]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq.c
block/sed-opal: fix spelling mistake: "Lifcycle" -> "Lifecycle"
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
105ab3d8 23#include <linux/sched/topology.h>
174cd4b1 24#include <linux/sched/signal.h>
320ae51f 25#include <linux/delay.h>
aedcd72f 26#include <linux/crash_dump.h>
88c7b2b7 27#include <linux/prefetch.h>
320ae51f
JA
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
cf43e6be 35#include "blk-stat.h"
87760e5e 36#include "blk-wbt.h"
bd166ef1 37#include "blk-mq-sched.h"
320ae51f
JA
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
34dbad5d
OS
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
320ae51f
JA
45/*
46 * Check if any of the ctx's have pending work in this hardware queue
47 */
50e1dab8 48bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 49{
bd166ef1
JA
50 return sbitmap_any_bit_set(&hctx->ctx_map) ||
51 !list_empty_careful(&hctx->dispatch) ||
52 blk_mq_sched_has_work(hctx);
1429d7c9
JA
53}
54
320ae51f
JA
55/*
56 * Mark this ctx as having pending work in this hardware queue
57 */
58static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59 struct blk_mq_ctx *ctx)
60{
88459642
OS
61 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
63}
64
65static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66 struct blk_mq_ctx *ctx)
67{
88459642 68 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
69}
70
1671d522 71void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 72{
4ecd4fef 73 int freeze_depth;
cddd5d17 74
4ecd4fef
CH
75 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76 if (freeze_depth == 1) {
3ef28e83 77 percpu_ref_kill(&q->q_usage_counter);
b94ec296 78 blk_mq_run_hw_queues(q, false);
cddd5d17 79 }
f3af020b 80}
1671d522 81EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 82
6bae363e 83void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 84{
3ef28e83 85 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 86}
6bae363e 87EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 88
f91328c4
KB
89int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90 unsigned long timeout)
91{
92 return wait_event_timeout(q->mq_freeze_wq,
93 percpu_ref_is_zero(&q->q_usage_counter),
94 timeout);
95}
96EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 97
f3af020b
TH
98/*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
3ef28e83 102void blk_freeze_queue(struct request_queue *q)
f3af020b 103{
3ef28e83
DW
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
1671d522 111 blk_freeze_queue_start(q);
f3af020b
TH
112 blk_mq_freeze_queue_wait(q);
113}
3ef28e83
DW
114
115void blk_mq_freeze_queue(struct request_queue *q)
116{
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122}
c761d96b 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 124
b4c6a028 125void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 126{
4ecd4fef 127 int freeze_depth;
320ae51f 128
4ecd4fef
CH
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
3ef28e83 132 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 133 wake_up_all(&q->mq_freeze_wq);
add703fd 134 }
320ae51f 135}
b4c6a028 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 137
6a83e74d
BVA
138/**
139 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140 * @q: request queue.
141 *
142 * Note: this function does not prevent that the struct request end_io()
143 * callback function is invoked. Additionally, it is not prevented that
144 * new queue_rq() calls occur unless the queue has been stopped first.
145 */
146void blk_mq_quiesce_queue(struct request_queue *q)
147{
148 struct blk_mq_hw_ctx *hctx;
149 unsigned int i;
150 bool rcu = false;
151
152 blk_mq_stop_hw_queues(q);
153
154 queue_for_each_hw_ctx(q, hctx, i) {
155 if (hctx->flags & BLK_MQ_F_BLOCKING)
156 synchronize_srcu(&hctx->queue_rq_srcu);
157 else
158 rcu = true;
159 }
160 if (rcu)
161 synchronize_rcu();
162}
163EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
aed3ea94
JA
165void blk_mq_wake_waiters(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169
170 queue_for_each_hw_ctx(q, hctx, i)
171 if (blk_mq_hw_queue_mapped(hctx))
172 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
173
174 /*
175 * If we are called because the queue has now been marked as
176 * dying, we need to ensure that processes currently waiting on
177 * the queue are notified as well.
178 */
179 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
180}
181
320ae51f
JA
182bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183{
184 return blk_mq_has_free_tags(hctx->tags);
185}
186EXPORT_SYMBOL(blk_mq_can_queue);
187
2c3ad667
JA
188void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189 struct request *rq, unsigned int op)
320ae51f 190{
af76e555
CH
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
320ae51f 194 rq->mq_ctx = ctx;
ef295ecf 195 rq->cmd_flags = op;
e8064021
CH
196 if (blk_queue_io_stat(q))
197 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
198 /* do not touch atomic flags, it needs atomic ops against the timer */
199 rq->cpu = -1;
af76e555
CH
200 INIT_HLIST_NODE(&rq->hash);
201 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
202 rq->rq_disk = NULL;
203 rq->part = NULL;
3ee32372 204 rq->start_time = jiffies;
af76e555
CH
205#ifdef CONFIG_BLK_CGROUP
206 rq->rl = NULL;
0fec08b4 207 set_start_time_ns(rq);
af76e555
CH
208 rq->io_start_time_ns = 0;
209#endif
210 rq->nr_phys_segments = 0;
211#if defined(CONFIG_BLK_DEV_INTEGRITY)
212 rq->nr_integrity_segments = 0;
213#endif
af76e555
CH
214 rq->special = NULL;
215 /* tag was already set */
216 rq->errors = 0;
af76e555 217 rq->extra_len = 0;
af76e555 218
af76e555 219 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
220 rq->timeout = 0;
221
af76e555
CH
222 rq->end_io = NULL;
223 rq->end_io_data = NULL;
224 rq->next_rq = NULL;
225
ef295ecf 226 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 227}
2c3ad667 228EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 229
2c3ad667
JA
230struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231 unsigned int op)
5dee8577
CH
232{
233 struct request *rq;
234 unsigned int tag;
235
cb96a42c 236 tag = blk_mq_get_tag(data);
5dee8577 237 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
238 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240 rq = tags->static_rqs[tag];
5dee8577 241
bd166ef1
JA
242 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243 rq->tag = -1;
244 rq->internal_tag = tag;
245 } else {
200e86b3
JA
246 if (blk_mq_tag_busy(data->hctx)) {
247 rq->rq_flags = RQF_MQ_INFLIGHT;
248 atomic_inc(&data->hctx->nr_active);
249 }
bd166ef1
JA
250 rq->tag = tag;
251 rq->internal_tag = -1;
562bef42 252 data->hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
253 }
254
ef295ecf 255 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
256 return rq;
257 }
258
259 return NULL;
260}
2c3ad667 261EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 262
6f3b0e8b
CH
263struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264 unsigned int flags)
320ae51f 265{
5a797e00 266 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 267 struct request *rq;
a492f075 268 int ret;
320ae51f 269
6f3b0e8b 270 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
271 if (ret)
272 return ERR_PTR(ret);
320ae51f 273
bd166ef1 274 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 275
bd166ef1
JA
276 blk_mq_put_ctx(alloc_data.ctx);
277 blk_queue_exit(q);
278
279 if (!rq)
a492f075 280 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
281
282 rq->__data_len = 0;
283 rq->__sector = (sector_t) -1;
284 rq->bio = rq->biotail = NULL;
320ae51f
JA
285 return rq;
286}
4bb659b1 287EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 288
1f5bd336
ML
289struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290 unsigned int flags, unsigned int hctx_idx)
291{
6d2809d5 292 struct blk_mq_alloc_data alloc_data = { .flags = flags };
1f5bd336 293 struct request *rq;
6d2809d5 294 unsigned int cpu;
1f5bd336
ML
295 int ret;
296
297 /*
298 * If the tag allocator sleeps we could get an allocation for a
299 * different hardware context. No need to complicate the low level
300 * allocator for this for the rare use case of a command tied to
301 * a specific queue.
302 */
303 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304 return ERR_PTR(-EINVAL);
305
306 if (hctx_idx >= q->nr_hw_queues)
307 return ERR_PTR(-EIO);
308
309 ret = blk_queue_enter(q, true);
310 if (ret)
311 return ERR_PTR(ret);
312
c8712c6a
CH
313 /*
314 * Check if the hardware context is actually mapped to anything.
315 * If not tell the caller that it should skip this queue.
316 */
6d2809d5
OS
317 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319 blk_queue_exit(q);
320 return ERR_PTR(-EXDEV);
c8712c6a 321 }
6d2809d5
OS
322 cpu = cpumask_first(alloc_data.hctx->cpumask);
323 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 324
6d2809d5 325 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
c8712c6a 326
c8712c6a 327 blk_queue_exit(q);
6d2809d5
OS
328
329 if (!rq)
330 return ERR_PTR(-EWOULDBLOCK);
331
332 return rq;
1f5bd336
ML
333}
334EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
335
bd166ef1
JA
336void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
337 struct request *rq)
320ae51f 338{
bd166ef1 339 const int sched_tag = rq->internal_tag;
320ae51f
JA
340 struct request_queue *q = rq->q;
341
e8064021 342 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 343 atomic_dec(&hctx->nr_active);
87760e5e
JA
344
345 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 346 rq->rq_flags = 0;
0d2602ca 347
af76e555 348 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 349 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
350 if (rq->tag != -1)
351 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
352 if (sched_tag != -1)
353 blk_mq_sched_completed_request(hctx, rq);
50e1dab8 354 blk_mq_sched_restart_queues(hctx);
3ef28e83 355 blk_queue_exit(q);
320ae51f
JA
356}
357
bd166ef1 358static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 359 struct request *rq)
320ae51f
JA
360{
361 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
362
363 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
364 __blk_mq_finish_request(hctx, ctx, rq);
365}
366
367void blk_mq_finish_request(struct request *rq)
368{
369 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 370}
7c7f2f2b
JA
371
372void blk_mq_free_request(struct request *rq)
373{
bd166ef1 374 blk_mq_sched_put_request(rq);
320ae51f 375}
1a3b595a 376EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 377
c8a446ad 378inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 379{
0d11e6ac
ML
380 blk_account_io_done(rq);
381
91b63639 382 if (rq->end_io) {
87760e5e 383 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 384 rq->end_io(rq, error);
91b63639
CH
385 } else {
386 if (unlikely(blk_bidi_rq(rq)))
387 blk_mq_free_request(rq->next_rq);
320ae51f 388 blk_mq_free_request(rq);
91b63639 389 }
320ae51f 390}
c8a446ad 391EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 392
c8a446ad 393void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
394{
395 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
396 BUG();
c8a446ad 397 __blk_mq_end_request(rq, error);
63151a44 398}
c8a446ad 399EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 400
30a91cb4 401static void __blk_mq_complete_request_remote(void *data)
320ae51f 402{
3d6efbf6 403 struct request *rq = data;
320ae51f 404
30a91cb4 405 rq->q->softirq_done_fn(rq);
320ae51f 406}
320ae51f 407
ed851860 408static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
409{
410 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 411 bool shared = false;
320ae51f
JA
412 int cpu;
413
38535201 414 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
415 rq->q->softirq_done_fn(rq);
416 return;
417 }
320ae51f
JA
418
419 cpu = get_cpu();
38535201
CH
420 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
421 shared = cpus_share_cache(cpu, ctx->cpu);
422
423 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 424 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
425 rq->csd.info = rq;
426 rq->csd.flags = 0;
c46fff2a 427 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 428 } else {
30a91cb4 429 rq->q->softirq_done_fn(rq);
3d6efbf6 430 }
320ae51f
JA
431 put_cpu();
432}
30a91cb4 433
cf43e6be
JA
434static void blk_mq_stat_add(struct request *rq)
435{
436 if (rq->rq_flags & RQF_STATS) {
34dbad5d
OS
437 blk_mq_poll_stats_start(rq->q);
438 blk_stat_add(rq);
cf43e6be
JA
439 }
440}
441
1fa8cc52 442static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
443{
444 struct request_queue *q = rq->q;
445
cf43e6be
JA
446 blk_mq_stat_add(rq);
447
ed851860 448 if (!q->softirq_done_fn)
c8a446ad 449 blk_mq_end_request(rq, rq->errors);
ed851860
JA
450 else
451 blk_mq_ipi_complete_request(rq);
452}
453
30a91cb4
CH
454/**
455 * blk_mq_complete_request - end I/O on a request
456 * @rq: the request being processed
457 *
458 * Description:
459 * Ends all I/O on a request. It does not handle partial completions.
460 * The actual completion happens out-of-order, through a IPI handler.
461 **/
f4829a9b 462void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 463{
95f09684
JA
464 struct request_queue *q = rq->q;
465
466 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 467 return;
f4829a9b
CH
468 if (!blk_mark_rq_complete(rq)) {
469 rq->errors = error;
ed851860 470 __blk_mq_complete_request(rq);
f4829a9b 471 }
30a91cb4
CH
472}
473EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 474
973c0191
KB
475int blk_mq_request_started(struct request *rq)
476{
477 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
478}
479EXPORT_SYMBOL_GPL(blk_mq_request_started);
480
e2490073 481void blk_mq_start_request(struct request *rq)
320ae51f
JA
482{
483 struct request_queue *q = rq->q;
484
bd166ef1
JA
485 blk_mq_sched_started_request(rq);
486
320ae51f
JA
487 trace_block_rq_issue(q, rq);
488
cf43e6be 489 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
88eeca49 490 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
cf43e6be 491 rq->rq_flags |= RQF_STATS;
87760e5e 492 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
493 }
494
2b8393b4 495 blk_add_timer(rq);
87ee7b11 496
538b7534
JA
497 /*
498 * Ensure that ->deadline is visible before set the started
499 * flag and clear the completed flag.
500 */
501 smp_mb__before_atomic();
502
87ee7b11
JA
503 /*
504 * Mark us as started and clear complete. Complete might have been
505 * set if requeue raced with timeout, which then marked it as
506 * complete. So be sure to clear complete again when we start
507 * the request, otherwise we'll ignore the completion event.
508 */
4b570521
JA
509 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
510 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
511 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
512 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
513
514 if (q->dma_drain_size && blk_rq_bytes(rq)) {
515 /*
516 * Make sure space for the drain appears. We know we can do
517 * this because max_hw_segments has been adjusted to be one
518 * fewer than the device can handle.
519 */
520 rq->nr_phys_segments++;
521 }
320ae51f 522}
e2490073 523EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 524
d9d149a3
ML
525/*
526 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
48b99c9d 527 * flag isn't set yet, so there may be race with timeout handler,
d9d149a3
ML
528 * but given rq->deadline is just set in .queue_rq() under
529 * this situation, the race won't be possible in reality because
530 * rq->timeout should be set as big enough to cover the window
531 * between blk_mq_start_request() called from .queue_rq() and
532 * clearing REQ_ATOM_STARTED here.
533 */
ed0791b2 534static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
535{
536 struct request_queue *q = rq->q;
537
538 trace_block_rq_requeue(q, rq);
87760e5e 539 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 540 blk_mq_sched_requeue_request(rq);
49f5baa5 541
e2490073
CH
542 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
543 if (q->dma_drain_size && blk_rq_bytes(rq))
544 rq->nr_phys_segments--;
545 }
320ae51f
JA
546}
547
2b053aca 548void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 549{
ed0791b2 550 __blk_mq_requeue_request(rq);
ed0791b2 551
ed0791b2 552 BUG_ON(blk_queued_rq(rq));
2b053aca 553 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
554}
555EXPORT_SYMBOL(blk_mq_requeue_request);
556
6fca6a61
CH
557static void blk_mq_requeue_work(struct work_struct *work)
558{
559 struct request_queue *q =
2849450a 560 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
561 LIST_HEAD(rq_list);
562 struct request *rq, *next;
563 unsigned long flags;
564
565 spin_lock_irqsave(&q->requeue_lock, flags);
566 list_splice_init(&q->requeue_list, &rq_list);
567 spin_unlock_irqrestore(&q->requeue_lock, flags);
568
569 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 570 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
571 continue;
572
e8064021 573 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 574 list_del_init(&rq->queuelist);
bd6737f1 575 blk_mq_sched_insert_request(rq, true, false, false, true);
6fca6a61
CH
576 }
577
578 while (!list_empty(&rq_list)) {
579 rq = list_entry(rq_list.next, struct request, queuelist);
580 list_del_init(&rq->queuelist);
bd6737f1 581 blk_mq_sched_insert_request(rq, false, false, false, true);
6fca6a61
CH
582 }
583
52d7f1b5 584 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
585}
586
2b053aca
BVA
587void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
588 bool kick_requeue_list)
6fca6a61
CH
589{
590 struct request_queue *q = rq->q;
591 unsigned long flags;
592
593 /*
594 * We abuse this flag that is otherwise used by the I/O scheduler to
595 * request head insertation from the workqueue.
596 */
e8064021 597 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
598
599 spin_lock_irqsave(&q->requeue_lock, flags);
600 if (at_head) {
e8064021 601 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
602 list_add(&rq->queuelist, &q->requeue_list);
603 } else {
604 list_add_tail(&rq->queuelist, &q->requeue_list);
605 }
606 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
607
608 if (kick_requeue_list)
609 blk_mq_kick_requeue_list(q);
6fca6a61
CH
610}
611EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
612
613void blk_mq_kick_requeue_list(struct request_queue *q)
614{
2849450a 615 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
616}
617EXPORT_SYMBOL(blk_mq_kick_requeue_list);
618
2849450a
MS
619void blk_mq_delay_kick_requeue_list(struct request_queue *q,
620 unsigned long msecs)
621{
622 kblockd_schedule_delayed_work(&q->requeue_work,
623 msecs_to_jiffies(msecs));
624}
625EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
626
1885b24d
JA
627void blk_mq_abort_requeue_list(struct request_queue *q)
628{
629 unsigned long flags;
630 LIST_HEAD(rq_list);
631
632 spin_lock_irqsave(&q->requeue_lock, flags);
633 list_splice_init(&q->requeue_list, &rq_list);
634 spin_unlock_irqrestore(&q->requeue_lock, flags);
635
636 while (!list_empty(&rq_list)) {
637 struct request *rq;
638
639 rq = list_first_entry(&rq_list, struct request, queuelist);
640 list_del_init(&rq->queuelist);
641 rq->errors = -EIO;
642 blk_mq_end_request(rq, rq->errors);
643 }
644}
645EXPORT_SYMBOL(blk_mq_abort_requeue_list);
646
0e62f51f
JA
647struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
648{
88c7b2b7
JA
649 if (tag < tags->nr_tags) {
650 prefetch(tags->rqs[tag]);
4ee86bab 651 return tags->rqs[tag];
88c7b2b7 652 }
4ee86bab
HR
653
654 return NULL;
24d2f903
CH
655}
656EXPORT_SYMBOL(blk_mq_tag_to_rq);
657
320ae51f 658struct blk_mq_timeout_data {
46f92d42
CH
659 unsigned long next;
660 unsigned int next_set;
320ae51f
JA
661};
662
90415837 663void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 664{
f8a5b122 665 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 666 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
667
668 /*
669 * We know that complete is set at this point. If STARTED isn't set
670 * anymore, then the request isn't active and the "timeout" should
671 * just be ignored. This can happen due to the bitflag ordering.
672 * Timeout first checks if STARTED is set, and if it is, assumes
673 * the request is active. But if we race with completion, then
48b99c9d 674 * both flags will get cleared. So check here again, and ignore
87ee7b11
JA
675 * a timeout event with a request that isn't active.
676 */
46f92d42
CH
677 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
678 return;
87ee7b11 679
46f92d42 680 if (ops->timeout)
0152fb6b 681 ret = ops->timeout(req, reserved);
46f92d42
CH
682
683 switch (ret) {
684 case BLK_EH_HANDLED:
685 __blk_mq_complete_request(req);
686 break;
687 case BLK_EH_RESET_TIMER:
688 blk_add_timer(req);
689 blk_clear_rq_complete(req);
690 break;
691 case BLK_EH_NOT_HANDLED:
692 break;
693 default:
694 printk(KERN_ERR "block: bad eh return: %d\n", ret);
695 break;
696 }
87ee7b11 697}
5b3f25fc 698
81481eb4
CH
699static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
700 struct request *rq, void *priv, bool reserved)
701{
702 struct blk_mq_timeout_data *data = priv;
87ee7b11 703
a4ef8e56 704 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
46f92d42 705 return;
87ee7b11 706
d9d149a3
ML
707 /*
708 * The rq being checked may have been freed and reallocated
709 * out already here, we avoid this race by checking rq->deadline
710 * and REQ_ATOM_COMPLETE flag together:
711 *
712 * - if rq->deadline is observed as new value because of
713 * reusing, the rq won't be timed out because of timing.
714 * - if rq->deadline is observed as previous value,
715 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
716 * because we put a barrier between setting rq->deadline
717 * and clearing the flag in blk_mq_start_request(), so
718 * this rq won't be timed out too.
719 */
46f92d42
CH
720 if (time_after_eq(jiffies, rq->deadline)) {
721 if (!blk_mark_rq_complete(rq))
0152fb6b 722 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
723 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
724 data->next = rq->deadline;
725 data->next_set = 1;
726 }
87ee7b11
JA
727}
728
287922eb 729static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 730{
287922eb
CH
731 struct request_queue *q =
732 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
733 struct blk_mq_timeout_data data = {
734 .next = 0,
735 .next_set = 0,
736 };
81481eb4 737 int i;
320ae51f 738
71f79fb3
GKB
739 /* A deadlock might occur if a request is stuck requiring a
740 * timeout at the same time a queue freeze is waiting
741 * completion, since the timeout code would not be able to
742 * acquire the queue reference here.
743 *
744 * That's why we don't use blk_queue_enter here; instead, we use
745 * percpu_ref_tryget directly, because we need to be able to
746 * obtain a reference even in the short window between the queue
747 * starting to freeze, by dropping the first reference in
1671d522 748 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
749 * consumed, marked by the instant q_usage_counter reaches
750 * zero.
751 */
752 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
753 return;
754
0bf6cd5b 755 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 756
81481eb4
CH
757 if (data.next_set) {
758 data.next = blk_rq_timeout(round_jiffies_up(data.next));
759 mod_timer(&q->timeout, data.next);
0d2602ca 760 } else {
0bf6cd5b
CH
761 struct blk_mq_hw_ctx *hctx;
762
f054b56c
ML
763 queue_for_each_hw_ctx(q, hctx, i) {
764 /* the hctx may be unmapped, so check it here */
765 if (blk_mq_hw_queue_mapped(hctx))
766 blk_mq_tag_idle(hctx);
767 }
0d2602ca 768 }
287922eb 769 blk_queue_exit(q);
320ae51f
JA
770}
771
772/*
773 * Reverse check our software queue for entries that we could potentially
774 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
775 * too much time checking for merges.
776 */
777static bool blk_mq_attempt_merge(struct request_queue *q,
778 struct blk_mq_ctx *ctx, struct bio *bio)
779{
780 struct request *rq;
781 int checked = 8;
782
783 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
34fe7c05 784 bool merged = false;
320ae51f
JA
785
786 if (!checked--)
787 break;
788
789 if (!blk_rq_merge_ok(rq, bio))
790 continue;
791
34fe7c05
CH
792 switch (blk_try_merge(rq, bio)) {
793 case ELEVATOR_BACK_MERGE:
794 if (blk_mq_sched_allow_merge(q, rq, bio))
795 merged = bio_attempt_back_merge(q, rq, bio);
bd166ef1 796 break;
34fe7c05
CH
797 case ELEVATOR_FRONT_MERGE:
798 if (blk_mq_sched_allow_merge(q, rq, bio))
799 merged = bio_attempt_front_merge(q, rq, bio);
320ae51f 800 break;
1e739730
CH
801 case ELEVATOR_DISCARD_MERGE:
802 merged = bio_attempt_discard_merge(q, rq, bio);
320ae51f 803 break;
34fe7c05
CH
804 default:
805 continue;
320ae51f 806 }
34fe7c05
CH
807
808 if (merged)
809 ctx->rq_merged++;
810 return merged;
320ae51f
JA
811 }
812
813 return false;
814}
815
88459642
OS
816struct flush_busy_ctx_data {
817 struct blk_mq_hw_ctx *hctx;
818 struct list_head *list;
819};
820
821static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
822{
823 struct flush_busy_ctx_data *flush_data = data;
824 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
825 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
826
827 sbitmap_clear_bit(sb, bitnr);
828 spin_lock(&ctx->lock);
829 list_splice_tail_init(&ctx->rq_list, flush_data->list);
830 spin_unlock(&ctx->lock);
831 return true;
832}
833
1429d7c9
JA
834/*
835 * Process software queues that have been marked busy, splicing them
836 * to the for-dispatch
837 */
2c3ad667 838void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 839{
88459642
OS
840 struct flush_busy_ctx_data data = {
841 .hctx = hctx,
842 .list = list,
843 };
1429d7c9 844
88459642 845 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 846}
2c3ad667 847EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 848
703fd1c0
JA
849static inline unsigned int queued_to_index(unsigned int queued)
850{
851 if (!queued)
852 return 0;
1429d7c9 853
703fd1c0 854 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
855}
856
bd6737f1
JA
857bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
858 bool wait)
bd166ef1
JA
859{
860 struct blk_mq_alloc_data data = {
861 .q = rq->q,
bd166ef1
JA
862 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
863 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
864 };
865
bd166ef1
JA
866 if (rq->tag != -1) {
867done:
868 if (hctx)
869 *hctx = data.hctx;
870 return true;
871 }
872
415b806d
SG
873 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
874 data.flags |= BLK_MQ_REQ_RESERVED;
875
bd166ef1
JA
876 rq->tag = blk_mq_get_tag(&data);
877 if (rq->tag >= 0) {
200e86b3
JA
878 if (blk_mq_tag_busy(data.hctx)) {
879 rq->rq_flags |= RQF_MQ_INFLIGHT;
880 atomic_inc(&data.hctx->nr_active);
881 }
bd166ef1
JA
882 data.hctx->tags->rqs[rq->tag] = rq;
883 goto done;
884 }
885
886 return false;
887}
888
113285b4
JA
889static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
890 struct request *rq)
99cf1dc5 891{
99cf1dc5
JA
892 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
893 rq->tag = -1;
894
895 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
896 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
897 atomic_dec(&hctx->nr_active);
898 }
899}
900
113285b4
JA
901static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
902 struct request *rq)
903{
904 if (rq->tag == -1 || rq->internal_tag == -1)
905 return;
906
907 __blk_mq_put_driver_tag(hctx, rq);
908}
909
910static void blk_mq_put_driver_tag(struct request *rq)
911{
912 struct blk_mq_hw_ctx *hctx;
913
914 if (rq->tag == -1 || rq->internal_tag == -1)
915 return;
916
917 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
918 __blk_mq_put_driver_tag(hctx, rq);
919}
920
bd166ef1
JA
921/*
922 * If we fail getting a driver tag because all the driver tags are already
923 * assigned and on the dispatch list, BUT the first entry does not have a
924 * tag, then we could deadlock. For that case, move entries with assigned
925 * driver tags to the front, leaving the set of tagged requests in the
926 * same order, and the untagged set in the same order.
927 */
928static bool reorder_tags_to_front(struct list_head *list)
929{
930 struct request *rq, *tmp, *first = NULL;
931
932 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
933 if (rq == first)
934 break;
935 if (rq->tag != -1) {
936 list_move(&rq->queuelist, list);
937 if (!first)
938 first = rq;
939 }
940 }
941
942 return first != NULL;
943}
944
da55f2cc
OS
945static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
946 void *key)
947{
948 struct blk_mq_hw_ctx *hctx;
949
950 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
951
952 list_del(&wait->task_list);
953 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
954 blk_mq_run_hw_queue(hctx, true);
955 return 1;
956}
957
958static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
959{
960 struct sbq_wait_state *ws;
961
962 /*
963 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
964 * The thread which wins the race to grab this bit adds the hardware
965 * queue to the wait queue.
966 */
967 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
968 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
969 return false;
970
971 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
972 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
973
974 /*
975 * As soon as this returns, it's no longer safe to fiddle with
976 * hctx->dispatch_wait, since a completion can wake up the wait queue
977 * and unlock the bit.
978 */
979 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
980 return true;
981}
982
f04c3df3 983bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
984{
985 struct request_queue *q = hctx->queue;
320ae51f 986 struct request *rq;
74c45052
JA
987 LIST_HEAD(driver_list);
988 struct list_head *dptr;
3e8a7069 989 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 990
74c45052
JA
991 /*
992 * Start off with dptr being NULL, so we start the first request
993 * immediately, even if we have more pending.
994 */
995 dptr = NULL;
996
320ae51f
JA
997 /*
998 * Now process all the entries, sending them to the driver.
999 */
3e8a7069 1000 errors = queued = 0;
f04c3df3 1001 while (!list_empty(list)) {
74c45052 1002 struct blk_mq_queue_data bd;
320ae51f 1003
f04c3df3 1004 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
1005 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1006 if (!queued && reorder_tags_to_front(list))
1007 continue;
3c782d67
JA
1008
1009 /*
da55f2cc
OS
1010 * The initial allocation attempt failed, so we need to
1011 * rerun the hardware queue when a tag is freed.
3c782d67 1012 */
da55f2cc
OS
1013 if (blk_mq_dispatch_wait_add(hctx)) {
1014 /*
1015 * It's possible that a tag was freed in the
1016 * window between the allocation failure and
1017 * adding the hardware queue to the wait queue.
1018 */
1019 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1020 break;
1021 } else {
3c782d67 1022 break;
da55f2cc 1023 }
bd166ef1 1024 }
da55f2cc 1025
320ae51f 1026 list_del_init(&rq->queuelist);
320ae51f 1027
74c45052
JA
1028 bd.rq = rq;
1029 bd.list = dptr;
113285b4
JA
1030
1031 /*
1032 * Flag last if we have no more requests, or if we have more
1033 * but can't assign a driver tag to it.
1034 */
1035 if (list_empty(list))
1036 bd.last = true;
1037 else {
1038 struct request *nxt;
1039
1040 nxt = list_first_entry(list, struct request, queuelist);
1041 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1042 }
74c45052
JA
1043
1044 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
1045 switch (ret) {
1046 case BLK_MQ_RQ_QUEUE_OK:
1047 queued++;
52b9c330 1048 break;
320ae51f 1049 case BLK_MQ_RQ_QUEUE_BUSY:
113285b4 1050 blk_mq_put_driver_tag_hctx(hctx, rq);
f04c3df3 1051 list_add(&rq->queuelist, list);
ed0791b2 1052 __blk_mq_requeue_request(rq);
320ae51f
JA
1053 break;
1054 default:
1055 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 1056 case BLK_MQ_RQ_QUEUE_ERROR:
3e8a7069 1057 errors++;
1e93b8c2 1058 rq->errors = -EIO;
c8a446ad 1059 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
1060 break;
1061 }
1062
1063 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1064 break;
74c45052
JA
1065
1066 /*
1067 * We've done the first request. If we have more than 1
1068 * left in the list, set dptr to defer issue.
1069 */
f04c3df3 1070 if (!dptr && list->next != list->prev)
74c45052 1071 dptr = &driver_list;
320ae51f
JA
1072 }
1073
703fd1c0 1074 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1075
1076 /*
1077 * Any items that need requeuing? Stuff them into hctx->dispatch,
1078 * that is where we will continue on next queue run.
1079 */
f04c3df3 1080 if (!list_empty(list)) {
113285b4
JA
1081 /*
1082 * If we got a driver tag for the next request already,
1083 * free it again.
1084 */
1085 rq = list_first_entry(list, struct request, queuelist);
1086 blk_mq_put_driver_tag(rq);
1087
320ae51f 1088 spin_lock(&hctx->lock);
c13660a0 1089 list_splice_init(list, &hctx->dispatch);
320ae51f 1090 spin_unlock(&hctx->lock);
f04c3df3 1091
9ba52e58
SL
1092 /*
1093 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1094 * it's possible the queue is stopped and restarted again
1095 * before this. Queue restart will dispatch requests. And since
1096 * requests in rq_list aren't added into hctx->dispatch yet,
1097 * the requests in rq_list might get lost.
1098 *
1099 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1 1100 *
da55f2cc
OS
1101 * If RESTART or TAG_WAITING is set, then let completion restart
1102 * the queue instead of potentially looping here.
bd166ef1 1103 */
da55f2cc
OS
1104 if (!blk_mq_sched_needs_restart(hctx) &&
1105 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
bd166ef1 1106 blk_mq_run_hw_queue(hctx, true);
320ae51f 1107 }
f04c3df3 1108
3e8a7069 1109 return (queued + errors) != 0;
f04c3df3
JA
1110}
1111
6a83e74d
BVA
1112static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1113{
1114 int srcu_idx;
1115
1116 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1117 cpu_online(hctx->next_cpu));
1118
1119 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1120 rcu_read_lock();
bd166ef1 1121 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1122 rcu_read_unlock();
1123 } else {
1124 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1125 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1126 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1127 }
1128}
1129
506e931f
JA
1130/*
1131 * It'd be great if the workqueue API had a way to pass
1132 * in a mask and had some smarts for more clever placement.
1133 * For now we just round-robin here, switching for every
1134 * BLK_MQ_CPU_WORK_BATCH queued items.
1135 */
1136static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1137{
b657d7e6
CH
1138 if (hctx->queue->nr_hw_queues == 1)
1139 return WORK_CPU_UNBOUND;
506e931f
JA
1140
1141 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1142 int next_cpu;
506e931f
JA
1143
1144 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1145 if (next_cpu >= nr_cpu_ids)
1146 next_cpu = cpumask_first(hctx->cpumask);
1147
1148 hctx->next_cpu = next_cpu;
1149 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1150 }
1151
b657d7e6 1152 return hctx->next_cpu;
506e931f
JA
1153}
1154
320ae51f
JA
1155void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1156{
5d1b25c1
BVA
1157 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1158 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1159 return;
1160
1b792f2f 1161 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1162 int cpu = get_cpu();
1163 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1164 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1165 put_cpu();
398205b8
PB
1166 return;
1167 }
e4043dcf 1168
2a90d4aa 1169 put_cpu();
e4043dcf 1170 }
398205b8 1171
27489a3c 1172 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1173}
1174
b94ec296 1175void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1176{
1177 struct blk_mq_hw_ctx *hctx;
1178 int i;
1179
1180 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1181 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1182 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1183 continue;
1184
b94ec296 1185 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1186 }
1187}
b94ec296 1188EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1189
fd001443
BVA
1190/**
1191 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1192 * @q: request queue.
1193 *
1194 * The caller is responsible for serializing this function against
1195 * blk_mq_{start,stop}_hw_queue().
1196 */
1197bool blk_mq_queue_stopped(struct request_queue *q)
1198{
1199 struct blk_mq_hw_ctx *hctx;
1200 int i;
1201
1202 queue_for_each_hw_ctx(q, hctx, i)
1203 if (blk_mq_hctx_stopped(hctx))
1204 return true;
1205
1206 return false;
1207}
1208EXPORT_SYMBOL(blk_mq_queue_stopped);
1209
320ae51f
JA
1210void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1211{
27489a3c 1212 cancel_work(&hctx->run_work);
70f4db63 1213 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1214 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1215}
1216EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1217
280d45f6
CH
1218void blk_mq_stop_hw_queues(struct request_queue *q)
1219{
1220 struct blk_mq_hw_ctx *hctx;
1221 int i;
1222
1223 queue_for_each_hw_ctx(q, hctx, i)
1224 blk_mq_stop_hw_queue(hctx);
1225}
1226EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1227
320ae51f
JA
1228void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1229{
1230 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1231
0ffbce80 1232 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1233}
1234EXPORT_SYMBOL(blk_mq_start_hw_queue);
1235
2f268556
CH
1236void blk_mq_start_hw_queues(struct request_queue *q)
1237{
1238 struct blk_mq_hw_ctx *hctx;
1239 int i;
1240
1241 queue_for_each_hw_ctx(q, hctx, i)
1242 blk_mq_start_hw_queue(hctx);
1243}
1244EXPORT_SYMBOL(blk_mq_start_hw_queues);
1245
ae911c5e
JA
1246void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1247{
1248 if (!blk_mq_hctx_stopped(hctx))
1249 return;
1250
1251 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1252 blk_mq_run_hw_queue(hctx, async);
1253}
1254EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1255
1b4a3258 1256void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1257{
1258 struct blk_mq_hw_ctx *hctx;
1259 int i;
1260
ae911c5e
JA
1261 queue_for_each_hw_ctx(q, hctx, i)
1262 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1263}
1264EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1265
70f4db63 1266static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1267{
1268 struct blk_mq_hw_ctx *hctx;
1269
27489a3c 1270 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1271
320ae51f
JA
1272 __blk_mq_run_hw_queue(hctx);
1273}
1274
70f4db63
CH
1275static void blk_mq_delay_work_fn(struct work_struct *work)
1276{
1277 struct blk_mq_hw_ctx *hctx;
1278
1279 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1280
1281 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1282 __blk_mq_run_hw_queue(hctx);
1283}
1284
1285void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1286{
19c66e59
ML
1287 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1288 return;
70f4db63 1289
7e79dadc 1290 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1291 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1292 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1293}
1294EXPORT_SYMBOL(blk_mq_delay_queue);
1295
cfd0c552 1296static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1297 struct request *rq,
1298 bool at_head)
320ae51f 1299{
e57690fe
JA
1300 struct blk_mq_ctx *ctx = rq->mq_ctx;
1301
01b983c9
JA
1302 trace_block_rq_insert(hctx->queue, rq);
1303
72a0a36e
CH
1304 if (at_head)
1305 list_add(&rq->queuelist, &ctx->rq_list);
1306 else
1307 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1308}
4bb659b1 1309
2c3ad667
JA
1310void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1311 bool at_head)
cfd0c552
ML
1312{
1313 struct blk_mq_ctx *ctx = rq->mq_ctx;
1314
e57690fe 1315 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1316 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1317}
1318
bd166ef1
JA
1319void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1320 struct list_head *list)
320ae51f
JA
1321
1322{
320ae51f
JA
1323 /*
1324 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1325 * offline now
1326 */
1327 spin_lock(&ctx->lock);
1328 while (!list_empty(list)) {
1329 struct request *rq;
1330
1331 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1332 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1333 list_del_init(&rq->queuelist);
e57690fe 1334 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1335 }
cfd0c552 1336 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1337 spin_unlock(&ctx->lock);
320ae51f
JA
1338}
1339
1340static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1341{
1342 struct request *rqa = container_of(a, struct request, queuelist);
1343 struct request *rqb = container_of(b, struct request, queuelist);
1344
1345 return !(rqa->mq_ctx < rqb->mq_ctx ||
1346 (rqa->mq_ctx == rqb->mq_ctx &&
1347 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1348}
1349
1350void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1351{
1352 struct blk_mq_ctx *this_ctx;
1353 struct request_queue *this_q;
1354 struct request *rq;
1355 LIST_HEAD(list);
1356 LIST_HEAD(ctx_list);
1357 unsigned int depth;
1358
1359 list_splice_init(&plug->mq_list, &list);
1360
1361 list_sort(NULL, &list, plug_ctx_cmp);
1362
1363 this_q = NULL;
1364 this_ctx = NULL;
1365 depth = 0;
1366
1367 while (!list_empty(&list)) {
1368 rq = list_entry_rq(list.next);
1369 list_del_init(&rq->queuelist);
1370 BUG_ON(!rq->q);
1371 if (rq->mq_ctx != this_ctx) {
1372 if (this_ctx) {
bd166ef1
JA
1373 trace_block_unplug(this_q, depth, from_schedule);
1374 blk_mq_sched_insert_requests(this_q, this_ctx,
1375 &ctx_list,
1376 from_schedule);
320ae51f
JA
1377 }
1378
1379 this_ctx = rq->mq_ctx;
1380 this_q = rq->q;
1381 depth = 0;
1382 }
1383
1384 depth++;
1385 list_add_tail(&rq->queuelist, &ctx_list);
1386 }
1387
1388 /*
1389 * If 'this_ctx' is set, we know we have entries to complete
1390 * on 'ctx_list'. Do those.
1391 */
1392 if (this_ctx) {
bd166ef1
JA
1393 trace_block_unplug(this_q, depth, from_schedule);
1394 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1395 from_schedule);
320ae51f
JA
1396 }
1397}
1398
1399static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1400{
1401 init_request_from_bio(rq, bio);
4b570521 1402
6e85eaf3 1403 blk_account_io_start(rq, true);
320ae51f
JA
1404}
1405
274a5843
JA
1406static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1407{
1408 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1409 !blk_queue_nomerges(hctx->queue);
1410}
1411
07068d5b
JA
1412static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1413 struct blk_mq_ctx *ctx,
1414 struct request *rq, struct bio *bio)
320ae51f 1415{
e18378a6 1416 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1417 blk_mq_bio_to_request(rq, bio);
1418 spin_lock(&ctx->lock);
1419insert_rq:
1420 __blk_mq_insert_request(hctx, rq, false);
1421 spin_unlock(&ctx->lock);
1422 return false;
1423 } else {
274a5843
JA
1424 struct request_queue *q = hctx->queue;
1425
07068d5b
JA
1426 spin_lock(&ctx->lock);
1427 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1428 blk_mq_bio_to_request(rq, bio);
1429 goto insert_rq;
1430 }
320ae51f 1431
07068d5b 1432 spin_unlock(&ctx->lock);
bd166ef1 1433 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1434 return true;
14ec77f3 1435 }
07068d5b 1436}
14ec77f3 1437
fd2d3326
JA
1438static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1439{
bd166ef1
JA
1440 if (rq->tag != -1)
1441 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1442
1443 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1444}
1445
5eb6126e 1446static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
9c621104 1447 bool may_sleep)
f984df1f 1448{
f984df1f 1449 struct request_queue *q = rq->q;
f984df1f
SL
1450 struct blk_mq_queue_data bd = {
1451 .rq = rq,
1452 .list = NULL,
1453 .last = 1
1454 };
bd166ef1
JA
1455 struct blk_mq_hw_ctx *hctx;
1456 blk_qc_t new_cookie;
1457 int ret;
f984df1f 1458
bd166ef1 1459 if (q->elevator)
2253efc8
BVA
1460 goto insert;
1461
bd166ef1
JA
1462 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1463 goto insert;
1464
1465 new_cookie = request_to_qc_t(hctx, rq);
1466
f984df1f
SL
1467 /*
1468 * For OK queue, we are done. For error, kill it. Any other
1469 * error (busy), just add it to our list as we previously
1470 * would have done
1471 */
1472 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1473 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1474 *cookie = new_cookie;
2253efc8 1475 return;
7b371636 1476 }
f984df1f 1477
7b371636
JA
1478 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1479 *cookie = BLK_QC_T_NONE;
1480 rq->errors = -EIO;
1481 blk_mq_end_request(rq, rq->errors);
2253efc8 1482 return;
f984df1f 1483 }
7b371636 1484
b58e1769 1485 __blk_mq_requeue_request(rq);
2253efc8 1486insert:
9c621104 1487 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
f984df1f
SL
1488}
1489
5eb6126e
CH
1490static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1491 struct request *rq, blk_qc_t *cookie)
1492{
1493 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1494 rcu_read_lock();
1495 __blk_mq_try_issue_directly(rq, cookie, false);
1496 rcu_read_unlock();
1497 } else {
1498 unsigned int srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1499 __blk_mq_try_issue_directly(rq, cookie, true);
1500 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1501 }
1502}
1503
dece1635 1504static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1505{
ef295ecf 1506 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1507 const int is_flush_fua = op_is_flush(bio->bi_opf);
5a797e00 1508 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1509 struct request *rq;
5eb6126e 1510 unsigned int request_count = 0;
f984df1f 1511 struct blk_plug *plug;
5b3f341f 1512 struct request *same_queue_rq = NULL;
7b371636 1513 blk_qc_t cookie;
87760e5e 1514 unsigned int wb_acct;
07068d5b
JA
1515
1516 blk_queue_bounce(q, &bio);
1517
1518 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1519 bio_io_error(bio);
dece1635 1520 return BLK_QC_T_NONE;
07068d5b
JA
1521 }
1522
54efd50b
KO
1523 blk_queue_split(q, &bio, q->bio_split);
1524
87c279e6
OS
1525 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1526 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1527 return BLK_QC_T_NONE;
f984df1f 1528
bd166ef1
JA
1529 if (blk_mq_sched_bio_merge(q, bio))
1530 return BLK_QC_T_NONE;
1531
87760e5e
JA
1532 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1533
bd166ef1
JA
1534 trace_block_getrq(q, bio, bio->bi_opf);
1535
1536 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1537 if (unlikely(!rq)) {
1538 __wbt_done(q->rq_wb, wb_acct);
dece1635 1539 return BLK_QC_T_NONE;
87760e5e
JA
1540 }
1541
1542 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1543
fd2d3326 1544 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1545
a4d907b6 1546 plug = current->plug;
07068d5b
JA
1547 if (unlikely(is_flush_fua)) {
1548 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1549 if (q->elevator) {
1550 blk_mq_sched_insert_request(rq, false, true, true,
1551 true);
1552 } else {
1553 blk_insert_flush(rq);
1554 blk_mq_run_hw_queue(data.hctx, true);
1555 }
1556 } else if (plug && q->nr_hw_queues == 1) {
254d259d
CH
1557 struct request *last = NULL;
1558
1559 blk_mq_bio_to_request(rq, bio);
1560
1561 /*
1562 * @request_count may become stale because of schedule
1563 * out, so check the list again.
1564 */
1565 if (list_empty(&plug->mq_list))
1566 request_count = 0;
1567 else if (blk_queue_nomerges(q))
1568 request_count = blk_plug_queued_count(q);
1569
1570 if (!request_count)
1571 trace_block_plug(q);
1572 else
1573 last = list_entry_rq(plug->mq_list.prev);
1574
254d259d
CH
1575 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1576 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1577 blk_flush_plug_list(plug, false);
1578 trace_block_plug(q);
1579 }
1580
1581 list_add_tail(&rq->queuelist, &plug->mq_list);
2299722c 1582 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 1583 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1584
1585 /*
6a83e74d 1586 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1587 * Otherwise the existing request in the plug list will be
1588 * issued. So the plug list will have one request at most
2299722c
CH
1589 * The plug list might get flushed before this. If that happens,
1590 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 1591 */
2299722c
CH
1592 if (list_empty(&plug->mq_list))
1593 same_queue_rq = NULL;
1594 if (same_queue_rq)
1595 list_del_init(&same_queue_rq->queuelist);
1596 list_add_tail(&rq->queuelist, &plug->mq_list);
1597
2299722c
CH
1598 if (same_queue_rq)
1599 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1600 &cookie);
a4d907b6 1601 } else if (q->nr_hw_queues > 1 && is_sync) {
2299722c 1602 blk_mq_bio_to_request(rq, bio);
2299722c 1603 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
a4d907b6 1604 } else if (q->elevator) {
bd166ef1 1605 blk_mq_bio_to_request(rq, bio);
a4d907b6
CH
1606 blk_mq_sched_insert_request(rq, false, true, true, true);
1607 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1608 blk_mq_run_hw_queue(data.hctx, true);
07068d5b 1609 }
a4d907b6 1610
07068d5b 1611 blk_mq_put_ctx(data.ctx);
7b371636 1612 return cookie;
07068d5b
JA
1613}
1614
cc71a6f4
JA
1615void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1616 unsigned int hctx_idx)
95363efd 1617{
e9b267d9 1618 struct page *page;
320ae51f 1619
24d2f903 1620 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1621 int i;
320ae51f 1622
24d2f903 1623 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1624 struct request *rq = tags->static_rqs[i];
1625
1626 if (!rq)
e9b267d9 1627 continue;
2af8cbe3 1628 set->ops->exit_request(set->driver_data, rq,
24d2f903 1629 hctx_idx, i);
2af8cbe3 1630 tags->static_rqs[i] = NULL;
e9b267d9 1631 }
320ae51f 1632 }
320ae51f 1633
24d2f903
CH
1634 while (!list_empty(&tags->page_list)) {
1635 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1636 list_del_init(&page->lru);
f75782e4
CM
1637 /*
1638 * Remove kmemleak object previously allocated in
1639 * blk_mq_init_rq_map().
1640 */
1641 kmemleak_free(page_address(page));
320ae51f
JA
1642 __free_pages(page, page->private);
1643 }
cc71a6f4 1644}
320ae51f 1645
cc71a6f4
JA
1646void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1647{
24d2f903 1648 kfree(tags->rqs);
cc71a6f4 1649 tags->rqs = NULL;
2af8cbe3
JA
1650 kfree(tags->static_rqs);
1651 tags->static_rqs = NULL;
320ae51f 1652
24d2f903 1653 blk_mq_free_tags(tags);
320ae51f
JA
1654}
1655
cc71a6f4
JA
1656struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1657 unsigned int hctx_idx,
1658 unsigned int nr_tags,
1659 unsigned int reserved_tags)
320ae51f 1660{
24d2f903 1661 struct blk_mq_tags *tags;
59f082e4 1662 int node;
320ae51f 1663
59f082e4
SL
1664 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1665 if (node == NUMA_NO_NODE)
1666 node = set->numa_node;
1667
1668 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 1669 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1670 if (!tags)
1671 return NULL;
320ae51f 1672
cc71a6f4 1673 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1674 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1675 node);
24d2f903
CH
1676 if (!tags->rqs) {
1677 blk_mq_free_tags(tags);
1678 return NULL;
1679 }
320ae51f 1680
2af8cbe3
JA
1681 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1682 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 1683 node);
2af8cbe3
JA
1684 if (!tags->static_rqs) {
1685 kfree(tags->rqs);
1686 blk_mq_free_tags(tags);
1687 return NULL;
1688 }
1689
cc71a6f4
JA
1690 return tags;
1691}
1692
1693static size_t order_to_size(unsigned int order)
1694{
1695 return (size_t)PAGE_SIZE << order;
1696}
1697
1698int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1699 unsigned int hctx_idx, unsigned int depth)
1700{
1701 unsigned int i, j, entries_per_page, max_order = 4;
1702 size_t rq_size, left;
59f082e4
SL
1703 int node;
1704
1705 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1706 if (node == NUMA_NO_NODE)
1707 node = set->numa_node;
cc71a6f4
JA
1708
1709 INIT_LIST_HEAD(&tags->page_list);
1710
320ae51f
JA
1711 /*
1712 * rq_size is the size of the request plus driver payload, rounded
1713 * to the cacheline size
1714 */
24d2f903 1715 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1716 cache_line_size());
cc71a6f4 1717 left = rq_size * depth;
320ae51f 1718
cc71a6f4 1719 for (i = 0; i < depth; ) {
320ae51f
JA
1720 int this_order = max_order;
1721 struct page *page;
1722 int to_do;
1723 void *p;
1724
b3a834b1 1725 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1726 this_order--;
1727
1728 do {
59f082e4 1729 page = alloc_pages_node(node,
36e1f3d1 1730 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1731 this_order);
320ae51f
JA
1732 if (page)
1733 break;
1734 if (!this_order--)
1735 break;
1736 if (order_to_size(this_order) < rq_size)
1737 break;
1738 } while (1);
1739
1740 if (!page)
24d2f903 1741 goto fail;
320ae51f
JA
1742
1743 page->private = this_order;
24d2f903 1744 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1745
1746 p = page_address(page);
f75782e4
CM
1747 /*
1748 * Allow kmemleak to scan these pages as they contain pointers
1749 * to additional allocations like via ops->init_request().
1750 */
36e1f3d1 1751 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1752 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1753 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1754 left -= to_do * rq_size;
1755 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1756 struct request *rq = p;
1757
1758 tags->static_rqs[i] = rq;
24d2f903
CH
1759 if (set->ops->init_request) {
1760 if (set->ops->init_request(set->driver_data,
2af8cbe3 1761 rq, hctx_idx, i,
59f082e4 1762 node)) {
2af8cbe3 1763 tags->static_rqs[i] = NULL;
24d2f903 1764 goto fail;
a5164405 1765 }
e9b267d9
CH
1766 }
1767
320ae51f
JA
1768 p += rq_size;
1769 i++;
1770 }
1771 }
cc71a6f4 1772 return 0;
320ae51f 1773
24d2f903 1774fail:
cc71a6f4
JA
1775 blk_mq_free_rqs(set, tags, hctx_idx);
1776 return -ENOMEM;
320ae51f
JA
1777}
1778
e57690fe
JA
1779/*
1780 * 'cpu' is going away. splice any existing rq_list entries from this
1781 * software queue to the hw queue dispatch list, and ensure that it
1782 * gets run.
1783 */
9467f859 1784static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1785{
9467f859 1786 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1787 struct blk_mq_ctx *ctx;
1788 LIST_HEAD(tmp);
1789
9467f859 1790 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1791 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1792
1793 spin_lock(&ctx->lock);
1794 if (!list_empty(&ctx->rq_list)) {
1795 list_splice_init(&ctx->rq_list, &tmp);
1796 blk_mq_hctx_clear_pending(hctx, ctx);
1797 }
1798 spin_unlock(&ctx->lock);
1799
1800 if (list_empty(&tmp))
9467f859 1801 return 0;
484b4061 1802
e57690fe
JA
1803 spin_lock(&hctx->lock);
1804 list_splice_tail_init(&tmp, &hctx->dispatch);
1805 spin_unlock(&hctx->lock);
484b4061
JA
1806
1807 blk_mq_run_hw_queue(hctx, true);
9467f859 1808 return 0;
484b4061
JA
1809}
1810
9467f859 1811static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1812{
9467f859
TG
1813 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1814 &hctx->cpuhp_dead);
484b4061
JA
1815}
1816
c3b4afca 1817/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1818static void blk_mq_exit_hctx(struct request_queue *q,
1819 struct blk_mq_tag_set *set,
1820 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1821{
f70ced09
ML
1822 unsigned flush_start_tag = set->queue_depth;
1823
08e98fc6
ML
1824 blk_mq_tag_idle(hctx);
1825
f70ced09
ML
1826 if (set->ops->exit_request)
1827 set->ops->exit_request(set->driver_data,
1828 hctx->fq->flush_rq, hctx_idx,
1829 flush_start_tag + hctx_idx);
1830
08e98fc6
ML
1831 if (set->ops->exit_hctx)
1832 set->ops->exit_hctx(hctx, hctx_idx);
1833
6a83e74d
BVA
1834 if (hctx->flags & BLK_MQ_F_BLOCKING)
1835 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1836
9467f859 1837 blk_mq_remove_cpuhp(hctx);
f70ced09 1838 blk_free_flush_queue(hctx->fq);
88459642 1839 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1840}
1841
624dbe47
ML
1842static void blk_mq_exit_hw_queues(struct request_queue *q,
1843 struct blk_mq_tag_set *set, int nr_queue)
1844{
1845 struct blk_mq_hw_ctx *hctx;
1846 unsigned int i;
1847
1848 queue_for_each_hw_ctx(q, hctx, i) {
1849 if (i == nr_queue)
1850 break;
08e98fc6 1851 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1852 }
624dbe47
ML
1853}
1854
08e98fc6
ML
1855static int blk_mq_init_hctx(struct request_queue *q,
1856 struct blk_mq_tag_set *set,
1857 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1858{
08e98fc6 1859 int node;
f70ced09 1860 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1861
1862 node = hctx->numa_node;
1863 if (node == NUMA_NO_NODE)
1864 node = hctx->numa_node = set->numa_node;
1865
27489a3c 1866 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1867 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1868 spin_lock_init(&hctx->lock);
1869 INIT_LIST_HEAD(&hctx->dispatch);
1870 hctx->queue = q;
1871 hctx->queue_num = hctx_idx;
2404e607 1872 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1873
9467f859 1874 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1875
1876 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1877
1878 /*
08e98fc6
ML
1879 * Allocate space for all possible cpus to avoid allocation at
1880 * runtime
320ae51f 1881 */
08e98fc6
ML
1882 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1883 GFP_KERNEL, node);
1884 if (!hctx->ctxs)
1885 goto unregister_cpu_notifier;
320ae51f 1886
88459642
OS
1887 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1888 node))
08e98fc6 1889 goto free_ctxs;
320ae51f 1890
08e98fc6 1891 hctx->nr_ctx = 0;
320ae51f 1892
08e98fc6
ML
1893 if (set->ops->init_hctx &&
1894 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1895 goto free_bitmap;
320ae51f 1896
f70ced09
ML
1897 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1898 if (!hctx->fq)
1899 goto exit_hctx;
320ae51f 1900
f70ced09
ML
1901 if (set->ops->init_request &&
1902 set->ops->init_request(set->driver_data,
1903 hctx->fq->flush_rq, hctx_idx,
1904 flush_start_tag + hctx_idx, node))
1905 goto free_fq;
320ae51f 1906
6a83e74d
BVA
1907 if (hctx->flags & BLK_MQ_F_BLOCKING)
1908 init_srcu_struct(&hctx->queue_rq_srcu);
1909
08e98fc6 1910 return 0;
320ae51f 1911
f70ced09
ML
1912 free_fq:
1913 kfree(hctx->fq);
1914 exit_hctx:
1915 if (set->ops->exit_hctx)
1916 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1917 free_bitmap:
88459642 1918 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1919 free_ctxs:
1920 kfree(hctx->ctxs);
1921 unregister_cpu_notifier:
9467f859 1922 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1923 return -1;
1924}
320ae51f 1925
320ae51f
JA
1926static void blk_mq_init_cpu_queues(struct request_queue *q,
1927 unsigned int nr_hw_queues)
1928{
1929 unsigned int i;
1930
1931 for_each_possible_cpu(i) {
1932 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1933 struct blk_mq_hw_ctx *hctx;
1934
320ae51f
JA
1935 __ctx->cpu = i;
1936 spin_lock_init(&__ctx->lock);
1937 INIT_LIST_HEAD(&__ctx->rq_list);
1938 __ctx->queue = q;
1939
1940 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1941 if (!cpu_online(i))
1942 continue;
1943
7d7e0f90 1944 hctx = blk_mq_map_queue(q, i);
e4043dcf 1945
320ae51f
JA
1946 /*
1947 * Set local node, IFF we have more than one hw queue. If
1948 * not, we remain on the home node of the device
1949 */
1950 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1951 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1952 }
1953}
1954
cc71a6f4
JA
1955static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1956{
1957 int ret = 0;
1958
1959 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1960 set->queue_depth, set->reserved_tags);
1961 if (!set->tags[hctx_idx])
1962 return false;
1963
1964 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1965 set->queue_depth);
1966 if (!ret)
1967 return true;
1968
1969 blk_mq_free_rq_map(set->tags[hctx_idx]);
1970 set->tags[hctx_idx] = NULL;
1971 return false;
1972}
1973
1974static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1975 unsigned int hctx_idx)
1976{
bd166ef1
JA
1977 if (set->tags[hctx_idx]) {
1978 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1979 blk_mq_free_rq_map(set->tags[hctx_idx]);
1980 set->tags[hctx_idx] = NULL;
1981 }
cc71a6f4
JA
1982}
1983
5778322e
AM
1984static void blk_mq_map_swqueue(struct request_queue *q,
1985 const struct cpumask *online_mask)
320ae51f 1986{
d1b1cea1 1987 unsigned int i, hctx_idx;
320ae51f
JA
1988 struct blk_mq_hw_ctx *hctx;
1989 struct blk_mq_ctx *ctx;
2a34c087 1990 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1991
60de074b
AM
1992 /*
1993 * Avoid others reading imcomplete hctx->cpumask through sysfs
1994 */
1995 mutex_lock(&q->sysfs_lock);
1996
320ae51f 1997 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1998 cpumask_clear(hctx->cpumask);
320ae51f
JA
1999 hctx->nr_ctx = 0;
2000 }
2001
2002 /*
2003 * Map software to hardware queues
2004 */
897bb0c7 2005 for_each_possible_cpu(i) {
320ae51f 2006 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2007 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2008 continue;
2009
d1b1cea1
GKB
2010 hctx_idx = q->mq_map[i];
2011 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2012 if (!set->tags[hctx_idx] &&
2013 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2014 /*
2015 * If tags initialization fail for some hctx,
2016 * that hctx won't be brought online. In this
2017 * case, remap the current ctx to hctx[0] which
2018 * is guaranteed to always have tags allocated
2019 */
cc71a6f4 2020 q->mq_map[i] = 0;
d1b1cea1
GKB
2021 }
2022
897bb0c7 2023 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2024 hctx = blk_mq_map_queue(q, i);
868f2f0b 2025
e4043dcf 2026 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2027 ctx->index_hw = hctx->nr_ctx;
2028 hctx->ctxs[hctx->nr_ctx++] = ctx;
2029 }
506e931f 2030
60de074b
AM
2031 mutex_unlock(&q->sysfs_lock);
2032
506e931f 2033 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2034 /*
a68aafa5
JA
2035 * If no software queues are mapped to this hardware queue,
2036 * disable it and free the request entries.
484b4061
JA
2037 */
2038 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2039 /* Never unmap queue 0. We need it as a
2040 * fallback in case of a new remap fails
2041 * allocation
2042 */
cc71a6f4
JA
2043 if (i && set->tags[i])
2044 blk_mq_free_map_and_requests(set, i);
2045
2a34c087 2046 hctx->tags = NULL;
484b4061
JA
2047 continue;
2048 }
2049
2a34c087
ML
2050 hctx->tags = set->tags[i];
2051 WARN_ON(!hctx->tags);
2052
889fa31f
CY
2053 /*
2054 * Set the map size to the number of mapped software queues.
2055 * This is more accurate and more efficient than looping
2056 * over all possibly mapped software queues.
2057 */
88459642 2058 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2059
484b4061
JA
2060 /*
2061 * Initialize batch roundrobin counts
2062 */
506e931f
JA
2063 hctx->next_cpu = cpumask_first(hctx->cpumask);
2064 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2065 }
320ae51f
JA
2066}
2067
2404e607 2068static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2069{
2070 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2071 int i;
2072
2404e607
JM
2073 queue_for_each_hw_ctx(q, hctx, i) {
2074 if (shared)
2075 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2076 else
2077 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2078 }
2079}
2080
2081static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2082{
2083 struct request_queue *q;
0d2602ca
JA
2084
2085 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2086 blk_mq_freeze_queue(q);
2404e607 2087 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2088 blk_mq_unfreeze_queue(q);
2089 }
2090}
2091
2092static void blk_mq_del_queue_tag_set(struct request_queue *q)
2093{
2094 struct blk_mq_tag_set *set = q->tag_set;
2095
0d2602ca
JA
2096 mutex_lock(&set->tag_list_lock);
2097 list_del_init(&q->tag_set_list);
2404e607
JM
2098 if (list_is_singular(&set->tag_list)) {
2099 /* just transitioned to unshared */
2100 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2101 /* update existing queue */
2102 blk_mq_update_tag_set_depth(set, false);
2103 }
0d2602ca 2104 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2105}
2106
2107static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2108 struct request_queue *q)
2109{
2110 q->tag_set = set;
2111
2112 mutex_lock(&set->tag_list_lock);
2404e607
JM
2113
2114 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2115 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2116 set->flags |= BLK_MQ_F_TAG_SHARED;
2117 /* update existing queue */
2118 blk_mq_update_tag_set_depth(set, true);
2119 }
2120 if (set->flags & BLK_MQ_F_TAG_SHARED)
2121 queue_set_hctx_shared(q, true);
0d2602ca 2122 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2123
0d2602ca
JA
2124 mutex_unlock(&set->tag_list_lock);
2125}
2126
e09aae7e
ML
2127/*
2128 * It is the actual release handler for mq, but we do it from
2129 * request queue's release handler for avoiding use-after-free
2130 * and headache because q->mq_kobj shouldn't have been introduced,
2131 * but we can't group ctx/kctx kobj without it.
2132 */
2133void blk_mq_release(struct request_queue *q)
2134{
2135 struct blk_mq_hw_ctx *hctx;
2136 unsigned int i;
2137
bd166ef1
JA
2138 blk_mq_sched_teardown(q);
2139
e09aae7e 2140 /* hctx kobj stays in hctx */
c3b4afca
ML
2141 queue_for_each_hw_ctx(q, hctx, i) {
2142 if (!hctx)
2143 continue;
6c8b232e 2144 kobject_put(&hctx->kobj);
c3b4afca 2145 }
e09aae7e 2146
a723bab3
AM
2147 q->mq_map = NULL;
2148
e09aae7e
ML
2149 kfree(q->queue_hw_ctx);
2150
7ea5fe31
ML
2151 /*
2152 * release .mq_kobj and sw queue's kobject now because
2153 * both share lifetime with request queue.
2154 */
2155 blk_mq_sysfs_deinit(q);
2156
e09aae7e
ML
2157 free_percpu(q->queue_ctx);
2158}
2159
24d2f903 2160struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2161{
2162 struct request_queue *uninit_q, *q;
2163
2164 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2165 if (!uninit_q)
2166 return ERR_PTR(-ENOMEM);
2167
2168 q = blk_mq_init_allocated_queue(set, uninit_q);
2169 if (IS_ERR(q))
2170 blk_cleanup_queue(uninit_q);
2171
2172 return q;
2173}
2174EXPORT_SYMBOL(blk_mq_init_queue);
2175
868f2f0b
KB
2176static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2177 struct request_queue *q)
320ae51f 2178{
868f2f0b
KB
2179 int i, j;
2180 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2181
868f2f0b 2182 blk_mq_sysfs_unregister(q);
24d2f903 2183 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2184 int node;
f14bbe77 2185
868f2f0b
KB
2186 if (hctxs[i])
2187 continue;
2188
2189 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2190 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2191 GFP_KERNEL, node);
320ae51f 2192 if (!hctxs[i])
868f2f0b 2193 break;
320ae51f 2194
a86073e4 2195 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2196 node)) {
2197 kfree(hctxs[i]);
2198 hctxs[i] = NULL;
2199 break;
2200 }
e4043dcf 2201
0d2602ca 2202 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2203 hctxs[i]->numa_node = node;
320ae51f 2204 hctxs[i]->queue_num = i;
868f2f0b
KB
2205
2206 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2207 free_cpumask_var(hctxs[i]->cpumask);
2208 kfree(hctxs[i]);
2209 hctxs[i] = NULL;
2210 break;
2211 }
2212 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2213 }
868f2f0b
KB
2214 for (j = i; j < q->nr_hw_queues; j++) {
2215 struct blk_mq_hw_ctx *hctx = hctxs[j];
2216
2217 if (hctx) {
cc71a6f4
JA
2218 if (hctx->tags)
2219 blk_mq_free_map_and_requests(set, j);
868f2f0b 2220 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2221 kobject_put(&hctx->kobj);
868f2f0b
KB
2222 hctxs[j] = NULL;
2223
2224 }
2225 }
2226 q->nr_hw_queues = i;
2227 blk_mq_sysfs_register(q);
2228}
2229
2230struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2231 struct request_queue *q)
2232{
66841672
ML
2233 /* mark the queue as mq asap */
2234 q->mq_ops = set->ops;
2235
34dbad5d
OS
2236 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2237 blk_stat_rq_ddir, 2, q);
2238 if (!q->poll_cb)
2239 goto err_exit;
2240
868f2f0b
KB
2241 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2242 if (!q->queue_ctx)
c7de5726 2243 goto err_exit;
868f2f0b 2244
737f98cf
ML
2245 /* init q->mq_kobj and sw queues' kobjects */
2246 blk_mq_sysfs_init(q);
2247
868f2f0b
KB
2248 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2249 GFP_KERNEL, set->numa_node);
2250 if (!q->queue_hw_ctx)
2251 goto err_percpu;
2252
bdd17e75 2253 q->mq_map = set->mq_map;
868f2f0b
KB
2254
2255 blk_mq_realloc_hw_ctxs(set, q);
2256 if (!q->nr_hw_queues)
2257 goto err_hctxs;
320ae51f 2258
287922eb 2259 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2260 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2261
2262 q->nr_queues = nr_cpu_ids;
320ae51f 2263
94eddfbe 2264 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2265
05f1dd53
JA
2266 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2267 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2268
1be036e9
CH
2269 q->sg_reserved_size = INT_MAX;
2270
2849450a 2271 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2272 INIT_LIST_HEAD(&q->requeue_list);
2273 spin_lock_init(&q->requeue_lock);
2274
254d259d 2275 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2276
eba71768
JA
2277 /*
2278 * Do this after blk_queue_make_request() overrides it...
2279 */
2280 q->nr_requests = set->queue_depth;
2281
64f1c21e
JA
2282 /*
2283 * Default to classic polling
2284 */
2285 q->poll_nsec = -1;
2286
24d2f903
CH
2287 if (set->ops->complete)
2288 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2289
24d2f903 2290 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2291
5778322e 2292 get_online_cpus();
320ae51f 2293 mutex_lock(&all_q_mutex);
320ae51f 2294
4593fdbe 2295 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2296 blk_mq_add_queue_tag_set(set, q);
5778322e 2297 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2298
4593fdbe 2299 mutex_unlock(&all_q_mutex);
5778322e 2300 put_online_cpus();
4593fdbe 2301
d3484991
JA
2302 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2303 int ret;
2304
2305 ret = blk_mq_sched_init(q);
2306 if (ret)
2307 return ERR_PTR(ret);
2308 }
2309
320ae51f 2310 return q;
18741986 2311
320ae51f 2312err_hctxs:
868f2f0b 2313 kfree(q->queue_hw_ctx);
320ae51f 2314err_percpu:
868f2f0b 2315 free_percpu(q->queue_ctx);
c7de5726
ML
2316err_exit:
2317 q->mq_ops = NULL;
320ae51f
JA
2318 return ERR_PTR(-ENOMEM);
2319}
b62c21b7 2320EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2321
2322void blk_mq_free_queue(struct request_queue *q)
2323{
624dbe47 2324 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2325
0e626368
AM
2326 mutex_lock(&all_q_mutex);
2327 list_del_init(&q->all_q_node);
2328 mutex_unlock(&all_q_mutex);
2329
0d2602ca
JA
2330 blk_mq_del_queue_tag_set(q);
2331
624dbe47 2332 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2333}
320ae51f
JA
2334
2335/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2336static void blk_mq_queue_reinit(struct request_queue *q,
2337 const struct cpumask *online_mask)
320ae51f 2338{
4ecd4fef 2339 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2340
67aec14c
JA
2341 blk_mq_sysfs_unregister(q);
2342
320ae51f
JA
2343 /*
2344 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2345 * we should change hctx numa_node according to new topology (this
2346 * involves free and re-allocate memory, worthy doing?)
2347 */
2348
5778322e 2349 blk_mq_map_swqueue(q, online_mask);
320ae51f 2350
67aec14c 2351 blk_mq_sysfs_register(q);
320ae51f
JA
2352}
2353
65d5291e
SAS
2354/*
2355 * New online cpumask which is going to be set in this hotplug event.
2356 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2357 * one-by-one and dynamically allocating this could result in a failure.
2358 */
2359static struct cpumask cpuhp_online_new;
2360
2361static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2362{
2363 struct request_queue *q;
320ae51f
JA
2364
2365 mutex_lock(&all_q_mutex);
f3af020b
TH
2366 /*
2367 * We need to freeze and reinit all existing queues. Freezing
2368 * involves synchronous wait for an RCU grace period and doing it
2369 * one by one may take a long time. Start freezing all queues in
2370 * one swoop and then wait for the completions so that freezing can
2371 * take place in parallel.
2372 */
2373 list_for_each_entry(q, &all_q_list, all_q_node)
1671d522 2374 blk_freeze_queue_start(q);
415d3dab 2375 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2376 blk_mq_freeze_queue_wait(q);
2377
320ae51f 2378 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2379 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2380
2381 list_for_each_entry(q, &all_q_list, all_q_node)
2382 blk_mq_unfreeze_queue(q);
2383
320ae51f 2384 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2385}
2386
2387static int blk_mq_queue_reinit_dead(unsigned int cpu)
2388{
97a32864 2389 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2390 blk_mq_queue_reinit_work();
2391 return 0;
2392}
2393
2394/*
2395 * Before hotadded cpu starts handling requests, new mappings must be
2396 * established. Otherwise, these requests in hw queue might never be
2397 * dispatched.
2398 *
2399 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2400 * for CPU0, and ctx1 for CPU1).
2401 *
2402 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2403 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2404 *
2c3ad667
JA
2405 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2406 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2407 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2408 * ignored.
65d5291e
SAS
2409 */
2410static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2411{
2412 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2413 cpumask_set_cpu(cpu, &cpuhp_online_new);
2414 blk_mq_queue_reinit_work();
2415 return 0;
320ae51f
JA
2416}
2417
a5164405
JA
2418static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2419{
2420 int i;
2421
cc71a6f4
JA
2422 for (i = 0; i < set->nr_hw_queues; i++)
2423 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2424 goto out_unwind;
a5164405
JA
2425
2426 return 0;
2427
2428out_unwind:
2429 while (--i >= 0)
cc71a6f4 2430 blk_mq_free_rq_map(set->tags[i]);
a5164405 2431
a5164405
JA
2432 return -ENOMEM;
2433}
2434
2435/*
2436 * Allocate the request maps associated with this tag_set. Note that this
2437 * may reduce the depth asked for, if memory is tight. set->queue_depth
2438 * will be updated to reflect the allocated depth.
2439 */
2440static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2441{
2442 unsigned int depth;
2443 int err;
2444
2445 depth = set->queue_depth;
2446 do {
2447 err = __blk_mq_alloc_rq_maps(set);
2448 if (!err)
2449 break;
2450
2451 set->queue_depth >>= 1;
2452 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2453 err = -ENOMEM;
2454 break;
2455 }
2456 } while (set->queue_depth);
2457
2458 if (!set->queue_depth || err) {
2459 pr_err("blk-mq: failed to allocate request map\n");
2460 return -ENOMEM;
2461 }
2462
2463 if (depth != set->queue_depth)
2464 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2465 depth, set->queue_depth);
2466
2467 return 0;
2468}
2469
a4391c64
JA
2470/*
2471 * Alloc a tag set to be associated with one or more request queues.
2472 * May fail with EINVAL for various error conditions. May adjust the
2473 * requested depth down, if if it too large. In that case, the set
2474 * value will be stored in set->queue_depth.
2475 */
24d2f903
CH
2476int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2477{
da695ba2
CH
2478 int ret;
2479
205fb5f5
BVA
2480 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2481
24d2f903
CH
2482 if (!set->nr_hw_queues)
2483 return -EINVAL;
a4391c64 2484 if (!set->queue_depth)
24d2f903
CH
2485 return -EINVAL;
2486 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2487 return -EINVAL;
2488
7d7e0f90 2489 if (!set->ops->queue_rq)
24d2f903
CH
2490 return -EINVAL;
2491
a4391c64
JA
2492 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2493 pr_info("blk-mq: reduced tag depth to %u\n",
2494 BLK_MQ_MAX_DEPTH);
2495 set->queue_depth = BLK_MQ_MAX_DEPTH;
2496 }
24d2f903 2497
6637fadf
SL
2498 /*
2499 * If a crashdump is active, then we are potentially in a very
2500 * memory constrained environment. Limit us to 1 queue and
2501 * 64 tags to prevent using too much memory.
2502 */
2503 if (is_kdump_kernel()) {
2504 set->nr_hw_queues = 1;
2505 set->queue_depth = min(64U, set->queue_depth);
2506 }
868f2f0b
KB
2507 /*
2508 * There is no use for more h/w queues than cpus.
2509 */
2510 if (set->nr_hw_queues > nr_cpu_ids)
2511 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2512
868f2f0b 2513 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2514 GFP_KERNEL, set->numa_node);
2515 if (!set->tags)
a5164405 2516 return -ENOMEM;
24d2f903 2517
da695ba2
CH
2518 ret = -ENOMEM;
2519 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2520 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2521 if (!set->mq_map)
2522 goto out_free_tags;
2523
da695ba2
CH
2524 if (set->ops->map_queues)
2525 ret = set->ops->map_queues(set);
2526 else
2527 ret = blk_mq_map_queues(set);
2528 if (ret)
2529 goto out_free_mq_map;
2530
2531 ret = blk_mq_alloc_rq_maps(set);
2532 if (ret)
bdd17e75 2533 goto out_free_mq_map;
24d2f903 2534
0d2602ca
JA
2535 mutex_init(&set->tag_list_lock);
2536 INIT_LIST_HEAD(&set->tag_list);
2537
24d2f903 2538 return 0;
bdd17e75
CH
2539
2540out_free_mq_map:
2541 kfree(set->mq_map);
2542 set->mq_map = NULL;
2543out_free_tags:
5676e7b6
RE
2544 kfree(set->tags);
2545 set->tags = NULL;
da695ba2 2546 return ret;
24d2f903
CH
2547}
2548EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2549
2550void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2551{
2552 int i;
2553
cc71a6f4
JA
2554 for (i = 0; i < nr_cpu_ids; i++)
2555 blk_mq_free_map_and_requests(set, i);
484b4061 2556
bdd17e75
CH
2557 kfree(set->mq_map);
2558 set->mq_map = NULL;
2559
981bd189 2560 kfree(set->tags);
5676e7b6 2561 set->tags = NULL;
24d2f903
CH
2562}
2563EXPORT_SYMBOL(blk_mq_free_tag_set);
2564
e3a2b3f9
JA
2565int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2566{
2567 struct blk_mq_tag_set *set = q->tag_set;
2568 struct blk_mq_hw_ctx *hctx;
2569 int i, ret;
2570
bd166ef1 2571 if (!set)
e3a2b3f9
JA
2572 return -EINVAL;
2573
70f36b60
JA
2574 blk_mq_freeze_queue(q);
2575 blk_mq_quiesce_queue(q);
2576
e3a2b3f9
JA
2577 ret = 0;
2578 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2579 if (!hctx->tags)
2580 continue;
bd166ef1
JA
2581 /*
2582 * If we're using an MQ scheduler, just update the scheduler
2583 * queue depth. This is similar to what the old code would do.
2584 */
70f36b60
JA
2585 if (!hctx->sched_tags) {
2586 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2587 min(nr, set->queue_depth),
2588 false);
2589 } else {
2590 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2591 nr, true);
2592 }
e3a2b3f9
JA
2593 if (ret)
2594 break;
2595 }
2596
2597 if (!ret)
2598 q->nr_requests = nr;
2599
70f36b60
JA
2600 blk_mq_unfreeze_queue(q);
2601 blk_mq_start_stopped_hw_queues(q, true);
2602
e3a2b3f9
JA
2603 return ret;
2604}
2605
868f2f0b
KB
2606void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2607{
2608 struct request_queue *q;
2609
2610 if (nr_hw_queues > nr_cpu_ids)
2611 nr_hw_queues = nr_cpu_ids;
2612 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2613 return;
2614
2615 list_for_each_entry(q, &set->tag_list, tag_set_list)
2616 blk_mq_freeze_queue(q);
2617
2618 set->nr_hw_queues = nr_hw_queues;
2619 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2620 blk_mq_realloc_hw_ctxs(set, q);
868f2f0b
KB
2621 blk_mq_queue_reinit(q, cpu_online_mask);
2622 }
2623
2624 list_for_each_entry(q, &set->tag_list, tag_set_list)
2625 blk_mq_unfreeze_queue(q);
2626}
2627EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2628
34dbad5d
OS
2629/* Enable polling stats and return whether they were already enabled. */
2630static bool blk_poll_stats_enable(struct request_queue *q)
2631{
2632 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2633 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2634 return true;
2635 blk_stat_add_callback(q, q->poll_cb);
2636 return false;
2637}
2638
2639static void blk_mq_poll_stats_start(struct request_queue *q)
2640{
2641 /*
2642 * We don't arm the callback if polling stats are not enabled or the
2643 * callback is already active.
2644 */
2645 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2646 blk_stat_is_active(q->poll_cb))
2647 return;
2648
2649 blk_stat_activate_msecs(q->poll_cb, 100);
2650}
2651
2652static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2653{
2654 struct request_queue *q = cb->data;
2655
2656 if (cb->stat[READ].nr_samples)
2657 q->poll_stat[READ] = cb->stat[READ];
2658 if (cb->stat[WRITE].nr_samples)
2659 q->poll_stat[WRITE] = cb->stat[WRITE];
2660}
2661
64f1c21e
JA
2662static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2663 struct blk_mq_hw_ctx *hctx,
2664 struct request *rq)
2665{
64f1c21e
JA
2666 unsigned long ret = 0;
2667
2668 /*
2669 * If stats collection isn't on, don't sleep but turn it on for
2670 * future users
2671 */
34dbad5d 2672 if (!blk_poll_stats_enable(q))
64f1c21e
JA
2673 return 0;
2674
64f1c21e
JA
2675 /*
2676 * As an optimistic guess, use half of the mean service time
2677 * for this type of request. We can (and should) make this smarter.
2678 * For instance, if the completion latencies are tight, we can
2679 * get closer than just half the mean. This is especially
2680 * important on devices where the completion latencies are longer
2681 * than ~10 usec.
2682 */
34dbad5d
OS
2683 if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2684 ret = (q->poll_stat[READ].mean + 1) / 2;
2685 else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2686 ret = (q->poll_stat[WRITE].mean + 1) / 2;
64f1c21e
JA
2687
2688 return ret;
2689}
2690
06426adf 2691static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2692 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2693 struct request *rq)
2694{
2695 struct hrtimer_sleeper hs;
2696 enum hrtimer_mode mode;
64f1c21e 2697 unsigned int nsecs;
06426adf
JA
2698 ktime_t kt;
2699
64f1c21e
JA
2700 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2701 return false;
2702
2703 /*
2704 * poll_nsec can be:
2705 *
2706 * -1: don't ever hybrid sleep
2707 * 0: use half of prev avg
2708 * >0: use this specific value
2709 */
2710 if (q->poll_nsec == -1)
2711 return false;
2712 else if (q->poll_nsec > 0)
2713 nsecs = q->poll_nsec;
2714 else
2715 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2716
2717 if (!nsecs)
06426adf
JA
2718 return false;
2719
2720 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2721
2722 /*
2723 * This will be replaced with the stats tracking code, using
2724 * 'avg_completion_time / 2' as the pre-sleep target.
2725 */
8b0e1953 2726 kt = nsecs;
06426adf
JA
2727
2728 mode = HRTIMER_MODE_REL;
2729 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2730 hrtimer_set_expires(&hs.timer, kt);
2731
2732 hrtimer_init_sleeper(&hs, current);
2733 do {
2734 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2735 break;
2736 set_current_state(TASK_UNINTERRUPTIBLE);
2737 hrtimer_start_expires(&hs.timer, mode);
2738 if (hs.task)
2739 io_schedule();
2740 hrtimer_cancel(&hs.timer);
2741 mode = HRTIMER_MODE_ABS;
2742 } while (hs.task && !signal_pending(current));
2743
2744 __set_current_state(TASK_RUNNING);
2745 destroy_hrtimer_on_stack(&hs.timer);
2746 return true;
2747}
2748
bbd7bb70
JA
2749static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2750{
2751 struct request_queue *q = hctx->queue;
2752 long state;
2753
06426adf
JA
2754 /*
2755 * If we sleep, have the caller restart the poll loop to reset
2756 * the state. Like for the other success return cases, the
2757 * caller is responsible for checking if the IO completed. If
2758 * the IO isn't complete, we'll get called again and will go
2759 * straight to the busy poll loop.
2760 */
64f1c21e 2761 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2762 return true;
2763
bbd7bb70
JA
2764 hctx->poll_considered++;
2765
2766 state = current->state;
2767 while (!need_resched()) {
2768 int ret;
2769
2770 hctx->poll_invoked++;
2771
2772 ret = q->mq_ops->poll(hctx, rq->tag);
2773 if (ret > 0) {
2774 hctx->poll_success++;
2775 set_current_state(TASK_RUNNING);
2776 return true;
2777 }
2778
2779 if (signal_pending_state(state, current))
2780 set_current_state(TASK_RUNNING);
2781
2782 if (current->state == TASK_RUNNING)
2783 return true;
2784 if (ret < 0)
2785 break;
2786 cpu_relax();
2787 }
2788
2789 return false;
2790}
2791
2792bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2793{
2794 struct blk_mq_hw_ctx *hctx;
2795 struct blk_plug *plug;
2796 struct request *rq;
2797
2798 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2799 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2800 return false;
2801
2802 plug = current->plug;
2803 if (plug)
2804 blk_flush_plug_list(plug, false);
2805
2806 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2807 if (!blk_qc_t_is_internal(cookie))
2808 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2809 else
2810 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2811
2812 return __blk_mq_poll(hctx, rq);
2813}
2814EXPORT_SYMBOL_GPL(blk_mq_poll);
2815
676141e4
JA
2816void blk_mq_disable_hotplug(void)
2817{
2818 mutex_lock(&all_q_mutex);
2819}
2820
2821void blk_mq_enable_hotplug(void)
2822{
2823 mutex_unlock(&all_q_mutex);
2824}
2825
320ae51f
JA
2826static int __init blk_mq_init(void)
2827{
9467f859
TG
2828 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2829 blk_mq_hctx_notify_dead);
320ae51f 2830
65d5291e
SAS
2831 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2832 blk_mq_queue_reinit_prepare,
2833 blk_mq_queue_reinit_dead);
320ae51f
JA
2834 return 0;
2835}
2836subsys_initcall(blk_mq_init);