]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/block/nvme.c
NVMe: Version 0.8
[mirror_ubuntu-bionic-kernel.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
8de05535 21#include <linux/bitops.h>
b60503ba 22#include <linux/blkdev.h>
fd63e9ce 23#include <linux/delay.h>
b60503ba
MW
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
1fa6aead 32#include <linux/kthread.h>
b60503ba
MW
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/version.h>
43
44#define NVME_Q_DEPTH 1024
45#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
46#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
47#define NVME_MINORS 64
ff976d72 48#define NVME_IO_TIMEOUT (5 * HZ)
e85248e5 49#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
58ffacb5
MW
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
1fa6aead
MW
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
b60503ba
MW
61/*
62 * Represents an NVM Express device. Each nvme_dev is a PCI function.
63 */
64struct nvme_dev {
1fa6aead 65 struct list_head node;
b60503ba
MW
66 struct nvme_queue **queues;
67 u32 __iomem *dbs;
68 struct pci_dev *pci_dev;
091b6092 69 struct dma_pool *prp_page_pool;
99802a7a 70 struct dma_pool *prp_small_pool;
b60503ba
MW
71 int instance;
72 int queue_count;
f1938f6e 73 int db_stride;
b60503ba
MW
74 u32 ctrl_config;
75 struct msix_entry *entry;
76 struct nvme_bar __iomem *bar;
77 struct list_head namespaces;
51814232
MW
78 char serial[20];
79 char model[40];
80 char firmware_rev[8];
b60503ba
MW
81};
82
83/*
84 * An NVM Express namespace is equivalent to a SCSI LUN
85 */
86struct nvme_ns {
87 struct list_head list;
88
89 struct nvme_dev *dev;
90 struct request_queue *queue;
91 struct gendisk *disk;
92
93 int ns_id;
94 int lba_shift;
95};
96
97/*
98 * An NVM Express queue. Each device has at least two (one for admin
99 * commands and one for I/O commands).
100 */
101struct nvme_queue {
102 struct device *q_dmadev;
091b6092 103 struct nvme_dev *dev;
b60503ba
MW
104 spinlock_t q_lock;
105 struct nvme_command *sq_cmds;
106 volatile struct nvme_completion *cqes;
107 dma_addr_t sq_dma_addr;
108 dma_addr_t cq_dma_addr;
109 wait_queue_head_t sq_full;
1fa6aead 110 wait_queue_t sq_cong_wait;
b60503ba
MW
111 struct bio_list sq_cong;
112 u32 __iomem *q_db;
113 u16 q_depth;
114 u16 cq_vector;
115 u16 sq_head;
116 u16 sq_tail;
117 u16 cq_head;
82123460 118 u16 cq_phase;
b60503ba
MW
119 unsigned long cmdid_data[];
120};
121
122/*
123 * Check we didin't inadvertently grow the command struct
124 */
125static inline void _nvme_check_size(void)
126{
127 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136}
137
5c1281a3 138typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
c2f5b650
MW
139 struct nvme_completion *);
140
e85248e5 141struct nvme_cmd_info {
c2f5b650
MW
142 nvme_completion_fn fn;
143 void *ctx;
e85248e5
MW
144 unsigned long timeout;
145};
146
147static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
148{
149 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
150}
151
b60503ba 152/**
714a7a22
MW
153 * alloc_cmdid() - Allocate a Command ID
154 * @nvmeq: The queue that will be used for this command
155 * @ctx: A pointer that will be passed to the handler
c2f5b650 156 * @handler: The function to call on completion
b60503ba
MW
157 *
158 * Allocate a Command ID for a queue. The data passed in will
159 * be passed to the completion handler. This is implemented by using
160 * the bottom two bits of the ctx pointer to store the handler ID.
161 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
162 * We can change this if it becomes a problem.
184d2944
MW
163 *
164 * May be called with local interrupts disabled and the q_lock held,
165 * or with interrupts enabled and no locks held.
b60503ba 166 */
c2f5b650
MW
167static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
168 nvme_completion_fn handler, unsigned timeout)
b60503ba 169{
e6d15f79 170 int depth = nvmeq->q_depth - 1;
e85248e5 171 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
172 int cmdid;
173
b60503ba
MW
174 do {
175 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
176 if (cmdid >= depth)
177 return -EBUSY;
178 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
179
c2f5b650
MW
180 info[cmdid].fn = handler;
181 info[cmdid].ctx = ctx;
e85248e5 182 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
183 return cmdid;
184}
185
186static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
c2f5b650 187 nvme_completion_fn handler, unsigned timeout)
b60503ba
MW
188{
189 int cmdid;
190 wait_event_killable(nvmeq->sq_full,
e85248e5 191 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
192 return (cmdid < 0) ? -EINTR : cmdid;
193}
194
c2f5b650
MW
195/* Special values must be less than 0x1000 */
196#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
197#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
198#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
199#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 200#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 201
5c1281a3 202static void special_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
203 struct nvme_completion *cqe)
204{
205 if (ctx == CMD_CTX_CANCELLED)
206 return;
207 if (ctx == CMD_CTX_FLUSH)
208 return;
209 if (ctx == CMD_CTX_COMPLETED) {
5c1281a3 210 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
211 "completed id %d twice on queue %d\n",
212 cqe->command_id, le16_to_cpup(&cqe->sq_id));
213 return;
214 }
215 if (ctx == CMD_CTX_INVALID) {
5c1281a3 216 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
217 "invalid id %d completed on queue %d\n",
218 cqe->command_id, le16_to_cpup(&cqe->sq_id));
219 return;
220 }
221
5c1281a3 222 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
223}
224
184d2944
MW
225/*
226 * Called with local interrupts disabled and the q_lock held. May not sleep.
227 */
c2f5b650
MW
228static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
229 nvme_completion_fn *fn)
b60503ba 230{
c2f5b650 231 void *ctx;
e85248e5 232 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 233
c2f5b650
MW
234 if (cmdid >= nvmeq->q_depth) {
235 *fn = special_completion;
48e3d398 236 return CMD_CTX_INVALID;
c2f5b650
MW
237 }
238 *fn = info[cmdid].fn;
239 ctx = info[cmdid].ctx;
240 info[cmdid].fn = special_completion;
e85248e5 241 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
242 clear_bit(cmdid, nvmeq->cmdid_data);
243 wake_up(&nvmeq->sq_full);
c2f5b650 244 return ctx;
b60503ba
MW
245}
246
c2f5b650
MW
247static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
248 nvme_completion_fn *fn)
3c0cf138 249{
c2f5b650 250 void *ctx;
e85248e5 251 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
c2f5b650
MW
252 if (fn)
253 *fn = info[cmdid].fn;
254 ctx = info[cmdid].ctx;
255 info[cmdid].fn = special_completion;
e85248e5 256 info[cmdid].ctx = CMD_CTX_CANCELLED;
c2f5b650 257 return ctx;
3c0cf138
MW
258}
259
040a93b5 260static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
b60503ba 261{
040a93b5 262 return dev->queues[get_cpu() + 1];
b60503ba
MW
263}
264
265static void put_nvmeq(struct nvme_queue *nvmeq)
266{
1b23484b 267 put_cpu();
b60503ba
MW
268}
269
270/**
714a7a22 271 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
272 * @nvmeq: The queue to use
273 * @cmd: The command to send
274 *
275 * Safe to use from interrupt context
276 */
277static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
278{
279 unsigned long flags;
280 u16 tail;
b60503ba
MW
281 spin_lock_irqsave(&nvmeq->q_lock, flags);
282 tail = nvmeq->sq_tail;
283 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
284 if (++tail == nvmeq->q_depth)
285 tail = 0;
7547881d 286 writel(tail, nvmeq->q_db);
b60503ba
MW
287 nvmeq->sq_tail = tail;
288 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
289
290 return 0;
291}
292
eca18b23
MW
293/*
294 * The nvme_iod describes the data in an I/O, including the list of PRP
295 * entries. You can't see it in this data structure because C doesn't let
296 * me express that. Use nvme_alloc_iod to ensure there's enough space
297 * allocated to store the PRP list.
298 */
299struct nvme_iod {
300 void *private; /* For the use of the submitter of the I/O */
301 int npages; /* In the PRP list. 0 means small pool in use */
302 int offset; /* Of PRP list */
303 int nents; /* Used in scatterlist */
304 int length; /* Of data, in bytes */
e025344c 305 dma_addr_t first_dma;
eca18b23 306 struct scatterlist sg[0];
e025344c
SMM
307};
308
eca18b23 309static __le64 **iod_list(struct nvme_iod *iod)
e025344c 310{
eca18b23 311 return ((void *)iod) + iod->offset;
e025344c
SMM
312}
313
eca18b23
MW
314/*
315 * Will slightly overestimate the number of pages needed. This is OK
316 * as it only leads to a small amount of wasted memory for the lifetime of
317 * the I/O.
318 */
319static int nvme_npages(unsigned size)
320{
321 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
322 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
323}
b60503ba 324
eca18b23
MW
325static struct nvme_iod *
326nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
b60503ba 327{
eca18b23
MW
328 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
329 sizeof(__le64 *) * nvme_npages(nbytes) +
330 sizeof(struct scatterlist) * nseg, gfp);
331
332 if (iod) {
333 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
334 iod->npages = -1;
335 iod->length = nbytes;
336 }
337
338 return iod;
b60503ba
MW
339}
340
eca18b23 341static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 342{
eca18b23
MW
343 const int last_prp = PAGE_SIZE / 8 - 1;
344 int i;
345 __le64 **list = iod_list(iod);
346 dma_addr_t prp_dma = iod->first_dma;
347
348 if (iod->npages == 0)
349 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
350 for (i = 0; i < iod->npages; i++) {
351 __le64 *prp_list = list[i];
352 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
353 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
354 prp_dma = next_prp_dma;
355 }
356 kfree(iod);
b60503ba
MW
357}
358
5c1281a3
MW
359static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
360{
361 struct nvme_queue *nvmeq = get_nvmeq(dev);
362 if (bio_list_empty(&nvmeq->sq_cong))
363 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
364 bio_list_add(&nvmeq->sq_cong, bio);
365 put_nvmeq(nvmeq);
366 wake_up_process(nvme_thread);
367}
368
369static void bio_completion(struct nvme_dev *dev, void *ctx,
b60503ba
MW
370 struct nvme_completion *cqe)
371{
eca18b23
MW
372 struct nvme_iod *iod = ctx;
373 struct bio *bio = iod->private;
b60503ba
MW
374 u16 status = le16_to_cpup(&cqe->status) >> 1;
375
eca18b23 376 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
b60503ba 377 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
eca18b23 378 nvme_free_iod(dev, iod);
09a58f53 379 if (status) {
1ad2f893 380 bio_endio(bio, -EIO);
09a58f53 381 } else if (bio->bi_vcnt > bio->bi_idx) {
5c1281a3 382 requeue_bio(dev, bio);
1ad2f893
MW
383 } else {
384 bio_endio(bio, 0);
385 }
b60503ba
MW
386}
387
184d2944 388/* length is in bytes. gfp flags indicates whether we may sleep. */
eca18b23
MW
389static int nvme_setup_prps(struct nvme_dev *dev,
390 struct nvme_common_command *cmd, struct nvme_iod *iod,
391 int total_len, gfp_t gfp)
ff22b54f 392{
99802a7a 393 struct dma_pool *pool;
eca18b23
MW
394 int length = total_len;
395 struct scatterlist *sg = iod->sg;
ff22b54f
MW
396 int dma_len = sg_dma_len(sg);
397 u64 dma_addr = sg_dma_address(sg);
398 int offset = offset_in_page(dma_addr);
e025344c 399 __le64 *prp_list;
eca18b23 400 __le64 **list = iod_list(iod);
e025344c 401 dma_addr_t prp_dma;
eca18b23 402 int nprps, i;
ff22b54f
MW
403
404 cmd->prp1 = cpu_to_le64(dma_addr);
405 length -= (PAGE_SIZE - offset);
406 if (length <= 0)
eca18b23 407 return total_len;
ff22b54f
MW
408
409 dma_len -= (PAGE_SIZE - offset);
410 if (dma_len) {
411 dma_addr += (PAGE_SIZE - offset);
412 } else {
413 sg = sg_next(sg);
414 dma_addr = sg_dma_address(sg);
415 dma_len = sg_dma_len(sg);
416 }
417
418 if (length <= PAGE_SIZE) {
419 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23 420 return total_len;
e025344c
SMM
421 }
422
423 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
99802a7a
MW
424 if (nprps <= (256 / 8)) {
425 pool = dev->prp_small_pool;
eca18b23 426 iod->npages = 0;
99802a7a
MW
427 } else {
428 pool = dev->prp_page_pool;
eca18b23 429 iod->npages = 1;
99802a7a
MW
430 }
431
b77954cb
MW
432 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
433 if (!prp_list) {
434 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23
MW
435 iod->npages = -1;
436 return (total_len - length) + PAGE_SIZE;
b77954cb 437 }
eca18b23
MW
438 list[0] = prp_list;
439 iod->first_dma = prp_dma;
e025344c
SMM
440 cmd->prp2 = cpu_to_le64(prp_dma);
441 i = 0;
442 for (;;) {
7523d834 443 if (i == PAGE_SIZE / 8) {
e025344c 444 __le64 *old_prp_list = prp_list;
b77954cb 445 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
446 if (!prp_list)
447 return total_len - length;
448 list[iod->npages++] = prp_list;
7523d834
MW
449 prp_list[0] = old_prp_list[i - 1];
450 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
451 i = 1;
e025344c
SMM
452 }
453 prp_list[i++] = cpu_to_le64(dma_addr);
454 dma_len -= PAGE_SIZE;
455 dma_addr += PAGE_SIZE;
456 length -= PAGE_SIZE;
457 if (length <= 0)
458 break;
459 if (dma_len > 0)
460 continue;
461 BUG_ON(dma_len < 0);
462 sg = sg_next(sg);
463 dma_addr = sg_dma_address(sg);
464 dma_len = sg_dma_len(sg);
ff22b54f
MW
465 }
466
eca18b23 467 return total_len;
ff22b54f
MW
468}
469
1ad2f893
MW
470/* NVMe scatterlists require no holes in the virtual address */
471#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
472 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
473
eca18b23 474static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
b60503ba
MW
475 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
476{
76830840
MW
477 struct bio_vec *bvec, *bvprv = NULL;
478 struct scatterlist *sg = NULL;
1ad2f893 479 int i, old_idx, length = 0, nsegs = 0;
b60503ba 480
eca18b23 481 sg_init_table(iod->sg, psegs);
1ad2f893 482 old_idx = bio->bi_idx;
b60503ba 483 bio_for_each_segment(bvec, bio, i) {
76830840
MW
484 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
485 sg->length += bvec->bv_len;
486 } else {
1ad2f893
MW
487 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
488 break;
eca18b23 489 sg = sg ? sg + 1 : iod->sg;
76830840
MW
490 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
491 bvec->bv_offset);
492 nsegs++;
493 }
1ad2f893 494 length += bvec->bv_len;
76830840 495 bvprv = bvec;
b60503ba 496 }
1ad2f893 497 bio->bi_idx = i;
eca18b23 498 iod->nents = nsegs;
76830840 499 sg_mark_end(sg);
eca18b23 500 if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
1ad2f893
MW
501 bio->bi_idx = old_idx;
502 return -ENOMEM;
503 }
504 return length;
b60503ba
MW
505}
506
00df5cb4
MW
507static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
508 int cmdid)
509{
510 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
511
512 memset(cmnd, 0, sizeof(*cmnd));
513 cmnd->common.opcode = nvme_cmd_flush;
514 cmnd->common.command_id = cmdid;
515 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
516
517 if (++nvmeq->sq_tail == nvmeq->q_depth)
518 nvmeq->sq_tail = 0;
519 writel(nvmeq->sq_tail, nvmeq->q_db);
520
521 return 0;
522}
523
524static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
525{
526 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
ff976d72 527 special_completion, NVME_IO_TIMEOUT);
00df5cb4
MW
528 if (unlikely(cmdid < 0))
529 return cmdid;
530
531 return nvme_submit_flush(nvmeq, ns, cmdid);
532}
533
184d2944
MW
534/*
535 * Called with local interrupts disabled and the q_lock held. May not sleep.
536 */
b60503ba
MW
537static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
538 struct bio *bio)
539{
ff22b54f 540 struct nvme_command *cmnd;
eca18b23 541 struct nvme_iod *iod;
b60503ba 542 enum dma_data_direction dma_dir;
1ad2f893 543 int cmdid, length, result = -ENOMEM;
b60503ba
MW
544 u16 control;
545 u32 dsmgmt;
b60503ba
MW
546 int psegs = bio_phys_segments(ns->queue, bio);
547
00df5cb4
MW
548 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
549 result = nvme_submit_flush_data(nvmeq, ns);
550 if (result)
551 return result;
552 }
553
eca18b23
MW
554 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
555 if (!iod)
eeee3226 556 goto nomem;
eca18b23 557 iod->private = bio;
b60503ba 558
eeee3226 559 result = -EBUSY;
ff976d72 560 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
b60503ba 561 if (unlikely(cmdid < 0))
eca18b23 562 goto free_iod;
b60503ba 563
00df5cb4
MW
564 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
565 return nvme_submit_flush(nvmeq, ns, cmdid);
566
b60503ba
MW
567 control = 0;
568 if (bio->bi_rw & REQ_FUA)
569 control |= NVME_RW_FUA;
570 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
571 control |= NVME_RW_LR;
572
573 dsmgmt = 0;
574 if (bio->bi_rw & REQ_RAHEAD)
575 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
576
ff22b54f 577 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 578
b8deb62c 579 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 580 if (bio_data_dir(bio)) {
ff22b54f 581 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
582 dma_dir = DMA_TO_DEVICE;
583 } else {
ff22b54f 584 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
585 dma_dir = DMA_FROM_DEVICE;
586 }
587
eca18b23 588 result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
1ad2f893 589 if (result < 0)
eca18b23 590 goto free_iod;
1ad2f893 591 length = result;
b60503ba 592
ff22b54f
MW
593 cmnd->rw.command_id = cmdid;
594 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
eca18b23
MW
595 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
596 GFP_ATOMIC);
ff22b54f 597 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
1ad2f893 598 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
599 cmnd->rw.control = cpu_to_le16(control);
600 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 601
d8ee9d69
MW
602 bio->bi_sector += length >> 9;
603
b60503ba
MW
604 if (++nvmeq->sq_tail == nvmeq->q_depth)
605 nvmeq->sq_tail = 0;
7547881d 606 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 607
1974b1ae
MW
608 return 0;
609
eca18b23
MW
610 free_iod:
611 nvme_free_iod(nvmeq->dev, iod);
eeee3226
MW
612 nomem:
613 return result;
b60503ba
MW
614}
615
616/*
617 * NB: return value of non-zero would mean that we were a stacking driver.
618 * make_request must always succeed.
619 */
620static int nvme_make_request(struct request_queue *q, struct bio *bio)
621{
622 struct nvme_ns *ns = q->queuedata;
040a93b5 623 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
eeee3226
MW
624 int result = -EBUSY;
625
626 spin_lock_irq(&nvmeq->q_lock);
627 if (bio_list_empty(&nvmeq->sq_cong))
628 result = nvme_submit_bio_queue(nvmeq, ns, bio);
629 if (unlikely(result)) {
630 if (bio_list_empty(&nvmeq->sq_cong))
631 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
632 bio_list_add(&nvmeq->sq_cong, bio);
633 }
eeee3226
MW
634
635 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
636 put_nvmeq(nvmeq);
637
638 return 0;
639}
640
b60503ba
MW
641static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
642{
82123460 643 u16 head, phase;
b60503ba 644
b60503ba 645 head = nvmeq->cq_head;
82123460 646 phase = nvmeq->cq_phase;
b60503ba
MW
647
648 for (;;) {
c2f5b650
MW
649 void *ctx;
650 nvme_completion_fn fn;
b60503ba 651 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 652 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
653 break;
654 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
655 if (++head == nvmeq->q_depth) {
656 head = 0;
82123460 657 phase = !phase;
b60503ba
MW
658 }
659
c2f5b650 660 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
5c1281a3 661 fn(nvmeq->dev, ctx, &cqe);
b60503ba
MW
662 }
663
664 /* If the controller ignores the cq head doorbell and continuously
665 * writes to the queue, it is theoretically possible to wrap around
666 * the queue twice and mistakenly return IRQ_NONE. Linux only
667 * requires that 0.1% of your interrupts are handled, so this isn't
668 * a big problem.
669 */
82123460 670 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
671 return IRQ_NONE;
672
f1938f6e 673 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
b60503ba 674 nvmeq->cq_head = head;
82123460 675 nvmeq->cq_phase = phase;
b60503ba
MW
676
677 return IRQ_HANDLED;
678}
679
680static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
681{
682 irqreturn_t result;
683 struct nvme_queue *nvmeq = data;
684 spin_lock(&nvmeq->q_lock);
685 result = nvme_process_cq(nvmeq);
686 spin_unlock(&nvmeq->q_lock);
687 return result;
688}
689
690static irqreturn_t nvme_irq_check(int irq, void *data)
691{
692 struct nvme_queue *nvmeq = data;
693 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
694 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
695 return IRQ_NONE;
696 return IRQ_WAKE_THREAD;
697}
698
3c0cf138
MW
699static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
700{
701 spin_lock_irq(&nvmeq->q_lock);
c2f5b650 702 cancel_cmdid(nvmeq, cmdid, NULL);
3c0cf138
MW
703 spin_unlock_irq(&nvmeq->q_lock);
704}
705
c2f5b650
MW
706struct sync_cmd_info {
707 struct task_struct *task;
708 u32 result;
709 int status;
710};
711
5c1281a3 712static void sync_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
713 struct nvme_completion *cqe)
714{
715 struct sync_cmd_info *cmdinfo = ctx;
716 cmdinfo->result = le32_to_cpup(&cqe->result);
717 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
718 wake_up_process(cmdinfo->task);
719}
720
b60503ba
MW
721/*
722 * Returns 0 on success. If the result is negative, it's a Linux error code;
723 * if the result is positive, it's an NVM Express status code
724 */
3c0cf138 725static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 726 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
727{
728 int cmdid;
729 struct sync_cmd_info cmdinfo;
730
731 cmdinfo.task = current;
732 cmdinfo.status = -EINTR;
733
c2f5b650 734 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
e85248e5 735 timeout);
b60503ba
MW
736 if (cmdid < 0)
737 return cmdid;
738 cmd->common.command_id = cmdid;
739
3c0cf138
MW
740 set_current_state(TASK_KILLABLE);
741 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
742 schedule();
743
3c0cf138
MW
744 if (cmdinfo.status == -EINTR) {
745 nvme_abort_command(nvmeq, cmdid);
746 return -EINTR;
747 }
748
b60503ba
MW
749 if (result)
750 *result = cmdinfo.result;
751
752 return cmdinfo.status;
753}
754
755static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
756 u32 *result)
757{
e85248e5 758 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
759}
760
761static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
762{
763 int status;
764 struct nvme_command c;
765
766 memset(&c, 0, sizeof(c));
767 c.delete_queue.opcode = opcode;
768 c.delete_queue.qid = cpu_to_le16(id);
769
770 status = nvme_submit_admin_cmd(dev, &c, NULL);
771 if (status)
772 return -EIO;
773 return 0;
774}
775
776static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
777 struct nvme_queue *nvmeq)
778{
779 int status;
780 struct nvme_command c;
781 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
782
783 memset(&c, 0, sizeof(c));
784 c.create_cq.opcode = nvme_admin_create_cq;
785 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
786 c.create_cq.cqid = cpu_to_le16(qid);
787 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
788 c.create_cq.cq_flags = cpu_to_le16(flags);
789 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
790
791 status = nvme_submit_admin_cmd(dev, &c, NULL);
792 if (status)
793 return -EIO;
794 return 0;
795}
796
797static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
798 struct nvme_queue *nvmeq)
799{
800 int status;
801 struct nvme_command c;
802 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
803
804 memset(&c, 0, sizeof(c));
805 c.create_sq.opcode = nvme_admin_create_sq;
806 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
807 c.create_sq.sqid = cpu_to_le16(qid);
808 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
809 c.create_sq.sq_flags = cpu_to_le16(flags);
810 c.create_sq.cqid = cpu_to_le16(qid);
811
812 status = nvme_submit_admin_cmd(dev, &c, NULL);
813 if (status)
814 return -EIO;
815 return 0;
816}
817
818static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
819{
820 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
821}
822
823static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
824{
825 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
826}
827
bc5fc7e4
MW
828static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
829 dma_addr_t dma_addr)
830{
831 struct nvme_command c;
832
833 memset(&c, 0, sizeof(c));
834 c.identify.opcode = nvme_admin_identify;
835 c.identify.nsid = cpu_to_le32(nsid);
836 c.identify.prp1 = cpu_to_le64(dma_addr);
837 c.identify.cns = cpu_to_le32(cns);
838
839 return nvme_submit_admin_cmd(dev, &c, NULL);
840}
841
842static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
843 unsigned dword11, dma_addr_t dma_addr, u32 *result)
844{
845 struct nvme_command c;
846
847 memset(&c, 0, sizeof(c));
848 c.features.opcode = nvme_admin_get_features;
849 c.features.prp1 = cpu_to_le64(dma_addr);
850 c.features.fid = cpu_to_le32(fid);
851 c.features.dword11 = cpu_to_le32(dword11);
852
853 return nvme_submit_admin_cmd(dev, &c, result);
854}
855
b60503ba
MW
856static void nvme_free_queue(struct nvme_dev *dev, int qid)
857{
858 struct nvme_queue *nvmeq = dev->queues[qid];
aba2080f 859 int vector = dev->entry[nvmeq->cq_vector].vector;
b60503ba 860
aba2080f
MW
861 irq_set_affinity_hint(vector, NULL);
862 free_irq(vector, nvmeq);
b60503ba
MW
863
864 /* Don't tell the adapter to delete the admin queue */
865 if (qid) {
866 adapter_delete_sq(dev, qid);
867 adapter_delete_cq(dev, qid);
868 }
869
870 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
871 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
872 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
873 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
874 kfree(nvmeq);
875}
876
877static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
878 int depth, int vector)
879{
880 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 881 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
882 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
883 if (!nvmeq)
884 return NULL;
885
886 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
887 &nvmeq->cq_dma_addr, GFP_KERNEL);
888 if (!nvmeq->cqes)
889 goto free_nvmeq;
890 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
891
892 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
893 &nvmeq->sq_dma_addr, GFP_KERNEL);
894 if (!nvmeq->sq_cmds)
895 goto free_cqdma;
896
897 nvmeq->q_dmadev = dmadev;
091b6092 898 nvmeq->dev = dev;
b60503ba
MW
899 spin_lock_init(&nvmeq->q_lock);
900 nvmeq->cq_head = 0;
82123460 901 nvmeq->cq_phase = 1;
b60503ba 902 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 903 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba 904 bio_list_init(&nvmeq->sq_cong);
f1938f6e 905 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
b60503ba
MW
906 nvmeq->q_depth = depth;
907 nvmeq->cq_vector = vector;
908
909 return nvmeq;
910
911 free_cqdma:
912 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
913 nvmeq->cq_dma_addr);
914 free_nvmeq:
915 kfree(nvmeq);
916 return NULL;
917}
918
3001082c
MW
919static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
920 const char *name)
921{
58ffacb5
MW
922 if (use_threaded_interrupts)
923 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 924 nvme_irq_check, nvme_irq,
58ffacb5
MW
925 IRQF_DISABLED | IRQF_SHARED,
926 name, nvmeq);
3001082c
MW
927 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
928 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
929}
930
b60503ba
MW
931static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
932 int qid, int cq_size, int vector)
933{
934 int result;
935 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
936
3f85d50b 937 if (!nvmeq)
6f0f5449 938 return ERR_PTR(-ENOMEM);
3f85d50b 939
b60503ba
MW
940 result = adapter_alloc_cq(dev, qid, nvmeq);
941 if (result < 0)
942 goto free_nvmeq;
943
944 result = adapter_alloc_sq(dev, qid, nvmeq);
945 if (result < 0)
946 goto release_cq;
947
3001082c 948 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
949 if (result < 0)
950 goto release_sq;
951
952 return nvmeq;
953
954 release_sq:
955 adapter_delete_sq(dev, qid);
956 release_cq:
957 adapter_delete_cq(dev, qid);
958 free_nvmeq:
959 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
960 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
961 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
962 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
963 kfree(nvmeq);
6f0f5449 964 return ERR_PTR(result);
b60503ba
MW
965}
966
967static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
968{
969 int result;
970 u32 aqa;
22605f96
MW
971 u64 cap;
972 unsigned long timeout;
b60503ba
MW
973 struct nvme_queue *nvmeq;
974
975 dev->dbs = ((void __iomem *)dev->bar) + 4096;
976
977 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
978 if (!nvmeq)
979 return -ENOMEM;
b60503ba
MW
980
981 aqa = nvmeq->q_depth - 1;
982 aqa |= aqa << 16;
983
984 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
985 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
986 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 987 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba 988
5911f200 989 writel(0, &dev->bar->cc);
b60503ba
MW
990 writel(aqa, &dev->bar->aqa);
991 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
992 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
993 writel(dev->ctrl_config, &dev->bar->cc);
994
22605f96
MW
995 cap = readq(&dev->bar->cap);
996 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
f1938f6e 997 dev->db_stride = NVME_CAP_STRIDE(cap);
22605f96 998
b60503ba
MW
999 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1000 msleep(100);
1001 if (fatal_signal_pending(current))
1002 return -EINTR;
22605f96
MW
1003 if (time_after(jiffies, timeout)) {
1004 dev_err(&dev->pci_dev->dev,
1005 "Device not ready; aborting initialisation\n");
1006 return -ENODEV;
1007 }
b60503ba
MW
1008 }
1009
3001082c 1010 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
1011 dev->queues[0] = nvmeq;
1012 return result;
1013}
1014
eca18b23
MW
1015static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1016 unsigned long addr, unsigned length)
b60503ba 1017{
36c14ed9 1018 int i, err, count, nents, offset;
7fc3cdab
MW
1019 struct scatterlist *sg;
1020 struct page **pages;
eca18b23 1021 struct nvme_iod *iod;
36c14ed9
MW
1022
1023 if (addr & 3)
eca18b23 1024 return ERR_PTR(-EINVAL);
7fc3cdab 1025 if (!length)
eca18b23 1026 return ERR_PTR(-EINVAL);
7fc3cdab 1027
36c14ed9 1028 offset = offset_in_page(addr);
7fc3cdab
MW
1029 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1030 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
1031
1032 err = get_user_pages_fast(addr, count, 1, pages);
1033 if (err < count) {
1034 count = err;
1035 err = -EFAULT;
1036 goto put_pages;
1037 }
7fc3cdab 1038
eca18b23
MW
1039 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1040 sg = iod->sg;
36c14ed9 1041 sg_init_table(sg, count);
d0ba1e49
MW
1042 for (i = 0; i < count; i++) {
1043 sg_set_page(&sg[i], pages[i],
1044 min_t(int, length, PAGE_SIZE - offset), offset);
1045 length -= (PAGE_SIZE - offset);
1046 offset = 0;
7fc3cdab 1047 }
fe304c43 1048 sg_mark_end(&sg[i - 1]);
1c2ad9fa 1049 iod->nents = count;
7fc3cdab
MW
1050
1051 err = -ENOMEM;
1052 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1053 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9 1054 if (!nents)
eca18b23 1055 goto free_iod;
b60503ba 1056
7fc3cdab 1057 kfree(pages);
eca18b23 1058 return iod;
b60503ba 1059
eca18b23
MW
1060 free_iod:
1061 kfree(iod);
7fc3cdab
MW
1062 put_pages:
1063 for (i = 0; i < count; i++)
1064 put_page(pages[i]);
1065 kfree(pages);
eca18b23 1066 return ERR_PTR(err);
7fc3cdab 1067}
b60503ba 1068
7fc3cdab 1069static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1c2ad9fa 1070 struct nvme_iod *iod)
7fc3cdab 1071{
1c2ad9fa 1072 int i;
b60503ba 1073
1c2ad9fa
MW
1074 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1075 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
7fc3cdab 1076
1c2ad9fa
MW
1077 for (i = 0; i < iod->nents; i++)
1078 put_page(sg_page(&iod->sg[i]));
7fc3cdab 1079}
b60503ba 1080
a53295b6
MW
1081static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1082{
1083 struct nvme_dev *dev = ns->dev;
1084 struct nvme_queue *nvmeq;
1085 struct nvme_user_io io;
1086 struct nvme_command c;
1087 unsigned length;
eca18b23
MW
1088 int status;
1089 struct nvme_iod *iod;
a53295b6
MW
1090
1091 if (copy_from_user(&io, uio, sizeof(io)))
1092 return -EFAULT;
6c7d4945
MW
1093 length = (io.nblocks + 1) << ns->lba_shift;
1094
1095 switch (io.opcode) {
1096 case nvme_cmd_write:
1097 case nvme_cmd_read:
6bbf1acd 1098 case nvme_cmd_compare:
eca18b23 1099 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
6413214c 1100 break;
6c7d4945 1101 default:
6bbf1acd 1102 return -EINVAL;
6c7d4945
MW
1103 }
1104
eca18b23
MW
1105 if (IS_ERR(iod))
1106 return PTR_ERR(iod);
a53295b6
MW
1107
1108 memset(&c, 0, sizeof(c));
1109 c.rw.opcode = io.opcode;
1110 c.rw.flags = io.flags;
6c7d4945 1111 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1112 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1113 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6
MW
1114 c.rw.control = cpu_to_le16(io.control);
1115 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
6c7d4945
MW
1116 c.rw.reftag = io.reftag;
1117 c.rw.apptag = io.apptag;
1118 c.rw.appmask = io.appmask;
a53295b6 1119 /* XXX: metadata */
eca18b23 1120 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
a53295b6 1121
040a93b5 1122 nvmeq = get_nvmeq(dev);
fa922821
MW
1123 /*
1124 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1125 * disabled. We may be preempted at any point, and be rescheduled
1126 * to a different CPU. That will cause cacheline bouncing, but no
1127 * additional races since q_lock already protects against other CPUs.
1128 */
a53295b6 1129 put_nvmeq(nvmeq);
b77954cb
MW
1130 if (length != (io.nblocks + 1) << ns->lba_shift)
1131 status = -ENOMEM;
1132 else
ff976d72 1133 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
a53295b6 1134
1c2ad9fa 1135 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
eca18b23 1136 nvme_free_iod(dev, iod);
a53295b6
MW
1137 return status;
1138}
1139
6bbf1acd
MW
1140static int nvme_user_admin_cmd(struct nvme_ns *ns,
1141 struct nvme_admin_cmd __user *ucmd)
6ee44cdc
MW
1142{
1143 struct nvme_dev *dev = ns->dev;
6bbf1acd 1144 struct nvme_admin_cmd cmd;
6ee44cdc 1145 struct nvme_command c;
eca18b23
MW
1146 int status, length;
1147 struct nvme_iod *iod;
6ee44cdc 1148
6bbf1acd
MW
1149 if (!capable(CAP_SYS_ADMIN))
1150 return -EACCES;
1151 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1152 return -EFAULT;
6ee44cdc
MW
1153
1154 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1155 c.common.opcode = cmd.opcode;
1156 c.common.flags = cmd.flags;
1157 c.common.nsid = cpu_to_le32(cmd.nsid);
1158 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1159 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1160 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1161 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1162 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1163 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1164 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1165 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1166
1167 length = cmd.data_len;
1168 if (cmd.data_len) {
49742188
MW
1169 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1170 length);
eca18b23
MW
1171 if (IS_ERR(iod))
1172 return PTR_ERR(iod);
1173 length = nvme_setup_prps(dev, &c.common, iod, length,
1174 GFP_KERNEL);
6bbf1acd
MW
1175 }
1176
1177 if (length != cmd.data_len)
b77954cb
MW
1178 status = -ENOMEM;
1179 else
1180 status = nvme_submit_admin_cmd(dev, &c, NULL);
eca18b23 1181
6bbf1acd 1182 if (cmd.data_len) {
1c2ad9fa 1183 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
eca18b23 1184 nvme_free_iod(dev, iod);
6bbf1acd 1185 }
6ee44cdc
MW
1186 return status;
1187}
1188
b60503ba
MW
1189static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1190 unsigned long arg)
1191{
1192 struct nvme_ns *ns = bdev->bd_disk->private_data;
1193
1194 switch (cmd) {
6bbf1acd
MW
1195 case NVME_IOCTL_ID:
1196 return ns->ns_id;
1197 case NVME_IOCTL_ADMIN_CMD:
1198 return nvme_user_admin_cmd(ns, (void __user *)arg);
a53295b6
MW
1199 case NVME_IOCTL_SUBMIT_IO:
1200 return nvme_submit_io(ns, (void __user *)arg);
b60503ba
MW
1201 default:
1202 return -ENOTTY;
1203 }
1204}
1205
1206static const struct block_device_operations nvme_fops = {
1207 .owner = THIS_MODULE,
1208 .ioctl = nvme_ioctl,
49481682 1209 .compat_ioctl = nvme_ioctl,
b60503ba
MW
1210};
1211
8de05535
MW
1212static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1213{
1214 int depth = nvmeq->q_depth - 1;
1215 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1216 unsigned long now = jiffies;
1217 int cmdid;
1218
1219 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
c2f5b650
MW
1220 void *ctx;
1221 nvme_completion_fn fn;
8de05535
MW
1222 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1223
1224 if (!time_after(now, info[cmdid].timeout))
1225 continue;
1226 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
c2f5b650 1227 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
5c1281a3 1228 fn(nvmeq->dev, ctx, &cqe);
8de05535
MW
1229 }
1230}
1231
1fa6aead
MW
1232static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1233{
1234 while (bio_list_peek(&nvmeq->sq_cong)) {
1235 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1236 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1237 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1238 bio_list_add_head(&nvmeq->sq_cong, bio);
1239 break;
1240 }
3cb967c0
MW
1241 if (bio_list_empty(&nvmeq->sq_cong))
1242 remove_wait_queue(&nvmeq->sq_full,
1243 &nvmeq->sq_cong_wait);
1fa6aead
MW
1244 }
1245}
1246
1247static int nvme_kthread(void *data)
1248{
1249 struct nvme_dev *dev;
1250
1251 while (!kthread_should_stop()) {
1252 __set_current_state(TASK_RUNNING);
1253 spin_lock(&dev_list_lock);
1254 list_for_each_entry(dev, &dev_list, node) {
1255 int i;
1256 for (i = 0; i < dev->queue_count; i++) {
1257 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1258 if (!nvmeq)
1259 continue;
1fa6aead
MW
1260 spin_lock_irq(&nvmeq->q_lock);
1261 if (nvme_process_cq(nvmeq))
1262 printk("process_cq did something\n");
8de05535 1263 nvme_timeout_ios(nvmeq);
1fa6aead
MW
1264 nvme_resubmit_bios(nvmeq);
1265 spin_unlock_irq(&nvmeq->q_lock);
1266 }
1267 }
1268 spin_unlock(&dev_list_lock);
1269 set_current_state(TASK_INTERRUPTIBLE);
1270 schedule_timeout(HZ);
1271 }
1272 return 0;
1273}
1274
5aff9382
MW
1275static DEFINE_IDA(nvme_index_ida);
1276
1277static int nvme_get_ns_idx(void)
1278{
1279 int index, error;
1280
1281 do {
1282 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1283 return -1;
1284
1285 spin_lock(&dev_list_lock);
1286 error = ida_get_new(&nvme_index_ida, &index);
1287 spin_unlock(&dev_list_lock);
1288 } while (error == -EAGAIN);
1289
1290 if (error)
1291 index = -1;
1292 return index;
1293}
1294
1295static void nvme_put_ns_idx(int index)
1296{
1297 spin_lock(&dev_list_lock);
1298 ida_remove(&nvme_index_ida, index);
1299 spin_unlock(&dev_list_lock);
1300}
1301
1302static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
b60503ba
MW
1303 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1304{
1305 struct nvme_ns *ns;
1306 struct gendisk *disk;
1307 int lbaf;
1308
1309 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1310 return NULL;
1311
1312 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1313 if (!ns)
1314 return NULL;
1315 ns->queue = blk_alloc_queue(GFP_KERNEL);
1316 if (!ns->queue)
1317 goto out_free_ns;
4eeb9215
MW
1318 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1319 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1320 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1321/* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
b60503ba
MW
1322 blk_queue_make_request(ns->queue, nvme_make_request);
1323 ns->dev = dev;
1324 ns->queue->queuedata = ns;
1325
1326 disk = alloc_disk(NVME_MINORS);
1327 if (!disk)
1328 goto out_free_queue;
5aff9382 1329 ns->ns_id = nsid;
b60503ba
MW
1330 ns->disk = disk;
1331 lbaf = id->flbas & 0xf;
1332 ns->lba_shift = id->lbaf[lbaf].ds;
1333
1334 disk->major = nvme_major;
1335 disk->minors = NVME_MINORS;
5aff9382 1336 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
b60503ba
MW
1337 disk->fops = &nvme_fops;
1338 disk->private_data = ns;
1339 disk->queue = ns->queue;
388f037f 1340 disk->driverfs_dev = &dev->pci_dev->dev;
5aff9382 1341 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba
MW
1342 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1343
1344 return ns;
1345
1346 out_free_queue:
1347 blk_cleanup_queue(ns->queue);
1348 out_free_ns:
1349 kfree(ns);
1350 return NULL;
1351}
1352
1353static void nvme_ns_free(struct nvme_ns *ns)
1354{
5aff9382 1355 int index = ns->disk->first_minor / NVME_MINORS;
b60503ba 1356 put_disk(ns->disk);
5aff9382 1357 nvme_put_ns_idx(index);
b60503ba
MW
1358 blk_cleanup_queue(ns->queue);
1359 kfree(ns);
1360}
1361
b3b06812 1362static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1363{
1364 int status;
1365 u32 result;
b3b06812 1366 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 1367
bc5fc7e4
MW
1368 status = nvme_get_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1369 &result);
b60503ba
MW
1370 if (status)
1371 return -EIO;
1372 return min(result & 0xffff, result >> 16) + 1;
1373}
1374
b60503ba
MW
1375static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1376{
f1938f6e 1377 int result, cpu, i, nr_io_queues, db_bar_size;
b60503ba 1378
b348b7d5
MW
1379 nr_io_queues = num_online_cpus();
1380 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1381 if (result < 0)
1382 return result;
b348b7d5
MW
1383 if (result < nr_io_queues)
1384 nr_io_queues = result;
b60503ba 1385
1b23484b
MW
1386 /* Deregister the admin queue's interrupt */
1387 free_irq(dev->entry[0].vector, dev->queues[0]);
1388
f1938f6e
MW
1389 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1390 if (db_bar_size > 8192) {
1391 iounmap(dev->bar);
1392 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1393 db_bar_size);
1394 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1395 dev->queues[0]->q_db = dev->dbs;
1396 }
1397
b348b7d5 1398 for (i = 0; i < nr_io_queues; i++)
1b23484b
MW
1399 dev->entry[i].entry = i;
1400 for (;;) {
b348b7d5
MW
1401 result = pci_enable_msix(dev->pci_dev, dev->entry,
1402 nr_io_queues);
1b23484b
MW
1403 if (result == 0) {
1404 break;
1405 } else if (result > 0) {
b348b7d5 1406 nr_io_queues = result;
1b23484b
MW
1407 continue;
1408 } else {
b348b7d5 1409 nr_io_queues = 1;
1b23484b
MW
1410 break;
1411 }
1412 }
1413
1414 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1415 /* XXX: handle failure here */
1416
1417 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1418 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1419 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1420 cpu = cpumask_next(cpu, cpu_online_mask);
1421 }
1422
b348b7d5 1423 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1424 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1425 NVME_Q_DEPTH, i);
6f0f5449
MW
1426 if (IS_ERR(dev->queues[i + 1]))
1427 return PTR_ERR(dev->queues[i + 1]);
1b23484b
MW
1428 dev->queue_count++;
1429 }
b60503ba 1430
9ecdc946
MW
1431 for (; i < num_possible_cpus(); i++) {
1432 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1433 dev->queues[i + 1] = dev->queues[target + 1];
1434 }
1435
b60503ba
MW
1436 return 0;
1437}
1438
1439static void nvme_free_queues(struct nvme_dev *dev)
1440{
1441 int i;
1442
1443 for (i = dev->queue_count - 1; i >= 0; i--)
1444 nvme_free_queue(dev, i);
1445}
1446
1447static int __devinit nvme_dev_add(struct nvme_dev *dev)
1448{
1449 int res, nn, i;
1450 struct nvme_ns *ns, *next;
51814232 1451 struct nvme_id_ctrl *ctrl;
bc5fc7e4
MW
1452 struct nvme_id_ns *id_ns;
1453 void *mem;
b60503ba 1454 dma_addr_t dma_addr;
b60503ba
MW
1455
1456 res = nvme_setup_io_queues(dev);
1457 if (res)
1458 return res;
1459
bc5fc7e4 1460 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
b60503ba
MW
1461 GFP_KERNEL);
1462
bc5fc7e4 1463 res = nvme_identify(dev, 0, 1, dma_addr);
b60503ba
MW
1464 if (res) {
1465 res = -EIO;
1466 goto out_free;
1467 }
1468
bc5fc7e4 1469 ctrl = mem;
51814232
MW
1470 nn = le32_to_cpup(&ctrl->nn);
1471 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1472 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1473 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba 1474
bc5fc7e4 1475 id_ns = mem;
2b2c1896 1476 for (i = 1; i <= nn; i++) {
bc5fc7e4 1477 res = nvme_identify(dev, i, 0, dma_addr);
b60503ba
MW
1478 if (res)
1479 continue;
1480
bc5fc7e4 1481 if (id_ns->ncap == 0)
b60503ba
MW
1482 continue;
1483
bc5fc7e4
MW
1484 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1485 dma_addr + 4096, NULL);
b60503ba
MW
1486 if (res)
1487 continue;
1488
bc5fc7e4 1489 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
b60503ba
MW
1490 if (ns)
1491 list_add_tail(&ns->list, &dev->namespaces);
1492 }
1493 list_for_each_entry(ns, &dev->namespaces, list)
1494 add_disk(ns->disk);
1495
bc5fc7e4 1496 goto out;
b60503ba
MW
1497
1498 out_free:
1499 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1500 list_del(&ns->list);
1501 nvme_ns_free(ns);
1502 }
1503
bc5fc7e4 1504 out:
684f5c20 1505 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
b60503ba
MW
1506 return res;
1507}
1508
1509static int nvme_dev_remove(struct nvme_dev *dev)
1510{
1511 struct nvme_ns *ns, *next;
1512
1fa6aead
MW
1513 spin_lock(&dev_list_lock);
1514 list_del(&dev->node);
1515 spin_unlock(&dev_list_lock);
1516
b60503ba
MW
1517 /* TODO: wait all I/O finished or cancel them */
1518
1519 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1520 list_del(&ns->list);
1521 del_gendisk(ns->disk);
1522 nvme_ns_free(ns);
1523 }
1524
1525 nvme_free_queues(dev);
1526
1527 return 0;
1528}
1529
091b6092
MW
1530static int nvme_setup_prp_pools(struct nvme_dev *dev)
1531{
1532 struct device *dmadev = &dev->pci_dev->dev;
1533 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1534 PAGE_SIZE, PAGE_SIZE, 0);
1535 if (!dev->prp_page_pool)
1536 return -ENOMEM;
1537
99802a7a
MW
1538 /* Optimisation for I/Os between 4k and 128k */
1539 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1540 256, 256, 0);
1541 if (!dev->prp_small_pool) {
1542 dma_pool_destroy(dev->prp_page_pool);
1543 return -ENOMEM;
1544 }
091b6092
MW
1545 return 0;
1546}
1547
1548static void nvme_release_prp_pools(struct nvme_dev *dev)
1549{
1550 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1551 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1552}
1553
b60503ba
MW
1554/* XXX: Use an ida or something to let remove / add work correctly */
1555static void nvme_set_instance(struct nvme_dev *dev)
1556{
1557 static int instance;
1558 dev->instance = instance++;
1559}
1560
1561static void nvme_release_instance(struct nvme_dev *dev)
1562{
1563}
1564
1565static int __devinit nvme_probe(struct pci_dev *pdev,
1566 const struct pci_device_id *id)
1567{
574e8b95 1568 int bars, result = -ENOMEM;
b60503ba
MW
1569 struct nvme_dev *dev;
1570
1571 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1572 if (!dev)
1573 return -ENOMEM;
1574 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1575 GFP_KERNEL);
1576 if (!dev->entry)
1577 goto free;
1b23484b
MW
1578 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1579 GFP_KERNEL);
b60503ba
MW
1580 if (!dev->queues)
1581 goto free;
1582
0ee5a7d7
SMM
1583 if (pci_enable_device_mem(pdev))
1584 goto free;
f64d3365 1585 pci_set_master(pdev);
574e8b95
MW
1586 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1587 if (pci_request_selected_regions(pdev, bars, "nvme"))
1588 goto disable;
0ee5a7d7 1589
b60503ba
MW
1590 INIT_LIST_HEAD(&dev->namespaces);
1591 dev->pci_dev = pdev;
1592 pci_set_drvdata(pdev, dev);
2930353f
MW
1593 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1594 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1595 nvme_set_instance(dev);
53c9577e 1596 dev->entry[0].vector = pdev->irq;
b60503ba 1597
091b6092
MW
1598 result = nvme_setup_prp_pools(dev);
1599 if (result)
1600 goto disable_msix;
1601
b60503ba
MW
1602 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1603 if (!dev->bar) {
1604 result = -ENOMEM;
574e8b95 1605 goto disable_msix;
b60503ba
MW
1606 }
1607
1608 result = nvme_configure_admin_queue(dev);
1609 if (result)
1610 goto unmap;
1611 dev->queue_count++;
1612
1fa6aead
MW
1613 spin_lock(&dev_list_lock);
1614 list_add(&dev->node, &dev_list);
1615 spin_unlock(&dev_list_lock);
1616
740216fc
MW
1617 result = nvme_dev_add(dev);
1618 if (result)
1619 goto delete;
1620
b60503ba
MW
1621 return 0;
1622
1623 delete:
740216fc
MW
1624 spin_lock(&dev_list_lock);
1625 list_del(&dev->node);
1626 spin_unlock(&dev_list_lock);
1627
b60503ba
MW
1628 nvme_free_queues(dev);
1629 unmap:
1630 iounmap(dev->bar);
574e8b95 1631 disable_msix:
b60503ba
MW
1632 pci_disable_msix(pdev);
1633 nvme_release_instance(dev);
091b6092 1634 nvme_release_prp_pools(dev);
574e8b95 1635 disable:
0ee5a7d7 1636 pci_disable_device(pdev);
574e8b95 1637 pci_release_regions(pdev);
b60503ba
MW
1638 free:
1639 kfree(dev->queues);
1640 kfree(dev->entry);
1641 kfree(dev);
1642 return result;
1643}
1644
1645static void __devexit nvme_remove(struct pci_dev *pdev)
1646{
1647 struct nvme_dev *dev = pci_get_drvdata(pdev);
1648 nvme_dev_remove(dev);
1649 pci_disable_msix(pdev);
1650 iounmap(dev->bar);
1651 nvme_release_instance(dev);
091b6092 1652 nvme_release_prp_pools(dev);
0ee5a7d7 1653 pci_disable_device(pdev);
574e8b95 1654 pci_release_regions(pdev);
b60503ba
MW
1655 kfree(dev->queues);
1656 kfree(dev->entry);
1657 kfree(dev);
1658}
1659
1660/* These functions are yet to be implemented */
1661#define nvme_error_detected NULL
1662#define nvme_dump_registers NULL
1663#define nvme_link_reset NULL
1664#define nvme_slot_reset NULL
1665#define nvme_error_resume NULL
1666#define nvme_suspend NULL
1667#define nvme_resume NULL
1668
1669static struct pci_error_handlers nvme_err_handler = {
1670 .error_detected = nvme_error_detected,
1671 .mmio_enabled = nvme_dump_registers,
1672 .link_reset = nvme_link_reset,
1673 .slot_reset = nvme_slot_reset,
1674 .resume = nvme_error_resume,
1675};
1676
1677/* Move to pci_ids.h later */
1678#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1679
1680static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1681 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1682 { 0, }
1683};
1684MODULE_DEVICE_TABLE(pci, nvme_id_table);
1685
1686static struct pci_driver nvme_driver = {
1687 .name = "nvme",
1688 .id_table = nvme_id_table,
1689 .probe = nvme_probe,
1690 .remove = __devexit_p(nvme_remove),
1691 .suspend = nvme_suspend,
1692 .resume = nvme_resume,
1693 .err_handler = &nvme_err_handler,
1694};
1695
1696static int __init nvme_init(void)
1697{
1fa6aead
MW
1698 int result = -EBUSY;
1699
1700 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1701 if (IS_ERR(nvme_thread))
1702 return PTR_ERR(nvme_thread);
b60503ba
MW
1703
1704 nvme_major = register_blkdev(nvme_major, "nvme");
1705 if (nvme_major <= 0)
1fa6aead 1706 goto kill_kthread;
b60503ba
MW
1707
1708 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
1709 if (result)
1710 goto unregister_blkdev;
1711 return 0;
b60503ba 1712
1fa6aead 1713 unregister_blkdev:
b60503ba 1714 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
1715 kill_kthread:
1716 kthread_stop(nvme_thread);
b60503ba
MW
1717 return result;
1718}
1719
1720static void __exit nvme_exit(void)
1721{
1722 pci_unregister_driver(&nvme_driver);
1723 unregister_blkdev(nvme_major, "nvme");
1fa6aead 1724 kthread_stop(nvme_thread);
b60503ba
MW
1725}
1726
1727MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1728MODULE_LICENSE("GPL");
366e8217 1729MODULE_VERSION("0.8");
b60503ba
MW
1730module_init(nvme_init);
1731module_exit(nvme_exit);