]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/block/nvme.c
NVMe: Handle the congestion list a little better
[mirror_ubuntu-bionic-kernel.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/pci.h>
be7b6275 34#include <linux/poison.h>
b60503ba
MW
35#include <linux/sched.h>
36#include <linux/slab.h>
37#include <linux/types.h>
38#include <linux/version.h>
39
40#define NVME_Q_DEPTH 1024
41#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
42#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
43#define NVME_MINORS 64
e85248e5
MW
44#define IO_TIMEOUT (5 * HZ)
45#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
46
47static int nvme_major;
48module_param(nvme_major, int, 0);
49
58ffacb5
MW
50static int use_threaded_interrupts;
51module_param(use_threaded_interrupts, int, 0);
52
b60503ba
MW
53/*
54 * Represents an NVM Express device. Each nvme_dev is a PCI function.
55 */
56struct nvme_dev {
b60503ba
MW
57 struct nvme_queue **queues;
58 u32 __iomem *dbs;
59 struct pci_dev *pci_dev;
60 int instance;
61 int queue_count;
62 u32 ctrl_config;
63 struct msix_entry *entry;
64 struct nvme_bar __iomem *bar;
65 struct list_head namespaces;
51814232
MW
66 char serial[20];
67 char model[40];
68 char firmware_rev[8];
b60503ba
MW
69};
70
71/*
72 * An NVM Express namespace is equivalent to a SCSI LUN
73 */
74struct nvme_ns {
75 struct list_head list;
76
77 struct nvme_dev *dev;
78 struct request_queue *queue;
79 struct gendisk *disk;
80
81 int ns_id;
82 int lba_shift;
83};
84
85/*
86 * An NVM Express queue. Each device has at least two (one for admin
87 * commands and one for I/O commands).
88 */
89struct nvme_queue {
90 struct device *q_dmadev;
91 spinlock_t q_lock;
92 struct nvme_command *sq_cmds;
93 volatile struct nvme_completion *cqes;
94 dma_addr_t sq_dma_addr;
95 dma_addr_t cq_dma_addr;
96 wait_queue_head_t sq_full;
97 struct bio_list sq_cong;
98 u32 __iomem *q_db;
99 u16 q_depth;
100 u16 cq_vector;
101 u16 sq_head;
102 u16 sq_tail;
103 u16 cq_head;
82123460 104 u16 cq_phase;
b60503ba
MW
105 unsigned long cmdid_data[];
106};
107
9294bbed
MW
108static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio);
109
b60503ba
MW
110/*
111 * Check we didin't inadvertently grow the command struct
112 */
113static inline void _nvme_check_size(void)
114{
115 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
116 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
117 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
118 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
119 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
120 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
121 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
122 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
123 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
124}
125
e85248e5
MW
126struct nvme_cmd_info {
127 unsigned long ctx;
128 unsigned long timeout;
129};
130
131static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
132{
133 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
134}
135
b60503ba
MW
136/**
137 * alloc_cmdid - Allocate a Command ID
138 * @param nvmeq The queue that will be used for this command
139 * @param ctx A pointer that will be passed to the handler
140 * @param handler The ID of the handler to call
141 *
142 * Allocate a Command ID for a queue. The data passed in will
143 * be passed to the completion handler. This is implemented by using
144 * the bottom two bits of the ctx pointer to store the handler ID.
145 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
146 * We can change this if it becomes a problem.
147 */
e85248e5
MW
148static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
149 unsigned timeout)
b60503ba
MW
150{
151 int depth = nvmeq->q_depth;
e85248e5 152 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
153 int cmdid;
154
155 BUG_ON((unsigned long)ctx & 3);
156
157 do {
158 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
159 if (cmdid >= depth)
160 return -EBUSY;
161 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
162
e85248e5
MW
163 info[cmdid].ctx = (unsigned long)ctx | handler;
164 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
165 return cmdid;
166}
167
168static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
e85248e5 169 int handler, unsigned timeout)
b60503ba
MW
170{
171 int cmdid;
172 wait_event_killable(nvmeq->sq_full,
e85248e5 173 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
174 return (cmdid < 0) ? -EINTR : cmdid;
175}
176
177/* If you need more than four handlers, you'll need to change how
be7b6275
MW
178 * alloc_cmdid and nvme_process_cq work. Consider using a special
179 * CMD_CTX value instead, if that works for your situation.
b60503ba
MW
180 */
181enum {
182 sync_completion_id = 0,
183 bio_completion_id,
184};
185
be7b6275
MW
186#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
187#define CMD_CTX_CANCELLED (0x2008 + CMD_CTX_BASE)
b36235df 188#define CMD_CTX_COMPLETED (0x2010 + CMD_CTX_BASE)
48e3d398 189#define CMD_CTX_INVALID (0x2014 + CMD_CTX_BASE)
be7b6275 190
b60503ba
MW
191static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
192{
193 unsigned long data;
e85248e5 194 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 195
e85248e5 196 if (cmdid >= nvmeq->q_depth)
48e3d398 197 return CMD_CTX_INVALID;
e85248e5
MW
198 data = info[cmdid].ctx;
199 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
200 clear_bit(cmdid, nvmeq->cmdid_data);
201 wake_up(&nvmeq->sq_full);
202 return data;
203}
204
be7b6275 205static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
3c0cf138 206{
e85248e5
MW
207 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
208 info[cmdid].ctx = CMD_CTX_CANCELLED;
3c0cf138
MW
209}
210
b60503ba
MW
211static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
212{
1b23484b
MW
213 int qid, cpu = get_cpu();
214 if (cpu < ns->dev->queue_count)
215 qid = cpu + 1;
216 else
217 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
218 return ns->dev->queues[qid];
b60503ba
MW
219}
220
221static void put_nvmeq(struct nvme_queue *nvmeq)
222{
1b23484b 223 put_cpu();
b60503ba
MW
224}
225
226/**
227 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
228 * @nvmeq: The queue to use
229 * @cmd: The command to send
230 *
231 * Safe to use from interrupt context
232 */
233static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
234{
235 unsigned long flags;
236 u16 tail;
237 /* XXX: Need to check tail isn't going to overrun head */
238 spin_lock_irqsave(&nvmeq->q_lock, flags);
239 tail = nvmeq->sq_tail;
240 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
241 writel(tail, nvmeq->q_db);
242 if (++tail == nvmeq->q_depth)
243 tail = 0;
244 nvmeq->sq_tail = tail;
245 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
246
247 return 0;
248}
249
250struct nvme_req_info {
251 struct bio *bio;
252 int nents;
253 struct scatterlist sg[0];
254};
255
256/* XXX: use a mempool */
257static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
258{
259 return kmalloc(sizeof(struct nvme_req_info) +
260 sizeof(struct scatterlist) * nseg, gfp);
261}
262
263static void free_info(struct nvme_req_info *info)
264{
265 kfree(info);
266}
267
268static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
269 struct nvme_completion *cqe)
270{
271 struct nvme_req_info *info = ctx;
272 struct bio *bio = info->bio;
273 u16 status = le16_to_cpup(&cqe->status) >> 1;
274
275 dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
276 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
277 free_info(info);
278 bio_endio(bio, status ? -EIO : 0);
9294bbed
MW
279 bio = bio_list_pop(&nvmeq->sq_cong);
280 if (bio)
281 nvme_resubmit_bio(nvmeq, bio);
b60503ba
MW
282}
283
ff22b54f
MW
284/* length is in bytes */
285static void nvme_setup_prps(struct nvme_common_command *cmd,
286 struct scatterlist *sg, int length)
287{
288 int dma_len = sg_dma_len(sg);
289 u64 dma_addr = sg_dma_address(sg);
290 int offset = offset_in_page(dma_addr);
291
292 cmd->prp1 = cpu_to_le64(dma_addr);
293 length -= (PAGE_SIZE - offset);
294 if (length <= 0)
295 return;
296
297 dma_len -= (PAGE_SIZE - offset);
298 if (dma_len) {
299 dma_addr += (PAGE_SIZE - offset);
300 } else {
301 sg = sg_next(sg);
302 dma_addr = sg_dma_address(sg);
303 dma_len = sg_dma_len(sg);
304 }
305
306 if (length <= PAGE_SIZE) {
307 cmd->prp2 = cpu_to_le64(dma_addr);
308 return;
309 }
310
311 /* XXX: support PRP lists */
312}
313
b60503ba
MW
314static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
315 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
316{
317 struct bio_vec *bvec;
318 struct scatterlist *sg = info->sg;
319 int i, nsegs;
320
321 sg_init_table(sg, psegs);
322 bio_for_each_segment(bvec, bio, i) {
323 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
324 /* XXX: handle non-mergable here */
325 nsegs++;
326 }
327 info->nents = nsegs;
328
329 return dma_map_sg(dev, info->sg, info->nents, dma_dir);
330}
331
332static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
333 struct bio *bio)
334{
ff22b54f 335 struct nvme_command *cmnd;
b60503ba
MW
336 struct nvme_req_info *info;
337 enum dma_data_direction dma_dir;
338 int cmdid;
339 u16 control;
340 u32 dsmgmt;
341 unsigned long flags;
342 int psegs = bio_phys_segments(ns->queue, bio);
343
344 info = alloc_info(psegs, GFP_NOIO);
345 if (!info)
346 goto congestion;
347 info->bio = bio;
348
e85248e5 349 cmdid = alloc_cmdid(nvmeq, info, bio_completion_id, IO_TIMEOUT);
b60503ba
MW
350 if (unlikely(cmdid < 0))
351 goto free_info;
352
353 control = 0;
354 if (bio->bi_rw & REQ_FUA)
355 control |= NVME_RW_FUA;
356 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
357 control |= NVME_RW_LR;
358
359 dsmgmt = 0;
360 if (bio->bi_rw & REQ_RAHEAD)
361 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
362
363 spin_lock_irqsave(&nvmeq->q_lock, flags);
ff22b54f 364 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 365
b8deb62c 366 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 367 if (bio_data_dir(bio)) {
ff22b54f 368 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
369 dma_dir = DMA_TO_DEVICE;
370 } else {
ff22b54f 371 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
372 dma_dir = DMA_FROM_DEVICE;
373 }
374
375 nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
376
ff22b54f
MW
377 cmnd->rw.flags = 1;
378 cmnd->rw.command_id = cmdid;
379 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
380 nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
381 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
382 cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
383 cmnd->rw.control = cpu_to_le16(control);
384 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba
MW
385
386 writel(nvmeq->sq_tail, nvmeq->q_db);
387 if (++nvmeq->sq_tail == nvmeq->q_depth)
388 nvmeq->sq_tail = 0;
389
390 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
391
392 return 0;
393
394 free_info:
395 free_info(info);
396 congestion:
397 return -EBUSY;
398}
399
9294bbed
MW
400static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio)
401{
402 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
403 if (nvme_submit_bio_queue(nvmeq, ns, bio))
404 bio_list_add_head(&nvmeq->sq_cong, bio);
405 else if (bio_list_empty(&nvmeq->sq_cong))
406 blk_clear_queue_congested(ns->queue, rw_is_sync(bio->bi_rw));
407 /* XXX: Need to duplicate the logic from __freed_request here */
408}
409
b60503ba
MW
410/*
411 * NB: return value of non-zero would mean that we were a stacking driver.
412 * make_request must always succeed.
413 */
414static int nvme_make_request(struct request_queue *q, struct bio *bio)
415{
416 struct nvme_ns *ns = q->queuedata;
417 struct nvme_queue *nvmeq = get_nvmeq(ns);
418
419 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
420 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
9294bbed 421 spin_lock_irq(&nvmeq->q_lock);
b60503ba 422 bio_list_add(&nvmeq->sq_cong, bio);
9294bbed 423 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
424 }
425 put_nvmeq(nvmeq);
426
427 return 0;
428}
429
430struct sync_cmd_info {
431 struct task_struct *task;
432 u32 result;
433 int status;
434};
435
436static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
437 struct nvme_completion *cqe)
438{
439 struct sync_cmd_info *cmdinfo = ctx;
be7b6275
MW
440 if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
441 return;
b36235df
MW
442 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
443 dev_warn(nvmeq->q_dmadev,
444 "completed id %d twice on queue %d\n",
445 cqe->command_id, le16_to_cpup(&cqe->sq_id));
446 return;
447 }
48e3d398
MW
448 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
449 dev_warn(nvmeq->q_dmadev,
450 "invalid id %d completed on queue %d\n",
451 cqe->command_id, le16_to_cpup(&cqe->sq_id));
452 return;
453 }
b60503ba
MW
454 cmdinfo->result = le32_to_cpup(&cqe->result);
455 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
456 wake_up_process(cmdinfo->task);
457}
458
459typedef void (*completion_fn)(struct nvme_queue *, void *,
460 struct nvme_completion *);
461
462static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
463{
82123460 464 u16 head, phase;
b60503ba
MW
465
466 static const completion_fn completions[4] = {
467 [sync_completion_id] = sync_completion,
468 [bio_completion_id] = bio_completion,
469 };
470
471 head = nvmeq->cq_head;
82123460 472 phase = nvmeq->cq_phase;
b60503ba
MW
473
474 for (;;) {
475 unsigned long data;
476 void *ptr;
477 unsigned char handler;
478 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 479 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
480 break;
481 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
482 if (++head == nvmeq->q_depth) {
483 head = 0;
82123460 484 phase = !phase;
b60503ba
MW
485 }
486
487 data = free_cmdid(nvmeq, cqe.command_id);
488 handler = data & 3;
489 ptr = (void *)(data & ~3UL);
490 completions[handler](nvmeq, ptr, &cqe);
491 }
492
493 /* If the controller ignores the cq head doorbell and continuously
494 * writes to the queue, it is theoretically possible to wrap around
495 * the queue twice and mistakenly return IRQ_NONE. Linux only
496 * requires that 0.1% of your interrupts are handled, so this isn't
497 * a big problem.
498 */
82123460 499 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
500 return IRQ_NONE;
501
502 writel(head, nvmeq->q_db + 1);
503 nvmeq->cq_head = head;
82123460 504 nvmeq->cq_phase = phase;
b60503ba
MW
505
506 return IRQ_HANDLED;
507}
508
509static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
510{
511 irqreturn_t result;
512 struct nvme_queue *nvmeq = data;
513 spin_lock(&nvmeq->q_lock);
514 result = nvme_process_cq(nvmeq);
515 spin_unlock(&nvmeq->q_lock);
516 return result;
517}
518
519static irqreturn_t nvme_irq_check(int irq, void *data)
520{
521 struct nvme_queue *nvmeq = data;
522 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
523 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
524 return IRQ_NONE;
525 return IRQ_WAKE_THREAD;
526}
527
3c0cf138
MW
528static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
529{
530 spin_lock_irq(&nvmeq->q_lock);
be7b6275 531 cancel_cmdid_data(nvmeq, cmdid);
3c0cf138
MW
532 spin_unlock_irq(&nvmeq->q_lock);
533}
534
b60503ba
MW
535/*
536 * Returns 0 on success. If the result is negative, it's a Linux error code;
537 * if the result is positive, it's an NVM Express status code
538 */
3c0cf138 539static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 540 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
541{
542 int cmdid;
543 struct sync_cmd_info cmdinfo;
544
545 cmdinfo.task = current;
546 cmdinfo.status = -EINTR;
547
e85248e5
MW
548 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
549 timeout);
b60503ba
MW
550 if (cmdid < 0)
551 return cmdid;
552 cmd->common.command_id = cmdid;
553
3c0cf138
MW
554 set_current_state(TASK_KILLABLE);
555 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
556 schedule();
557
3c0cf138
MW
558 if (cmdinfo.status == -EINTR) {
559 nvme_abort_command(nvmeq, cmdid);
560 return -EINTR;
561 }
562
b60503ba
MW
563 if (result)
564 *result = cmdinfo.result;
565
566 return cmdinfo.status;
567}
568
569static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
570 u32 *result)
571{
e85248e5 572 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
573}
574
575static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
576{
577 int status;
578 struct nvme_command c;
579
580 memset(&c, 0, sizeof(c));
581 c.delete_queue.opcode = opcode;
582 c.delete_queue.qid = cpu_to_le16(id);
583
584 status = nvme_submit_admin_cmd(dev, &c, NULL);
585 if (status)
586 return -EIO;
587 return 0;
588}
589
590static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
591 struct nvme_queue *nvmeq)
592{
593 int status;
594 struct nvme_command c;
595 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
596
597 memset(&c, 0, sizeof(c));
598 c.create_cq.opcode = nvme_admin_create_cq;
599 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
600 c.create_cq.cqid = cpu_to_le16(qid);
601 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
602 c.create_cq.cq_flags = cpu_to_le16(flags);
603 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
604
605 status = nvme_submit_admin_cmd(dev, &c, NULL);
606 if (status)
607 return -EIO;
608 return 0;
609}
610
611static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
612 struct nvme_queue *nvmeq)
613{
614 int status;
615 struct nvme_command c;
616 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
617
618 memset(&c, 0, sizeof(c));
619 c.create_sq.opcode = nvme_admin_create_sq;
620 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
621 c.create_sq.sqid = cpu_to_le16(qid);
622 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
623 c.create_sq.sq_flags = cpu_to_le16(flags);
624 c.create_sq.cqid = cpu_to_le16(qid);
625
626 status = nvme_submit_admin_cmd(dev, &c, NULL);
627 if (status)
628 return -EIO;
629 return 0;
630}
631
632static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
633{
634 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
635}
636
637static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
638{
639 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
640}
641
642static void nvme_free_queue(struct nvme_dev *dev, int qid)
643{
644 struct nvme_queue *nvmeq = dev->queues[qid];
645
646 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
647
648 /* Don't tell the adapter to delete the admin queue */
649 if (qid) {
650 adapter_delete_sq(dev, qid);
651 adapter_delete_cq(dev, qid);
652 }
653
654 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
655 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
656 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
657 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
658 kfree(nvmeq);
659}
660
661static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
662 int depth, int vector)
663{
664 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 665 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
666 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
667 if (!nvmeq)
668 return NULL;
669
670 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
671 &nvmeq->cq_dma_addr, GFP_KERNEL);
672 if (!nvmeq->cqes)
673 goto free_nvmeq;
674 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
675
676 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
677 &nvmeq->sq_dma_addr, GFP_KERNEL);
678 if (!nvmeq->sq_cmds)
679 goto free_cqdma;
680
681 nvmeq->q_dmadev = dmadev;
682 spin_lock_init(&nvmeq->q_lock);
683 nvmeq->cq_head = 0;
82123460 684 nvmeq->cq_phase = 1;
b60503ba
MW
685 init_waitqueue_head(&nvmeq->sq_full);
686 bio_list_init(&nvmeq->sq_cong);
687 nvmeq->q_db = &dev->dbs[qid * 2];
688 nvmeq->q_depth = depth;
689 nvmeq->cq_vector = vector;
690
691 return nvmeq;
692
693 free_cqdma:
694 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
695 nvmeq->cq_dma_addr);
696 free_nvmeq:
697 kfree(nvmeq);
698 return NULL;
699}
700
3001082c
MW
701static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
702 const char *name)
703{
58ffacb5
MW
704 if (use_threaded_interrupts)
705 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 706 nvme_irq_check, nvme_irq,
58ffacb5
MW
707 IRQF_DISABLED | IRQF_SHARED,
708 name, nvmeq);
3001082c
MW
709 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
710 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
711}
712
b60503ba
MW
713static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
714 int qid, int cq_size, int vector)
715{
716 int result;
717 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
718
3f85d50b
MW
719 if (!nvmeq)
720 return NULL;
721
b60503ba
MW
722 result = adapter_alloc_cq(dev, qid, nvmeq);
723 if (result < 0)
724 goto free_nvmeq;
725
726 result = adapter_alloc_sq(dev, qid, nvmeq);
727 if (result < 0)
728 goto release_cq;
729
3001082c 730 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
731 if (result < 0)
732 goto release_sq;
733
734 return nvmeq;
735
736 release_sq:
737 adapter_delete_sq(dev, qid);
738 release_cq:
739 adapter_delete_cq(dev, qid);
740 free_nvmeq:
741 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
742 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
743 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
744 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
745 kfree(nvmeq);
746 return NULL;
747}
748
749static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
750{
751 int result;
752 u32 aqa;
753 struct nvme_queue *nvmeq;
754
755 dev->dbs = ((void __iomem *)dev->bar) + 4096;
756
757 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
758 if (!nvmeq)
759 return -ENOMEM;
b60503ba
MW
760
761 aqa = nvmeq->q_depth - 1;
762 aqa |= aqa << 16;
763
764 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
765 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
766 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
767
5911f200 768 writel(0, &dev->bar->cc);
b60503ba
MW
769 writel(aqa, &dev->bar->aqa);
770 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
771 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
772 writel(dev->ctrl_config, &dev->bar->cc);
773
774 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
775 msleep(100);
776 if (fatal_signal_pending(current))
777 return -EINTR;
778 }
779
3001082c 780 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
781 dev->queues[0] = nvmeq;
782 return result;
783}
784
7fc3cdab
MW
785static int nvme_map_user_pages(struct nvme_dev *dev, int write,
786 unsigned long addr, unsigned length,
787 struct scatterlist **sgp)
b60503ba 788{
36c14ed9 789 int i, err, count, nents, offset;
7fc3cdab
MW
790 struct scatterlist *sg;
791 struct page **pages;
36c14ed9
MW
792
793 if (addr & 3)
794 return -EINVAL;
7fc3cdab
MW
795 if (!length)
796 return -EINVAL;
797
36c14ed9 798 offset = offset_in_page(addr);
7fc3cdab
MW
799 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
800 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
801
802 err = get_user_pages_fast(addr, count, 1, pages);
803 if (err < count) {
804 count = err;
805 err = -EFAULT;
806 goto put_pages;
807 }
7fc3cdab
MW
808
809 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 810 sg_init_table(sg, count);
ff22b54f 811 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
7fc3cdab
MW
812 length -= (PAGE_SIZE - offset);
813 for (i = 1; i < count; i++) {
814 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
815 length -= PAGE_SIZE;
816 }
817
818 err = -ENOMEM;
819 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
820 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
821 if (!nents)
822 goto put_pages;
b60503ba 823
7fc3cdab
MW
824 kfree(pages);
825 *sgp = sg;
826 return nents;
b60503ba 827
7fc3cdab
MW
828 put_pages:
829 for (i = 0; i < count; i++)
830 put_page(pages[i]);
831 kfree(pages);
832 return err;
833}
b60503ba 834
7fc3cdab
MW
835static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
836 unsigned long addr, int length,
837 struct scatterlist *sg, int nents)
838{
839 int i, count;
b60503ba 840
7fc3cdab 841 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
36c14ed9 842 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
7fc3cdab 843
36c14ed9 844 for (i = 0; i < count; i++)
7fc3cdab
MW
845 put_page(sg_page(&sg[i]));
846}
b60503ba 847
7fc3cdab
MW
848static int nvme_submit_user_admin_command(struct nvme_dev *dev,
849 unsigned long addr, unsigned length,
850 struct nvme_command *cmd)
851{
852 int err, nents;
853 struct scatterlist *sg;
854
855 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
856 if (nents < 0)
857 return nents;
858 nvme_setup_prps(&cmd->common, sg, length);
859 err = nvme_submit_admin_cmd(dev, cmd, NULL);
860 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
861 return err ? -EIO : 0;
b60503ba
MW
862}
863
bd38c555 864static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba 865{
b60503ba 866 struct nvme_command c;
b60503ba 867
bd38c555
MW
868 memset(&c, 0, sizeof(c));
869 c.identify.opcode = nvme_admin_identify;
870 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
871 c.identify.cns = cpu_to_le32(cns);
872
873 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
874}
875
876static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
877{
878 struct nvme_command c;
b60503ba
MW
879
880 memset(&c, 0, sizeof(c));
881 c.features.opcode = nvme_admin_get_features;
882 c.features.nsid = cpu_to_le32(ns->ns_id);
b60503ba
MW
883 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
884
bd38c555 885 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
b60503ba
MW
886}
887
a53295b6
MW
888static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
889{
890 struct nvme_dev *dev = ns->dev;
891 struct nvme_queue *nvmeq;
892 struct nvme_user_io io;
893 struct nvme_command c;
894 unsigned length;
895 u32 result;
896 int nents, status;
897 struct scatterlist *sg;
898
899 if (copy_from_user(&io, uio, sizeof(io)))
900 return -EFAULT;
901 length = io.nblocks << io.block_shift;
902 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
903 if (nents < 0)
904 return nents;
905
906 memset(&c, 0, sizeof(c));
907 c.rw.opcode = io.opcode;
908 c.rw.flags = io.flags;
909 c.rw.nsid = cpu_to_le32(io.nsid);
910 c.rw.slba = cpu_to_le64(io.slba);
911 c.rw.length = cpu_to_le16(io.nblocks - 1);
912 c.rw.control = cpu_to_le16(io.control);
913 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
914 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
915 c.rw.apptag = cpu_to_le16(io.apptag);
916 c.rw.appmask = cpu_to_le16(io.appmask);
917 /* XXX: metadata */
918 nvme_setup_prps(&c.common, sg, length);
919
920 nvmeq = get_nvmeq(ns);
b1ad37ef
MW
921 /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
922 * disabled. We may be preempted at any point, and be rescheduled
923 * to a different CPU. That will cause cacheline bouncing, but no
924 * additional races since q_lock already protects against other CPUs.
925 */
a53295b6 926 put_nvmeq(nvmeq);
e85248e5 927 status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
a53295b6
MW
928
929 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
930 put_user(result, &uio->result);
931 return status;
932}
933
6ee44cdc
MW
934static int nvme_download_firmware(struct nvme_ns *ns,
935 struct nvme_dlfw __user *udlfw)
936{
937 struct nvme_dev *dev = ns->dev;
938 struct nvme_dlfw dlfw;
939 struct nvme_command c;
940 int nents, status;
941 struct scatterlist *sg;
942
943 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
944 return -EFAULT;
945 if (dlfw.length >= (1 << 30))
946 return -EINVAL;
947
948 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
949 if (nents < 0)
950 return nents;
951
952 memset(&c, 0, sizeof(c));
953 c.dlfw.opcode = nvme_admin_download_fw;
954 c.dlfw.numd = cpu_to_le32(dlfw.length);
955 c.dlfw.offset = cpu_to_le32(dlfw.offset);
956 nvme_setup_prps(&c.common, sg, dlfw.length * 4);
957
958 status = nvme_submit_admin_cmd(dev, &c, NULL);
959 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
960 return status;
961}
962
963static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
964{
965 struct nvme_dev *dev = ns->dev;
966 struct nvme_command c;
967
968 memset(&c, 0, sizeof(c));
969 c.common.opcode = nvme_admin_activate_fw;
970 c.common.rsvd10[0] = cpu_to_le32(arg);
971
972 return nvme_submit_admin_cmd(dev, &c, NULL);
973}
974
b60503ba
MW
975static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
976 unsigned long arg)
977{
978 struct nvme_ns *ns = bdev->bd_disk->private_data;
979
980 switch (cmd) {
981 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 982 return nvme_identify(ns, arg, 0);
b60503ba 983 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 984 return nvme_identify(ns, arg, 1);
b60503ba 985 case NVME_IOCTL_GET_RANGE_TYPE:
bd38c555 986 return nvme_get_range_type(ns, arg);
a53295b6
MW
987 case NVME_IOCTL_SUBMIT_IO:
988 return nvme_submit_io(ns, (void __user *)arg);
6ee44cdc
MW
989 case NVME_IOCTL_DOWNLOAD_FW:
990 return nvme_download_firmware(ns, (void __user *)arg);
991 case NVME_IOCTL_ACTIVATE_FW:
992 return nvme_activate_firmware(ns, arg);
b60503ba
MW
993 default:
994 return -ENOTTY;
995 }
996}
997
998static const struct block_device_operations nvme_fops = {
999 .owner = THIS_MODULE,
1000 .ioctl = nvme_ioctl,
1001};
1002
1003static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1004 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1005{
1006 struct nvme_ns *ns;
1007 struct gendisk *disk;
1008 int lbaf;
1009
1010 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1011 return NULL;
1012
1013 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1014 if (!ns)
1015 return NULL;
1016 ns->queue = blk_alloc_queue(GFP_KERNEL);
1017 if (!ns->queue)
1018 goto out_free_ns;
1019 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1020 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1021 blk_queue_make_request(ns->queue, nvme_make_request);
1022 ns->dev = dev;
1023 ns->queue->queuedata = ns;
1024
1025 disk = alloc_disk(NVME_MINORS);
1026 if (!disk)
1027 goto out_free_queue;
1028 ns->ns_id = index;
1029 ns->disk = disk;
1030 lbaf = id->flbas & 0xf;
1031 ns->lba_shift = id->lbaf[lbaf].ds;
1032
1033 disk->major = nvme_major;
1034 disk->minors = NVME_MINORS;
1035 disk->first_minor = NVME_MINORS * index;
1036 disk->fops = &nvme_fops;
1037 disk->private_data = ns;
1038 disk->queue = ns->queue;
388f037f 1039 disk->driverfs_dev = &dev->pci_dev->dev;
b60503ba
MW
1040 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1041 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1042
1043 return ns;
1044
1045 out_free_queue:
1046 blk_cleanup_queue(ns->queue);
1047 out_free_ns:
1048 kfree(ns);
1049 return NULL;
1050}
1051
1052static void nvme_ns_free(struct nvme_ns *ns)
1053{
1054 put_disk(ns->disk);
1055 blk_cleanup_queue(ns->queue);
1056 kfree(ns);
1057}
1058
b3b06812 1059static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1060{
1061 int status;
1062 u32 result;
1063 struct nvme_command c;
b3b06812 1064 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
1065
1066 memset(&c, 0, sizeof(c));
1067 c.features.opcode = nvme_admin_get_features;
1068 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1069 c.features.dword11 = cpu_to_le32(q_count);
1070
1071 status = nvme_submit_admin_cmd(dev, &c, &result);
1072 if (status)
1073 return -EIO;
1074 return min(result & 0xffff, result >> 16) + 1;
1075}
1076
b60503ba
MW
1077static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1078{
1b23484b 1079 int result, cpu, i, nr_queues;
b60503ba 1080
1b23484b
MW
1081 nr_queues = num_online_cpus();
1082 result = set_queue_count(dev, nr_queues);
1083 if (result < 0)
1084 return result;
1085 if (result < nr_queues)
1086 nr_queues = result;
b60503ba 1087
1b23484b
MW
1088 /* Deregister the admin queue's interrupt */
1089 free_irq(dev->entry[0].vector, dev->queues[0]);
1090
1091 for (i = 0; i < nr_queues; i++)
1092 dev->entry[i].entry = i;
1093 for (;;) {
1094 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1095 if (result == 0) {
1096 break;
1097 } else if (result > 0) {
1098 nr_queues = result;
1099 continue;
1100 } else {
1101 nr_queues = 1;
1102 break;
1103 }
1104 }
1105
1106 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1107 /* XXX: handle failure here */
1108
1109 cpu = cpumask_first(cpu_online_mask);
1110 for (i = 0; i < nr_queues; i++) {
1111 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1112 cpu = cpumask_next(cpu, cpu_online_mask);
1113 }
1114
1115 for (i = 0; i < nr_queues; i++) {
1116 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1117 NVME_Q_DEPTH, i);
1118 if (!dev->queues[i + 1])
1119 return -ENOMEM;
1120 dev->queue_count++;
1121 }
b60503ba
MW
1122
1123 return 0;
1124}
1125
1126static void nvme_free_queues(struct nvme_dev *dev)
1127{
1128 int i;
1129
1130 for (i = dev->queue_count - 1; i >= 0; i--)
1131 nvme_free_queue(dev, i);
1132}
1133
1134static int __devinit nvme_dev_add(struct nvme_dev *dev)
1135{
1136 int res, nn, i;
1137 struct nvme_ns *ns, *next;
51814232 1138 struct nvme_id_ctrl *ctrl;
b60503ba
MW
1139 void *id;
1140 dma_addr_t dma_addr;
1141 struct nvme_command cid, crt;
1142
1143 res = nvme_setup_io_queues(dev);
1144 if (res)
1145 return res;
1146
1147 /* XXX: Switch to a SG list once prp2 works */
1148 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1149 GFP_KERNEL);
1150
1151 memset(&cid, 0, sizeof(cid));
1152 cid.identify.opcode = nvme_admin_identify;
1153 cid.identify.nsid = 0;
1154 cid.identify.prp1 = cpu_to_le64(dma_addr);
1155 cid.identify.cns = cpu_to_le32(1);
1156
1157 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1158 if (res) {
1159 res = -EIO;
1160 goto out_free;
1161 }
1162
51814232
MW
1163 ctrl = id;
1164 nn = le32_to_cpup(&ctrl->nn);
1165 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1166 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1167 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba
MW
1168
1169 cid.identify.cns = 0;
1170 memset(&crt, 0, sizeof(crt));
1171 crt.features.opcode = nvme_admin_get_features;
1172 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1173 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1174
1175 for (i = 0; i < nn; i++) {
1176 cid.identify.nsid = cpu_to_le32(i);
1177 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1178 if (res)
1179 continue;
1180
1181 if (((struct nvme_id_ns *)id)->ncap == 0)
1182 continue;
1183
1184 crt.features.nsid = cpu_to_le32(i);
1185 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1186 if (res)
1187 continue;
1188
1189 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1190 if (ns)
1191 list_add_tail(&ns->list, &dev->namespaces);
1192 }
1193 list_for_each_entry(ns, &dev->namespaces, list)
1194 add_disk(ns->disk);
1195
1196 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1197 return 0;
1198
1199 out_free:
1200 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1201 list_del(&ns->list);
1202 nvme_ns_free(ns);
1203 }
1204
1205 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1206 return res;
1207}
1208
1209static int nvme_dev_remove(struct nvme_dev *dev)
1210{
1211 struct nvme_ns *ns, *next;
1212
1213 /* TODO: wait all I/O finished or cancel them */
1214
1215 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1216 list_del(&ns->list);
1217 del_gendisk(ns->disk);
1218 nvme_ns_free(ns);
1219 }
1220
1221 nvme_free_queues(dev);
1222
1223 return 0;
1224}
1225
1226/* XXX: Use an ida or something to let remove / add work correctly */
1227static void nvme_set_instance(struct nvme_dev *dev)
1228{
1229 static int instance;
1230 dev->instance = instance++;
1231}
1232
1233static void nvme_release_instance(struct nvme_dev *dev)
1234{
1235}
1236
1237static int __devinit nvme_probe(struct pci_dev *pdev,
1238 const struct pci_device_id *id)
1239{
574e8b95 1240 int bars, result = -ENOMEM;
b60503ba
MW
1241 struct nvme_dev *dev;
1242
1243 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1244 if (!dev)
1245 return -ENOMEM;
1246 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1247 GFP_KERNEL);
1248 if (!dev->entry)
1249 goto free;
1b23484b
MW
1250 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1251 GFP_KERNEL);
b60503ba
MW
1252 if (!dev->queues)
1253 goto free;
1254
0ee5a7d7
SMM
1255 if (pci_enable_device_mem(pdev))
1256 goto free;
f64d3365 1257 pci_set_master(pdev);
574e8b95
MW
1258 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1259 if (pci_request_selected_regions(pdev, bars, "nvme"))
1260 goto disable;
0ee5a7d7 1261
b60503ba
MW
1262 INIT_LIST_HEAD(&dev->namespaces);
1263 dev->pci_dev = pdev;
1264 pci_set_drvdata(pdev, dev);
2930353f
MW
1265 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1266 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1267 nvme_set_instance(dev);
53c9577e 1268 dev->entry[0].vector = pdev->irq;
b60503ba
MW
1269
1270 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1271 if (!dev->bar) {
1272 result = -ENOMEM;
574e8b95 1273 goto disable_msix;
b60503ba
MW
1274 }
1275
1276 result = nvme_configure_admin_queue(dev);
1277 if (result)
1278 goto unmap;
1279 dev->queue_count++;
1280
1281 result = nvme_dev_add(dev);
1282 if (result)
1283 goto delete;
1284 return 0;
1285
1286 delete:
1287 nvme_free_queues(dev);
1288 unmap:
1289 iounmap(dev->bar);
574e8b95 1290 disable_msix:
b60503ba
MW
1291 pci_disable_msix(pdev);
1292 nvme_release_instance(dev);
574e8b95 1293 disable:
0ee5a7d7 1294 pci_disable_device(pdev);
574e8b95 1295 pci_release_regions(pdev);
b60503ba
MW
1296 free:
1297 kfree(dev->queues);
1298 kfree(dev->entry);
1299 kfree(dev);
1300 return result;
1301}
1302
1303static void __devexit nvme_remove(struct pci_dev *pdev)
1304{
1305 struct nvme_dev *dev = pci_get_drvdata(pdev);
1306 nvme_dev_remove(dev);
1307 pci_disable_msix(pdev);
1308 iounmap(dev->bar);
1309 nvme_release_instance(dev);
0ee5a7d7 1310 pci_disable_device(pdev);
574e8b95 1311 pci_release_regions(pdev);
b60503ba
MW
1312 kfree(dev->queues);
1313 kfree(dev->entry);
1314 kfree(dev);
1315}
1316
1317/* These functions are yet to be implemented */
1318#define nvme_error_detected NULL
1319#define nvme_dump_registers NULL
1320#define nvme_link_reset NULL
1321#define nvme_slot_reset NULL
1322#define nvme_error_resume NULL
1323#define nvme_suspend NULL
1324#define nvme_resume NULL
1325
1326static struct pci_error_handlers nvme_err_handler = {
1327 .error_detected = nvme_error_detected,
1328 .mmio_enabled = nvme_dump_registers,
1329 .link_reset = nvme_link_reset,
1330 .slot_reset = nvme_slot_reset,
1331 .resume = nvme_error_resume,
1332};
1333
1334/* Move to pci_ids.h later */
1335#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1336
1337static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1338 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1339 { 0, }
1340};
1341MODULE_DEVICE_TABLE(pci, nvme_id_table);
1342
1343static struct pci_driver nvme_driver = {
1344 .name = "nvme",
1345 .id_table = nvme_id_table,
1346 .probe = nvme_probe,
1347 .remove = __devexit_p(nvme_remove),
1348 .suspend = nvme_suspend,
1349 .resume = nvme_resume,
1350 .err_handler = &nvme_err_handler,
1351};
1352
1353static int __init nvme_init(void)
1354{
1355 int result;
1356
1357 nvme_major = register_blkdev(nvme_major, "nvme");
1358 if (nvme_major <= 0)
1359 return -EBUSY;
1360
1361 result = pci_register_driver(&nvme_driver);
1362 if (!result)
1363 return 0;
1364
1365 unregister_blkdev(nvme_major, "nvme");
1366 return result;
1367}
1368
1369static void __exit nvme_exit(void)
1370{
1371 pci_unregister_driver(&nvme_driver);
1372 unregister_blkdev(nvme_major, "nvme");
1373}
1374
1375MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1376MODULE_LICENSE("GPL");
db5d0c19 1377MODULE_VERSION("0.2");
b60503ba
MW
1378module_init(nvme_init);
1379module_exit(nvme_exit);