]> git.proxmox.com Git - mirror_zfs.git/blame - cmd/zpool/zpool_vdev.c
Export addition dsl_prop_* symbols
[mirror_zfs.git] / cmd / zpool / zpool_vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
428870ff 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
34dc7c2f
BB
24 */
25
34dc7c2f
BB
26/*
27 * Functions to convert between a list of vdevs and an nvlist representing the
28 * configuration. Each entry in the list can be one of:
29 *
30 * Device vdevs
31 * disk=(path=..., devid=...)
32 * file=(path=...)
33 *
34 * Group vdevs
35 * raidz[1|2]=(...)
36 * mirror=(...)
37 *
38 * Hot spares
39 *
40 * While the underlying implementation supports it, group vdevs cannot contain
41 * other group vdevs. All userland verification of devices is contained within
42 * this file. If successful, the nvlist returned can be passed directly to the
43 * kernel; we've done as much verification as possible in userland.
44 *
45 * Hot spares are a special case, and passed down as an array of disk vdevs, at
46 * the same level as the root of the vdev tree.
47 *
48 * The only function exported by this file is 'make_root_vdev'. The
49 * function performs several passes:
50 *
51 * 1. Construct the vdev specification. Performs syntax validation and
52 * makes sure each device is valid.
d603ed6c 53 * 2. Check for devices in use. Using libblkid to make sure that no
34dc7c2f
BB
54 * devices are also in use. Some can be overridden using the 'force'
55 * flag, others cannot.
56 * 3. Check for replication errors if the 'force' flag is not specified.
57 * validates that the replication level is consistent across the
58 * entire pool.
59 * 4. Call libzfs to label any whole disks with an EFI label.
60 */
61
62#include <assert.h>
d603ed6c 63#include <ctype.h>
34dc7c2f
BB
64#include <devid.h>
65#include <errno.h>
66#include <fcntl.h>
34dc7c2f
BB
67#include <libintl.h>
68#include <libnvpair.h>
45d1cae3 69#include <limits.h>
bff32e09
RY
70#include <scsi/scsi.h>
71#include <scsi/sg.h>
34dc7c2f
BB
72#include <stdio.h>
73#include <string.h>
74#include <unistd.h>
75#include <sys/efi_partition.h>
76#include <sys/stat.h>
77#include <sys/vtoc.h>
78#include <sys/mntent.h>
d603ed6c
BB
79#include <uuid/uuid.h>
80#ifdef HAVE_LIBBLKID
81#include <blkid/blkid.h>
82#else
83#define blkid_cache void *
84#endif /* HAVE_LIBBLKID */
34dc7c2f
BB
85
86#include "zpool_util.h"
bff32e09 87#include <sys/zfs_context.h>
34dc7c2f 88
34dc7c2f
BB
89/*
90 * For any given vdev specification, we can have multiple errors. The
91 * vdev_error() function keeps track of whether we have seen an error yet, and
92 * prints out a header if its the first error we've seen.
93 */
94boolean_t error_seen;
95boolean_t is_force;
96
bff32e09
RY
97typedef struct vdev_disk_db_entry
98{
99 char id[24];
100 int sector_size;
101} vdev_disk_db_entry_t;
102
103/*
104 * Database of block devices that lie about physical sector sizes. The
105 * identification string must be precisely 24 characters to avoid false
106 * negatives
107 */
108static vdev_disk_db_entry_t vdev_disk_database[] = {
109 {"ATA Corsair Force 3 ", 8192},
110 {"ATA INTEL SSDSA2CT04", 8192},
111 {"ATA INTEL SSDSA2CW16", 8192},
112 {"ATA INTEL SSDSC2CT18", 8192},
113 {"ATA INTEL SSDSC2CW12", 8192},
114 {"ATA KINGSTON SH100S3", 8192},
115 {"ATA M4-CT064M4SSD2 ", 8192},
116 {"ATA M4-CT128M4SSD2 ", 8192},
117 {"ATA M4-CT256M4SSD2 ", 8192},
118 {"ATA M4-CT512M4SSD2 ", 8192},
119 {"ATA OCZ-AGILITY2 ", 8192},
120 {"ATA OCZ-VERTEX2 3.5 ", 8192},
121 {"ATA OCZ-VERTEX3 ", 8192},
122 {"ATA OCZ-VERTEX3 LT ", 8192},
123 {"ATA OCZ-VERTEX3 MI ", 8192},
124 {"ATA SAMSUNG SSD 830 ", 8192},
125 {"ATA Samsung SSD 840 ", 8192},
126 {"ATA INTEL SSDSA2M040", 4096},
127 {"ATA INTEL SSDSA2M080", 4096},
128 {"ATA INTEL SSDSA2M160", 4096},
129 /* Imported from Open Solaris*/
130 {"ATA MARVELL SD88SA02", 4096},
131 /* Advanced format Hard drives */
132 {"ATA Hitachi HDS5C303", 4096},
133 {"ATA SAMSUNG HD204UI ", 4096},
134 {"ATA ST2000DL004 HD20", 4096},
135 {"ATA WDC WD10EARS-00M", 4096},
136 {"ATA WDC WD10EARS-00S", 4096},
137 {"ATA WDC WD10EARS-00Z", 4096},
138 {"ATA WDC WD15EARS-00M", 4096},
139 {"ATA WDC WD15EARS-00S", 4096},
140 {"ATA WDC WD15EARS-00Z", 4096},
141 {"ATA WDC WD20EARS-00M", 4096},
142 {"ATA WDC WD20EARS-00S", 4096},
143 {"ATA WDC WD20EARS-00Z", 4096},
144 /* Virtual disks: Assume zvols with default volblocksize */
145#if 0
146 {"ATA QEMU HARDDISK ", 8192},
147 {"IET VIRTUAL-DISK ", 8192},
148 {"OI COMSTAR ", 8192},
149#endif
150};
151
152static const int vdev_disk_database_size =
153 sizeof (vdev_disk_database) / sizeof (vdev_disk_database[0]);
154
155#define INQ_REPLY_LEN 96
156#define INQ_CMD_LEN 6
157
158static boolean_t
159check_sector_size_database(char *path, int *sector_size)
160{
161 unsigned char inq_buff[INQ_REPLY_LEN];
162 unsigned char sense_buffer[32];
163 unsigned char inq_cmd_blk[INQ_CMD_LEN] =
164 {INQUIRY, 0, 0, 0, INQ_REPLY_LEN, 0};
165 sg_io_hdr_t io_hdr;
166 int error;
167 int fd;
168 int i;
169
170 /* Prepare INQUIRY command */
171 memset(&io_hdr, 0, sizeof(sg_io_hdr_t));
172 io_hdr.interface_id = 'S';
173 io_hdr.cmd_len = sizeof(inq_cmd_blk);
174 io_hdr.mx_sb_len = sizeof(sense_buffer);
175 io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
176 io_hdr.dxfer_len = INQ_REPLY_LEN;
177 io_hdr.dxferp = inq_buff;
178 io_hdr.cmdp = inq_cmd_blk;
179 io_hdr.sbp = sense_buffer;
180 io_hdr.timeout = 10; /* 10 milliseconds is ample time */
181
182 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
183 return (B_FALSE);
184
185 error = ioctl(fd, SG_IO, (unsigned long) &io_hdr);
186
187 (void) close(fd);
188
189 if (error < 0)
190 return (B_FALSE);
191
192 if ((io_hdr.info & SG_INFO_OK_MASK) != SG_INFO_OK)
193 return (B_FALSE);
194
195 for (i = 0; i < vdev_disk_database_size; i++) {
196 if (memcmp(inq_buff + 8, vdev_disk_database[i].id, 24))
197 continue;
198
199 *sector_size = vdev_disk_database[i].sector_size;
200 return (B_TRUE);
201 }
202
203 return (B_FALSE);
204}
205
34dc7c2f
BB
206/*PRINTFLIKE1*/
207static void
208vdev_error(const char *fmt, ...)
209{
210 va_list ap;
211
212 if (!error_seen) {
213 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
214 if (!is_force)
215 (void) fprintf(stderr, gettext("use '-f' to override "
216 "the following errors:\n"));
217 else
218 (void) fprintf(stderr, gettext("the following errors "
219 "must be manually repaired:\n"));
220 error_seen = B_TRUE;
221 }
222
223 va_start(ap, fmt);
224 (void) vfprintf(stderr, fmt, ap);
225 va_end(ap);
226}
227
34dc7c2f
BB
228/*
229 * Check that a file is valid. All we can do in this case is check that it's
230 * not in use by another pool, and not in use by swap.
231 */
232static int
233check_file(const char *file, boolean_t force, boolean_t isspare)
234{
235 char *name;
236 int fd;
237 int ret = 0;
34dc7c2f
BB
238 pool_state_t state;
239 boolean_t inuse;
240
34dc7c2f
BB
241 if ((fd = open(file, O_RDONLY)) < 0)
242 return (0);
243
244 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
245 const char *desc;
246
247 switch (state) {
248 case POOL_STATE_ACTIVE:
249 desc = gettext("active");
250 break;
251
252 case POOL_STATE_EXPORTED:
253 desc = gettext("exported");
254 break;
255
256 case POOL_STATE_POTENTIALLY_ACTIVE:
257 desc = gettext("potentially active");
258 break;
259
260 default:
261 desc = gettext("unknown");
262 break;
263 }
264
265 /*
266 * Allow hot spares to be shared between pools.
267 */
268 if (state == POOL_STATE_SPARE && isspare)
269 return (0);
270
271 if (state == POOL_STATE_ACTIVE ||
272 state == POOL_STATE_SPARE || !force) {
273 switch (state) {
274 case POOL_STATE_SPARE:
275 vdev_error(gettext("%s is reserved as a hot "
276 "spare for pool %s\n"), file, name);
277 break;
278 default:
279 vdev_error(gettext("%s is part of %s pool "
280 "'%s'\n"), file, desc, name);
281 break;
282 }
283 ret = -1;
284 }
285
286 free(name);
287 }
288
289 (void) close(fd);
290 return (ret);
291}
292
d603ed6c
BB
293static void
294check_error(int err)
295{
296 (void) fprintf(stderr, gettext("warning: device in use checking "
297 "failed: %s\n"), strerror(err));
298}
299
300static int
301check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
302{
d603ed6c
BB
303 int err;
304#ifdef HAVE_LIBBLKID
305 char *value;
d603ed6c 306
d603ed6c
BB
307 /* No valid type detected device is safe to use */
308 value = blkid_get_tag_value(cache, "TYPE", path);
309 if (value == NULL)
310 return (0);
311
312 /*
313 * If libblkid detects a ZFS device, we check the device
314 * using check_file() to see if it's safe. The one safe
315 * case is a spare device shared between multiple pools.
316 */
317 if (strcmp(value, "zfs") == 0) {
318 err = check_file(path, force, isspare);
319 } else {
320 if (force) {
321 err = 0;
322 } else {
323 err = -1;
324 vdev_error(gettext("%s contains a filesystem of "
325 "type '%s'\n"), path, value);
326 }
327 }
328
329 free(value);
330#else
331 err = check_file(path, force, isspare);
332#endif /* HAVE_LIBBLKID */
333
334 return (err);
335}
336
337/*
338 * Validate a whole disk. Iterate over all slices on the disk and make sure
339 * that none is in use by calling check_slice().
340 */
341static int
342check_disk(const char *path, blkid_cache cache, int force,
343 boolean_t isspare, boolean_t iswholedisk)
344{
345 struct dk_gpt *vtoc;
346 char slice_path[MAXPATHLEN];
347 int err = 0;
348 int fd, i;
349
350 /* This is not a wholedisk we only check the given partition */
351 if (!iswholedisk)
352 return check_slice(path, cache, force, isspare);
353
354 /*
355 * When the device is a whole disk try to read the efi partition
356 * label. If this is successful we safely check the all of the
357 * partitions. However, when it fails it may simply be because
358 * the disk is partitioned via the MBR. Since we currently can
359 * not easily decode the MBR return a failure and prompt to the
360 * user to use force option since we cannot check the partitions.
361 */
8128bd89 362 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0) {
d603ed6c
BB
363 check_error(errno);
364 return -1;
365 }
366
367 if ((err = efi_alloc_and_read(fd, &vtoc)) != 0) {
368 (void) close(fd);
369
370 if (force) {
371 return 0;
372 } else {
373 vdev_error(gettext("%s does not contain an EFI "
374 "label but it may contain partition\n"
375 "information in the MBR.\n"), path);
376 return -1;
377 }
378 }
379
380 /*
381 * The primary efi partition label is damaged however the secondary
382 * label at the end of the device is intact. Rather than use this
383 * label we should play it safe and treat this as a non efi device.
384 */
385 if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
386 efi_free(vtoc);
387 (void) close(fd);
388
389 if (force) {
390 /* Partitions will no be created using the backup */
391 return 0;
392 } else {
393 vdev_error(gettext("%s contains a corrupt primary "
394 "EFI label.\n"), path);
395 return -1;
396 }
397 }
398
399 for (i = 0; i < vtoc->efi_nparts; i++) {
400
401 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
402 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
403 continue;
404
405 if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
406 (void) snprintf(slice_path, sizeof (slice_path),
407 "%s%s%d", path, "-part", i+1);
408 else
409 (void) snprintf(slice_path, sizeof (slice_path),
410 "%s%s%d", path, isdigit(path[strlen(path)-1]) ?
411 "p" : "", i+1);
412
413 err = check_slice(slice_path, cache, force, isspare);
414 if (err)
415 break;
416 }
417
418 efi_free(vtoc);
419 (void) close(fd);
420
8128bd89 421 return (err);
d603ed6c
BB
422}
423
424static int
425check_device(const char *path, boolean_t force,
426 boolean_t isspare, boolean_t iswholedisk)
427{
428 static blkid_cache cache = NULL;
429
430#ifdef HAVE_LIBBLKID
431 /*
432 * There is no easy way to add a correct blkid_put_cache() call,
433 * memory will be reclaimed when the command exits.
434 */
435 if (cache == NULL) {
436 int err;
437
438 if ((err = blkid_get_cache(&cache, NULL)) != 0) {
439 check_error(err);
440 return -1;
441 }
442
443 if ((err = blkid_probe_all(cache)) != 0) {
444 blkid_put_cache(cache);
445 check_error(err);
446 return -1;
447 }
448 }
449#endif /* HAVE_LIBBLKID */
450
451 return check_disk(path, cache, force, isspare, iswholedisk);
452}
34dc7c2f
BB
453
454/*
455 * By "whole disk" we mean an entire physical disk (something we can
456 * label, toggle the write cache on, etc.) as opposed to the full
457 * capacity of a pseudo-device such as lofi or did. We act as if we
458 * are labeling the disk, which should be a pretty good test of whether
459 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
460 * it isn't.
461 */
462static boolean_t
d603ed6c 463is_whole_disk(const char *path)
34dc7c2f
BB
464{
465 struct dk_gpt *label;
466 int fd;
34dc7c2f 467
8128bd89 468 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
34dc7c2f
BB
469 return (B_FALSE);
470 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
471 (void) close(fd);
472 return (B_FALSE);
473 }
474 efi_free(label);
475 (void) close(fd);
476 return (B_TRUE);
477}
478
d603ed6c
BB
479/*
480 * This may be a shorthand device path or it could be total gibberish.
eac47204
BB
481 * Check to see if it is a known device available in zfs_vdev_paths.
482 * As part of this check, see if we've been given an entire disk
483 * (minus the slice number).
d603ed6c
BB
484 */
485static int
486is_shorthand_path(const char *arg, char *path,
487 struct stat64 *statbuf, boolean_t *wholedisk)
488{
eac47204
BB
489 int error;
490
491 error = zfs_resolve_shortname(arg, path, MAXPATHLEN);
492 if (error == 0) {
d603ed6c 493 *wholedisk = is_whole_disk(path);
79e7242a 494 if (*wholedisk || (stat64(path, statbuf) == 0))
d603ed6c
BB
495 return (0);
496 }
497
498 strlcpy(path, arg, sizeof(path));
499 memset(statbuf, 0, sizeof(*statbuf));
500 *wholedisk = B_FALSE;
501
eac47204 502 return (error);
d603ed6c
BB
503}
504
8128bd89
BB
505/*
506 * Determine if the given path is a hot spare within the given configuration.
507 * If no configuration is given we rely solely on the label.
508 */
509static boolean_t
510is_spare(nvlist_t *config, const char *path)
511{
512 int fd;
513 pool_state_t state;
514 char *name = NULL;
515 nvlist_t *label;
516 uint64_t guid, spareguid;
517 nvlist_t *nvroot;
518 nvlist_t **spares;
519 uint_t i, nspares;
520 boolean_t inuse;
521
522 if ((fd = open(path, O_RDONLY)) < 0)
523 return (B_FALSE);
524
525 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
526 !inuse ||
527 state != POOL_STATE_SPARE ||
528 zpool_read_label(fd, &label) != 0) {
529 free(name);
530 (void) close(fd);
531 return (B_FALSE);
532 }
533 free(name);
534 (void) close(fd);
535
536 if (config == NULL)
537 return (B_TRUE);
538
539 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
540 nvlist_free(label);
541
542 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
543 &nvroot) == 0);
544 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
545 &spares, &nspares) == 0) {
546 for (i = 0; i < nspares; i++) {
547 verify(nvlist_lookup_uint64(spares[i],
548 ZPOOL_CONFIG_GUID, &spareguid) == 0);
549 if (spareguid == guid)
550 return (B_TRUE);
551 }
552 }
553
554 return (B_FALSE);
555}
556
34dc7c2f
BB
557/*
558 * Create a leaf vdev. Determine if this is a file or a device. If it's a
559 * device, fill in the device id to make a complete nvlist. Valid forms for a
560 * leaf vdev are:
561 *
eac47204
BB
562 * /dev/xxx Complete disk path
563 * /xxx Full path to file
564 * xxx Shorthand for <zfs_vdev_paths>/xxx
34dc7c2f
BB
565 */
566static nvlist_t *
df30f566 567make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
34dc7c2f
BB
568{
569 char path[MAXPATHLEN];
570 struct stat64 statbuf;
571 nvlist_t *vdev = NULL;
572 char *type = NULL;
573 boolean_t wholedisk = B_FALSE;
bff32e09 574 uint64_t ashift = 0;
d603ed6c 575 int err;
34dc7c2f
BB
576
577 /*
578 * Determine what type of vdev this is, and put the full path into
579 * 'path'. We detect whether this is a device of file afterwards by
580 * checking the st_mode of the file.
581 */
582 if (arg[0] == '/') {
583 /*
584 * Complete device or file path. Exact type is determined by
d603ed6c
BB
585 * examining the file descriptor afterwards. Symbolic links
586 * are resolved to their real paths for the is_whole_disk()
587 * and S_ISBLK/S_ISREG type checks. However, we are careful
588 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
589 * can leverage udev's persistent device labels.
34dc7c2f 590 */
d603ed6c 591 if (realpath(arg, path) == NULL) {
34dc7c2f 592 (void) fprintf(stderr,
d603ed6c 593 gettext("cannot resolve path '%s'\n"), arg);
34dc7c2f
BB
594 return (NULL);
595 }
596
34dc7c2f
BB
597 wholedisk = is_whole_disk(path);
598 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
d603ed6c
BB
599 (void) fprintf(stderr,
600 gettext("cannot open '%s': %s\n"),
601 path, strerror(errno));
602 return (NULL);
603 }
604
605 /* After is_whole_disk() check restore original passed path */
606 strlcpy(path, arg, MAXPATHLEN);
607 } else {
608 err = is_shorthand_path(arg, path, &statbuf, &wholedisk);
609 if (err != 0) {
34dc7c2f
BB
610 /*
611 * If we got ENOENT, then the user gave us
612 * gibberish, so try to direct them with a
613 * reasonable error message. Otherwise,
614 * regurgitate strerror() since it's the best we
615 * can do.
616 */
d603ed6c 617 if (err == ENOENT) {
34dc7c2f
BB
618 (void) fprintf(stderr,
619 gettext("cannot open '%s': no such "
620 "device in %s\n"), arg, DISK_ROOT);
621 (void) fprintf(stderr,
622 gettext("must be a full path or "
623 "shorthand device name\n"));
624 return (NULL);
625 } else {
626 (void) fprintf(stderr,
627 gettext("cannot open '%s': %s\n"),
628 path, strerror(errno));
629 return (NULL);
630 }
631 }
632 }
633
634 /*
635 * Determine whether this is a device or a file.
636 */
637 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
638 type = VDEV_TYPE_DISK;
639 } else if (S_ISREG(statbuf.st_mode)) {
640 type = VDEV_TYPE_FILE;
641 } else {
642 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
643 "block device or regular file\n"), path);
644 return (NULL);
645 }
646
647 /*
648 * Finally, we have the complete device or file, and we know that it is
649 * acceptable to use. Construct the nvlist to describe this vdev. All
650 * vdevs have a 'path' element, and devices also have a 'devid' element.
651 */
652 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
653 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
654 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
655 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
656 if (strcmp(type, VDEV_TYPE_DISK) == 0)
657 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
658 (uint64_t)wholedisk) == 0);
659
bff32e09
RY
660 /*
661 * Override defaults if custom properties are provided.
662 */
df30f566 663 if (props != NULL) {
df30f566
CK
664 char *value = NULL;
665
666 if (nvlist_lookup_string(props,
667 zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0)
668 zfs_nicestrtonum(NULL, value, &ashift);
bff32e09 669 }
df30f566 670
bff32e09
RY
671 /*
672 * If the device is known to incorrectly report its physical sector
673 * size explicitly provide the known correct value.
674 */
675 if (ashift == 0) {
676 int sector_size;
677
678 if (check_sector_size_database(path, &sector_size) == B_TRUE)
679 ashift = highbit(sector_size) - 1;
df30f566
CK
680 }
681
bff32e09
RY
682 if (ashift > 0)
683 nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
684
34dc7c2f
BB
685 return (vdev);
686}
687
688/*
689 * Go through and verify the replication level of the pool is consistent.
690 * Performs the following checks:
691 *
692 * For the new spec, verifies that devices in mirrors and raidz are the
693 * same size.
694 *
695 * If the current configuration already has inconsistent replication
696 * levels, ignore any other potential problems in the new spec.
697 *
698 * Otherwise, make sure that the current spec (if there is one) and the new
699 * spec have consistent replication levels.
700 */
701typedef struct replication_level {
702 char *zprl_type;
703 uint64_t zprl_children;
704 uint64_t zprl_parity;
705} replication_level_t;
706
707#define ZPOOL_FUZZ (16 * 1024 * 1024)
708
709/*
710 * Given a list of toplevel vdevs, return the current replication level. If
711 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
712 * an error message will be displayed for each self-inconsistent vdev.
713 */
714static replication_level_t *
715get_replication(nvlist_t *nvroot, boolean_t fatal)
716{
717 nvlist_t **top;
718 uint_t t, toplevels;
719 nvlist_t **child;
720 uint_t c, children;
721 nvlist_t *nv;
722 char *type;
d4ed6673 723 replication_level_t lastrep = { 0 }, rep, *ret;
34dc7c2f
BB
724 boolean_t dontreport;
725
726 ret = safe_malloc(sizeof (replication_level_t));
727
728 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
729 &top, &toplevels) == 0);
730
731 lastrep.zprl_type = NULL;
732 for (t = 0; t < toplevels; t++) {
733 uint64_t is_log = B_FALSE;
734
735 nv = top[t];
736
737 /*
738 * For separate logs we ignore the top level vdev replication
739 * constraints.
740 */
741 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
742 if (is_log)
743 continue;
744
745 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
746 &type) == 0);
747 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
748 &child, &children) != 0) {
749 /*
750 * This is a 'file' or 'disk' vdev.
751 */
752 rep.zprl_type = type;
753 rep.zprl_children = 1;
754 rep.zprl_parity = 0;
755 } else {
756 uint64_t vdev_size;
757
758 /*
759 * This is a mirror or RAID-Z vdev. Go through and make
760 * sure the contents are all the same (files vs. disks),
761 * keeping track of the number of elements in the
762 * process.
763 *
764 * We also check that the size of each vdev (if it can
765 * be determined) is the same.
766 */
767 rep.zprl_type = type;
768 rep.zprl_children = 0;
769
770 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
771 verify(nvlist_lookup_uint64(nv,
772 ZPOOL_CONFIG_NPARITY,
773 &rep.zprl_parity) == 0);
774 assert(rep.zprl_parity != 0);
775 } else {
776 rep.zprl_parity = 0;
777 }
778
779 /*
780 * The 'dontreport' variable indicates that we've
781 * already reported an error for this spec, so don't
782 * bother doing it again.
783 */
784 type = NULL;
785 dontreport = 0;
786 vdev_size = -1ULL;
787 for (c = 0; c < children; c++) {
788 nvlist_t *cnv = child[c];
789 char *path;
790 struct stat64 statbuf;
791 uint64_t size = -1ULL;
792 char *childtype;
793 int fd, err;
794
795 rep.zprl_children++;
796
797 verify(nvlist_lookup_string(cnv,
798 ZPOOL_CONFIG_TYPE, &childtype) == 0);
799
800 /*
801 * If this is a replacing or spare vdev, then
802 * get the real first child of the vdev.
803 */
804 if (strcmp(childtype,
805 VDEV_TYPE_REPLACING) == 0 ||
806 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
807 nvlist_t **rchild;
808 uint_t rchildren;
809
810 verify(nvlist_lookup_nvlist_array(cnv,
811 ZPOOL_CONFIG_CHILDREN, &rchild,
812 &rchildren) == 0);
813 assert(rchildren == 2);
814 cnv = rchild[0];
815
816 verify(nvlist_lookup_string(cnv,
817 ZPOOL_CONFIG_TYPE,
818 &childtype) == 0);
819 }
820
821 verify(nvlist_lookup_string(cnv,
822 ZPOOL_CONFIG_PATH, &path) == 0);
823
824 /*
825 * If we have a raidz/mirror that combines disks
826 * with files, report it as an error.
827 */
828 if (!dontreport && type != NULL &&
829 strcmp(type, childtype) != 0) {
830 if (ret != NULL)
831 free(ret);
832 ret = NULL;
833 if (fatal)
834 vdev_error(gettext(
835 "mismatched replication "
836 "level: %s contains both "
837 "files and devices\n"),
838 rep.zprl_type);
839 else
840 return (NULL);
841 dontreport = B_TRUE;
842 }
843
844 /*
845 * According to stat(2), the value of 'st_size'
846 * is undefined for block devices and character
847 * devices. But there is no effective way to
848 * determine the real size in userland.
849 *
850 * Instead, we'll take advantage of an
851 * implementation detail of spec_size(). If the
852 * device is currently open, then we (should)
853 * return a valid size.
854 *
855 * If we still don't get a valid size (indicated
856 * by a size of 0 or MAXOFFSET_T), then ignore
857 * this device altogether.
858 */
859 if ((fd = open(path, O_RDONLY)) >= 0) {
860 err = fstat64(fd, &statbuf);
861 (void) close(fd);
862 } else {
863 err = stat64(path, &statbuf);
864 }
865
866 if (err != 0 ||
867 statbuf.st_size == 0 ||
868 statbuf.st_size == MAXOFFSET_T)
869 continue;
870
871 size = statbuf.st_size;
872
873 /*
874 * Also make sure that devices and
875 * slices have a consistent size. If
876 * they differ by a significant amount
877 * (~16MB) then report an error.
878 */
879 if (!dontreport &&
880 (vdev_size != -1ULL &&
881 (labs(size - vdev_size) >
882 ZPOOL_FUZZ))) {
883 if (ret != NULL)
884 free(ret);
885 ret = NULL;
886 if (fatal)
887 vdev_error(gettext(
888 "%s contains devices of "
889 "different sizes\n"),
890 rep.zprl_type);
891 else
892 return (NULL);
893 dontreport = B_TRUE;
894 }
895
896 type = childtype;
897 vdev_size = size;
898 }
899 }
900
901 /*
902 * At this point, we have the replication of the last toplevel
903 * vdev in 'rep'. Compare it to 'lastrep' to see if its
904 * different.
905 */
906 if (lastrep.zprl_type != NULL) {
907 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
908 if (ret != NULL)
909 free(ret);
910 ret = NULL;
911 if (fatal)
912 vdev_error(gettext(
913 "mismatched replication level: "
914 "both %s and %s vdevs are "
915 "present\n"),
916 lastrep.zprl_type, rep.zprl_type);
917 else
918 return (NULL);
919 } else if (lastrep.zprl_parity != rep.zprl_parity) {
920 if (ret)
921 free(ret);
922 ret = NULL;
923 if (fatal)
924 vdev_error(gettext(
925 "mismatched replication level: "
926 "both %llu and %llu device parity "
927 "%s vdevs are present\n"),
928 lastrep.zprl_parity,
929 rep.zprl_parity,
930 rep.zprl_type);
931 else
932 return (NULL);
933 } else if (lastrep.zprl_children != rep.zprl_children) {
934 if (ret)
935 free(ret);
936 ret = NULL;
937 if (fatal)
938 vdev_error(gettext(
939 "mismatched replication level: "
940 "both %llu-way and %llu-way %s "
941 "vdevs are present\n"),
942 lastrep.zprl_children,
943 rep.zprl_children,
944 rep.zprl_type);
945 else
946 return (NULL);
947 }
948 }
949 lastrep = rep;
950 }
951
952 if (ret != NULL)
953 *ret = rep;
954
955 return (ret);
956}
957
958/*
959 * Check the replication level of the vdev spec against the current pool. Calls
960 * get_replication() to make sure the new spec is self-consistent. If the pool
961 * has a consistent replication level, then we ignore any errors. Otherwise,
962 * report any difference between the two.
963 */
964static int
965check_replication(nvlist_t *config, nvlist_t *newroot)
966{
967 nvlist_t **child;
968 uint_t children;
969 replication_level_t *current = NULL, *new;
970 int ret;
971
972 /*
973 * If we have a current pool configuration, check to see if it's
974 * self-consistent. If not, simply return success.
975 */
976 if (config != NULL) {
977 nvlist_t *nvroot;
978
979 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
980 &nvroot) == 0);
981 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
982 return (0);
983 }
984 /*
985 * for spares there may be no children, and therefore no
986 * replication level to check
987 */
988 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
989 &child, &children) != 0) || (children == 0)) {
990 free(current);
991 return (0);
992 }
993
994 /*
995 * If all we have is logs then there's no replication level to check.
996 */
997 if (num_logs(newroot) == children) {
998 free(current);
999 return (0);
1000 }
1001
1002 /*
1003 * Get the replication level of the new vdev spec, reporting any
1004 * inconsistencies found.
1005 */
1006 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
1007 free(current);
1008 return (-1);
1009 }
1010
1011 /*
1012 * Check to see if the new vdev spec matches the replication level of
1013 * the current pool.
1014 */
1015 ret = 0;
1016 if (current != NULL) {
1017 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
1018 vdev_error(gettext(
1019 "mismatched replication level: pool uses %s "
1020 "and new vdev is %s\n"),
1021 current->zprl_type, new->zprl_type);
1022 ret = -1;
1023 } else if (current->zprl_parity != new->zprl_parity) {
1024 vdev_error(gettext(
1025 "mismatched replication level: pool uses %llu "
1026 "device parity and new vdev uses %llu\n"),
1027 current->zprl_parity, new->zprl_parity);
1028 ret = -1;
1029 } else if (current->zprl_children != new->zprl_children) {
1030 vdev_error(gettext(
1031 "mismatched replication level: pool uses %llu-way "
1032 "%s and new vdev uses %llu-way %s\n"),
1033 current->zprl_children, current->zprl_type,
1034 new->zprl_children, new->zprl_type);
1035 ret = -1;
1036 }
1037 }
1038
1039 free(new);
1040 if (current != NULL)
1041 free(current);
1042
1043 return (ret);
1044}
1045
d603ed6c
BB
1046static int
1047zero_label(char *path)
1048{
1049 const int size = 4096;
1050 char buf[size];
1051 int err, fd;
1052
1053 if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
1054 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
1055 path, strerror(errno));
1056 return (-1);
1057 }
1058
1059 memset(buf, 0, size);
1060 err = write(fd, buf, size);
1061 (void) fdatasync(fd);
1062 (void) close(fd);
1063
1064 if (err == -1) {
1065 (void) fprintf(stderr, gettext("cannot zero first %d bytes "
1066 "of '%s': %s\n"), size, path, strerror(errno));
1067 return (-1);
1068 }
1069
1070 if (err != size) {
1071 (void) fprintf(stderr, gettext("could only zero %d/%d bytes "
1072 "of '%s'\n"), err, size, path);
1073 return (-1);
1074 }
1075
1076 return 0;
1077}
1078
34dc7c2f
BB
1079/*
1080 * Go through and find any whole disks in the vdev specification, labelling them
1081 * as appropriate. When constructing the vdev spec, we were unable to open this
1082 * device in order to provide a devid. Now that we have labelled the disk and
1083 * know that slice 0 is valid, we can construct the devid now.
1084 *
1085 * If the disk was already labeled with an EFI label, we will have gotten the
1086 * devid already (because we were able to open the whole disk). Otherwise, we
1087 * need to get the devid after we label the disk.
1088 */
1089static int
1090make_disks(zpool_handle_t *zhp, nvlist_t *nv)
1091{
1092 nvlist_t **child;
1093 uint_t c, children;
8128bd89 1094 char *type, *path;
d877ac6b
NB
1095 char devpath[MAXPATHLEN];
1096 char udevpath[MAXPATHLEN];
34dc7c2f 1097 uint64_t wholedisk;
d877ac6b 1098 struct stat64 statbuf;
8128bd89
BB
1099 int is_exclusive = 0;
1100 int fd;
34dc7c2f 1101 int ret;
34dc7c2f
BB
1102
1103 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1104
1105 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1106 &child, &children) != 0) {
1107
1108 if (strcmp(type, VDEV_TYPE_DISK) != 0)
1109 return (0);
1110
1111 /*
d603ed6c
BB
1112 * We have a disk device. If this is a whole disk write
1113 * out the efi partition table, otherwise write zero's to
1114 * the first 4k of the partition. This is to ensure that
1115 * libblkid will not misidentify the partition due to a
1116 * magic value left by the previous filesystem.
34dc7c2f 1117 */
d603ed6c
BB
1118 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1119 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1120 &wholedisk));
1121
1122 if (!wholedisk) {
8128bd89
BB
1123 (void) zero_label(path);
1124 return (0);
d603ed6c
BB
1125 }
1126
d877ac6b 1127 if (realpath(path, devpath) == NULL) {
d603ed6c
BB
1128 ret = errno;
1129 (void) fprintf(stderr,
1130 gettext("cannot resolve path '%s'\n"), path);
1131 return (ret);
1132 }
34dc7c2f 1133
d877ac6b
NB
1134 /*
1135 * Remove any previously existing symlink from a udev path to
1136 * the device before labeling the disk. This makes
1137 * zpool_label_disk_wait() truly wait for the new link to show
1138 * up instead of returning if it finds an old link still in
1139 * place. Otherwise there is a window between when udev
1140 * deletes and recreates the link during which access attempts
1141 * will fail with ENOENT.
1142 */
eac47204
BB
1143 strncpy(udevpath, path, MAXPATHLEN);
1144 (void) zfs_append_partition(udevpath, MAXPATHLEN);
1145
8128bd89
BB
1146 fd = open(devpath, O_RDWR|O_EXCL);
1147 if (fd == -1) {
1148 if (errno == EBUSY)
1149 is_exclusive = 1;
1150 } else {
1151 (void) close(fd);
1152 }
34dc7c2f
BB
1153
1154 /*
8128bd89
BB
1155 * If the partition exists, contains a valid spare label,
1156 * and is opened exclusively there is no need to partition
1157 * it. Hot spares have already been partitioned and are
1158 * held open exclusively by the kernel as a safety measure.
1159 *
1160 * If the provided path is for a /dev/disk/ device its
1161 * symbolic link will be removed, partition table created,
1162 * and then block until udev creates the new link.
34dc7c2f 1163 */
8128bd89
BB
1164 if (!is_exclusive || !is_spare(NULL, udevpath)) {
1165 ret = strncmp(udevpath,UDISK_ROOT,strlen(UDISK_ROOT));
1166 if (ret == 0) {
1167 ret = lstat64(udevpath, &statbuf);
1168 if (ret == 0 && S_ISLNK(statbuf.st_mode))
1169 (void) unlink(udevpath);
1170 }
1171
1172 if (zpool_label_disk(g_zfs, zhp,
1173 strrchr(devpath, '/') + 1) == -1)
1174 return (-1);
1175
1176 ret = zpool_label_disk_wait(udevpath, 1000);
1177 if (ret) {
1178 (void) fprintf(stderr, gettext("cannot "
1179 "resolve path '%s': %d\n"), udevpath, ret);
1180 return (-1);
1181 }
1182
1183 (void) zero_label(udevpath);
34dc7c2f
BB
1184 }
1185
34dc7c2f 1186 /*
eac47204 1187 * Update the path to refer to the partition. The presence of
34dc7c2f 1188 * the 'whole_disk' field indicates to the CLI that we should
eac47204 1189 * chop off the partition number when displaying the device in
34dc7c2f
BB
1190 * future output.
1191 */
d877ac6b 1192 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
34dc7c2f 1193
34dc7c2f
BB
1194 return (0);
1195 }
1196
1197 for (c = 0; c < children; c++)
1198 if ((ret = make_disks(zhp, child[c])) != 0)
1199 return (ret);
1200
1201 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1202 &child, &children) == 0)
1203 for (c = 0; c < children; c++)
1204 if ((ret = make_disks(zhp, child[c])) != 0)
1205 return (ret);
1206
1207 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1208 &child, &children) == 0)
1209 for (c = 0; c < children; c++)
1210 if ((ret = make_disks(zhp, child[c])) != 0)
1211 return (ret);
1212
1213 return (0);
1214}
1215
34dc7c2f
BB
1216/*
1217 * Go through and find any devices that are in use. We rely on libdiskmgt for
1218 * the majority of this task.
1219 */
1220static int
428870ff
BB
1221check_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1222 boolean_t replacing, boolean_t isspare)
34dc7c2f
BB
1223{
1224 nvlist_t **child;
1225 uint_t c, children;
1226 char *type, *path;
d603ed6c 1227 int ret = 0;
34dc7c2f 1228 char buf[MAXPATHLEN];
d603ed6c 1229 uint64_t wholedisk = B_FALSE;
34dc7c2f
BB
1230
1231 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1232
1233 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1234 &child, &children) != 0) {
1235
d603ed6c
BB
1236 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1237 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1238 verify(!nvlist_lookup_uint64(nv,
1239 ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
34dc7c2f
BB
1240
1241 /*
1242 * As a generic check, we look to see if this is a replace of a
1243 * hot spare within the same pool. If so, we allow it
d603ed6c 1244 * regardless of what libblkid or zpool_in_use() says.
34dc7c2f 1245 */
428870ff 1246 if (replacing) {
8128bd89
BB
1247 (void) strlcpy(buf, path, sizeof (buf));
1248 if (wholedisk) {
1249 ret = zfs_append_partition(buf, sizeof (buf));
1250 if (ret == -1)
1251 return (-1);
1252 }
428870ff 1253
34dc7c2f
BB
1254 if (is_spare(config, buf))
1255 return (0);
1256 }
1257
1258 if (strcmp(type, VDEV_TYPE_DISK) == 0)
d603ed6c 1259 ret = check_device(path, force, isspare, wholedisk);
34dc7c2f
BB
1260
1261 if (strcmp(type, VDEV_TYPE_FILE) == 0)
1262 ret = check_file(path, force, isspare);
1263
1264 return (ret);
1265 }
1266
1267 for (c = 0; c < children; c++)
1268 if ((ret = check_in_use(config, child[c], force,
428870ff 1269 replacing, B_FALSE)) != 0)
34dc7c2f
BB
1270 return (ret);
1271
1272 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1273 &child, &children) == 0)
1274 for (c = 0; c < children; c++)
1275 if ((ret = check_in_use(config, child[c], force,
428870ff 1276 replacing, B_TRUE)) != 0)
34dc7c2f
BB
1277 return (ret);
1278
1279 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1280 &child, &children) == 0)
1281 for (c = 0; c < children; c++)
1282 if ((ret = check_in_use(config, child[c], force,
428870ff 1283 replacing, B_FALSE)) != 0)
34dc7c2f
BB
1284 return (ret);
1285
1286 return (0);
1287}
1288
1289static const char *
45d1cae3 1290is_grouping(const char *type, int *mindev, int *maxdev)
34dc7c2f 1291{
45d1cae3
BB
1292 if (strncmp(type, "raidz", 5) == 0) {
1293 const char *p = type + 5;
1294 char *end;
1295 long nparity;
1296
1297 if (*p == '\0') {
1298 nparity = 1;
1299 } else if (*p == '0') {
1300 return (NULL); /* no zero prefixes allowed */
1301 } else {
1302 errno = 0;
1303 nparity = strtol(p, &end, 10);
1304 if (errno != 0 || nparity < 1 || nparity >= 255 ||
1305 *end != '\0')
1306 return (NULL);
1307 }
34dc7c2f 1308
34dc7c2f 1309 if (mindev != NULL)
45d1cae3
BB
1310 *mindev = nparity + 1;
1311 if (maxdev != NULL)
1312 *maxdev = 255;
34dc7c2f
BB
1313 return (VDEV_TYPE_RAIDZ);
1314 }
1315
45d1cae3
BB
1316 if (maxdev != NULL)
1317 *maxdev = INT_MAX;
1318
34dc7c2f
BB
1319 if (strcmp(type, "mirror") == 0) {
1320 if (mindev != NULL)
1321 *mindev = 2;
1322 return (VDEV_TYPE_MIRROR);
1323 }
1324
1325 if (strcmp(type, "spare") == 0) {
1326 if (mindev != NULL)
1327 *mindev = 1;
1328 return (VDEV_TYPE_SPARE);
1329 }
1330
1331 if (strcmp(type, "log") == 0) {
1332 if (mindev != NULL)
1333 *mindev = 1;
1334 return (VDEV_TYPE_LOG);
1335 }
1336
1337 if (strcmp(type, "cache") == 0) {
1338 if (mindev != NULL)
1339 *mindev = 1;
1340 return (VDEV_TYPE_L2CACHE);
1341 }
1342
1343 return (NULL);
1344}
1345
1346/*
1347 * Construct a syntactically valid vdev specification,
1348 * and ensure that all devices and files exist and can be opened.
1349 * Note: we don't bother freeing anything in the error paths
1350 * because the program is just going to exit anyway.
1351 */
1352nvlist_t *
df30f566 1353construct_spec(nvlist_t *props, int argc, char **argv)
34dc7c2f
BB
1354{
1355 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
45d1cae3 1356 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
34dc7c2f
BB
1357 const char *type;
1358 uint64_t is_log;
1359 boolean_t seen_logs;
1360
1361 top = NULL;
1362 toplevels = 0;
1363 spares = NULL;
1364 l2cache = NULL;
1365 nspares = 0;
1366 nlogs = 0;
1367 nl2cache = 0;
1368 is_log = B_FALSE;
1369 seen_logs = B_FALSE;
1370
1371 while (argc > 0) {
1372 nv = NULL;
1373
1374 /*
1375 * If it's a mirror or raidz, the subsequent arguments are
1376 * its leaves -- until we encounter the next mirror or raidz.
1377 */
45d1cae3 1378 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
34dc7c2f
BB
1379 nvlist_t **child = NULL;
1380 int c, children = 0;
1381
1382 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1383 if (spares != NULL) {
1384 (void) fprintf(stderr,
1385 gettext("invalid vdev "
1386 "specification: 'spare' can be "
1387 "specified only once\n"));
1388 return (NULL);
1389 }
1390 is_log = B_FALSE;
1391 }
1392
1393 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1394 if (seen_logs) {
1395 (void) fprintf(stderr,
1396 gettext("invalid vdev "
1397 "specification: 'log' can be "
1398 "specified only once\n"));
1399 return (NULL);
1400 }
1401 seen_logs = B_TRUE;
1402 is_log = B_TRUE;
1403 argc--;
1404 argv++;
1405 /*
1406 * A log is not a real grouping device.
1407 * We just set is_log and continue.
1408 */
1409 continue;
1410 }
1411
1412 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1413 if (l2cache != NULL) {
1414 (void) fprintf(stderr,
1415 gettext("invalid vdev "
1416 "specification: 'cache' can be "
1417 "specified only once\n"));
1418 return (NULL);
1419 }
1420 is_log = B_FALSE;
1421 }
1422
1423 if (is_log) {
1424 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1425 (void) fprintf(stderr,
1426 gettext("invalid vdev "
1427 "specification: unsupported 'log' "
1428 "device: %s\n"), type);
1429 return (NULL);
1430 }
1431 nlogs++;
1432 }
1433
1434 for (c = 1; c < argc; c++) {
45d1cae3 1435 if (is_grouping(argv[c], NULL, NULL) != NULL)
34dc7c2f
BB
1436 break;
1437 children++;
1438 child = realloc(child,
1439 children * sizeof (nvlist_t *));
1440 if (child == NULL)
1441 zpool_no_memory();
df30f566 1442 if ((nv = make_leaf_vdev(props, argv[c], B_FALSE))
34dc7c2f
BB
1443 == NULL)
1444 return (NULL);
1445 child[children - 1] = nv;
1446 }
1447
1448 if (children < mindev) {
1449 (void) fprintf(stderr, gettext("invalid vdev "
1450 "specification: %s requires at least %d "
1451 "devices\n"), argv[0], mindev);
1452 return (NULL);
1453 }
1454
45d1cae3
BB
1455 if (children > maxdev) {
1456 (void) fprintf(stderr, gettext("invalid vdev "
1457 "specification: %s supports no more than "
1458 "%d devices\n"), argv[0], maxdev);
1459 return (NULL);
1460 }
1461
34dc7c2f
BB
1462 argc -= c;
1463 argv += c;
1464
1465 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1466 spares = child;
1467 nspares = children;
1468 continue;
1469 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1470 l2cache = child;
1471 nl2cache = children;
1472 continue;
1473 } else {
1474 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1475 0) == 0);
1476 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1477 type) == 0);
1478 verify(nvlist_add_uint64(nv,
1479 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1480 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1481 verify(nvlist_add_uint64(nv,
1482 ZPOOL_CONFIG_NPARITY,
1483 mindev - 1) == 0);
1484 }
1485 verify(nvlist_add_nvlist_array(nv,
1486 ZPOOL_CONFIG_CHILDREN, child,
1487 children) == 0);
1488
1489 for (c = 0; c < children; c++)
1490 nvlist_free(child[c]);
1491 free(child);
1492 }
1493 } else {
1494 /*
1495 * We have a device. Pass off to make_leaf_vdev() to
1496 * construct the appropriate nvlist describing the vdev.
1497 */
df30f566 1498 if ((nv = make_leaf_vdev(props, argv[0], is_log)) == NULL)
34dc7c2f
BB
1499 return (NULL);
1500 if (is_log)
1501 nlogs++;
1502 argc--;
1503 argv++;
1504 }
1505
1506 toplevels++;
1507 top = realloc(top, toplevels * sizeof (nvlist_t *));
1508 if (top == NULL)
1509 zpool_no_memory();
1510 top[toplevels - 1] = nv;
1511 }
1512
1513 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1514 (void) fprintf(stderr, gettext("invalid vdev "
1515 "specification: at least one toplevel vdev must be "
1516 "specified\n"));
1517 return (NULL);
1518 }
1519
1520 if (seen_logs && nlogs == 0) {
1521 (void) fprintf(stderr, gettext("invalid vdev specification: "
1522 "log requires at least 1 device\n"));
1523 return (NULL);
1524 }
1525
1526 /*
1527 * Finally, create nvroot and add all top-level vdevs to it.
1528 */
1529 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1530 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1531 VDEV_TYPE_ROOT) == 0);
1532 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1533 top, toplevels) == 0);
1534 if (nspares != 0)
1535 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1536 spares, nspares) == 0);
1537 if (nl2cache != 0)
1538 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1539 l2cache, nl2cache) == 0);
1540
1541 for (t = 0; t < toplevels; t++)
1542 nvlist_free(top[t]);
1543 for (t = 0; t < nspares; t++)
1544 nvlist_free(spares[t]);
1545 for (t = 0; t < nl2cache; t++)
1546 nvlist_free(l2cache[t]);
1547 if (spares)
1548 free(spares);
1549 if (l2cache)
1550 free(l2cache);
1551 free(top);
1552
1553 return (nvroot);
1554}
1555
428870ff
BB
1556nvlist_t *
1557split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1558 splitflags_t flags, int argc, char **argv)
1559{
1560 nvlist_t *newroot = NULL, **child;
1561 uint_t c, children;
1562
1563 if (argc > 0) {
df30f566 1564 if ((newroot = construct_spec(props, argc, argv)) == NULL) {
428870ff
BB
1565 (void) fprintf(stderr, gettext("Unable to build a "
1566 "pool from the specified devices\n"));
1567 return (NULL);
1568 }
1569
1570 if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1571 nvlist_free(newroot);
1572 return (NULL);
1573 }
1574
1575 /* avoid any tricks in the spec */
1576 verify(nvlist_lookup_nvlist_array(newroot,
1577 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1578 for (c = 0; c < children; c++) {
1579 char *path;
1580 const char *type;
1581 int min, max;
1582
1583 verify(nvlist_lookup_string(child[c],
1584 ZPOOL_CONFIG_PATH, &path) == 0);
1585 if ((type = is_grouping(path, &min, &max)) != NULL) {
1586 (void) fprintf(stderr, gettext("Cannot use "
1587 "'%s' as a device for splitting\n"), type);
1588 nvlist_free(newroot);
1589 return (NULL);
1590 }
1591 }
1592 }
1593
1594 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1595 if (newroot != NULL)
1596 nvlist_free(newroot);
1597 return (NULL);
1598 }
1599
1600 return (newroot);
1601}
34dc7c2f
BB
1602
1603/*
1604 * Get and validate the contents of the given vdev specification. This ensures
1605 * that the nvlist returned is well-formed, that all the devices exist, and that
1606 * they are not currently in use by any other known consumer. The 'poolconfig'
1607 * parameter is the current configuration of the pool when adding devices
1608 * existing pool, and is used to perform additional checks, such as changing the
1609 * replication level of the pool. It can be 'NULL' to indicate that this is a
1610 * new pool. The 'force' flag controls whether devices should be forcefully
1611 * added, even if they appear in use.
1612 */
1613nvlist_t *
df30f566 1614make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
428870ff 1615 boolean_t replacing, boolean_t dryrun, int argc, char **argv)
34dc7c2f
BB
1616{
1617 nvlist_t *newroot;
1618 nvlist_t *poolconfig = NULL;
1619 is_force = force;
1620
1621 /*
1622 * Construct the vdev specification. If this is successful, we know
1623 * that we have a valid specification, and that all devices can be
1624 * opened.
1625 */
df30f566 1626 if ((newroot = construct_spec(props, argc, argv)) == NULL)
34dc7c2f
BB
1627 return (NULL);
1628
1629 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1630 return (NULL);
1631
1632 /*
1633 * Validate each device to make sure that its not shared with another
1634 * subsystem. We do this even if 'force' is set, because there are some
1635 * uses (such as a dedicated dump device) that even '-f' cannot
1636 * override.
1637 */
428870ff 1638 if (check_in_use(poolconfig, newroot, force, replacing, B_FALSE) != 0) {
34dc7c2f
BB
1639 nvlist_free(newroot);
1640 return (NULL);
1641 }
1642
1643 /*
1644 * Check the replication level of the given vdevs and report any errors
1645 * found. We include the existing pool spec, if any, as we need to
1646 * catch changes against the existing replication level.
1647 */
1648 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1649 nvlist_free(newroot);
1650 return (NULL);
1651 }
1652
1653 /*
1654 * Run through the vdev specification and label any whole disks found.
1655 */
b128c09f 1656 if (!dryrun && make_disks(zhp, newroot) != 0) {
34dc7c2f
BB
1657 nvlist_free(newroot);
1658 return (NULL);
1659 }
1660
1661 return (newroot);
1662}