]> git.proxmox.com Git - mirror_zfs.git/blame - cmd/zpool/zpool_vdev.c
Fix gcc unused variable warnings
[mirror_zfs.git] / cmd / zpool / zpool_vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
34dc7c2f
BB
24 */
25
34dc7c2f
BB
26/*
27 * Functions to convert between a list of vdevs and an nvlist representing the
28 * configuration. Each entry in the list can be one of:
29 *
30 * Device vdevs
31 * disk=(path=..., devid=...)
32 * file=(path=...)
33 *
34 * Group vdevs
35 * raidz[1|2]=(...)
36 * mirror=(...)
37 *
38 * Hot spares
39 *
40 * While the underlying implementation supports it, group vdevs cannot contain
41 * other group vdevs. All userland verification of devices is contained within
42 * this file. If successful, the nvlist returned can be passed directly to the
43 * kernel; we've done as much verification as possible in userland.
44 *
45 * Hot spares are a special case, and passed down as an array of disk vdevs, at
46 * the same level as the root of the vdev tree.
47 *
48 * The only function exported by this file is 'make_root_vdev'. The
49 * function performs several passes:
50 *
51 * 1. Construct the vdev specification. Performs syntax validation and
52 * makes sure each device is valid.
53 * 2. Check for devices in use. Using libdiskmgt, makes sure that no
54 * devices are also in use. Some can be overridden using the 'force'
55 * flag, others cannot.
56 * 3. Check for replication errors if the 'force' flag is not specified.
57 * validates that the replication level is consistent across the
58 * entire pool.
59 * 4. Call libzfs to label any whole disks with an EFI label.
60 */
61
62#include <assert.h>
63#include <devid.h>
64#include <errno.h>
65#include <fcntl.h>
66#include <libdiskmgt.h>
67#include <libintl.h>
68#include <libnvpair.h>
45d1cae3 69#include <limits.h>
34dc7c2f
BB
70#include <stdio.h>
71#include <string.h>
72#include <unistd.h>
73#include <sys/efi_partition.h>
74#include <sys/stat.h>
75#include <sys/vtoc.h>
76#include <sys/mntent.h>
77
78#include "zpool_util.h"
79
80#define DISK_ROOT "/dev/dsk"
81#define RDISK_ROOT "/dev/rdsk"
82#define BACKUP_SLICE "s2"
83
84/*
85 * For any given vdev specification, we can have multiple errors. The
86 * vdev_error() function keeps track of whether we have seen an error yet, and
87 * prints out a header if its the first error we've seen.
88 */
89boolean_t error_seen;
90boolean_t is_force;
91
92/*PRINTFLIKE1*/
93static void
94vdev_error(const char *fmt, ...)
95{
96 va_list ap;
97
98 if (!error_seen) {
99 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
100 if (!is_force)
101 (void) fprintf(stderr, gettext("use '-f' to override "
102 "the following errors:\n"));
103 else
104 (void) fprintf(stderr, gettext("the following errors "
105 "must be manually repaired:\n"));
106 error_seen = B_TRUE;
107 }
108
109 va_start(ap, fmt);
110 (void) vfprintf(stderr, fmt, ap);
111 va_end(ap);
112}
113
114static void
115libdiskmgt_error(int error)
116{
117 /*
118 * ENXIO/ENODEV is a valid error message if the device doesn't live in
119 * /dev/dsk. Don't bother printing an error message in this case.
120 */
121 if (error == ENXIO || error == ENODEV)
122 return;
123
124 (void) fprintf(stderr, gettext("warning: device in use checking "
125 "failed: %s\n"), strerror(error));
126}
127
128/*
129 * Validate a device, passing the bulk of the work off to libdiskmgt.
130 */
131static int
132check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
133{
134 char *msg;
135 int error = 0;
136 dm_who_type_t who;
137
138 if (force)
139 who = DM_WHO_ZPOOL_FORCE;
140 else if (isspare)
141 who = DM_WHO_ZPOOL_SPARE;
142 else
143 who = DM_WHO_ZPOOL;
144
145 if (dm_inuse((char *)path, &msg, who, &error) || error) {
146 if (error != 0) {
147 libdiskmgt_error(error);
148 return (0);
149 } else {
150 vdev_error("%s", msg);
151 free(msg);
152 return (-1);
153 }
154 }
155
156 /*
157 * If we're given a whole disk, ignore overlapping slices since we're
158 * about to label it anyway.
159 */
160 error = 0;
161 if (!wholedisk && !force &&
162 (dm_isoverlapping((char *)path, &msg, &error) || error)) {
163 if (error == 0) {
164 /* dm_isoverlapping returned -1 */
165 vdev_error(gettext("%s overlaps with %s\n"), path, msg);
166 free(msg);
167 return (-1);
168 } else if (error != ENODEV) {
169 /* libdiskmgt's devcache only handles physical drives */
170 libdiskmgt_error(error);
171 return (0);
172 }
173 }
174
175 return (0);
176}
177
178
179/*
180 * Validate a whole disk. Iterate over all slices on the disk and make sure
181 * that none is in use by calling check_slice().
182 */
183static int
184check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
185{
186 dm_descriptor_t *drive, *media, *slice;
187 int err = 0;
188 int i;
189 int ret;
190
191 /*
192 * Get the drive associated with this disk. This should never fail,
193 * because we already have an alias handle open for the device.
194 */
195 if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
196 &err)) == NULL || *drive == NULL) {
197 if (err)
198 libdiskmgt_error(err);
199 return (0);
200 }
201
202 if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
203 &err)) == NULL) {
204 dm_free_descriptors(drive);
205 if (err)
206 libdiskmgt_error(err);
207 return (0);
208 }
209
210 dm_free_descriptors(drive);
211
212 /*
213 * It is possible that the user has specified a removable media drive,
214 * and the media is not present.
215 */
216 if (*media == NULL) {
217 dm_free_descriptors(media);
218 vdev_error(gettext("'%s' has no media in drive\n"), name);
219 return (-1);
220 }
221
222 if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
223 &err)) == NULL) {
224 dm_free_descriptors(media);
225 if (err)
226 libdiskmgt_error(err);
227 return (0);
228 }
229
230 dm_free_descriptors(media);
231
232 ret = 0;
233
234 /*
235 * Iterate over all slices and report any errors. We don't care about
236 * overlapping slices because we are using the whole disk.
237 */
238 for (i = 0; slice[i] != NULL; i++) {
239 char *name = dm_get_name(slice[i], &err);
240
241 if (check_slice(name, force, B_TRUE, isspare) != 0)
242 ret = -1;
243
244 dm_free_name(name);
245 }
246
247 dm_free_descriptors(slice);
248 return (ret);
249}
250
251/*
252 * Validate a device.
253 */
254static int
255check_device(const char *path, boolean_t force, boolean_t isspare)
256{
257 dm_descriptor_t desc;
258 int err;
259 char *dev;
260
261 /*
262 * For whole disks, libdiskmgt does not include the leading dev path.
263 */
264 dev = strrchr(path, '/');
265 assert(dev != NULL);
266 dev++;
267 if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
268 err = check_disk(path, desc, force, isspare);
269 dm_free_descriptor(desc);
270 return (err);
271 }
272
273 return (check_slice(path, force, B_FALSE, isspare));
274}
275
276/*
277 * Check that a file is valid. All we can do in this case is check that it's
278 * not in use by another pool, and not in use by swap.
279 */
280static int
281check_file(const char *file, boolean_t force, boolean_t isspare)
282{
283 char *name;
284 int fd;
285 int ret = 0;
286 int err;
287 pool_state_t state;
288 boolean_t inuse;
289
290 if (dm_inuse_swap(file, &err)) {
291 if (err)
292 libdiskmgt_error(err);
293 else
294 vdev_error(gettext("%s is currently used by swap. "
295 "Please see swap(1M).\n"), file);
296 return (-1);
297 }
298
299 if ((fd = open(file, O_RDONLY)) < 0)
300 return (0);
301
302 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
303 const char *desc;
304
305 switch (state) {
306 case POOL_STATE_ACTIVE:
307 desc = gettext("active");
308 break;
309
310 case POOL_STATE_EXPORTED:
311 desc = gettext("exported");
312 break;
313
314 case POOL_STATE_POTENTIALLY_ACTIVE:
315 desc = gettext("potentially active");
316 break;
317
318 default:
319 desc = gettext("unknown");
320 break;
321 }
322
323 /*
324 * Allow hot spares to be shared between pools.
325 */
326 if (state == POOL_STATE_SPARE && isspare)
327 return (0);
328
329 if (state == POOL_STATE_ACTIVE ||
330 state == POOL_STATE_SPARE || !force) {
331 switch (state) {
332 case POOL_STATE_SPARE:
333 vdev_error(gettext("%s is reserved as a hot "
334 "spare for pool %s\n"), file, name);
335 break;
336 default:
337 vdev_error(gettext("%s is part of %s pool "
338 "'%s'\n"), file, desc, name);
339 break;
340 }
341 ret = -1;
342 }
343
344 free(name);
345 }
346
347 (void) close(fd);
348 return (ret);
349}
350
351
352/*
353 * By "whole disk" we mean an entire physical disk (something we can
354 * label, toggle the write cache on, etc.) as opposed to the full
355 * capacity of a pseudo-device such as lofi or did. We act as if we
356 * are labeling the disk, which should be a pretty good test of whether
357 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
358 * it isn't.
359 */
360static boolean_t
361is_whole_disk(const char *arg)
362{
363 struct dk_gpt *label;
364 int fd;
365 char path[MAXPATHLEN];
366
367 (void) snprintf(path, sizeof (path), "%s%s%s",
368 RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
369 if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
370 return (B_FALSE);
371 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
372 (void) close(fd);
373 return (B_FALSE);
374 }
375 efi_free(label);
376 (void) close(fd);
377 return (B_TRUE);
378}
379
380/*
381 * Create a leaf vdev. Determine if this is a file or a device. If it's a
382 * device, fill in the device id to make a complete nvlist. Valid forms for a
383 * leaf vdev are:
384 *
385 * /dev/dsk/xxx Complete disk path
386 * /xxx Full path to file
387 * xxx Shorthand for /dev/dsk/xxx
388 */
389static nvlist_t *
390make_leaf_vdev(const char *arg, uint64_t is_log)
391{
392 char path[MAXPATHLEN];
393 struct stat64 statbuf;
394 nvlist_t *vdev = NULL;
395 char *type = NULL;
396 boolean_t wholedisk = B_FALSE;
397
398 /*
399 * Determine what type of vdev this is, and put the full path into
400 * 'path'. We detect whether this is a device of file afterwards by
401 * checking the st_mode of the file.
402 */
403 if (arg[0] == '/') {
404 /*
405 * Complete device or file path. Exact type is determined by
406 * examining the file descriptor afterwards.
407 */
408 wholedisk = is_whole_disk(arg);
409 if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
410 (void) fprintf(stderr,
411 gettext("cannot open '%s': %s\n"),
412 arg, strerror(errno));
413 return (NULL);
414 }
415
416 (void) strlcpy(path, arg, sizeof (path));
417 } else {
418 /*
419 * This may be a short path for a device, or it could be total
420 * gibberish. Check to see if it's a known device in
421 * /dev/dsk/. As part of this check, see if we've been given a
422 * an entire disk (minus the slice number).
423 */
424 (void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
425 arg);
426 wholedisk = is_whole_disk(path);
427 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
428 /*
429 * If we got ENOENT, then the user gave us
430 * gibberish, so try to direct them with a
431 * reasonable error message. Otherwise,
432 * regurgitate strerror() since it's the best we
433 * can do.
434 */
435 if (errno == ENOENT) {
436 (void) fprintf(stderr,
437 gettext("cannot open '%s': no such "
438 "device in %s\n"), arg, DISK_ROOT);
439 (void) fprintf(stderr,
440 gettext("must be a full path or "
441 "shorthand device name\n"));
442 return (NULL);
443 } else {
444 (void) fprintf(stderr,
445 gettext("cannot open '%s': %s\n"),
446 path, strerror(errno));
447 return (NULL);
448 }
449 }
450 }
451
452 /*
453 * Determine whether this is a device or a file.
454 */
455 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
456 type = VDEV_TYPE_DISK;
457 } else if (S_ISREG(statbuf.st_mode)) {
458 type = VDEV_TYPE_FILE;
459 } else {
460 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
461 "block device or regular file\n"), path);
462 return (NULL);
463 }
464
465 /*
466 * Finally, we have the complete device or file, and we know that it is
467 * acceptable to use. Construct the nvlist to describe this vdev. All
468 * vdevs have a 'path' element, and devices also have a 'devid' element.
469 */
470 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
471 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
472 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
473 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
474 if (strcmp(type, VDEV_TYPE_DISK) == 0)
475 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
476 (uint64_t)wholedisk) == 0);
477
478 /*
479 * For a whole disk, defer getting its devid until after labeling it.
480 */
481 if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
482 /*
483 * Get the devid for the device.
484 */
485 int fd;
486 ddi_devid_t devid;
487 char *minor = NULL, *devid_str = NULL;
488
489 if ((fd = open(path, O_RDONLY)) < 0) {
490 (void) fprintf(stderr, gettext("cannot open '%s': "
491 "%s\n"), path, strerror(errno));
492 nvlist_free(vdev);
493 return (NULL);
494 }
495
496 if (devid_get(fd, &devid) == 0) {
497 if (devid_get_minor_name(fd, &minor) == 0 &&
498 (devid_str = devid_str_encode(devid, minor)) !=
499 NULL) {
500 verify(nvlist_add_string(vdev,
501 ZPOOL_CONFIG_DEVID, devid_str) == 0);
502 }
503 if (devid_str != NULL)
504 devid_str_free(devid_str);
505 if (minor != NULL)
506 devid_str_free(minor);
507 devid_free(devid);
508 }
509
510 (void) close(fd);
511 }
512
513 return (vdev);
514}
515
516/*
517 * Go through and verify the replication level of the pool is consistent.
518 * Performs the following checks:
519 *
520 * For the new spec, verifies that devices in mirrors and raidz are the
521 * same size.
522 *
523 * If the current configuration already has inconsistent replication
524 * levels, ignore any other potential problems in the new spec.
525 *
526 * Otherwise, make sure that the current spec (if there is one) and the new
527 * spec have consistent replication levels.
528 */
529typedef struct replication_level {
530 char *zprl_type;
531 uint64_t zprl_children;
532 uint64_t zprl_parity;
533} replication_level_t;
534
535#define ZPOOL_FUZZ (16 * 1024 * 1024)
536
537/*
538 * Given a list of toplevel vdevs, return the current replication level. If
539 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
540 * an error message will be displayed for each self-inconsistent vdev.
541 */
542static replication_level_t *
543get_replication(nvlist_t *nvroot, boolean_t fatal)
544{
545 nvlist_t **top;
546 uint_t t, toplevels;
547 nvlist_t **child;
548 uint_t c, children;
549 nvlist_t *nv;
550 char *type;
551 replication_level_t lastrep, rep, *ret;
552 boolean_t dontreport;
553
554 ret = safe_malloc(sizeof (replication_level_t));
555
556 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
557 &top, &toplevels) == 0);
558
559 lastrep.zprl_type = NULL;
560 for (t = 0; t < toplevels; t++) {
561 uint64_t is_log = B_FALSE;
562
563 nv = top[t];
564
565 /*
566 * For separate logs we ignore the top level vdev replication
567 * constraints.
568 */
569 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
570 if (is_log)
571 continue;
572
573 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
574 &type) == 0);
575 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
576 &child, &children) != 0) {
577 /*
578 * This is a 'file' or 'disk' vdev.
579 */
580 rep.zprl_type = type;
581 rep.zprl_children = 1;
582 rep.zprl_parity = 0;
583 } else {
584 uint64_t vdev_size;
585
586 /*
587 * This is a mirror or RAID-Z vdev. Go through and make
588 * sure the contents are all the same (files vs. disks),
589 * keeping track of the number of elements in the
590 * process.
591 *
592 * We also check that the size of each vdev (if it can
593 * be determined) is the same.
594 */
595 rep.zprl_type = type;
596 rep.zprl_children = 0;
597
598 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
599 verify(nvlist_lookup_uint64(nv,
600 ZPOOL_CONFIG_NPARITY,
601 &rep.zprl_parity) == 0);
602 assert(rep.zprl_parity != 0);
603 } else {
604 rep.zprl_parity = 0;
605 }
606
607 /*
608 * The 'dontreport' variable indicates that we've
609 * already reported an error for this spec, so don't
610 * bother doing it again.
611 */
612 type = NULL;
613 dontreport = 0;
614 vdev_size = -1ULL;
615 for (c = 0; c < children; c++) {
616 nvlist_t *cnv = child[c];
617 char *path;
618 struct stat64 statbuf;
619 uint64_t size = -1ULL;
620 char *childtype;
621 int fd, err;
622
623 rep.zprl_children++;
624
625 verify(nvlist_lookup_string(cnv,
626 ZPOOL_CONFIG_TYPE, &childtype) == 0);
627
628 /*
629 * If this is a replacing or spare vdev, then
630 * get the real first child of the vdev.
631 */
632 if (strcmp(childtype,
633 VDEV_TYPE_REPLACING) == 0 ||
634 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
635 nvlist_t **rchild;
636 uint_t rchildren;
637
638 verify(nvlist_lookup_nvlist_array(cnv,
639 ZPOOL_CONFIG_CHILDREN, &rchild,
640 &rchildren) == 0);
641 assert(rchildren == 2);
642 cnv = rchild[0];
643
644 verify(nvlist_lookup_string(cnv,
645 ZPOOL_CONFIG_TYPE,
646 &childtype) == 0);
647 }
648
649 verify(nvlist_lookup_string(cnv,
650 ZPOOL_CONFIG_PATH, &path) == 0);
651
652 /*
653 * If we have a raidz/mirror that combines disks
654 * with files, report it as an error.
655 */
656 if (!dontreport && type != NULL &&
657 strcmp(type, childtype) != 0) {
658 if (ret != NULL)
659 free(ret);
660 ret = NULL;
661 if (fatal)
662 vdev_error(gettext(
663 "mismatched replication "
664 "level: %s contains both "
665 "files and devices\n"),
666 rep.zprl_type);
667 else
668 return (NULL);
669 dontreport = B_TRUE;
670 }
671
672 /*
673 * According to stat(2), the value of 'st_size'
674 * is undefined for block devices and character
675 * devices. But there is no effective way to
676 * determine the real size in userland.
677 *
678 * Instead, we'll take advantage of an
679 * implementation detail of spec_size(). If the
680 * device is currently open, then we (should)
681 * return a valid size.
682 *
683 * If we still don't get a valid size (indicated
684 * by a size of 0 or MAXOFFSET_T), then ignore
685 * this device altogether.
686 */
687 if ((fd = open(path, O_RDONLY)) >= 0) {
688 err = fstat64(fd, &statbuf);
689 (void) close(fd);
690 } else {
691 err = stat64(path, &statbuf);
692 }
693
694 if (err != 0 ||
695 statbuf.st_size == 0 ||
696 statbuf.st_size == MAXOFFSET_T)
697 continue;
698
699 size = statbuf.st_size;
700
701 /*
702 * Also make sure that devices and
703 * slices have a consistent size. If
704 * they differ by a significant amount
705 * (~16MB) then report an error.
706 */
707 if (!dontreport &&
708 (vdev_size != -1ULL &&
709 (labs(size - vdev_size) >
710 ZPOOL_FUZZ))) {
711 if (ret != NULL)
712 free(ret);
713 ret = NULL;
714 if (fatal)
715 vdev_error(gettext(
716 "%s contains devices of "
717 "different sizes\n"),
718 rep.zprl_type);
719 else
720 return (NULL);
721 dontreport = B_TRUE;
722 }
723
724 type = childtype;
725 vdev_size = size;
726 }
727 }
728
729 /*
730 * At this point, we have the replication of the last toplevel
731 * vdev in 'rep'. Compare it to 'lastrep' to see if its
732 * different.
733 */
734 if (lastrep.zprl_type != NULL) {
735 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
736 if (ret != NULL)
737 free(ret);
738 ret = NULL;
739 if (fatal)
740 vdev_error(gettext(
741 "mismatched replication level: "
742 "both %s and %s vdevs are "
743 "present\n"),
744 lastrep.zprl_type, rep.zprl_type);
745 else
746 return (NULL);
747 } else if (lastrep.zprl_parity != rep.zprl_parity) {
748 if (ret)
749 free(ret);
750 ret = NULL;
751 if (fatal)
752 vdev_error(gettext(
753 "mismatched replication level: "
754 "both %llu and %llu device parity "
755 "%s vdevs are present\n"),
756 lastrep.zprl_parity,
757 rep.zprl_parity,
758 rep.zprl_type);
759 else
760 return (NULL);
761 } else if (lastrep.zprl_children != rep.zprl_children) {
762 if (ret)
763 free(ret);
764 ret = NULL;
765 if (fatal)
766 vdev_error(gettext(
767 "mismatched replication level: "
768 "both %llu-way and %llu-way %s "
769 "vdevs are present\n"),
770 lastrep.zprl_children,
771 rep.zprl_children,
772 rep.zprl_type);
773 else
774 return (NULL);
775 }
776 }
777 lastrep = rep;
778 }
779
780 if (ret != NULL)
781 *ret = rep;
782
783 return (ret);
784}
785
786/*
787 * Check the replication level of the vdev spec against the current pool. Calls
788 * get_replication() to make sure the new spec is self-consistent. If the pool
789 * has a consistent replication level, then we ignore any errors. Otherwise,
790 * report any difference between the two.
791 */
792static int
793check_replication(nvlist_t *config, nvlist_t *newroot)
794{
795 nvlist_t **child;
796 uint_t children;
797 replication_level_t *current = NULL, *new;
798 int ret;
799
800 /*
801 * If we have a current pool configuration, check to see if it's
802 * self-consistent. If not, simply return success.
803 */
804 if (config != NULL) {
805 nvlist_t *nvroot;
806
807 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
808 &nvroot) == 0);
809 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
810 return (0);
811 }
812 /*
813 * for spares there may be no children, and therefore no
814 * replication level to check
815 */
816 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
817 &child, &children) != 0) || (children == 0)) {
818 free(current);
819 return (0);
820 }
821
822 /*
823 * If all we have is logs then there's no replication level to check.
824 */
825 if (num_logs(newroot) == children) {
826 free(current);
827 return (0);
828 }
829
830 /*
831 * Get the replication level of the new vdev spec, reporting any
832 * inconsistencies found.
833 */
834 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
835 free(current);
836 return (-1);
837 }
838
839 /*
840 * Check to see if the new vdev spec matches the replication level of
841 * the current pool.
842 */
843 ret = 0;
844 if (current != NULL) {
845 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
846 vdev_error(gettext(
847 "mismatched replication level: pool uses %s "
848 "and new vdev is %s\n"),
849 current->zprl_type, new->zprl_type);
850 ret = -1;
851 } else if (current->zprl_parity != new->zprl_parity) {
852 vdev_error(gettext(
853 "mismatched replication level: pool uses %llu "
854 "device parity and new vdev uses %llu\n"),
855 current->zprl_parity, new->zprl_parity);
856 ret = -1;
857 } else if (current->zprl_children != new->zprl_children) {
858 vdev_error(gettext(
859 "mismatched replication level: pool uses %llu-way "
860 "%s and new vdev uses %llu-way %s\n"),
861 current->zprl_children, current->zprl_type,
862 new->zprl_children, new->zprl_type);
863 ret = -1;
864 }
865 }
866
867 free(new);
868 if (current != NULL)
869 free(current);
870
871 return (ret);
872}
873
874/*
875 * Go through and find any whole disks in the vdev specification, labelling them
876 * as appropriate. When constructing the vdev spec, we were unable to open this
877 * device in order to provide a devid. Now that we have labelled the disk and
878 * know that slice 0 is valid, we can construct the devid now.
879 *
880 * If the disk was already labeled with an EFI label, we will have gotten the
881 * devid already (because we were able to open the whole disk). Otherwise, we
882 * need to get the devid after we label the disk.
883 */
884static int
885make_disks(zpool_handle_t *zhp, nvlist_t *nv)
886{
887 nvlist_t **child;
888 uint_t c, children;
889 char *type, *path, *diskname;
890 char buf[MAXPATHLEN];
891 uint64_t wholedisk;
892 int fd;
893 int ret;
894 ddi_devid_t devid;
895 char *minor = NULL, *devid_str = NULL;
896
897 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
898
899 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
900 &child, &children) != 0) {
901
902 if (strcmp(type, VDEV_TYPE_DISK) != 0)
903 return (0);
904
905 /*
906 * We have a disk device. Get the path to the device
907 * and see if it's a whole disk by appending the backup
908 * slice and stat()ing the device.
909 */
910 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
911 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
912 &wholedisk) != 0 || !wholedisk)
913 return (0);
914
915 diskname = strrchr(path, '/');
916 assert(diskname != NULL);
917 diskname++;
918 if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
919 return (-1);
920
921 /*
922 * Fill in the devid, now that we've labeled the disk.
923 */
924 (void) snprintf(buf, sizeof (buf), "%ss0", path);
925 if ((fd = open(buf, O_RDONLY)) < 0) {
926 (void) fprintf(stderr,
927 gettext("cannot open '%s': %s\n"),
928 buf, strerror(errno));
929 return (-1);
930 }
931
932 if (devid_get(fd, &devid) == 0) {
933 if (devid_get_minor_name(fd, &minor) == 0 &&
934 (devid_str = devid_str_encode(devid, minor)) !=
935 NULL) {
936 verify(nvlist_add_string(nv,
937 ZPOOL_CONFIG_DEVID, devid_str) == 0);
938 }
939 if (devid_str != NULL)
940 devid_str_free(devid_str);
941 if (minor != NULL)
942 devid_str_free(minor);
943 devid_free(devid);
944 }
945
946 /*
947 * Update the path to refer to the 's0' slice. The presence of
948 * the 'whole_disk' field indicates to the CLI that we should
949 * chop off the slice number when displaying the device in
950 * future output.
951 */
952 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
953
954 (void) close(fd);
955
956 return (0);
957 }
958
959 for (c = 0; c < children; c++)
960 if ((ret = make_disks(zhp, child[c])) != 0)
961 return (ret);
962
963 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
964 &child, &children) == 0)
965 for (c = 0; c < children; c++)
966 if ((ret = make_disks(zhp, child[c])) != 0)
967 return (ret);
968
969 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
970 &child, &children) == 0)
971 for (c = 0; c < children; c++)
972 if ((ret = make_disks(zhp, child[c])) != 0)
973 return (ret);
974
975 return (0);
976}
977
978/*
979 * Determine if the given path is a hot spare within the given configuration.
980 */
981static boolean_t
982is_spare(nvlist_t *config, const char *path)
983{
984 int fd;
985 pool_state_t state;
986 char *name = NULL;
987 nvlist_t *label;
988 uint64_t guid, spareguid;
989 nvlist_t *nvroot;
990 nvlist_t **spares;
991 uint_t i, nspares;
992 boolean_t inuse;
993
994 if ((fd = open(path, O_RDONLY)) < 0)
995 return (B_FALSE);
996
997 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
998 !inuse ||
999 state != POOL_STATE_SPARE ||
1000 zpool_read_label(fd, &label) != 0) {
1001 free(name);
1002 (void) close(fd);
1003 return (B_FALSE);
1004 }
1005 free(name);
34dc7c2f 1006 (void) close(fd);
428870ff 1007
34dc7c2f
BB
1008 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1009 nvlist_free(label);
1010
1011 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1012 &nvroot) == 0);
1013 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1014 &spares, &nspares) == 0) {
1015 for (i = 0; i < nspares; i++) {
1016 verify(nvlist_lookup_uint64(spares[i],
1017 ZPOOL_CONFIG_GUID, &spareguid) == 0);
1018 if (spareguid == guid)
1019 return (B_TRUE);
1020 }
1021 }
1022
1023 return (B_FALSE);
1024}
1025
1026/*
1027 * Go through and find any devices that are in use. We rely on libdiskmgt for
1028 * the majority of this task.
1029 */
1030static int
428870ff
BB
1031check_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1032 boolean_t replacing, boolean_t isspare)
34dc7c2f
BB
1033{
1034 nvlist_t **child;
1035 uint_t c, children;
1036 char *type, *path;
1037 int ret;
1038 char buf[MAXPATHLEN];
1039 uint64_t wholedisk;
1040
1041 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1042
1043 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1044 &child, &children) != 0) {
1045
1046 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1047
1048 /*
1049 * As a generic check, we look to see if this is a replace of a
1050 * hot spare within the same pool. If so, we allow it
1051 * regardless of what libdiskmgt or zpool_in_use() says.
1052 */
428870ff 1053 if (replacing) {
34dc7c2f
BB
1054 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1055 &wholedisk) == 0 && wholedisk)
1056 (void) snprintf(buf, sizeof (buf), "%ss0",
1057 path);
1058 else
1059 (void) strlcpy(buf, path, sizeof (buf));
428870ff 1060
34dc7c2f
BB
1061 if (is_spare(config, buf))
1062 return (0);
1063 }
1064
1065 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1066 ret = check_device(path, force, isspare);
1067
1068 if (strcmp(type, VDEV_TYPE_FILE) == 0)
1069 ret = check_file(path, force, isspare);
1070
1071 return (ret);
1072 }
1073
1074 for (c = 0; c < children; c++)
1075 if ((ret = check_in_use(config, child[c], force,
428870ff 1076 replacing, B_FALSE)) != 0)
34dc7c2f
BB
1077 return (ret);
1078
1079 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1080 &child, &children) == 0)
1081 for (c = 0; c < children; c++)
1082 if ((ret = check_in_use(config, child[c], force,
428870ff 1083 replacing, B_TRUE)) != 0)
34dc7c2f
BB
1084 return (ret);
1085
1086 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1087 &child, &children) == 0)
1088 for (c = 0; c < children; c++)
1089 if ((ret = check_in_use(config, child[c], force,
428870ff 1090 replacing, B_FALSE)) != 0)
34dc7c2f
BB
1091 return (ret);
1092
1093 return (0);
1094}
1095
1096static const char *
45d1cae3 1097is_grouping(const char *type, int *mindev, int *maxdev)
34dc7c2f 1098{
45d1cae3
BB
1099 if (strncmp(type, "raidz", 5) == 0) {
1100 const char *p = type + 5;
1101 char *end;
1102 long nparity;
1103
1104 if (*p == '\0') {
1105 nparity = 1;
1106 } else if (*p == '0') {
1107 return (NULL); /* no zero prefixes allowed */
1108 } else {
1109 errno = 0;
1110 nparity = strtol(p, &end, 10);
1111 if (errno != 0 || nparity < 1 || nparity >= 255 ||
1112 *end != '\0')
1113 return (NULL);
1114 }
34dc7c2f 1115
34dc7c2f 1116 if (mindev != NULL)
45d1cae3
BB
1117 *mindev = nparity + 1;
1118 if (maxdev != NULL)
1119 *maxdev = 255;
34dc7c2f
BB
1120 return (VDEV_TYPE_RAIDZ);
1121 }
1122
45d1cae3
BB
1123 if (maxdev != NULL)
1124 *maxdev = INT_MAX;
1125
34dc7c2f
BB
1126 if (strcmp(type, "mirror") == 0) {
1127 if (mindev != NULL)
1128 *mindev = 2;
1129 return (VDEV_TYPE_MIRROR);
1130 }
1131
1132 if (strcmp(type, "spare") == 0) {
1133 if (mindev != NULL)
1134 *mindev = 1;
1135 return (VDEV_TYPE_SPARE);
1136 }
1137
1138 if (strcmp(type, "log") == 0) {
1139 if (mindev != NULL)
1140 *mindev = 1;
1141 return (VDEV_TYPE_LOG);
1142 }
1143
1144 if (strcmp(type, "cache") == 0) {
1145 if (mindev != NULL)
1146 *mindev = 1;
1147 return (VDEV_TYPE_L2CACHE);
1148 }
1149
1150 return (NULL);
1151}
1152
1153/*
1154 * Construct a syntactically valid vdev specification,
1155 * and ensure that all devices and files exist and can be opened.
1156 * Note: we don't bother freeing anything in the error paths
1157 * because the program is just going to exit anyway.
1158 */
1159nvlist_t *
1160construct_spec(int argc, char **argv)
1161{
1162 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
45d1cae3 1163 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
34dc7c2f
BB
1164 const char *type;
1165 uint64_t is_log;
1166 boolean_t seen_logs;
1167
1168 top = NULL;
1169 toplevels = 0;
1170 spares = NULL;
1171 l2cache = NULL;
1172 nspares = 0;
1173 nlogs = 0;
1174 nl2cache = 0;
1175 is_log = B_FALSE;
1176 seen_logs = B_FALSE;
1177
1178 while (argc > 0) {
1179 nv = NULL;
1180
1181 /*
1182 * If it's a mirror or raidz, the subsequent arguments are
1183 * its leaves -- until we encounter the next mirror or raidz.
1184 */
45d1cae3 1185 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
34dc7c2f
BB
1186 nvlist_t **child = NULL;
1187 int c, children = 0;
1188
1189 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1190 if (spares != NULL) {
1191 (void) fprintf(stderr,
1192 gettext("invalid vdev "
1193 "specification: 'spare' can be "
1194 "specified only once\n"));
1195 return (NULL);
1196 }
1197 is_log = B_FALSE;
1198 }
1199
1200 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1201 if (seen_logs) {
1202 (void) fprintf(stderr,
1203 gettext("invalid vdev "
1204 "specification: 'log' can be "
1205 "specified only once\n"));
1206 return (NULL);
1207 }
1208 seen_logs = B_TRUE;
1209 is_log = B_TRUE;
1210 argc--;
1211 argv++;
1212 /*
1213 * A log is not a real grouping device.
1214 * We just set is_log and continue.
1215 */
1216 continue;
1217 }
1218
1219 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1220 if (l2cache != NULL) {
1221 (void) fprintf(stderr,
1222 gettext("invalid vdev "
1223 "specification: 'cache' can be "
1224 "specified only once\n"));
1225 return (NULL);
1226 }
1227 is_log = B_FALSE;
1228 }
1229
1230 if (is_log) {
1231 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1232 (void) fprintf(stderr,
1233 gettext("invalid vdev "
1234 "specification: unsupported 'log' "
1235 "device: %s\n"), type);
1236 return (NULL);
1237 }
1238 nlogs++;
1239 }
1240
1241 for (c = 1; c < argc; c++) {
45d1cae3 1242 if (is_grouping(argv[c], NULL, NULL) != NULL)
34dc7c2f
BB
1243 break;
1244 children++;
1245 child = realloc(child,
1246 children * sizeof (nvlist_t *));
1247 if (child == NULL)
1248 zpool_no_memory();
1249 if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1250 == NULL)
1251 return (NULL);
1252 child[children - 1] = nv;
1253 }
1254
1255 if (children < mindev) {
1256 (void) fprintf(stderr, gettext("invalid vdev "
1257 "specification: %s requires at least %d "
1258 "devices\n"), argv[0], mindev);
1259 return (NULL);
1260 }
1261
45d1cae3
BB
1262 if (children > maxdev) {
1263 (void) fprintf(stderr, gettext("invalid vdev "
1264 "specification: %s supports no more than "
1265 "%d devices\n"), argv[0], maxdev);
1266 return (NULL);
1267 }
1268
34dc7c2f
BB
1269 argc -= c;
1270 argv += c;
1271
1272 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1273 spares = child;
1274 nspares = children;
1275 continue;
1276 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1277 l2cache = child;
1278 nl2cache = children;
1279 continue;
1280 } else {
1281 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1282 0) == 0);
1283 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1284 type) == 0);
1285 verify(nvlist_add_uint64(nv,
1286 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1287 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1288 verify(nvlist_add_uint64(nv,
1289 ZPOOL_CONFIG_NPARITY,
1290 mindev - 1) == 0);
1291 }
1292 verify(nvlist_add_nvlist_array(nv,
1293 ZPOOL_CONFIG_CHILDREN, child,
1294 children) == 0);
1295
1296 for (c = 0; c < children; c++)
1297 nvlist_free(child[c]);
1298 free(child);
1299 }
1300 } else {
1301 /*
1302 * We have a device. Pass off to make_leaf_vdev() to
1303 * construct the appropriate nvlist describing the vdev.
1304 */
1305 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1306 return (NULL);
1307 if (is_log)
1308 nlogs++;
1309 argc--;
1310 argv++;
1311 }
1312
1313 toplevels++;
1314 top = realloc(top, toplevels * sizeof (nvlist_t *));
1315 if (top == NULL)
1316 zpool_no_memory();
1317 top[toplevels - 1] = nv;
1318 }
1319
1320 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1321 (void) fprintf(stderr, gettext("invalid vdev "
1322 "specification: at least one toplevel vdev must be "
1323 "specified\n"));
1324 return (NULL);
1325 }
1326
1327 if (seen_logs && nlogs == 0) {
1328 (void) fprintf(stderr, gettext("invalid vdev specification: "
1329 "log requires at least 1 device\n"));
1330 return (NULL);
1331 }
1332
1333 /*
1334 * Finally, create nvroot and add all top-level vdevs to it.
1335 */
1336 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1337 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1338 VDEV_TYPE_ROOT) == 0);
1339 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1340 top, toplevels) == 0);
1341 if (nspares != 0)
1342 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1343 spares, nspares) == 0);
1344 if (nl2cache != 0)
1345 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1346 l2cache, nl2cache) == 0);
1347
1348 for (t = 0; t < toplevels; t++)
1349 nvlist_free(top[t]);
1350 for (t = 0; t < nspares; t++)
1351 nvlist_free(spares[t]);
1352 for (t = 0; t < nl2cache; t++)
1353 nvlist_free(l2cache[t]);
1354 if (spares)
1355 free(spares);
1356 if (l2cache)
1357 free(l2cache);
1358 free(top);
1359
1360 return (nvroot);
1361}
1362
428870ff
BB
1363nvlist_t *
1364split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1365 splitflags_t flags, int argc, char **argv)
1366{
1367 nvlist_t *newroot = NULL, **child;
1368 uint_t c, children;
1369
1370 if (argc > 0) {
1371 if ((newroot = construct_spec(argc, argv)) == NULL) {
1372 (void) fprintf(stderr, gettext("Unable to build a "
1373 "pool from the specified devices\n"));
1374 return (NULL);
1375 }
1376
1377 if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1378 nvlist_free(newroot);
1379 return (NULL);
1380 }
1381
1382 /* avoid any tricks in the spec */
1383 verify(nvlist_lookup_nvlist_array(newroot,
1384 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1385 for (c = 0; c < children; c++) {
1386 char *path;
1387 const char *type;
1388 int min, max;
1389
1390 verify(nvlist_lookup_string(child[c],
1391 ZPOOL_CONFIG_PATH, &path) == 0);
1392 if ((type = is_grouping(path, &min, &max)) != NULL) {
1393 (void) fprintf(stderr, gettext("Cannot use "
1394 "'%s' as a device for splitting\n"), type);
1395 nvlist_free(newroot);
1396 return (NULL);
1397 }
1398 }
1399 }
1400
1401 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1402 if (newroot != NULL)
1403 nvlist_free(newroot);
1404 return (NULL);
1405 }
1406
1407 return (newroot);
1408}
34dc7c2f
BB
1409
1410/*
1411 * Get and validate the contents of the given vdev specification. This ensures
1412 * that the nvlist returned is well-formed, that all the devices exist, and that
1413 * they are not currently in use by any other known consumer. The 'poolconfig'
1414 * parameter is the current configuration of the pool when adding devices
1415 * existing pool, and is used to perform additional checks, such as changing the
1416 * replication level of the pool. It can be 'NULL' to indicate that this is a
1417 * new pool. The 'force' flag controls whether devices should be forcefully
1418 * added, even if they appear in use.
1419 */
1420nvlist_t *
1421make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
428870ff 1422 boolean_t replacing, boolean_t dryrun, int argc, char **argv)
34dc7c2f
BB
1423{
1424 nvlist_t *newroot;
1425 nvlist_t *poolconfig = NULL;
1426 is_force = force;
1427
1428 /*
1429 * Construct the vdev specification. If this is successful, we know
1430 * that we have a valid specification, and that all devices can be
1431 * opened.
1432 */
1433 if ((newroot = construct_spec(argc, argv)) == NULL)
1434 return (NULL);
1435
1436 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1437 return (NULL);
1438
1439 /*
1440 * Validate each device to make sure that its not shared with another
1441 * subsystem. We do this even if 'force' is set, because there are some
1442 * uses (such as a dedicated dump device) that even '-f' cannot
1443 * override.
1444 */
428870ff 1445 if (check_in_use(poolconfig, newroot, force, replacing, B_FALSE) != 0) {
34dc7c2f
BB
1446 nvlist_free(newroot);
1447 return (NULL);
1448 }
1449
1450 /*
1451 * Check the replication level of the given vdevs and report any errors
1452 * found. We include the existing pool spec, if any, as we need to
1453 * catch changes against the existing replication level.
1454 */
1455 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1456 nvlist_free(newroot);
1457 return (NULL);
1458 }
1459
1460 /*
1461 * Run through the vdev specification and label any whole disks found.
1462 */
b128c09f 1463 if (!dryrun && make_disks(zhp, newroot) != 0) {
34dc7c2f
BB
1464 nvlist_free(newroot);
1465 return (NULL);
1466 }
1467
1468 return (newroot);
1469}