]> git.proxmox.com Git - mirror_zfs.git/blame - cmd/zpool/zpool_vdev.c
Add zfault zpool configurations and tests
[mirror_zfs.git] / cmd / zpool / zpool_vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
34dc7c2f
BB
24 */
25
34dc7c2f
BB
26/*
27 * Functions to convert between a list of vdevs and an nvlist representing the
28 * configuration. Each entry in the list can be one of:
29 *
30 * Device vdevs
31 * disk=(path=..., devid=...)
32 * file=(path=...)
33 *
34 * Group vdevs
35 * raidz[1|2]=(...)
36 * mirror=(...)
37 *
38 * Hot spares
39 *
40 * While the underlying implementation supports it, group vdevs cannot contain
41 * other group vdevs. All userland verification of devices is contained within
42 * this file. If successful, the nvlist returned can be passed directly to the
43 * kernel; we've done as much verification as possible in userland.
44 *
45 * Hot spares are a special case, and passed down as an array of disk vdevs, at
46 * the same level as the root of the vdev tree.
47 *
48 * The only function exported by this file is 'make_root_vdev'. The
49 * function performs several passes:
50 *
51 * 1. Construct the vdev specification. Performs syntax validation and
52 * makes sure each device is valid.
d603ed6c 53 * 2. Check for devices in use. Using libblkid to make sure that no
34dc7c2f
BB
54 * devices are also in use. Some can be overridden using the 'force'
55 * flag, others cannot.
56 * 3. Check for replication errors if the 'force' flag is not specified.
57 * validates that the replication level is consistent across the
58 * entire pool.
59 * 4. Call libzfs to label any whole disks with an EFI label.
60 */
61
62#include <assert.h>
d603ed6c 63#include <ctype.h>
34dc7c2f
BB
64#include <devid.h>
65#include <errno.h>
66#include <fcntl.h>
34dc7c2f
BB
67#include <libintl.h>
68#include <libnvpair.h>
45d1cae3 69#include <limits.h>
34dc7c2f
BB
70#include <stdio.h>
71#include <string.h>
72#include <unistd.h>
73#include <sys/efi_partition.h>
74#include <sys/stat.h>
75#include <sys/vtoc.h>
76#include <sys/mntent.h>
d603ed6c
BB
77#include <uuid/uuid.h>
78#ifdef HAVE_LIBBLKID
79#include <blkid/blkid.h>
80#else
81#define blkid_cache void *
82#endif /* HAVE_LIBBLKID */
34dc7c2f
BB
83
84#include "zpool_util.h"
85
34dc7c2f
BB
86/*
87 * For any given vdev specification, we can have multiple errors. The
88 * vdev_error() function keeps track of whether we have seen an error yet, and
89 * prints out a header if its the first error we've seen.
90 */
91boolean_t error_seen;
92boolean_t is_force;
93
94/*PRINTFLIKE1*/
95static void
96vdev_error(const char *fmt, ...)
97{
98 va_list ap;
99
100 if (!error_seen) {
101 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
102 if (!is_force)
103 (void) fprintf(stderr, gettext("use '-f' to override "
104 "the following errors:\n"));
105 else
106 (void) fprintf(stderr, gettext("the following errors "
107 "must be manually repaired:\n"));
108 error_seen = B_TRUE;
109 }
110
111 va_start(ap, fmt);
112 (void) vfprintf(stderr, fmt, ap);
113 va_end(ap);
114}
115
34dc7c2f
BB
116/*
117 * Check that a file is valid. All we can do in this case is check that it's
118 * not in use by another pool, and not in use by swap.
119 */
120static int
121check_file(const char *file, boolean_t force, boolean_t isspare)
122{
123 char *name;
124 int fd;
125 int ret = 0;
34dc7c2f
BB
126 pool_state_t state;
127 boolean_t inuse;
128
34dc7c2f
BB
129 if ((fd = open(file, O_RDONLY)) < 0)
130 return (0);
131
132 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
133 const char *desc;
134
135 switch (state) {
136 case POOL_STATE_ACTIVE:
137 desc = gettext("active");
138 break;
139
140 case POOL_STATE_EXPORTED:
141 desc = gettext("exported");
142 break;
143
144 case POOL_STATE_POTENTIALLY_ACTIVE:
145 desc = gettext("potentially active");
146 break;
147
148 default:
149 desc = gettext("unknown");
150 break;
151 }
152
153 /*
154 * Allow hot spares to be shared between pools.
155 */
156 if (state == POOL_STATE_SPARE && isspare)
157 return (0);
158
159 if (state == POOL_STATE_ACTIVE ||
160 state == POOL_STATE_SPARE || !force) {
161 switch (state) {
162 case POOL_STATE_SPARE:
163 vdev_error(gettext("%s is reserved as a hot "
164 "spare for pool %s\n"), file, name);
165 break;
166 default:
167 vdev_error(gettext("%s is part of %s pool "
168 "'%s'\n"), file, desc, name);
169 break;
170 }
171 ret = -1;
172 }
173
174 free(name);
175 }
176
177 (void) close(fd);
178 return (ret);
179}
180
d603ed6c
BB
181static void
182check_error(int err)
183{
184 (void) fprintf(stderr, gettext("warning: device in use checking "
185 "failed: %s\n"), strerror(err));
186}
187
188static int
189check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
190{
191 struct stat64 statbuf;
192 int err;
193#ifdef HAVE_LIBBLKID
194 char *value;
195#endif /* HAVE_LIBBLKID */
196
197 if (stat64(path, &statbuf) != 0) {
198 vdev_error(gettext("cannot stat %s: %s\n"),
199 path, strerror(errno));
200 return (-1);
201 }
202
203#ifdef HAVE_LIBBLKID
204 /* No valid type detected device is safe to use */
205 value = blkid_get_tag_value(cache, "TYPE", path);
206 if (value == NULL)
207 return (0);
208
209 /*
210 * If libblkid detects a ZFS device, we check the device
211 * using check_file() to see if it's safe. The one safe
212 * case is a spare device shared between multiple pools.
213 */
214 if (strcmp(value, "zfs") == 0) {
215 err = check_file(path, force, isspare);
216 } else {
217 if (force) {
218 err = 0;
219 } else {
220 err = -1;
221 vdev_error(gettext("%s contains a filesystem of "
222 "type '%s'\n"), path, value);
223 }
224 }
225
226 free(value);
227#else
228 err = check_file(path, force, isspare);
229#endif /* HAVE_LIBBLKID */
230
231 return (err);
232}
233
234/*
235 * Validate a whole disk. Iterate over all slices on the disk and make sure
236 * that none is in use by calling check_slice().
237 */
238static int
239check_disk(const char *path, blkid_cache cache, int force,
240 boolean_t isspare, boolean_t iswholedisk)
241{
242 struct dk_gpt *vtoc;
243 char slice_path[MAXPATHLEN];
244 int err = 0;
245 int fd, i;
246
247 /* This is not a wholedisk we only check the given partition */
248 if (!iswholedisk)
249 return check_slice(path, cache, force, isspare);
250
251 /*
252 * When the device is a whole disk try to read the efi partition
253 * label. If this is successful we safely check the all of the
254 * partitions. However, when it fails it may simply be because
255 * the disk is partitioned via the MBR. Since we currently can
256 * not easily decode the MBR return a failure and prompt to the
257 * user to use force option since we cannot check the partitions.
258 */
259 if ((fd = open(path, O_RDWR|O_DIRECT|O_EXCL)) < 0) {
260 check_error(errno);
261 return -1;
262 }
263
264 if ((err = efi_alloc_and_read(fd, &vtoc)) != 0) {
265 (void) close(fd);
266
267 if (force) {
268 return 0;
269 } else {
270 vdev_error(gettext("%s does not contain an EFI "
271 "label but it may contain partition\n"
272 "information in the MBR.\n"), path);
273 return -1;
274 }
275 }
276
277 /*
278 * The primary efi partition label is damaged however the secondary
279 * label at the end of the device is intact. Rather than use this
280 * label we should play it safe and treat this as a non efi device.
281 */
282 if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
283 efi_free(vtoc);
284 (void) close(fd);
285
286 if (force) {
287 /* Partitions will no be created using the backup */
288 return 0;
289 } else {
290 vdev_error(gettext("%s contains a corrupt primary "
291 "EFI label.\n"), path);
292 return -1;
293 }
294 }
295
296 for (i = 0; i < vtoc->efi_nparts; i++) {
297
298 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
299 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
300 continue;
301
302 if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
303 (void) snprintf(slice_path, sizeof (slice_path),
304 "%s%s%d", path, "-part", i+1);
305 else
306 (void) snprintf(slice_path, sizeof (slice_path),
307 "%s%s%d", path, isdigit(path[strlen(path)-1]) ?
308 "p" : "", i+1);
309
310 err = check_slice(slice_path, cache, force, isspare);
311 if (err)
312 break;
313 }
314
315 efi_free(vtoc);
316 (void) close(fd);
317
318 return (err);
319}
320
321static int
322check_device(const char *path, boolean_t force,
323 boolean_t isspare, boolean_t iswholedisk)
324{
325 static blkid_cache cache = NULL;
326
327#ifdef HAVE_LIBBLKID
328 /*
329 * There is no easy way to add a correct blkid_put_cache() call,
330 * memory will be reclaimed when the command exits.
331 */
332 if (cache == NULL) {
333 int err;
334
335 if ((err = blkid_get_cache(&cache, NULL)) != 0) {
336 check_error(err);
337 return -1;
338 }
339
340 if ((err = blkid_probe_all(cache)) != 0) {
341 blkid_put_cache(cache);
342 check_error(err);
343 return -1;
344 }
345 }
346#endif /* HAVE_LIBBLKID */
347
348 return check_disk(path, cache, force, isspare, iswholedisk);
349}
34dc7c2f
BB
350
351/*
352 * By "whole disk" we mean an entire physical disk (something we can
353 * label, toggle the write cache on, etc.) as opposed to the full
354 * capacity of a pseudo-device such as lofi or did. We act as if we
355 * are labeling the disk, which should be a pretty good test of whether
356 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
357 * it isn't.
358 */
359static boolean_t
d603ed6c 360is_whole_disk(const char *path)
34dc7c2f
BB
361{
362 struct dk_gpt *label;
363 int fd;
34dc7c2f 364
d603ed6c 365 if ((fd = open(path, O_RDWR|O_DIRECT|O_EXCL)) < 0)
34dc7c2f
BB
366 return (B_FALSE);
367 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
368 (void) close(fd);
369 return (B_FALSE);
370 }
371 efi_free(label);
372 (void) close(fd);
373 return (B_TRUE);
374}
375
d603ed6c
BB
376/*
377 * This may be a shorthand device path or it could be total gibberish.
378 * Check to see if it's a known device in /dev/, /dev/disk/by-id,
379 * /dev/disk/by-label, /dev/disk/by-path, /dev/disk/by-uuid, or
380 * /dev/disk/zpool/. As part of this check, see if we've been given
381 * an entire disk (minus the slice number).
382 */
383static int
384is_shorthand_path(const char *arg, char *path,
385 struct stat64 *statbuf, boolean_t *wholedisk)
386{
5c1bad00 387 char dirs[5][9] = {"by-id", "by-label", "by-path", "by-uuid", "zpool"};
d603ed6c
BB
388 int i, err;
389
390 /* /dev/<name> */
391 (void) snprintf(path, MAXPATHLEN, "%s/%s", DISK_ROOT, arg);
392 *wholedisk = is_whole_disk(path);
393 err = stat64(path, statbuf);
394 if (*wholedisk || err == 0)
395 return (0);
396
397 /* /dev/disk/<dirs>/<name> */
398 for (i = 0; i < 5; i++) {
399 (void) snprintf(path, MAXPATHLEN, "%s/%s/%s",
400 UDISK_ROOT, dirs[i], arg);
401 *wholedisk = is_whole_disk(path);
402 err = stat64(path, statbuf);
403 if (*wholedisk || err == 0)
404 return (0);
405 }
406
407 strlcpy(path, arg, sizeof(path));
408 memset(statbuf, 0, sizeof(*statbuf));
409 *wholedisk = B_FALSE;
410
411 return (ENOENT);
412}
413
34dc7c2f
BB
414/*
415 * Create a leaf vdev. Determine if this is a file or a device. If it's a
416 * device, fill in the device id to make a complete nvlist. Valid forms for a
417 * leaf vdev are:
418 *
d603ed6c 419 * /dev/xxx Complete disk path
34dc7c2f 420 * /xxx Full path to file
d603ed6c 421 * xxx Shorthand for /dev/disk/yyy/xxx
34dc7c2f
BB
422 */
423static nvlist_t *
424make_leaf_vdev(const char *arg, uint64_t is_log)
425{
426 char path[MAXPATHLEN];
427 struct stat64 statbuf;
428 nvlist_t *vdev = NULL;
429 char *type = NULL;
430 boolean_t wholedisk = B_FALSE;
d603ed6c 431 int err;
34dc7c2f
BB
432
433 /*
434 * Determine what type of vdev this is, and put the full path into
435 * 'path'. We detect whether this is a device of file afterwards by
436 * checking the st_mode of the file.
437 */
438 if (arg[0] == '/') {
439 /*
440 * Complete device or file path. Exact type is determined by
d603ed6c
BB
441 * examining the file descriptor afterwards. Symbolic links
442 * are resolved to their real paths for the is_whole_disk()
443 * and S_ISBLK/S_ISREG type checks. However, we are careful
444 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
445 * can leverage udev's persistent device labels.
34dc7c2f 446 */
d603ed6c 447 if (realpath(arg, path) == NULL) {
34dc7c2f 448 (void) fprintf(stderr,
d603ed6c 449 gettext("cannot resolve path '%s'\n"), arg);
34dc7c2f
BB
450 return (NULL);
451 }
452
34dc7c2f
BB
453 wholedisk = is_whole_disk(path);
454 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
d603ed6c
BB
455 (void) fprintf(stderr,
456 gettext("cannot open '%s': %s\n"),
457 path, strerror(errno));
458 return (NULL);
459 }
460
461 /* After is_whole_disk() check restore original passed path */
462 strlcpy(path, arg, MAXPATHLEN);
463 } else {
464 err = is_shorthand_path(arg, path, &statbuf, &wholedisk);
465 if (err != 0) {
34dc7c2f
BB
466 /*
467 * If we got ENOENT, then the user gave us
468 * gibberish, so try to direct them with a
469 * reasonable error message. Otherwise,
470 * regurgitate strerror() since it's the best we
471 * can do.
472 */
d603ed6c 473 if (err == ENOENT) {
34dc7c2f
BB
474 (void) fprintf(stderr,
475 gettext("cannot open '%s': no such "
476 "device in %s\n"), arg, DISK_ROOT);
477 (void) fprintf(stderr,
478 gettext("must be a full path or "
479 "shorthand device name\n"));
480 return (NULL);
481 } else {
482 (void) fprintf(stderr,
483 gettext("cannot open '%s': %s\n"),
484 path, strerror(errno));
485 return (NULL);
486 }
487 }
488 }
489
490 /*
491 * Determine whether this is a device or a file.
492 */
493 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
494 type = VDEV_TYPE_DISK;
495 } else if (S_ISREG(statbuf.st_mode)) {
496 type = VDEV_TYPE_FILE;
497 } else {
498 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
499 "block device or regular file\n"), path);
500 return (NULL);
501 }
502
503 /*
504 * Finally, we have the complete device or file, and we know that it is
505 * acceptable to use. Construct the nvlist to describe this vdev. All
506 * vdevs have a 'path' element, and devices also have a 'devid' element.
507 */
508 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
509 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
510 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
511 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
512 if (strcmp(type, VDEV_TYPE_DISK) == 0)
513 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
514 (uint64_t)wholedisk) == 0);
515
d603ed6c 516#if defined(__sun__) || defined(__sun)
34dc7c2f
BB
517 /*
518 * For a whole disk, defer getting its devid until after labeling it.
519 */
520 if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
521 /*
522 * Get the devid for the device.
523 */
524 int fd;
525 ddi_devid_t devid;
526 char *minor = NULL, *devid_str = NULL;
527
d603ed6c 528 if ((fd = open(path, O_RDONLY|O_EXCL)) < 0) {
34dc7c2f
BB
529 (void) fprintf(stderr, gettext("cannot open '%s': "
530 "%s\n"), path, strerror(errno));
531 nvlist_free(vdev);
532 return (NULL);
533 }
534
535 if (devid_get(fd, &devid) == 0) {
536 if (devid_get_minor_name(fd, &minor) == 0 &&
537 (devid_str = devid_str_encode(devid, minor)) !=
538 NULL) {
539 verify(nvlist_add_string(vdev,
540 ZPOOL_CONFIG_DEVID, devid_str) == 0);
541 }
542 if (devid_str != NULL)
543 devid_str_free(devid_str);
544 if (minor != NULL)
545 devid_str_free(minor);
546 devid_free(devid);
547 }
548
549 (void) close(fd);
550 }
d603ed6c 551#endif
34dc7c2f
BB
552
553 return (vdev);
554}
555
556/*
557 * Go through and verify the replication level of the pool is consistent.
558 * Performs the following checks:
559 *
560 * For the new spec, verifies that devices in mirrors and raidz are the
561 * same size.
562 *
563 * If the current configuration already has inconsistent replication
564 * levels, ignore any other potential problems in the new spec.
565 *
566 * Otherwise, make sure that the current spec (if there is one) and the new
567 * spec have consistent replication levels.
568 */
569typedef struct replication_level {
570 char *zprl_type;
571 uint64_t zprl_children;
572 uint64_t zprl_parity;
573} replication_level_t;
574
575#define ZPOOL_FUZZ (16 * 1024 * 1024)
576
577/*
578 * Given a list of toplevel vdevs, return the current replication level. If
579 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
580 * an error message will be displayed for each self-inconsistent vdev.
581 */
582static replication_level_t *
583get_replication(nvlist_t *nvroot, boolean_t fatal)
584{
585 nvlist_t **top;
586 uint_t t, toplevels;
587 nvlist_t **child;
588 uint_t c, children;
589 nvlist_t *nv;
590 char *type;
d4ed6673 591 replication_level_t lastrep = { 0 }, rep, *ret;
34dc7c2f
BB
592 boolean_t dontreport;
593
594 ret = safe_malloc(sizeof (replication_level_t));
595
596 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
597 &top, &toplevels) == 0);
598
599 lastrep.zprl_type = NULL;
600 for (t = 0; t < toplevels; t++) {
601 uint64_t is_log = B_FALSE;
602
603 nv = top[t];
604
605 /*
606 * For separate logs we ignore the top level vdev replication
607 * constraints.
608 */
609 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
610 if (is_log)
611 continue;
612
613 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
614 &type) == 0);
615 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
616 &child, &children) != 0) {
617 /*
618 * This is a 'file' or 'disk' vdev.
619 */
620 rep.zprl_type = type;
621 rep.zprl_children = 1;
622 rep.zprl_parity = 0;
623 } else {
624 uint64_t vdev_size;
625
626 /*
627 * This is a mirror or RAID-Z vdev. Go through and make
628 * sure the contents are all the same (files vs. disks),
629 * keeping track of the number of elements in the
630 * process.
631 *
632 * We also check that the size of each vdev (if it can
633 * be determined) is the same.
634 */
635 rep.zprl_type = type;
636 rep.zprl_children = 0;
637
638 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
639 verify(nvlist_lookup_uint64(nv,
640 ZPOOL_CONFIG_NPARITY,
641 &rep.zprl_parity) == 0);
642 assert(rep.zprl_parity != 0);
643 } else {
644 rep.zprl_parity = 0;
645 }
646
647 /*
648 * The 'dontreport' variable indicates that we've
649 * already reported an error for this spec, so don't
650 * bother doing it again.
651 */
652 type = NULL;
653 dontreport = 0;
654 vdev_size = -1ULL;
655 for (c = 0; c < children; c++) {
656 nvlist_t *cnv = child[c];
657 char *path;
658 struct stat64 statbuf;
659 uint64_t size = -1ULL;
660 char *childtype;
661 int fd, err;
662
663 rep.zprl_children++;
664
665 verify(nvlist_lookup_string(cnv,
666 ZPOOL_CONFIG_TYPE, &childtype) == 0);
667
668 /*
669 * If this is a replacing or spare vdev, then
670 * get the real first child of the vdev.
671 */
672 if (strcmp(childtype,
673 VDEV_TYPE_REPLACING) == 0 ||
674 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
675 nvlist_t **rchild;
676 uint_t rchildren;
677
678 verify(nvlist_lookup_nvlist_array(cnv,
679 ZPOOL_CONFIG_CHILDREN, &rchild,
680 &rchildren) == 0);
681 assert(rchildren == 2);
682 cnv = rchild[0];
683
684 verify(nvlist_lookup_string(cnv,
685 ZPOOL_CONFIG_TYPE,
686 &childtype) == 0);
687 }
688
689 verify(nvlist_lookup_string(cnv,
690 ZPOOL_CONFIG_PATH, &path) == 0);
691
692 /*
693 * If we have a raidz/mirror that combines disks
694 * with files, report it as an error.
695 */
696 if (!dontreport && type != NULL &&
697 strcmp(type, childtype) != 0) {
698 if (ret != NULL)
699 free(ret);
700 ret = NULL;
701 if (fatal)
702 vdev_error(gettext(
703 "mismatched replication "
704 "level: %s contains both "
705 "files and devices\n"),
706 rep.zprl_type);
707 else
708 return (NULL);
709 dontreport = B_TRUE;
710 }
711
712 /*
713 * According to stat(2), the value of 'st_size'
714 * is undefined for block devices and character
715 * devices. But there is no effective way to
716 * determine the real size in userland.
717 *
718 * Instead, we'll take advantage of an
719 * implementation detail of spec_size(). If the
720 * device is currently open, then we (should)
721 * return a valid size.
722 *
723 * If we still don't get a valid size (indicated
724 * by a size of 0 or MAXOFFSET_T), then ignore
725 * this device altogether.
726 */
727 if ((fd = open(path, O_RDONLY)) >= 0) {
728 err = fstat64(fd, &statbuf);
729 (void) close(fd);
730 } else {
731 err = stat64(path, &statbuf);
732 }
733
734 if (err != 0 ||
735 statbuf.st_size == 0 ||
736 statbuf.st_size == MAXOFFSET_T)
737 continue;
738
739 size = statbuf.st_size;
740
741 /*
742 * Also make sure that devices and
743 * slices have a consistent size. If
744 * they differ by a significant amount
745 * (~16MB) then report an error.
746 */
747 if (!dontreport &&
748 (vdev_size != -1ULL &&
749 (labs(size - vdev_size) >
750 ZPOOL_FUZZ))) {
751 if (ret != NULL)
752 free(ret);
753 ret = NULL;
754 if (fatal)
755 vdev_error(gettext(
756 "%s contains devices of "
757 "different sizes\n"),
758 rep.zprl_type);
759 else
760 return (NULL);
761 dontreport = B_TRUE;
762 }
763
764 type = childtype;
765 vdev_size = size;
766 }
767 }
768
769 /*
770 * At this point, we have the replication of the last toplevel
771 * vdev in 'rep'. Compare it to 'lastrep' to see if its
772 * different.
773 */
774 if (lastrep.zprl_type != NULL) {
775 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
776 if (ret != NULL)
777 free(ret);
778 ret = NULL;
779 if (fatal)
780 vdev_error(gettext(
781 "mismatched replication level: "
782 "both %s and %s vdevs are "
783 "present\n"),
784 lastrep.zprl_type, rep.zprl_type);
785 else
786 return (NULL);
787 } else if (lastrep.zprl_parity != rep.zprl_parity) {
788 if (ret)
789 free(ret);
790 ret = NULL;
791 if (fatal)
792 vdev_error(gettext(
793 "mismatched replication level: "
794 "both %llu and %llu device parity "
795 "%s vdevs are present\n"),
796 lastrep.zprl_parity,
797 rep.zprl_parity,
798 rep.zprl_type);
799 else
800 return (NULL);
801 } else if (lastrep.zprl_children != rep.zprl_children) {
802 if (ret)
803 free(ret);
804 ret = NULL;
805 if (fatal)
806 vdev_error(gettext(
807 "mismatched replication level: "
808 "both %llu-way and %llu-way %s "
809 "vdevs are present\n"),
810 lastrep.zprl_children,
811 rep.zprl_children,
812 rep.zprl_type);
813 else
814 return (NULL);
815 }
816 }
817 lastrep = rep;
818 }
819
820 if (ret != NULL)
821 *ret = rep;
822
823 return (ret);
824}
825
826/*
827 * Check the replication level of the vdev spec against the current pool. Calls
828 * get_replication() to make sure the new spec is self-consistent. If the pool
829 * has a consistent replication level, then we ignore any errors. Otherwise,
830 * report any difference between the two.
831 */
832static int
833check_replication(nvlist_t *config, nvlist_t *newroot)
834{
835 nvlist_t **child;
836 uint_t children;
837 replication_level_t *current = NULL, *new;
838 int ret;
839
840 /*
841 * If we have a current pool configuration, check to see if it's
842 * self-consistent. If not, simply return success.
843 */
844 if (config != NULL) {
845 nvlist_t *nvroot;
846
847 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
848 &nvroot) == 0);
849 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
850 return (0);
851 }
852 /*
853 * for spares there may be no children, and therefore no
854 * replication level to check
855 */
856 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
857 &child, &children) != 0) || (children == 0)) {
858 free(current);
859 return (0);
860 }
861
862 /*
863 * If all we have is logs then there's no replication level to check.
864 */
865 if (num_logs(newroot) == children) {
866 free(current);
867 return (0);
868 }
869
870 /*
871 * Get the replication level of the new vdev spec, reporting any
872 * inconsistencies found.
873 */
874 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
875 free(current);
876 return (-1);
877 }
878
879 /*
880 * Check to see if the new vdev spec matches the replication level of
881 * the current pool.
882 */
883 ret = 0;
884 if (current != NULL) {
885 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
886 vdev_error(gettext(
887 "mismatched replication level: pool uses %s "
888 "and new vdev is %s\n"),
889 current->zprl_type, new->zprl_type);
890 ret = -1;
891 } else if (current->zprl_parity != new->zprl_parity) {
892 vdev_error(gettext(
893 "mismatched replication level: pool uses %llu "
894 "device parity and new vdev uses %llu\n"),
895 current->zprl_parity, new->zprl_parity);
896 ret = -1;
897 } else if (current->zprl_children != new->zprl_children) {
898 vdev_error(gettext(
899 "mismatched replication level: pool uses %llu-way "
900 "%s and new vdev uses %llu-way %s\n"),
901 current->zprl_children, current->zprl_type,
902 new->zprl_children, new->zprl_type);
903 ret = -1;
904 }
905 }
906
907 free(new);
908 if (current != NULL)
909 free(current);
910
911 return (ret);
912}
913
d603ed6c
BB
914static int
915zero_label(char *path)
916{
917 const int size = 4096;
918 char buf[size];
919 int err, fd;
920
921 if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
922 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
923 path, strerror(errno));
924 return (-1);
925 }
926
927 memset(buf, 0, size);
928 err = write(fd, buf, size);
929 (void) fdatasync(fd);
930 (void) close(fd);
931
932 if (err == -1) {
933 (void) fprintf(stderr, gettext("cannot zero first %d bytes "
934 "of '%s': %s\n"), size, path, strerror(errno));
935 return (-1);
936 }
937
938 if (err != size) {
939 (void) fprintf(stderr, gettext("could only zero %d/%d bytes "
940 "of '%s'\n"), err, size, path);
941 return (-1);
942 }
943
944 return 0;
945}
946
34dc7c2f
BB
947/*
948 * Go through and find any whole disks in the vdev specification, labelling them
949 * as appropriate. When constructing the vdev spec, we were unable to open this
950 * device in order to provide a devid. Now that we have labelled the disk and
951 * know that slice 0 is valid, we can construct the devid now.
952 *
953 * If the disk was already labeled with an EFI label, we will have gotten the
954 * devid already (because we were able to open the whole disk). Otherwise, we
955 * need to get the devid after we label the disk.
956 */
957static int
958make_disks(zpool_handle_t *zhp, nvlist_t *nv)
959{
960 nvlist_t **child;
961 uint_t c, children;
962 char *type, *path, *diskname;
963 char buf[MAXPATHLEN];
964 uint64_t wholedisk;
34dc7c2f 965 int ret;
34dc7c2f
BB
966
967 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
968
969 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
970 &child, &children) != 0) {
971
972 if (strcmp(type, VDEV_TYPE_DISK) != 0)
973 return (0);
974
975 /*
d603ed6c
BB
976 * We have a disk device. If this is a whole disk write
977 * out the efi partition table, otherwise write zero's to
978 * the first 4k of the partition. This is to ensure that
979 * libblkid will not misidentify the partition due to a
980 * magic value left by the previous filesystem.
34dc7c2f 981 */
d603ed6c
BB
982 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
983 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
984 &wholedisk));
985
986 if (!wholedisk) {
987 ret = zero_label(path);
988 return (ret);
989 }
990
991 if (realpath(path, buf) == NULL) {
992 ret = errno;
993 (void) fprintf(stderr,
994 gettext("cannot resolve path '%s'\n"), path);
995 return (ret);
996 }
34dc7c2f 997
d603ed6c 998 diskname = strrchr(buf, '/');
34dc7c2f
BB
999 assert(diskname != NULL);
1000 diskname++;
1001 if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
1002 return (-1);
1003
1004 /*
d603ed6c
BB
1005 * Now the we've labeled the disk and the partitions have
1006 * been created. We still need to wait for udev to create
1007 * the symlinks to those partitions. If we are accessing
1008 * the devices via a udev disk path, /dev/disk, then wait
1009 * for *-part# to be created. Otherwise just use the normal
1010 * syntax for devices in /dev.
34dc7c2f 1011 */
d603ed6c
BB
1012 if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
1013 (void) snprintf(buf, sizeof (buf),
1014 "%s%s%s", path, "-part", FIRST_SLICE);
1015 else
1016 (void) snprintf(buf, sizeof (buf),
1017 "%s%s%s", path, isdigit(path[strlen(path)-1]) ?
1018 "p" : "", FIRST_SLICE);
1019
1020 if ((ret = zpool_label_disk_wait(buf, 1000)) != 0) {
34dc7c2f 1021 (void) fprintf(stderr,
d603ed6c 1022 gettext( "cannot resolve path '%s'\n"), buf);
34dc7c2f
BB
1023 return (-1);
1024 }
1025
34dc7c2f 1026 /*
d603ed6c 1027 * Update the path to refer to FIRST_SLICE. The presence of
34dc7c2f
BB
1028 * the 'whole_disk' field indicates to the CLI that we should
1029 * chop off the slice number when displaying the device in
1030 * future output.
1031 */
1032 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
1033
d603ed6c
BB
1034 /* Just in case this partition already existed. */
1035 (void) zero_label(buf);
34dc7c2f
BB
1036
1037 return (0);
1038 }
1039
1040 for (c = 0; c < children; c++)
1041 if ((ret = make_disks(zhp, child[c])) != 0)
1042 return (ret);
1043
1044 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1045 &child, &children) == 0)
1046 for (c = 0; c < children; c++)
1047 if ((ret = make_disks(zhp, child[c])) != 0)
1048 return (ret);
1049
1050 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1051 &child, &children) == 0)
1052 for (c = 0; c < children; c++)
1053 if ((ret = make_disks(zhp, child[c])) != 0)
1054 return (ret);
1055
1056 return (0);
1057}
1058
1059/*
1060 * Determine if the given path is a hot spare within the given configuration.
1061 */
1062static boolean_t
1063is_spare(nvlist_t *config, const char *path)
1064{
1065 int fd;
1066 pool_state_t state;
1067 char *name = NULL;
1068 nvlist_t *label;
1069 uint64_t guid, spareguid;
1070 nvlist_t *nvroot;
1071 nvlist_t **spares;
1072 uint_t i, nspares;
1073 boolean_t inuse;
1074
d603ed6c 1075 if ((fd = open(path, O_RDONLY|O_EXCL)) < 0)
34dc7c2f
BB
1076 return (B_FALSE);
1077
1078 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1079 !inuse ||
1080 state != POOL_STATE_SPARE ||
1081 zpool_read_label(fd, &label) != 0) {
1082 free(name);
1083 (void) close(fd);
1084 return (B_FALSE);
1085 }
1086 free(name);
34dc7c2f 1087 (void) close(fd);
428870ff 1088
34dc7c2f
BB
1089 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1090 nvlist_free(label);
1091
1092 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1093 &nvroot) == 0);
1094 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1095 &spares, &nspares) == 0) {
1096 for (i = 0; i < nspares; i++) {
1097 verify(nvlist_lookup_uint64(spares[i],
1098 ZPOOL_CONFIG_GUID, &spareguid) == 0);
1099 if (spareguid == guid)
1100 return (B_TRUE);
1101 }
1102 }
1103
1104 return (B_FALSE);
1105}
1106
1107/*
1108 * Go through and find any devices that are in use. We rely on libdiskmgt for
1109 * the majority of this task.
1110 */
1111static int
428870ff
BB
1112check_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1113 boolean_t replacing, boolean_t isspare)
34dc7c2f
BB
1114{
1115 nvlist_t **child;
1116 uint_t c, children;
1117 char *type, *path;
d603ed6c 1118 int ret = 0;
34dc7c2f 1119 char buf[MAXPATHLEN];
d603ed6c 1120 uint64_t wholedisk = B_FALSE;
34dc7c2f
BB
1121
1122 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1123
1124 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1125 &child, &children) != 0) {
1126
d603ed6c
BB
1127 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1128 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1129 verify(!nvlist_lookup_uint64(nv,
1130 ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
34dc7c2f
BB
1131
1132 /*
1133 * As a generic check, we look to see if this is a replace of a
1134 * hot spare within the same pool. If so, we allow it
d603ed6c 1135 * regardless of what libblkid or zpool_in_use() says.
34dc7c2f 1136 */
428870ff 1137 if (replacing) {
d603ed6c 1138 if (wholedisk)
34dc7c2f
BB
1139 (void) snprintf(buf, sizeof (buf), "%ss0",
1140 path);
1141 else
1142 (void) strlcpy(buf, path, sizeof (buf));
428870ff 1143
34dc7c2f
BB
1144 if (is_spare(config, buf))
1145 return (0);
1146 }
1147
1148 if (strcmp(type, VDEV_TYPE_DISK) == 0)
d603ed6c 1149 ret = check_device(path, force, isspare, wholedisk);
34dc7c2f
BB
1150
1151 if (strcmp(type, VDEV_TYPE_FILE) == 0)
1152 ret = check_file(path, force, isspare);
1153
1154 return (ret);
1155 }
1156
1157 for (c = 0; c < children; c++)
1158 if ((ret = check_in_use(config, child[c], force,
428870ff 1159 replacing, B_FALSE)) != 0)
34dc7c2f
BB
1160 return (ret);
1161
1162 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1163 &child, &children) == 0)
1164 for (c = 0; c < children; c++)
1165 if ((ret = check_in_use(config, child[c], force,
428870ff 1166 replacing, B_TRUE)) != 0)
34dc7c2f
BB
1167 return (ret);
1168
1169 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1170 &child, &children) == 0)
1171 for (c = 0; c < children; c++)
1172 if ((ret = check_in_use(config, child[c], force,
428870ff 1173 replacing, B_FALSE)) != 0)
34dc7c2f
BB
1174 return (ret);
1175
1176 return (0);
1177}
1178
1179static const char *
45d1cae3 1180is_grouping(const char *type, int *mindev, int *maxdev)
34dc7c2f 1181{
45d1cae3
BB
1182 if (strncmp(type, "raidz", 5) == 0) {
1183 const char *p = type + 5;
1184 char *end;
1185 long nparity;
1186
1187 if (*p == '\0') {
1188 nparity = 1;
1189 } else if (*p == '0') {
1190 return (NULL); /* no zero prefixes allowed */
1191 } else {
1192 errno = 0;
1193 nparity = strtol(p, &end, 10);
1194 if (errno != 0 || nparity < 1 || nparity >= 255 ||
1195 *end != '\0')
1196 return (NULL);
1197 }
34dc7c2f 1198
34dc7c2f 1199 if (mindev != NULL)
45d1cae3
BB
1200 *mindev = nparity + 1;
1201 if (maxdev != NULL)
1202 *maxdev = 255;
34dc7c2f
BB
1203 return (VDEV_TYPE_RAIDZ);
1204 }
1205
45d1cae3
BB
1206 if (maxdev != NULL)
1207 *maxdev = INT_MAX;
1208
34dc7c2f
BB
1209 if (strcmp(type, "mirror") == 0) {
1210 if (mindev != NULL)
1211 *mindev = 2;
1212 return (VDEV_TYPE_MIRROR);
1213 }
1214
1215 if (strcmp(type, "spare") == 0) {
1216 if (mindev != NULL)
1217 *mindev = 1;
1218 return (VDEV_TYPE_SPARE);
1219 }
1220
1221 if (strcmp(type, "log") == 0) {
1222 if (mindev != NULL)
1223 *mindev = 1;
1224 return (VDEV_TYPE_LOG);
1225 }
1226
1227 if (strcmp(type, "cache") == 0) {
1228 if (mindev != NULL)
1229 *mindev = 1;
1230 return (VDEV_TYPE_L2CACHE);
1231 }
1232
1233 return (NULL);
1234}
1235
1236/*
1237 * Construct a syntactically valid vdev specification,
1238 * and ensure that all devices and files exist and can be opened.
1239 * Note: we don't bother freeing anything in the error paths
1240 * because the program is just going to exit anyway.
1241 */
1242nvlist_t *
1243construct_spec(int argc, char **argv)
1244{
1245 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
45d1cae3 1246 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
34dc7c2f
BB
1247 const char *type;
1248 uint64_t is_log;
1249 boolean_t seen_logs;
1250
1251 top = NULL;
1252 toplevels = 0;
1253 spares = NULL;
1254 l2cache = NULL;
1255 nspares = 0;
1256 nlogs = 0;
1257 nl2cache = 0;
1258 is_log = B_FALSE;
1259 seen_logs = B_FALSE;
1260
1261 while (argc > 0) {
1262 nv = NULL;
1263
1264 /*
1265 * If it's a mirror or raidz, the subsequent arguments are
1266 * its leaves -- until we encounter the next mirror or raidz.
1267 */
45d1cae3 1268 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
34dc7c2f
BB
1269 nvlist_t **child = NULL;
1270 int c, children = 0;
1271
1272 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1273 if (spares != NULL) {
1274 (void) fprintf(stderr,
1275 gettext("invalid vdev "
1276 "specification: 'spare' can be "
1277 "specified only once\n"));
1278 return (NULL);
1279 }
1280 is_log = B_FALSE;
1281 }
1282
1283 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1284 if (seen_logs) {
1285 (void) fprintf(stderr,
1286 gettext("invalid vdev "
1287 "specification: 'log' can be "
1288 "specified only once\n"));
1289 return (NULL);
1290 }
1291 seen_logs = B_TRUE;
1292 is_log = B_TRUE;
1293 argc--;
1294 argv++;
1295 /*
1296 * A log is not a real grouping device.
1297 * We just set is_log and continue.
1298 */
1299 continue;
1300 }
1301
1302 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1303 if (l2cache != NULL) {
1304 (void) fprintf(stderr,
1305 gettext("invalid vdev "
1306 "specification: 'cache' can be "
1307 "specified only once\n"));
1308 return (NULL);
1309 }
1310 is_log = B_FALSE;
1311 }
1312
1313 if (is_log) {
1314 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1315 (void) fprintf(stderr,
1316 gettext("invalid vdev "
1317 "specification: unsupported 'log' "
1318 "device: %s\n"), type);
1319 return (NULL);
1320 }
1321 nlogs++;
1322 }
1323
1324 for (c = 1; c < argc; c++) {
45d1cae3 1325 if (is_grouping(argv[c], NULL, NULL) != NULL)
34dc7c2f
BB
1326 break;
1327 children++;
1328 child = realloc(child,
1329 children * sizeof (nvlist_t *));
1330 if (child == NULL)
1331 zpool_no_memory();
1332 if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1333 == NULL)
1334 return (NULL);
1335 child[children - 1] = nv;
1336 }
1337
1338 if (children < mindev) {
1339 (void) fprintf(stderr, gettext("invalid vdev "
1340 "specification: %s requires at least %d "
1341 "devices\n"), argv[0], mindev);
1342 return (NULL);
1343 }
1344
45d1cae3
BB
1345 if (children > maxdev) {
1346 (void) fprintf(stderr, gettext("invalid vdev "
1347 "specification: %s supports no more than "
1348 "%d devices\n"), argv[0], maxdev);
1349 return (NULL);
1350 }
1351
34dc7c2f
BB
1352 argc -= c;
1353 argv += c;
1354
1355 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1356 spares = child;
1357 nspares = children;
1358 continue;
1359 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1360 l2cache = child;
1361 nl2cache = children;
1362 continue;
1363 } else {
1364 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1365 0) == 0);
1366 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1367 type) == 0);
1368 verify(nvlist_add_uint64(nv,
1369 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1370 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1371 verify(nvlist_add_uint64(nv,
1372 ZPOOL_CONFIG_NPARITY,
1373 mindev - 1) == 0);
1374 }
1375 verify(nvlist_add_nvlist_array(nv,
1376 ZPOOL_CONFIG_CHILDREN, child,
1377 children) == 0);
1378
1379 for (c = 0; c < children; c++)
1380 nvlist_free(child[c]);
1381 free(child);
1382 }
1383 } else {
1384 /*
1385 * We have a device. Pass off to make_leaf_vdev() to
1386 * construct the appropriate nvlist describing the vdev.
1387 */
1388 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1389 return (NULL);
1390 if (is_log)
1391 nlogs++;
1392 argc--;
1393 argv++;
1394 }
1395
1396 toplevels++;
1397 top = realloc(top, toplevels * sizeof (nvlist_t *));
1398 if (top == NULL)
1399 zpool_no_memory();
1400 top[toplevels - 1] = nv;
1401 }
1402
1403 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1404 (void) fprintf(stderr, gettext("invalid vdev "
1405 "specification: at least one toplevel vdev must be "
1406 "specified\n"));
1407 return (NULL);
1408 }
1409
1410 if (seen_logs && nlogs == 0) {
1411 (void) fprintf(stderr, gettext("invalid vdev specification: "
1412 "log requires at least 1 device\n"));
1413 return (NULL);
1414 }
1415
1416 /*
1417 * Finally, create nvroot and add all top-level vdevs to it.
1418 */
1419 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1420 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1421 VDEV_TYPE_ROOT) == 0);
1422 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1423 top, toplevels) == 0);
1424 if (nspares != 0)
1425 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1426 spares, nspares) == 0);
1427 if (nl2cache != 0)
1428 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1429 l2cache, nl2cache) == 0);
1430
1431 for (t = 0; t < toplevels; t++)
1432 nvlist_free(top[t]);
1433 for (t = 0; t < nspares; t++)
1434 nvlist_free(spares[t]);
1435 for (t = 0; t < nl2cache; t++)
1436 nvlist_free(l2cache[t]);
1437 if (spares)
1438 free(spares);
1439 if (l2cache)
1440 free(l2cache);
1441 free(top);
1442
1443 return (nvroot);
1444}
1445
428870ff
BB
1446nvlist_t *
1447split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1448 splitflags_t flags, int argc, char **argv)
1449{
1450 nvlist_t *newroot = NULL, **child;
1451 uint_t c, children;
1452
1453 if (argc > 0) {
1454 if ((newroot = construct_spec(argc, argv)) == NULL) {
1455 (void) fprintf(stderr, gettext("Unable to build a "
1456 "pool from the specified devices\n"));
1457 return (NULL);
1458 }
1459
1460 if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1461 nvlist_free(newroot);
1462 return (NULL);
1463 }
1464
1465 /* avoid any tricks in the spec */
1466 verify(nvlist_lookup_nvlist_array(newroot,
1467 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1468 for (c = 0; c < children; c++) {
1469 char *path;
1470 const char *type;
1471 int min, max;
1472
1473 verify(nvlist_lookup_string(child[c],
1474 ZPOOL_CONFIG_PATH, &path) == 0);
1475 if ((type = is_grouping(path, &min, &max)) != NULL) {
1476 (void) fprintf(stderr, gettext("Cannot use "
1477 "'%s' as a device for splitting\n"), type);
1478 nvlist_free(newroot);
1479 return (NULL);
1480 }
1481 }
1482 }
1483
1484 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1485 if (newroot != NULL)
1486 nvlist_free(newroot);
1487 return (NULL);
1488 }
1489
1490 return (newroot);
1491}
34dc7c2f
BB
1492
1493/*
1494 * Get and validate the contents of the given vdev specification. This ensures
1495 * that the nvlist returned is well-formed, that all the devices exist, and that
1496 * they are not currently in use by any other known consumer. The 'poolconfig'
1497 * parameter is the current configuration of the pool when adding devices
1498 * existing pool, and is used to perform additional checks, such as changing the
1499 * replication level of the pool. It can be 'NULL' to indicate that this is a
1500 * new pool. The 'force' flag controls whether devices should be forcefully
1501 * added, even if they appear in use.
1502 */
1503nvlist_t *
1504make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
428870ff 1505 boolean_t replacing, boolean_t dryrun, int argc, char **argv)
34dc7c2f
BB
1506{
1507 nvlist_t *newroot;
1508 nvlist_t *poolconfig = NULL;
1509 is_force = force;
1510
1511 /*
1512 * Construct the vdev specification. If this is successful, we know
1513 * that we have a valid specification, and that all devices can be
1514 * opened.
1515 */
1516 if ((newroot = construct_spec(argc, argv)) == NULL)
1517 return (NULL);
1518
1519 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1520 return (NULL);
1521
1522 /*
1523 * Validate each device to make sure that its not shared with another
1524 * subsystem. We do this even if 'force' is set, because there are some
1525 * uses (such as a dedicated dump device) that even '-f' cannot
1526 * override.
1527 */
428870ff 1528 if (check_in_use(poolconfig, newroot, force, replacing, B_FALSE) != 0) {
34dc7c2f
BB
1529 nvlist_free(newroot);
1530 return (NULL);
1531 }
1532
1533 /*
1534 * Check the replication level of the given vdevs and report any errors
1535 * found. We include the existing pool spec, if any, as we need to
1536 * catch changes against the existing replication level.
1537 */
1538 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1539 nvlist_free(newroot);
1540 return (NULL);
1541 }
1542
1543 /*
1544 * Run through the vdev specification and label any whole disks found.
1545 */
b128c09f 1546 if (!dryrun && make_disks(zhp, newroot) != 0) {
34dc7c2f
BB
1547 nvlist_free(newroot);
1548 return (NULL);
1549 }
1550
1551 return (newroot);
1552}