afdfc
TH
2339 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2340 rq->cmd_flags |= bio->bi_rw & REQ_RW;
1da177e4 2341
fb2dce86
DW
2342 if (bio_has_data(bio)) {
2343 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2344 rq->buffer = bio_data(bio);
2345 }
a2dec7b3 2346 rq->__data_len = bio->bi_size;
1da177e4 2347 rq->bio = rq->biotail = bio;
1da177e4 2348
66846572
N
2349 if (bio->bi_bdev)
2350 rq->rq_disk = bio->bi_bdev->bd_disk;
2351}
1da177e4 2352
2d4dc890
IL
2353#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2354/**
2355 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2356 * @rq: the request to be flushed
2357 *
2358 * Description:
2359 * Flush all pages in @rq.
2360 */
2361void rq_flush_dcache_pages(struct request *rq)
2362{
2363 struct req_iterator iter;
2364 struct bio_vec *bvec;
2365
2366 rq_for_each_segment(bvec, rq, iter)
2367 flush_dcache_page(bvec->bv_page);
2368}
2369EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2370#endif
2371
ef9e3fac
KU
2372/**
2373 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2374 * @q : the queue of the device being checked
2375 *
2376 * Description:
2377 * Check if underlying low-level drivers of a device are busy.
2378 * If the drivers want to export their busy state, they must set own
2379 * exporting function using blk_queue_lld_busy() first.
2380 *
2381 * Basically, this function is used only by request stacking drivers
2382 * to stop dispatching requests to underlying devices when underlying
2383 * devices are busy. This behavior helps more I/O merging on the queue
2384 * of the request stacking driver and prevents I/O throughput regression
2385 * on burst I/O load.
2386 *
2387 * Return:
2388 * 0 - Not busy (The request stacking driver should dispatch request)
2389 * 1 - Busy (The request stacking driver should stop dispatching request)
2390 */
2391int blk_lld_busy(struct request_queue *q)
2392{
2393 if (q->lld_busy_fn)
2394 return q->lld_busy_fn(q);
2395
2396 return 0;
2397}
2398EXPORT_SYMBOL_GPL(blk_lld_busy);
2399
b0fd271d
KU
2400/**
2401 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2402 * @rq: the clone request to be cleaned up
2403 *
2404 * Description:
2405 * Free all bios in @rq for a cloned request.
2406 */
2407void blk_rq_unprep_clone(struct request *rq)
2408{
2409 struct bio *bio;
2410
2411 while ((bio = rq->bio) != NULL) {
2412 rq->bio = bio->bi_next;
2413
2414 bio_put(bio);
2415 }
2416}
2417EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2418
2419/*
2420 * Copy attributes of the original request to the clone request.
2421 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2422 */
2423static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2424{
2425 dst->cpu = src->cpu;
2426 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2427 dst->cmd_type = src->cmd_type;
2428 dst->__sector = blk_rq_pos(src);
2429 dst->__data_len = blk_rq_bytes(src);
2430 dst->nr_phys_segments = src->nr_phys_segments;
2431 dst->ioprio = src->ioprio;
2432 dst->extra_len = src->extra_len;
2433}
2434
2435/**
2436 * blk_rq_prep_clone - Helper function to setup clone request
2437 * @rq: the request to be setup
2438 * @rq_src: original request to be cloned
2439 * @bs: bio_set that bios for clone are allocated from
2440 * @gfp_mask: memory allocation mask for bio
2441 * @bio_ctr: setup function to be called for each clone bio.
2442 * Returns %0 for success, non %0 for failure.
2443 * @data: private data to be passed to @bio_ctr
2444 *
2445 * Description:
2446 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2447 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2448 * are not copied, and copying such parts is the caller's responsibility.
2449 * Also, pages which the original bios are pointing to are not copied
2450 * and the cloned bios just point same pages.
2451 * So cloned bios must be completed before original bios, which means
2452 * the caller must complete @rq before @rq_src.
2453 */
2454int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2455 struct bio_set *bs, gfp_t gfp_mask,
2456 int (*bio_ctr)(struct bio *, struct bio *, void *),
2457 void *data)
2458{
2459 struct bio *bio, *bio_src;
2460
2461 if (!bs)
2462 bs = fs_bio_set;
2463
2464 blk_rq_init(NULL, rq);
2465
2466 __rq_for_each_bio(bio_src, rq_src) {
2467 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2468 if (!bio)
2469 goto free_and_out;
2470
2471 __bio_clone(bio, bio_src);
2472
2473 if (bio_integrity(bio_src) &&
7878cba9 2474 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2475 goto free_and_out;
2476
2477 if (bio_ctr && bio_ctr(bio, bio_src, data))
2478 goto free_and_out;
2479
2480 if (rq->bio) {
2481 rq->biotail->bi_next = bio;
2482 rq->biotail = bio;
2483 } else
2484 rq->bio = rq->biotail = bio;
2485 }
2486
2487 __blk_rq_prep_clone(rq, rq_src);
2488
2489 return 0;
2490
2491free_and_out:
2492 if (bio)
2493 bio_free(bio, bs);
2494 blk_rq_unprep_clone(rq);
2495
2496 return -ENOMEM;
2497}
2498EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2499
18887ad9 2500int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2501{
2502 return queue_work(kblockd_workqueue, work);
2503}
1da177e4
LT
2504EXPORT_SYMBOL(kblockd_schedule_work);
2505
1da177e4
LT
2506int __init blk_dev_init(void)
2507{
9eb55b03
NK
2508 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2509 sizeof(((struct request *)0)->cmd_flags));
2510
1da177e4
LT
2511 kblockd_workqueue = create_workqueue("kblockd");
2512 if (!kblockd_workqueue)
2513 panic("Failed to create kblockd\n");
2514
2515 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2516 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2517
8324aa91 2518 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2519 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2520
d38ecf93 2521 return 0;
1da177e4 2522}