]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
blk-mq: comment on races related with timeout handler
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
5bb23a68
N
132static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
1da177e4 134{
78d8e58a 135 if (error)
4246a0b6 136 bio->bi_error = error;
797e7dbb 137
e8064021 138 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 139 bio_set_flag(bio, BIO_QUIET);
08bafc03 140
f79ea416 141 bio_advance(bio, nbytes);
7ba1ba12 142
143a87f4 143 /* don't actually finish bio if it's part of flush sequence */
e8064021 144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 145 bio_endio(bio);
1da177e4 146}
1da177e4 147
1da177e4
LT
148void blk_dump_rq_flags(struct request *rq, char *msg)
149{
aebf526b
CH
150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 152 (unsigned long long) rq->cmd_flags);
1da177e4 153
83096ebf
TH
154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq),
156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
157 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
158 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 159}
1da177e4
LT
160EXPORT_SYMBOL(blk_dump_rq_flags);
161
3cca6dc1 162static void blk_delay_work(struct work_struct *work)
1da177e4 163{
3cca6dc1 164 struct request_queue *q;
1da177e4 165
3cca6dc1
JA
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
24ecfbe2 168 __blk_run_queue(q);
3cca6dc1 169 spin_unlock_irq(q->queue_lock);
1da177e4 170}
1da177e4
LT
171
172/**
3cca6dc1
JA
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
1da177e4
LT
176 *
177 * Description:
3cca6dc1
JA
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
70460571 180 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
181 */
182void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 183{
70460571
BVA
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
2ad8b1ef 187}
3cca6dc1 188EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 189
21491412
JA
190/**
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
197 * context.
198 **/
199void blk_start_queue_async(struct request_queue *q)
200{
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 blk_run_queue_async(q);
203}
204EXPORT_SYMBOL(blk_start_queue_async);
205
1da177e4
LT
206/**
207 * blk_start_queue - restart a previously stopped queue
165125e1 208 * @q: The &struct request_queue in question
1da177e4
LT
209 *
210 * Description:
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
214 **/
165125e1 215void blk_start_queue(struct request_queue *q)
1da177e4 216{
a038e253
PBG
217 WARN_ON(!irqs_disabled());
218
75ad23bc 219 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 220 __blk_run_queue(q);
1da177e4 221}
1da177e4
LT
222EXPORT_SYMBOL(blk_start_queue);
223
224/**
225 * blk_stop_queue - stop a queue
165125e1 226 * @q: The &struct request_queue in question
1da177e4
LT
227 *
228 * Description:
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
237 **/
165125e1 238void blk_stop_queue(struct request_queue *q)
1da177e4 239{
136b5721 240 cancel_delayed_work(&q->delay_work);
75ad23bc 241 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
242}
243EXPORT_SYMBOL(blk_stop_queue);
244
245/**
246 * blk_sync_queue - cancel any pending callbacks on a queue
247 * @q: the queue
248 *
249 * Description:
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
59c51591 254 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
255 * that its ->make_request_fn will not re-add plugging prior to calling
256 * this function.
257 *
da527770 258 * This function does not cancel any asynchronous activity arising
da3dae54 259 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 260 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 261 *
1da177e4
LT
262 */
263void blk_sync_queue(struct request_queue *q)
264{
70ed28b9 265 del_timer_sync(&q->timeout);
f04c1fe7
ML
266
267 if (q->mq_ops) {
268 struct blk_mq_hw_ctx *hctx;
269 int i;
270
70f4db63 271 queue_for_each_hw_ctx(q, hctx, i) {
27489a3c 272 cancel_work_sync(&hctx->run_work);
70f4db63
CH
273 cancel_delayed_work_sync(&hctx->delay_work);
274 }
f04c1fe7
ML
275 } else {
276 cancel_delayed_work_sync(&q->delay_work);
277 }
1da177e4
LT
278}
279EXPORT_SYMBOL(blk_sync_queue);
280
c246e80d
BVA
281/**
282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
283 * @q: The queue to run
284 *
285 * Description:
286 * Invoke request handling on a queue if there are any pending requests.
287 * May be used to restart request handling after a request has completed.
288 * This variant runs the queue whether or not the queue has been
289 * stopped. Must be called with the queue lock held and interrupts
290 * disabled. See also @blk_run_queue.
291 */
292inline void __blk_run_queue_uncond(struct request_queue *q)
293{
294 if (unlikely(blk_queue_dead(q)))
295 return;
296
24faf6f6
BVA
297 /*
298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
299 * the queue lock internally. As a result multiple threads may be
300 * running such a request function concurrently. Keep track of the
301 * number of active request_fn invocations such that blk_drain_queue()
302 * can wait until all these request_fn calls have finished.
303 */
304 q->request_fn_active++;
c246e80d 305 q->request_fn(q);
24faf6f6 306 q->request_fn_active--;
c246e80d 307}
a7928c15 308EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 309
1da177e4 310/**
80a4b58e 311 * __blk_run_queue - run a single device queue
1da177e4 312 * @q: The queue to run
80a4b58e
JA
313 *
314 * Description:
315 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 316 * held and interrupts disabled.
1da177e4 317 */
24ecfbe2 318void __blk_run_queue(struct request_queue *q)
1da177e4 319{
a538cd03
TH
320 if (unlikely(blk_queue_stopped(q)))
321 return;
322
c246e80d 323 __blk_run_queue_uncond(q);
75ad23bc
NP
324}
325EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 326
24ecfbe2
CH
327/**
328 * blk_run_queue_async - run a single device queue in workqueue context
329 * @q: The queue to run
330 *
331 * Description:
332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 333 * of us. The caller must hold the queue lock.
24ecfbe2
CH
334 */
335void blk_run_queue_async(struct request_queue *q)
336{
70460571 337 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 338 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 339}
c21e6beb 340EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 341
75ad23bc
NP
342/**
343 * blk_run_queue - run a single device queue
344 * @q: The queue to run
80a4b58e
JA
345 *
346 * Description:
347 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 348 * May be used to restart queueing when a request has completed.
75ad23bc
NP
349 */
350void blk_run_queue(struct request_queue *q)
351{
352 unsigned long flags;
353
354 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 355 __blk_run_queue(q);
1da177e4
LT
356 spin_unlock_irqrestore(q->queue_lock, flags);
357}
358EXPORT_SYMBOL(blk_run_queue);
359
165125e1 360void blk_put_queue(struct request_queue *q)
483f4afc
AV
361{
362 kobject_put(&q->kobj);
363}
d86e0e83 364EXPORT_SYMBOL(blk_put_queue);
483f4afc 365
e3c78ca5 366/**
807592a4 367 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 368 * @q: queue to drain
c9a929dd 369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 370 *
c9a929dd
TH
371 * Drain requests from @q. If @drain_all is set, all requests are drained.
372 * If not, only ELVPRIV requests are drained. The caller is responsible
373 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 374 */
807592a4
BVA
375static void __blk_drain_queue(struct request_queue *q, bool drain_all)
376 __releases(q->queue_lock)
377 __acquires(q->queue_lock)
e3c78ca5 378{
458f27a9
AH
379 int i;
380
807592a4
BVA
381 lockdep_assert_held(q->queue_lock);
382
e3c78ca5 383 while (true) {
481a7d64 384 bool drain = false;
e3c78ca5 385
b855b04a
TH
386 /*
387 * The caller might be trying to drain @q before its
388 * elevator is initialized.
389 */
390 if (q->elevator)
391 elv_drain_elevator(q);
392
5efd6113 393 blkcg_drain_queue(q);
e3c78ca5 394
4eabc941
TH
395 /*
396 * This function might be called on a queue which failed
b855b04a
TH
397 * driver init after queue creation or is not yet fully
398 * active yet. Some drivers (e.g. fd and loop) get unhappy
399 * in such cases. Kick queue iff dispatch queue has
400 * something on it and @q has request_fn set.
4eabc941 401 */
b855b04a 402 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 403 __blk_run_queue(q);
c9a929dd 404
8a5ecdd4 405 drain |= q->nr_rqs_elvpriv;
24faf6f6 406 drain |= q->request_fn_active;
481a7d64
TH
407
408 /*
409 * Unfortunately, requests are queued at and tracked from
410 * multiple places and there's no single counter which can
411 * be drained. Check all the queues and counters.
412 */
413 if (drain_all) {
e97c293c 414 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
415 drain |= !list_empty(&q->queue_head);
416 for (i = 0; i < 2; i++) {
8a5ecdd4 417 drain |= q->nr_rqs[i];
481a7d64 418 drain |= q->in_flight[i];
7c94e1c1
ML
419 if (fq)
420 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
421 }
422 }
e3c78ca5 423
481a7d64 424 if (!drain)
e3c78ca5 425 break;
807592a4
BVA
426
427 spin_unlock_irq(q->queue_lock);
428
e3c78ca5 429 msleep(10);
807592a4
BVA
430
431 spin_lock_irq(q->queue_lock);
e3c78ca5 432 }
458f27a9
AH
433
434 /*
435 * With queue marked dead, any woken up waiter will fail the
436 * allocation path, so the wakeup chaining is lost and we're
437 * left with hung waiters. We need to wake up those waiters.
438 */
439 if (q->request_fn) {
a051661c
TH
440 struct request_list *rl;
441
a051661c
TH
442 blk_queue_for_each_rl(rl, q)
443 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
444 wake_up_all(&rl->wait[i]);
458f27a9 445 }
e3c78ca5
TH
446}
447
d732580b
TH
448/**
449 * blk_queue_bypass_start - enter queue bypass mode
450 * @q: queue of interest
451 *
452 * In bypass mode, only the dispatch FIFO queue of @q is used. This
453 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 454 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
456 * inside queue or RCU read lock.
d732580b
TH
457 */
458void blk_queue_bypass_start(struct request_queue *q)
459{
460 spin_lock_irq(q->queue_lock);
776687bc 461 q->bypass_depth++;
d732580b
TH
462 queue_flag_set(QUEUE_FLAG_BYPASS, q);
463 spin_unlock_irq(q->queue_lock);
464
776687bc
TH
465 /*
466 * Queues start drained. Skip actual draining till init is
467 * complete. This avoids lenghty delays during queue init which
468 * can happen many times during boot.
469 */
470 if (blk_queue_init_done(q)) {
807592a4
BVA
471 spin_lock_irq(q->queue_lock);
472 __blk_drain_queue(q, false);
473 spin_unlock_irq(q->queue_lock);
474
b82d4b19
TH
475 /* ensure blk_queue_bypass() is %true inside RCU read lock */
476 synchronize_rcu();
477 }
d732580b
TH
478}
479EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480
481/**
482 * blk_queue_bypass_end - leave queue bypass mode
483 * @q: queue of interest
484 *
485 * Leave bypass mode and restore the normal queueing behavior.
486 */
487void blk_queue_bypass_end(struct request_queue *q)
488{
489 spin_lock_irq(q->queue_lock);
490 if (!--q->bypass_depth)
491 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 WARN_ON_ONCE(q->bypass_depth < 0);
493 spin_unlock_irq(q->queue_lock);
494}
495EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496
aed3ea94
JA
497void blk_set_queue_dying(struct request_queue *q)
498{
1b856086
BVA
499 spin_lock_irq(q->queue_lock);
500 queue_flag_set(QUEUE_FLAG_DYING, q);
501 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
502
503 if (q->mq_ops)
504 blk_mq_wake_waiters(q);
505 else {
506 struct request_list *rl;
507
bbfc3c5d 508 spin_lock_irq(q->queue_lock);
aed3ea94
JA
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
bbfc3c5d 515 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
516 }
517}
518EXPORT_SYMBOL_GPL(blk_set_queue_dying);
519
c9a929dd
TH
520/**
521 * blk_cleanup_queue - shutdown a request queue
522 * @q: request queue to shutdown
523 *
c246e80d
BVA
524 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
525 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 526 */
6728cb0e 527void blk_cleanup_queue(struct request_queue *q)
483f4afc 528{
c9a929dd 529 spinlock_t *lock = q->queue_lock;
e3335de9 530
3f3299d5 531 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 532 mutex_lock(&q->sysfs_lock);
aed3ea94 533 blk_set_queue_dying(q);
c9a929dd 534 spin_lock_irq(lock);
6ecf23af 535
80fd9979 536 /*
3f3299d5 537 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
538 * that, unlike blk_queue_bypass_start(), we aren't performing
539 * synchronize_rcu() after entering bypass mode to avoid the delay
540 * as some drivers create and destroy a lot of queues while
541 * probing. This is still safe because blk_release_queue() will be
542 * called only after the queue refcnt drops to zero and nothing,
543 * RCU or not, would be traversing the queue by then.
544 */
6ecf23af
TH
545 q->bypass_depth++;
546 queue_flag_set(QUEUE_FLAG_BYPASS, q);
547
c9a929dd
TH
548 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
549 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 550 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
551 spin_unlock_irq(lock);
552 mutex_unlock(&q->sysfs_lock);
553
c246e80d
BVA
554 /*
555 * Drain all requests queued before DYING marking. Set DEAD flag to
556 * prevent that q->request_fn() gets invoked after draining finished.
557 */
3ef28e83
DW
558 blk_freeze_queue(q);
559 spin_lock_irq(lock);
560 if (!q->mq_ops)
43a5e4e2 561 __blk_drain_queue(q, true);
c246e80d 562 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 563 spin_unlock_irq(lock);
c9a929dd 564
5a48fc14
DW
565 /* for synchronous bio-based driver finish in-flight integrity i/o */
566 blk_flush_integrity();
567
c9a929dd 568 /* @q won't process any more request, flush async actions */
dc3b17cc 569 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
570 blk_sync_queue(q);
571
45a9c9d9
BVA
572 if (q->mq_ops)
573 blk_mq_free_queue(q);
3ef28e83 574 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 575
5e5cfac0
AH
576 spin_lock_irq(lock);
577 if (q->queue_lock != &q->__queue_lock)
578 q->queue_lock = &q->__queue_lock;
579 spin_unlock_irq(lock);
580
c9a929dd 581 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
582 blk_put_queue(q);
583}
1da177e4
LT
584EXPORT_SYMBOL(blk_cleanup_queue);
585
271508db 586/* Allocate memory local to the request queue */
6d247d7f 587static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 588{
6d247d7f
CH
589 struct request_queue *q = data;
590
591 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
592}
593
6d247d7f 594static void free_request_simple(void *element, void *data)
271508db
DR
595{
596 kmem_cache_free(request_cachep, element);
597}
598
6d247d7f
CH
599static void *alloc_request_size(gfp_t gfp_mask, void *data)
600{
601 struct request_queue *q = data;
602 struct request *rq;
603
604 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
605 q->node);
606 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
607 kfree(rq);
608 rq = NULL;
609 }
610 return rq;
611}
612
613static void free_request_size(void *element, void *data)
614{
615 struct request_queue *q = data;
616
617 if (q->exit_rq_fn)
618 q->exit_rq_fn(q, element);
619 kfree(element);
620}
621
5b788ce3
TH
622int blk_init_rl(struct request_list *rl, struct request_queue *q,
623 gfp_t gfp_mask)
1da177e4 624{
1abec4fd
MS
625 if (unlikely(rl->rq_pool))
626 return 0;
627
5b788ce3 628 rl->q = q;
1faa16d2
JA
629 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
630 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
631 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
632 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 633
6d247d7f
CH
634 if (q->cmd_size) {
635 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
636 alloc_request_size, free_request_size,
637 q, gfp_mask, q->node);
638 } else {
639 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
640 alloc_request_simple, free_request_simple,
641 q, gfp_mask, q->node);
642 }
1da177e4
LT
643 if (!rl->rq_pool)
644 return -ENOMEM;
645
646 return 0;
647}
648
5b788ce3
TH
649void blk_exit_rl(struct request_list *rl)
650{
651 if (rl->rq_pool)
652 mempool_destroy(rl->rq_pool);
653}
654
165125e1 655struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 656{
c304a51b 657 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
658}
659EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 660
6f3b0e8b 661int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
662{
663 while (true) {
664 int ret;
665
666 if (percpu_ref_tryget_live(&q->q_usage_counter))
667 return 0;
668
6f3b0e8b 669 if (nowait)
3ef28e83
DW
670 return -EBUSY;
671
672 ret = wait_event_interruptible(q->mq_freeze_wq,
673 !atomic_read(&q->mq_freeze_depth) ||
674 blk_queue_dying(q));
675 if (blk_queue_dying(q))
676 return -ENODEV;
677 if (ret)
678 return ret;
679 }
680}
681
682void blk_queue_exit(struct request_queue *q)
683{
684 percpu_ref_put(&q->q_usage_counter);
685}
686
687static void blk_queue_usage_counter_release(struct percpu_ref *ref)
688{
689 struct request_queue *q =
690 container_of(ref, struct request_queue, q_usage_counter);
691
692 wake_up_all(&q->mq_freeze_wq);
693}
694
287922eb
CH
695static void blk_rq_timed_out_timer(unsigned long data)
696{
697 struct request_queue *q = (struct request_queue *)data;
698
699 kblockd_schedule_work(&q->timeout_work);
700}
701
165125e1 702struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 703{
165125e1 704 struct request_queue *q;
1946089a 705
8324aa91 706 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 707 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
708 if (!q)
709 return NULL;
710
00380a40 711 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 712 if (q->id < 0)
3d2936f4 713 goto fail_q;
a73f730d 714
54efd50b
KO
715 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
716 if (!q->bio_split)
717 goto fail_id;
718
d03f6cdc
JK
719 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
720 if (!q->backing_dev_info)
721 goto fail_split;
722
a83b576c
JA
723 q->stats = blk_alloc_queue_stats();
724 if (!q->stats)
725 goto fail_stats;
726
dc3b17cc 727 q->backing_dev_info->ra_pages =
09cbfeaf 728 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
729 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
730 q->backing_dev_info->name = "block";
5151412d 731 q->node = node_id;
0989a025 732
dc3b17cc 733 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 734 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 735 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 736 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 737 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 738 INIT_LIST_HEAD(&q->icq_list);
4eef3049 739#ifdef CONFIG_BLK_CGROUP
e8989fae 740 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 741#endif
3cca6dc1 742 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 743
8324aa91 744 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 745
483f4afc 746 mutex_init(&q->sysfs_lock);
e7e72bf6 747 spin_lock_init(&q->__queue_lock);
483f4afc 748
c94a96ac
VG
749 /*
750 * By default initialize queue_lock to internal lock and driver can
751 * override it later if need be.
752 */
753 q->queue_lock = &q->__queue_lock;
754
b82d4b19
TH
755 /*
756 * A queue starts its life with bypass turned on to avoid
757 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
758 * init. The initial bypass will be finished when the queue is
759 * registered by blk_register_queue().
b82d4b19
TH
760 */
761 q->bypass_depth = 1;
762 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
763
320ae51f
JA
764 init_waitqueue_head(&q->mq_freeze_wq);
765
3ef28e83
DW
766 /*
767 * Init percpu_ref in atomic mode so that it's faster to shutdown.
768 * See blk_register_queue() for details.
769 */
770 if (percpu_ref_init(&q->q_usage_counter,
771 blk_queue_usage_counter_release,
772 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 773 goto fail_bdi;
f51b802c 774
3ef28e83
DW
775 if (blkcg_init_queue(q))
776 goto fail_ref;
777
1da177e4 778 return q;
a73f730d 779
3ef28e83
DW
780fail_ref:
781 percpu_ref_exit(&q->q_usage_counter);
fff4996b 782fail_bdi:
a83b576c
JA
783 blk_free_queue_stats(q->stats);
784fail_stats:
d03f6cdc 785 bdi_put(q->backing_dev_info);
54efd50b
KO
786fail_split:
787 bioset_free(q->bio_split);
a73f730d
TH
788fail_id:
789 ida_simple_remove(&blk_queue_ida, q->id);
790fail_q:
791 kmem_cache_free(blk_requestq_cachep, q);
792 return NULL;
1da177e4 793}
1946089a 794EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
795
796/**
797 * blk_init_queue - prepare a request queue for use with a block device
798 * @rfn: The function to be called to process requests that have been
799 * placed on the queue.
800 * @lock: Request queue spin lock
801 *
802 * Description:
803 * If a block device wishes to use the standard request handling procedures,
804 * which sorts requests and coalesces adjacent requests, then it must
805 * call blk_init_queue(). The function @rfn will be called when there
806 * are requests on the queue that need to be processed. If the device
807 * supports plugging, then @rfn may not be called immediately when requests
808 * are available on the queue, but may be called at some time later instead.
809 * Plugged queues are generally unplugged when a buffer belonging to one
810 * of the requests on the queue is needed, or due to memory pressure.
811 *
812 * @rfn is not required, or even expected, to remove all requests off the
813 * queue, but only as many as it can handle at a time. If it does leave
814 * requests on the queue, it is responsible for arranging that the requests
815 * get dealt with eventually.
816 *
817 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
818 * request queue; this lock will be taken also from interrupt context, so irq
819 * disabling is needed for it.
1da177e4 820 *
710027a4 821 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
822 * it didn't succeed.
823 *
824 * Note:
825 * blk_init_queue() must be paired with a blk_cleanup_queue() call
826 * when the block device is deactivated (such as at module unload).
827 **/
1946089a 828
165125e1 829struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 830{
c304a51b 831 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
832}
833EXPORT_SYMBOL(blk_init_queue);
834
165125e1 835struct request_queue *
1946089a
CL
836blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
837{
5ea708d1 838 struct request_queue *q;
1da177e4 839
5ea708d1
CH
840 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
841 if (!q)
c86d1b8a
MS
842 return NULL;
843
5ea708d1
CH
844 q->request_fn = rfn;
845 if (lock)
846 q->queue_lock = lock;
847 if (blk_init_allocated_queue(q) < 0) {
848 blk_cleanup_queue(q);
849 return NULL;
850 }
18741986 851
7982e90c 852 return q;
01effb0d
MS
853}
854EXPORT_SYMBOL(blk_init_queue_node);
855
dece1635 856static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 857
1da177e4 858
5ea708d1
CH
859int blk_init_allocated_queue(struct request_queue *q)
860{
6d247d7f 861 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 862 if (!q->fq)
5ea708d1 863 return -ENOMEM;
7982e90c 864
6d247d7f
CH
865 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
866 goto out_free_flush_queue;
7982e90c 867
a051661c 868 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 869 goto out_exit_flush_rq;
1da177e4 870
287922eb 871 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 872 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 873
f3b144aa
JA
874 /*
875 * This also sets hw/phys segments, boundary and size
876 */
c20e8de2 877 blk_queue_make_request(q, blk_queue_bio);
1da177e4 878
44ec9542
AS
879 q->sg_reserved_size = INT_MAX;
880
eb1c160b
TS
881 /* Protect q->elevator from elevator_change */
882 mutex_lock(&q->sysfs_lock);
883
b82d4b19 884 /* init elevator */
eb1c160b
TS
885 if (elevator_init(q, NULL)) {
886 mutex_unlock(&q->sysfs_lock);
6d247d7f 887 goto out_exit_flush_rq;
eb1c160b
TS
888 }
889
890 mutex_unlock(&q->sysfs_lock);
5ea708d1 891 return 0;
eb1c160b 892
6d247d7f
CH
893out_exit_flush_rq:
894 if (q->exit_rq_fn)
895 q->exit_rq_fn(q, q->fq->flush_rq);
896out_free_flush_queue:
ba483388 897 blk_free_flush_queue(q->fq);
5ea708d1 898 return -ENOMEM;
1da177e4 899}
5151412d 900EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 901
09ac46c4 902bool blk_get_queue(struct request_queue *q)
1da177e4 903{
3f3299d5 904 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
905 __blk_get_queue(q);
906 return true;
1da177e4
LT
907 }
908
09ac46c4 909 return false;
1da177e4 910}
d86e0e83 911EXPORT_SYMBOL(blk_get_queue);
1da177e4 912
5b788ce3 913static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 914{
e8064021 915 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 916 elv_put_request(rl->q, rq);
f1f8cc94 917 if (rq->elv.icq)
11a3122f 918 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
919 }
920
5b788ce3 921 mempool_free(rq, rl->rq_pool);
1da177e4
LT
922}
923
1da177e4
LT
924/*
925 * ioc_batching returns true if the ioc is a valid batching request and
926 * should be given priority access to a request.
927 */
165125e1 928static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
929{
930 if (!ioc)
931 return 0;
932
933 /*
934 * Make sure the process is able to allocate at least 1 request
935 * even if the batch times out, otherwise we could theoretically
936 * lose wakeups.
937 */
938 return ioc->nr_batch_requests == q->nr_batching ||
939 (ioc->nr_batch_requests > 0
940 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
941}
942
943/*
944 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
945 * will cause the process to be a "batcher" on all queues in the system. This
946 * is the behaviour we want though - once it gets a wakeup it should be given
947 * a nice run.
948 */
165125e1 949static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
950{
951 if (!ioc || ioc_batching(q, ioc))
952 return;
953
954 ioc->nr_batch_requests = q->nr_batching;
955 ioc->last_waited = jiffies;
956}
957
5b788ce3 958static void __freed_request(struct request_list *rl, int sync)
1da177e4 959{
5b788ce3 960 struct request_queue *q = rl->q;
1da177e4 961
d40f75a0
TH
962 if (rl->count[sync] < queue_congestion_off_threshold(q))
963 blk_clear_congested(rl, sync);
1da177e4 964
1faa16d2
JA
965 if (rl->count[sync] + 1 <= q->nr_requests) {
966 if (waitqueue_active(&rl->wait[sync]))
967 wake_up(&rl->wait[sync]);
1da177e4 968
5b788ce3 969 blk_clear_rl_full(rl, sync);
1da177e4
LT
970 }
971}
972
973/*
974 * A request has just been released. Account for it, update the full and
975 * congestion status, wake up any waiters. Called under q->queue_lock.
976 */
e8064021
CH
977static void freed_request(struct request_list *rl, bool sync,
978 req_flags_t rq_flags)
1da177e4 979{
5b788ce3 980 struct request_queue *q = rl->q;
1da177e4 981
8a5ecdd4 982 q->nr_rqs[sync]--;
1faa16d2 983 rl->count[sync]--;
e8064021 984 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 985 q->nr_rqs_elvpriv--;
1da177e4 986
5b788ce3 987 __freed_request(rl, sync);
1da177e4 988
1faa16d2 989 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 990 __freed_request(rl, sync ^ 1);
1da177e4
LT
991}
992
e3a2b3f9
JA
993int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
994{
995 struct request_list *rl;
d40f75a0 996 int on_thresh, off_thresh;
e3a2b3f9
JA
997
998 spin_lock_irq(q->queue_lock);
999 q->nr_requests = nr;
1000 blk_queue_congestion_threshold(q);
d40f75a0
TH
1001 on_thresh = queue_congestion_on_threshold(q);
1002 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1003
d40f75a0
TH
1004 blk_queue_for_each_rl(rl, q) {
1005 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1006 blk_set_congested(rl, BLK_RW_SYNC);
1007 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1008 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1009
d40f75a0
TH
1010 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1011 blk_set_congested(rl, BLK_RW_ASYNC);
1012 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1013 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1014
e3a2b3f9
JA
1015 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1016 blk_set_rl_full(rl, BLK_RW_SYNC);
1017 } else {
1018 blk_clear_rl_full(rl, BLK_RW_SYNC);
1019 wake_up(&rl->wait[BLK_RW_SYNC]);
1020 }
1021
1022 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1023 blk_set_rl_full(rl, BLK_RW_ASYNC);
1024 } else {
1025 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1026 wake_up(&rl->wait[BLK_RW_ASYNC]);
1027 }
1028 }
1029
1030 spin_unlock_irq(q->queue_lock);
1031 return 0;
1032}
1033
da8303c6 1034/**
a06e05e6 1035 * __get_request - get a free request
5b788ce3 1036 * @rl: request list to allocate from
ef295ecf 1037 * @op: operation and flags
da8303c6
TH
1038 * @bio: bio to allocate request for (can be %NULL)
1039 * @gfp_mask: allocation mask
1040 *
1041 * Get a free request from @q. This function may fail under memory
1042 * pressure or if @q is dead.
1043 *
da3dae54 1044 * Must be called with @q->queue_lock held and,
a492f075
JL
1045 * Returns ERR_PTR on failure, with @q->queue_lock held.
1046 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1047 */
ef295ecf
CH
1048static struct request *__get_request(struct request_list *rl, unsigned int op,
1049 struct bio *bio, gfp_t gfp_mask)
1da177e4 1050{
5b788ce3 1051 struct request_queue *q = rl->q;
b679281a 1052 struct request *rq;
7f4b35d1
TH
1053 struct elevator_type *et = q->elevator->type;
1054 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1055 struct io_cq *icq = NULL;
ef295ecf 1056 const bool is_sync = op_is_sync(op);
75eb6c37 1057 int may_queue;
e8064021 1058 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1059
3f3299d5 1060 if (unlikely(blk_queue_dying(q)))
a492f075 1061 return ERR_PTR(-ENODEV);
da8303c6 1062
ef295ecf 1063 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1064 if (may_queue == ELV_MQUEUE_NO)
1065 goto rq_starved;
1066
1faa16d2
JA
1067 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1068 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1069 /*
1070 * The queue will fill after this allocation, so set
1071 * it as full, and mark this process as "batching".
1072 * This process will be allowed to complete a batch of
1073 * requests, others will be blocked.
1074 */
5b788ce3 1075 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1076 ioc_set_batching(q, ioc);
5b788ce3 1077 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1078 } else {
1079 if (may_queue != ELV_MQUEUE_MUST
1080 && !ioc_batching(q, ioc)) {
1081 /*
1082 * The queue is full and the allocating
1083 * process is not a "batcher", and not
1084 * exempted by the IO scheduler
1085 */
a492f075 1086 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1087 }
1088 }
1da177e4 1089 }
d40f75a0 1090 blk_set_congested(rl, is_sync);
1da177e4
LT
1091 }
1092
082cf69e
JA
1093 /*
1094 * Only allow batching queuers to allocate up to 50% over the defined
1095 * limit of requests, otherwise we could have thousands of requests
1096 * allocated with any setting of ->nr_requests
1097 */
1faa16d2 1098 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1099 return ERR_PTR(-ENOMEM);
fd782a4a 1100
8a5ecdd4 1101 q->nr_rqs[is_sync]++;
1faa16d2
JA
1102 rl->count[is_sync]++;
1103 rl->starved[is_sync] = 0;
cb98fc8b 1104
f1f8cc94
TH
1105 /*
1106 * Decide whether the new request will be managed by elevator. If
e8064021 1107 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1108 * prevent the current elevator from being destroyed until the new
1109 * request is freed. This guarantees icq's won't be destroyed and
1110 * makes creating new ones safe.
1111 *
e6f7f93d
CH
1112 * Flush requests do not use the elevator so skip initialization.
1113 * This allows a request to share the flush and elevator data.
1114 *
f1f8cc94
TH
1115 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1116 * it will be created after releasing queue_lock.
1117 */
e6f7f93d 1118 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1119 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1120 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1121 if (et->icq_cache && ioc)
1122 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1123 }
cb98fc8b 1124
f253b86b 1125 if (blk_queue_io_stat(q))
e8064021 1126 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1127 spin_unlock_irq(q->queue_lock);
1128
29e2b09a 1129 /* allocate and init request */
5b788ce3 1130 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1131 if (!rq)
b679281a 1132 goto fail_alloc;
1da177e4 1133
29e2b09a 1134 blk_rq_init(q, rq);
a051661c 1135 blk_rq_set_rl(rq, rl);
5dc8b362 1136 blk_rq_set_prio(rq, ioc);
ef295ecf 1137 rq->cmd_flags = op;
e8064021 1138 rq->rq_flags = rq_flags;
29e2b09a 1139
aaf7c680 1140 /* init elvpriv */
e8064021 1141 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1142 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1143 if (ioc)
1144 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1145 if (!icq)
1146 goto fail_elvpriv;
29e2b09a 1147 }
aaf7c680
TH
1148
1149 rq->elv.icq = icq;
1150 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1151 goto fail_elvpriv;
1152
1153 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1154 if (icq)
1155 get_io_context(icq->ioc);
1156 }
aaf7c680 1157out:
88ee5ef1
JA
1158 /*
1159 * ioc may be NULL here, and ioc_batching will be false. That's
1160 * OK, if the queue is under the request limit then requests need
1161 * not count toward the nr_batch_requests limit. There will always
1162 * be some limit enforced by BLK_BATCH_TIME.
1163 */
1da177e4
LT
1164 if (ioc_batching(q, ioc))
1165 ioc->nr_batch_requests--;
6728cb0e 1166
e6a40b09 1167 trace_block_getrq(q, bio, op);
1da177e4 1168 return rq;
b679281a 1169
aaf7c680
TH
1170fail_elvpriv:
1171 /*
1172 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1173 * and may fail indefinitely under memory pressure and thus
1174 * shouldn't stall IO. Treat this request as !elvpriv. This will
1175 * disturb iosched and blkcg but weird is bettern than dead.
1176 */
7b2b10e0 1177 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1178 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1179
e8064021 1180 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1181 rq->elv.icq = NULL;
1182
1183 spin_lock_irq(q->queue_lock);
8a5ecdd4 1184 q->nr_rqs_elvpriv--;
aaf7c680
TH
1185 spin_unlock_irq(q->queue_lock);
1186 goto out;
1187
b679281a
TH
1188fail_alloc:
1189 /*
1190 * Allocation failed presumably due to memory. Undo anything we
1191 * might have messed up.
1192 *
1193 * Allocating task should really be put onto the front of the wait
1194 * queue, but this is pretty rare.
1195 */
1196 spin_lock_irq(q->queue_lock);
e8064021 1197 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1198
1199 /*
1200 * in the very unlikely event that allocation failed and no
1201 * requests for this direction was pending, mark us starved so that
1202 * freeing of a request in the other direction will notice
1203 * us. another possible fix would be to split the rq mempool into
1204 * READ and WRITE
1205 */
1206rq_starved:
1207 if (unlikely(rl->count[is_sync] == 0))
1208 rl->starved[is_sync] = 1;
a492f075 1209 return ERR_PTR(-ENOMEM);
1da177e4
LT
1210}
1211
da8303c6 1212/**
a06e05e6 1213 * get_request - get a free request
da8303c6 1214 * @q: request_queue to allocate request from
ef295ecf 1215 * @op: operation and flags
da8303c6 1216 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1217 * @gfp_mask: allocation mask
da8303c6 1218 *
d0164adc
MG
1219 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1220 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1221 *
da3dae54 1222 * Must be called with @q->queue_lock held and,
a492f075
JL
1223 * Returns ERR_PTR on failure, with @q->queue_lock held.
1224 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1225 */
ef295ecf
CH
1226static struct request *get_request(struct request_queue *q, unsigned int op,
1227 struct bio *bio, gfp_t gfp_mask)
1da177e4 1228{
ef295ecf 1229 const bool is_sync = op_is_sync(op);
a06e05e6 1230 DEFINE_WAIT(wait);
a051661c 1231 struct request_list *rl;
1da177e4 1232 struct request *rq;
a051661c
TH
1233
1234 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1235retry:
ef295ecf 1236 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1237 if (!IS_ERR(rq))
a06e05e6 1238 return rq;
1da177e4 1239
d0164adc 1240 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1241 blk_put_rl(rl);
a492f075 1242 return rq;
a051661c 1243 }
1da177e4 1244
a06e05e6
TH
1245 /* wait on @rl and retry */
1246 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1247 TASK_UNINTERRUPTIBLE);
1da177e4 1248
e6a40b09 1249 trace_block_sleeprq(q, bio, op);
1da177e4 1250
a06e05e6
TH
1251 spin_unlock_irq(q->queue_lock);
1252 io_schedule();
d6344532 1253
a06e05e6
TH
1254 /*
1255 * After sleeping, we become a "batching" process and will be able
1256 * to allocate at least one request, and up to a big batch of them
1257 * for a small period time. See ioc_batching, ioc_set_batching
1258 */
a06e05e6 1259 ioc_set_batching(q, current->io_context);
05caf8db 1260
a06e05e6
TH
1261 spin_lock_irq(q->queue_lock);
1262 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1263
a06e05e6 1264 goto retry;
1da177e4
LT
1265}
1266
320ae51f
JA
1267static struct request *blk_old_get_request(struct request_queue *q, int rw,
1268 gfp_t gfp_mask)
1da177e4
LT
1269{
1270 struct request *rq;
1271
7f4b35d1
TH
1272 /* create ioc upfront */
1273 create_io_context(gfp_mask, q->node);
1274
d6344532 1275 spin_lock_irq(q->queue_lock);
ef295ecf 1276 rq = get_request(q, rw, NULL, gfp_mask);
0c4de0f3 1277 if (IS_ERR(rq)) {
da8303c6 1278 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1279 return rq;
1280 }
1da177e4 1281
0c4de0f3
CH
1282 /* q->queue_lock is unlocked at this point */
1283 rq->__data_len = 0;
1284 rq->__sector = (sector_t) -1;
1285 rq->bio = rq->biotail = NULL;
1da177e4
LT
1286 return rq;
1287}
320ae51f
JA
1288
1289struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1290{
1291 if (q->mq_ops)
6f3b0e8b
CH
1292 return blk_mq_alloc_request(q, rw,
1293 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1294 0 : BLK_MQ_REQ_NOWAIT);
320ae51f
JA
1295 else
1296 return blk_old_get_request(q, rw, gfp_mask);
1297}
1da177e4
LT
1298EXPORT_SYMBOL(blk_get_request);
1299
1300/**
1301 * blk_requeue_request - put a request back on queue
1302 * @q: request queue where request should be inserted
1303 * @rq: request to be inserted
1304 *
1305 * Description:
1306 * Drivers often keep queueing requests until the hardware cannot accept
1307 * more, when that condition happens we need to put the request back
1308 * on the queue. Must be called with queue lock held.
1309 */
165125e1 1310void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1311{
242f9dcb
JA
1312 blk_delete_timer(rq);
1313 blk_clear_rq_complete(rq);
5f3ea37c 1314 trace_block_rq_requeue(q, rq);
87760e5e 1315 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1316
e8064021 1317 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1318 blk_queue_end_tag(q, rq);
1319
ba396a6c
JB
1320 BUG_ON(blk_queued_rq(rq));
1321
1da177e4
LT
1322 elv_requeue_request(q, rq);
1323}
1da177e4
LT
1324EXPORT_SYMBOL(blk_requeue_request);
1325
73c10101
JA
1326static void add_acct_request(struct request_queue *q, struct request *rq,
1327 int where)
1328{
320ae51f 1329 blk_account_io_start(rq, true);
7eaceacc 1330 __elv_add_request(q, rq, where);
73c10101
JA
1331}
1332
074a7aca
TH
1333static void part_round_stats_single(int cpu, struct hd_struct *part,
1334 unsigned long now)
1335{
7276d02e
JA
1336 int inflight;
1337
074a7aca
TH
1338 if (now == part->stamp)
1339 return;
1340
7276d02e
JA
1341 inflight = part_in_flight(part);
1342 if (inflight) {
074a7aca 1343 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1344 inflight * (now - part->stamp));
074a7aca
TH
1345 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1346 }
1347 part->stamp = now;
1348}
1349
1350/**
496aa8a9
RD
1351 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1352 * @cpu: cpu number for stats access
1353 * @part: target partition
1da177e4
LT
1354 *
1355 * The average IO queue length and utilisation statistics are maintained
1356 * by observing the current state of the queue length and the amount of
1357 * time it has been in this state for.
1358 *
1359 * Normally, that accounting is done on IO completion, but that can result
1360 * in more than a second's worth of IO being accounted for within any one
1361 * second, leading to >100% utilisation. To deal with that, we call this
1362 * function to do a round-off before returning the results when reading
1363 * /proc/diskstats. This accounts immediately for all queue usage up to
1364 * the current jiffies and restarts the counters again.
1365 */
c9959059 1366void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1367{
1368 unsigned long now = jiffies;
1369
074a7aca
TH
1370 if (part->partno)
1371 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1372 part_round_stats_single(cpu, part, now);
6f2576af 1373}
074a7aca 1374EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1375
47fafbc7 1376#ifdef CONFIG_PM
c8158819
LM
1377static void blk_pm_put_request(struct request *rq)
1378{
e8064021 1379 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1380 pm_runtime_mark_last_busy(rq->q->dev);
1381}
1382#else
1383static inline void blk_pm_put_request(struct request *rq) {}
1384#endif
1385
1da177e4
LT
1386/*
1387 * queue lock must be held
1388 */
165125e1 1389void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1390{
e8064021
CH
1391 req_flags_t rq_flags = req->rq_flags;
1392
1da177e4
LT
1393 if (unlikely(!q))
1394 return;
1da177e4 1395
6f5ba581
CH
1396 if (q->mq_ops) {
1397 blk_mq_free_request(req);
1398 return;
1399 }
1400
c8158819
LM
1401 blk_pm_put_request(req);
1402
8922e16c
TH
1403 elv_completed_request(q, req);
1404
1cd96c24
BH
1405 /* this is a bio leak */
1406 WARN_ON(req->bio != NULL);
1407
87760e5e
JA
1408 wbt_done(q->rq_wb, &req->issue_stat);
1409
1da177e4
LT
1410 /*
1411 * Request may not have originated from ll_rw_blk. if not,
1412 * it didn't come out of our reserved rq pools
1413 */
e8064021 1414 if (rq_flags & RQF_ALLOCED) {
a051661c 1415 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1416 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1417
1da177e4 1418 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1419 BUG_ON(ELV_ON_HASH(req));
1da177e4 1420
a051661c 1421 blk_free_request(rl, req);
e8064021 1422 freed_request(rl, sync, rq_flags);
a051661c 1423 blk_put_rl(rl);
1da177e4
LT
1424 }
1425}
6e39b69e
MC
1426EXPORT_SYMBOL_GPL(__blk_put_request);
1427
1da177e4
LT
1428void blk_put_request(struct request *req)
1429{
165125e1 1430 struct request_queue *q = req->q;
8922e16c 1431
320ae51f
JA
1432 if (q->mq_ops)
1433 blk_mq_free_request(req);
1434 else {
1435 unsigned long flags;
1436
1437 spin_lock_irqsave(q->queue_lock, flags);
1438 __blk_put_request(q, req);
1439 spin_unlock_irqrestore(q->queue_lock, flags);
1440 }
1da177e4 1441}
1da177e4
LT
1442EXPORT_SYMBOL(blk_put_request);
1443
320ae51f
JA
1444bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1445 struct bio *bio)
73c10101 1446{
1eff9d32 1447 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1448
73c10101
JA
1449 if (!ll_back_merge_fn(q, req, bio))
1450 return false;
1451
8c1cf6bb 1452 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1453
1454 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1455 blk_rq_set_mixed_merge(req);
1456
1457 req->biotail->bi_next = bio;
1458 req->biotail = bio;
4f024f37 1459 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1460 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1461
320ae51f 1462 blk_account_io_start(req, false);
73c10101
JA
1463 return true;
1464}
1465
320ae51f
JA
1466bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1467 struct bio *bio)
73c10101 1468{
1eff9d32 1469 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1470
73c10101
JA
1471 if (!ll_front_merge_fn(q, req, bio))
1472 return false;
1473
8c1cf6bb 1474 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1475
1476 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1477 blk_rq_set_mixed_merge(req);
1478
73c10101
JA
1479 bio->bi_next = req->bio;
1480 req->bio = bio;
1481
4f024f37
KO
1482 req->__sector = bio->bi_iter.bi_sector;
1483 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1484 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1485
320ae51f 1486 blk_account_io_start(req, false);
73c10101
JA
1487 return true;
1488}
1489
1e739730
CH
1490bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1491 struct bio *bio)
1492{
1493 unsigned short segments = blk_rq_nr_discard_segments(req);
1494
1495 if (segments >= queue_max_discard_segments(q))
1496 goto no_merge;
1497 if (blk_rq_sectors(req) + bio_sectors(bio) >
1498 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1499 goto no_merge;
1500
1501 req->biotail->bi_next = bio;
1502 req->biotail = bio;
1503 req->__data_len += bio->bi_iter.bi_size;
1504 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1505 req->nr_phys_segments = segments + 1;
1506
1507 blk_account_io_start(req, false);
1508 return true;
1509no_merge:
1510 req_set_nomerge(q, req);
1511 return false;
1512}
1513
bd87b589 1514/**
320ae51f 1515 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1516 * @q: request_queue new bio is being queued at
1517 * @bio: new bio being queued
1518 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1519 * @same_queue_rq: pointer to &struct request that gets filled in when
1520 * another request associated with @q is found on the plug list
1521 * (optional, may be %NULL)
bd87b589
TH
1522 *
1523 * Determine whether @bio being queued on @q can be merged with a request
1524 * on %current's plugged list. Returns %true if merge was successful,
1525 * otherwise %false.
1526 *
07c2bd37
TH
1527 * Plugging coalesces IOs from the same issuer for the same purpose without
1528 * going through @q->queue_lock. As such it's more of an issuing mechanism
1529 * than scheduling, and the request, while may have elvpriv data, is not
1530 * added on the elevator at this point. In addition, we don't have
1531 * reliable access to the elevator outside queue lock. Only check basic
1532 * merging parameters without querying the elevator.
da41a589
RE
1533 *
1534 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1535 */
320ae51f 1536bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1537 unsigned int *request_count,
1538 struct request **same_queue_rq)
73c10101
JA
1539{
1540 struct blk_plug *plug;
1541 struct request *rq;
92f399c7 1542 struct list_head *plug_list;
73c10101 1543
bd87b589 1544 plug = current->plug;
73c10101 1545 if (!plug)
34fe7c05 1546 return false;
56ebdaf2 1547 *request_count = 0;
73c10101 1548
92f399c7
SL
1549 if (q->mq_ops)
1550 plug_list = &plug->mq_list;
1551 else
1552 plug_list = &plug->list;
1553
1554 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1555 bool merged = false;
73c10101 1556
5b3f341f 1557 if (rq->q == q) {
1b2e19f1 1558 (*request_count)++;
5b3f341f
SL
1559 /*
1560 * Only blk-mq multiple hardware queues case checks the
1561 * rq in the same queue, there should be only one such
1562 * rq in a queue
1563 **/
1564 if (same_queue_rq)
1565 *same_queue_rq = rq;
1566 }
56ebdaf2 1567
07c2bd37 1568 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1569 continue;
1570
34fe7c05
CH
1571 switch (blk_try_merge(rq, bio)) {
1572 case ELEVATOR_BACK_MERGE:
1573 merged = bio_attempt_back_merge(q, rq, bio);
1574 break;
1575 case ELEVATOR_FRONT_MERGE:
1576 merged = bio_attempt_front_merge(q, rq, bio);
1577 break;
1e739730
CH
1578 case ELEVATOR_DISCARD_MERGE:
1579 merged = bio_attempt_discard_merge(q, rq, bio);
1580 break;
34fe7c05
CH
1581 default:
1582 break;
73c10101 1583 }
34fe7c05
CH
1584
1585 if (merged)
1586 return true;
73c10101 1587 }
34fe7c05
CH
1588
1589 return false;
73c10101
JA
1590}
1591
0809e3ac
JM
1592unsigned int blk_plug_queued_count(struct request_queue *q)
1593{
1594 struct blk_plug *plug;
1595 struct request *rq;
1596 struct list_head *plug_list;
1597 unsigned int ret = 0;
1598
1599 plug = current->plug;
1600 if (!plug)
1601 goto out;
1602
1603 if (q->mq_ops)
1604 plug_list = &plug->mq_list;
1605 else
1606 plug_list = &plug->list;
1607
1608 list_for_each_entry(rq, plug_list, queuelist) {
1609 if (rq->q == q)
1610 ret++;
1611 }
1612out:
1613 return ret;
1614}
1615
86db1e29 1616void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1617{
1eff9d32 1618 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1619 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1620
52d9e675 1621 req->errors = 0;
4f024f37 1622 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1623 if (ioprio_valid(bio_prio(bio)))
1624 req->ioprio = bio_prio(bio);
bc1c56fd 1625 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1626}
1627
dece1635 1628static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1629{
73c10101 1630 struct blk_plug *plug;
34fe7c05 1631 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1632 struct request *req, *free;
56ebdaf2 1633 unsigned int request_count = 0;
87760e5e 1634 unsigned int wb_acct;
1da177e4 1635
1da177e4
LT
1636 /*
1637 * low level driver can indicate that it wants pages above a
1638 * certain limit bounced to low memory (ie for highmem, or even
1639 * ISA dma in theory)
1640 */
1641 blk_queue_bounce(q, &bio);
1642
23688bf4
JN
1643 blk_queue_split(q, &bio, q->bio_split);
1644
ffecfd1a 1645 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1646 bio->bi_error = -EIO;
1647 bio_endio(bio);
dece1635 1648 return BLK_QC_T_NONE;
ffecfd1a
DW
1649 }
1650
f73f44eb 1651 if (op_is_flush(bio->bi_opf)) {
73c10101 1652 spin_lock_irq(q->queue_lock);
ae1b1539 1653 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1654 goto get_rq;
1655 }
1656
73c10101
JA
1657 /*
1658 * Check if we can merge with the plugged list before grabbing
1659 * any locks.
1660 */
0809e3ac
JM
1661 if (!blk_queue_nomerges(q)) {
1662 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1663 return BLK_QC_T_NONE;
0809e3ac
JM
1664 } else
1665 request_count = blk_plug_queued_count(q);
1da177e4 1666
73c10101 1667 spin_lock_irq(q->queue_lock);
2056a782 1668
34fe7c05
CH
1669 switch (elv_merge(q, &req, bio)) {
1670 case ELEVATOR_BACK_MERGE:
1671 if (!bio_attempt_back_merge(q, req, bio))
1672 break;
1673 elv_bio_merged(q, req, bio);
1674 free = attempt_back_merge(q, req);
1675 if (free)
1676 __blk_put_request(q, free);
1677 else
1678 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1679 goto out_unlock;
1680 case ELEVATOR_FRONT_MERGE:
1681 if (!bio_attempt_front_merge(q, req, bio))
1682 break;
1683 elv_bio_merged(q, req, bio);
1684 free = attempt_front_merge(q, req);
1685 if (free)
1686 __blk_put_request(q, free);
1687 else
1688 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1689 goto out_unlock;
1690 default:
1691 break;
1da177e4
LT
1692 }
1693
450991bc 1694get_rq:
87760e5e
JA
1695 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1696
1da177e4 1697 /*
450991bc 1698 * Grab a free request. This is might sleep but can not fail.
d6344532 1699 * Returns with the queue unlocked.
450991bc 1700 */
ef295ecf 1701 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1702 if (IS_ERR(req)) {
87760e5e 1703 __wbt_done(q->rq_wb, wb_acct);
4246a0b6
CH
1704 bio->bi_error = PTR_ERR(req);
1705 bio_endio(bio);
da8303c6
TH
1706 goto out_unlock;
1707 }
d6344532 1708
87760e5e
JA
1709 wbt_track(&req->issue_stat, wb_acct);
1710
450991bc
NP
1711 /*
1712 * After dropping the lock and possibly sleeping here, our request
1713 * may now be mergeable after it had proven unmergeable (above).
1714 * We don't worry about that case for efficiency. It won't happen
1715 * often, and the elevators are able to handle it.
1da177e4 1716 */
52d9e675 1717 init_request_from_bio(req, bio);
1da177e4 1718
9562ad9a 1719 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1720 req->cpu = raw_smp_processor_id();
73c10101
JA
1721
1722 plug = current->plug;
721a9602 1723 if (plug) {
dc6d36c9
JA
1724 /*
1725 * If this is the first request added after a plug, fire
7aef2e78 1726 * of a plug trace.
0a6219a9
ML
1727 *
1728 * @request_count may become stale because of schedule
1729 * out, so check plug list again.
dc6d36c9 1730 */
0a6219a9 1731 if (!request_count || list_empty(&plug->list))
dc6d36c9 1732 trace_block_plug(q);
3540d5e8 1733 else {
50d24c34
SL
1734 struct request *last = list_entry_rq(plug->list.prev);
1735 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1736 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1737 blk_flush_plug_list(plug, false);
019ceb7d
SL
1738 trace_block_plug(q);
1739 }
73c10101 1740 }
73c10101 1741 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1742 blk_account_io_start(req, true);
73c10101
JA
1743 } else {
1744 spin_lock_irq(q->queue_lock);
1745 add_acct_request(q, req, where);
24ecfbe2 1746 __blk_run_queue(q);
73c10101
JA
1747out_unlock:
1748 spin_unlock_irq(q->queue_lock);
1749 }
dece1635
JA
1750
1751 return BLK_QC_T_NONE;
1da177e4
LT
1752}
1753
1754/*
1755 * If bio->bi_dev is a partition, remap the location
1756 */
1757static inline void blk_partition_remap(struct bio *bio)
1758{
1759 struct block_device *bdev = bio->bi_bdev;
1760
778889d8
ST
1761 /*
1762 * Zone reset does not include bi_size so bio_sectors() is always 0.
1763 * Include a test for the reset op code and perform the remap if needed.
1764 */
1765 if (bdev != bdev->bd_contains &&
1766 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1767 struct hd_struct *p = bdev->bd_part;
1768
4f024f37 1769 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1770 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1771
d07335e5
MS
1772 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1773 bdev->bd_dev,
4f024f37 1774 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1775 }
1776}
1777
1da177e4
LT
1778static void handle_bad_sector(struct bio *bio)
1779{
1780 char b[BDEVNAME_SIZE];
1781
1782 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1783 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1784 bdevname(bio->bi_bdev, b),
1eff9d32 1785 bio->bi_opf,
f73a1c7d 1786 (unsigned long long)bio_end_sector(bio),
77304d2a 1787 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1788}
1789
c17bb495
AM
1790#ifdef CONFIG_FAIL_MAKE_REQUEST
1791
1792static DECLARE_FAULT_ATTR(fail_make_request);
1793
1794static int __init setup_fail_make_request(char *str)
1795{
1796 return setup_fault_attr(&fail_make_request, str);
1797}
1798__setup("fail_make_request=", setup_fail_make_request);
1799
b2c9cd37 1800static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1801{
b2c9cd37 1802 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1803}
1804
1805static int __init fail_make_request_debugfs(void)
1806{
dd48c085
AM
1807 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1808 NULL, &fail_make_request);
1809
21f9fcd8 1810 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1811}
1812
1813late_initcall(fail_make_request_debugfs);
1814
1815#else /* CONFIG_FAIL_MAKE_REQUEST */
1816
b2c9cd37
AM
1817static inline bool should_fail_request(struct hd_struct *part,
1818 unsigned int bytes)
c17bb495 1819{
b2c9cd37 1820 return false;
c17bb495
AM
1821}
1822
1823#endif /* CONFIG_FAIL_MAKE_REQUEST */
1824
c07e2b41
JA
1825/*
1826 * Check whether this bio extends beyond the end of the device.
1827 */
1828static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1829{
1830 sector_t maxsector;
1831
1832 if (!nr_sectors)
1833 return 0;
1834
1835 /* Test device or partition size, when known. */
77304d2a 1836 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1837 if (maxsector) {
4f024f37 1838 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1839
1840 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1841 /*
1842 * This may well happen - the kernel calls bread()
1843 * without checking the size of the device, e.g., when
1844 * mounting a device.
1845 */
1846 handle_bad_sector(bio);
1847 return 1;
1848 }
1849 }
1850
1851 return 0;
1852}
1853
27a84d54
CH
1854static noinline_for_stack bool
1855generic_make_request_checks(struct bio *bio)
1da177e4 1856{
165125e1 1857 struct request_queue *q;
5a7bbad2 1858 int nr_sectors = bio_sectors(bio);
51fd77bd 1859 int err = -EIO;
5a7bbad2
CH
1860 char b[BDEVNAME_SIZE];
1861 struct hd_struct *part;
1da177e4
LT
1862
1863 might_sleep();
1da177e4 1864
c07e2b41
JA
1865 if (bio_check_eod(bio, nr_sectors))
1866 goto end_io;
1da177e4 1867
5a7bbad2
CH
1868 q = bdev_get_queue(bio->bi_bdev);
1869 if (unlikely(!q)) {
1870 printk(KERN_ERR
1871 "generic_make_request: Trying to access "
1872 "nonexistent block-device %s (%Lu)\n",
1873 bdevname(bio->bi_bdev, b),
4f024f37 1874 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1875 goto end_io;
1876 }
c17bb495 1877
5a7bbad2 1878 part = bio->bi_bdev->bd_part;
4f024f37 1879 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1880 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1881 bio->bi_iter.bi_size))
5a7bbad2 1882 goto end_io;
2056a782 1883
5a7bbad2
CH
1884 /*
1885 * If this device has partitions, remap block n
1886 * of partition p to block n+start(p) of the disk.
1887 */
1888 blk_partition_remap(bio);
2056a782 1889
5a7bbad2
CH
1890 if (bio_check_eod(bio, nr_sectors))
1891 goto end_io;
1e87901e 1892
5a7bbad2
CH
1893 /*
1894 * Filter flush bio's early so that make_request based
1895 * drivers without flush support don't have to worry
1896 * about them.
1897 */
f3a8ab7d 1898 if (op_is_flush(bio->bi_opf) &&
c888a8f9 1899 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 1900 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2
CH
1901 if (!nr_sectors) {
1902 err = 0;
51fd77bd
JA
1903 goto end_io;
1904 }
5a7bbad2 1905 }
5ddfe969 1906
288dab8a
CH
1907 switch (bio_op(bio)) {
1908 case REQ_OP_DISCARD:
1909 if (!blk_queue_discard(q))
1910 goto not_supported;
1911 break;
1912 case REQ_OP_SECURE_ERASE:
1913 if (!blk_queue_secure_erase(q))
1914 goto not_supported;
1915 break;
1916 case REQ_OP_WRITE_SAME:
1917 if (!bdev_write_same(bio->bi_bdev))
1918 goto not_supported;
58886785 1919 break;
2d253440
ST
1920 case REQ_OP_ZONE_REPORT:
1921 case REQ_OP_ZONE_RESET:
1922 if (!bdev_is_zoned(bio->bi_bdev))
1923 goto not_supported;
288dab8a 1924 break;
a6f0788e
CK
1925 case REQ_OP_WRITE_ZEROES:
1926 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1927 goto not_supported;
1928 break;
288dab8a
CH
1929 default:
1930 break;
5a7bbad2 1931 }
01edede4 1932
7f4b35d1
TH
1933 /*
1934 * Various block parts want %current->io_context and lazy ioc
1935 * allocation ends up trading a lot of pain for a small amount of
1936 * memory. Just allocate it upfront. This may fail and block
1937 * layer knows how to live with it.
1938 */
1939 create_io_context(GFP_ATOMIC, q->node);
1940
ae118896
TH
1941 if (!blkcg_bio_issue_check(q, bio))
1942 return false;
27a84d54 1943
5a7bbad2 1944 trace_block_bio_queue(q, bio);
27a84d54 1945 return true;
a7384677 1946
288dab8a
CH
1947not_supported:
1948 err = -EOPNOTSUPP;
a7384677 1949end_io:
4246a0b6
CH
1950 bio->bi_error = err;
1951 bio_endio(bio);
27a84d54 1952 return false;
1da177e4
LT
1953}
1954
27a84d54
CH
1955/**
1956 * generic_make_request - hand a buffer to its device driver for I/O
1957 * @bio: The bio describing the location in memory and on the device.
1958 *
1959 * generic_make_request() is used to make I/O requests of block
1960 * devices. It is passed a &struct bio, which describes the I/O that needs
1961 * to be done.
1962 *
1963 * generic_make_request() does not return any status. The
1964 * success/failure status of the request, along with notification of
1965 * completion, is delivered asynchronously through the bio->bi_end_io
1966 * function described (one day) else where.
1967 *
1968 * The caller of generic_make_request must make sure that bi_io_vec
1969 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1970 * set to describe the device address, and the
1971 * bi_end_io and optionally bi_private are set to describe how
1972 * completion notification should be signaled.
1973 *
1974 * generic_make_request and the drivers it calls may use bi_next if this
1975 * bio happens to be merged with someone else, and may resubmit the bio to
1976 * a lower device by calling into generic_make_request recursively, which
1977 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 1978 */
dece1635 1979blk_qc_t generic_make_request(struct bio *bio)
d89d8796 1980{
f5fe1b51
N
1981 /*
1982 * bio_list_on_stack[0] contains bios submitted by the current
1983 * make_request_fn.
1984 * bio_list_on_stack[1] contains bios that were submitted before
1985 * the current make_request_fn, but that haven't been processed
1986 * yet.
1987 */
1988 struct bio_list bio_list_on_stack[2];
dece1635 1989 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 1990
27a84d54 1991 if (!generic_make_request_checks(bio))
dece1635 1992 goto out;
27a84d54
CH
1993
1994 /*
1995 * We only want one ->make_request_fn to be active at a time, else
1996 * stack usage with stacked devices could be a problem. So use
1997 * current->bio_list to keep a list of requests submited by a
1998 * make_request_fn function. current->bio_list is also used as a
1999 * flag to say if generic_make_request is currently active in this
2000 * task or not. If it is NULL, then no make_request is active. If
2001 * it is non-NULL, then a make_request is active, and new requests
2002 * should be added at the tail
2003 */
bddd87c7 2004 if (current->bio_list) {
f5fe1b51 2005 bio_list_add(&current->bio_list[0], bio);
dece1635 2006 goto out;
d89d8796 2007 }
27a84d54 2008
d89d8796
NB
2009 /* following loop may be a bit non-obvious, and so deserves some
2010 * explanation.
2011 * Before entering the loop, bio->bi_next is NULL (as all callers
2012 * ensure that) so we have a list with a single bio.
2013 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2014 * we assign bio_list to a pointer to the bio_list_on_stack,
2015 * thus initialising the bio_list of new bios to be
27a84d54 2016 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2017 * through a recursive call to generic_make_request. If it
2018 * did, we find a non-NULL value in bio_list and re-enter the loop
2019 * from the top. In this case we really did just take the bio
bddd87c7 2020 * of the top of the list (no pretending) and so remove it from
27a84d54 2021 * bio_list, and call into ->make_request() again.
d89d8796
NB
2022 */
2023 BUG_ON(bio->bi_next);
f5fe1b51
N
2024 bio_list_init(&bio_list_on_stack[0]);
2025 current->bio_list = bio_list_on_stack;
d89d8796 2026 do {
27a84d54
CH
2027 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2028
6f3b0e8b 2029 if (likely(blk_queue_enter(q, false) == 0)) {
79bd9959
N
2030 struct bio_list lower, same;
2031
2032 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2033 bio_list_on_stack[1] = bio_list_on_stack[0];
2034 bio_list_init(&bio_list_on_stack[0]);
dece1635 2035 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2036
2037 blk_queue_exit(q);
27a84d54 2038
79bd9959
N
2039 /* sort new bios into those for a lower level
2040 * and those for the same level
2041 */
2042 bio_list_init(&lower);
2043 bio_list_init(&same);
f5fe1b51 2044 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
79bd9959
N
2045 if (q == bdev_get_queue(bio->bi_bdev))
2046 bio_list_add(&same, bio);
2047 else
2048 bio_list_add(&lower, bio);
2049 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2050 bio_list_merge(&bio_list_on_stack[0], &lower);
2051 bio_list_merge(&bio_list_on_stack[0], &same);
2052 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2053 } else {
3ef28e83 2054 bio_io_error(bio);
3ef28e83 2055 }
f5fe1b51 2056 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2057 } while (bio);
bddd87c7 2058 current->bio_list = NULL; /* deactivate */
dece1635
JA
2059
2060out:
2061 return ret;
d89d8796 2062}
1da177e4
LT
2063EXPORT_SYMBOL(generic_make_request);
2064
2065/**
710027a4 2066 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2067 * @bio: The &struct bio which describes the I/O
2068 *
2069 * submit_bio() is very similar in purpose to generic_make_request(), and
2070 * uses that function to do most of the work. Both are fairly rough
710027a4 2071 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2072 *
2073 */
4e49ea4a 2074blk_qc_t submit_bio(struct bio *bio)
1da177e4 2075{
bf2de6f5
JA
2076 /*
2077 * If it's a regular read/write or a barrier with data attached,
2078 * go through the normal accounting stuff before submission.
2079 */
e2a60da7 2080 if (bio_has_data(bio)) {
4363ac7c
MP
2081 unsigned int count;
2082
95fe6c1a 2083 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2084 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2085 else
2086 count = bio_sectors(bio);
2087
a8ebb056 2088 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2089 count_vm_events(PGPGOUT, count);
2090 } else {
4f024f37 2091 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2092 count_vm_events(PGPGIN, count);
2093 }
2094
2095 if (unlikely(block_dump)) {
2096 char b[BDEVNAME_SIZE];
8dcbdc74 2097 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2098 current->comm, task_pid_nr(current),
a8ebb056 2099 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2100 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2101 bdevname(bio->bi_bdev, b),
2102 count);
bf2de6f5 2103 }
1da177e4
LT
2104 }
2105
dece1635 2106 return generic_make_request(bio);
1da177e4 2107}
1da177e4
LT
2108EXPORT_SYMBOL(submit_bio);
2109
82124d60 2110/**
bf4e6b4e
HR
2111 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2112 * for new the queue limits
82124d60
KU
2113 * @q: the queue
2114 * @rq: the request being checked
2115 *
2116 * Description:
2117 * @rq may have been made based on weaker limitations of upper-level queues
2118 * in request stacking drivers, and it may violate the limitation of @q.
2119 * Since the block layer and the underlying device driver trust @rq
2120 * after it is inserted to @q, it should be checked against @q before
2121 * the insertion using this generic function.
2122 *
82124d60 2123 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2124 * limits when retrying requests on other queues. Those requests need
2125 * to be checked against the new queue limits again during dispatch.
82124d60 2126 */
bf4e6b4e
HR
2127static int blk_cloned_rq_check_limits(struct request_queue *q,
2128 struct request *rq)
82124d60 2129{
8fe0d473 2130 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2131 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2132 return -EIO;
2133 }
2134
2135 /*
2136 * queue's settings related to segment counting like q->bounce_pfn
2137 * may differ from that of other stacking queues.
2138 * Recalculate it to check the request correctly on this queue's
2139 * limitation.
2140 */
2141 blk_recalc_rq_segments(rq);
8a78362c 2142 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2143 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2144 return -EIO;
2145 }
2146
2147 return 0;
2148}
82124d60
KU
2149
2150/**
2151 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2152 * @q: the queue to submit the request
2153 * @rq: the request being queued
2154 */
2155int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2156{
2157 unsigned long flags;
4853abaa 2158 int where = ELEVATOR_INSERT_BACK;
82124d60 2159
bf4e6b4e 2160 if (blk_cloned_rq_check_limits(q, rq))
82124d60
KU
2161 return -EIO;
2162
b2c9cd37
AM
2163 if (rq->rq_disk &&
2164 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2165 return -EIO;
82124d60 2166
7fb4898e
KB
2167 if (q->mq_ops) {
2168 if (blk_queue_io_stat(q))
2169 blk_account_io_start(rq, true);
bd6737f1 2170 blk_mq_sched_insert_request(rq, false, true, false, false);
7fb4898e
KB
2171 return 0;
2172 }
2173
82124d60 2174 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2175 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2176 spin_unlock_irqrestore(q->queue_lock, flags);
2177 return -ENODEV;
2178 }
82124d60
KU
2179
2180 /*
2181 * Submitting request must be dequeued before calling this function
2182 * because it will be linked to another request_queue
2183 */
2184 BUG_ON(blk_queued_rq(rq));
2185
f73f44eb 2186 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2187 where = ELEVATOR_INSERT_FLUSH;
2188
2189 add_acct_request(q, rq, where);
e67b77c7
JM
2190 if (where == ELEVATOR_INSERT_FLUSH)
2191 __blk_run_queue(q);
82124d60
KU
2192 spin_unlock_irqrestore(q->queue_lock, flags);
2193
2194 return 0;
2195}
2196EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2197
80a761fd
TH
2198/**
2199 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2200 * @rq: request to examine
2201 *
2202 * Description:
2203 * A request could be merge of IOs which require different failure
2204 * handling. This function determines the number of bytes which
2205 * can be failed from the beginning of the request without
2206 * crossing into area which need to be retried further.
2207 *
2208 * Return:
2209 * The number of bytes to fail.
2210 *
2211 * Context:
2212 * queue_lock must be held.
2213 */
2214unsigned int blk_rq_err_bytes(const struct request *rq)
2215{
2216 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2217 unsigned int bytes = 0;
2218 struct bio *bio;
2219
e8064021 2220 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2221 return blk_rq_bytes(rq);
2222
2223 /*
2224 * Currently the only 'mixing' which can happen is between
2225 * different fastfail types. We can safely fail portions
2226 * which have all the failfast bits that the first one has -
2227 * the ones which are at least as eager to fail as the first
2228 * one.
2229 */
2230 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2231 if ((bio->bi_opf & ff) != ff)
80a761fd 2232 break;
4f024f37 2233 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2234 }
2235
2236 /* this could lead to infinite loop */
2237 BUG_ON(blk_rq_bytes(rq) && !bytes);
2238 return bytes;
2239}
2240EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2241
320ae51f 2242void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2243{
c2553b58 2244 if (blk_do_io_stat(req)) {
bc58ba94
JA
2245 const int rw = rq_data_dir(req);
2246 struct hd_struct *part;
2247 int cpu;
2248
2249 cpu = part_stat_lock();
09e099d4 2250 part = req->part;
bc58ba94
JA
2251 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2252 part_stat_unlock();
2253 }
2254}
2255
320ae51f 2256void blk_account_io_done(struct request *req)
bc58ba94 2257{
bc58ba94 2258 /*
dd4c133f
TH
2259 * Account IO completion. flush_rq isn't accounted as a
2260 * normal IO on queueing nor completion. Accounting the
2261 * containing request is enough.
bc58ba94 2262 */
e8064021 2263 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2264 unsigned long duration = jiffies - req->start_time;
2265 const int rw = rq_data_dir(req);
2266 struct hd_struct *part;
2267 int cpu;
2268
2269 cpu = part_stat_lock();
09e099d4 2270 part = req->part;
bc58ba94
JA
2271
2272 part_stat_inc(cpu, part, ios[rw]);
2273 part_stat_add(cpu, part, ticks[rw], duration);
2274 part_round_stats(cpu, part);
316d315b 2275 part_dec_in_flight(part, rw);
bc58ba94 2276
6c23a968 2277 hd_struct_put(part);
bc58ba94
JA
2278 part_stat_unlock();
2279 }
2280}
2281
47fafbc7 2282#ifdef CONFIG_PM
c8158819
LM
2283/*
2284 * Don't process normal requests when queue is suspended
2285 * or in the process of suspending/resuming
2286 */
2287static struct request *blk_pm_peek_request(struct request_queue *q,
2288 struct request *rq)
2289{
2290 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2291 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2292 return NULL;
2293 else
2294 return rq;
2295}
2296#else
2297static inline struct request *blk_pm_peek_request(struct request_queue *q,
2298 struct request *rq)
2299{
2300 return rq;
2301}
2302#endif
2303
320ae51f
JA
2304void blk_account_io_start(struct request *rq, bool new_io)
2305{
2306 struct hd_struct *part;
2307 int rw = rq_data_dir(rq);
2308 int cpu;
2309
2310 if (!blk_do_io_stat(rq))
2311 return;
2312
2313 cpu = part_stat_lock();
2314
2315 if (!new_io) {
2316 part = rq->part;
2317 part_stat_inc(cpu, part, merges[rw]);
2318 } else {
2319 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2320 if (!hd_struct_try_get(part)) {
2321 /*
2322 * The partition is already being removed,
2323 * the request will be accounted on the disk only
2324 *
2325 * We take a reference on disk->part0 although that
2326 * partition will never be deleted, so we can treat
2327 * it as any other partition.
2328 */
2329 part = &rq->rq_disk->part0;
2330 hd_struct_get(part);
2331 }
2332 part_round_stats(cpu, part);
2333 part_inc_in_flight(part, rw);
2334 rq->part = part;
2335 }
2336
2337 part_stat_unlock();
2338}
2339
3bcddeac 2340/**
9934c8c0
TH
2341 * blk_peek_request - peek at the top of a request queue
2342 * @q: request queue to peek at
2343 *
2344 * Description:
2345 * Return the request at the top of @q. The returned request
2346 * should be started using blk_start_request() before LLD starts
2347 * processing it.
2348 *
2349 * Return:
2350 * Pointer to the request at the top of @q if available. Null
2351 * otherwise.
2352 *
2353 * Context:
2354 * queue_lock must be held.
2355 */
2356struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2357{
2358 struct request *rq;
2359 int ret;
2360
2361 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2362
2363 rq = blk_pm_peek_request(q, rq);
2364 if (!rq)
2365 break;
2366
e8064021 2367 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2368 /*
2369 * This is the first time the device driver
2370 * sees this request (possibly after
2371 * requeueing). Notify IO scheduler.
2372 */
e8064021 2373 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2374 elv_activate_rq(q, rq);
2375
2376 /*
2377 * just mark as started even if we don't start
2378 * it, a request that has been delayed should
2379 * not be passed by new incoming requests
2380 */
e8064021 2381 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2382 trace_block_rq_issue(q, rq);
2383 }
2384
2385 if (!q->boundary_rq || q->boundary_rq == rq) {
2386 q->end_sector = rq_end_sector(rq);
2387 q->boundary_rq = NULL;
2388 }
2389
e8064021 2390 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2391 break;
2392
2e46e8b2 2393 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2394 /*
2395 * make sure space for the drain appears we
2396 * know we can do this because max_hw_segments
2397 * has been adjusted to be one fewer than the
2398 * device can handle
2399 */
2400 rq->nr_phys_segments++;
2401 }
2402
2403 if (!q->prep_rq_fn)
2404 break;
2405
2406 ret = q->prep_rq_fn(q, rq);
2407 if (ret == BLKPREP_OK) {
2408 break;
2409 } else if (ret == BLKPREP_DEFER) {
2410 /*
2411 * the request may have been (partially) prepped.
2412 * we need to keep this request in the front to
e8064021 2413 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2414 * prevent other fs requests from passing this one.
2415 */
2e46e8b2 2416 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2417 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2418 /*
2419 * remove the space for the drain we added
2420 * so that we don't add it again
2421 */
2422 --rq->nr_phys_segments;
2423 }
2424
2425 rq = NULL;
2426 break;
0fb5b1fb
MP
2427 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2428 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2429
e8064021 2430 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2431 /*
2432 * Mark this request as started so we don't trigger
2433 * any debug logic in the end I/O path.
2434 */
2435 blk_start_request(rq);
0fb5b1fb 2436 __blk_end_request_all(rq, err);
158dbda0
TH
2437 } else {
2438 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2439 break;
2440 }
2441 }
2442
2443 return rq;
2444}
9934c8c0 2445EXPORT_SYMBOL(blk_peek_request);
158dbda0 2446
9934c8c0 2447void blk_dequeue_request(struct request *rq)
158dbda0 2448{
9934c8c0
TH
2449 struct request_queue *q = rq->q;
2450
158dbda0
TH
2451 BUG_ON(list_empty(&rq->queuelist));
2452 BUG_ON(ELV_ON_HASH(rq));
2453
2454 list_del_init(&rq->queuelist);
2455
2456 /*
2457 * the time frame between a request being removed from the lists
2458 * and to it is freed is accounted as io that is in progress at
2459 * the driver side.
2460 */
9195291e 2461 if (blk_account_rq(rq)) {
0a7ae2ff 2462 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2463 set_io_start_time_ns(rq);
2464 }
158dbda0
TH
2465}
2466
9934c8c0
TH
2467/**
2468 * blk_start_request - start request processing on the driver
2469 * @req: request to dequeue
2470 *
2471 * Description:
2472 * Dequeue @req and start timeout timer on it. This hands off the
2473 * request to the driver.
2474 *
2475 * Block internal functions which don't want to start timer should
2476 * call blk_dequeue_request().
2477 *
2478 * Context:
2479 * queue_lock must be held.
2480 */
2481void blk_start_request(struct request *req)
2482{
2483 blk_dequeue_request(req);
2484
cf43e6be 2485 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2486 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2487 req->rq_flags |= RQF_STATS;
87760e5e 2488 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2489 }
2490
4912aa6c 2491 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2492 blk_add_timer(req);
2493}
2494EXPORT_SYMBOL(blk_start_request);
2495
2496/**
2497 * blk_fetch_request - fetch a request from a request queue
2498 * @q: request queue to fetch a request from
2499 *
2500 * Description:
2501 * Return the request at the top of @q. The request is started on
2502 * return and LLD can start processing it immediately.
2503 *
2504 * Return:
2505 * Pointer to the request at the top of @q if available. Null
2506 * otherwise.
2507 *
2508 * Context:
2509 * queue_lock must be held.
2510 */
2511struct request *blk_fetch_request(struct request_queue *q)
2512{
2513 struct request *rq;
2514
2515 rq = blk_peek_request(q);
2516 if (rq)
2517 blk_start_request(rq);
2518 return rq;
2519}
2520EXPORT_SYMBOL(blk_fetch_request);
2521
3bcddeac 2522/**
2e60e022 2523 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2524 * @req: the request being processed
710027a4 2525 * @error: %0 for success, < %0 for error
8ebf9756 2526 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2527 *
2528 * Description:
8ebf9756
RD
2529 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2530 * the request structure even if @req doesn't have leftover.
2531 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2532 *
2533 * This special helper function is only for request stacking drivers
2534 * (e.g. request-based dm) so that they can handle partial completion.
2535 * Actual device drivers should use blk_end_request instead.
2536 *
2537 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2538 * %false return from this function.
3bcddeac
KU
2539 *
2540 * Return:
2e60e022
TH
2541 * %false - this request doesn't have any more data
2542 * %true - this request has more data
3bcddeac 2543 **/
2e60e022 2544bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2545{
f79ea416 2546 int total_bytes;
1da177e4 2547
4a0efdc9
HR
2548 trace_block_rq_complete(req->q, req, nr_bytes);
2549
2e60e022
TH
2550 if (!req->bio)
2551 return false;
2552
1da177e4 2553 /*
6f41469c
TH
2554 * For fs requests, rq is just carrier of independent bio's
2555 * and each partial completion should be handled separately.
2556 * Reset per-request error on each partial completion.
2557 *
2558 * TODO: tj: This is too subtle. It would be better to let
2559 * low level drivers do what they see fit.
1da177e4 2560 */
57292b58 2561 if (!blk_rq_is_passthrough(req))
1da177e4
LT
2562 req->errors = 0;
2563
57292b58 2564 if (error && !blk_rq_is_passthrough(req) &&
e8064021 2565 !(req->rq_flags & RQF_QUIET)) {
79775567
HR
2566 char *error_type;
2567
2568 switch (error) {
2569 case -ENOLINK:
2570 error_type = "recoverable transport";
2571 break;
2572 case -EREMOTEIO:
2573 error_type = "critical target";
2574 break;
2575 case -EBADE:
2576 error_type = "critical nexus";
2577 break;
d1ffc1f8
HR
2578 case -ETIMEDOUT:
2579 error_type = "timeout";
2580 break;
a9d6ceb8
HR
2581 case -ENOSPC:
2582 error_type = "critical space allocation";
2583 break;
7e782af5
HR
2584 case -ENODATA:
2585 error_type = "critical medium";
2586 break;
79775567
HR
2587 case -EIO:
2588 default:
2589 error_type = "I/O";
2590 break;
2591 }
ef3ecb66
RE
2592 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2593 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2594 req->rq_disk->disk_name : "?",
2595 (unsigned long long)blk_rq_pos(req));
2596
1da177e4
LT
2597 }
2598
bc58ba94 2599 blk_account_io_completion(req, nr_bytes);
d72d904a 2600
f79ea416
KO
2601 total_bytes = 0;
2602 while (req->bio) {
2603 struct bio *bio = req->bio;
4f024f37 2604 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2605
4f024f37 2606 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2607 req->bio = bio->bi_next;
1da177e4 2608
f79ea416 2609 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2610
f79ea416
KO
2611 total_bytes += bio_bytes;
2612 nr_bytes -= bio_bytes;
1da177e4 2613
f79ea416
KO
2614 if (!nr_bytes)
2615 break;
1da177e4
LT
2616 }
2617
2618 /*
2619 * completely done
2620 */
2e60e022
TH
2621 if (!req->bio) {
2622 /*
2623 * Reset counters so that the request stacking driver
2624 * can find how many bytes remain in the request
2625 * later.
2626 */
a2dec7b3 2627 req->__data_len = 0;
2e60e022
TH
2628 return false;
2629 }
1da177e4 2630
f9d03f96
CH
2631 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2632
a2dec7b3 2633 req->__data_len -= total_bytes;
2e46e8b2
TH
2634
2635 /* update sector only for requests with clear definition of sector */
57292b58 2636 if (!blk_rq_is_passthrough(req))
a2dec7b3 2637 req->__sector += total_bytes >> 9;
2e46e8b2 2638
80a761fd 2639 /* mixed attributes always follow the first bio */
e8064021 2640 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2641 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2642 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2643 }
2644
2e46e8b2
TH
2645 /*
2646 * If total number of sectors is less than the first segment
2647 * size, something has gone terribly wrong.
2648 */
2649 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2650 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2651 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2652 }
2653
2654 /* recalculate the number of segments */
1da177e4 2655 blk_recalc_rq_segments(req);
2e46e8b2 2656
2e60e022 2657 return true;
1da177e4 2658}
2e60e022 2659EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2660
2e60e022
TH
2661static bool blk_update_bidi_request(struct request *rq, int error,
2662 unsigned int nr_bytes,
2663 unsigned int bidi_bytes)
5efccd17 2664{
2e60e022
TH
2665 if (blk_update_request(rq, error, nr_bytes))
2666 return true;
5efccd17 2667
2e60e022
TH
2668 /* Bidi request must be completed as a whole */
2669 if (unlikely(blk_bidi_rq(rq)) &&
2670 blk_update_request(rq->next_rq, error, bidi_bytes))
2671 return true;
5efccd17 2672
e2e1a148
JA
2673 if (blk_queue_add_random(rq->q))
2674 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2675
2676 return false;
1da177e4
LT
2677}
2678
28018c24
JB
2679/**
2680 * blk_unprep_request - unprepare a request
2681 * @req: the request
2682 *
2683 * This function makes a request ready for complete resubmission (or
2684 * completion). It happens only after all error handling is complete,
2685 * so represents the appropriate moment to deallocate any resources
2686 * that were allocated to the request in the prep_rq_fn. The queue
2687 * lock is held when calling this.
2688 */
2689void blk_unprep_request(struct request *req)
2690{
2691 struct request_queue *q = req->q;
2692
e8064021 2693 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2694 if (q->unprep_rq_fn)
2695 q->unprep_rq_fn(q, req);
2696}
2697EXPORT_SYMBOL_GPL(blk_unprep_request);
2698
1da177e4
LT
2699/*
2700 * queue lock must be held
2701 */
12120077 2702void blk_finish_request(struct request *req, int error)
1da177e4 2703{
cf43e6be
JA
2704 struct request_queue *q = req->q;
2705
2706 if (req->rq_flags & RQF_STATS)
34dbad5d 2707 blk_stat_add(req);
cf43e6be 2708
e8064021 2709 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2710 blk_queue_end_tag(q, req);
b8286239 2711
ba396a6c 2712 BUG_ON(blk_queued_rq(req));
1da177e4 2713
57292b58 2714 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2715 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2716
e78042e5
MA
2717 blk_delete_timer(req);
2718
e8064021 2719 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2720 blk_unprep_request(req);
2721
bc58ba94 2722 blk_account_io_done(req);
b8286239 2723
87760e5e
JA
2724 if (req->end_io) {
2725 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2726 req->end_io(req, error);
87760e5e 2727 } else {
b8286239
KU
2728 if (blk_bidi_rq(req))
2729 __blk_put_request(req->next_rq->q, req->next_rq);
2730
cf43e6be 2731 __blk_put_request(q, req);
b8286239 2732 }
1da177e4 2733}
12120077 2734EXPORT_SYMBOL(blk_finish_request);
1da177e4 2735
3b11313a 2736/**
2e60e022
TH
2737 * blk_end_bidi_request - Complete a bidi request
2738 * @rq: the request to complete
2739 * @error: %0 for success, < %0 for error
2740 * @nr_bytes: number of bytes to complete @rq
2741 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2742 *
2743 * Description:
e3a04fe3 2744 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2745 * Drivers that supports bidi can safely call this member for any
2746 * type of request, bidi or uni. In the later case @bidi_bytes is
2747 * just ignored.
336cdb40
KU
2748 *
2749 * Return:
2e60e022
TH
2750 * %false - we are done with this request
2751 * %true - still buffers pending for this request
a0cd1285 2752 **/
b1f74493 2753static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2754 unsigned int nr_bytes, unsigned int bidi_bytes)
2755{
336cdb40 2756 struct request_queue *q = rq->q;
2e60e022 2757 unsigned long flags;
32fab448 2758
2e60e022
TH
2759 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2760 return true;
32fab448 2761
336cdb40 2762 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2763 blk_finish_request(rq, error);
336cdb40
KU
2764 spin_unlock_irqrestore(q->queue_lock, flags);
2765
2e60e022 2766 return false;
32fab448
KU
2767}
2768
336cdb40 2769/**
2e60e022
TH
2770 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2771 * @rq: the request to complete
710027a4 2772 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2773 * @nr_bytes: number of bytes to complete @rq
2774 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2775 *
2776 * Description:
2e60e022
TH
2777 * Identical to blk_end_bidi_request() except that queue lock is
2778 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2779 *
2780 * Return:
2e60e022
TH
2781 * %false - we are done with this request
2782 * %true - still buffers pending for this request
336cdb40 2783 **/
4853abaa 2784bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2785 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2786{
2e60e022
TH
2787 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2788 return true;
336cdb40 2789
2e60e022 2790 blk_finish_request(rq, error);
336cdb40 2791
2e60e022 2792 return false;
336cdb40 2793}
e19a3ab0
KU
2794
2795/**
2796 * blk_end_request - Helper function for drivers to complete the request.
2797 * @rq: the request being processed
710027a4 2798 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2799 * @nr_bytes: number of bytes to complete
2800 *
2801 * Description:
2802 * Ends I/O on a number of bytes attached to @rq.
2803 * If @rq has leftover, sets it up for the next range of segments.
2804 *
2805 * Return:
b1f74493
FT
2806 * %false - we are done with this request
2807 * %true - still buffers pending for this request
e19a3ab0 2808 **/
b1f74493 2809bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2810{
b1f74493 2811 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2812}
56ad1740 2813EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2814
2815/**
b1f74493
FT
2816 * blk_end_request_all - Helper function for drives to finish the request.
2817 * @rq: the request to finish
8ebf9756 2818 * @error: %0 for success, < %0 for error
336cdb40
KU
2819 *
2820 * Description:
b1f74493
FT
2821 * Completely finish @rq.
2822 */
2823void blk_end_request_all(struct request *rq, int error)
336cdb40 2824{
b1f74493
FT
2825 bool pending;
2826 unsigned int bidi_bytes = 0;
336cdb40 2827
b1f74493
FT
2828 if (unlikely(blk_bidi_rq(rq)))
2829 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2830
b1f74493
FT
2831 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2832 BUG_ON(pending);
2833}
56ad1740 2834EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2835
b1f74493
FT
2836/**
2837 * blk_end_request_cur - Helper function to finish the current request chunk.
2838 * @rq: the request to finish the current chunk for
8ebf9756 2839 * @error: %0 for success, < %0 for error
b1f74493
FT
2840 *
2841 * Description:
2842 * Complete the current consecutively mapped chunk from @rq.
2843 *
2844 * Return:
2845 * %false - we are done with this request
2846 * %true - still buffers pending for this request
2847 */
2848bool blk_end_request_cur(struct request *rq, int error)
2849{
2850 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2851}
56ad1740 2852EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2853
80a761fd
TH
2854/**
2855 * blk_end_request_err - Finish a request till the next failure boundary.
2856 * @rq: the request to finish till the next failure boundary for
2857 * @error: must be negative errno
2858 *
2859 * Description:
2860 * Complete @rq till the next failure boundary.
2861 *
2862 * Return:
2863 * %false - we are done with this request
2864 * %true - still buffers pending for this request
2865 */
2866bool blk_end_request_err(struct request *rq, int error)
2867{
2868 WARN_ON(error >= 0);
2869 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2870}
2871EXPORT_SYMBOL_GPL(blk_end_request_err);
2872
e3a04fe3 2873/**
b1f74493
FT
2874 * __blk_end_request - Helper function for drivers to complete the request.
2875 * @rq: the request being processed
2876 * @error: %0 for success, < %0 for error
2877 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2878 *
2879 * Description:
b1f74493 2880 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2881 *
2882 * Return:
b1f74493
FT
2883 * %false - we are done with this request
2884 * %true - still buffers pending for this request
e3a04fe3 2885 **/
b1f74493 2886bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2887{
b1f74493 2888 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2889}
56ad1740 2890EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2891
32fab448 2892/**
b1f74493
FT
2893 * __blk_end_request_all - Helper function for drives to finish the request.
2894 * @rq: the request to finish
8ebf9756 2895 * @error: %0 for success, < %0 for error
32fab448
KU
2896 *
2897 * Description:
b1f74493 2898 * Completely finish @rq. Must be called with queue lock held.
32fab448 2899 */
b1f74493 2900void __blk_end_request_all(struct request *rq, int error)
32fab448 2901{
b1f74493
FT
2902 bool pending;
2903 unsigned int bidi_bytes = 0;
2904
2905 if (unlikely(blk_bidi_rq(rq)))
2906 bidi_bytes = blk_rq_bytes(rq->next_rq);
2907
2908 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2909 BUG_ON(pending);
32fab448 2910}
56ad1740 2911EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2912
e19a3ab0 2913/**
b1f74493
FT
2914 * __blk_end_request_cur - Helper function to finish the current request chunk.
2915 * @rq: the request to finish the current chunk for
8ebf9756 2916 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2917 *
2918 * Description:
b1f74493
FT
2919 * Complete the current consecutively mapped chunk from @rq. Must
2920 * be called with queue lock held.
e19a3ab0
KU
2921 *
2922 * Return:
b1f74493
FT
2923 * %false - we are done with this request
2924 * %true - still buffers pending for this request
2925 */
2926bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2927{
b1f74493 2928 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2929}
56ad1740 2930EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2931
80a761fd
TH
2932/**
2933 * __blk_end_request_err - Finish a request till the next failure boundary.
2934 * @rq: the request to finish till the next failure boundary for
2935 * @error: must be negative errno
2936 *
2937 * Description:
2938 * Complete @rq till the next failure boundary. Must be called
2939 * with queue lock held.
2940 *
2941 * Return:
2942 * %false - we are done with this request
2943 * %true - still buffers pending for this request
2944 */
2945bool __blk_end_request_err(struct request *rq, int error)
2946{
2947 WARN_ON(error >= 0);
2948 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2949}
2950EXPORT_SYMBOL_GPL(__blk_end_request_err);
2951
86db1e29
JA
2952void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2953 struct bio *bio)
1da177e4 2954{
b4f42e28 2955 if (bio_has_data(bio))
fb2dce86 2956 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2957
4f024f37 2958 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2959 rq->bio = rq->biotail = bio;
1da177e4 2960
66846572
N
2961 if (bio->bi_bdev)
2962 rq->rq_disk = bio->bi_bdev->bd_disk;
2963}
1da177e4 2964
2d4dc890
IL
2965#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2966/**
2967 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2968 * @rq: the request to be flushed
2969 *
2970 * Description:
2971 * Flush all pages in @rq.
2972 */
2973void rq_flush_dcache_pages(struct request *rq)
2974{
2975 struct req_iterator iter;
7988613b 2976 struct bio_vec bvec;
2d4dc890
IL
2977
2978 rq_for_each_segment(bvec, rq, iter)
7988613b 2979 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2980}
2981EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2982#endif
2983
ef9e3fac
KU
2984/**
2985 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2986 * @q : the queue of the device being checked
2987 *
2988 * Description:
2989 * Check if underlying low-level drivers of a device are busy.
2990 * If the drivers want to export their busy state, they must set own
2991 * exporting function using blk_queue_lld_busy() first.
2992 *
2993 * Basically, this function is used only by request stacking drivers
2994 * to stop dispatching requests to underlying devices when underlying
2995 * devices are busy. This behavior helps more I/O merging on the queue
2996 * of the request stacking driver and prevents I/O throughput regression
2997 * on burst I/O load.
2998 *
2999 * Return:
3000 * 0 - Not busy (The request stacking driver should dispatch request)
3001 * 1 - Busy (The request stacking driver should stop dispatching request)
3002 */
3003int blk_lld_busy(struct request_queue *q)
3004{
3005 if (q->lld_busy_fn)
3006 return q->lld_busy_fn(q);
3007
3008 return 0;
3009}
3010EXPORT_SYMBOL_GPL(blk_lld_busy);
3011
78d8e58a
MS
3012/**
3013 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3014 * @rq: the clone request to be cleaned up
3015 *
3016 * Description:
3017 * Free all bios in @rq for a cloned request.
3018 */
3019void blk_rq_unprep_clone(struct request *rq)
3020{
3021 struct bio *bio;
3022
3023 while ((bio = rq->bio) != NULL) {
3024 rq->bio = bio->bi_next;
3025
3026 bio_put(bio);
3027 }
3028}
3029EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3030
3031/*
3032 * Copy attributes of the original request to the clone request.
3033 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3034 */
3035static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3036{
3037 dst->cpu = src->cpu;
b0fd271d
KU
3038 dst->__sector = blk_rq_pos(src);
3039 dst->__data_len = blk_rq_bytes(src);
3040 dst->nr_phys_segments = src->nr_phys_segments;
3041 dst->ioprio = src->ioprio;
3042 dst->extra_len = src->extra_len;
78d8e58a
MS
3043}
3044
3045/**
3046 * blk_rq_prep_clone - Helper function to setup clone request
3047 * @rq: the request to be setup
3048 * @rq_src: original request to be cloned
3049 * @bs: bio_set that bios for clone are allocated from
3050 * @gfp_mask: memory allocation mask for bio
3051 * @bio_ctr: setup function to be called for each clone bio.
3052 * Returns %0 for success, non %0 for failure.
3053 * @data: private data to be passed to @bio_ctr
3054 *
3055 * Description:
3056 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3057 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3058 * are not copied, and copying such parts is the caller's responsibility.
3059 * Also, pages which the original bios are pointing to are not copied
3060 * and the cloned bios just point same pages.
3061 * So cloned bios must be completed before original bios, which means
3062 * the caller must complete @rq before @rq_src.
3063 */
3064int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3065 struct bio_set *bs, gfp_t gfp_mask,
3066 int (*bio_ctr)(struct bio *, struct bio *, void *),
3067 void *data)
3068{
3069 struct bio *bio, *bio_src;
3070
3071 if (!bs)
3072 bs = fs_bio_set;
3073
3074 __rq_for_each_bio(bio_src, rq_src) {
3075 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3076 if (!bio)
3077 goto free_and_out;
3078
3079 if (bio_ctr && bio_ctr(bio, bio_src, data))
3080 goto free_and_out;
3081
3082 if (rq->bio) {
3083 rq->biotail->bi_next = bio;
3084 rq->biotail = bio;
3085 } else
3086 rq->bio = rq->biotail = bio;
3087 }
3088
3089 __blk_rq_prep_clone(rq, rq_src);
3090
3091 return 0;
3092
3093free_and_out:
3094 if (bio)
3095 bio_put(bio);
3096 blk_rq_unprep_clone(rq);
3097
3098 return -ENOMEM;
b0fd271d
KU
3099}
3100EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3101
59c3d45e 3102int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3103{
3104 return queue_work(kblockd_workqueue, work);
3105}
1da177e4
LT
3106EXPORT_SYMBOL(kblockd_schedule_work);
3107
ee63cfa7
JA
3108int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3109{
3110 return queue_work_on(cpu, kblockd_workqueue, work);
3111}
3112EXPORT_SYMBOL(kblockd_schedule_work_on);
3113
59c3d45e
JA
3114int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3115 unsigned long delay)
e43473b7
VG
3116{
3117 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3118}
3119EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3120
8ab14595
JA
3121int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3122 unsigned long delay)
3123{
3124 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3125}
3126EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3127
75df7136
SJ
3128/**
3129 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3130 * @plug: The &struct blk_plug that needs to be initialized
3131 *
3132 * Description:
3133 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3134 * pending I/O should the task end up blocking between blk_start_plug() and
3135 * blk_finish_plug(). This is important from a performance perspective, but
3136 * also ensures that we don't deadlock. For instance, if the task is blocking
3137 * for a memory allocation, memory reclaim could end up wanting to free a
3138 * page belonging to that request that is currently residing in our private
3139 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3140 * this kind of deadlock.
3141 */
73c10101
JA
3142void blk_start_plug(struct blk_plug *plug)
3143{
3144 struct task_struct *tsk = current;
3145
dd6cf3e1
SL
3146 /*
3147 * If this is a nested plug, don't actually assign it.
3148 */
3149 if (tsk->plug)
3150 return;
3151
73c10101 3152 INIT_LIST_HEAD(&plug->list);
320ae51f 3153 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3154 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3155 /*
dd6cf3e1
SL
3156 * Store ordering should not be needed here, since a potential
3157 * preempt will imply a full memory barrier
73c10101 3158 */
dd6cf3e1 3159 tsk->plug = plug;
73c10101
JA
3160}
3161EXPORT_SYMBOL(blk_start_plug);
3162
3163static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3164{
3165 struct request *rqa = container_of(a, struct request, queuelist);
3166 struct request *rqb = container_of(b, struct request, queuelist);
3167
975927b9
JM
3168 return !(rqa->q < rqb->q ||
3169 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3170}
3171
49cac01e
JA
3172/*
3173 * If 'from_schedule' is true, then postpone the dispatch of requests
3174 * until a safe kblockd context. We due this to avoid accidental big
3175 * additional stack usage in driver dispatch, in places where the originally
3176 * plugger did not intend it.
3177 */
f6603783 3178static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3179 bool from_schedule)
99e22598 3180 __releases(q->queue_lock)
94b5eb28 3181{
49cac01e 3182 trace_block_unplug(q, depth, !from_schedule);
99e22598 3183
70460571 3184 if (from_schedule)
24ecfbe2 3185 blk_run_queue_async(q);
70460571 3186 else
24ecfbe2 3187 __blk_run_queue(q);
70460571 3188 spin_unlock(q->queue_lock);
94b5eb28
JA
3189}
3190
74018dc3 3191static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3192{
3193 LIST_HEAD(callbacks);
3194
2a7d5559
SL
3195 while (!list_empty(&plug->cb_list)) {
3196 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3197
2a7d5559
SL
3198 while (!list_empty(&callbacks)) {
3199 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3200 struct blk_plug_cb,
3201 list);
2a7d5559 3202 list_del(&cb->list);
74018dc3 3203 cb->callback(cb, from_schedule);
2a7d5559 3204 }
048c9374
N
3205 }
3206}
3207
9cbb1750
N
3208struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3209 int size)
3210{
3211 struct blk_plug *plug = current->plug;
3212 struct blk_plug_cb *cb;
3213
3214 if (!plug)
3215 return NULL;
3216
3217 list_for_each_entry(cb, &plug->cb_list, list)
3218 if (cb->callback == unplug && cb->data == data)
3219 return cb;
3220
3221 /* Not currently on the callback list */
3222 BUG_ON(size < sizeof(*cb));
3223 cb = kzalloc(size, GFP_ATOMIC);
3224 if (cb) {
3225 cb->data = data;
3226 cb->callback = unplug;
3227 list_add(&cb->list, &plug->cb_list);
3228 }
3229 return cb;
3230}
3231EXPORT_SYMBOL(blk_check_plugged);
3232
49cac01e 3233void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3234{
3235 struct request_queue *q;
3236 unsigned long flags;
3237 struct request *rq;
109b8129 3238 LIST_HEAD(list);
94b5eb28 3239 unsigned int depth;
73c10101 3240
74018dc3 3241 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3242
3243 if (!list_empty(&plug->mq_list))
3244 blk_mq_flush_plug_list(plug, from_schedule);
3245
73c10101
JA
3246 if (list_empty(&plug->list))
3247 return;
3248
109b8129
N
3249 list_splice_init(&plug->list, &list);
3250
422765c2 3251 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3252
3253 q = NULL;
94b5eb28 3254 depth = 0;
18811272
JA
3255
3256 /*
3257 * Save and disable interrupts here, to avoid doing it for every
3258 * queue lock we have to take.
3259 */
73c10101 3260 local_irq_save(flags);
109b8129
N
3261 while (!list_empty(&list)) {
3262 rq = list_entry_rq(list.next);
73c10101 3263 list_del_init(&rq->queuelist);
73c10101
JA
3264 BUG_ON(!rq->q);
3265 if (rq->q != q) {
99e22598
JA
3266 /*
3267 * This drops the queue lock
3268 */
3269 if (q)
49cac01e 3270 queue_unplugged(q, depth, from_schedule);
73c10101 3271 q = rq->q;
94b5eb28 3272 depth = 0;
73c10101
JA
3273 spin_lock(q->queue_lock);
3274 }
8ba61435
TH
3275
3276 /*
3277 * Short-circuit if @q is dead
3278 */
3f3299d5 3279 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3280 __blk_end_request_all(rq, -ENODEV);
3281 continue;
3282 }
3283
73c10101
JA
3284 /*
3285 * rq is already accounted, so use raw insert
3286 */
f73f44eb 3287 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3288 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3289 else
3290 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3291
3292 depth++;
73c10101
JA
3293 }
3294
99e22598
JA
3295 /*
3296 * This drops the queue lock
3297 */
3298 if (q)
49cac01e 3299 queue_unplugged(q, depth, from_schedule);
73c10101 3300
73c10101
JA
3301 local_irq_restore(flags);
3302}
73c10101
JA
3303
3304void blk_finish_plug(struct blk_plug *plug)
3305{
dd6cf3e1
SL
3306 if (plug != current->plug)
3307 return;
f6603783 3308 blk_flush_plug_list(plug, false);
73c10101 3309
dd6cf3e1 3310 current->plug = NULL;
73c10101 3311}
88b996cd 3312EXPORT_SYMBOL(blk_finish_plug);
73c10101 3313
47fafbc7 3314#ifdef CONFIG_PM
6c954667
LM
3315/**
3316 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3317 * @q: the queue of the device
3318 * @dev: the device the queue belongs to
3319 *
3320 * Description:
3321 * Initialize runtime-PM-related fields for @q and start auto suspend for
3322 * @dev. Drivers that want to take advantage of request-based runtime PM
3323 * should call this function after @dev has been initialized, and its
3324 * request queue @q has been allocated, and runtime PM for it can not happen
3325 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3326 * cases, driver should call this function before any I/O has taken place.
3327 *
3328 * This function takes care of setting up using auto suspend for the device,
3329 * the autosuspend delay is set to -1 to make runtime suspend impossible
3330 * until an updated value is either set by user or by driver. Drivers do
3331 * not need to touch other autosuspend settings.
3332 *
3333 * The block layer runtime PM is request based, so only works for drivers
3334 * that use request as their IO unit instead of those directly use bio's.
3335 */
3336void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3337{
3338 q->dev = dev;
3339 q->rpm_status = RPM_ACTIVE;
3340 pm_runtime_set_autosuspend_delay(q->dev, -1);
3341 pm_runtime_use_autosuspend(q->dev);
3342}
3343EXPORT_SYMBOL(blk_pm_runtime_init);
3344
3345/**
3346 * blk_pre_runtime_suspend - Pre runtime suspend check
3347 * @q: the queue of the device
3348 *
3349 * Description:
3350 * This function will check if runtime suspend is allowed for the device
3351 * by examining if there are any requests pending in the queue. If there
3352 * are requests pending, the device can not be runtime suspended; otherwise,
3353 * the queue's status will be updated to SUSPENDING and the driver can
3354 * proceed to suspend the device.
3355 *
3356 * For the not allowed case, we mark last busy for the device so that
3357 * runtime PM core will try to autosuspend it some time later.
3358 *
3359 * This function should be called near the start of the device's
3360 * runtime_suspend callback.
3361 *
3362 * Return:
3363 * 0 - OK to runtime suspend the device
3364 * -EBUSY - Device should not be runtime suspended
3365 */
3366int blk_pre_runtime_suspend(struct request_queue *q)
3367{
3368 int ret = 0;
3369
4fd41a85
KX
3370 if (!q->dev)
3371 return ret;
3372
6c954667
LM
3373 spin_lock_irq(q->queue_lock);
3374 if (q->nr_pending) {
3375 ret = -EBUSY;
3376 pm_runtime_mark_last_busy(q->dev);
3377 } else {
3378 q->rpm_status = RPM_SUSPENDING;
3379 }
3380 spin_unlock_irq(q->queue_lock);
3381 return ret;
3382}
3383EXPORT_SYMBOL(blk_pre_runtime_suspend);
3384
3385/**
3386 * blk_post_runtime_suspend - Post runtime suspend processing
3387 * @q: the queue of the device
3388 * @err: return value of the device's runtime_suspend function
3389 *
3390 * Description:
3391 * Update the queue's runtime status according to the return value of the
3392 * device's runtime suspend function and mark last busy for the device so
3393 * that PM core will try to auto suspend the device at a later time.
3394 *
3395 * This function should be called near the end of the device's
3396 * runtime_suspend callback.
3397 */
3398void blk_post_runtime_suspend(struct request_queue *q, int err)
3399{
4fd41a85
KX
3400 if (!q->dev)
3401 return;
3402
6c954667
LM
3403 spin_lock_irq(q->queue_lock);
3404 if (!err) {
3405 q->rpm_status = RPM_SUSPENDED;
3406 } else {
3407 q->rpm_status = RPM_ACTIVE;
3408 pm_runtime_mark_last_busy(q->dev);
3409 }
3410 spin_unlock_irq(q->queue_lock);
3411}
3412EXPORT_SYMBOL(blk_post_runtime_suspend);
3413
3414/**
3415 * blk_pre_runtime_resume - Pre runtime resume processing
3416 * @q: the queue of the device
3417 *
3418 * Description:
3419 * Update the queue's runtime status to RESUMING in preparation for the
3420 * runtime resume of the device.
3421 *
3422 * This function should be called near the start of the device's
3423 * runtime_resume callback.
3424 */
3425void blk_pre_runtime_resume(struct request_queue *q)
3426{
4fd41a85
KX
3427 if (!q->dev)
3428 return;
3429
6c954667
LM
3430 spin_lock_irq(q->queue_lock);
3431 q->rpm_status = RPM_RESUMING;
3432 spin_unlock_irq(q->queue_lock);
3433}
3434EXPORT_SYMBOL(blk_pre_runtime_resume);
3435
3436/**
3437 * blk_post_runtime_resume - Post runtime resume processing
3438 * @q: the queue of the device
3439 * @err: return value of the device's runtime_resume function
3440 *
3441 * Description:
3442 * Update the queue's runtime status according to the return value of the
3443 * device's runtime_resume function. If it is successfully resumed, process
3444 * the requests that are queued into the device's queue when it is resuming
3445 * and then mark last busy and initiate autosuspend for it.
3446 *
3447 * This function should be called near the end of the device's
3448 * runtime_resume callback.
3449 */
3450void blk_post_runtime_resume(struct request_queue *q, int err)
3451{
4fd41a85
KX
3452 if (!q->dev)
3453 return;
3454
6c954667
LM
3455 spin_lock_irq(q->queue_lock);
3456 if (!err) {
3457 q->rpm_status = RPM_ACTIVE;
3458 __blk_run_queue(q);
3459 pm_runtime_mark_last_busy(q->dev);
c60855cd 3460 pm_request_autosuspend(q->dev);
6c954667
LM
3461 } else {
3462 q->rpm_status = RPM_SUSPENDED;
3463 }
3464 spin_unlock_irq(q->queue_lock);
3465}
3466EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3467
3468/**
3469 * blk_set_runtime_active - Force runtime status of the queue to be active
3470 * @q: the queue of the device
3471 *
3472 * If the device is left runtime suspended during system suspend the resume
3473 * hook typically resumes the device and corrects runtime status
3474 * accordingly. However, that does not affect the queue runtime PM status
3475 * which is still "suspended". This prevents processing requests from the
3476 * queue.
3477 *
3478 * This function can be used in driver's resume hook to correct queue
3479 * runtime PM status and re-enable peeking requests from the queue. It
3480 * should be called before first request is added to the queue.
3481 */
3482void blk_set_runtime_active(struct request_queue *q)
3483{
3484 spin_lock_irq(q->queue_lock);
3485 q->rpm_status = RPM_ACTIVE;
3486 pm_runtime_mark_last_busy(q->dev);
3487 pm_request_autosuspend(q->dev);
3488 spin_unlock_irq(q->queue_lock);
3489}
3490EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3491#endif
3492
1da177e4
LT
3493int __init blk_dev_init(void)
3494{
ef295ecf
CH
3495 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3496 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3497 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3498 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3499 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3500
89b90be2
TH
3501 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3502 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3503 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3504 if (!kblockd_workqueue)
3505 panic("Failed to create kblockd\n");
3506
3507 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3508 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3509
c2789bd4 3510 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3511 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3512
18fbda91
OS
3513#ifdef CONFIG_DEBUG_FS
3514 blk_debugfs_root = debugfs_create_dir("block", NULL);
3515#endif
3516
d38ecf93 3517 return 0;
1da177e4 3518}