]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq.c
Merge branch 'linux-4.12' of git://github.com/skeggsb/linux into drm-next
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
cf43e6be 35#include "blk-stat.h"
87760e5e 36#include "blk-wbt.h"
bd166ef1 37#include "blk-mq-sched.h"
320ae51f
JA
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
320ae51f
JA
42/*
43 * Check if any of the ctx's have pending work in this hardware queue
44 */
50e1dab8 45bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 46{
bd166ef1
JA
47 return sbitmap_any_bit_set(&hctx->ctx_map) ||
48 !list_empty_careful(&hctx->dispatch) ||
49 blk_mq_sched_has_work(hctx);
1429d7c9
JA
50}
51
320ae51f
JA
52/*
53 * Mark this ctx as having pending work in this hardware queue
54 */
55static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
57{
88459642
OS
58 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
59 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
60}
61
62static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
88459642 65 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
66}
67
b4c6a028 68void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 69{
4ecd4fef 70 int freeze_depth;
cddd5d17 71
4ecd4fef
CH
72 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
73 if (freeze_depth == 1) {
3ef28e83 74 percpu_ref_kill(&q->q_usage_counter);
b94ec296 75 blk_mq_run_hw_queues(q, false);
cddd5d17 76 }
f3af020b 77}
b4c6a028 78EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b 79
6bae363e 80void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 81{
3ef28e83 82 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 83}
6bae363e 84EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 85
f91328c4
KB
86int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
87 unsigned long timeout)
88{
89 return wait_event_timeout(q->mq_freeze_wq,
90 percpu_ref_is_zero(&q->q_usage_counter),
91 timeout);
92}
93EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 94
f3af020b
TH
95/*
96 * Guarantee no request is in use, so we can change any data structure of
97 * the queue afterward.
98 */
3ef28e83 99void blk_freeze_queue(struct request_queue *q)
f3af020b 100{
3ef28e83
DW
101 /*
102 * In the !blk_mq case we are only calling this to kill the
103 * q_usage_counter, otherwise this increases the freeze depth
104 * and waits for it to return to zero. For this reason there is
105 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
106 * exported to drivers as the only user for unfreeze is blk_mq.
107 */
f3af020b
TH
108 blk_mq_freeze_queue_start(q);
109 blk_mq_freeze_queue_wait(q);
110}
3ef28e83
DW
111
112void blk_mq_freeze_queue(struct request_queue *q)
113{
114 /*
115 * ...just an alias to keep freeze and unfreeze actions balanced
116 * in the blk_mq_* namespace
117 */
118 blk_freeze_queue(q);
119}
c761d96b 120EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 121
b4c6a028 122void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 123{
4ecd4fef 124 int freeze_depth;
320ae51f 125
4ecd4fef
CH
126 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
127 WARN_ON_ONCE(freeze_depth < 0);
128 if (!freeze_depth) {
3ef28e83 129 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 130 wake_up_all(&q->mq_freeze_wq);
add703fd 131 }
320ae51f 132}
b4c6a028 133EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 134
6a83e74d
BVA
135/**
136 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
137 * @q: request queue.
138 *
139 * Note: this function does not prevent that the struct request end_io()
140 * callback function is invoked. Additionally, it is not prevented that
141 * new queue_rq() calls occur unless the queue has been stopped first.
142 */
143void blk_mq_quiesce_queue(struct request_queue *q)
144{
145 struct blk_mq_hw_ctx *hctx;
146 unsigned int i;
147 bool rcu = false;
148
149 blk_mq_stop_hw_queues(q);
150
151 queue_for_each_hw_ctx(q, hctx, i) {
152 if (hctx->flags & BLK_MQ_F_BLOCKING)
153 synchronize_srcu(&hctx->queue_rq_srcu);
154 else
155 rcu = true;
156 }
157 if (rcu)
158 synchronize_rcu();
159}
160EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
161
aed3ea94
JA
162void blk_mq_wake_waiters(struct request_queue *q)
163{
164 struct blk_mq_hw_ctx *hctx;
165 unsigned int i;
166
167 queue_for_each_hw_ctx(q, hctx, i)
168 if (blk_mq_hw_queue_mapped(hctx))
169 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
170
171 /*
172 * If we are called because the queue has now been marked as
173 * dying, we need to ensure that processes currently waiting on
174 * the queue are notified as well.
175 */
176 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
177}
178
320ae51f
JA
179bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180{
181 return blk_mq_has_free_tags(hctx->tags);
182}
183EXPORT_SYMBOL(blk_mq_can_queue);
184
2c3ad667
JA
185void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int op)
320ae51f 187{
af76e555
CH
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
320ae51f 191 rq->mq_ctx = ctx;
ef295ecf 192 rq->cmd_flags = op;
e8064021
CH
193 if (blk_queue_io_stat(q))
194 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
195 /* do not touch atomic flags, it needs atomic ops against the timer */
196 rq->cpu = -1;
af76e555
CH
197 INIT_HLIST_NODE(&rq->hash);
198 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
199 rq->rq_disk = NULL;
200 rq->part = NULL;
3ee32372 201 rq->start_time = jiffies;
af76e555
CH
202#ifdef CONFIG_BLK_CGROUP
203 rq->rl = NULL;
0fec08b4 204 set_start_time_ns(rq);
af76e555
CH
205 rq->io_start_time_ns = 0;
206#endif
207 rq->nr_phys_segments = 0;
208#if defined(CONFIG_BLK_DEV_INTEGRITY)
209 rq->nr_integrity_segments = 0;
210#endif
af76e555
CH
211 rq->special = NULL;
212 /* tag was already set */
213 rq->errors = 0;
af76e555 214 rq->extra_len = 0;
af76e555 215
af76e555 216 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
217 rq->timeout = 0;
218
af76e555
CH
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
ef295ecf 223 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 224}
2c3ad667 225EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 226
2c3ad667
JA
227struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
228 unsigned int op)
5dee8577
CH
229{
230 struct request *rq;
231 unsigned int tag;
232
cb96a42c 233 tag = blk_mq_get_tag(data);
5dee8577 234 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
235 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
236
237 rq = tags->static_rqs[tag];
5dee8577 238
bd166ef1
JA
239 if (data->flags & BLK_MQ_REQ_INTERNAL) {
240 rq->tag = -1;
241 rq->internal_tag = tag;
242 } else {
200e86b3
JA
243 if (blk_mq_tag_busy(data->hctx)) {
244 rq->rq_flags = RQF_MQ_INFLIGHT;
245 atomic_inc(&data->hctx->nr_active);
246 }
bd166ef1
JA
247 rq->tag = tag;
248 rq->internal_tag = -1;
562bef42 249 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
250 }
251
ef295ecf 252 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
253 return rq;
254 }
255
256 return NULL;
257}
2c3ad667 258EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 259
6f3b0e8b
CH
260struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
261 unsigned int flags)
320ae51f 262{
5a797e00 263 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 264 struct request *rq;
a492f075 265 int ret;
320ae51f 266
6f3b0e8b 267 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
268 if (ret)
269 return ERR_PTR(ret);
320ae51f 270
bd166ef1 271 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 272
bd166ef1
JA
273 blk_mq_put_ctx(alloc_data.ctx);
274 blk_queue_exit(q);
275
276 if (!rq)
a492f075 277 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
278
279 rq->__data_len = 0;
280 rq->__sector = (sector_t) -1;
281 rq->bio = rq->biotail = NULL;
320ae51f
JA
282 return rq;
283}
4bb659b1 284EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 285
1f5bd336
ML
286struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
287 unsigned int flags, unsigned int hctx_idx)
288{
6d2809d5 289 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 290 struct request *rq;
6d2809d5 291 unsigned int cpu;
1f5bd336
ML
292 int ret;
293
294 /*
295 * If the tag allocator sleeps we could get an allocation for a
296 * different hardware context. No need to complicate the low level
297 * allocator for this for the rare use case of a command tied to
298 * a specific queue.
299 */
300 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
301 return ERR_PTR(-EINVAL);
302
303 if (hctx_idx >= q->nr_hw_queues)
304 return ERR_PTR(-EIO);
305
306 ret = blk_queue_enter(q, true);
307 if (ret)
308 return ERR_PTR(ret);
309
c8712c6a
CH
310 /*
311 * Check if the hardware context is actually mapped to anything.
312 * If not tell the caller that it should skip this queue.
313 */
6d2809d5
OS
314 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
315 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
316 blk_queue_exit(q);
317 return ERR_PTR(-EXDEV);
c8712c6a 318 }
6d2809d5
OS
319 cpu = cpumask_first(alloc_data.hctx->cpumask);
320 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 321
6d2809d5 322 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 323
c8712c6a 324 blk_queue_exit(q);
6d2809d5
OS
325
326 if (!rq)
327 return ERR_PTR(-EWOULDBLOCK);
328
329 return rq;
1f5bd336
ML
330}
331EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
332
bd166ef1
JA
333void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
334 struct request *rq)
320ae51f 335{
bd166ef1 336 const int sched_tag = rq->internal_tag;
320ae51f
JA
337 struct request_queue *q = rq->q;
338
e8064021 339 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 340 atomic_dec(&hctx->nr_active);
87760e5e
JA
341
342 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 343 rq->rq_flags = 0;
0d2602ca 344
af76e555 345 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 346 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
347 if (rq->tag != -1)
348 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
349 if (sched_tag != -1)
350 blk_mq_sched_completed_request(hctx, rq);
6d8c6c0f 351 blk_mq_sched_restart(hctx);
3ef28e83 352 blk_queue_exit(q);
320ae51f
JA
353}
354
bd166ef1 355static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 356 struct request *rq)
320ae51f
JA
357{
358 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
359
360 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
361 __blk_mq_finish_request(hctx, ctx, rq);
362}
363
364void blk_mq_finish_request(struct request *rq)
365{
366 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 367}
7c7f2f2b
JA
368
369void blk_mq_free_request(struct request *rq)
370{
bd166ef1 371 blk_mq_sched_put_request(rq);
320ae51f 372}
1a3b595a 373EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 374
c8a446ad 375inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 376{
0d11e6ac
ML
377 blk_account_io_done(rq);
378
91b63639 379 if (rq->end_io) {
87760e5e 380 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 381 rq->end_io(rq, error);
91b63639
CH
382 } else {
383 if (unlikely(blk_bidi_rq(rq)))
384 blk_mq_free_request(rq->next_rq);
320ae51f 385 blk_mq_free_request(rq);
91b63639 386 }
320ae51f 387}
c8a446ad 388EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 389
c8a446ad 390void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
391{
392 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
393 BUG();
c8a446ad 394 __blk_mq_end_request(rq, error);
63151a44 395}
c8a446ad 396EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 397
30a91cb4 398static void __blk_mq_complete_request_remote(void *data)
320ae51f 399{
3d6efbf6 400 struct request *rq = data;
320ae51f 401
30a91cb4 402 rq->q->softirq_done_fn(rq);
320ae51f 403}
320ae51f 404
ed851860 405static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
406{
407 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 408 bool shared = false;
320ae51f
JA
409 int cpu;
410
38535201 411 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
412 rq->q->softirq_done_fn(rq);
413 return;
414 }
320ae51f
JA
415
416 cpu = get_cpu();
38535201
CH
417 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
418 shared = cpus_share_cache(cpu, ctx->cpu);
419
420 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 421 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
422 rq->csd.info = rq;
423 rq->csd.flags = 0;
c46fff2a 424 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 425 } else {
30a91cb4 426 rq->q->softirq_done_fn(rq);
3d6efbf6 427 }
320ae51f
JA
428 put_cpu();
429}
30a91cb4 430
cf43e6be
JA
431static void blk_mq_stat_add(struct request *rq)
432{
433 if (rq->rq_flags & RQF_STATS) {
434 /*
435 * We could rq->mq_ctx here, but there's less of a risk
436 * of races if we have the completion event add the stats
437 * to the local software queue.
438 */
439 struct blk_mq_ctx *ctx;
440
441 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
442 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
443 }
444}
445
1fa8cc52 446static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
447{
448 struct request_queue *q = rq->q;
449
cf43e6be
JA
450 blk_mq_stat_add(rq);
451
ed851860 452 if (!q->softirq_done_fn)
c8a446ad 453 blk_mq_end_request(rq, rq->errors);
ed851860
JA
454 else
455 blk_mq_ipi_complete_request(rq);
456}
457
30a91cb4
CH
458/**
459 * blk_mq_complete_request - end I/O on a request
460 * @rq: the request being processed
461 *
462 * Description:
463 * Ends all I/O on a request. It does not handle partial completions.
464 * The actual completion happens out-of-order, through a IPI handler.
465 **/
f4829a9b 466void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 467{
95f09684
JA
468 struct request_queue *q = rq->q;
469
470 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 471 return;
f4829a9b
CH
472 if (!blk_mark_rq_complete(rq)) {
473 rq->errors = error;
ed851860 474 __blk_mq_complete_request(rq);
f4829a9b 475 }
30a91cb4
CH
476}
477EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 478
973c0191
KB
479int blk_mq_request_started(struct request *rq)
480{
481 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482}
483EXPORT_SYMBOL_GPL(blk_mq_request_started);
484
e2490073 485void blk_mq_start_request(struct request *rq)
320ae51f
JA
486{
487 struct request_queue *q = rq->q;
488
bd166ef1
JA
489 blk_mq_sched_started_request(rq);
490
320ae51f
JA
491 trace_block_rq_issue(q, rq);
492
cf43e6be
JA
493 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494 blk_stat_set_issue_time(&rq->issue_stat);
495 rq->rq_flags |= RQF_STATS;
87760e5e 496 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
497 }
498
2b8393b4 499 blk_add_timer(rq);
87ee7b11 500
538b7534
JA
501 /*
502 * Ensure that ->deadline is visible before set the started
503 * flag and clear the completed flag.
504 */
505 smp_mb__before_atomic();
506
87ee7b11
JA
507 /*
508 * Mark us as started and clear complete. Complete might have been
509 * set if requeue raced with timeout, which then marked it as
510 * complete. So be sure to clear complete again when we start
511 * the request, otherwise we'll ignore the completion event.
512 */
4b570521
JA
513 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
517
518 if (q->dma_drain_size && blk_rq_bytes(rq)) {
519 /*
520 * Make sure space for the drain appears. We know we can do
521 * this because max_hw_segments has been adjusted to be one
522 * fewer than the device can handle.
523 */
524 rq->nr_phys_segments++;
525 }
320ae51f 526}
e2490073 527EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 528
ed0791b2 529static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
530{
531 struct request_queue *q = rq->q;
532
533 trace_block_rq_requeue(q, rq);
87760e5e 534 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 535 blk_mq_sched_requeue_request(rq);
49f5baa5 536
e2490073
CH
537 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
538 if (q->dma_drain_size && blk_rq_bytes(rq))
539 rq->nr_phys_segments--;
540 }
320ae51f
JA
541}
542
2b053aca 543void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 544{
ed0791b2 545 __blk_mq_requeue_request(rq);
ed0791b2 546
ed0791b2 547 BUG_ON(blk_queued_rq(rq));
2b053aca 548 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
549}
550EXPORT_SYMBOL(blk_mq_requeue_request);
551
6fca6a61
CH
552static void blk_mq_requeue_work(struct work_struct *work)
553{
554 struct request_queue *q =
2849450a 555 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
556 LIST_HEAD(rq_list);
557 struct request *rq, *next;
558 unsigned long flags;
559
560 spin_lock_irqsave(&q->requeue_lock, flags);
561 list_splice_init(&q->requeue_list, &rq_list);
562 spin_unlock_irqrestore(&q->requeue_lock, flags);
563
564 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 565 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
566 continue;
567
e8064021 568 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 569 list_del_init(&rq->queuelist);
bd6737f1 570 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
571 }
572
573 while (!list_empty(&rq_list)) {
574 rq = list_entry(rq_list.next, struct request, queuelist);
575 list_del_init(&rq->queuelist);
bd6737f1 576 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
577 }
578
52d7f1b5 579 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
580}
581
2b053aca
BVA
582void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
583 bool kick_requeue_list)
6fca6a61
CH
584{
585 struct request_queue *q = rq->q;
586 unsigned long flags;
587
588 /*
589 * We abuse this flag that is otherwise used by the I/O scheduler to
590 * request head insertation from the workqueue.
591 */
e8064021 592 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
593
594 spin_lock_irqsave(&q->requeue_lock, flags);
595 if (at_head) {
e8064021 596 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
597 list_add(&rq->queuelist, &q->requeue_list);
598 } else {
599 list_add_tail(&rq->queuelist, &q->requeue_list);
600 }
601 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
602
603 if (kick_requeue_list)
604 blk_mq_kick_requeue_list(q);
6fca6a61
CH
605}
606EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
607
608void blk_mq_kick_requeue_list(struct request_queue *q)
609{
2849450a 610 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
611}
612EXPORT_SYMBOL(blk_mq_kick_requeue_list);
613
2849450a
MS
614void blk_mq_delay_kick_requeue_list(struct request_queue *q,
615 unsigned long msecs)
616{
617 kblockd_schedule_delayed_work(&q->requeue_work,
618 msecs_to_jiffies(msecs));
619}
620EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
621
1885b24d
JA
622void blk_mq_abort_requeue_list(struct request_queue *q)
623{
624 unsigned long flags;
625 LIST_HEAD(rq_list);
626
627 spin_lock_irqsave(&q->requeue_lock, flags);
628 list_splice_init(&q->requeue_list, &rq_list);
629 spin_unlock_irqrestore(&q->requeue_lock, flags);
630
631 while (!list_empty(&rq_list)) {
632 struct request *rq;
633
634 rq = list_first_entry(&rq_list, struct request, queuelist);
635 list_del_init(&rq->queuelist);
636 rq->errors = -EIO;
637 blk_mq_end_request(rq, rq->errors);
638 }
639}
640EXPORT_SYMBOL(blk_mq_abort_requeue_list);
641
0e62f51f
JA
642struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
643{
88c7b2b7
JA
644 if (tag < tags->nr_tags) {
645 prefetch(tags->rqs[tag]);
4ee86bab 646 return tags->rqs[tag];
88c7b2b7 647 }
4ee86bab
HR
648
649 return NULL;
24d2f903
CH
650}
651EXPORT_SYMBOL(blk_mq_tag_to_rq);
652
320ae51f 653struct blk_mq_timeout_data {
46f92d42
CH
654 unsigned long next;
655 unsigned int next_set;
320ae51f
JA
656};
657
90415837 658void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 659{
f8a5b122 660 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 661 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
662
663 /*
664 * We know that complete is set at this point. If STARTED isn't set
665 * anymore, then the request isn't active and the "timeout" should
666 * just be ignored. This can happen due to the bitflag ordering.
667 * Timeout first checks if STARTED is set, and if it is, assumes
668 * the request is active. But if we race with completion, then
669 * we both flags will get cleared. So check here again, and ignore
670 * a timeout event with a request that isn't active.
671 */
46f92d42
CH
672 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
673 return;
87ee7b11 674
46f92d42 675 if (ops->timeout)
0152fb6b 676 ret = ops->timeout(req, reserved);
46f92d42
CH
677
678 switch (ret) {
679 case BLK_EH_HANDLED:
680 __blk_mq_complete_request(req);
681 break;
682 case BLK_EH_RESET_TIMER:
683 blk_add_timer(req);
684 blk_clear_rq_complete(req);
685 break;
686 case BLK_EH_NOT_HANDLED:
687 break;
688 default:
689 printk(KERN_ERR "block: bad eh return: %d\n", ret);
690 break;
691 }
87ee7b11 692}
5b3f25fc 693
81481eb4
CH
694static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
695 struct request *rq, void *priv, bool reserved)
696{
697 struct blk_mq_timeout_data *data = priv;
87ee7b11 698
95a49603 699 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 700 return;
87ee7b11 701
46f92d42
CH
702 if (time_after_eq(jiffies, rq->deadline)) {
703 if (!blk_mark_rq_complete(rq))
0152fb6b 704 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
705 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
706 data->next = rq->deadline;
707 data->next_set = 1;
708 }
87ee7b11
JA
709}
710
287922eb 711static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 712{
287922eb
CH
713 struct request_queue *q =
714 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
715 struct blk_mq_timeout_data data = {
716 .next = 0,
717 .next_set = 0,
718 };
81481eb4 719 int i;
320ae51f 720
71f79fb3
GKB
721 /* A deadlock might occur if a request is stuck requiring a
722 * timeout at the same time a queue freeze is waiting
723 * completion, since the timeout code would not be able to
724 * acquire the queue reference here.
725 *
726 * That's why we don't use blk_queue_enter here; instead, we use
727 * percpu_ref_tryget directly, because we need to be able to
728 * obtain a reference even in the short window between the queue
729 * starting to freeze, by dropping the first reference in
730 * blk_mq_freeze_queue_start, and the moment the last request is
731 * consumed, marked by the instant q_usage_counter reaches
732 * zero.
733 */
734 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
735 return;
736
0bf6cd5b 737 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 738
81481eb4
CH
739 if (data.next_set) {
740 data.next = blk_rq_timeout(round_jiffies_up(data.next));
741 mod_timer(&q->timeout, data.next);
0d2602ca 742 } else {
0bf6cd5b
CH
743 struct blk_mq_hw_ctx *hctx;
744
f054b56c
ML
745 queue_for_each_hw_ctx(q, hctx, i) {
746 /* the hctx may be unmapped, so check it here */
747 if (blk_mq_hw_queue_mapped(hctx))
748 blk_mq_tag_idle(hctx);
749 }
0d2602ca 750 }
287922eb 751 blk_queue_exit(q);
320ae51f
JA
752}
753
754/*
755 * Reverse check our software queue for entries that we could potentially
756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757 * too much time checking for merges.
758 */
759static bool blk_mq_attempt_merge(struct request_queue *q,
760 struct blk_mq_ctx *ctx, struct bio *bio)
761{
762 struct request *rq;
763 int checked = 8;
764
765 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 766 bool merged = false;
320ae51f
JA
767
768 if (!checked--)
769 break;
770
771 if (!blk_rq_merge_ok(rq, bio))
772 continue;
773
34fe7c05
CH
774 switch (blk_try_merge(rq, bio)) {
775 case ELEVATOR_BACK_MERGE:
776 if (blk_mq_sched_allow_merge(q, rq, bio))
777 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 778 break;
34fe7c05
CH
779 case ELEVATOR_FRONT_MERGE:
780 if (blk_mq_sched_allow_merge(q, rq, bio))
781 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 782 break;
1e739730
CH
783 case ELEVATOR_DISCARD_MERGE:
784 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 785 break;
34fe7c05
CH
786 default:
787 continue;
320ae51f 788 }
34fe7c05
CH
789
790 if (merged)
791 ctx->rq_merged++;
792 return merged;
320ae51f
JA
793 }
794
795 return false;
796}
797
88459642
OS
798struct flush_busy_ctx_data {
799 struct blk_mq_hw_ctx *hctx;
800 struct list_head *list;
801};
802
803static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
804{
805 struct flush_busy_ctx_data *flush_data = data;
806 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
808
809 sbitmap_clear_bit(sb, bitnr);
810 spin_lock(&ctx->lock);
811 list_splice_tail_init(&ctx->rq_list, flush_data->list);
812 spin_unlock(&ctx->lock);
813 return true;
814}
815
1429d7c9
JA
816/*
817 * Process software queues that have been marked busy, splicing them
818 * to the for-dispatch
819 */
2c3ad667 820void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 821{
88459642
OS
822 struct flush_busy_ctx_data data = {
823 .hctx = hctx,
824 .list = list,
825 };
1429d7c9 826
88459642 827 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 828}
2c3ad667 829EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 830
703fd1c0
JA
831static inline unsigned int queued_to_index(unsigned int queued)
832{
833 if (!queued)
834 return 0;
1429d7c9 835
703fd1c0 836 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
837}
838
bd6737f1
JA
839bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
840 bool wait)
bd166ef1
JA
841{
842 struct blk_mq_alloc_data data = {
843 .q = rq->q,
bd166ef1
JA
844 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
845 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
846 };
847
81380ca1
OS
848 if (rq->tag != -1)
849 goto done;
bd166ef1 850
415b806d
SG
851 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
852 data.flags |= BLK_MQ_REQ_RESERVED;
853
bd166ef1
JA
854 rq->tag = blk_mq_get_tag(&data);
855 if (rq->tag >= 0) {
200e86b3
JA
856 if (blk_mq_tag_busy(data.hctx)) {
857 rq->rq_flags |= RQF_MQ_INFLIGHT;
858 atomic_inc(&data.hctx->nr_active);
859 }
bd166ef1 860 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
861 }
862
81380ca1
OS
863done:
864 if (hctx)
865 *hctx = data.hctx;
866 return rq->tag != -1;
bd166ef1
JA
867}
868
113285b4
JA
869static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
870 struct request *rq)
99cf1dc5 871{
99cf1dc5
JA
872 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
873 rq->tag = -1;
874
875 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
876 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
877 atomic_dec(&hctx->nr_active);
878 }
879}
880
113285b4
JA
881static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
882 struct request *rq)
883{
884 if (rq->tag == -1 || rq->internal_tag == -1)
885 return;
886
887 __blk_mq_put_driver_tag(hctx, rq);
888}
889
890static void blk_mq_put_driver_tag(struct request *rq)
891{
892 struct blk_mq_hw_ctx *hctx;
893
894 if (rq->tag == -1 || rq->internal_tag == -1)
895 return;
896
897 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
898 __blk_mq_put_driver_tag(hctx, rq);
899}
900
bd166ef1
JA
901/*
902 * If we fail getting a driver tag because all the driver tags are already
903 * assigned and on the dispatch list, BUT the first entry does not have a
904 * tag, then we could deadlock. For that case, move entries with assigned
905 * driver tags to the front, leaving the set of tagged requests in the
906 * same order, and the untagged set in the same order.
907 */
908static bool reorder_tags_to_front(struct list_head *list)
909{
910 struct request *rq, *tmp, *first = NULL;
911
912 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
913 if (rq == first)
914 break;
915 if (rq->tag != -1) {
916 list_move(&rq->queuelist, list);
917 if (!first)
918 first = rq;
919 }
920 }
921
922 return first != NULL;
923}
924
da55f2cc
OS
925static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
926 void *key)
927{
928 struct blk_mq_hw_ctx *hctx;
929
930 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
931
932 list_del(&wait->task_list);
933 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
934 blk_mq_run_hw_queue(hctx, true);
935 return 1;
936}
937
938static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
939{
940 struct sbq_wait_state *ws;
941
942 /*
943 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
944 * The thread which wins the race to grab this bit adds the hardware
945 * queue to the wait queue.
946 */
947 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
948 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
949 return false;
950
951 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
952 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
953
954 /*
955 * As soon as this returns, it's no longer safe to fiddle with
956 * hctx->dispatch_wait, since a completion can wake up the wait queue
957 * and unlock the bit.
958 */
959 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
960 return true;
961}
962
81380ca1 963bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
320ae51f 964{
81380ca1 965 struct blk_mq_hw_ctx *hctx;
320ae51f 966 struct request *rq;
74c45052
JA
967 LIST_HEAD(driver_list);
968 struct list_head *dptr;
93efe981 969 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 970
81380ca1
OS
971 if (list_empty(list))
972 return false;
973
74c45052
JA
974 /*
975 * Start off with dptr being NULL, so we start the first request
976 * immediately, even if we have more pending.
977 */
978 dptr = NULL;
979
320ae51f
JA
980 /*
981 * Now process all the entries, sending them to the driver.
982 */
93efe981 983 errors = queued = 0;
81380ca1 984 do {
74c45052 985 struct blk_mq_queue_data bd;
320ae51f 986
f04c3df3 987 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
988 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
989 if (!queued && reorder_tags_to_front(list))
990 continue;
3c782d67
JA
991
992 /*
da55f2cc
OS
993 * The initial allocation attempt failed, so we need to
994 * rerun the hardware queue when a tag is freed.
3c782d67 995 */
da55f2cc
OS
996 if (blk_mq_dispatch_wait_add(hctx)) {
997 /*
998 * It's possible that a tag was freed in the
999 * window between the allocation failure and
1000 * adding the hardware queue to the wait queue.
1001 */
1002 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1003 break;
1004 } else {
3c782d67 1005 break;
da55f2cc 1006 }
bd166ef1 1007 }
da55f2cc 1008
320ae51f 1009 list_del_init(&rq->queuelist);
320ae51f 1010
74c45052
JA
1011 bd.rq = rq;
1012 bd.list = dptr;
113285b4
JA
1013
1014 /*
1015 * Flag last if we have no more requests, or if we have more
1016 * but can't assign a driver tag to it.
1017 */
1018 if (list_empty(list))
1019 bd.last = true;
1020 else {
1021 struct request *nxt;
1022
1023 nxt = list_first_entry(list, struct request, queuelist);
1024 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1025 }
74c45052
JA
1026
1027 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1028 switch (ret) {
1029 case BLK_MQ_RQ_QUEUE_OK:
1030 queued++;
52b9c330 1031 break;
320ae51f 1032 case BLK_MQ_RQ_QUEUE_BUSY:
113285b4 1033 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1034 list_add(&rq->queuelist, list);
ed0791b2 1035 __blk_mq_requeue_request(rq);
320ae51f
JA
1036 break;
1037 default:
1038 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1039 case BLK_MQ_RQ_QUEUE_ERROR:
93efe981 1040 errors++;
1e93b8c2 1041 rq->errors = -EIO;
c8a446ad 1042 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
1043 break;
1044 }
1045
1046 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1047 break;
74c45052
JA
1048
1049 /*
1050 * We've done the first request. If we have more than 1
1051 * left in the list, set dptr to defer issue.
1052 */
f04c3df3 1053 if (!dptr && list->next != list->prev)
74c45052 1054 dptr = &driver_list;
81380ca1 1055 } while (!list_empty(list));
320ae51f 1056
703fd1c0 1057 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1058
1059 /*
1060 * Any items that need requeuing? Stuff them into hctx->dispatch,
1061 * that is where we will continue on next queue run.
1062 */
f04c3df3 1063 if (!list_empty(list)) {
113285b4
JA
1064 /*
1065 * If we got a driver tag for the next request already,
1066 * free it again.
1067 */
1068 rq = list_first_entry(list, struct request, queuelist);
1069 blk_mq_put_driver_tag(rq);
1070
320ae51f 1071 spin_lock(&hctx->lock);
c13660a0 1072 list_splice_init(list, &hctx->dispatch);
320ae51f 1073 spin_unlock(&hctx->lock);
f04c3df3 1074
9ba52e58
SL
1075 /*
1076 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1077 * it's possible the queue is stopped and restarted again
1078 * before this. Queue restart will dispatch requests. And since
1079 * requests in rq_list aren't added into hctx->dispatch yet,
1080 * the requests in rq_list might get lost.
1081 *
1082 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1 1083 *
da55f2cc
OS
1084 * If RESTART or TAG_WAITING is set, then let completion restart
1085 * the queue instead of potentially looping here.
bd166ef1 1086 */
da55f2cc
OS
1087 if (!blk_mq_sched_needs_restart(hctx) &&
1088 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1089 blk_mq_run_hw_queue(hctx, true);
320ae51f 1090 }
f04c3df3 1091
93efe981 1092 return (queued + errors) != 0;
f04c3df3
JA
1093}
1094
6a83e74d
BVA
1095static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1096{
1097 int srcu_idx;
1098
1099 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1100 cpu_online(hctx->next_cpu));
1101
1102 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1103 rcu_read_lock();
bd166ef1 1104 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1105 rcu_read_unlock();
1106 } else {
1107 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1108 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1109 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1110 }
1111}
1112
506e931f
JA
1113/*
1114 * It'd be great if the workqueue API had a way to pass
1115 * in a mask and had some smarts for more clever placement.
1116 * For now we just round-robin here, switching for every
1117 * BLK_MQ_CPU_WORK_BATCH queued items.
1118 */
1119static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1120{
b657d7e6
CH
1121 if (hctx->queue->nr_hw_queues == 1)
1122 return WORK_CPU_UNBOUND;
506e931f
JA
1123
1124 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1125 int next_cpu;
506e931f
JA
1126
1127 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1128 if (next_cpu >= nr_cpu_ids)
1129 next_cpu = cpumask_first(hctx->cpumask);
1130
1131 hctx->next_cpu = next_cpu;
1132 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1133 }
1134
b657d7e6 1135 return hctx->next_cpu;
506e931f
JA
1136}
1137
7587a5ae
BVA
1138static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1139 unsigned long msecs)
320ae51f 1140{
5d1b25c1
BVA
1141 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1142 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1143 return;
1144
1b792f2f 1145 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1146 int cpu = get_cpu();
1147 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1148 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1149 put_cpu();
398205b8
PB
1150 return;
1151 }
e4043dcf 1152
2a90d4aa 1153 put_cpu();
e4043dcf 1154 }
398205b8 1155
7587a5ae
BVA
1156 if (msecs == 0)
1157 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1158 &hctx->run_work);
1159 else
1160 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1161 &hctx->delayed_run_work,
1162 msecs_to_jiffies(msecs));
1163}
1164
1165void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1166{
1167 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1168}
1169EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1170
1171void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1172{
1173 __blk_mq_delay_run_hw_queue(hctx, async, 0);
320ae51f
JA
1174}
1175
b94ec296 1176void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1177{
1178 struct blk_mq_hw_ctx *hctx;
1179 int i;
1180
1181 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1182 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1183 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1184 continue;
1185
b94ec296 1186 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1187 }
1188}
b94ec296 1189EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1190
fd001443
BVA
1191/**
1192 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1193 * @q: request queue.
1194 *
1195 * The caller is responsible for serializing this function against
1196 * blk_mq_{start,stop}_hw_queue().
1197 */
1198bool blk_mq_queue_stopped(struct request_queue *q)
1199{
1200 struct blk_mq_hw_ctx *hctx;
1201 int i;
1202
1203 queue_for_each_hw_ctx(q, hctx, i)
1204 if (blk_mq_hctx_stopped(hctx))
1205 return true;
1206
1207 return false;
1208}
1209EXPORT_SYMBOL(blk_mq_queue_stopped);
1210
320ae51f
JA
1211void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1212{
27489a3c 1213 cancel_work(&hctx->run_work);
70f4db63 1214 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1215 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1216}
1217EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1218
280d45f6
CH
1219void blk_mq_stop_hw_queues(struct request_queue *q)
1220{
1221 struct blk_mq_hw_ctx *hctx;
1222 int i;
1223
1224 queue_for_each_hw_ctx(q, hctx, i)
1225 blk_mq_stop_hw_queue(hctx);
1226}
1227EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1228
320ae51f
JA
1229void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1230{
1231 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1232
0ffbce80 1233 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1234}
1235EXPORT_SYMBOL(blk_mq_start_hw_queue);
1236
2f268556
CH
1237void blk_mq_start_hw_queues(struct request_queue *q)
1238{
1239 struct blk_mq_hw_ctx *hctx;
1240 int i;
1241
1242 queue_for_each_hw_ctx(q, hctx, i)
1243 blk_mq_start_hw_queue(hctx);
1244}
1245EXPORT_SYMBOL(blk_mq_start_hw_queues);
1246
ae911c5e
JA
1247void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1248{
1249 if (!blk_mq_hctx_stopped(hctx))
1250 return;
1251
1252 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1253 blk_mq_run_hw_queue(hctx, async);
1254}
1255EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1256
1b4a3258 1257void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1258{
1259 struct blk_mq_hw_ctx *hctx;
1260 int i;
1261
ae911c5e
JA
1262 queue_for_each_hw_ctx(q, hctx, i)
1263 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1264}
1265EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1266
70f4db63 1267static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1268{
1269 struct blk_mq_hw_ctx *hctx;
1270
27489a3c 1271 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1272
320ae51f
JA
1273 __blk_mq_run_hw_queue(hctx);
1274}
1275
7587a5ae
BVA
1276static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1277{
1278 struct blk_mq_hw_ctx *hctx;
1279
1280 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1281
1282 __blk_mq_run_hw_queue(hctx);
1283}
1284
70f4db63
CH
1285static void blk_mq_delay_work_fn(struct work_struct *work)
1286{
1287 struct blk_mq_hw_ctx *hctx;
1288
1289 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1290
1291 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1292 __blk_mq_run_hw_queue(hctx);
1293}
1294
1295void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1296{
19c66e59
ML
1297 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1298 return;
70f4db63 1299
7e79dadc 1300 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1301 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1302 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1303}
1304EXPORT_SYMBOL(blk_mq_delay_queue);
1305
cfd0c552 1306static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1307 struct request *rq,
1308 bool at_head)
320ae51f 1309{
e57690fe
JA
1310 struct blk_mq_ctx *ctx = rq->mq_ctx;
1311
01b983c9
JA
1312 trace_block_rq_insert(hctx->queue, rq);
1313
72a0a36e
CH
1314 if (at_head)
1315 list_add(&rq->queuelist, &ctx->rq_list);
1316 else
1317 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1318}
4bb659b1 1319
2c3ad667
JA
1320void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1321 bool at_head)
cfd0c552
ML
1322{
1323 struct blk_mq_ctx *ctx = rq->mq_ctx;
1324
e57690fe 1325 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1326 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1327}
1328
bd166ef1
JA
1329void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1330 struct list_head *list)
320ae51f
JA
1331
1332{
320ae51f
JA
1333 /*
1334 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1335 * offline now
1336 */
1337 spin_lock(&ctx->lock);
1338 while (!list_empty(list)) {
1339 struct request *rq;
1340
1341 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1342 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1343 list_del_init(&rq->queuelist);
e57690fe 1344 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1345 }
cfd0c552 1346 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1347 spin_unlock(&ctx->lock);
320ae51f
JA
1348}
1349
1350static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1351{
1352 struct request *rqa = container_of(a, struct request, queuelist);
1353 struct request *rqb = container_of(b, struct request, queuelist);
1354
1355 return !(rqa->mq_ctx < rqb->mq_ctx ||
1356 (rqa->mq_ctx == rqb->mq_ctx &&
1357 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1358}
1359
1360void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1361{
1362 struct blk_mq_ctx *this_ctx;
1363 struct request_queue *this_q;
1364 struct request *rq;
1365 LIST_HEAD(list);
1366 LIST_HEAD(ctx_list);
1367 unsigned int depth;
1368
1369 list_splice_init(&plug->mq_list, &list);
1370
1371 list_sort(NULL, &list, plug_ctx_cmp);
1372
1373 this_q = NULL;
1374 this_ctx = NULL;
1375 depth = 0;
1376
1377 while (!list_empty(&list)) {
1378 rq = list_entry_rq(list.next);
1379 list_del_init(&rq->queuelist);
1380 BUG_ON(!rq->q);
1381 if (rq->mq_ctx != this_ctx) {
1382 if (this_ctx) {
bd166ef1
JA
1383 trace_block_unplug(this_q, depth, from_schedule);
1384 blk_mq_sched_insert_requests(this_q, this_ctx,
1385 &ctx_list,
1386 from_schedule);
320ae51f
JA
1387 }
1388
1389 this_ctx = rq->mq_ctx;
1390 this_q = rq->q;
1391 depth = 0;
1392 }
1393
1394 depth++;
1395 list_add_tail(&rq->queuelist, &ctx_list);
1396 }
1397
1398 /*
1399 * If 'this_ctx' is set, we know we have entries to complete
1400 * on 'ctx_list'. Do those.
1401 */
1402 if (this_ctx) {
bd166ef1
JA
1403 trace_block_unplug(this_q, depth, from_schedule);
1404 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1405 from_schedule);
320ae51f
JA
1406 }
1407}
1408
1409static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1410{
1411 init_request_from_bio(rq, bio);
4b570521 1412
6e85eaf3 1413 blk_account_io_start(rq, true);
320ae51f
JA
1414}
1415
274a5843
JA
1416static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1417{
1418 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1419 !blk_queue_nomerges(hctx->queue);
1420}
1421
07068d5b
JA
1422static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1423 struct blk_mq_ctx *ctx,
1424 struct request *rq, struct bio *bio)
320ae51f 1425{
e18378a6 1426 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1427 blk_mq_bio_to_request(rq, bio);
1428 spin_lock(&ctx->lock);
1429insert_rq:
1430 __blk_mq_insert_request(hctx, rq, false);
1431 spin_unlock(&ctx->lock);
1432 return false;
1433 } else {
274a5843
JA
1434 struct request_queue *q = hctx->queue;
1435
07068d5b
JA
1436 spin_lock(&ctx->lock);
1437 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1438 blk_mq_bio_to_request(rq, bio);
1439 goto insert_rq;
1440 }
320ae51f 1441
07068d5b 1442 spin_unlock(&ctx->lock);
bd166ef1 1443 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1444 return true;
14ec77f3 1445 }
07068d5b 1446}
14ec77f3 1447
fd2d3326
JA
1448static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1449{
bd166ef1
JA
1450 if (rq->tag != -1)
1451 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1452
1453 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1454}
1455
9c621104
JA
1456static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1457 bool may_sleep)
f984df1f 1458{
f984df1f 1459 struct request_queue *q = rq->q;
f984df1f
SL
1460 struct blk_mq_queue_data bd = {
1461 .rq = rq,
1462 .list = NULL,
1463 .last = 1
1464 };
bd166ef1
JA
1465 struct blk_mq_hw_ctx *hctx;
1466 blk_qc_t new_cookie;
1467 int ret;
f984df1f 1468
bd166ef1 1469 if (q->elevator)
2253efc8
BVA
1470 goto insert;
1471
bd166ef1
JA
1472 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1473 goto insert;
1474
1475 new_cookie = request_to_qc_t(hctx, rq);
1476
f984df1f
SL
1477 /*
1478 * For OK queue, we are done. For error, kill it. Any other
1479 * error (busy), just add it to our list as we previously
1480 * would have done
1481 */
1482 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1483 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1484 *cookie = new_cookie;
2253efc8 1485 return;
7b371636 1486 }
f984df1f 1487
7b371636
JA
1488 __blk_mq_requeue_request(rq);
1489
1490 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1491 *cookie = BLK_QC_T_NONE;
1492 rq->errors = -EIO;
1493 blk_mq_end_request(rq, rq->errors);
2253efc8 1494 return;
f984df1f 1495 }
7b371636 1496
2253efc8 1497insert:
9c621104 1498 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
f984df1f
SL
1499}
1500
07068d5b
JA
1501/*
1502 * Multiple hardware queue variant. This will not use per-process plugs,
1503 * but will attempt to bypass the hctx queueing if we can go straight to
1504 * hardware for SYNC IO.
1505 */
dece1635 1506static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1507{
ef295ecf 1508 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1509 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1510 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1511 struct request *rq;
6a83e74d 1512 unsigned int request_count = 0, srcu_idx;
f984df1f 1513 struct blk_plug *plug;
5b3f341f 1514 struct request *same_queue_rq = NULL;
7b371636 1515 blk_qc_t cookie;
87760e5e 1516 unsigned int wb_acct;
07068d5b
JA
1517
1518 blk_queue_bounce(q, &bio);
1519
1520 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1521 bio_io_error(bio);
dece1635 1522 return BLK_QC_T_NONE;
07068d5b
JA
1523 }
1524
54efd50b
KO
1525 blk_queue_split(q, &bio, q->bio_split);
1526
87c279e6
OS
1527 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1528 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1529 return BLK_QC_T_NONE;
f984df1f 1530
bd166ef1
JA
1531 if (blk_mq_sched_bio_merge(q, bio))
1532 return BLK_QC_T_NONE;
1533
87760e5e
JA
1534 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1535
bd166ef1
JA
1536 trace_block_getrq(q, bio, bio->bi_opf);
1537
1538 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1539 if (unlikely(!rq)) {
1540 __wbt_done(q->rq_wb, wb_acct);
dece1635 1541 return BLK_QC_T_NONE;
87760e5e
JA
1542 }
1543
1544 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1545
fd2d3326 1546 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1547
1548 if (unlikely(is_flush_fua)) {
0c2a6fe4
JA
1549 if (q->elevator)
1550 goto elv_insert;
07068d5b
JA
1551 blk_mq_bio_to_request(rq, bio);
1552 blk_insert_flush(rq);
0c2a6fe4 1553 goto run_queue;
07068d5b
JA
1554 }
1555
f984df1f 1556 plug = current->plug;
e167dfb5
JA
1557 /*
1558 * If the driver supports defer issued based on 'last', then
1559 * queue it up like normal since we can potentially save some
1560 * CPU this way.
1561 */
f984df1f
SL
1562 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1563 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1564 struct request *old_rq = NULL;
07068d5b
JA
1565
1566 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1567
1568 /*
6a83e74d 1569 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1570 * Otherwise the existing request in the plug list will be
1571 * issued. So the plug list will have one request at most
07068d5b 1572 */
f984df1f 1573 if (plug) {
5b3f341f
SL
1574 /*
1575 * The plug list might get flushed before this. If that
b094f89c
JA
1576 * happens, same_queue_rq is invalid and plug list is
1577 * empty
1578 */
5b3f341f
SL
1579 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1580 old_rq = same_queue_rq;
f984df1f 1581 list_del_init(&old_rq->queuelist);
07068d5b 1582 }
f984df1f
SL
1583 list_add_tail(&rq->queuelist, &plug->mq_list);
1584 } else /* is_sync */
1585 old_rq = rq;
1586 blk_mq_put_ctx(data.ctx);
1587 if (!old_rq)
7b371636 1588 goto done;
6a83e74d
BVA
1589
1590 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1591 rcu_read_lock();
9c621104 1592 blk_mq_try_issue_directly(old_rq, &cookie, false);
6a83e74d
BVA
1593 rcu_read_unlock();
1594 } else {
1595 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
9c621104 1596 blk_mq_try_issue_directly(old_rq, &cookie, true);
6a83e74d
BVA
1597 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1598 }
7b371636 1599 goto done;
07068d5b
JA
1600 }
1601
bd166ef1 1602 if (q->elevator) {
0c2a6fe4 1603elv_insert:
bd166ef1
JA
1604 blk_mq_put_ctx(data.ctx);
1605 blk_mq_bio_to_request(rq, bio);
0abad774 1606 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1607 !is_sync || is_flush_fua, true);
bd166ef1
JA
1608 goto done;
1609 }
07068d5b
JA
1610 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1611 /*
1612 * For a SYNC request, send it to the hardware immediately. For
1613 * an ASYNC request, just ensure that we run it later on. The
1614 * latter allows for merging opportunities and more efficient
1615 * dispatching.
1616 */
0c2a6fe4 1617run_queue:
07068d5b
JA
1618 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1619 }
07068d5b 1620 blk_mq_put_ctx(data.ctx);
7b371636
JA
1621done:
1622 return cookie;
07068d5b
JA
1623}
1624
1625/*
1626 * Single hardware queue variant. This will attempt to use any per-process
1627 * plug for merging and IO deferral.
1628 */
dece1635 1629static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1630{
ef295ecf 1631 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1632 const int is_flush_fua = op_is_flush(bio->bi_opf);
e6c4438b
JM
1633 struct blk_plug *plug;
1634 unsigned int request_count = 0;
5a797e00 1635 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1636 struct request *rq;
7b371636 1637 blk_qc_t cookie;
87760e5e 1638 unsigned int wb_acct;
07068d5b 1639
07068d5b
JA
1640 blk_queue_bounce(q, &bio);
1641
1642 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1643 bio_io_error(bio);
dece1635 1644 return BLK_QC_T_NONE;
07068d5b
JA
1645 }
1646
54efd50b
KO
1647 blk_queue_split(q, &bio, q->bio_split);
1648
87c279e6
OS
1649 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1650 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1651 return BLK_QC_T_NONE;
1652 } else
1653 request_count = blk_plug_queued_count(q);
07068d5b 1654
bd166ef1
JA
1655 if (blk_mq_sched_bio_merge(q, bio))
1656 return BLK_QC_T_NONE;
1657
87760e5e
JA
1658 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1659
bd166ef1
JA
1660 trace_block_getrq(q, bio, bio->bi_opf);
1661
1662 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1663 if (unlikely(!rq)) {
1664 __wbt_done(q->rq_wb, wb_acct);
dece1635 1665 return BLK_QC_T_NONE;
87760e5e
JA
1666 }
1667
1668 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1669
fd2d3326 1670 cookie = request_to_qc_t(data.hctx, rq);
320ae51f
JA
1671
1672 if (unlikely(is_flush_fua)) {
0c2a6fe4
JA
1673 if (q->elevator)
1674 goto elv_insert;
320ae51f 1675 blk_mq_bio_to_request(rq, bio);
320ae51f 1676 blk_insert_flush(rq);
0c2a6fe4 1677 goto run_queue;
320ae51f
JA
1678 }
1679
1680 /*
1681 * A task plug currently exists. Since this is completely lockless,
1682 * utilize that to temporarily store requests until the task is
1683 * either done or scheduled away.
1684 */
e6c4438b
JM
1685 plug = current->plug;
1686 if (plug) {
600271d9
SL
1687 struct request *last = NULL;
1688
e6c4438b 1689 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1690
1691 /*
1692 * @request_count may become stale because of schedule
1693 * out, so check the list again.
1694 */
1695 if (list_empty(&plug->mq_list))
1696 request_count = 0;
676d0607 1697 if (!request_count)
e6c4438b 1698 trace_block_plug(q);
600271d9
SL
1699 else
1700 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1701
1702 blk_mq_put_ctx(data.ctx);
1703
600271d9
SL
1704 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1705 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1706 blk_flush_plug_list(plug, false);
1707 trace_block_plug(q);
320ae51f 1708 }
b094f89c 1709
e6c4438b 1710 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1711 return cookie;
320ae51f
JA
1712 }
1713
bd166ef1 1714 if (q->elevator) {
0c2a6fe4 1715elv_insert:
bd166ef1
JA
1716 blk_mq_put_ctx(data.ctx);
1717 blk_mq_bio_to_request(rq, bio);
0abad774 1718 blk_mq_sched_insert_request(rq, false, true,
bd6737f1 1719 !is_sync || is_flush_fua, true);
bd166ef1
JA
1720 goto done;
1721 }
07068d5b
JA
1722 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1723 /*
1724 * For a SYNC request, send it to the hardware immediately. For
1725 * an ASYNC request, just ensure that we run it later on. The
1726 * latter allows for merging opportunities and more efficient
1727 * dispatching.
1728 */
0c2a6fe4 1729run_queue:
07068d5b 1730 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1731 }
1732
07068d5b 1733 blk_mq_put_ctx(data.ctx);
bd166ef1 1734done:
7b371636 1735 return cookie;
320ae51f
JA
1736}
1737
cc71a6f4
JA
1738void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1739 unsigned int hctx_idx)
95363efd 1740{
e9b267d9 1741 struct page *page;
320ae51f 1742
24d2f903 1743 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1744 int i;
320ae51f 1745
24d2f903 1746 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1747 struct request *rq = tags->static_rqs[i];
1748
1749 if (!rq)
e9b267d9 1750 continue;
2af8cbe3 1751 set->ops->exit_request(set->driver_data, rq,
24d2f903 1752 hctx_idx, i);
2af8cbe3 1753 tags->static_rqs[i] = NULL;
e9b267d9 1754 }
320ae51f 1755 }
320ae51f 1756
24d2f903
CH
1757 while (!list_empty(&tags->page_list)) {
1758 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1759 list_del_init(&page->lru);
f75782e4
CM
1760 /*
1761 * Remove kmemleak object previously allocated in
1762 * blk_mq_init_rq_map().
1763 */
1764 kmemleak_free(page_address(page));
320ae51f
JA
1765 __free_pages(page, page->private);
1766 }
cc71a6f4 1767}
320ae51f 1768
cc71a6f4
JA
1769void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1770{
24d2f903 1771 kfree(tags->rqs);
cc71a6f4 1772 tags->rqs = NULL;
2af8cbe3
JA
1773 kfree(tags->static_rqs);
1774 tags->static_rqs = NULL;
320ae51f 1775
24d2f903 1776 blk_mq_free_tags(tags);
320ae51f
JA
1777}
1778
cc71a6f4
JA
1779struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1780 unsigned int hctx_idx,
1781 unsigned int nr_tags,
1782 unsigned int reserved_tags)
320ae51f 1783{
24d2f903 1784 struct blk_mq_tags *tags;
59f082e4 1785 int node;
320ae51f 1786
59f082e4
SL
1787 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1788 if (node == NUMA_NO_NODE)
1789 node = set->numa_node;
1790
1791 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1792 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1793 if (!tags)
1794 return NULL;
320ae51f 1795
cc71a6f4 1796 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1797 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1798 node);
24d2f903
CH
1799 if (!tags->rqs) {
1800 blk_mq_free_tags(tags);
1801 return NULL;
1802 }
320ae51f 1803
2af8cbe3
JA
1804 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1805 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1806 node);
2af8cbe3
JA
1807 if (!tags->static_rqs) {
1808 kfree(tags->rqs);
1809 blk_mq_free_tags(tags);
1810 return NULL;
1811 }
1812
cc71a6f4
JA
1813 return tags;
1814}
1815
1816static size_t order_to_size(unsigned int order)
1817{
1818 return (size_t)PAGE_SIZE << order;
1819}
1820
1821int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1822 unsigned int hctx_idx, unsigned int depth)
1823{
1824 unsigned int i, j, entries_per_page, max_order = 4;
1825 size_t rq_size, left;
59f082e4
SL
1826 int node;
1827
1828 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1829 if (node == NUMA_NO_NODE)
1830 node = set->numa_node;
cc71a6f4
JA
1831
1832 INIT_LIST_HEAD(&tags->page_list);
1833
320ae51f
JA
1834 /*
1835 * rq_size is the size of the request plus driver payload, rounded
1836 * to the cacheline size
1837 */
24d2f903 1838 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1839 cache_line_size());
cc71a6f4 1840 left = rq_size * depth;
320ae51f 1841
cc71a6f4 1842 for (i = 0; i < depth; ) {
320ae51f
JA
1843 int this_order = max_order;
1844 struct page *page;
1845 int to_do;
1846 void *p;
1847
b3a834b1 1848 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1849 this_order--;
1850
1851 do {
59f082e4 1852 page = alloc_pages_node(node,
36e1f3d1 1853 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1854 this_order);
320ae51f
JA
1855 if (page)
1856 break;
1857 if (!this_order--)
1858 break;
1859 if (order_to_size(this_order) < rq_size)
1860 break;
1861 } while (1);
1862
1863 if (!page)
24d2f903 1864 goto fail;
320ae51f
JA
1865
1866 page->private = this_order;
24d2f903 1867 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1868
1869 p = page_address(page);
f75782e4
CM
1870 /*
1871 * Allow kmemleak to scan these pages as they contain pointers
1872 * to additional allocations like via ops->init_request().
1873 */
36e1f3d1 1874 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1875 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1876 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1877 left -= to_do * rq_size;
1878 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1879 struct request *rq = p;
1880
1881 tags->static_rqs[i] = rq;
24d2f903
CH
1882 if (set->ops->init_request) {
1883 if (set->ops->init_request(set->driver_data,
2af8cbe3 1884 rq, hctx_idx, i,
59f082e4 1885 node)) {
2af8cbe3 1886 tags->static_rqs[i] = NULL;
24d2f903 1887 goto fail;
a5164405 1888 }
e9b267d9
CH
1889 }
1890
320ae51f
JA
1891 p += rq_size;
1892 i++;
1893 }
1894 }
cc71a6f4 1895 return 0;
320ae51f 1896
24d2f903 1897fail:
cc71a6f4
JA
1898 blk_mq_free_rqs(set, tags, hctx_idx);
1899 return -ENOMEM;
320ae51f
JA
1900}
1901
e57690fe
JA
1902/*
1903 * 'cpu' is going away. splice any existing rq_list entries from this
1904 * software queue to the hw queue dispatch list, and ensure that it
1905 * gets run.
1906 */
9467f859 1907static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1908{
9467f859 1909 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1910 struct blk_mq_ctx *ctx;
1911 LIST_HEAD(tmp);
1912
9467f859 1913 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1914 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1915
1916 spin_lock(&ctx->lock);
1917 if (!list_empty(&ctx->rq_list)) {
1918 list_splice_init(&ctx->rq_list, &tmp);
1919 blk_mq_hctx_clear_pending(hctx, ctx);
1920 }
1921 spin_unlock(&ctx->lock);
1922
1923 if (list_empty(&tmp))
9467f859 1924 return 0;
484b4061 1925
e57690fe
JA
1926 spin_lock(&hctx->lock);
1927 list_splice_tail_init(&tmp, &hctx->dispatch);
1928 spin_unlock(&hctx->lock);
484b4061
JA
1929
1930 blk_mq_run_hw_queue(hctx, true);
9467f859 1931 return 0;
484b4061
JA
1932}
1933
9467f859 1934static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1935{
9467f859
TG
1936 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1937 &hctx->cpuhp_dead);
484b4061
JA
1938}
1939
c3b4afca 1940/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1941static void blk_mq_exit_hctx(struct request_queue *q,
1942 struct blk_mq_tag_set *set,
1943 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1944{
f70ced09
ML
1945 unsigned flush_start_tag = set->queue_depth;
1946
08e98fc6
ML
1947 blk_mq_tag_idle(hctx);
1948
f70ced09
ML
1949 if (set->ops->exit_request)
1950 set->ops->exit_request(set->driver_data,
1951 hctx->fq->flush_rq, hctx_idx,
1952 flush_start_tag + hctx_idx);
1953
93252632
OS
1954 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1955
08e98fc6
ML
1956 if (set->ops->exit_hctx)
1957 set->ops->exit_hctx(hctx, hctx_idx);
1958
6a83e74d
BVA
1959 if (hctx->flags & BLK_MQ_F_BLOCKING)
1960 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1961
9467f859 1962 blk_mq_remove_cpuhp(hctx);
f70ced09 1963 blk_free_flush_queue(hctx->fq);
88459642 1964 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1965}
1966
624dbe47
ML
1967static void blk_mq_exit_hw_queues(struct request_queue *q,
1968 struct blk_mq_tag_set *set, int nr_queue)
1969{
1970 struct blk_mq_hw_ctx *hctx;
1971 unsigned int i;
1972
1973 queue_for_each_hw_ctx(q, hctx, i) {
1974 if (i == nr_queue)
1975 break;
08e98fc6 1976 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1977 }
624dbe47
ML
1978}
1979
08e98fc6
ML
1980static int blk_mq_init_hctx(struct request_queue *q,
1981 struct blk_mq_tag_set *set,
1982 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1983{
08e98fc6 1984 int node;
f70ced09 1985 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1986
1987 node = hctx->numa_node;
1988 if (node == NUMA_NO_NODE)
1989 node = hctx->numa_node = set->numa_node;
1990
27489a3c 1991 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
7587a5ae 1992 INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
08e98fc6
ML
1993 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1994 spin_lock_init(&hctx->lock);
1995 INIT_LIST_HEAD(&hctx->dispatch);
1996 hctx->queue = q;
1997 hctx->queue_num = hctx_idx;
2404e607 1998 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1999
9467f859 2000 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
2001
2002 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
2003
2004 /*
08e98fc6
ML
2005 * Allocate space for all possible cpus to avoid allocation at
2006 * runtime
320ae51f 2007 */
08e98fc6
ML
2008 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2009 GFP_KERNEL, node);
2010 if (!hctx->ctxs)
2011 goto unregister_cpu_notifier;
320ae51f 2012
88459642
OS
2013 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2014 node))
08e98fc6 2015 goto free_ctxs;
320ae51f 2016
08e98fc6 2017 hctx->nr_ctx = 0;
320ae51f 2018
08e98fc6
ML
2019 if (set->ops->init_hctx &&
2020 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2021 goto free_bitmap;
320ae51f 2022
93252632
OS
2023 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2024 goto exit_hctx;
2025
f70ced09
ML
2026 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2027 if (!hctx->fq)
93252632 2028 goto sched_exit_hctx;
320ae51f 2029
f70ced09
ML
2030 if (set->ops->init_request &&
2031 set->ops->init_request(set->driver_data,
2032 hctx->fq->flush_rq, hctx_idx,
2033 flush_start_tag + hctx_idx, node))
2034 goto free_fq;
320ae51f 2035
6a83e74d
BVA
2036 if (hctx->flags & BLK_MQ_F_BLOCKING)
2037 init_srcu_struct(&hctx->queue_rq_srcu);
2038
08e98fc6 2039 return 0;
320ae51f 2040
f70ced09
ML
2041 free_fq:
2042 kfree(hctx->fq);
93252632
OS
2043 sched_exit_hctx:
2044 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
f70ced09
ML
2045 exit_hctx:
2046 if (set->ops->exit_hctx)
2047 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 2048 free_bitmap:
88459642 2049 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2050 free_ctxs:
2051 kfree(hctx->ctxs);
2052 unregister_cpu_notifier:
9467f859 2053 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
2054 return -1;
2055}
320ae51f 2056
320ae51f
JA
2057static void blk_mq_init_cpu_queues(struct request_queue *q,
2058 unsigned int nr_hw_queues)
2059{
2060 unsigned int i;
2061
2062 for_each_possible_cpu(i) {
2063 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2064 struct blk_mq_hw_ctx *hctx;
2065
320ae51f
JA
2066 __ctx->cpu = i;
2067 spin_lock_init(&__ctx->lock);
2068 INIT_LIST_HEAD(&__ctx->rq_list);
2069 __ctx->queue = q;
cf43e6be
JA
2070 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
2071 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
2072
2073 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
2074 if (!cpu_online(i))
2075 continue;
2076
7d7e0f90 2077 hctx = blk_mq_map_queue(q, i);
e4043dcf 2078
320ae51f
JA
2079 /*
2080 * Set local node, IFF we have more than one hw queue. If
2081 * not, we remain on the home node of the device
2082 */
2083 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 2084 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
2085 }
2086}
2087
cc71a6f4
JA
2088static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2089{
2090 int ret = 0;
2091
2092 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2093 set->queue_depth, set->reserved_tags);
2094 if (!set->tags[hctx_idx])
2095 return false;
2096
2097 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2098 set->queue_depth);
2099 if (!ret)
2100 return true;
2101
2102 blk_mq_free_rq_map(set->tags[hctx_idx]);
2103 set->tags[hctx_idx] = NULL;
2104 return false;
2105}
2106
2107static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2108 unsigned int hctx_idx)
2109{
bd166ef1
JA
2110 if (set->tags[hctx_idx]) {
2111 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2112 blk_mq_free_rq_map(set->tags[hctx_idx]);
2113 set->tags[hctx_idx] = NULL;
2114 }
cc71a6f4
JA
2115}
2116
5778322e
AM
2117static void blk_mq_map_swqueue(struct request_queue *q,
2118 const struct cpumask *online_mask)
320ae51f 2119{
d1b1cea1 2120 unsigned int i, hctx_idx;
320ae51f
JA
2121 struct blk_mq_hw_ctx *hctx;
2122 struct blk_mq_ctx *ctx;
2a34c087 2123 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2124
60de074b
AM
2125 /*
2126 * Avoid others reading imcomplete hctx->cpumask through sysfs
2127 */
2128 mutex_lock(&q->sysfs_lock);
2129
320ae51f 2130 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2131 cpumask_clear(hctx->cpumask);
320ae51f
JA
2132 hctx->nr_ctx = 0;
2133 }
2134
2135 /*
2136 * Map software to hardware queues
2137 */
897bb0c7 2138 for_each_possible_cpu(i) {
320ae51f 2139 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2140 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2141 continue;
2142
d1b1cea1
GKB
2143 hctx_idx = q->mq_map[i];
2144 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2145 if (!set->tags[hctx_idx] &&
2146 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2147 /*
2148 * If tags initialization fail for some hctx,
2149 * that hctx won't be brought online. In this
2150 * case, remap the current ctx to hctx[0] which
2151 * is guaranteed to always have tags allocated
2152 */
cc71a6f4 2153 q->mq_map[i] = 0;
d1b1cea1
GKB
2154 }
2155
897bb0c7 2156 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2157 hctx = blk_mq_map_queue(q, i);
868f2f0b 2158
e4043dcf 2159 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2160 ctx->index_hw = hctx->nr_ctx;
2161 hctx->ctxs[hctx->nr_ctx++] = ctx;
2162 }
506e931f 2163
60de074b
AM
2164 mutex_unlock(&q->sysfs_lock);
2165
506e931f 2166 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2167 /*
a68aafa5
JA
2168 * If no software queues are mapped to this hardware queue,
2169 * disable it and free the request entries.
484b4061
JA
2170 */
2171 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2172 /* Never unmap queue 0. We need it as a
2173 * fallback in case of a new remap fails
2174 * allocation
2175 */
cc71a6f4
JA
2176 if (i && set->tags[i])
2177 blk_mq_free_map_and_requests(set, i);
2178
2a34c087 2179 hctx->tags = NULL;
484b4061
JA
2180 continue;
2181 }
2182
2a34c087
ML
2183 hctx->tags = set->tags[i];
2184 WARN_ON(!hctx->tags);
2185
889fa31f
CY
2186 /*
2187 * Set the map size to the number of mapped software queues.
2188 * This is more accurate and more efficient than looping
2189 * over all possibly mapped software queues.
2190 */
88459642 2191 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2192
484b4061
JA
2193 /*
2194 * Initialize batch roundrobin counts
2195 */
506e931f
JA
2196 hctx->next_cpu = cpumask_first(hctx->cpumask);
2197 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2198 }
320ae51f
JA
2199}
2200
2404e607 2201static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2202{
2203 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2204 int i;
2205
2404e607
JM
2206 queue_for_each_hw_ctx(q, hctx, i) {
2207 if (shared)
2208 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2209 else
2210 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2211 }
2212}
2213
2214static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2215{
2216 struct request_queue *q;
0d2602ca
JA
2217
2218 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2219 blk_mq_freeze_queue(q);
2404e607 2220 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2221 blk_mq_unfreeze_queue(q);
2222 }
2223}
2224
2225static void blk_mq_del_queue_tag_set(struct request_queue *q)
2226{
2227 struct blk_mq_tag_set *set = q->tag_set;
2228
0d2602ca
JA
2229 mutex_lock(&set->tag_list_lock);
2230 list_del_init(&q->tag_set_list);
2404e607
JM
2231 if (list_is_singular(&set->tag_list)) {
2232 /* just transitioned to unshared */
2233 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2234 /* update existing queue */
2235 blk_mq_update_tag_set_depth(set, false);
2236 }
0d2602ca 2237 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2238}
2239
2240static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2241 struct request_queue *q)
2242{
2243 q->tag_set = set;
2244
2245 mutex_lock(&set->tag_list_lock);
2404e607
JM
2246
2247 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2248 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2249 set->flags |= BLK_MQ_F_TAG_SHARED;
2250 /* update existing queue */
2251 blk_mq_update_tag_set_depth(set, true);
2252 }
2253 if (set->flags & BLK_MQ_F_TAG_SHARED)
2254 queue_set_hctx_shared(q, true);
0d2602ca 2255 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2256
0d2602ca
JA
2257 mutex_unlock(&set->tag_list_lock);
2258}
2259
e09aae7e
ML
2260/*
2261 * It is the actual release handler for mq, but we do it from
2262 * request queue's release handler for avoiding use-after-free
2263 * and headache because q->mq_kobj shouldn't have been introduced,
2264 * but we can't group ctx/kctx kobj without it.
2265 */
2266void blk_mq_release(struct request_queue *q)
2267{
2268 struct blk_mq_hw_ctx *hctx;
2269 unsigned int i;
2270
2271 /* hctx kobj stays in hctx */
c3b4afca
ML
2272 queue_for_each_hw_ctx(q, hctx, i) {
2273 if (!hctx)
2274 continue;
6c8b232e 2275 kobject_put(&hctx->kobj);
c3b4afca 2276 }
e09aae7e 2277
a723bab3
AM
2278 q->mq_map = NULL;
2279
e09aae7e
ML
2280 kfree(q->queue_hw_ctx);
2281
7ea5fe31
ML
2282 /*
2283 * release .mq_kobj and sw queue's kobject now because
2284 * both share lifetime with request queue.
2285 */
2286 blk_mq_sysfs_deinit(q);
2287
e09aae7e
ML
2288 free_percpu(q->queue_ctx);
2289}
2290
24d2f903 2291struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2292{
2293 struct request_queue *uninit_q, *q;
2294
2295 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2296 if (!uninit_q)
2297 return ERR_PTR(-ENOMEM);
2298
2299 q = blk_mq_init_allocated_queue(set, uninit_q);
2300 if (IS_ERR(q))
2301 blk_cleanup_queue(uninit_q);
2302
2303 return q;
2304}
2305EXPORT_SYMBOL(blk_mq_init_queue);
2306
868f2f0b
KB
2307static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2308 struct request_queue *q)
320ae51f 2309{
868f2f0b
KB
2310 int i, j;
2311 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2312
868f2f0b 2313 blk_mq_sysfs_unregister(q);
24d2f903 2314 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2315 int node;
f14bbe77 2316
868f2f0b
KB
2317 if (hctxs[i])
2318 continue;
2319
2320 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2321 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2322 GFP_KERNEL, node);
320ae51f 2323 if (!hctxs[i])
868f2f0b 2324 break;
320ae51f 2325
a86073e4 2326 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2327 node)) {
2328 kfree(hctxs[i]);
2329 hctxs[i] = NULL;
2330 break;
2331 }
e4043dcf 2332
0d2602ca 2333 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2334 hctxs[i]->numa_node = node;
320ae51f 2335 hctxs[i]->queue_num = i;
868f2f0b
KB
2336
2337 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2338 free_cpumask_var(hctxs[i]->cpumask);
2339 kfree(hctxs[i]);
2340 hctxs[i] = NULL;
2341 break;
2342 }
2343 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2344 }
868f2f0b
KB
2345 for (j = i; j < q->nr_hw_queues; j++) {
2346 struct blk_mq_hw_ctx *hctx = hctxs[j];
2347
2348 if (hctx) {
cc71a6f4
JA
2349 if (hctx->tags)
2350 blk_mq_free_map_and_requests(set, j);
868f2f0b 2351 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2352 kobject_put(&hctx->kobj);
868f2f0b
KB
2353 hctxs[j] = NULL;
2354
2355 }
2356 }
2357 q->nr_hw_queues = i;
2358 blk_mq_sysfs_register(q);
2359}
2360
2361struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2362 struct request_queue *q)
2363{
66841672
ML
2364 /* mark the queue as mq asap */
2365 q->mq_ops = set->ops;
2366
868f2f0b
KB
2367 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2368 if (!q->queue_ctx)
c7de5726 2369 goto err_exit;
868f2f0b 2370
737f98cf
ML
2371 /* init q->mq_kobj and sw queues' kobjects */
2372 blk_mq_sysfs_init(q);
2373
868f2f0b
KB
2374 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2375 GFP_KERNEL, set->numa_node);
2376 if (!q->queue_hw_ctx)
2377 goto err_percpu;
2378
bdd17e75 2379 q->mq_map = set->mq_map;
868f2f0b
KB
2380
2381 blk_mq_realloc_hw_ctxs(set, q);
2382 if (!q->nr_hw_queues)
2383 goto err_hctxs;
320ae51f 2384
287922eb 2385 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2386 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2387
2388 q->nr_queues = nr_cpu_ids;
320ae51f 2389
94eddfbe 2390 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2391
05f1dd53
JA
2392 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2393 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2394
1be036e9
CH
2395 q->sg_reserved_size = INT_MAX;
2396
2849450a 2397 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2398 INIT_LIST_HEAD(&q->requeue_list);
2399 spin_lock_init(&q->requeue_lock);
2400
07068d5b
JA
2401 if (q->nr_hw_queues > 1)
2402 blk_queue_make_request(q, blk_mq_make_request);
2403 else
2404 blk_queue_make_request(q, blk_sq_make_request);
2405
eba71768
JA
2406 /*
2407 * Do this after blk_queue_make_request() overrides it...
2408 */
2409 q->nr_requests = set->queue_depth;
2410
64f1c21e
JA
2411 /*
2412 * Default to classic polling
2413 */
2414 q->poll_nsec = -1;
2415
24d2f903
CH
2416 if (set->ops->complete)
2417 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2418
24d2f903 2419 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2420
5778322e 2421 get_online_cpus();
320ae51f 2422 mutex_lock(&all_q_mutex);
320ae51f 2423
4593fdbe 2424 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2425 blk_mq_add_queue_tag_set(set, q);
5778322e 2426 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2427
4593fdbe 2428 mutex_unlock(&all_q_mutex);
5778322e 2429 put_online_cpus();
4593fdbe 2430
d3484991
JA
2431 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2432 int ret;
2433
2434 ret = blk_mq_sched_init(q);
2435 if (ret)
2436 return ERR_PTR(ret);
2437 }
2438
320ae51f 2439 return q;
18741986 2440
320ae51f 2441err_hctxs:
868f2f0b 2442 kfree(q->queue_hw_ctx);
320ae51f 2443err_percpu:
868f2f0b 2444 free_percpu(q->queue_ctx);
c7de5726
ML
2445err_exit:
2446 q->mq_ops = NULL;
320ae51f
JA
2447 return ERR_PTR(-ENOMEM);
2448}
b62c21b7 2449EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2450
2451void blk_mq_free_queue(struct request_queue *q)
2452{
624dbe47 2453 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2454
0e626368
AM
2455 mutex_lock(&all_q_mutex);
2456 list_del_init(&q->all_q_node);
2457 mutex_unlock(&all_q_mutex);
2458
87760e5e
JA
2459 wbt_exit(q);
2460
0d2602ca
JA
2461 blk_mq_del_queue_tag_set(q);
2462
624dbe47 2463 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2464}
320ae51f
JA
2465
2466/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2467static void blk_mq_queue_reinit(struct request_queue *q,
2468 const struct cpumask *online_mask)
320ae51f 2469{
4ecd4fef 2470 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2471
67aec14c
JA
2472 blk_mq_sysfs_unregister(q);
2473
320ae51f
JA
2474 /*
2475 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2476 * we should change hctx numa_node according to new topology (this
2477 * involves free and re-allocate memory, worthy doing?)
2478 */
2479
5778322e 2480 blk_mq_map_swqueue(q, online_mask);
320ae51f 2481
67aec14c 2482 blk_mq_sysfs_register(q);
320ae51f
JA
2483}
2484
65d5291e
SAS
2485/*
2486 * New online cpumask which is going to be set in this hotplug event.
2487 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2488 * one-by-one and dynamically allocating this could result in a failure.
2489 */
2490static struct cpumask cpuhp_online_new;
2491
2492static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2493{
2494 struct request_queue *q;
320ae51f
JA
2495
2496 mutex_lock(&all_q_mutex);
f3af020b
TH
2497 /*
2498 * We need to freeze and reinit all existing queues. Freezing
2499 * involves synchronous wait for an RCU grace period and doing it
2500 * one by one may take a long time. Start freezing all queues in
2501 * one swoop and then wait for the completions so that freezing can
2502 * take place in parallel.
2503 */
2504 list_for_each_entry(q, &all_q_list, all_q_node)
2505 blk_mq_freeze_queue_start(q);
415d3dab 2506 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2507 blk_mq_freeze_queue_wait(q);
2508
320ae51f 2509 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2510 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2511
2512 list_for_each_entry(q, &all_q_list, all_q_node)
2513 blk_mq_unfreeze_queue(q);
2514
320ae51f 2515 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2516}
2517
2518static int blk_mq_queue_reinit_dead(unsigned int cpu)
2519{
97a32864 2520 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2521 blk_mq_queue_reinit_work();
2522 return 0;
2523}
2524
2525/*
2526 * Before hotadded cpu starts handling requests, new mappings must be
2527 * established. Otherwise, these requests in hw queue might never be
2528 * dispatched.
2529 *
2530 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2531 * for CPU0, and ctx1 for CPU1).
2532 *
2533 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2534 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2535 *
2c3ad667
JA
2536 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2537 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2538 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2539 * ignored.
65d5291e
SAS
2540 */
2541static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2542{
2543 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2544 cpumask_set_cpu(cpu, &cpuhp_online_new);
2545 blk_mq_queue_reinit_work();
2546 return 0;
320ae51f
JA
2547}
2548
a5164405
JA
2549static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2550{
2551 int i;
2552
cc71a6f4
JA
2553 for (i = 0; i < set->nr_hw_queues; i++)
2554 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2555 goto out_unwind;
a5164405
JA
2556
2557 return 0;
2558
2559out_unwind:
2560 while (--i >= 0)
cc71a6f4 2561 blk_mq_free_rq_map(set->tags[i]);
a5164405 2562
a5164405
JA
2563 return -ENOMEM;
2564}
2565
2566/*
2567 * Allocate the request maps associated with this tag_set. Note that this
2568 * may reduce the depth asked for, if memory is tight. set->queue_depth
2569 * will be updated to reflect the allocated depth.
2570 */
2571static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2572{
2573 unsigned int depth;
2574 int err;
2575
2576 depth = set->queue_depth;
2577 do {
2578 err = __blk_mq_alloc_rq_maps(set);
2579 if (!err)
2580 break;
2581
2582 set->queue_depth >>= 1;
2583 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2584 err = -ENOMEM;
2585 break;
2586 }
2587 } while (set->queue_depth);
2588
2589 if (!set->queue_depth || err) {
2590 pr_err("blk-mq: failed to allocate request map\n");
2591 return -ENOMEM;
2592 }
2593
2594 if (depth != set->queue_depth)
2595 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2596 depth, set->queue_depth);
2597
2598 return 0;
2599}
2600
ebe8bddb
OS
2601static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2602{
2603 if (set->ops->map_queues)
2604 return set->ops->map_queues(set);
2605 else
2606 return blk_mq_map_queues(set);
2607}
2608
a4391c64
JA
2609/*
2610 * Alloc a tag set to be associated with one or more request queues.
2611 * May fail with EINVAL for various error conditions. May adjust the
2612 * requested depth down, if if it too large. In that case, the set
2613 * value will be stored in set->queue_depth.
2614 */
24d2f903
CH
2615int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2616{
da695ba2
CH
2617 int ret;
2618
205fb5f5
BVA
2619 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2620
24d2f903
CH
2621 if (!set->nr_hw_queues)
2622 return -EINVAL;
a4391c64 2623 if (!set->queue_depth)
24d2f903
CH
2624 return -EINVAL;
2625 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2626 return -EINVAL;
2627
7d7e0f90 2628 if (!set->ops->queue_rq)
24d2f903
CH
2629 return -EINVAL;
2630
a4391c64
JA
2631 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2632 pr_info("blk-mq: reduced tag depth to %u\n",
2633 BLK_MQ_MAX_DEPTH);
2634 set->queue_depth = BLK_MQ_MAX_DEPTH;
2635 }
24d2f903 2636
6637fadf
SL
2637 /*
2638 * If a crashdump is active, then we are potentially in a very
2639 * memory constrained environment. Limit us to 1 queue and
2640 * 64 tags to prevent using too much memory.
2641 */
2642 if (is_kdump_kernel()) {
2643 set->nr_hw_queues = 1;
2644 set->queue_depth = min(64U, set->queue_depth);
2645 }
868f2f0b
KB
2646 /*
2647 * There is no use for more h/w queues than cpus.
2648 */
2649 if (set->nr_hw_queues > nr_cpu_ids)
2650 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2651
868f2f0b 2652 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2653 GFP_KERNEL, set->numa_node);
2654 if (!set->tags)
a5164405 2655 return -ENOMEM;
24d2f903 2656
da695ba2
CH
2657 ret = -ENOMEM;
2658 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2659 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2660 if (!set->mq_map)
2661 goto out_free_tags;
2662
ebe8bddb 2663 ret = blk_mq_update_queue_map(set);
da695ba2
CH
2664 if (ret)
2665 goto out_free_mq_map;
2666
2667 ret = blk_mq_alloc_rq_maps(set);
2668 if (ret)
bdd17e75 2669 goto out_free_mq_map;
24d2f903 2670
0d2602ca
JA
2671 mutex_init(&set->tag_list_lock);
2672 INIT_LIST_HEAD(&set->tag_list);
2673
24d2f903 2674 return 0;
bdd17e75
CH
2675
2676out_free_mq_map:
2677 kfree(set->mq_map);
2678 set->mq_map = NULL;
2679out_free_tags:
5676e7b6
RE
2680 kfree(set->tags);
2681 set->tags = NULL;
da695ba2 2682 return ret;
24d2f903
CH
2683}
2684EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2685
2686void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2687{
2688 int i;
2689
cc71a6f4
JA
2690 for (i = 0; i < nr_cpu_ids; i++)
2691 blk_mq_free_map_and_requests(set, i);
484b4061 2692
bdd17e75
CH
2693 kfree(set->mq_map);
2694 set->mq_map = NULL;
2695
981bd189 2696 kfree(set->tags);
5676e7b6 2697 set->tags = NULL;
24d2f903
CH
2698}
2699EXPORT_SYMBOL(blk_mq_free_tag_set);
2700
e3a2b3f9
JA
2701int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2702{
2703 struct blk_mq_tag_set *set = q->tag_set;
2704 struct blk_mq_hw_ctx *hctx;
2705 int i, ret;
2706
bd166ef1 2707 if (!set)
e3a2b3f9
JA
2708 return -EINVAL;
2709
70f36b60
JA
2710 blk_mq_freeze_queue(q);
2711 blk_mq_quiesce_queue(q);
2712
e3a2b3f9
JA
2713 ret = 0;
2714 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2715 if (!hctx->tags)
2716 continue;
bd166ef1
JA
2717 /*
2718 * If we're using an MQ scheduler, just update the scheduler
2719 * queue depth. This is similar to what the old code would do.
2720 */
70f36b60
JA
2721 if (!hctx->sched_tags) {
2722 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2723 min(nr, set->queue_depth),
2724 false);
2725 } else {
2726 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2727 nr, true);
2728 }
e3a2b3f9
JA
2729 if (ret)
2730 break;
2731 }
2732
2733 if (!ret)
2734 q->nr_requests = nr;
2735
70f36b60
JA
2736 blk_mq_unfreeze_queue(q);
2737 blk_mq_start_stopped_hw_queues(q, true);
2738
e3a2b3f9
JA
2739 return ret;
2740}
2741
868f2f0b
KB
2742void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2743{
2744 struct request_queue *q;
2745
2746 if (nr_hw_queues > nr_cpu_ids)
2747 nr_hw_queues = nr_cpu_ids;
2748 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2749 return;
2750
2751 list_for_each_entry(q, &set->tag_list, tag_set_list)
2752 blk_mq_freeze_queue(q);
2753
2754 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 2755 blk_mq_update_queue_map(set);
868f2f0b
KB
2756 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2757 blk_mq_realloc_hw_ctxs(set, q);
2758
f6f94300
JB
2759 /*
2760 * Manually set the make_request_fn as blk_queue_make_request
2761 * resets a lot of the queue settings.
2762 */
868f2f0b 2763 if (q->nr_hw_queues > 1)
f6f94300 2764 q->make_request_fn = blk_mq_make_request;
868f2f0b 2765 else
f6f94300 2766 q->make_request_fn = blk_sq_make_request;
868f2f0b
KB
2767
2768 blk_mq_queue_reinit(q, cpu_online_mask);
2769 }
2770
2771 list_for_each_entry(q, &set->tag_list, tag_set_list)
2772 blk_mq_unfreeze_queue(q);
2773}
2774EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2775
64f1c21e
JA
2776static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2777 struct blk_mq_hw_ctx *hctx,
2778 struct request *rq)
2779{
2780 struct blk_rq_stat stat[2];
2781 unsigned long ret = 0;
2782
2783 /*
2784 * If stats collection isn't on, don't sleep but turn it on for
2785 * future users
2786 */
2787 if (!blk_stat_enable(q))
2788 return 0;
2789
2790 /*
2791 * We don't have to do this once per IO, should optimize this
2792 * to just use the current window of stats until it changes
2793 */
2794 memset(&stat, 0, sizeof(stat));
2795 blk_hctx_stat_get(hctx, stat);
2796
2797 /*
2798 * As an optimistic guess, use half of the mean service time
2799 * for this type of request. We can (and should) make this smarter.
2800 * For instance, if the completion latencies are tight, we can
2801 * get closer than just half the mean. This is especially
2802 * important on devices where the completion latencies are longer
2803 * than ~10 usec.
2804 */
2805 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2806 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2807 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2808 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2809
2810 return ret;
2811}
2812
06426adf 2813static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2814 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2815 struct request *rq)
2816{
2817 struct hrtimer_sleeper hs;
2818 enum hrtimer_mode mode;
64f1c21e 2819 unsigned int nsecs;
06426adf
JA
2820 ktime_t kt;
2821
64f1c21e
JA
2822 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2823 return false;
2824
2825 /*
2826 * poll_nsec can be:
2827 *
2828 * -1: don't ever hybrid sleep
2829 * 0: use half of prev avg
2830 * >0: use this specific value
2831 */
2832 if (q->poll_nsec == -1)
2833 return false;
2834 else if (q->poll_nsec > 0)
2835 nsecs = q->poll_nsec;
2836 else
2837 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2838
2839 if (!nsecs)
06426adf
JA
2840 return false;
2841
2842 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2843
2844 /*
2845 * This will be replaced with the stats tracking code, using
2846 * 'avg_completion_time / 2' as the pre-sleep target.
2847 */
8b0e1953 2848 kt = nsecs;
06426adf
JA
2849
2850 mode = HRTIMER_MODE_REL;
2851 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2852 hrtimer_set_expires(&hs.timer, kt);
2853
2854 hrtimer_init_sleeper(&hs, current);
2855 do {
2856 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2857 break;
2858 set_current_state(TASK_UNINTERRUPTIBLE);
2859 hrtimer_start_expires(&hs.timer, mode);
2860 if (hs.task)
2861 io_schedule();
2862 hrtimer_cancel(&hs.timer);
2863 mode = HRTIMER_MODE_ABS;
2864 } while (hs.task && !signal_pending(current));
2865
2866 __set_current_state(TASK_RUNNING);
2867 destroy_hrtimer_on_stack(&hs.timer);
2868 return true;
2869}
2870
bbd7bb70
JA
2871static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2872{
2873 struct request_queue *q = hctx->queue;
2874 long state;
2875
06426adf
JA
2876 /*
2877 * If we sleep, have the caller restart the poll loop to reset
2878 * the state. Like for the other success return cases, the
2879 * caller is responsible for checking if the IO completed. If
2880 * the IO isn't complete, we'll get called again and will go
2881 * straight to the busy poll loop.
2882 */
64f1c21e 2883 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2884 return true;
2885
bbd7bb70
JA
2886 hctx->poll_considered++;
2887
2888 state = current->state;
2889 while (!need_resched()) {
2890 int ret;
2891
2892 hctx->poll_invoked++;
2893
2894 ret = q->mq_ops->poll(hctx, rq->tag);
2895 if (ret > 0) {
2896 hctx->poll_success++;
2897 set_current_state(TASK_RUNNING);
2898 return true;
2899 }
2900
2901 if (signal_pending_state(state, current))
2902 set_current_state(TASK_RUNNING);
2903
2904 if (current->state == TASK_RUNNING)
2905 return true;
2906 if (ret < 0)
2907 break;
2908 cpu_relax();
2909 }
2910
2911 return false;
2912}
2913
2914bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2915{
2916 struct blk_mq_hw_ctx *hctx;
2917 struct blk_plug *plug;
2918 struct request *rq;
2919
2920 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2921 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2922 return false;
2923
2924 plug = current->plug;
2925 if (plug)
2926 blk_flush_plug_list(plug, false);
2927
2928 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2929 if (!blk_qc_t_is_internal(cookie))
2930 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2931 else
2932 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2933
2934 return __blk_mq_poll(hctx, rq);
2935}
2936EXPORT_SYMBOL_GPL(blk_mq_poll);
2937
676141e4
JA
2938void blk_mq_disable_hotplug(void)
2939{
2940 mutex_lock(&all_q_mutex);
2941}
2942
2943void blk_mq_enable_hotplug(void)
2944{
2945 mutex_unlock(&all_q_mutex);
2946}
2947
320ae51f
JA
2948static int __init blk_mq_init(void)
2949{
9467f859
TG
2950 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2951 blk_mq_hctx_notify_dead);
320ae51f 2952
65d5291e
SAS
2953 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2954 blk_mq_queue_reinit_prepare,
2955 blk_mq_queue_reinit_dead);
320ae51f
JA
2956 return 0;
2957}
2958subsys_initcall(blk_mq_init);