]> git.proxmox.com Git - mirror_zfs.git/blame - cmd/zed/agents/zfs_mod.c
Change location of current symlink created by test-runner
[mirror_zfs.git] / cmd / zed / agents / zfs_mod.c
CommitLineData
d02ca379
DB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2016, Intel Corporation.
26 */
27
28/*
29 * ZFS syseventd module.
30 *
31 * file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c
32 *
33 * The purpose of this module is to identify when devices are added to the
34 * system, and appropriately online or replace the affected vdevs.
35 *
36 * When a device is added to the system:
37 *
38 * 1. Search for any vdevs whose devid matches that of the newly added
39 * device.
40 *
41 * 2. If no vdevs are found, then search for any vdevs whose udev path
42 * matches that of the new device.
43 *
44 * 3. If no vdevs match by either method, then ignore the event.
45 *
46 * 4. Attempt to online the device with a flag to indicate that it should
47 * be unspared when resilvering completes. If this succeeds, then the
48 * same device was inserted and we should continue normally.
49 *
50 * 5. If the pool does not have the 'autoreplace' property set, attempt to
51 * online the device again without the unspare flag, which will
52 * generate a FMA fault.
53 *
54 * 6. If the pool has the 'autoreplace' property set, and the matching vdev
55 * is a whole disk, then label the new disk and attempt a 'zpool
56 * replace'.
57 *
58 * The module responds to EC_DEV_ADD events. The special ESC_ZFS_VDEV_CHECK
59 * event indicates that a device failed to open during pool load, but the
60 * autoreplace property was set. In this case, we deferred the associated
61 * FMA fault until our module had a chance to process the autoreplace logic.
62 * If the device could not be replaced, then the second online attempt will
63 * trigger the FMA fault that we skipped earlier.
64 *
65 * ZFS on Linux porting notes:
66 * In lieu of a thread pool, just spawn a thread on demmand.
67 * Linux udev provides a disk insert for both the disk and the partition
68 *
69 */
70
71#include <ctype.h>
72#include <devid.h>
73#include <fcntl.h>
74#include <libnvpair.h>
75#include <libzfs.h>
76#include <limits.h>
77#include <stddef.h>
78#include <stdlib.h>
79#include <string.h>
80#include <syslog.h>
81#include <sys/list.h>
82#include <sys/sunddi.h>
83#include <sys/sysevent/eventdefs.h>
84#include <sys/sysevent/dev.h>
85#include <pthread.h>
86#include <unistd.h>
87#include "zfs_agents.h"
88#include "../zed_log.h"
89
90#define DEV_BYID_PATH "/dev/disk/by-id/"
91#define DEV_BYPATH_PATH "/dev/disk/by-path/"
92
93typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t);
94
95libzfs_handle_t *g_zfshdl;
96list_t g_pool_list; /* list of unavailable pools at initialization */
97list_t g_device_list; /* list of disks with asynchronous label request */
98boolean_t g_enumeration_done;
99pthread_t g_zfs_tid;
100
101typedef struct unavailpool {
102 zpool_handle_t *uap_zhp;
103 pthread_t uap_enable_tid; /* dataset enable thread if activated */
104 list_node_t uap_node;
105} unavailpool_t;
106
107typedef struct pendingdev {
108 char pd_physpath[128];
109 list_node_t pd_node;
110} pendingdev_t;
111
112static int
113zfs_toplevel_state(zpool_handle_t *zhp)
114{
115 nvlist_t *nvroot;
116 vdev_stat_t *vs;
117 unsigned int c;
118
119 verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL),
120 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
121 verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS,
122 (uint64_t **)&vs, &c) == 0);
123 return (vs->vs_state);
124}
125
126static int
127zfs_unavail_pool(zpool_handle_t *zhp, void *data)
128{
129 zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)",
130 zpool_get_name(zhp), (int)zfs_toplevel_state(zhp));
131
132 if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) {
133 unavailpool_t *uap;
134 uap = malloc(sizeof (unavailpool_t));
135 uap->uap_zhp = zhp;
136 uap->uap_enable_tid = 0;
137 list_insert_tail((list_t *)data, uap);
138 } else {
139 zpool_close(zhp);
140 }
141 return (0);
142}
143
144/*
145 * Two stage replace on Linux
146 * since we get disk notifications
147 * we can wait for partitioned disk slice to show up!
148 *
149 * First stage tags the disk, initiates async partitioning, and returns
150 * Second stage finds the tag and proceeds to ZFS labeling/replace
151 *
152 * disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach
153 *
154 * 1. physical match with no fs, no partition
155 * tag it top, partition disk
156 *
157 * 2. physical match again, see partion and tag
158 *
159 */
160
161/*
162 * The device associated with the given vdev (either by devid or physical path)
163 * has been added to the system. If 'isdisk' is set, then we only attempt a
164 * replacement if it's a whole disk. This also implies that we should label the
165 * disk first.
166 *
167 * First, we attempt to online the device (making sure to undo any spare
168 * operation when finished). If this succeeds, then we're done. If it fails,
169 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened,
170 * but that the label was not what we expected. If the 'autoreplace' property
171 * is not set, then we relabel the disk (if specified), and attempt a 'zpool
172 * replace'. If the online is successful, but the new state is something else
173 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of
174 * race, and we should avoid attempting to relabel the disk.
175 *
176 * Also can arrive here from a ESC_ZFS_VDEV_CHECK event
177 */
178static void
179zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled)
180{
181 char *path;
182 vdev_state_t newstate;
183 nvlist_t *nvroot, *newvd;
184 pendingdev_t *device;
185 uint64_t wholedisk = 0ULL;
186 uint64_t offline = 0ULL;
187 uint64_t guid = 0ULL;
188 char *physpath = NULL, *new_devid = NULL;
189 char rawpath[PATH_MAX], fullpath[PATH_MAX];
190 char devpath[PATH_MAX];
191 int ret;
6078881a
TH
192 int is_dm = 0;
193 uint_t c;
194 vdev_stat_t *vs;
d02ca379
DB
195
196 if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0)
197 return;
198
6078881a
TH
199 /* Skip healthy disks */
200 verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS,
201 (uint64_t **)&vs, &c) == 0);
202 if (vs->vs_state == VDEV_STATE_HEALTHY) {
203 zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.",
204 __func__, path);
205 return;
206 }
207
d02ca379
DB
208 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath);
209 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
210 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline);
211 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid);
212
213 if (offline)
214 return; /* don't intervene if it was taken offline */
215
6078881a
TH
216#ifdef HAVE_LIBDEVMAPPER
217 is_dm = dev_is_dm(path);
218#endif
219 zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'"
220 " wholedisk %d, dm %d (%llu)", zpool_get_name(zhp), path,
221 physpath ? physpath : "NULL", wholedisk, is_dm,
222 (long long unsigned int)guid);
d02ca379
DB
223
224 /*
225 * The VDEV guid is preferred for identification (gets passed in path)
226 */
227 if (guid != 0) {
228 (void) snprintf(fullpath, sizeof (fullpath), "%llu",
229 (long long unsigned int)guid);
230 } else {
231 /*
232 * otherwise use path sans partition suffix for whole disks
233 */
234 (void) strlcpy(fullpath, path, sizeof (fullpath));
235 if (wholedisk) {
6078881a
TH
236 char *spath = zfs_strip_partition(fullpath);
237 if (!spath) {
238 zed_log_msg(LOG_INFO, "%s: Can't alloc",
239 __func__);
240 return;
241 }
d02ca379
DB
242
243 (void) strlcpy(fullpath, spath, sizeof (fullpath));
244 free(spath);
245 }
246 }
247
248 /*
249 * Attempt to online the device.
250 */
251 if (zpool_vdev_online(zhp, fullpath,
252 ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE, &newstate) == 0 &&
253 (newstate == VDEV_STATE_HEALTHY ||
254 newstate == VDEV_STATE_DEGRADED)) {
255 zed_log_msg(LOG_INFO, " zpool_vdev_online: vdev %s is %s",
256 fullpath, (newstate == VDEV_STATE_HEALTHY) ?
257 "HEALTHY" : "DEGRADED");
258 return;
259 }
260
261 /*
262 * If the pool doesn't have the autoreplace property set, then attempt
263 * a true online (without the unspare flag), which will trigger a FMA
264 * fault.
265 */
6078881a
TH
266 if (!is_dm && (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) ||
267 !wholedisk || physpath == NULL)) {
d02ca379
DB
268 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
269 &newstate);
270 zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s)",
271 fullpath, libzfs_error_description(g_zfshdl));
272 return;
273 }
274
275 /*
276 * convert physical path into its current device node
277 */
278 (void) snprintf(rawpath, sizeof (rawpath), "%s%s", DEV_BYPATH_PATH,
279 physpath);
6078881a 280 if (realpath(rawpath, devpath) == NULL && !is_dm) {
d02ca379
DB
281 zed_log_msg(LOG_INFO, " realpath: %s failed (%s)",
282 rawpath, strerror(errno));
283
284 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
285 &newstate);
286
287 zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s)",
288 fullpath, libzfs_error_description(g_zfshdl));
289 return;
290 }
291
6078881a
TH
292 if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL)) {
293 zed_log_msg(LOG_INFO, "%s: Autoreplace is not enabled on this"
294 " pool, ignore disk.", __func__);
295 return;
296 }
297
298 /* Only autoreplace bad disks */
299 if ((vs->vs_state != VDEV_STATE_DEGRADED) &&
300 (vs->vs_state != VDEV_STATE_FAULTED) &&
301 (vs->vs_state != VDEV_STATE_CANT_OPEN)) {
302 return;
303 }
304
305 nvlist_lookup_string(vdev, "new_devid", &new_devid);
306
307 if (is_dm) {
308 /* Don't label device mapper or multipath disks. */
309 } else if (!labeled) {
310 /*
311 * we're auto-replacing a raw disk, so label it first
312 */
d02ca379
DB
313 char *leafname;
314
315 /*
316 * If this is a request to label a whole disk, then attempt to
317 * write out the label. Before we can label the disk, we need
318 * to map the physical string that was matched on to the under
319 * lying device node.
320 *
321 * If any part of this process fails, then do a force online
322 * to trigger a ZFS fault for the device (and any hot spare
323 * replacement).
324 */
325 leafname = strrchr(devpath, '/') + 1;
326
327 /*
328 * If this is a request to label a whole disk, then attempt to
329 * write out the label.
330 */
331 if (zpool_label_disk(g_zfshdl, zhp, leafname) != 0) {
332 zed_log_msg(LOG_INFO, " zpool_label_disk: could not "
333 "label '%s' (%s)", leafname,
334 libzfs_error_description(g_zfshdl));
335
336 (void) zpool_vdev_online(zhp, fullpath,
337 ZFS_ONLINE_FORCEFAULT, &newstate);
338 return;
339 }
340
341 /*
342 * The disk labeling is asynchronous on Linux. Just record
343 * this label request and return as there will be another
344 * disk add event for the partition after the labeling is
345 * completed.
346 */
347 device = malloc(sizeof (pendingdev_t));
348 (void) strlcpy(device->pd_physpath, physpath,
349 sizeof (device->pd_physpath));
350 list_insert_tail(&g_device_list, device);
351
352 zed_log_msg(LOG_INFO, " zpool_label_disk: async '%s' (%llu)",
6078881a 353 leafname, (u_longlong_t) guid);
d02ca379
DB
354
355 return; /* resumes at EC_DEV_ADD.ESC_DISK for partition */
356
357 } else /* labeled */ {
358 boolean_t found = B_FALSE;
359 /*
360 * match up with request above to label the disk
361 */
362 for (device = list_head(&g_device_list); device != NULL;
363 device = list_next(&g_device_list, device)) {
364 if (strcmp(physpath, device->pd_physpath) == 0) {
365 list_remove(&g_device_list, device);
366 free(device);
367 found = B_TRUE;
368 break;
369 }
370 }
371 if (!found) {
372 /* unexpected partition slice encountered */
373 (void) zpool_vdev_online(zhp, fullpath,
374 ZFS_ONLINE_FORCEFAULT, &newstate);
375 return;
376 }
377
378 zed_log_msg(LOG_INFO, " zpool_label_disk: resume '%s' (%llu)",
6078881a 379 physpath, (u_longlong_t) guid);
d02ca379
DB
380
381 (void) snprintf(devpath, sizeof (devpath), "%s%s",
382 DEV_BYID_PATH, new_devid);
d02ca379
DB
383 }
384
385 /*
386 * Construct the root vdev to pass to zpool_vdev_attach(). While adding
387 * the entire vdev structure is harmless, we construct a reduced set of
388 * path/physpath/wholedisk to keep it simple.
389 */
390 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) {
391 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
392 return;
393 }
394 if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) {
395 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
396 nvlist_free(nvroot);
397 return;
398 }
399
400 if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 ||
401 nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 ||
402 nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 ||
403 (physpath != NULL && nvlist_add_string(newvd,
404 ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) ||
405 nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 ||
406 nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 ||
407 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &newvd,
408 1) != 0) {
409 zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs");
410 nvlist_free(newvd);
411 nvlist_free(nvroot);
412 return;
413 }
414
415 nvlist_free(newvd);
416
417 /*
418 * auto replace a leaf disk at same physical location
419 */
420 ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE);
421
422 zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)",
423 fullpath, path, (ret == 0) ? "no errors" :
424 libzfs_error_description(g_zfshdl));
425
426 nvlist_free(nvroot);
427}
428
429/*
430 * Utility functions to find a vdev matching given criteria.
431 */
432typedef struct dev_data {
433 const char *dd_compare;
434 const char *dd_prop;
435 zfs_process_func_t dd_func;
436 boolean_t dd_found;
437 boolean_t dd_islabeled;
438 uint64_t dd_pool_guid;
439 uint64_t dd_vdev_guid;
440 const char *dd_new_devid;
441} dev_data_t;
442
443static void
444zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data)
445{
446 dev_data_t *dp = data;
6078881a 447 char *path = NULL;
d02ca379
DB
448 uint_t c, children;
449 nvlist_t **child;
450
451 /*
452 * First iterate over any children.
453 */
454 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN,
455 &child, &children) == 0) {
456 for (c = 0; c < children; c++)
457 zfs_iter_vdev(zhp, child[c], data);
458 return;
459 }
460
461 /* once a vdev was matched and processed there is nothing left to do */
462 if (dp->dd_found)
463 return;
464
465 /*
466 * Match by GUID if available otherwise fallback to devid or physical
467 */
468 if (dp->dd_vdev_guid != 0) {
469 uint64_t guid;
470
471 if (nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID,
472 &guid) != 0 || guid != dp->dd_vdev_guid) {
473 return;
474 }
475 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched on %llu", guid);
476 dp->dd_found = B_TRUE;
477
478 } else if (dp->dd_compare != NULL) {
479 /*
480 * NOTE: On Linux there is an event for partition, so unlike
481 * illumos, substring matching is not required to accomodate
482 * the partition suffix. An exact match will be present in
483 * the dp->dd_compare value.
484 */
485 if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 ||
6078881a 486 strcmp(dp->dd_compare, path) != 0)
d02ca379 487 return;
6078881a 488
d02ca379
DB
489 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched %s on %s",
490 dp->dd_prop, path);
491 dp->dd_found = B_TRUE;
492
493 /* pass the new devid for use by replacing code */
6078881a 494 if (dp->dd_new_devid != NULL) {
d02ca379
DB
495 (void) nvlist_add_string(nvl, "new_devid",
496 dp->dd_new_devid);
497 }
498 }
499
500 (dp->dd_func)(zhp, nvl, dp->dd_islabeled);
501}
502
503static void *
504zfs_enable_ds(void *arg)
505{
506 unavailpool_t *pool = (unavailpool_t *)arg;
507
508 assert(pool->uap_enable_tid = pthread_self());
509
510 (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0);
511 zpool_close(pool->uap_zhp);
512 pool->uap_zhp = NULL;
513
514 /* Note: zfs_slm_fini() will cleanup this pool entry on exit */
515 return (NULL);
516}
517
518static int
519zfs_iter_pool(zpool_handle_t *zhp, void *data)
520{
521 nvlist_t *config, *nvl;
522 dev_data_t *dp = data;
523 uint64_t pool_guid;
524 unavailpool_t *pool;
525
526 zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)",
527 zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop);
528
529 /*
530 * For each vdev in this pool, look for a match to apply dd_func
531 */
532 if ((config = zpool_get_config(zhp, NULL)) != NULL) {
533 if (dp->dd_pool_guid == 0 ||
534 (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
535 &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) {
536 (void) nvlist_lookup_nvlist(config,
537 ZPOOL_CONFIG_VDEV_TREE, &nvl);
538 zfs_iter_vdev(zhp, nvl, data);
539 }
540 }
541
542 /*
543 * if this pool was originally unavailable,
544 * then enable its datasets asynchronously
545 */
546 if (g_enumeration_done) {
547 for (pool = list_head(&g_pool_list); pool != NULL;
548 pool = list_next(&g_pool_list, pool)) {
549
550 if (pool->uap_enable_tid != 0)
551 continue; /* entry already processed */
552 if (strcmp(zpool_get_name(zhp),
553 zpool_get_name(pool->uap_zhp)))
554 continue;
555 if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) {
556 /* send to a background thread; keep on list */
557 (void) pthread_create(&pool->uap_enable_tid,
558 NULL, zfs_enable_ds, pool);
559 break;
560 }
561 }
562 }
563
564 zpool_close(zhp);
565 return (dp->dd_found); /* cease iteration after a match */
566}
567
568/*
569 * Given a physical device location, iterate over all
570 * (pool, vdev) pairs which correspond to that location.
571 */
572static boolean_t
573devphys_iter(const char *physical, const char *devid, zfs_process_func_t func,
574 boolean_t is_slice)
575{
576 dev_data_t data = { 0 };
577
578 data.dd_compare = physical;
579 data.dd_func = func;
580 data.dd_prop = ZPOOL_CONFIG_PHYS_PATH;
581 data.dd_found = B_FALSE;
582 data.dd_islabeled = is_slice;
583 data.dd_new_devid = devid; /* used by auto replace code */
584
585 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
586
587 return (data.dd_found);
588}
589
590/*
591 * Given a device identifier, find any vdevs with a matching devid.
592 * On Linux we can match devid directly which is always a whole disk.
593 */
594static boolean_t
595devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice)
596{
597 dev_data_t data = { 0 };
598
599 data.dd_compare = devid;
600 data.dd_func = func;
601 data.dd_prop = ZPOOL_CONFIG_DEVID;
602 data.dd_found = B_FALSE;
603 data.dd_islabeled = is_slice;
604 data.dd_new_devid = devid;
605
606 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
607
608 return (data.dd_found);
609}
610
611/*
612 * Handle a EC_DEV_ADD.ESC_DISK event.
613 *
614 * illumos
615 * Expects: DEV_PHYS_PATH string in schema
616 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
617 *
618 * path: '/dev/dsk/c0t1d0s0' (persistent)
619 * devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a'
620 * phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a'
621 *
622 * linux
623 * provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema
624 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
625 *
626 * path: '/dev/sdc1' (not persistent)
627 * devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1'
628 * phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0'
629 */
630static int
631zfs_deliver_add(nvlist_t *nvl, boolean_t is_lofi)
632{
633 char *devpath = NULL, *devid;
634 boolean_t is_slice;
635
636 /*
637 * Expecting a devid string and an optional physical location
638 */
639 if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0)
640 return (-1);
641
642 (void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath);
643
d02ca379
DB
644 is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0);
645
6078881a
TH
646 zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)",
647 devid, devpath ? devpath : "NULL", is_slice);
648
d02ca379
DB
649 /*
650 * Iterate over all vdevs looking for a match in the folllowing order:
651 * 1. ZPOOL_CONFIG_DEVID (identifies the unique disk)
652 * 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location).
653 *
654 * For disks, we only want to pay attention to vdevs marked as whole
655 * disks. For multipath devices does whole disk apply? (TBD).
656 */
657 if (!devid_iter(devid, zfs_process_add, is_slice) && devpath != NULL) {
658 if (!is_slice) {
659 (void) devphys_iter(devpath, devid, zfs_process_add,
660 is_slice);
661 }
662 }
663
664 return (0);
665}
666
667/*
668 * Called when we receive a VDEV_CHECK event, which indicates a device could not
669 * be opened during initial pool open, but the autoreplace property was set on
670 * the pool. In this case, we treat it as if it were an add event.
671 */
672static int
673zfs_deliver_check(nvlist_t *nvl)
674{
675 dev_data_t data = { 0 };
676
677 if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID,
678 &data.dd_pool_guid) != 0 ||
679 nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID,
680 &data.dd_vdev_guid) != 0 ||
681 data.dd_vdev_guid == 0)
682 return (0);
683
684 zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu",
685 data.dd_pool_guid, data.dd_vdev_guid);
686
687 data.dd_func = zfs_process_add;
688
689 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
690
691 return (0);
692}
693
694static int
695zfsdle_vdev_online(zpool_handle_t *zhp, void *data)
696{
697 char *devname = data;
698 boolean_t avail_spare, l2cache;
699 vdev_state_t newstate;
700 nvlist_t *tgt;
701
702 zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'",
703 devname, zpool_get_name(zhp));
704
705 if ((tgt = zpool_find_vdev_by_physpath(zhp, devname,
706 &avail_spare, &l2cache, NULL)) != NULL) {
707 char *path, fullpath[MAXPATHLEN];
708 uint64_t wholedisk = 0ULL;
709
710 verify(nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH,
711 &path) == 0);
712 verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK,
713 &wholedisk) == 0);
714
715 (void) strlcpy(fullpath, path, sizeof (fullpath));
716 if (wholedisk) {
6078881a
TH
717 char *spath = zfs_strip_partition(fullpath);
718 if (!spath) {
719 zed_log_msg(LOG_INFO, "%s: Can't alloc",
720 __func__);
721 return (0);
722 }
d02ca379
DB
723
724 (void) strlcpy(fullpath, spath, sizeof (fullpath));
725 free(spath);
726
727 /*
728 * We need to reopen the pool associated with this
729 * device so that the kernel can update the size
730 * of the expanded device.
731 */
732 (void) zpool_reopen(zhp);
733 }
734
735 if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) {
736 zed_log_msg(LOG_INFO, "zfsdle_vdev_online: setting "
737 "device '%s' to ONLINE state in pool '%s'",
738 fullpath, zpool_get_name(zhp));
739 if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL)
740 (void) zpool_vdev_online(zhp, fullpath, 0,
741 &newstate);
742 }
743 zpool_close(zhp);
744 return (1);
745 }
746 zpool_close(zhp);
747 return (0);
748}
749
750/*
751 * This function handles the ESC_DEV_DLE event.
752 */
753static int
754zfs_deliver_dle(nvlist_t *nvl)
755{
756 char *devname;
757
758 if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) != 0) {
759 zed_log_msg(LOG_INFO, "zfs_deliver_event: no physpath");
760 return (-1);
761 }
762
763 if (zpool_iter(g_zfshdl, zfsdle_vdev_online, devname) != 1) {
764 zed_log_msg(LOG_INFO, "zfs_deliver_event: device '%s' not "
765 "found", devname);
766 return (1);
767 }
768 return (0);
769}
770
771/*
772 * syseventd daemon module event handler
773 *
774 * Handles syseventd daemon zfs device related events:
775 *
776 * EC_DEV_ADD.ESC_DISK
777 * EC_DEV_STATUS.ESC_DEV_DLE
778 * EC_ZFS.ESC_ZFS_VDEV_CHECK
779 *
780 * Note: assumes only one thread active at a time (not thread safe)
781 */
782static int
783zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl)
784{
785 int ret;
786 boolean_t is_lofi = B_FALSE, is_check = B_FALSE, is_dle = B_FALSE;
787
788 if (strcmp(class, EC_DEV_ADD) == 0) {
789 /*
790 * We're mainly interested in disk additions, but we also listen
791 * for new loop devices, to allow for simplified testing.
792 */
793 if (strcmp(subclass, ESC_DISK) == 0)
794 is_lofi = B_FALSE;
795 else if (strcmp(subclass, ESC_LOFI) == 0)
796 is_lofi = B_TRUE;
797 else
798 return (0);
799
800 is_check = B_FALSE;
801 } else if (strcmp(class, EC_ZFS) == 0 &&
802 strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) {
803 /*
804 * This event signifies that a device failed to open
805 * during pool load, but the 'autoreplace' property was
806 * set, so we should pretend it's just been added.
807 */
808 is_check = B_TRUE;
809 } else if (strcmp(class, EC_DEV_STATUS) == 0 &&
810 strcmp(subclass, ESC_DEV_DLE) == 0) {
811 is_dle = B_TRUE;
812 } else {
813 return (0);
814 }
815
816 if (is_dle)
817 ret = zfs_deliver_dle(nvl);
818 else if (is_check)
819 ret = zfs_deliver_check(nvl);
820 else
821 ret = zfs_deliver_add(nvl, is_lofi);
822
823 return (ret);
824}
825
826/*ARGSUSED*/
827static void *
828zfs_enum_pools(void *arg)
829{
830 (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list);
831 /*
832 * Linux - instead of using a thread pool, each list entry
833 * will spawn a thread when an unavailable pool transitions
834 * to available. zfs_slm_fini will wait for these threads.
835 */
836 g_enumeration_done = B_TRUE;
837 return (NULL);
838}
839
840/*
841 * called from zed daemon at startup
842 *
843 * sent messages from zevents or udev monitor
844 *
845 * For now, each agent has it's own libzfs instance
846 */
847int
848zfs_slm_init(libzfs_handle_t *zfs_hdl)
849{
850 if ((g_zfshdl = libzfs_init()) == NULL)
851 return (-1);
852
853 /*
854 * collect a list of unavailable pools (asynchronously,
855 * since this can take a while)
856 */
857 list_create(&g_pool_list, sizeof (struct unavailpool),
858 offsetof(struct unavailpool, uap_node));
859
860 if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) {
861 list_destroy(&g_pool_list);
862 return (-1);
863 }
864
865 list_create(&g_device_list, sizeof (struct pendingdev),
866 offsetof(struct pendingdev, pd_node));
867
868 return (0);
869}
870
871void
872zfs_slm_fini()
873{
874 unavailpool_t *pool;
875 pendingdev_t *device;
876
877 /* wait for zfs_enum_pools thread to complete */
878 (void) pthread_join(g_zfs_tid, NULL);
879
880 while ((pool = (list_head(&g_pool_list))) != NULL) {
881 /*
882 * each pool entry has two possibilities
883 * 1. was made available (so wait for zfs_enable_ds thread)
884 * 2. still unavailable (just close the pool)
885 */
886 if (pool->uap_enable_tid)
887 (void) pthread_join(pool->uap_enable_tid, NULL);
888 else if (pool->uap_zhp != NULL)
889 zpool_close(pool->uap_zhp);
890
891 list_remove(&g_pool_list, pool);
892 free(pool);
893 }
894 list_destroy(&g_pool_list);
895
896 while ((device = (list_head(&g_device_list))) != NULL) {
897 list_remove(&g_device_list, device);
898 free(device);
899 }
900 list_destroy(&g_device_list);
901
902 libzfs_fini(g_zfshdl);
903}
904
905void
906zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl)
907{
908 static pthread_mutex_t serialize = PTHREAD_MUTEX_INITIALIZER;
909
910 /*
911 * Serialize incoming events from zfs or libudev sources
912 */
913 (void) pthread_mutex_lock(&serialize);
914 zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass);
915 (void) zfs_slm_deliver_event(class, subclass, nvl);
916 (void) pthread_mutex_unlock(&serialize);
917}