]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/block/nvme.c
NVMe: Version 0.5
[mirror_ubuntu-bionic-kernel.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba
MW
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
34#include <linux/pci.h>
be7b6275 35#include <linux/poison.h>
b60503ba
MW
36#include <linux/sched.h>
37#include <linux/slab.h>
38#include <linux/types.h>
39#include <linux/version.h>
40
41#define NVME_Q_DEPTH 1024
42#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
43#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
44#define NVME_MINORS 64
e85248e5
MW
45#define IO_TIMEOUT (5 * HZ)
46#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
47
48static int nvme_major;
49module_param(nvme_major, int, 0);
50
58ffacb5
MW
51static int use_threaded_interrupts;
52module_param(use_threaded_interrupts, int, 0);
53
1fa6aead
MW
54static DEFINE_SPINLOCK(dev_list_lock);
55static LIST_HEAD(dev_list);
56static struct task_struct *nvme_thread;
57
b60503ba
MW
58/*
59 * Represents an NVM Express device. Each nvme_dev is a PCI function.
60 */
61struct nvme_dev {
1fa6aead 62 struct list_head node;
b60503ba
MW
63 struct nvme_queue **queues;
64 u32 __iomem *dbs;
65 struct pci_dev *pci_dev;
091b6092 66 struct dma_pool *prp_page_pool;
99802a7a 67 struct dma_pool *prp_small_pool;
b60503ba
MW
68 int instance;
69 int queue_count;
70 u32 ctrl_config;
71 struct msix_entry *entry;
72 struct nvme_bar __iomem *bar;
73 struct list_head namespaces;
51814232
MW
74 char serial[20];
75 char model[40];
76 char firmware_rev[8];
b60503ba
MW
77};
78
79/*
80 * An NVM Express namespace is equivalent to a SCSI LUN
81 */
82struct nvme_ns {
83 struct list_head list;
84
85 struct nvme_dev *dev;
86 struct request_queue *queue;
87 struct gendisk *disk;
88
89 int ns_id;
90 int lba_shift;
91};
92
93/*
94 * An NVM Express queue. Each device has at least two (one for admin
95 * commands and one for I/O commands).
96 */
97struct nvme_queue {
98 struct device *q_dmadev;
091b6092 99 struct nvme_dev *dev;
b60503ba
MW
100 spinlock_t q_lock;
101 struct nvme_command *sq_cmds;
102 volatile struct nvme_completion *cqes;
103 dma_addr_t sq_dma_addr;
104 dma_addr_t cq_dma_addr;
105 wait_queue_head_t sq_full;
1fa6aead 106 wait_queue_t sq_cong_wait;
b60503ba
MW
107 struct bio_list sq_cong;
108 u32 __iomem *q_db;
109 u16 q_depth;
110 u16 cq_vector;
111 u16 sq_head;
112 u16 sq_tail;
113 u16 cq_head;
82123460 114 u16 cq_phase;
b60503ba
MW
115 unsigned long cmdid_data[];
116};
117
118/*
119 * Check we didin't inadvertently grow the command struct
120 */
121static inline void _nvme_check_size(void)
122{
123 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132}
133
e85248e5
MW
134struct nvme_cmd_info {
135 unsigned long ctx;
136 unsigned long timeout;
137};
138
139static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140{
141 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142}
143
b60503ba 144/**
714a7a22
MW
145 * alloc_cmdid() - Allocate a Command ID
146 * @nvmeq: The queue that will be used for this command
147 * @ctx: A pointer that will be passed to the handler
148 * @handler: The ID of the handler to call
b60503ba
MW
149 *
150 * Allocate a Command ID for a queue. The data passed in will
151 * be passed to the completion handler. This is implemented by using
152 * the bottom two bits of the ctx pointer to store the handler ID.
153 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154 * We can change this if it becomes a problem.
155 */
e85248e5
MW
156static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157 unsigned timeout)
b60503ba 158{
e6d15f79 159 int depth = nvmeq->q_depth - 1;
e85248e5 160 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
161 int cmdid;
162
163 BUG_ON((unsigned long)ctx & 3);
164
165 do {
166 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167 if (cmdid >= depth)
168 return -EBUSY;
169 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
e85248e5
MW
171 info[cmdid].ctx = (unsigned long)ctx | handler;
172 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
173 return cmdid;
174}
175
176static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
e85248e5 177 int handler, unsigned timeout)
b60503ba
MW
178{
179 int cmdid;
180 wait_event_killable(nvmeq->sq_full,
e85248e5 181 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
182 return (cmdid < 0) ? -EINTR : cmdid;
183}
184
fa922821
MW
185/*
186 * If you need more than four handlers, you'll need to change how
be7b6275
MW
187 * alloc_cmdid and nvme_process_cq work. Consider using a special
188 * CMD_CTX value instead, if that works for your situation.
b60503ba
MW
189 */
190enum {
191 sync_completion_id = 0,
192 bio_completion_id,
193};
194
00df5cb4 195/* Special values must be a multiple of 4, and less than 0x1000 */
be7b6275 196#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
d2d87034
MW
197#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
198#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
199#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 200#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 201
b60503ba
MW
202static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
203{
204 unsigned long data;
e85248e5 205 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 206
e85248e5 207 if (cmdid >= nvmeq->q_depth)
48e3d398 208 return CMD_CTX_INVALID;
e85248e5
MW
209 data = info[cmdid].ctx;
210 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
211 clear_bit(cmdid, nvmeq->cmdid_data);
212 wake_up(&nvmeq->sq_full);
213 return data;
214}
215
be7b6275 216static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
3c0cf138 217{
e85248e5
MW
218 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219 info[cmdid].ctx = CMD_CTX_CANCELLED;
3c0cf138
MW
220}
221
b60503ba
MW
222static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
223{
9ecdc946 224 return ns->dev->queues[get_cpu() + 1];
b60503ba
MW
225}
226
227static void put_nvmeq(struct nvme_queue *nvmeq)
228{
1b23484b 229 put_cpu();
b60503ba
MW
230}
231
232/**
714a7a22 233 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
234 * @nvmeq: The queue to use
235 * @cmd: The command to send
236 *
237 * Safe to use from interrupt context
238 */
239static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
240{
241 unsigned long flags;
242 u16 tail;
b60503ba
MW
243 spin_lock_irqsave(&nvmeq->q_lock, flags);
244 tail = nvmeq->sq_tail;
245 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
246 if (++tail == nvmeq->q_depth)
247 tail = 0;
7547881d 248 writel(tail, nvmeq->q_db);
b60503ba
MW
249 nvmeq->sq_tail = tail;
250 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
251
252 return 0;
253}
254
e025344c
SMM
255struct nvme_prps {
256 int npages;
257 dma_addr_t first_dma;
258 __le64 *list[0];
259};
260
d567760c 261static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
e025344c
SMM
262{
263 const int last_prp = PAGE_SIZE / 8 - 1;
264 int i;
265 dma_addr_t prp_dma;
266
267 if (!prps)
268 return;
269
270 prp_dma = prps->first_dma;
99802a7a
MW
271
272 if (prps->npages == 0)
273 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
e025344c
SMM
274 for (i = 0; i < prps->npages; i++) {
275 __le64 *prp_list = prps->list[i];
276 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
091b6092 277 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
e025344c
SMM
278 prp_dma = next_prp_dma;
279 }
280 kfree(prps);
281}
282
d534df3c 283struct nvme_bio {
b60503ba
MW
284 struct bio *bio;
285 int nents;
e025344c 286 struct nvme_prps *prps;
b60503ba
MW
287 struct scatterlist sg[0];
288};
289
290/* XXX: use a mempool */
d534df3c 291static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
b60503ba 292{
d534df3c 293 return kzalloc(sizeof(struct nvme_bio) +
b60503ba
MW
294 sizeof(struct scatterlist) * nseg, gfp);
295}
296
d534df3c 297static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
b60503ba 298{
d567760c 299 nvme_free_prps(nvmeq->dev, nbio->prps);
d534df3c 300 kfree(nbio);
b60503ba
MW
301}
302
303static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
304 struct nvme_completion *cqe)
305{
d534df3c
MW
306 struct nvme_bio *nbio = ctx;
307 struct bio *bio = nbio->bio;
b60503ba
MW
308 u16 status = le16_to_cpup(&cqe->status) >> 1;
309
d534df3c 310 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
b60503ba 311 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
d534df3c 312 free_nbio(nvmeq, nbio);
1ad2f893
MW
313 if (status)
314 bio_endio(bio, -EIO);
315 if (bio->bi_vcnt > bio->bi_idx) {
316 bio_list_add(&nvmeq->sq_cong, bio);
317 wake_up_process(nvme_thread);
318 } else {
319 bio_endio(bio, 0);
320 }
b60503ba
MW
321}
322
ff22b54f 323/* length is in bytes */
d567760c 324static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
e025344c 325 struct nvme_common_command *cmd,
ff22b54f
MW
326 struct scatterlist *sg, int length)
327{
99802a7a 328 struct dma_pool *pool;
ff22b54f
MW
329 int dma_len = sg_dma_len(sg);
330 u64 dma_addr = sg_dma_address(sg);
331 int offset = offset_in_page(dma_addr);
e025344c
SMM
332 __le64 *prp_list;
333 dma_addr_t prp_dma;
334 int nprps, npages, i, prp_page;
335 struct nvme_prps *prps = NULL;
ff22b54f
MW
336
337 cmd->prp1 = cpu_to_le64(dma_addr);
338 length -= (PAGE_SIZE - offset);
339 if (length <= 0)
e025344c 340 return prps;
ff22b54f
MW
341
342 dma_len -= (PAGE_SIZE - offset);
343 if (dma_len) {
344 dma_addr += (PAGE_SIZE - offset);
345 } else {
346 sg = sg_next(sg);
347 dma_addr = sg_dma_address(sg);
348 dma_len = sg_dma_len(sg);
349 }
350
351 if (length <= PAGE_SIZE) {
352 cmd->prp2 = cpu_to_le64(dma_addr);
e025344c
SMM
353 return prps;
354 }
355
356 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
357 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
358 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
e025344c 359 prp_page = 0;
99802a7a
MW
360 if (nprps <= (256 / 8)) {
361 pool = dev->prp_small_pool;
362 prps->npages = 0;
363 } else {
364 pool = dev->prp_page_pool;
365 prps->npages = npages;
366 }
367
368 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
e025344c
SMM
369 prps->list[prp_page++] = prp_list;
370 prps->first_dma = prp_dma;
371 cmd->prp2 = cpu_to_le64(prp_dma);
372 i = 0;
373 for (;;) {
7523d834 374 if (i == PAGE_SIZE / 8) {
e025344c 375 __le64 *old_prp_list = prp_list;
99802a7a 376 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
e025344c 377 prps->list[prp_page++] = prp_list;
7523d834
MW
378 prp_list[0] = old_prp_list[i - 1];
379 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
380 i = 1;
e025344c
SMM
381 }
382 prp_list[i++] = cpu_to_le64(dma_addr);
383 dma_len -= PAGE_SIZE;
384 dma_addr += PAGE_SIZE;
385 length -= PAGE_SIZE;
386 if (length <= 0)
387 break;
388 if (dma_len > 0)
389 continue;
390 BUG_ON(dma_len < 0);
391 sg = sg_next(sg);
392 dma_addr = sg_dma_address(sg);
393 dma_len = sg_dma_len(sg);
ff22b54f
MW
394 }
395
e025344c 396 return prps;
ff22b54f
MW
397}
398
1ad2f893
MW
399/* NVMe scatterlists require no holes in the virtual address */
400#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
401 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
402
d534df3c 403static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
b60503ba
MW
404 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
405{
76830840
MW
406 struct bio_vec *bvec, *bvprv = NULL;
407 struct scatterlist *sg = NULL;
1ad2f893 408 int i, old_idx, length = 0, nsegs = 0;
b60503ba 409
76830840 410 sg_init_table(nbio->sg, psegs);
1ad2f893 411 old_idx = bio->bi_idx;
b60503ba 412 bio_for_each_segment(bvec, bio, i) {
76830840
MW
413 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
414 sg->length += bvec->bv_len;
415 } else {
1ad2f893
MW
416 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
417 break;
76830840
MW
418 sg = sg ? sg + 1 : nbio->sg;
419 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
420 bvec->bv_offset);
421 nsegs++;
422 }
1ad2f893 423 length += bvec->bv_len;
76830840 424 bvprv = bvec;
b60503ba 425 }
1ad2f893 426 bio->bi_idx = i;
d534df3c 427 nbio->nents = nsegs;
76830840 428 sg_mark_end(sg);
1ad2f893
MW
429 if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
430 bio->bi_idx = old_idx;
431 return -ENOMEM;
432 }
433 return length;
b60503ba
MW
434}
435
00df5cb4
MW
436static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
437 int cmdid)
438{
439 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
440
441 memset(cmnd, 0, sizeof(*cmnd));
442 cmnd->common.opcode = nvme_cmd_flush;
443 cmnd->common.command_id = cmdid;
444 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
445
446 if (++nvmeq->sq_tail == nvmeq->q_depth)
447 nvmeq->sq_tail = 0;
448 writel(nvmeq->sq_tail, nvmeq->q_db);
449
450 return 0;
451}
452
453static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
454{
455 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
456 sync_completion_id, IO_TIMEOUT);
457 if (unlikely(cmdid < 0))
458 return cmdid;
459
460 return nvme_submit_flush(nvmeq, ns, cmdid);
461}
462
b60503ba
MW
463static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
464 struct bio *bio)
465{
ff22b54f 466 struct nvme_command *cmnd;
d534df3c 467 struct nvme_bio *nbio;
b60503ba 468 enum dma_data_direction dma_dir;
1ad2f893 469 int cmdid, length, result = -ENOMEM;
b60503ba
MW
470 u16 control;
471 u32 dsmgmt;
b60503ba
MW
472 int psegs = bio_phys_segments(ns->queue, bio);
473
00df5cb4
MW
474 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
475 result = nvme_submit_flush_data(nvmeq, ns);
476 if (result)
477 return result;
478 }
479
eeee3226 480 nbio = alloc_nbio(psegs, GFP_ATOMIC);
d534df3c 481 if (!nbio)
eeee3226 482 goto nomem;
d534df3c 483 nbio->bio = bio;
b60503ba 484
eeee3226 485 result = -EBUSY;
d534df3c 486 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
b60503ba 487 if (unlikely(cmdid < 0))
d534df3c 488 goto free_nbio;
b60503ba 489
00df5cb4
MW
490 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
491 return nvme_submit_flush(nvmeq, ns, cmdid);
492
b60503ba
MW
493 control = 0;
494 if (bio->bi_rw & REQ_FUA)
495 control |= NVME_RW_FUA;
496 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
497 control |= NVME_RW_LR;
498
499 dsmgmt = 0;
500 if (bio->bi_rw & REQ_RAHEAD)
501 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
502
ff22b54f 503 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 504
b8deb62c 505 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 506 if (bio_data_dir(bio)) {
ff22b54f 507 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
508 dma_dir = DMA_TO_DEVICE;
509 } else {
ff22b54f 510 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
511 dma_dir = DMA_FROM_DEVICE;
512 }
513
1ad2f893
MW
514 result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
515 if (result < 0)
eeee3226 516 goto free_nbio;
1ad2f893 517 length = result;
b60503ba 518
ff22b54f
MW
519 cmnd->rw.command_id = cmdid;
520 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
d567760c 521 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
1ad2f893 522 length);
ff22b54f 523 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
1ad2f893 524 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
525 cmnd->rw.control = cpu_to_le16(control);
526 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 527
d8ee9d69
MW
528 bio->bi_sector += length >> 9;
529
b60503ba
MW
530 if (++nvmeq->sq_tail == nvmeq->q_depth)
531 nvmeq->sq_tail = 0;
7547881d 532 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 533
1974b1ae
MW
534 return 0;
535
d534df3c
MW
536 free_nbio:
537 free_nbio(nvmeq, nbio);
eeee3226
MW
538 nomem:
539 return result;
b60503ba
MW
540}
541
542/*
543 * NB: return value of non-zero would mean that we were a stacking driver.
544 * make_request must always succeed.
545 */
546static int nvme_make_request(struct request_queue *q, struct bio *bio)
547{
548 struct nvme_ns *ns = q->queuedata;
549 struct nvme_queue *nvmeq = get_nvmeq(ns);
eeee3226
MW
550 int result = -EBUSY;
551
552 spin_lock_irq(&nvmeq->q_lock);
553 if (bio_list_empty(&nvmeq->sq_cong))
554 result = nvme_submit_bio_queue(nvmeq, ns, bio);
555 if (unlikely(result)) {
556 if (bio_list_empty(&nvmeq->sq_cong))
557 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
558 bio_list_add(&nvmeq->sq_cong, bio);
559 }
eeee3226
MW
560
561 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
562 put_nvmeq(nvmeq);
563
564 return 0;
565}
566
567struct sync_cmd_info {
568 struct task_struct *task;
569 u32 result;
570 int status;
571};
572
573static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
574 struct nvme_completion *cqe)
575{
576 struct sync_cmd_info *cmdinfo = ctx;
c4270559 577 if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
be7b6275 578 return;
00df5cb4
MW
579 if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
580 return;
b36235df
MW
581 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
582 dev_warn(nvmeq->q_dmadev,
583 "completed id %d twice on queue %d\n",
584 cqe->command_id, le16_to_cpup(&cqe->sq_id));
585 return;
586 }
48e3d398
MW
587 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
588 dev_warn(nvmeq->q_dmadev,
589 "invalid id %d completed on queue %d\n",
590 cqe->command_id, le16_to_cpup(&cqe->sq_id));
591 return;
592 }
b60503ba
MW
593 cmdinfo->result = le32_to_cpup(&cqe->result);
594 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
595 wake_up_process(cmdinfo->task);
596}
597
598typedef void (*completion_fn)(struct nvme_queue *, void *,
599 struct nvme_completion *);
600
601static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
602{
82123460 603 u16 head, phase;
b60503ba
MW
604
605 static const completion_fn completions[4] = {
606 [sync_completion_id] = sync_completion,
607 [bio_completion_id] = bio_completion,
608 };
609
610 head = nvmeq->cq_head;
82123460 611 phase = nvmeq->cq_phase;
b60503ba
MW
612
613 for (;;) {
614 unsigned long data;
615 void *ptr;
616 unsigned char handler;
617 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 618 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
619 break;
620 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
621 if (++head == nvmeq->q_depth) {
622 head = 0;
82123460 623 phase = !phase;
b60503ba
MW
624 }
625
626 data = free_cmdid(nvmeq, cqe.command_id);
627 handler = data & 3;
628 ptr = (void *)(data & ~3UL);
629 completions[handler](nvmeq, ptr, &cqe);
630 }
631
632 /* If the controller ignores the cq head doorbell and continuously
633 * writes to the queue, it is theoretically possible to wrap around
634 * the queue twice and mistakenly return IRQ_NONE. Linux only
635 * requires that 0.1% of your interrupts are handled, so this isn't
636 * a big problem.
637 */
82123460 638 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
639 return IRQ_NONE;
640
641 writel(head, nvmeq->q_db + 1);
642 nvmeq->cq_head = head;
82123460 643 nvmeq->cq_phase = phase;
b60503ba
MW
644
645 return IRQ_HANDLED;
646}
647
648static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
649{
650 irqreturn_t result;
651 struct nvme_queue *nvmeq = data;
652 spin_lock(&nvmeq->q_lock);
653 result = nvme_process_cq(nvmeq);
654 spin_unlock(&nvmeq->q_lock);
655 return result;
656}
657
658static irqreturn_t nvme_irq_check(int irq, void *data)
659{
660 struct nvme_queue *nvmeq = data;
661 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
662 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
663 return IRQ_NONE;
664 return IRQ_WAKE_THREAD;
665}
666
3c0cf138
MW
667static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
668{
669 spin_lock_irq(&nvmeq->q_lock);
be7b6275 670 cancel_cmdid_data(nvmeq, cmdid);
3c0cf138
MW
671 spin_unlock_irq(&nvmeq->q_lock);
672}
673
b60503ba
MW
674/*
675 * Returns 0 on success. If the result is negative, it's a Linux error code;
676 * if the result is positive, it's an NVM Express status code
677 */
3c0cf138 678static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 679 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
680{
681 int cmdid;
682 struct sync_cmd_info cmdinfo;
683
684 cmdinfo.task = current;
685 cmdinfo.status = -EINTR;
686
e85248e5
MW
687 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
688 timeout);
b60503ba
MW
689 if (cmdid < 0)
690 return cmdid;
691 cmd->common.command_id = cmdid;
692
3c0cf138
MW
693 set_current_state(TASK_KILLABLE);
694 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
695 schedule();
696
3c0cf138
MW
697 if (cmdinfo.status == -EINTR) {
698 nvme_abort_command(nvmeq, cmdid);
699 return -EINTR;
700 }
701
b60503ba
MW
702 if (result)
703 *result = cmdinfo.result;
704
705 return cmdinfo.status;
706}
707
708static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
709 u32 *result)
710{
e85248e5 711 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
712}
713
714static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
715{
716 int status;
717 struct nvme_command c;
718
719 memset(&c, 0, sizeof(c));
720 c.delete_queue.opcode = opcode;
721 c.delete_queue.qid = cpu_to_le16(id);
722
723 status = nvme_submit_admin_cmd(dev, &c, NULL);
724 if (status)
725 return -EIO;
726 return 0;
727}
728
729static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
730 struct nvme_queue *nvmeq)
731{
732 int status;
733 struct nvme_command c;
734 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
735
736 memset(&c, 0, sizeof(c));
737 c.create_cq.opcode = nvme_admin_create_cq;
738 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
739 c.create_cq.cqid = cpu_to_le16(qid);
740 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
741 c.create_cq.cq_flags = cpu_to_le16(flags);
742 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
743
744 status = nvme_submit_admin_cmd(dev, &c, NULL);
745 if (status)
746 return -EIO;
747 return 0;
748}
749
750static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
751 struct nvme_queue *nvmeq)
752{
753 int status;
754 struct nvme_command c;
755 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
756
757 memset(&c, 0, sizeof(c));
758 c.create_sq.opcode = nvme_admin_create_sq;
759 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
760 c.create_sq.sqid = cpu_to_le16(qid);
761 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
762 c.create_sq.sq_flags = cpu_to_le16(flags);
763 c.create_sq.cqid = cpu_to_le16(qid);
764
765 status = nvme_submit_admin_cmd(dev, &c, NULL);
766 if (status)
767 return -EIO;
768 return 0;
769}
770
771static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
772{
773 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
774}
775
776static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
777{
778 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
779}
780
781static void nvme_free_queue(struct nvme_dev *dev, int qid)
782{
783 struct nvme_queue *nvmeq = dev->queues[qid];
784
785 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
786
787 /* Don't tell the adapter to delete the admin queue */
788 if (qid) {
789 adapter_delete_sq(dev, qid);
790 adapter_delete_cq(dev, qid);
791 }
792
793 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
794 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
795 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
796 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
797 kfree(nvmeq);
798}
799
800static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
801 int depth, int vector)
802{
803 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 804 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
805 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
806 if (!nvmeq)
807 return NULL;
808
809 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
810 &nvmeq->cq_dma_addr, GFP_KERNEL);
811 if (!nvmeq->cqes)
812 goto free_nvmeq;
813 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
814
815 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
816 &nvmeq->sq_dma_addr, GFP_KERNEL);
817 if (!nvmeq->sq_cmds)
818 goto free_cqdma;
819
820 nvmeq->q_dmadev = dmadev;
091b6092 821 nvmeq->dev = dev;
b60503ba
MW
822 spin_lock_init(&nvmeq->q_lock);
823 nvmeq->cq_head = 0;
82123460 824 nvmeq->cq_phase = 1;
b60503ba 825 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 826 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba
MW
827 bio_list_init(&nvmeq->sq_cong);
828 nvmeq->q_db = &dev->dbs[qid * 2];
829 nvmeq->q_depth = depth;
830 nvmeq->cq_vector = vector;
831
832 return nvmeq;
833
834 free_cqdma:
835 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
836 nvmeq->cq_dma_addr);
837 free_nvmeq:
838 kfree(nvmeq);
839 return NULL;
840}
841
3001082c
MW
842static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
843 const char *name)
844{
58ffacb5
MW
845 if (use_threaded_interrupts)
846 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 847 nvme_irq_check, nvme_irq,
58ffacb5
MW
848 IRQF_DISABLED | IRQF_SHARED,
849 name, nvmeq);
3001082c
MW
850 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
851 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
852}
853
b60503ba
MW
854static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
855 int qid, int cq_size, int vector)
856{
857 int result;
858 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
859
3f85d50b
MW
860 if (!nvmeq)
861 return NULL;
862
b60503ba
MW
863 result = adapter_alloc_cq(dev, qid, nvmeq);
864 if (result < 0)
865 goto free_nvmeq;
866
867 result = adapter_alloc_sq(dev, qid, nvmeq);
868 if (result < 0)
869 goto release_cq;
870
3001082c 871 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
872 if (result < 0)
873 goto release_sq;
874
875 return nvmeq;
876
877 release_sq:
878 adapter_delete_sq(dev, qid);
879 release_cq:
880 adapter_delete_cq(dev, qid);
881 free_nvmeq:
882 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
883 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
884 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
885 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
886 kfree(nvmeq);
887 return NULL;
888}
889
890static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
891{
892 int result;
893 u32 aqa;
894 struct nvme_queue *nvmeq;
895
896 dev->dbs = ((void __iomem *)dev->bar) + 4096;
897
898 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
899 if (!nvmeq)
900 return -ENOMEM;
b60503ba
MW
901
902 aqa = nvmeq->q_depth - 1;
903 aqa |= aqa << 16;
904
905 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
906 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
907 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
908
5911f200 909 writel(0, &dev->bar->cc);
b60503ba
MW
910 writel(aqa, &dev->bar->aqa);
911 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
912 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
913 writel(dev->ctrl_config, &dev->bar->cc);
914
915 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
916 msleep(100);
917 if (fatal_signal_pending(current))
918 return -EINTR;
919 }
920
3001082c 921 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
922 dev->queues[0] = nvmeq;
923 return result;
924}
925
7fc3cdab
MW
926static int nvme_map_user_pages(struct nvme_dev *dev, int write,
927 unsigned long addr, unsigned length,
928 struct scatterlist **sgp)
b60503ba 929{
36c14ed9 930 int i, err, count, nents, offset;
7fc3cdab
MW
931 struct scatterlist *sg;
932 struct page **pages;
36c14ed9
MW
933
934 if (addr & 3)
935 return -EINVAL;
7fc3cdab
MW
936 if (!length)
937 return -EINVAL;
938
36c14ed9 939 offset = offset_in_page(addr);
7fc3cdab
MW
940 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
941 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
942
943 err = get_user_pages_fast(addr, count, 1, pages);
944 if (err < count) {
945 count = err;
946 err = -EFAULT;
947 goto put_pages;
948 }
7fc3cdab
MW
949
950 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 951 sg_init_table(sg, count);
ff22b54f 952 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
7fc3cdab
MW
953 length -= (PAGE_SIZE - offset);
954 for (i = 1; i < count; i++) {
955 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
956 length -= PAGE_SIZE;
957 }
958
959 err = -ENOMEM;
960 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
961 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
962 if (!nents)
963 goto put_pages;
b60503ba 964
7fc3cdab
MW
965 kfree(pages);
966 *sgp = sg;
967 return nents;
b60503ba 968
7fc3cdab
MW
969 put_pages:
970 for (i = 0; i < count; i++)
971 put_page(pages[i]);
972 kfree(pages);
973 return err;
974}
b60503ba 975
7fc3cdab
MW
976static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
977 unsigned long addr, int length,
978 struct scatterlist *sg, int nents)
979{
980 int i, count;
b60503ba 981
7fc3cdab 982 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
36c14ed9 983 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
7fc3cdab 984
36c14ed9 985 for (i = 0; i < count; i++)
7fc3cdab
MW
986 put_page(sg_page(&sg[i]));
987}
b60503ba 988
7fc3cdab
MW
989static int nvme_submit_user_admin_command(struct nvme_dev *dev,
990 unsigned long addr, unsigned length,
991 struct nvme_command *cmd)
992{
993 int err, nents;
994 struct scatterlist *sg;
e025344c 995 struct nvme_prps *prps;
7fc3cdab
MW
996
997 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
998 if (nents < 0)
999 return nents;
d567760c 1000 prps = nvme_setup_prps(dev, &cmd->common, sg, length);
7fc3cdab
MW
1001 err = nvme_submit_admin_cmd(dev, cmd, NULL);
1002 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
d567760c 1003 nvme_free_prps(dev, prps);
7fc3cdab 1004 return err ? -EIO : 0;
b60503ba
MW
1005}
1006
bd38c555 1007static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba 1008{
b60503ba 1009 struct nvme_command c;
b60503ba 1010
bd38c555
MW
1011 memset(&c, 0, sizeof(c));
1012 c.identify.opcode = nvme_admin_identify;
1013 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
1014 c.identify.cns = cpu_to_le32(cns);
1015
1016 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1017}
1018
1019static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
1020{
1021 struct nvme_command c;
b60503ba
MW
1022
1023 memset(&c, 0, sizeof(c));
1024 c.features.opcode = nvme_admin_get_features;
1025 c.features.nsid = cpu_to_le32(ns->ns_id);
b60503ba
MW
1026 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1027
bd38c555 1028 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
b60503ba
MW
1029}
1030
a53295b6
MW
1031static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1032{
1033 struct nvme_dev *dev = ns->dev;
1034 struct nvme_queue *nvmeq;
1035 struct nvme_user_io io;
1036 struct nvme_command c;
1037 unsigned length;
a53295b6
MW
1038 int nents, status;
1039 struct scatterlist *sg;
e025344c 1040 struct nvme_prps *prps;
a53295b6
MW
1041
1042 if (copy_from_user(&io, uio, sizeof(io)))
1043 return -EFAULT;
6c7d4945
MW
1044 length = (io.nblocks + 1) << ns->lba_shift;
1045
1046 switch (io.opcode) {
1047 case nvme_cmd_write:
1048 case nvme_cmd_read:
1049 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1050 length, &sg);
1051 default:
1052 return -EFAULT;
1053 }
1054
a53295b6
MW
1055 if (nents < 0)
1056 return nents;
1057
1058 memset(&c, 0, sizeof(c));
1059 c.rw.opcode = io.opcode;
1060 c.rw.flags = io.flags;
6c7d4945 1061 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1062 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1063 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6
MW
1064 c.rw.control = cpu_to_le16(io.control);
1065 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
6c7d4945
MW
1066 c.rw.reftag = io.reftag;
1067 c.rw.apptag = io.apptag;
1068 c.rw.appmask = io.appmask;
a53295b6 1069 /* XXX: metadata */
d567760c 1070 prps = nvme_setup_prps(dev, &c.common, sg, length);
a53295b6 1071
d567760c 1072 nvmeq = get_nvmeq(ns);
fa922821
MW
1073 /*
1074 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1075 * disabled. We may be preempted at any point, and be rescheduled
1076 * to a different CPU. That will cause cacheline bouncing, but no
1077 * additional races since q_lock already protects against other CPUs.
1078 */
a53295b6 1079 put_nvmeq(nvmeq);
6c7d4945 1080 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
a53295b6
MW
1081
1082 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
d567760c 1083 nvme_free_prps(dev, prps);
a53295b6
MW
1084 return status;
1085}
1086
6ee44cdc
MW
1087static int nvme_download_firmware(struct nvme_ns *ns,
1088 struct nvme_dlfw __user *udlfw)
1089{
1090 struct nvme_dev *dev = ns->dev;
1091 struct nvme_dlfw dlfw;
1092 struct nvme_command c;
1093 int nents, status;
1094 struct scatterlist *sg;
e025344c 1095 struct nvme_prps *prps;
6ee44cdc
MW
1096
1097 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1098 return -EFAULT;
1099 if (dlfw.length >= (1 << 30))
1100 return -EINVAL;
1101
1102 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1103 if (nents < 0)
1104 return nents;
1105
1106 memset(&c, 0, sizeof(c));
1107 c.dlfw.opcode = nvme_admin_download_fw;
1108 c.dlfw.numd = cpu_to_le32(dlfw.length);
1109 c.dlfw.offset = cpu_to_le32(dlfw.offset);
d567760c 1110 prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
6ee44cdc
MW
1111
1112 status = nvme_submit_admin_cmd(dev, &c, NULL);
1113 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
d567760c 1114 nvme_free_prps(dev, prps);
6ee44cdc
MW
1115 return status;
1116}
1117
1118static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1119{
1120 struct nvme_dev *dev = ns->dev;
1121 struct nvme_command c;
1122
1123 memset(&c, 0, sizeof(c));
1124 c.common.opcode = nvme_admin_activate_fw;
1125 c.common.rsvd10[0] = cpu_to_le32(arg);
1126
1127 return nvme_submit_admin_cmd(dev, &c, NULL);
1128}
1129
b60503ba
MW
1130static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1131 unsigned long arg)
1132{
1133 struct nvme_ns *ns = bdev->bd_disk->private_data;
1134
1135 switch (cmd) {
1136 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 1137 return nvme_identify(ns, arg, 0);
b60503ba 1138 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 1139 return nvme_identify(ns, arg, 1);
b60503ba 1140 case NVME_IOCTL_GET_RANGE_TYPE:
bd38c555 1141 return nvme_get_range_type(ns, arg);
a53295b6
MW
1142 case NVME_IOCTL_SUBMIT_IO:
1143 return nvme_submit_io(ns, (void __user *)arg);
6ee44cdc
MW
1144 case NVME_IOCTL_DOWNLOAD_FW:
1145 return nvme_download_firmware(ns, (void __user *)arg);
1146 case NVME_IOCTL_ACTIVATE_FW:
1147 return nvme_activate_firmware(ns, arg);
b60503ba
MW
1148 default:
1149 return -ENOTTY;
1150 }
1151}
1152
1153static const struct block_device_operations nvme_fops = {
1154 .owner = THIS_MODULE,
1155 .ioctl = nvme_ioctl,
49481682 1156 .compat_ioctl = nvme_ioctl,
b60503ba
MW
1157};
1158
1fa6aead
MW
1159static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1160{
1161 while (bio_list_peek(&nvmeq->sq_cong)) {
1162 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1163 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1164 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1165 bio_list_add_head(&nvmeq->sq_cong, bio);
1166 break;
1167 }
3cb967c0
MW
1168 if (bio_list_empty(&nvmeq->sq_cong))
1169 remove_wait_queue(&nvmeq->sq_full,
1170 &nvmeq->sq_cong_wait);
1fa6aead
MW
1171 }
1172}
1173
1174static int nvme_kthread(void *data)
1175{
1176 struct nvme_dev *dev;
1177
1178 while (!kthread_should_stop()) {
1179 __set_current_state(TASK_RUNNING);
1180 spin_lock(&dev_list_lock);
1181 list_for_each_entry(dev, &dev_list, node) {
1182 int i;
1183 for (i = 0; i < dev->queue_count; i++) {
1184 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1185 if (!nvmeq)
1186 continue;
1fa6aead
MW
1187 spin_lock_irq(&nvmeq->q_lock);
1188 if (nvme_process_cq(nvmeq))
1189 printk("process_cq did something\n");
1190 nvme_resubmit_bios(nvmeq);
1191 spin_unlock_irq(&nvmeq->q_lock);
1192 }
1193 }
1194 spin_unlock(&dev_list_lock);
1195 set_current_state(TASK_INTERRUPTIBLE);
1196 schedule_timeout(HZ);
1197 }
1198 return 0;
1199}
1200
b60503ba
MW
1201static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1202 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1203{
1204 struct nvme_ns *ns;
1205 struct gendisk *disk;
1206 int lbaf;
1207
1208 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1209 return NULL;
1210
1211 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1212 if (!ns)
1213 return NULL;
1214 ns->queue = blk_alloc_queue(GFP_KERNEL);
1215 if (!ns->queue)
1216 goto out_free_ns;
1217 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1218 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1219 blk_queue_make_request(ns->queue, nvme_make_request);
1220 ns->dev = dev;
1221 ns->queue->queuedata = ns;
1222
1223 disk = alloc_disk(NVME_MINORS);
1224 if (!disk)
1225 goto out_free_queue;
1226 ns->ns_id = index;
1227 ns->disk = disk;
1228 lbaf = id->flbas & 0xf;
1229 ns->lba_shift = id->lbaf[lbaf].ds;
1230
1231 disk->major = nvme_major;
1232 disk->minors = NVME_MINORS;
1233 disk->first_minor = NVME_MINORS * index;
1234 disk->fops = &nvme_fops;
1235 disk->private_data = ns;
1236 disk->queue = ns->queue;
388f037f 1237 disk->driverfs_dev = &dev->pci_dev->dev;
b60503ba
MW
1238 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1239 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1240
1241 return ns;
1242
1243 out_free_queue:
1244 blk_cleanup_queue(ns->queue);
1245 out_free_ns:
1246 kfree(ns);
1247 return NULL;
1248}
1249
1250static void nvme_ns_free(struct nvme_ns *ns)
1251{
1252 put_disk(ns->disk);
1253 blk_cleanup_queue(ns->queue);
1254 kfree(ns);
1255}
1256
b3b06812 1257static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1258{
1259 int status;
1260 u32 result;
1261 struct nvme_command c;
b3b06812 1262 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
1263
1264 memset(&c, 0, sizeof(c));
1265 c.features.opcode = nvme_admin_get_features;
1266 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1267 c.features.dword11 = cpu_to_le32(q_count);
1268
1269 status = nvme_submit_admin_cmd(dev, &c, &result);
1270 if (status)
1271 return -EIO;
1272 return min(result & 0xffff, result >> 16) + 1;
1273}
1274
b60503ba
MW
1275static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1276{
b348b7d5 1277 int result, cpu, i, nr_io_queues;
b60503ba 1278
b348b7d5
MW
1279 nr_io_queues = num_online_cpus();
1280 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1281 if (result < 0)
1282 return result;
b348b7d5
MW
1283 if (result < nr_io_queues)
1284 nr_io_queues = result;
b60503ba 1285
1b23484b
MW
1286 /* Deregister the admin queue's interrupt */
1287 free_irq(dev->entry[0].vector, dev->queues[0]);
1288
b348b7d5 1289 for (i = 0; i < nr_io_queues; i++)
1b23484b
MW
1290 dev->entry[i].entry = i;
1291 for (;;) {
b348b7d5
MW
1292 result = pci_enable_msix(dev->pci_dev, dev->entry,
1293 nr_io_queues);
1b23484b
MW
1294 if (result == 0) {
1295 break;
1296 } else if (result > 0) {
b348b7d5 1297 nr_io_queues = result;
1b23484b
MW
1298 continue;
1299 } else {
b348b7d5 1300 nr_io_queues = 1;
1b23484b
MW
1301 break;
1302 }
1303 }
1304
1305 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1306 /* XXX: handle failure here */
1307
1308 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1309 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1310 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1311 cpu = cpumask_next(cpu, cpu_online_mask);
1312 }
1313
b348b7d5 1314 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1315 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1316 NVME_Q_DEPTH, i);
1317 if (!dev->queues[i + 1])
1318 return -ENOMEM;
1319 dev->queue_count++;
1320 }
b60503ba 1321
9ecdc946
MW
1322 for (; i < num_possible_cpus(); i++) {
1323 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1324 dev->queues[i + 1] = dev->queues[target + 1];
1325 }
1326
b60503ba
MW
1327 return 0;
1328}
1329
1330static void nvme_free_queues(struct nvme_dev *dev)
1331{
1332 int i;
1333
1334 for (i = dev->queue_count - 1; i >= 0; i--)
1335 nvme_free_queue(dev, i);
1336}
1337
1338static int __devinit nvme_dev_add(struct nvme_dev *dev)
1339{
1340 int res, nn, i;
1341 struct nvme_ns *ns, *next;
51814232 1342 struct nvme_id_ctrl *ctrl;
b60503ba
MW
1343 void *id;
1344 dma_addr_t dma_addr;
1345 struct nvme_command cid, crt;
1346
1347 res = nvme_setup_io_queues(dev);
1348 if (res)
1349 return res;
1350
1351 /* XXX: Switch to a SG list once prp2 works */
1352 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1353 GFP_KERNEL);
1354
1355 memset(&cid, 0, sizeof(cid));
1356 cid.identify.opcode = nvme_admin_identify;
1357 cid.identify.nsid = 0;
1358 cid.identify.prp1 = cpu_to_le64(dma_addr);
1359 cid.identify.cns = cpu_to_le32(1);
1360
1361 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1362 if (res) {
1363 res = -EIO;
1364 goto out_free;
1365 }
1366
51814232
MW
1367 ctrl = id;
1368 nn = le32_to_cpup(&ctrl->nn);
1369 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1370 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1371 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba
MW
1372
1373 cid.identify.cns = 0;
1374 memset(&crt, 0, sizeof(crt));
1375 crt.features.opcode = nvme_admin_get_features;
1376 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1377 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1378
ac88c36a 1379 for (i = 0; i <= nn; i++) {
b60503ba
MW
1380 cid.identify.nsid = cpu_to_le32(i);
1381 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1382 if (res)
1383 continue;
1384
1385 if (((struct nvme_id_ns *)id)->ncap == 0)
1386 continue;
1387
1388 crt.features.nsid = cpu_to_le32(i);
1389 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1390 if (res)
1391 continue;
1392
1393 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1394 if (ns)
1395 list_add_tail(&ns->list, &dev->namespaces);
1396 }
1397 list_for_each_entry(ns, &dev->namespaces, list)
1398 add_disk(ns->disk);
1399
1400 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1401 return 0;
1402
1403 out_free:
1404 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1405 list_del(&ns->list);
1406 nvme_ns_free(ns);
1407 }
1408
1409 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1410 return res;
1411}
1412
1413static int nvme_dev_remove(struct nvme_dev *dev)
1414{
1415 struct nvme_ns *ns, *next;
1416
1fa6aead
MW
1417 spin_lock(&dev_list_lock);
1418 list_del(&dev->node);
1419 spin_unlock(&dev_list_lock);
1420
b60503ba
MW
1421 /* TODO: wait all I/O finished or cancel them */
1422
1423 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1424 list_del(&ns->list);
1425 del_gendisk(ns->disk);
1426 nvme_ns_free(ns);
1427 }
1428
1429 nvme_free_queues(dev);
1430
1431 return 0;
1432}
1433
091b6092
MW
1434static int nvme_setup_prp_pools(struct nvme_dev *dev)
1435{
1436 struct device *dmadev = &dev->pci_dev->dev;
1437 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1438 PAGE_SIZE, PAGE_SIZE, 0);
1439 if (!dev->prp_page_pool)
1440 return -ENOMEM;
1441
99802a7a
MW
1442 /* Optimisation for I/Os between 4k and 128k */
1443 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1444 256, 256, 0);
1445 if (!dev->prp_small_pool) {
1446 dma_pool_destroy(dev->prp_page_pool);
1447 return -ENOMEM;
1448 }
091b6092
MW
1449 return 0;
1450}
1451
1452static void nvme_release_prp_pools(struct nvme_dev *dev)
1453{
1454 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1455 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1456}
1457
b60503ba
MW
1458/* XXX: Use an ida or something to let remove / add work correctly */
1459static void nvme_set_instance(struct nvme_dev *dev)
1460{
1461 static int instance;
1462 dev->instance = instance++;
1463}
1464
1465static void nvme_release_instance(struct nvme_dev *dev)
1466{
1467}
1468
1469static int __devinit nvme_probe(struct pci_dev *pdev,
1470 const struct pci_device_id *id)
1471{
574e8b95 1472 int bars, result = -ENOMEM;
b60503ba
MW
1473 struct nvme_dev *dev;
1474
1475 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1476 if (!dev)
1477 return -ENOMEM;
1478 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1479 GFP_KERNEL);
1480 if (!dev->entry)
1481 goto free;
1b23484b
MW
1482 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1483 GFP_KERNEL);
b60503ba
MW
1484 if (!dev->queues)
1485 goto free;
1486
0ee5a7d7
SMM
1487 if (pci_enable_device_mem(pdev))
1488 goto free;
f64d3365 1489 pci_set_master(pdev);
574e8b95
MW
1490 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1491 if (pci_request_selected_regions(pdev, bars, "nvme"))
1492 goto disable;
0ee5a7d7 1493
b60503ba
MW
1494 INIT_LIST_HEAD(&dev->namespaces);
1495 dev->pci_dev = pdev;
1496 pci_set_drvdata(pdev, dev);
2930353f
MW
1497 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1498 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1499 nvme_set_instance(dev);
53c9577e 1500 dev->entry[0].vector = pdev->irq;
b60503ba 1501
091b6092
MW
1502 result = nvme_setup_prp_pools(dev);
1503 if (result)
1504 goto disable_msix;
1505
b60503ba
MW
1506 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1507 if (!dev->bar) {
1508 result = -ENOMEM;
574e8b95 1509 goto disable_msix;
b60503ba
MW
1510 }
1511
1512 result = nvme_configure_admin_queue(dev);
1513 if (result)
1514 goto unmap;
1515 dev->queue_count++;
1516
1fa6aead
MW
1517 spin_lock(&dev_list_lock);
1518 list_add(&dev->node, &dev_list);
1519 spin_unlock(&dev_list_lock);
1520
740216fc
MW
1521 result = nvme_dev_add(dev);
1522 if (result)
1523 goto delete;
1524
b60503ba
MW
1525 return 0;
1526
1527 delete:
740216fc
MW
1528 spin_lock(&dev_list_lock);
1529 list_del(&dev->node);
1530 spin_unlock(&dev_list_lock);
1531
b60503ba
MW
1532 nvme_free_queues(dev);
1533 unmap:
1534 iounmap(dev->bar);
574e8b95 1535 disable_msix:
b60503ba
MW
1536 pci_disable_msix(pdev);
1537 nvme_release_instance(dev);
091b6092 1538 nvme_release_prp_pools(dev);
574e8b95 1539 disable:
0ee5a7d7 1540 pci_disable_device(pdev);
574e8b95 1541 pci_release_regions(pdev);
b60503ba
MW
1542 free:
1543 kfree(dev->queues);
1544 kfree(dev->entry);
1545 kfree(dev);
1546 return result;
1547}
1548
1549static void __devexit nvme_remove(struct pci_dev *pdev)
1550{
1551 struct nvme_dev *dev = pci_get_drvdata(pdev);
1552 nvme_dev_remove(dev);
1553 pci_disable_msix(pdev);
1554 iounmap(dev->bar);
1555 nvme_release_instance(dev);
091b6092 1556 nvme_release_prp_pools(dev);
0ee5a7d7 1557 pci_disable_device(pdev);
574e8b95 1558 pci_release_regions(pdev);
b60503ba
MW
1559 kfree(dev->queues);
1560 kfree(dev->entry);
1561 kfree(dev);
1562}
1563
1564/* These functions are yet to be implemented */
1565#define nvme_error_detected NULL
1566#define nvme_dump_registers NULL
1567#define nvme_link_reset NULL
1568#define nvme_slot_reset NULL
1569#define nvme_error_resume NULL
1570#define nvme_suspend NULL
1571#define nvme_resume NULL
1572
1573static struct pci_error_handlers nvme_err_handler = {
1574 .error_detected = nvme_error_detected,
1575 .mmio_enabled = nvme_dump_registers,
1576 .link_reset = nvme_link_reset,
1577 .slot_reset = nvme_slot_reset,
1578 .resume = nvme_error_resume,
1579};
1580
1581/* Move to pci_ids.h later */
1582#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1583
1584static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1585 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1586 { 0, }
1587};
1588MODULE_DEVICE_TABLE(pci, nvme_id_table);
1589
1590static struct pci_driver nvme_driver = {
1591 .name = "nvme",
1592 .id_table = nvme_id_table,
1593 .probe = nvme_probe,
1594 .remove = __devexit_p(nvme_remove),
1595 .suspend = nvme_suspend,
1596 .resume = nvme_resume,
1597 .err_handler = &nvme_err_handler,
1598};
1599
1600static int __init nvme_init(void)
1601{
1fa6aead
MW
1602 int result = -EBUSY;
1603
1604 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1605 if (IS_ERR(nvme_thread))
1606 return PTR_ERR(nvme_thread);
b60503ba
MW
1607
1608 nvme_major = register_blkdev(nvme_major, "nvme");
1609 if (nvme_major <= 0)
1fa6aead 1610 goto kill_kthread;
b60503ba
MW
1611
1612 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
1613 if (result)
1614 goto unregister_blkdev;
1615 return 0;
b60503ba 1616
1fa6aead 1617 unregister_blkdev:
b60503ba 1618 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
1619 kill_kthread:
1620 kthread_stop(nvme_thread);
b60503ba
MW
1621 return result;
1622}
1623
1624static void __exit nvme_exit(void)
1625{
1626 pci_unregister_driver(&nvme_driver);
1627 unregister_blkdev(nvme_major, "nvme");
1fa6aead 1628 kthread_stop(nvme_thread);
b60503ba
MW
1629}
1630
1631MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1632MODULE_LICENSE("GPL");
8ef70067 1633MODULE_VERSION("0.5");
b60503ba
MW
1634module_init(nvme_init);
1635module_exit(nvme_exit);