]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-mq.c
blk-mq: move hctx and ctx counters from sysfs to debugfs
[mirror_ubuntu-artful-kernel.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
88c7b2b7 25#include <linux/prefetch.h>
320ae51f
JA
26
27#include <trace/events/block.h>
28
29#include <linux/blk-mq.h>
30#include "blk.h"
31#include "blk-mq.h"
32#include "blk-mq-tag.h"
cf43e6be 33#include "blk-stat.h"
87760e5e 34#include "blk-wbt.h"
bd166ef1 35#include "blk-mq-sched.h"
320ae51f
JA
36
37static DEFINE_MUTEX(all_q_mutex);
38static LIST_HEAD(all_q_list);
39
320ae51f
JA
40/*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
43static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44{
bd166ef1
JA
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
1429d7c9
JA
48}
49
320ae51f
JA
50/*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55{
88459642
OS
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
1429d7c9
JA
58}
59
60static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62{
88459642 63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
320ae51f
JA
64}
65
b4c6a028 66void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 67{
4ecd4fef 68 int freeze_depth;
cddd5d17 69
4ecd4fef
CH
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
3ef28e83 72 percpu_ref_kill(&q->q_usage_counter);
b94ec296 73 blk_mq_run_hw_queues(q, false);
cddd5d17 74 }
f3af020b 75}
b4c6a028 76EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
77
78static void blk_mq_freeze_queue_wait(struct request_queue *q)
79{
3ef28e83 80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
81}
82
f3af020b
TH
83/*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
3ef28e83 87void blk_freeze_queue(struct request_queue *q)
f3af020b 88{
3ef28e83
DW
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
f3af020b
TH
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98}
3ef28e83
DW
99
100void blk_mq_freeze_queue(struct request_queue *q)
101{
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107}
c761d96b 108EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 109
b4c6a028 110void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 111{
4ecd4fef 112 int freeze_depth;
320ae51f 113
4ecd4fef
CH
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
3ef28e83 117 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 118 wake_up_all(&q->mq_freeze_wq);
add703fd 119 }
320ae51f 120}
b4c6a028 121EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 122
6a83e74d
BVA
123/**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131void blk_mq_quiesce_queue(struct request_queue *q)
132{
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147}
148EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
aed3ea94
JA
150void blk_mq_wake_waiters(struct request_queue *q)
151{
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
165}
166
320ae51f
JA
167bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168{
169 return blk_mq_has_free_tags(hctx->tags);
170}
171EXPORT_SYMBOL(blk_mq_can_queue);
172
2c3ad667
JA
173void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
320ae51f 175{
af76e555
CH
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
320ae51f 179 rq->mq_ctx = ctx;
ef295ecf 180 rq->cmd_flags = op;
e8064021
CH
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
af76e555
CH
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
af76e555
CH
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
187 rq->rq_disk = NULL;
188 rq->part = NULL;
3ee32372 189 rq->start_time = jiffies;
af76e555
CH
190#ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
0fec08b4 192 set_start_time_ns(rq);
af76e555
CH
193 rq->io_start_time_ns = 0;
194#endif
195 rq->nr_phys_segments = 0;
196#if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198#endif
af76e555
CH
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
af76e555 202
6f4a1626
TB
203 rq->cmd = rq->__cmd;
204
af76e555
CH
205 rq->extra_len = 0;
206 rq->sense_len = 0;
207 rq->resid_len = 0;
208 rq->sense = NULL;
209
af76e555 210 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
211 rq->timeout = 0;
212
af76e555
CH
213 rq->end_io = NULL;
214 rq->end_io_data = NULL;
215 rq->next_rq = NULL;
216
ef295ecf 217 ctx->rq_dispatched[op_is_sync(op)]++;
320ae51f 218}
2c3ad667 219EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
320ae51f 220
2c3ad667
JA
221struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
222 unsigned int op)
5dee8577
CH
223{
224 struct request *rq;
225 unsigned int tag;
226
cb96a42c 227 tag = blk_mq_get_tag(data);
5dee8577 228 if (tag != BLK_MQ_TAG_FAIL) {
bd166ef1
JA
229 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
230
231 rq = tags->static_rqs[tag];
5dee8577 232
bd166ef1
JA
233 if (data->flags & BLK_MQ_REQ_INTERNAL) {
234 rq->tag = -1;
235 rq->internal_tag = tag;
236 } else {
200e86b3
JA
237 if (blk_mq_tag_busy(data->hctx)) {
238 rq->rq_flags = RQF_MQ_INFLIGHT;
239 atomic_inc(&data->hctx->nr_active);
240 }
bd166ef1
JA
241 rq->tag = tag;
242 rq->internal_tag = -1;
243 }
244
ef295ecf 245 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
5dee8577
CH
246 return rq;
247 }
248
249 return NULL;
250}
2c3ad667 251EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
5dee8577 252
6f3b0e8b
CH
253struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
254 unsigned int flags)
320ae51f 255{
5a797e00 256 struct blk_mq_alloc_data alloc_data = { .flags = flags };
bd166ef1 257 struct request *rq;
a492f075 258 int ret;
320ae51f 259
6f3b0e8b 260 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
a492f075
JL
261 if (ret)
262 return ERR_PTR(ret);
320ae51f 263
bd166ef1 264 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
841bac2c 265
bd166ef1
JA
266 blk_mq_put_ctx(alloc_data.ctx);
267 blk_queue_exit(q);
268
269 if (!rq)
a492f075 270 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
271
272 rq->__data_len = 0;
273 rq->__sector = (sector_t) -1;
274 rq->bio = rq->biotail = NULL;
320ae51f
JA
275 return rq;
276}
4bb659b1 277EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 278
1f5bd336
ML
279struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
280 unsigned int flags, unsigned int hctx_idx)
281{
282 struct blk_mq_hw_ctx *hctx;
283 struct blk_mq_ctx *ctx;
284 struct request *rq;
285 struct blk_mq_alloc_data alloc_data;
286 int ret;
287
288 /*
289 * If the tag allocator sleeps we could get an allocation for a
290 * different hardware context. No need to complicate the low level
291 * allocator for this for the rare use case of a command tied to
292 * a specific queue.
293 */
294 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
295 return ERR_PTR(-EINVAL);
296
297 if (hctx_idx >= q->nr_hw_queues)
298 return ERR_PTR(-EIO);
299
300 ret = blk_queue_enter(q, true);
301 if (ret)
302 return ERR_PTR(ret);
303
c8712c6a
CH
304 /*
305 * Check if the hardware context is actually mapped to anything.
306 * If not tell the caller that it should skip this queue.
307 */
1f5bd336 308 hctx = q->queue_hw_ctx[hctx_idx];
c8712c6a
CH
309 if (!blk_mq_hw_queue_mapped(hctx)) {
310 ret = -EXDEV;
311 goto out_queue_exit;
312 }
1f5bd336
ML
313 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
314
315 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
ef295ecf 316 rq = __blk_mq_alloc_request(&alloc_data, rw);
1f5bd336 317 if (!rq) {
c8712c6a
CH
318 ret = -EWOULDBLOCK;
319 goto out_queue_exit;
1f5bd336
ML
320 }
321
322 return rq;
c8712c6a
CH
323
324out_queue_exit:
325 blk_queue_exit(q);
326 return ERR_PTR(ret);
1f5bd336
ML
327}
328EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
329
bd166ef1
JA
330void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
331 struct request *rq)
320ae51f 332{
bd166ef1 333 const int sched_tag = rq->internal_tag;
320ae51f
JA
334 struct request_queue *q = rq->q;
335
e8064021 336 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 337 atomic_dec(&hctx->nr_active);
87760e5e
JA
338
339 wbt_done(q->rq_wb, &rq->issue_stat);
e8064021 340 rq->rq_flags = 0;
0d2602ca 341
af76e555 342 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
06426adf 343 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
bd166ef1
JA
344 if (rq->tag != -1)
345 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
346 if (sched_tag != -1)
347 blk_mq_sched_completed_request(hctx, rq);
3ef28e83 348 blk_queue_exit(q);
320ae51f
JA
349}
350
bd166ef1 351static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
16a3c2a7 352 struct request *rq)
320ae51f
JA
353{
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
355
356 ctx->rq_completed[rq_is_sync(rq)]++;
bd166ef1
JA
357 __blk_mq_finish_request(hctx, ctx, rq);
358}
359
360void blk_mq_finish_request(struct request *rq)
361{
362 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
7c7f2f2b 363}
7c7f2f2b
JA
364
365void blk_mq_free_request(struct request *rq)
366{
bd166ef1 367 blk_mq_sched_put_request(rq);
320ae51f 368}
1a3b595a 369EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 370
c8a446ad 371inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 372{
0d11e6ac
ML
373 blk_account_io_done(rq);
374
91b63639 375 if (rq->end_io) {
87760e5e 376 wbt_done(rq->q->rq_wb, &rq->issue_stat);
320ae51f 377 rq->end_io(rq, error);
91b63639
CH
378 } else {
379 if (unlikely(blk_bidi_rq(rq)))
380 blk_mq_free_request(rq->next_rq);
320ae51f 381 blk_mq_free_request(rq);
91b63639 382 }
320ae51f 383}
c8a446ad 384EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 385
c8a446ad 386void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
387{
388 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
389 BUG();
c8a446ad 390 __blk_mq_end_request(rq, error);
63151a44 391}
c8a446ad 392EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 393
30a91cb4 394static void __blk_mq_complete_request_remote(void *data)
320ae51f 395{
3d6efbf6 396 struct request *rq = data;
320ae51f 397
30a91cb4 398 rq->q->softirq_done_fn(rq);
320ae51f 399}
320ae51f 400
ed851860 401static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
402{
403 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 404 bool shared = false;
320ae51f
JA
405 int cpu;
406
38535201 407 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
408 rq->q->softirq_done_fn(rq);
409 return;
410 }
320ae51f
JA
411
412 cpu = get_cpu();
38535201
CH
413 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
414 shared = cpus_share_cache(cpu, ctx->cpu);
415
416 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 417 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
418 rq->csd.info = rq;
419 rq->csd.flags = 0;
c46fff2a 420 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 421 } else {
30a91cb4 422 rq->q->softirq_done_fn(rq);
3d6efbf6 423 }
320ae51f
JA
424 put_cpu();
425}
30a91cb4 426
cf43e6be
JA
427static void blk_mq_stat_add(struct request *rq)
428{
429 if (rq->rq_flags & RQF_STATS) {
430 /*
431 * We could rq->mq_ctx here, but there's less of a risk
432 * of races if we have the completion event add the stats
433 * to the local software queue.
434 */
435 struct blk_mq_ctx *ctx;
436
437 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
438 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
439 }
440}
441
1fa8cc52 442static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
443{
444 struct request_queue *q = rq->q;
445
cf43e6be
JA
446 blk_mq_stat_add(rq);
447
ed851860 448 if (!q->softirq_done_fn)
c8a446ad 449 blk_mq_end_request(rq, rq->errors);
ed851860
JA
450 else
451 blk_mq_ipi_complete_request(rq);
452}
453
30a91cb4
CH
454/**
455 * blk_mq_complete_request - end I/O on a request
456 * @rq: the request being processed
457 *
458 * Description:
459 * Ends all I/O on a request. It does not handle partial completions.
460 * The actual completion happens out-of-order, through a IPI handler.
461 **/
f4829a9b 462void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 463{
95f09684
JA
464 struct request_queue *q = rq->q;
465
466 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 467 return;
f4829a9b
CH
468 if (!blk_mark_rq_complete(rq)) {
469 rq->errors = error;
ed851860 470 __blk_mq_complete_request(rq);
f4829a9b 471 }
30a91cb4
CH
472}
473EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 474
973c0191
KB
475int blk_mq_request_started(struct request *rq)
476{
477 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
478}
479EXPORT_SYMBOL_GPL(blk_mq_request_started);
480
e2490073 481void blk_mq_start_request(struct request *rq)
320ae51f
JA
482{
483 struct request_queue *q = rq->q;
484
bd166ef1
JA
485 blk_mq_sched_started_request(rq);
486
320ae51f
JA
487 trace_block_rq_issue(q, rq);
488
742ee69b 489 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
490 if (unlikely(blk_bidi_rq(rq)))
491 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 492
cf43e6be
JA
493 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494 blk_stat_set_issue_time(&rq->issue_stat);
495 rq->rq_flags |= RQF_STATS;
87760e5e 496 wbt_issue(q->rq_wb, &rq->issue_stat);
cf43e6be
JA
497 }
498
2b8393b4 499 blk_add_timer(rq);
87ee7b11 500
538b7534
JA
501 /*
502 * Ensure that ->deadline is visible before set the started
503 * flag and clear the completed flag.
504 */
505 smp_mb__before_atomic();
506
87ee7b11
JA
507 /*
508 * Mark us as started and clear complete. Complete might have been
509 * set if requeue raced with timeout, which then marked it as
510 * complete. So be sure to clear complete again when we start
511 * the request, otherwise we'll ignore the completion event.
512 */
4b570521
JA
513 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
517
518 if (q->dma_drain_size && blk_rq_bytes(rq)) {
519 /*
520 * Make sure space for the drain appears. We know we can do
521 * this because max_hw_segments has been adjusted to be one
522 * fewer than the device can handle.
523 */
524 rq->nr_phys_segments++;
525 }
320ae51f 526}
e2490073 527EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 528
ed0791b2 529static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
530{
531 struct request_queue *q = rq->q;
532
533 trace_block_rq_requeue(q, rq);
87760e5e 534 wbt_requeue(q->rq_wb, &rq->issue_stat);
bd166ef1 535 blk_mq_sched_requeue_request(rq);
49f5baa5 536
e2490073
CH
537 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
538 if (q->dma_drain_size && blk_rq_bytes(rq))
539 rq->nr_phys_segments--;
540 }
320ae51f
JA
541}
542
2b053aca 543void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 544{
ed0791b2 545 __blk_mq_requeue_request(rq);
ed0791b2 546
ed0791b2 547 BUG_ON(blk_queued_rq(rq));
2b053aca 548 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
549}
550EXPORT_SYMBOL(blk_mq_requeue_request);
551
6fca6a61
CH
552static void blk_mq_requeue_work(struct work_struct *work)
553{
554 struct request_queue *q =
2849450a 555 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
556 LIST_HEAD(rq_list);
557 struct request *rq, *next;
558 unsigned long flags;
559
560 spin_lock_irqsave(&q->requeue_lock, flags);
561 list_splice_init(&q->requeue_list, &rq_list);
562 spin_unlock_irqrestore(&q->requeue_lock, flags);
563
564 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
e8064021 565 if (!(rq->rq_flags & RQF_SOFTBARRIER))
6fca6a61
CH
566 continue;
567
e8064021 568 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 569 list_del_init(&rq->queuelist);
bd166ef1 570 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
571 }
572
573 while (!list_empty(&rq_list)) {
574 rq = list_entry(rq_list.next, struct request, queuelist);
575 list_del_init(&rq->queuelist);
bd166ef1 576 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
577 }
578
52d7f1b5 579 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
580}
581
2b053aca
BVA
582void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
583 bool kick_requeue_list)
6fca6a61
CH
584{
585 struct request_queue *q = rq->q;
586 unsigned long flags;
587
588 /*
589 * We abuse this flag that is otherwise used by the I/O scheduler to
590 * request head insertation from the workqueue.
591 */
e8064021 592 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
593
594 spin_lock_irqsave(&q->requeue_lock, flags);
595 if (at_head) {
e8064021 596 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
597 list_add(&rq->queuelist, &q->requeue_list);
598 } else {
599 list_add_tail(&rq->queuelist, &q->requeue_list);
600 }
601 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
602
603 if (kick_requeue_list)
604 blk_mq_kick_requeue_list(q);
6fca6a61
CH
605}
606EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
607
608void blk_mq_kick_requeue_list(struct request_queue *q)
609{
2849450a 610 kblockd_schedule_delayed_work(&q->requeue_work, 0);
6fca6a61
CH
611}
612EXPORT_SYMBOL(blk_mq_kick_requeue_list);
613
2849450a
MS
614void blk_mq_delay_kick_requeue_list(struct request_queue *q,
615 unsigned long msecs)
616{
617 kblockd_schedule_delayed_work(&q->requeue_work,
618 msecs_to_jiffies(msecs));
619}
620EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
621
1885b24d
JA
622void blk_mq_abort_requeue_list(struct request_queue *q)
623{
624 unsigned long flags;
625 LIST_HEAD(rq_list);
626
627 spin_lock_irqsave(&q->requeue_lock, flags);
628 list_splice_init(&q->requeue_list, &rq_list);
629 spin_unlock_irqrestore(&q->requeue_lock, flags);
630
631 while (!list_empty(&rq_list)) {
632 struct request *rq;
633
634 rq = list_first_entry(&rq_list, struct request, queuelist);
635 list_del_init(&rq->queuelist);
636 rq->errors = -EIO;
637 blk_mq_end_request(rq, rq->errors);
638 }
639}
640EXPORT_SYMBOL(blk_mq_abort_requeue_list);
641
0e62f51f
JA
642struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
643{
88c7b2b7
JA
644 if (tag < tags->nr_tags) {
645 prefetch(tags->rqs[tag]);
4ee86bab 646 return tags->rqs[tag];
88c7b2b7 647 }
4ee86bab
HR
648
649 return NULL;
24d2f903
CH
650}
651EXPORT_SYMBOL(blk_mq_tag_to_rq);
652
320ae51f 653struct blk_mq_timeout_data {
46f92d42
CH
654 unsigned long next;
655 unsigned int next_set;
320ae51f
JA
656};
657
90415837 658void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 659{
f8a5b122 660 const struct blk_mq_ops *ops = req->q->mq_ops;
46f92d42 661 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
662
663 /*
664 * We know that complete is set at this point. If STARTED isn't set
665 * anymore, then the request isn't active and the "timeout" should
666 * just be ignored. This can happen due to the bitflag ordering.
667 * Timeout first checks if STARTED is set, and if it is, assumes
668 * the request is active. But if we race with completion, then
669 * we both flags will get cleared. So check here again, and ignore
670 * a timeout event with a request that isn't active.
671 */
46f92d42
CH
672 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
673 return;
87ee7b11 674
46f92d42 675 if (ops->timeout)
0152fb6b 676 ret = ops->timeout(req, reserved);
46f92d42
CH
677
678 switch (ret) {
679 case BLK_EH_HANDLED:
680 __blk_mq_complete_request(req);
681 break;
682 case BLK_EH_RESET_TIMER:
683 blk_add_timer(req);
684 blk_clear_rq_complete(req);
685 break;
686 case BLK_EH_NOT_HANDLED:
687 break;
688 default:
689 printk(KERN_ERR "block: bad eh return: %d\n", ret);
690 break;
691 }
87ee7b11 692}
5b3f25fc 693
81481eb4
CH
694static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
695 struct request *rq, void *priv, bool reserved)
696{
697 struct blk_mq_timeout_data *data = priv;
87ee7b11 698
eb130dbf
KB
699 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
700 /*
701 * If a request wasn't started before the queue was
702 * marked dying, kill it here or it'll go unnoticed.
703 */
a59e0f57
KB
704 if (unlikely(blk_queue_dying(rq->q))) {
705 rq->errors = -EIO;
706 blk_mq_end_request(rq, rq->errors);
707 }
46f92d42 708 return;
eb130dbf 709 }
87ee7b11 710
46f92d42
CH
711 if (time_after_eq(jiffies, rq->deadline)) {
712 if (!blk_mark_rq_complete(rq))
0152fb6b 713 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
714 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
715 data->next = rq->deadline;
716 data->next_set = 1;
717 }
87ee7b11
JA
718}
719
287922eb 720static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 721{
287922eb
CH
722 struct request_queue *q =
723 container_of(work, struct request_queue, timeout_work);
81481eb4
CH
724 struct blk_mq_timeout_data data = {
725 .next = 0,
726 .next_set = 0,
727 };
81481eb4 728 int i;
320ae51f 729
71f79fb3
GKB
730 /* A deadlock might occur if a request is stuck requiring a
731 * timeout at the same time a queue freeze is waiting
732 * completion, since the timeout code would not be able to
733 * acquire the queue reference here.
734 *
735 * That's why we don't use blk_queue_enter here; instead, we use
736 * percpu_ref_tryget directly, because we need to be able to
737 * obtain a reference even in the short window between the queue
738 * starting to freeze, by dropping the first reference in
739 * blk_mq_freeze_queue_start, and the moment the last request is
740 * consumed, marked by the instant q_usage_counter reaches
741 * zero.
742 */
743 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
744 return;
745
0bf6cd5b 746 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 747
81481eb4
CH
748 if (data.next_set) {
749 data.next = blk_rq_timeout(round_jiffies_up(data.next));
750 mod_timer(&q->timeout, data.next);
0d2602ca 751 } else {
0bf6cd5b
CH
752 struct blk_mq_hw_ctx *hctx;
753
f054b56c
ML
754 queue_for_each_hw_ctx(q, hctx, i) {
755 /* the hctx may be unmapped, so check it here */
756 if (blk_mq_hw_queue_mapped(hctx))
757 blk_mq_tag_idle(hctx);
758 }
0d2602ca 759 }
287922eb 760 blk_queue_exit(q);
320ae51f
JA
761}
762
763/*
764 * Reverse check our software queue for entries that we could potentially
765 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
766 * too much time checking for merges.
767 */
768static bool blk_mq_attempt_merge(struct request_queue *q,
769 struct blk_mq_ctx *ctx, struct bio *bio)
770{
771 struct request *rq;
772 int checked = 8;
773
774 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
775 int el_ret;
776
777 if (!checked--)
778 break;
779
780 if (!blk_rq_merge_ok(rq, bio))
781 continue;
782
783 el_ret = blk_try_merge(rq, bio);
bd166ef1
JA
784 if (el_ret == ELEVATOR_NO_MERGE)
785 continue;
786
787 if (!blk_mq_sched_allow_merge(q, rq, bio))
788 break;
789
320ae51f
JA
790 if (el_ret == ELEVATOR_BACK_MERGE) {
791 if (bio_attempt_back_merge(q, rq, bio)) {
792 ctx->rq_merged++;
793 return true;
794 }
795 break;
796 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
797 if (bio_attempt_front_merge(q, rq, bio)) {
798 ctx->rq_merged++;
799 return true;
800 }
801 break;
802 }
803 }
804
805 return false;
806}
807
88459642
OS
808struct flush_busy_ctx_data {
809 struct blk_mq_hw_ctx *hctx;
810 struct list_head *list;
811};
812
813static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
814{
815 struct flush_busy_ctx_data *flush_data = data;
816 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
817 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
818
819 sbitmap_clear_bit(sb, bitnr);
820 spin_lock(&ctx->lock);
821 list_splice_tail_init(&ctx->rq_list, flush_data->list);
822 spin_unlock(&ctx->lock);
823 return true;
824}
825
1429d7c9
JA
826/*
827 * Process software queues that have been marked busy, splicing them
828 * to the for-dispatch
829 */
2c3ad667 830void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 831{
88459642
OS
832 struct flush_busy_ctx_data data = {
833 .hctx = hctx,
834 .list = list,
835 };
1429d7c9 836
88459642 837 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 838}
2c3ad667 839EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 840
703fd1c0
JA
841static inline unsigned int queued_to_index(unsigned int queued)
842{
843 if (!queued)
844 return 0;
1429d7c9 845
703fd1c0 846 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
847}
848
bd166ef1
JA
849static bool blk_mq_get_driver_tag(struct request *rq,
850 struct blk_mq_hw_ctx **hctx, bool wait)
851{
852 struct blk_mq_alloc_data data = {
853 .q = rq->q,
854 .ctx = rq->mq_ctx,
855 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
856 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
857 };
858
859 if (blk_mq_hctx_stopped(data.hctx))
860 return false;
861
862 if (rq->tag != -1) {
863done:
864 if (hctx)
865 *hctx = data.hctx;
866 return true;
867 }
868
869 rq->tag = blk_mq_get_tag(&data);
870 if (rq->tag >= 0) {
200e86b3
JA
871 if (blk_mq_tag_busy(data.hctx)) {
872 rq->rq_flags |= RQF_MQ_INFLIGHT;
873 atomic_inc(&data.hctx->nr_active);
874 }
bd166ef1
JA
875 data.hctx->tags->rqs[rq->tag] = rq;
876 goto done;
877 }
878
879 return false;
880}
881
882/*
883 * If we fail getting a driver tag because all the driver tags are already
884 * assigned and on the dispatch list, BUT the first entry does not have a
885 * tag, then we could deadlock. For that case, move entries with assigned
886 * driver tags to the front, leaving the set of tagged requests in the
887 * same order, and the untagged set in the same order.
888 */
889static bool reorder_tags_to_front(struct list_head *list)
890{
891 struct request *rq, *tmp, *first = NULL;
892
893 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
894 if (rq == first)
895 break;
896 if (rq->tag != -1) {
897 list_move(&rq->queuelist, list);
898 if (!first)
899 first = rq;
900 }
901 }
902
903 return first != NULL;
904}
905
f04c3df3 906bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
320ae51f
JA
907{
908 struct request_queue *q = hctx->queue;
320ae51f 909 struct request *rq;
74c45052
JA
910 LIST_HEAD(driver_list);
911 struct list_head *dptr;
f04c3df3 912 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
320ae51f 913
74c45052
JA
914 /*
915 * Start off with dptr being NULL, so we start the first request
916 * immediately, even if we have more pending.
917 */
918 dptr = NULL;
919
320ae51f
JA
920 /*
921 * Now process all the entries, sending them to the driver.
922 */
1429d7c9 923 queued = 0;
f04c3df3 924 while (!list_empty(list)) {
74c45052 925 struct blk_mq_queue_data bd;
320ae51f 926
f04c3df3 927 rq = list_first_entry(list, struct request, queuelist);
bd166ef1
JA
928 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
929 if (!queued && reorder_tags_to_front(list))
930 continue;
931 blk_mq_sched_mark_restart(hctx);
932 break;
933 }
320ae51f 934 list_del_init(&rq->queuelist);
320ae51f 935
74c45052
JA
936 bd.rq = rq;
937 bd.list = dptr;
f04c3df3 938 bd.last = list_empty(list);
74c45052
JA
939
940 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
941 switch (ret) {
942 case BLK_MQ_RQ_QUEUE_OK:
943 queued++;
52b9c330 944 break;
320ae51f 945 case BLK_MQ_RQ_QUEUE_BUSY:
f04c3df3 946 list_add(&rq->queuelist, list);
ed0791b2 947 __blk_mq_requeue_request(rq);
320ae51f
JA
948 break;
949 default:
950 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 951 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 952 rq->errors = -EIO;
c8a446ad 953 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
954 break;
955 }
956
957 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
958 break;
74c45052
JA
959
960 /*
961 * We've done the first request. If we have more than 1
962 * left in the list, set dptr to defer issue.
963 */
f04c3df3 964 if (!dptr && list->next != list->prev)
74c45052 965 dptr = &driver_list;
320ae51f
JA
966 }
967
703fd1c0 968 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
969
970 /*
971 * Any items that need requeuing? Stuff them into hctx->dispatch,
972 * that is where we will continue on next queue run.
973 */
f04c3df3 974 if (!list_empty(list)) {
320ae51f 975 spin_lock(&hctx->lock);
f04c3df3 976 list_splice(list, &hctx->dispatch);
320ae51f 977 spin_unlock(&hctx->lock);
f04c3df3 978
9ba52e58
SL
979 /*
980 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
981 * it's possible the queue is stopped and restarted again
982 * before this. Queue restart will dispatch requests. And since
983 * requests in rq_list aren't added into hctx->dispatch yet,
984 * the requests in rq_list might get lost.
985 *
986 * blk_mq_run_hw_queue() already checks the STOPPED bit
bd166ef1
JA
987 *
988 * If RESTART is set, then let completion restart the queue
989 * instead of potentially looping here.
990 */
991 if (!blk_mq_sched_needs_restart(hctx))
992 blk_mq_run_hw_queue(hctx, true);
320ae51f 993 }
f04c3df3
JA
994
995 return ret != BLK_MQ_RQ_QUEUE_BUSY;
996}
997
6a83e74d
BVA
998static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
999{
1000 int srcu_idx;
1001
1002 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1003 cpu_online(hctx->next_cpu));
1004
1005 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1006 rcu_read_lock();
bd166ef1 1007 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1008 rcu_read_unlock();
1009 } else {
1010 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
bd166ef1 1011 blk_mq_sched_dispatch_requests(hctx);
6a83e74d
BVA
1012 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1013 }
1014}
1015
506e931f
JA
1016/*
1017 * It'd be great if the workqueue API had a way to pass
1018 * in a mask and had some smarts for more clever placement.
1019 * For now we just round-robin here, switching for every
1020 * BLK_MQ_CPU_WORK_BATCH queued items.
1021 */
1022static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1023{
b657d7e6
CH
1024 if (hctx->queue->nr_hw_queues == 1)
1025 return WORK_CPU_UNBOUND;
506e931f
JA
1026
1027 if (--hctx->next_cpu_batch <= 0) {
c02ebfdd 1028 int next_cpu;
506e931f
JA
1029
1030 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1031 if (next_cpu >= nr_cpu_ids)
1032 next_cpu = cpumask_first(hctx->cpumask);
1033
1034 hctx->next_cpu = next_cpu;
1035 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1036 }
1037
b657d7e6 1038 return hctx->next_cpu;
506e931f
JA
1039}
1040
320ae51f
JA
1041void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1042{
5d1b25c1
BVA
1043 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1044 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
1045 return;
1046
1b792f2f 1047 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1048 int cpu = get_cpu();
1049 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1050 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1051 put_cpu();
398205b8
PB
1052 return;
1053 }
e4043dcf 1054
2a90d4aa 1055 put_cpu();
e4043dcf 1056 }
398205b8 1057
27489a3c 1058 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
320ae51f
JA
1059}
1060
b94ec296 1061void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1062{
1063 struct blk_mq_hw_ctx *hctx;
1064 int i;
1065
1066 queue_for_each_hw_ctx(q, hctx, i) {
bd166ef1 1067 if (!blk_mq_hctx_has_pending(hctx) ||
5d1b25c1 1068 blk_mq_hctx_stopped(hctx))
320ae51f
JA
1069 continue;
1070
b94ec296 1071 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1072 }
1073}
b94ec296 1074EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1075
fd001443
BVA
1076/**
1077 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1078 * @q: request queue.
1079 *
1080 * The caller is responsible for serializing this function against
1081 * blk_mq_{start,stop}_hw_queue().
1082 */
1083bool blk_mq_queue_stopped(struct request_queue *q)
1084{
1085 struct blk_mq_hw_ctx *hctx;
1086 int i;
1087
1088 queue_for_each_hw_ctx(q, hctx, i)
1089 if (blk_mq_hctx_stopped(hctx))
1090 return true;
1091
1092 return false;
1093}
1094EXPORT_SYMBOL(blk_mq_queue_stopped);
1095
320ae51f
JA
1096void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1097{
27489a3c 1098 cancel_work(&hctx->run_work);
70f4db63 1099 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
1100 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1101}
1102EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1103
280d45f6
CH
1104void blk_mq_stop_hw_queues(struct request_queue *q)
1105{
1106 struct blk_mq_hw_ctx *hctx;
1107 int i;
1108
1109 queue_for_each_hw_ctx(q, hctx, i)
1110 blk_mq_stop_hw_queue(hctx);
1111}
1112EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1113
320ae51f
JA
1114void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1115{
1116 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1117
0ffbce80 1118 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1119}
1120EXPORT_SYMBOL(blk_mq_start_hw_queue);
1121
2f268556
CH
1122void blk_mq_start_hw_queues(struct request_queue *q)
1123{
1124 struct blk_mq_hw_ctx *hctx;
1125 int i;
1126
1127 queue_for_each_hw_ctx(q, hctx, i)
1128 blk_mq_start_hw_queue(hctx);
1129}
1130EXPORT_SYMBOL(blk_mq_start_hw_queues);
1131
ae911c5e
JA
1132void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1133{
1134 if (!blk_mq_hctx_stopped(hctx))
1135 return;
1136
1137 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1138 blk_mq_run_hw_queue(hctx, async);
1139}
1140EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1141
1b4a3258 1142void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1143{
1144 struct blk_mq_hw_ctx *hctx;
1145 int i;
1146
ae911c5e
JA
1147 queue_for_each_hw_ctx(q, hctx, i)
1148 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1149}
1150EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1151
70f4db63 1152static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1153{
1154 struct blk_mq_hw_ctx *hctx;
1155
27489a3c 1156 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
e4043dcf 1157
320ae51f
JA
1158 __blk_mq_run_hw_queue(hctx);
1159}
1160
70f4db63
CH
1161static void blk_mq_delay_work_fn(struct work_struct *work)
1162{
1163 struct blk_mq_hw_ctx *hctx;
1164
1165 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1166
1167 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1168 __blk_mq_run_hw_queue(hctx);
1169}
1170
1171void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1172{
19c66e59
ML
1173 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1174 return;
70f4db63 1175
7e79dadc 1176 blk_mq_stop_hw_queue(hctx);
b657d7e6
CH
1177 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1178 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1179}
1180EXPORT_SYMBOL(blk_mq_delay_queue);
1181
cfd0c552 1182static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1183 struct request *rq,
1184 bool at_head)
320ae51f 1185{
e57690fe
JA
1186 struct blk_mq_ctx *ctx = rq->mq_ctx;
1187
01b983c9
JA
1188 trace_block_rq_insert(hctx->queue, rq);
1189
72a0a36e
CH
1190 if (at_head)
1191 list_add(&rq->queuelist, &ctx->rq_list);
1192 else
1193 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 1194}
4bb659b1 1195
2c3ad667
JA
1196void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1197 bool at_head)
cfd0c552
ML
1198{
1199 struct blk_mq_ctx *ctx = rq->mq_ctx;
1200
e57690fe 1201 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1202 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1203}
1204
bd166ef1
JA
1205void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1206 struct list_head *list)
320ae51f
JA
1207
1208{
320ae51f
JA
1209 /*
1210 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1211 * offline now
1212 */
1213 spin_lock(&ctx->lock);
1214 while (!list_empty(list)) {
1215 struct request *rq;
1216
1217 rq = list_first_entry(list, struct request, queuelist);
e57690fe 1218 BUG_ON(rq->mq_ctx != ctx);
320ae51f 1219 list_del_init(&rq->queuelist);
e57690fe 1220 __blk_mq_insert_req_list(hctx, rq, false);
320ae51f 1221 }
cfd0c552 1222 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1223 spin_unlock(&ctx->lock);
320ae51f
JA
1224}
1225
1226static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1227{
1228 struct request *rqa = container_of(a, struct request, queuelist);
1229 struct request *rqb = container_of(b, struct request, queuelist);
1230
1231 return !(rqa->mq_ctx < rqb->mq_ctx ||
1232 (rqa->mq_ctx == rqb->mq_ctx &&
1233 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1234}
1235
1236void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1237{
1238 struct blk_mq_ctx *this_ctx;
1239 struct request_queue *this_q;
1240 struct request *rq;
1241 LIST_HEAD(list);
1242 LIST_HEAD(ctx_list);
1243 unsigned int depth;
1244
1245 list_splice_init(&plug->mq_list, &list);
1246
1247 list_sort(NULL, &list, plug_ctx_cmp);
1248
1249 this_q = NULL;
1250 this_ctx = NULL;
1251 depth = 0;
1252
1253 while (!list_empty(&list)) {
1254 rq = list_entry_rq(list.next);
1255 list_del_init(&rq->queuelist);
1256 BUG_ON(!rq->q);
1257 if (rq->mq_ctx != this_ctx) {
1258 if (this_ctx) {
bd166ef1
JA
1259 trace_block_unplug(this_q, depth, from_schedule);
1260 blk_mq_sched_insert_requests(this_q, this_ctx,
1261 &ctx_list,
1262 from_schedule);
320ae51f
JA
1263 }
1264
1265 this_ctx = rq->mq_ctx;
1266 this_q = rq->q;
1267 depth = 0;
1268 }
1269
1270 depth++;
1271 list_add_tail(&rq->queuelist, &ctx_list);
1272 }
1273
1274 /*
1275 * If 'this_ctx' is set, we know we have entries to complete
1276 * on 'ctx_list'. Do those.
1277 */
1278 if (this_ctx) {
bd166ef1
JA
1279 trace_block_unplug(this_q, depth, from_schedule);
1280 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1281 from_schedule);
320ae51f
JA
1282 }
1283}
1284
1285static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1286{
1287 init_request_from_bio(rq, bio);
4b570521 1288
6e85eaf3 1289 blk_account_io_start(rq, true);
320ae51f
JA
1290}
1291
274a5843
JA
1292static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1293{
1294 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1295 !blk_queue_nomerges(hctx->queue);
1296}
1297
07068d5b
JA
1298static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1299 struct blk_mq_ctx *ctx,
1300 struct request *rq, struct bio *bio)
320ae51f 1301{
e18378a6 1302 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1303 blk_mq_bio_to_request(rq, bio);
1304 spin_lock(&ctx->lock);
1305insert_rq:
1306 __blk_mq_insert_request(hctx, rq, false);
1307 spin_unlock(&ctx->lock);
1308 return false;
1309 } else {
274a5843
JA
1310 struct request_queue *q = hctx->queue;
1311
07068d5b
JA
1312 spin_lock(&ctx->lock);
1313 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1314 blk_mq_bio_to_request(rq, bio);
1315 goto insert_rq;
1316 }
320ae51f 1317
07068d5b 1318 spin_unlock(&ctx->lock);
bd166ef1 1319 __blk_mq_finish_request(hctx, ctx, rq);
07068d5b 1320 return true;
14ec77f3 1321 }
07068d5b 1322}
14ec77f3 1323
fd2d3326
JA
1324static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1325{
bd166ef1
JA
1326 if (rq->tag != -1)
1327 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1328
1329 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
fd2d3326
JA
1330}
1331
066a4a73 1332static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
f984df1f 1333{
f984df1f 1334 struct request_queue *q = rq->q;
f984df1f
SL
1335 struct blk_mq_queue_data bd = {
1336 .rq = rq,
1337 .list = NULL,
1338 .last = 1
1339 };
bd166ef1
JA
1340 struct blk_mq_hw_ctx *hctx;
1341 blk_qc_t new_cookie;
1342 int ret;
f984df1f 1343
bd166ef1 1344 if (q->elevator)
2253efc8
BVA
1345 goto insert;
1346
bd166ef1
JA
1347 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1348 goto insert;
1349
1350 new_cookie = request_to_qc_t(hctx, rq);
1351
f984df1f
SL
1352 /*
1353 * For OK queue, we are done. For error, kill it. Any other
1354 * error (busy), just add it to our list as we previously
1355 * would have done
1356 */
1357 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1358 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1359 *cookie = new_cookie;
2253efc8 1360 return;
7b371636 1361 }
f984df1f 1362
7b371636
JA
1363 __blk_mq_requeue_request(rq);
1364
1365 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1366 *cookie = BLK_QC_T_NONE;
1367 rq->errors = -EIO;
1368 blk_mq_end_request(rq, rq->errors);
2253efc8 1369 return;
f984df1f 1370 }
7b371636 1371
2253efc8 1372insert:
bd166ef1 1373 blk_mq_sched_insert_request(rq, false, true, true);
f984df1f
SL
1374}
1375
07068d5b
JA
1376/*
1377 * Multiple hardware queue variant. This will not use per-process plugs,
1378 * but will attempt to bypass the hctx queueing if we can go straight to
1379 * hardware for SYNC IO.
1380 */
dece1635 1381static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1382{
ef295ecf 1383 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1384 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
5a797e00 1385 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1386 struct request *rq;
6a83e74d 1387 unsigned int request_count = 0, srcu_idx;
f984df1f 1388 struct blk_plug *plug;
5b3f341f 1389 struct request *same_queue_rq = NULL;
7b371636 1390 blk_qc_t cookie;
87760e5e 1391 unsigned int wb_acct;
07068d5b
JA
1392
1393 blk_queue_bounce(q, &bio);
1394
1395 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1396 bio_io_error(bio);
dece1635 1397 return BLK_QC_T_NONE;
07068d5b
JA
1398 }
1399
54efd50b
KO
1400 blk_queue_split(q, &bio, q->bio_split);
1401
87c279e6
OS
1402 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1403 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1404 return BLK_QC_T_NONE;
f984df1f 1405
bd166ef1
JA
1406 if (blk_mq_sched_bio_merge(q, bio))
1407 return BLK_QC_T_NONE;
1408
87760e5e
JA
1409 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1410
bd166ef1
JA
1411 trace_block_getrq(q, bio, bio->bi_opf);
1412
1413 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1414 if (unlikely(!rq)) {
1415 __wbt_done(q->rq_wb, wb_acct);
dece1635 1416 return BLK_QC_T_NONE;
87760e5e
JA
1417 }
1418
1419 wbt_track(&rq->issue_stat, wb_acct);
07068d5b 1420
fd2d3326 1421 cookie = request_to_qc_t(data.hctx, rq);
07068d5b
JA
1422
1423 if (unlikely(is_flush_fua)) {
1424 blk_mq_bio_to_request(rq, bio);
bd166ef1 1425 blk_mq_get_driver_tag(rq, NULL, true);
07068d5b
JA
1426 blk_insert_flush(rq);
1427 goto run_queue;
1428 }
1429
f984df1f 1430 plug = current->plug;
e167dfb5
JA
1431 /*
1432 * If the driver supports defer issued based on 'last', then
1433 * queue it up like normal since we can potentially save some
1434 * CPU this way.
1435 */
f984df1f
SL
1436 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1437 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1438 struct request *old_rq = NULL;
07068d5b
JA
1439
1440 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1441
1442 /*
6a83e74d 1443 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
1444 * Otherwise the existing request in the plug list will be
1445 * issued. So the plug list will have one request at most
07068d5b 1446 */
f984df1f 1447 if (plug) {
5b3f341f
SL
1448 /*
1449 * The plug list might get flushed before this. If that
b094f89c
JA
1450 * happens, same_queue_rq is invalid and plug list is
1451 * empty
1452 */
5b3f341f
SL
1453 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1454 old_rq = same_queue_rq;
f984df1f 1455 list_del_init(&old_rq->queuelist);
07068d5b 1456 }
f984df1f
SL
1457 list_add_tail(&rq->queuelist, &plug->mq_list);
1458 } else /* is_sync */
1459 old_rq = rq;
1460 blk_mq_put_ctx(data.ctx);
1461 if (!old_rq)
7b371636 1462 goto done;
6a83e74d
BVA
1463
1464 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1465 rcu_read_lock();
066a4a73 1466 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1467 rcu_read_unlock();
1468 } else {
1469 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
066a4a73 1470 blk_mq_try_issue_directly(old_rq, &cookie);
6a83e74d
BVA
1471 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1472 }
7b371636 1473 goto done;
07068d5b
JA
1474 }
1475
bd166ef1
JA
1476 if (q->elevator) {
1477 blk_mq_put_ctx(data.ctx);
1478 blk_mq_bio_to_request(rq, bio);
1479 blk_mq_sched_insert_request(rq, false, true, true);
1480 goto done;
1481 }
07068d5b
JA
1482 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1483 /*
1484 * For a SYNC request, send it to the hardware immediately. For
1485 * an ASYNC request, just ensure that we run it later on. The
1486 * latter allows for merging opportunities and more efficient
1487 * dispatching.
1488 */
1489run_queue:
1490 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1491 }
07068d5b 1492 blk_mq_put_ctx(data.ctx);
7b371636
JA
1493done:
1494 return cookie;
07068d5b
JA
1495}
1496
1497/*
1498 * Single hardware queue variant. This will attempt to use any per-process
1499 * plug for merging and IO deferral.
1500 */
dece1635 1501static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1502{
ef295ecf 1503 const int is_sync = op_is_sync(bio->bi_opf);
1eff9d32 1504 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
e6c4438b
JM
1505 struct blk_plug *plug;
1506 unsigned int request_count = 0;
5a797e00 1507 struct blk_mq_alloc_data data = { .flags = 0 };
07068d5b 1508 struct request *rq;
7b371636 1509 blk_qc_t cookie;
87760e5e 1510 unsigned int wb_acct;
07068d5b 1511
07068d5b
JA
1512 blk_queue_bounce(q, &bio);
1513
1514 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1515 bio_io_error(bio);
dece1635 1516 return BLK_QC_T_NONE;
07068d5b
JA
1517 }
1518
54efd50b
KO
1519 blk_queue_split(q, &bio, q->bio_split);
1520
87c279e6
OS
1521 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1522 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1523 return BLK_QC_T_NONE;
1524 } else
1525 request_count = blk_plug_queued_count(q);
07068d5b 1526
bd166ef1
JA
1527 if (blk_mq_sched_bio_merge(q, bio))
1528 return BLK_QC_T_NONE;
1529
87760e5e
JA
1530 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1531
bd166ef1
JA
1532 trace_block_getrq(q, bio, bio->bi_opf);
1533
1534 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
87760e5e
JA
1535 if (unlikely(!rq)) {
1536 __wbt_done(q->rq_wb, wb_acct);
dece1635 1537 return BLK_QC_T_NONE;
87760e5e
JA
1538 }
1539
1540 wbt_track(&rq->issue_stat, wb_acct);
320ae51f 1541
fd2d3326 1542 cookie = request_to_qc_t(data.hctx, rq);
320ae51f
JA
1543
1544 if (unlikely(is_flush_fua)) {
1545 blk_mq_bio_to_request(rq, bio);
bd166ef1 1546 blk_mq_get_driver_tag(rq, NULL, true);
320ae51f
JA
1547 blk_insert_flush(rq);
1548 goto run_queue;
1549 }
1550
1551 /*
1552 * A task plug currently exists. Since this is completely lockless,
1553 * utilize that to temporarily store requests until the task is
1554 * either done or scheduled away.
1555 */
e6c4438b
JM
1556 plug = current->plug;
1557 if (plug) {
600271d9
SL
1558 struct request *last = NULL;
1559
e6c4438b 1560 blk_mq_bio_to_request(rq, bio);
0a6219a9
ML
1561
1562 /*
1563 * @request_count may become stale because of schedule
1564 * out, so check the list again.
1565 */
1566 if (list_empty(&plug->mq_list))
1567 request_count = 0;
676d0607 1568 if (!request_count)
e6c4438b 1569 trace_block_plug(q);
600271d9
SL
1570 else
1571 last = list_entry_rq(plug->mq_list.prev);
b094f89c
JA
1572
1573 blk_mq_put_ctx(data.ctx);
1574
600271d9
SL
1575 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1576 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
1577 blk_flush_plug_list(plug, false);
1578 trace_block_plug(q);
320ae51f 1579 }
b094f89c 1580
e6c4438b 1581 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1582 return cookie;
320ae51f
JA
1583 }
1584
bd166ef1
JA
1585 if (q->elevator) {
1586 blk_mq_put_ctx(data.ctx);
1587 blk_mq_bio_to_request(rq, bio);
1588 blk_mq_sched_insert_request(rq, false, true, true);
1589 goto done;
1590 }
07068d5b
JA
1591 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1592 /*
1593 * For a SYNC request, send it to the hardware immediately. For
1594 * an ASYNC request, just ensure that we run it later on. The
1595 * latter allows for merging opportunities and more efficient
1596 * dispatching.
1597 */
1598run_queue:
1599 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1600 }
1601
07068d5b 1602 blk_mq_put_ctx(data.ctx);
bd166ef1 1603done:
7b371636 1604 return cookie;
320ae51f
JA
1605}
1606
cc71a6f4
JA
1607void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1608 unsigned int hctx_idx)
95363efd 1609{
e9b267d9 1610 struct page *page;
320ae51f 1611
24d2f903 1612 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1613 int i;
320ae51f 1614
24d2f903 1615 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
1616 struct request *rq = tags->static_rqs[i];
1617
1618 if (!rq)
e9b267d9 1619 continue;
2af8cbe3 1620 set->ops->exit_request(set->driver_data, rq,
24d2f903 1621 hctx_idx, i);
2af8cbe3 1622 tags->static_rqs[i] = NULL;
e9b267d9 1623 }
320ae51f 1624 }
320ae51f 1625
24d2f903
CH
1626 while (!list_empty(&tags->page_list)) {
1627 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1628 list_del_init(&page->lru);
f75782e4
CM
1629 /*
1630 * Remove kmemleak object previously allocated in
1631 * blk_mq_init_rq_map().
1632 */
1633 kmemleak_free(page_address(page));
320ae51f
JA
1634 __free_pages(page, page->private);
1635 }
cc71a6f4 1636}
320ae51f 1637
cc71a6f4
JA
1638void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1639{
24d2f903 1640 kfree(tags->rqs);
cc71a6f4 1641 tags->rqs = NULL;
2af8cbe3
JA
1642 kfree(tags->static_rqs);
1643 tags->static_rqs = NULL;
320ae51f 1644
24d2f903 1645 blk_mq_free_tags(tags);
320ae51f
JA
1646}
1647
cc71a6f4
JA
1648struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1649 unsigned int hctx_idx,
1650 unsigned int nr_tags,
1651 unsigned int reserved_tags)
320ae51f 1652{
24d2f903 1653 struct blk_mq_tags *tags;
320ae51f 1654
cc71a6f4 1655 tags = blk_mq_init_tags(nr_tags, reserved_tags,
24391c0d
SL
1656 set->numa_node,
1657 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1658 if (!tags)
1659 return NULL;
320ae51f 1660
cc71a6f4 1661 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
36e1f3d1 1662 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
a5164405 1663 set->numa_node);
24d2f903
CH
1664 if (!tags->rqs) {
1665 blk_mq_free_tags(tags);
1666 return NULL;
1667 }
320ae51f 1668
2af8cbe3
JA
1669 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1670 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1671 set->numa_node);
1672 if (!tags->static_rqs) {
1673 kfree(tags->rqs);
1674 blk_mq_free_tags(tags);
1675 return NULL;
1676 }
1677
cc71a6f4
JA
1678 return tags;
1679}
1680
1681static size_t order_to_size(unsigned int order)
1682{
1683 return (size_t)PAGE_SIZE << order;
1684}
1685
1686int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1687 unsigned int hctx_idx, unsigned int depth)
1688{
1689 unsigned int i, j, entries_per_page, max_order = 4;
1690 size_t rq_size, left;
1691
1692 INIT_LIST_HEAD(&tags->page_list);
1693
320ae51f
JA
1694 /*
1695 * rq_size is the size of the request plus driver payload, rounded
1696 * to the cacheline size
1697 */
24d2f903 1698 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1699 cache_line_size());
cc71a6f4 1700 left = rq_size * depth;
320ae51f 1701
cc71a6f4 1702 for (i = 0; i < depth; ) {
320ae51f
JA
1703 int this_order = max_order;
1704 struct page *page;
1705 int to_do;
1706 void *p;
1707
b3a834b1 1708 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
1709 this_order--;
1710
1711 do {
a5164405 1712 page = alloc_pages_node(set->numa_node,
36e1f3d1 1713 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1714 this_order);
320ae51f
JA
1715 if (page)
1716 break;
1717 if (!this_order--)
1718 break;
1719 if (order_to_size(this_order) < rq_size)
1720 break;
1721 } while (1);
1722
1723 if (!page)
24d2f903 1724 goto fail;
320ae51f
JA
1725
1726 page->private = this_order;
24d2f903 1727 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1728
1729 p = page_address(page);
f75782e4
CM
1730 /*
1731 * Allow kmemleak to scan these pages as they contain pointers
1732 * to additional allocations like via ops->init_request().
1733 */
36e1f3d1 1734 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 1735 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 1736 to_do = min(entries_per_page, depth - i);
320ae51f
JA
1737 left -= to_do * rq_size;
1738 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
1739 struct request *rq = p;
1740
1741 tags->static_rqs[i] = rq;
24d2f903
CH
1742 if (set->ops->init_request) {
1743 if (set->ops->init_request(set->driver_data,
2af8cbe3 1744 rq, hctx_idx, i,
a5164405 1745 set->numa_node)) {
2af8cbe3 1746 tags->static_rqs[i] = NULL;
24d2f903 1747 goto fail;
a5164405 1748 }
e9b267d9
CH
1749 }
1750
320ae51f
JA
1751 p += rq_size;
1752 i++;
1753 }
1754 }
cc71a6f4 1755 return 0;
320ae51f 1756
24d2f903 1757fail:
cc71a6f4
JA
1758 blk_mq_free_rqs(set, tags, hctx_idx);
1759 return -ENOMEM;
320ae51f
JA
1760}
1761
e57690fe
JA
1762/*
1763 * 'cpu' is going away. splice any existing rq_list entries from this
1764 * software queue to the hw queue dispatch list, and ensure that it
1765 * gets run.
1766 */
9467f859 1767static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 1768{
9467f859 1769 struct blk_mq_hw_ctx *hctx;
484b4061
JA
1770 struct blk_mq_ctx *ctx;
1771 LIST_HEAD(tmp);
1772
9467f859 1773 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 1774 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
484b4061
JA
1775
1776 spin_lock(&ctx->lock);
1777 if (!list_empty(&ctx->rq_list)) {
1778 list_splice_init(&ctx->rq_list, &tmp);
1779 blk_mq_hctx_clear_pending(hctx, ctx);
1780 }
1781 spin_unlock(&ctx->lock);
1782
1783 if (list_empty(&tmp))
9467f859 1784 return 0;
484b4061 1785
e57690fe
JA
1786 spin_lock(&hctx->lock);
1787 list_splice_tail_init(&tmp, &hctx->dispatch);
1788 spin_unlock(&hctx->lock);
484b4061
JA
1789
1790 blk_mq_run_hw_queue(hctx, true);
9467f859 1791 return 0;
484b4061
JA
1792}
1793
9467f859 1794static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 1795{
9467f859
TG
1796 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1797 &hctx->cpuhp_dead);
484b4061
JA
1798}
1799
c3b4afca 1800/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1801static void blk_mq_exit_hctx(struct request_queue *q,
1802 struct blk_mq_tag_set *set,
1803 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1804{
f70ced09
ML
1805 unsigned flush_start_tag = set->queue_depth;
1806
08e98fc6
ML
1807 blk_mq_tag_idle(hctx);
1808
f70ced09
ML
1809 if (set->ops->exit_request)
1810 set->ops->exit_request(set->driver_data,
1811 hctx->fq->flush_rq, hctx_idx,
1812 flush_start_tag + hctx_idx);
1813
08e98fc6
ML
1814 if (set->ops->exit_hctx)
1815 set->ops->exit_hctx(hctx, hctx_idx);
1816
6a83e74d
BVA
1817 if (hctx->flags & BLK_MQ_F_BLOCKING)
1818 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1819
9467f859 1820 blk_mq_remove_cpuhp(hctx);
f70ced09 1821 blk_free_flush_queue(hctx->fq);
88459642 1822 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1823}
1824
624dbe47
ML
1825static void blk_mq_exit_hw_queues(struct request_queue *q,
1826 struct blk_mq_tag_set *set, int nr_queue)
1827{
1828 struct blk_mq_hw_ctx *hctx;
1829 unsigned int i;
1830
1831 queue_for_each_hw_ctx(q, hctx, i) {
1832 if (i == nr_queue)
1833 break;
08e98fc6 1834 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1835 }
624dbe47
ML
1836}
1837
1838static void blk_mq_free_hw_queues(struct request_queue *q,
1839 struct blk_mq_tag_set *set)
1840{
1841 struct blk_mq_hw_ctx *hctx;
1842 unsigned int i;
1843
e09aae7e 1844 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1845 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1846}
1847
08e98fc6
ML
1848static int blk_mq_init_hctx(struct request_queue *q,
1849 struct blk_mq_tag_set *set,
1850 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1851{
08e98fc6 1852 int node;
f70ced09 1853 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1854
1855 node = hctx->numa_node;
1856 if (node == NUMA_NO_NODE)
1857 node = hctx->numa_node = set->numa_node;
1858
27489a3c 1859 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
1860 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1861 spin_lock_init(&hctx->lock);
1862 INIT_LIST_HEAD(&hctx->dispatch);
1863 hctx->queue = q;
1864 hctx->queue_num = hctx_idx;
2404e607 1865 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 1866
9467f859 1867 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
08e98fc6
ML
1868
1869 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1870
1871 /*
08e98fc6
ML
1872 * Allocate space for all possible cpus to avoid allocation at
1873 * runtime
320ae51f 1874 */
08e98fc6
ML
1875 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1876 GFP_KERNEL, node);
1877 if (!hctx->ctxs)
1878 goto unregister_cpu_notifier;
320ae51f 1879
88459642
OS
1880 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1881 node))
08e98fc6 1882 goto free_ctxs;
320ae51f 1883
08e98fc6 1884 hctx->nr_ctx = 0;
320ae51f 1885
08e98fc6
ML
1886 if (set->ops->init_hctx &&
1887 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1888 goto free_bitmap;
320ae51f 1889
f70ced09
ML
1890 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1891 if (!hctx->fq)
1892 goto exit_hctx;
320ae51f 1893
f70ced09
ML
1894 if (set->ops->init_request &&
1895 set->ops->init_request(set->driver_data,
1896 hctx->fq->flush_rq, hctx_idx,
1897 flush_start_tag + hctx_idx, node))
1898 goto free_fq;
320ae51f 1899
6a83e74d
BVA
1900 if (hctx->flags & BLK_MQ_F_BLOCKING)
1901 init_srcu_struct(&hctx->queue_rq_srcu);
1902
08e98fc6 1903 return 0;
320ae51f 1904
f70ced09
ML
1905 free_fq:
1906 kfree(hctx->fq);
1907 exit_hctx:
1908 if (set->ops->exit_hctx)
1909 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6 1910 free_bitmap:
88459642 1911 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
1912 free_ctxs:
1913 kfree(hctx->ctxs);
1914 unregister_cpu_notifier:
9467f859 1915 blk_mq_remove_cpuhp(hctx);
08e98fc6
ML
1916 return -1;
1917}
320ae51f 1918
320ae51f
JA
1919static void blk_mq_init_cpu_queues(struct request_queue *q,
1920 unsigned int nr_hw_queues)
1921{
1922 unsigned int i;
1923
1924 for_each_possible_cpu(i) {
1925 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1926 struct blk_mq_hw_ctx *hctx;
1927
1928 memset(__ctx, 0, sizeof(*__ctx));
1929 __ctx->cpu = i;
1930 spin_lock_init(&__ctx->lock);
1931 INIT_LIST_HEAD(&__ctx->rq_list);
1932 __ctx->queue = q;
cf43e6be
JA
1933 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1934 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
320ae51f
JA
1935
1936 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1937 if (!cpu_online(i))
1938 continue;
1939
7d7e0f90 1940 hctx = blk_mq_map_queue(q, i);
e4043dcf 1941
320ae51f
JA
1942 /*
1943 * Set local node, IFF we have more than one hw queue. If
1944 * not, we remain on the home node of the device
1945 */
1946 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
bffed457 1947 hctx->numa_node = local_memory_node(cpu_to_node(i));
320ae51f
JA
1948 }
1949}
1950
cc71a6f4
JA
1951static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1952{
1953 int ret = 0;
1954
1955 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1956 set->queue_depth, set->reserved_tags);
1957 if (!set->tags[hctx_idx])
1958 return false;
1959
1960 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1961 set->queue_depth);
1962 if (!ret)
1963 return true;
1964
1965 blk_mq_free_rq_map(set->tags[hctx_idx]);
1966 set->tags[hctx_idx] = NULL;
1967 return false;
1968}
1969
1970static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1971 unsigned int hctx_idx)
1972{
bd166ef1
JA
1973 if (set->tags[hctx_idx]) {
1974 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1975 blk_mq_free_rq_map(set->tags[hctx_idx]);
1976 set->tags[hctx_idx] = NULL;
1977 }
cc71a6f4
JA
1978}
1979
5778322e
AM
1980static void blk_mq_map_swqueue(struct request_queue *q,
1981 const struct cpumask *online_mask)
320ae51f 1982{
d1b1cea1 1983 unsigned int i, hctx_idx;
320ae51f
JA
1984 struct blk_mq_hw_ctx *hctx;
1985 struct blk_mq_ctx *ctx;
2a34c087 1986 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1987
60de074b
AM
1988 /*
1989 * Avoid others reading imcomplete hctx->cpumask through sysfs
1990 */
1991 mutex_lock(&q->sysfs_lock);
1992
320ae51f 1993 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1994 cpumask_clear(hctx->cpumask);
320ae51f
JA
1995 hctx->nr_ctx = 0;
1996 }
1997
1998 /*
1999 * Map software to hardware queues
2000 */
897bb0c7 2001 for_each_possible_cpu(i) {
320ae51f 2002 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 2003 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
2004 continue;
2005
d1b1cea1
GKB
2006 hctx_idx = q->mq_map[i];
2007 /* unmapped hw queue can be remapped after CPU topo changed */
cc71a6f4
JA
2008 if (!set->tags[hctx_idx] &&
2009 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
d1b1cea1
GKB
2010 /*
2011 * If tags initialization fail for some hctx,
2012 * that hctx won't be brought online. In this
2013 * case, remap the current ctx to hctx[0] which
2014 * is guaranteed to always have tags allocated
2015 */
cc71a6f4 2016 q->mq_map[i] = 0;
d1b1cea1
GKB
2017 }
2018
897bb0c7 2019 ctx = per_cpu_ptr(q->queue_ctx, i);
7d7e0f90 2020 hctx = blk_mq_map_queue(q, i);
868f2f0b 2021
e4043dcf 2022 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
2023 ctx->index_hw = hctx->nr_ctx;
2024 hctx->ctxs[hctx->nr_ctx++] = ctx;
2025 }
506e931f 2026
60de074b
AM
2027 mutex_unlock(&q->sysfs_lock);
2028
506e931f 2029 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 2030 /*
a68aafa5
JA
2031 * If no software queues are mapped to this hardware queue,
2032 * disable it and free the request entries.
484b4061
JA
2033 */
2034 if (!hctx->nr_ctx) {
d1b1cea1
GKB
2035 /* Never unmap queue 0. We need it as a
2036 * fallback in case of a new remap fails
2037 * allocation
2038 */
cc71a6f4
JA
2039 if (i && set->tags[i])
2040 blk_mq_free_map_and_requests(set, i);
2041
2a34c087 2042 hctx->tags = NULL;
484b4061
JA
2043 continue;
2044 }
2045
2a34c087
ML
2046 hctx->tags = set->tags[i];
2047 WARN_ON(!hctx->tags);
2048
889fa31f
CY
2049 /*
2050 * Set the map size to the number of mapped software queues.
2051 * This is more accurate and more efficient than looping
2052 * over all possibly mapped software queues.
2053 */
88459642 2054 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2055
484b4061
JA
2056 /*
2057 * Initialize batch roundrobin counts
2058 */
506e931f
JA
2059 hctx->next_cpu = cpumask_first(hctx->cpumask);
2060 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2061 }
320ae51f
JA
2062}
2063
2404e607 2064static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2065{
2066 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2067 int i;
2068
2404e607
JM
2069 queue_for_each_hw_ctx(q, hctx, i) {
2070 if (shared)
2071 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2072 else
2073 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2074 }
2075}
2076
2077static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2078{
2079 struct request_queue *q;
0d2602ca
JA
2080
2081 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2082 blk_mq_freeze_queue(q);
2404e607 2083 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2084 blk_mq_unfreeze_queue(q);
2085 }
2086}
2087
2088static void blk_mq_del_queue_tag_set(struct request_queue *q)
2089{
2090 struct blk_mq_tag_set *set = q->tag_set;
2091
0d2602ca
JA
2092 mutex_lock(&set->tag_list_lock);
2093 list_del_init(&q->tag_set_list);
2404e607
JM
2094 if (list_is_singular(&set->tag_list)) {
2095 /* just transitioned to unshared */
2096 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2097 /* update existing queue */
2098 blk_mq_update_tag_set_depth(set, false);
2099 }
0d2602ca 2100 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
2101}
2102
2103static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2104 struct request_queue *q)
2105{
2106 q->tag_set = set;
2107
2108 mutex_lock(&set->tag_list_lock);
2404e607
JM
2109
2110 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2111 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2112 set->flags |= BLK_MQ_F_TAG_SHARED;
2113 /* update existing queue */
2114 blk_mq_update_tag_set_depth(set, true);
2115 }
2116 if (set->flags & BLK_MQ_F_TAG_SHARED)
2117 queue_set_hctx_shared(q, true);
0d2602ca 2118 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 2119
0d2602ca
JA
2120 mutex_unlock(&set->tag_list_lock);
2121}
2122
e09aae7e
ML
2123/*
2124 * It is the actual release handler for mq, but we do it from
2125 * request queue's release handler for avoiding use-after-free
2126 * and headache because q->mq_kobj shouldn't have been introduced,
2127 * but we can't group ctx/kctx kobj without it.
2128 */
2129void blk_mq_release(struct request_queue *q)
2130{
2131 struct blk_mq_hw_ctx *hctx;
2132 unsigned int i;
2133
bd166ef1
JA
2134 blk_mq_sched_teardown(q);
2135
e09aae7e 2136 /* hctx kobj stays in hctx */
c3b4afca
ML
2137 queue_for_each_hw_ctx(q, hctx, i) {
2138 if (!hctx)
2139 continue;
2140 kfree(hctx->ctxs);
e09aae7e 2141 kfree(hctx);
c3b4afca 2142 }
e09aae7e 2143
a723bab3
AM
2144 q->mq_map = NULL;
2145
e09aae7e
ML
2146 kfree(q->queue_hw_ctx);
2147
2148 /* ctx kobj stays in queue_ctx */
2149 free_percpu(q->queue_ctx);
2150}
2151
24d2f903 2152struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2153{
2154 struct request_queue *uninit_q, *q;
2155
2156 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2157 if (!uninit_q)
2158 return ERR_PTR(-ENOMEM);
2159
2160 q = blk_mq_init_allocated_queue(set, uninit_q);
2161 if (IS_ERR(q))
2162 blk_cleanup_queue(uninit_q);
2163
2164 return q;
2165}
2166EXPORT_SYMBOL(blk_mq_init_queue);
2167
868f2f0b
KB
2168static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2169 struct request_queue *q)
320ae51f 2170{
868f2f0b
KB
2171 int i, j;
2172 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2173
868f2f0b 2174 blk_mq_sysfs_unregister(q);
24d2f903 2175 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2176 int node;
f14bbe77 2177
868f2f0b
KB
2178 if (hctxs[i])
2179 continue;
2180
2181 node = blk_mq_hw_queue_to_node(q->mq_map, i);
cdef54dd
CH
2182 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2183 GFP_KERNEL, node);
320ae51f 2184 if (!hctxs[i])
868f2f0b 2185 break;
320ae51f 2186
a86073e4 2187 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
868f2f0b
KB
2188 node)) {
2189 kfree(hctxs[i]);
2190 hctxs[i] = NULL;
2191 break;
2192 }
e4043dcf 2193
0d2602ca 2194 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2195 hctxs[i]->numa_node = node;
320ae51f 2196 hctxs[i]->queue_num = i;
868f2f0b
KB
2197
2198 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2199 free_cpumask_var(hctxs[i]->cpumask);
2200 kfree(hctxs[i]);
2201 hctxs[i] = NULL;
2202 break;
2203 }
2204 blk_mq_hctx_kobj_init(hctxs[i]);
320ae51f 2205 }
868f2f0b
KB
2206 for (j = i; j < q->nr_hw_queues; j++) {
2207 struct blk_mq_hw_ctx *hctx = hctxs[j];
2208
2209 if (hctx) {
cc71a6f4
JA
2210 if (hctx->tags)
2211 blk_mq_free_map_and_requests(set, j);
868f2f0b
KB
2212 blk_mq_exit_hctx(q, set, hctx, j);
2213 free_cpumask_var(hctx->cpumask);
2214 kobject_put(&hctx->kobj);
2215 kfree(hctx->ctxs);
2216 kfree(hctx);
2217 hctxs[j] = NULL;
2218
2219 }
2220 }
2221 q->nr_hw_queues = i;
2222 blk_mq_sysfs_register(q);
2223}
2224
2225struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2226 struct request_queue *q)
2227{
66841672
ML
2228 /* mark the queue as mq asap */
2229 q->mq_ops = set->ops;
2230
868f2f0b
KB
2231 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2232 if (!q->queue_ctx)
c7de5726 2233 goto err_exit;
868f2f0b
KB
2234
2235 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2236 GFP_KERNEL, set->numa_node);
2237 if (!q->queue_hw_ctx)
2238 goto err_percpu;
2239
bdd17e75 2240 q->mq_map = set->mq_map;
868f2f0b
KB
2241
2242 blk_mq_realloc_hw_ctxs(set, q);
2243 if (!q->nr_hw_queues)
2244 goto err_hctxs;
320ae51f 2245
287922eb 2246 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2247 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2248
2249 q->nr_queues = nr_cpu_ids;
320ae51f 2250
94eddfbe 2251 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2252
05f1dd53
JA
2253 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2254 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2255
1be036e9
CH
2256 q->sg_reserved_size = INT_MAX;
2257
2849450a 2258 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2259 INIT_LIST_HEAD(&q->requeue_list);
2260 spin_lock_init(&q->requeue_lock);
2261
07068d5b
JA
2262 if (q->nr_hw_queues > 1)
2263 blk_queue_make_request(q, blk_mq_make_request);
2264 else
2265 blk_queue_make_request(q, blk_sq_make_request);
2266
eba71768
JA
2267 /*
2268 * Do this after blk_queue_make_request() overrides it...
2269 */
2270 q->nr_requests = set->queue_depth;
2271
64f1c21e
JA
2272 /*
2273 * Default to classic polling
2274 */
2275 q->poll_nsec = -1;
2276
24d2f903
CH
2277 if (set->ops->complete)
2278 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2279
24d2f903 2280 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2281
5778322e 2282 get_online_cpus();
320ae51f 2283 mutex_lock(&all_q_mutex);
320ae51f 2284
4593fdbe 2285 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2286 blk_mq_add_queue_tag_set(set, q);
5778322e 2287 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2288
4593fdbe 2289 mutex_unlock(&all_q_mutex);
5778322e 2290 put_online_cpus();
4593fdbe 2291
d3484991
JA
2292 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2293 int ret;
2294
2295 ret = blk_mq_sched_init(q);
2296 if (ret)
2297 return ERR_PTR(ret);
2298 }
2299
320ae51f 2300 return q;
18741986 2301
320ae51f 2302err_hctxs:
868f2f0b 2303 kfree(q->queue_hw_ctx);
320ae51f 2304err_percpu:
868f2f0b 2305 free_percpu(q->queue_ctx);
c7de5726
ML
2306err_exit:
2307 q->mq_ops = NULL;
320ae51f
JA
2308 return ERR_PTR(-ENOMEM);
2309}
b62c21b7 2310EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2311
2312void blk_mq_free_queue(struct request_queue *q)
2313{
624dbe47 2314 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2315
0e626368
AM
2316 mutex_lock(&all_q_mutex);
2317 list_del_init(&q->all_q_node);
2318 mutex_unlock(&all_q_mutex);
2319
87760e5e
JA
2320 wbt_exit(q);
2321
0d2602ca
JA
2322 blk_mq_del_queue_tag_set(q);
2323
624dbe47
ML
2324 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2325 blk_mq_free_hw_queues(q, set);
320ae51f 2326}
320ae51f
JA
2327
2328/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2329static void blk_mq_queue_reinit(struct request_queue *q,
2330 const struct cpumask *online_mask)
320ae51f 2331{
4ecd4fef 2332 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2333
67aec14c
JA
2334 blk_mq_sysfs_unregister(q);
2335
320ae51f
JA
2336 /*
2337 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2338 * we should change hctx numa_node according to new topology (this
2339 * involves free and re-allocate memory, worthy doing?)
2340 */
2341
5778322e 2342 blk_mq_map_swqueue(q, online_mask);
320ae51f 2343
67aec14c 2344 blk_mq_sysfs_register(q);
320ae51f
JA
2345}
2346
65d5291e
SAS
2347/*
2348 * New online cpumask which is going to be set in this hotplug event.
2349 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2350 * one-by-one and dynamically allocating this could result in a failure.
2351 */
2352static struct cpumask cpuhp_online_new;
2353
2354static void blk_mq_queue_reinit_work(void)
320ae51f
JA
2355{
2356 struct request_queue *q;
320ae51f
JA
2357
2358 mutex_lock(&all_q_mutex);
f3af020b
TH
2359 /*
2360 * We need to freeze and reinit all existing queues. Freezing
2361 * involves synchronous wait for an RCU grace period and doing it
2362 * one by one may take a long time. Start freezing all queues in
2363 * one swoop and then wait for the completions so that freezing can
2364 * take place in parallel.
2365 */
2366 list_for_each_entry(q, &all_q_list, all_q_node)
2367 blk_mq_freeze_queue_start(q);
415d3dab 2368 list_for_each_entry(q, &all_q_list, all_q_node)
f3af020b
TH
2369 blk_mq_freeze_queue_wait(q);
2370
320ae51f 2371 list_for_each_entry(q, &all_q_list, all_q_node)
65d5291e 2372 blk_mq_queue_reinit(q, &cpuhp_online_new);
f3af020b
TH
2373
2374 list_for_each_entry(q, &all_q_list, all_q_node)
2375 blk_mq_unfreeze_queue(q);
2376
320ae51f 2377 mutex_unlock(&all_q_mutex);
65d5291e
SAS
2378}
2379
2380static int blk_mq_queue_reinit_dead(unsigned int cpu)
2381{
97a32864 2382 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
65d5291e
SAS
2383 blk_mq_queue_reinit_work();
2384 return 0;
2385}
2386
2387/*
2388 * Before hotadded cpu starts handling requests, new mappings must be
2389 * established. Otherwise, these requests in hw queue might never be
2390 * dispatched.
2391 *
2392 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2393 * for CPU0, and ctx1 for CPU1).
2394 *
2395 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2396 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2397 *
2c3ad667
JA
2398 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2399 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2400 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2401 * ignored.
65d5291e
SAS
2402 */
2403static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2404{
2405 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2406 cpumask_set_cpu(cpu, &cpuhp_online_new);
2407 blk_mq_queue_reinit_work();
2408 return 0;
320ae51f
JA
2409}
2410
a5164405
JA
2411static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2412{
2413 int i;
2414
cc71a6f4
JA
2415 for (i = 0; i < set->nr_hw_queues; i++)
2416 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2417 goto out_unwind;
a5164405
JA
2418
2419 return 0;
2420
2421out_unwind:
2422 while (--i >= 0)
cc71a6f4 2423 blk_mq_free_rq_map(set->tags[i]);
a5164405 2424
a5164405
JA
2425 return -ENOMEM;
2426}
2427
2428/*
2429 * Allocate the request maps associated with this tag_set. Note that this
2430 * may reduce the depth asked for, if memory is tight. set->queue_depth
2431 * will be updated to reflect the allocated depth.
2432 */
2433static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2434{
2435 unsigned int depth;
2436 int err;
2437
2438 depth = set->queue_depth;
2439 do {
2440 err = __blk_mq_alloc_rq_maps(set);
2441 if (!err)
2442 break;
2443
2444 set->queue_depth >>= 1;
2445 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2446 err = -ENOMEM;
2447 break;
2448 }
2449 } while (set->queue_depth);
2450
2451 if (!set->queue_depth || err) {
2452 pr_err("blk-mq: failed to allocate request map\n");
2453 return -ENOMEM;
2454 }
2455
2456 if (depth != set->queue_depth)
2457 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2458 depth, set->queue_depth);
2459
2460 return 0;
2461}
2462
a4391c64
JA
2463/*
2464 * Alloc a tag set to be associated with one or more request queues.
2465 * May fail with EINVAL for various error conditions. May adjust the
2466 * requested depth down, if if it too large. In that case, the set
2467 * value will be stored in set->queue_depth.
2468 */
24d2f903
CH
2469int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2470{
da695ba2
CH
2471 int ret;
2472
205fb5f5
BVA
2473 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2474
24d2f903
CH
2475 if (!set->nr_hw_queues)
2476 return -EINVAL;
a4391c64 2477 if (!set->queue_depth)
24d2f903
CH
2478 return -EINVAL;
2479 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2480 return -EINVAL;
2481
7d7e0f90 2482 if (!set->ops->queue_rq)
24d2f903
CH
2483 return -EINVAL;
2484
a4391c64
JA
2485 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2486 pr_info("blk-mq: reduced tag depth to %u\n",
2487 BLK_MQ_MAX_DEPTH);
2488 set->queue_depth = BLK_MQ_MAX_DEPTH;
2489 }
24d2f903 2490
6637fadf
SL
2491 /*
2492 * If a crashdump is active, then we are potentially in a very
2493 * memory constrained environment. Limit us to 1 queue and
2494 * 64 tags to prevent using too much memory.
2495 */
2496 if (is_kdump_kernel()) {
2497 set->nr_hw_queues = 1;
2498 set->queue_depth = min(64U, set->queue_depth);
2499 }
868f2f0b
KB
2500 /*
2501 * There is no use for more h/w queues than cpus.
2502 */
2503 if (set->nr_hw_queues > nr_cpu_ids)
2504 set->nr_hw_queues = nr_cpu_ids;
6637fadf 2505
868f2f0b 2506 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
24d2f903
CH
2507 GFP_KERNEL, set->numa_node);
2508 if (!set->tags)
a5164405 2509 return -ENOMEM;
24d2f903 2510
da695ba2
CH
2511 ret = -ENOMEM;
2512 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2513 GFP_KERNEL, set->numa_node);
bdd17e75
CH
2514 if (!set->mq_map)
2515 goto out_free_tags;
2516
da695ba2
CH
2517 if (set->ops->map_queues)
2518 ret = set->ops->map_queues(set);
2519 else
2520 ret = blk_mq_map_queues(set);
2521 if (ret)
2522 goto out_free_mq_map;
2523
2524 ret = blk_mq_alloc_rq_maps(set);
2525 if (ret)
bdd17e75 2526 goto out_free_mq_map;
24d2f903 2527
0d2602ca
JA
2528 mutex_init(&set->tag_list_lock);
2529 INIT_LIST_HEAD(&set->tag_list);
2530
24d2f903 2531 return 0;
bdd17e75
CH
2532
2533out_free_mq_map:
2534 kfree(set->mq_map);
2535 set->mq_map = NULL;
2536out_free_tags:
5676e7b6
RE
2537 kfree(set->tags);
2538 set->tags = NULL;
da695ba2 2539 return ret;
24d2f903
CH
2540}
2541EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2542
2543void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2544{
2545 int i;
2546
cc71a6f4
JA
2547 for (i = 0; i < nr_cpu_ids; i++)
2548 blk_mq_free_map_and_requests(set, i);
484b4061 2549
bdd17e75
CH
2550 kfree(set->mq_map);
2551 set->mq_map = NULL;
2552
981bd189 2553 kfree(set->tags);
5676e7b6 2554 set->tags = NULL;
24d2f903
CH
2555}
2556EXPORT_SYMBOL(blk_mq_free_tag_set);
2557
e3a2b3f9
JA
2558int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2559{
2560 struct blk_mq_tag_set *set = q->tag_set;
2561 struct blk_mq_hw_ctx *hctx;
2562 int i, ret;
2563
bd166ef1 2564 if (!set)
e3a2b3f9
JA
2565 return -EINVAL;
2566
70f36b60
JA
2567 blk_mq_freeze_queue(q);
2568 blk_mq_quiesce_queue(q);
2569
e3a2b3f9
JA
2570 ret = 0;
2571 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
2572 if (!hctx->tags)
2573 continue;
bd166ef1
JA
2574 /*
2575 * If we're using an MQ scheduler, just update the scheduler
2576 * queue depth. This is similar to what the old code would do.
2577 */
70f36b60
JA
2578 if (!hctx->sched_tags) {
2579 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2580 min(nr, set->queue_depth),
2581 false);
2582 } else {
2583 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2584 nr, true);
2585 }
e3a2b3f9
JA
2586 if (ret)
2587 break;
2588 }
2589
2590 if (!ret)
2591 q->nr_requests = nr;
2592
70f36b60
JA
2593 blk_mq_unfreeze_queue(q);
2594 blk_mq_start_stopped_hw_queues(q, true);
2595
e3a2b3f9
JA
2596 return ret;
2597}
2598
868f2f0b
KB
2599void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2600{
2601 struct request_queue *q;
2602
2603 if (nr_hw_queues > nr_cpu_ids)
2604 nr_hw_queues = nr_cpu_ids;
2605 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2606 return;
2607
2608 list_for_each_entry(q, &set->tag_list, tag_set_list)
2609 blk_mq_freeze_queue(q);
2610
2611 set->nr_hw_queues = nr_hw_queues;
2612 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2613 blk_mq_realloc_hw_ctxs(set, q);
2614
2615 if (q->nr_hw_queues > 1)
2616 blk_queue_make_request(q, blk_mq_make_request);
2617 else
2618 blk_queue_make_request(q, blk_sq_make_request);
2619
2620 blk_mq_queue_reinit(q, cpu_online_mask);
2621 }
2622
2623 list_for_each_entry(q, &set->tag_list, tag_set_list)
2624 blk_mq_unfreeze_queue(q);
2625}
2626EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2627
64f1c21e
JA
2628static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2629 struct blk_mq_hw_ctx *hctx,
2630 struct request *rq)
2631{
2632 struct blk_rq_stat stat[2];
2633 unsigned long ret = 0;
2634
2635 /*
2636 * If stats collection isn't on, don't sleep but turn it on for
2637 * future users
2638 */
2639 if (!blk_stat_enable(q))
2640 return 0;
2641
2642 /*
2643 * We don't have to do this once per IO, should optimize this
2644 * to just use the current window of stats until it changes
2645 */
2646 memset(&stat, 0, sizeof(stat));
2647 blk_hctx_stat_get(hctx, stat);
2648
2649 /*
2650 * As an optimistic guess, use half of the mean service time
2651 * for this type of request. We can (and should) make this smarter.
2652 * For instance, if the completion latencies are tight, we can
2653 * get closer than just half the mean. This is especially
2654 * important on devices where the completion latencies are longer
2655 * than ~10 usec.
2656 */
2657 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2658 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2659 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2660 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2661
2662 return ret;
2663}
2664
06426adf 2665static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 2666 struct blk_mq_hw_ctx *hctx,
06426adf
JA
2667 struct request *rq)
2668{
2669 struct hrtimer_sleeper hs;
2670 enum hrtimer_mode mode;
64f1c21e 2671 unsigned int nsecs;
06426adf
JA
2672 ktime_t kt;
2673
64f1c21e
JA
2674 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2675 return false;
2676
2677 /*
2678 * poll_nsec can be:
2679 *
2680 * -1: don't ever hybrid sleep
2681 * 0: use half of prev avg
2682 * >0: use this specific value
2683 */
2684 if (q->poll_nsec == -1)
2685 return false;
2686 else if (q->poll_nsec > 0)
2687 nsecs = q->poll_nsec;
2688 else
2689 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2690
2691 if (!nsecs)
06426adf
JA
2692 return false;
2693
2694 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2695
2696 /*
2697 * This will be replaced with the stats tracking code, using
2698 * 'avg_completion_time / 2' as the pre-sleep target.
2699 */
8b0e1953 2700 kt = nsecs;
06426adf
JA
2701
2702 mode = HRTIMER_MODE_REL;
2703 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2704 hrtimer_set_expires(&hs.timer, kt);
2705
2706 hrtimer_init_sleeper(&hs, current);
2707 do {
2708 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2709 break;
2710 set_current_state(TASK_UNINTERRUPTIBLE);
2711 hrtimer_start_expires(&hs.timer, mode);
2712 if (hs.task)
2713 io_schedule();
2714 hrtimer_cancel(&hs.timer);
2715 mode = HRTIMER_MODE_ABS;
2716 } while (hs.task && !signal_pending(current));
2717
2718 __set_current_state(TASK_RUNNING);
2719 destroy_hrtimer_on_stack(&hs.timer);
2720 return true;
2721}
2722
bbd7bb70
JA
2723static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2724{
2725 struct request_queue *q = hctx->queue;
2726 long state;
2727
06426adf
JA
2728 /*
2729 * If we sleep, have the caller restart the poll loop to reset
2730 * the state. Like for the other success return cases, the
2731 * caller is responsible for checking if the IO completed. If
2732 * the IO isn't complete, we'll get called again and will go
2733 * straight to the busy poll loop.
2734 */
64f1c21e 2735 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
06426adf
JA
2736 return true;
2737
bbd7bb70
JA
2738 hctx->poll_considered++;
2739
2740 state = current->state;
2741 while (!need_resched()) {
2742 int ret;
2743
2744 hctx->poll_invoked++;
2745
2746 ret = q->mq_ops->poll(hctx, rq->tag);
2747 if (ret > 0) {
2748 hctx->poll_success++;
2749 set_current_state(TASK_RUNNING);
2750 return true;
2751 }
2752
2753 if (signal_pending_state(state, current))
2754 set_current_state(TASK_RUNNING);
2755
2756 if (current->state == TASK_RUNNING)
2757 return true;
2758 if (ret < 0)
2759 break;
2760 cpu_relax();
2761 }
2762
2763 return false;
2764}
2765
2766bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2767{
2768 struct blk_mq_hw_ctx *hctx;
2769 struct blk_plug *plug;
2770 struct request *rq;
2771
2772 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2773 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2774 return false;
2775
2776 plug = current->plug;
2777 if (plug)
2778 blk_flush_plug_list(plug, false);
2779
2780 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
bd166ef1
JA
2781 if (!blk_qc_t_is_internal(cookie))
2782 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2783 else
2784 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
bbd7bb70
JA
2785
2786 return __blk_mq_poll(hctx, rq);
2787}
2788EXPORT_SYMBOL_GPL(blk_mq_poll);
2789
676141e4
JA
2790void blk_mq_disable_hotplug(void)
2791{
2792 mutex_lock(&all_q_mutex);
2793}
2794
2795void blk_mq_enable_hotplug(void)
2796{
2797 mutex_unlock(&all_q_mutex);
2798}
2799
320ae51f
JA
2800static int __init blk_mq_init(void)
2801{
07e4fead
OS
2802 blk_mq_debugfs_init();
2803
9467f859
TG
2804 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2805 blk_mq_hctx_notify_dead);
320ae51f 2806
65d5291e
SAS
2807 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2808 blk_mq_queue_reinit_prepare,
2809 blk_mq_queue_reinit_dead);
320ae51f
JA
2810 return 0;
2811}
2812subsys_initcall(blk_mq_init);