]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: get rid of put_shared_dpll
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
79e53945 47
465c120c 48/* Primary plane formats for gen <= 3 */
568db4f2 49static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
465c120c 52 DRM_FORMAT_XRGB1555,
67fe7dc5 53 DRM_FORMAT_XRGB8888,
465c120c
MR
54};
55
56/* Primary plane formats for gen >= 4 */
568db4f2 57static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64};
65
66static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
465c120c 70 DRM_FORMAT_XBGR8888,
67fe7dc5 71 DRM_FORMAT_ARGB8888,
465c120c
MR
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
465c120c 74 DRM_FORMAT_XBGR2101010,
465c120c
MR
75};
76
3d7d6510
MR
77/* Cursor formats */
78static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80};
81
6b383a7f 82static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 83
f1f644dc 84static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 85 struct intel_crtc_state *pipe_config);
18442d08 86static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 87 struct intel_crtc_state *pipe_config);
f1f644dc 88
8c7b5ccb 89static int intel_set_mode(struct drm_crtc *crtc,
83a57153 90 struct drm_atomic_state *state);
eb1bfe80
JB
91static int intel_framebuffer_init(struct drm_device *dev,
92 struct intel_framebuffer *ifb,
93 struct drm_mode_fb_cmd2 *mode_cmd,
94 struct drm_i915_gem_object *obj);
5b18e57c
DV
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
98 struct intel_link_m_n *m_n,
99 struct intel_link_m_n *m2_n2);
29407aab 100static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
101static void haswell_set_pipeconf(struct drm_crtc *crtc);
102static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 103static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 104 const struct intel_crtc_state *pipe_config);
d288f65f 105static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 106 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
107static void intel_begin_crtc_commit(struct drm_crtc *crtc);
108static void intel_finish_crtc_commit(struct drm_crtc *crtc);
549e2bfb
CK
109static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
110 struct intel_crtc_state *crtc_state);
5ab7b0b7
ID
111static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
112 int num_connectors);
ce22dba9
ML
113static void intel_crtc_enable_planes(struct drm_crtc *crtc);
114static void intel_crtc_disable_planes(struct drm_crtc *crtc);
e7457a9a 115
0e32b39c
DA
116static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
117{
118 if (!connector->mst_port)
119 return connector->encoder;
120 else
121 return &connector->mst_port->mst_encoders[pipe]->base;
122}
123
79e53945 124typedef struct {
0206e353 125 int min, max;
79e53945
JB
126} intel_range_t;
127
128typedef struct {
0206e353
AJ
129 int dot_limit;
130 int p2_slow, p2_fast;
79e53945
JB
131} intel_p2_t;
132
d4906093
ML
133typedef struct intel_limit intel_limit_t;
134struct intel_limit {
0206e353
AJ
135 intel_range_t dot, vco, n, m, m1, m2, p, p1;
136 intel_p2_t p2;
d4906093 137};
79e53945 138
d2acd215
DV
139int
140intel_pch_rawclk(struct drm_device *dev)
141{
142 struct drm_i915_private *dev_priv = dev->dev_private;
143
144 WARN_ON(!HAS_PCH_SPLIT(dev));
145
146 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
147}
148
021357ac
CW
149static inline u32 /* units of 100MHz */
150intel_fdi_link_freq(struct drm_device *dev)
151{
8b99e68c
CW
152 if (IS_GEN5(dev)) {
153 struct drm_i915_private *dev_priv = dev->dev_private;
154 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
155 } else
156 return 27;
021357ac
CW
157}
158
5d536e28 159static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 160 .dot = { .min = 25000, .max = 350000 },
9c333719 161 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 162 .n = { .min = 2, .max = 16 },
0206e353
AJ
163 .m = { .min = 96, .max = 140 },
164 .m1 = { .min = 18, .max = 26 },
165 .m2 = { .min = 6, .max = 16 },
166 .p = { .min = 4, .max = 128 },
167 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
168 .p2 = { .dot_limit = 165000,
169 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
170};
171
5d536e28
DV
172static const intel_limit_t intel_limits_i8xx_dvo = {
173 .dot = { .min = 25000, .max = 350000 },
9c333719 174 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 175 .n = { .min = 2, .max = 16 },
5d536e28
DV
176 .m = { .min = 96, .max = 140 },
177 .m1 = { .min = 18, .max = 26 },
178 .m2 = { .min = 6, .max = 16 },
179 .p = { .min = 4, .max = 128 },
180 .p1 = { .min = 2, .max = 33 },
181 .p2 = { .dot_limit = 165000,
182 .p2_slow = 4, .p2_fast = 4 },
183};
184
e4b36699 185static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 186 .dot = { .min = 25000, .max = 350000 },
9c333719 187 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 188 .n = { .min = 2, .max = 16 },
0206e353
AJ
189 .m = { .min = 96, .max = 140 },
190 .m1 = { .min = 18, .max = 26 },
191 .m2 = { .min = 6, .max = 16 },
192 .p = { .min = 4, .max = 128 },
193 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
194 .p2 = { .dot_limit = 165000,
195 .p2_slow = 14, .p2_fast = 7 },
e4b36699 196};
273e27ca 197
e4b36699 198static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
199 .dot = { .min = 20000, .max = 400000 },
200 .vco = { .min = 1400000, .max = 2800000 },
201 .n = { .min = 1, .max = 6 },
202 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
203 .m1 = { .min = 8, .max = 18 },
204 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
205 .p = { .min = 5, .max = 80 },
206 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
207 .p2 = { .dot_limit = 200000,
208 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
209};
210
211static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
212 .dot = { .min = 20000, .max = 400000 },
213 .vco = { .min = 1400000, .max = 2800000 },
214 .n = { .min = 1, .max = 6 },
215 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
216 .m1 = { .min = 8, .max = 18 },
217 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
218 .p = { .min = 7, .max = 98 },
219 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
220 .p2 = { .dot_limit = 112000,
221 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
222};
223
273e27ca 224
e4b36699 225static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
226 .dot = { .min = 25000, .max = 270000 },
227 .vco = { .min = 1750000, .max = 3500000},
228 .n = { .min = 1, .max = 4 },
229 .m = { .min = 104, .max = 138 },
230 .m1 = { .min = 17, .max = 23 },
231 .m2 = { .min = 5, .max = 11 },
232 .p = { .min = 10, .max = 30 },
233 .p1 = { .min = 1, .max = 3},
234 .p2 = { .dot_limit = 270000,
235 .p2_slow = 10,
236 .p2_fast = 10
044c7c41 237 },
e4b36699
KP
238};
239
240static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
241 .dot = { .min = 22000, .max = 400000 },
242 .vco = { .min = 1750000, .max = 3500000},
243 .n = { .min = 1, .max = 4 },
244 .m = { .min = 104, .max = 138 },
245 .m1 = { .min = 16, .max = 23 },
246 .m2 = { .min = 5, .max = 11 },
247 .p = { .min = 5, .max = 80 },
248 .p1 = { .min = 1, .max = 8},
249 .p2 = { .dot_limit = 165000,
250 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
251};
252
253static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
254 .dot = { .min = 20000, .max = 115000 },
255 .vco = { .min = 1750000, .max = 3500000 },
256 .n = { .min = 1, .max = 3 },
257 .m = { .min = 104, .max = 138 },
258 .m1 = { .min = 17, .max = 23 },
259 .m2 = { .min = 5, .max = 11 },
260 .p = { .min = 28, .max = 112 },
261 .p1 = { .min = 2, .max = 8 },
262 .p2 = { .dot_limit = 0,
263 .p2_slow = 14, .p2_fast = 14
044c7c41 264 },
e4b36699
KP
265};
266
267static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
268 .dot = { .min = 80000, .max = 224000 },
269 .vco = { .min = 1750000, .max = 3500000 },
270 .n = { .min = 1, .max = 3 },
271 .m = { .min = 104, .max = 138 },
272 .m1 = { .min = 17, .max = 23 },
273 .m2 = { .min = 5, .max = 11 },
274 .p = { .min = 14, .max = 42 },
275 .p1 = { .min = 2, .max = 6 },
276 .p2 = { .dot_limit = 0,
277 .p2_slow = 7, .p2_fast = 7
044c7c41 278 },
e4b36699
KP
279};
280
f2b115e6 281static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
282 .dot = { .min = 20000, .max = 400000},
283 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 284 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
285 .n = { .min = 3, .max = 6 },
286 .m = { .min = 2, .max = 256 },
273e27ca 287 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
288 .m1 = { .min = 0, .max = 0 },
289 .m2 = { .min = 0, .max = 254 },
290 .p = { .min = 5, .max = 80 },
291 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
292 .p2 = { .dot_limit = 200000,
293 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
294};
295
f2b115e6 296static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
297 .dot = { .min = 20000, .max = 400000 },
298 .vco = { .min = 1700000, .max = 3500000 },
299 .n = { .min = 3, .max = 6 },
300 .m = { .min = 2, .max = 256 },
301 .m1 = { .min = 0, .max = 0 },
302 .m2 = { .min = 0, .max = 254 },
303 .p = { .min = 7, .max = 112 },
304 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
305 .p2 = { .dot_limit = 112000,
306 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
307};
308
273e27ca
EA
309/* Ironlake / Sandybridge
310 *
311 * We calculate clock using (register_value + 2) for N/M1/M2, so here
312 * the range value for them is (actual_value - 2).
313 */
b91ad0ec 314static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
315 .dot = { .min = 25000, .max = 350000 },
316 .vco = { .min = 1760000, .max = 3510000 },
317 .n = { .min = 1, .max = 5 },
318 .m = { .min = 79, .max = 127 },
319 .m1 = { .min = 12, .max = 22 },
320 .m2 = { .min = 5, .max = 9 },
321 .p = { .min = 5, .max = 80 },
322 .p1 = { .min = 1, .max = 8 },
323 .p2 = { .dot_limit = 225000,
324 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
325};
326
b91ad0ec 327static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
328 .dot = { .min = 25000, .max = 350000 },
329 .vco = { .min = 1760000, .max = 3510000 },
330 .n = { .min = 1, .max = 3 },
331 .m = { .min = 79, .max = 118 },
332 .m1 = { .min = 12, .max = 22 },
333 .m2 = { .min = 5, .max = 9 },
334 .p = { .min = 28, .max = 112 },
335 .p1 = { .min = 2, .max = 8 },
336 .p2 = { .dot_limit = 225000,
337 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
338};
339
340static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
341 .dot = { .min = 25000, .max = 350000 },
342 .vco = { .min = 1760000, .max = 3510000 },
343 .n = { .min = 1, .max = 3 },
344 .m = { .min = 79, .max = 127 },
345 .m1 = { .min = 12, .max = 22 },
346 .m2 = { .min = 5, .max = 9 },
347 .p = { .min = 14, .max = 56 },
348 .p1 = { .min = 2, .max = 8 },
349 .p2 = { .dot_limit = 225000,
350 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
351};
352
273e27ca 353/* LVDS 100mhz refclk limits. */
b91ad0ec 354static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
355 .dot = { .min = 25000, .max = 350000 },
356 .vco = { .min = 1760000, .max = 3510000 },
357 .n = { .min = 1, .max = 2 },
358 .m = { .min = 79, .max = 126 },
359 .m1 = { .min = 12, .max = 22 },
360 .m2 = { .min = 5, .max = 9 },
361 .p = { .min = 28, .max = 112 },
0206e353 362 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
363 .p2 = { .dot_limit = 225000,
364 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
365};
366
367static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
368 .dot = { .min = 25000, .max = 350000 },
369 .vco = { .min = 1760000, .max = 3510000 },
370 .n = { .min = 1, .max = 3 },
371 .m = { .min = 79, .max = 126 },
372 .m1 = { .min = 12, .max = 22 },
373 .m2 = { .min = 5, .max = 9 },
374 .p = { .min = 14, .max = 42 },
0206e353 375 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
376 .p2 = { .dot_limit = 225000,
377 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
378};
379
dc730512 380static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
381 /*
382 * These are the data rate limits (measured in fast clocks)
383 * since those are the strictest limits we have. The fast
384 * clock and actual rate limits are more relaxed, so checking
385 * them would make no difference.
386 */
387 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 388 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 389 .n = { .min = 1, .max = 7 },
a0c4da24
JB
390 .m1 = { .min = 2, .max = 3 },
391 .m2 = { .min = 11, .max = 156 },
b99ab663 392 .p1 = { .min = 2, .max = 3 },
5fdc9c49 393 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
394};
395
ef9348c8
CML
396static const intel_limit_t intel_limits_chv = {
397 /*
398 * These are the data rate limits (measured in fast clocks)
399 * since those are the strictest limits we have. The fast
400 * clock and actual rate limits are more relaxed, so checking
401 * them would make no difference.
402 */
403 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 404 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
405 .n = { .min = 1, .max = 1 },
406 .m1 = { .min = 2, .max = 2 },
407 .m2 = { .min = 24 << 22, .max = 175 << 22 },
408 .p1 = { .min = 2, .max = 4 },
409 .p2 = { .p2_slow = 1, .p2_fast = 14 },
410};
411
5ab7b0b7
ID
412static const intel_limit_t intel_limits_bxt = {
413 /* FIXME: find real dot limits */
414 .dot = { .min = 0, .max = INT_MAX },
415 .vco = { .min = 4800000, .max = 6480000 },
416 .n = { .min = 1, .max = 1 },
417 .m1 = { .min = 2, .max = 2 },
418 /* FIXME: find real m2 limits */
419 .m2 = { .min = 2 << 22, .max = 255 << 22 },
420 .p1 = { .min = 2, .max = 4 },
421 .p2 = { .p2_slow = 1, .p2_fast = 20 },
422};
423
6b4bf1c4
VS
424static void vlv_clock(int refclk, intel_clock_t *clock)
425{
426 clock->m = clock->m1 * clock->m2;
427 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
428 if (WARN_ON(clock->n == 0 || clock->p == 0))
429 return;
fb03ac01
VS
430 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
431 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
432}
433
e0638cdf
PZ
434/**
435 * Returns whether any output on the specified pipe is of the specified type
436 */
4093561b 437bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 438{
409ee761 439 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
440 struct intel_encoder *encoder;
441
409ee761 442 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
443 if (encoder->type == type)
444 return true;
445
446 return false;
447}
448
d0737e1d
ACO
449/**
450 * Returns whether any output on the specified pipe will have the specified
451 * type after a staged modeset is complete, i.e., the same as
452 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
453 * encoder->crtc.
454 */
a93e255f
ACO
455static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
456 int type)
d0737e1d 457{
a93e255f 458 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 459 struct drm_connector *connector;
a93e255f 460 struct drm_connector_state *connector_state;
d0737e1d 461 struct intel_encoder *encoder;
a93e255f
ACO
462 int i, num_connectors = 0;
463
da3ced29 464 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
465 if (connector_state->crtc != crtc_state->base.crtc)
466 continue;
467
468 num_connectors++;
d0737e1d 469
a93e255f
ACO
470 encoder = to_intel_encoder(connector_state->best_encoder);
471 if (encoder->type == type)
d0737e1d 472 return true;
a93e255f
ACO
473 }
474
475 WARN_ON(num_connectors == 0);
d0737e1d
ACO
476
477 return false;
478}
479
a93e255f
ACO
480static const intel_limit_t *
481intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 482{
a93e255f 483 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 484 const intel_limit_t *limit;
b91ad0ec 485
a93e255f 486 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 487 if (intel_is_dual_link_lvds(dev)) {
1b894b59 488 if (refclk == 100000)
b91ad0ec
ZW
489 limit = &intel_limits_ironlake_dual_lvds_100m;
490 else
491 limit = &intel_limits_ironlake_dual_lvds;
492 } else {
1b894b59 493 if (refclk == 100000)
b91ad0ec
ZW
494 limit = &intel_limits_ironlake_single_lvds_100m;
495 else
496 limit = &intel_limits_ironlake_single_lvds;
497 }
c6bb3538 498 } else
b91ad0ec 499 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
500
501 return limit;
502}
503
a93e255f
ACO
504static const intel_limit_t *
505intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 506{
a93e255f 507 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
508 const intel_limit_t *limit;
509
a93e255f 510 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 511 if (intel_is_dual_link_lvds(dev))
e4b36699 512 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 513 else
e4b36699 514 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
515 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
516 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 517 limit = &intel_limits_g4x_hdmi;
a93e255f 518 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 519 limit = &intel_limits_g4x_sdvo;
044c7c41 520 } else /* The option is for other outputs */
e4b36699 521 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
522
523 return limit;
524}
525
a93e255f
ACO
526static const intel_limit_t *
527intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 528{
a93e255f 529 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
530 const intel_limit_t *limit;
531
5ab7b0b7
ID
532 if (IS_BROXTON(dev))
533 limit = &intel_limits_bxt;
534 else if (HAS_PCH_SPLIT(dev))
a93e255f 535 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 536 else if (IS_G4X(dev)) {
a93e255f 537 limit = intel_g4x_limit(crtc_state);
f2b115e6 538 } else if (IS_PINEVIEW(dev)) {
a93e255f 539 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 540 limit = &intel_limits_pineview_lvds;
2177832f 541 else
f2b115e6 542 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
543 } else if (IS_CHERRYVIEW(dev)) {
544 limit = &intel_limits_chv;
a0c4da24 545 } else if (IS_VALLEYVIEW(dev)) {
dc730512 546 limit = &intel_limits_vlv;
a6c45cf0 547 } else if (!IS_GEN2(dev)) {
a93e255f 548 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
549 limit = &intel_limits_i9xx_lvds;
550 else
551 limit = &intel_limits_i9xx_sdvo;
79e53945 552 } else {
a93e255f 553 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 554 limit = &intel_limits_i8xx_lvds;
a93e255f 555 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 556 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
557 else
558 limit = &intel_limits_i8xx_dac;
79e53945
JB
559 }
560 return limit;
561}
562
f2b115e6
AJ
563/* m1 is reserved as 0 in Pineview, n is a ring counter */
564static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 565{
2177832f
SL
566 clock->m = clock->m2 + 2;
567 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
568 if (WARN_ON(clock->n == 0 || clock->p == 0))
569 return;
fb03ac01
VS
570 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
571 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
572}
573
7429e9d4
DV
574static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
575{
576 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
577}
578
ac58c3f0 579static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 580{
7429e9d4 581 clock->m = i9xx_dpll_compute_m(clock);
79e53945 582 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
583 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
584 return;
fb03ac01
VS
585 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
586 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
587}
588
ef9348c8
CML
589static void chv_clock(int refclk, intel_clock_t *clock)
590{
591 clock->m = clock->m1 * clock->m2;
592 clock->p = clock->p1 * clock->p2;
593 if (WARN_ON(clock->n == 0 || clock->p == 0))
594 return;
595 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
596 clock->n << 22);
597 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
598}
599
7c04d1d9 600#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
601/**
602 * Returns whether the given set of divisors are valid for a given refclk with
603 * the given connectors.
604 */
605
1b894b59
CW
606static bool intel_PLL_is_valid(struct drm_device *dev,
607 const intel_limit_t *limit,
608 const intel_clock_t *clock)
79e53945 609{
f01b7962
VS
610 if (clock->n < limit->n.min || limit->n.max < clock->n)
611 INTELPllInvalid("n out of range\n");
79e53945 612 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 613 INTELPllInvalid("p1 out of range\n");
79e53945 614 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 615 INTELPllInvalid("m2 out of range\n");
79e53945 616 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 617 INTELPllInvalid("m1 out of range\n");
f01b7962 618
5ab7b0b7 619 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
620 if (clock->m1 <= clock->m2)
621 INTELPllInvalid("m1 <= m2\n");
622
5ab7b0b7 623 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
624 if (clock->p < limit->p.min || limit->p.max < clock->p)
625 INTELPllInvalid("p out of range\n");
626 if (clock->m < limit->m.min || limit->m.max < clock->m)
627 INTELPllInvalid("m out of range\n");
628 }
629
79e53945 630 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 631 INTELPllInvalid("vco out of range\n");
79e53945
JB
632 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
633 * connector, etc., rather than just a single range.
634 */
635 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 636 INTELPllInvalid("dot out of range\n");
79e53945
JB
637
638 return true;
639}
640
d4906093 641static bool
a93e255f
ACO
642i9xx_find_best_dpll(const intel_limit_t *limit,
643 struct intel_crtc_state *crtc_state,
cec2f356
SP
644 int target, int refclk, intel_clock_t *match_clock,
645 intel_clock_t *best_clock)
79e53945 646{
a93e255f 647 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 648 struct drm_device *dev = crtc->base.dev;
79e53945 649 intel_clock_t clock;
79e53945
JB
650 int err = target;
651
a93e255f 652 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 653 /*
a210b028
DV
654 * For LVDS just rely on its current settings for dual-channel.
655 * We haven't figured out how to reliably set up different
656 * single/dual channel state, if we even can.
79e53945 657 */
1974cad0 658 if (intel_is_dual_link_lvds(dev))
79e53945
JB
659 clock.p2 = limit->p2.p2_fast;
660 else
661 clock.p2 = limit->p2.p2_slow;
662 } else {
663 if (target < limit->p2.dot_limit)
664 clock.p2 = limit->p2.p2_slow;
665 else
666 clock.p2 = limit->p2.p2_fast;
667 }
668
0206e353 669 memset(best_clock, 0, sizeof(*best_clock));
79e53945 670
42158660
ZY
671 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672 clock.m1++) {
673 for (clock.m2 = limit->m2.min;
674 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 675 if (clock.m2 >= clock.m1)
42158660
ZY
676 break;
677 for (clock.n = limit->n.min;
678 clock.n <= limit->n.max; clock.n++) {
679 for (clock.p1 = limit->p1.min;
680 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
681 int this_err;
682
ac58c3f0
DV
683 i9xx_clock(refclk, &clock);
684 if (!intel_PLL_is_valid(dev, limit,
685 &clock))
686 continue;
687 if (match_clock &&
688 clock.p != match_clock->p)
689 continue;
690
691 this_err = abs(clock.dot - target);
692 if (this_err < err) {
693 *best_clock = clock;
694 err = this_err;
695 }
696 }
697 }
698 }
699 }
700
701 return (err != target);
702}
703
704static bool
a93e255f
ACO
705pnv_find_best_dpll(const intel_limit_t *limit,
706 struct intel_crtc_state *crtc_state,
ee9300bb
DV
707 int target, int refclk, intel_clock_t *match_clock,
708 intel_clock_t *best_clock)
79e53945 709{
a93e255f 710 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 711 struct drm_device *dev = crtc->base.dev;
79e53945 712 intel_clock_t clock;
79e53945
JB
713 int err = target;
714
a93e255f 715 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 716 /*
a210b028
DV
717 * For LVDS just rely on its current settings for dual-channel.
718 * We haven't figured out how to reliably set up different
719 * single/dual channel state, if we even can.
79e53945 720 */
1974cad0 721 if (intel_is_dual_link_lvds(dev))
79e53945
JB
722 clock.p2 = limit->p2.p2_fast;
723 else
724 clock.p2 = limit->p2.p2_slow;
725 } else {
726 if (target < limit->p2.dot_limit)
727 clock.p2 = limit->p2.p2_slow;
728 else
729 clock.p2 = limit->p2.p2_fast;
730 }
731
0206e353 732 memset(best_clock, 0, sizeof(*best_clock));
79e53945 733
42158660
ZY
734 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
735 clock.m1++) {
736 for (clock.m2 = limit->m2.min;
737 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
738 for (clock.n = limit->n.min;
739 clock.n <= limit->n.max; clock.n++) {
740 for (clock.p1 = limit->p1.min;
741 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
742 int this_err;
743
ac58c3f0 744 pineview_clock(refclk, &clock);
1b894b59
CW
745 if (!intel_PLL_is_valid(dev, limit,
746 &clock))
79e53945 747 continue;
cec2f356
SP
748 if (match_clock &&
749 clock.p != match_clock->p)
750 continue;
79e53945
JB
751
752 this_err = abs(clock.dot - target);
753 if (this_err < err) {
754 *best_clock = clock;
755 err = this_err;
756 }
757 }
758 }
759 }
760 }
761
762 return (err != target);
763}
764
d4906093 765static bool
a93e255f
ACO
766g4x_find_best_dpll(const intel_limit_t *limit,
767 struct intel_crtc_state *crtc_state,
ee9300bb
DV
768 int target, int refclk, intel_clock_t *match_clock,
769 intel_clock_t *best_clock)
d4906093 770{
a93e255f 771 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 772 struct drm_device *dev = crtc->base.dev;
d4906093
ML
773 intel_clock_t clock;
774 int max_n;
775 bool found;
6ba770dc
AJ
776 /* approximately equals target * 0.00585 */
777 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
778 found = false;
779
a93e255f 780 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 781 if (intel_is_dual_link_lvds(dev))
d4906093
ML
782 clock.p2 = limit->p2.p2_fast;
783 else
784 clock.p2 = limit->p2.p2_slow;
785 } else {
786 if (target < limit->p2.dot_limit)
787 clock.p2 = limit->p2.p2_slow;
788 else
789 clock.p2 = limit->p2.p2_fast;
790 }
791
792 memset(best_clock, 0, sizeof(*best_clock));
793 max_n = limit->n.max;
f77f13e2 794 /* based on hardware requirement, prefer smaller n to precision */
d4906093 795 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 796 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
797 for (clock.m1 = limit->m1.max;
798 clock.m1 >= limit->m1.min; clock.m1--) {
799 for (clock.m2 = limit->m2.max;
800 clock.m2 >= limit->m2.min; clock.m2--) {
801 for (clock.p1 = limit->p1.max;
802 clock.p1 >= limit->p1.min; clock.p1--) {
803 int this_err;
804
ac58c3f0 805 i9xx_clock(refclk, &clock);
1b894b59
CW
806 if (!intel_PLL_is_valid(dev, limit,
807 &clock))
d4906093 808 continue;
1b894b59
CW
809
810 this_err = abs(clock.dot - target);
d4906093
ML
811 if (this_err < err_most) {
812 *best_clock = clock;
813 err_most = this_err;
814 max_n = clock.n;
815 found = true;
816 }
817 }
818 }
819 }
820 }
2c07245f
ZW
821 return found;
822}
823
d5dd62bd
ID
824/*
825 * Check if the calculated PLL configuration is more optimal compared to the
826 * best configuration and error found so far. Return the calculated error.
827 */
828static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
829 const intel_clock_t *calculated_clock,
830 const intel_clock_t *best_clock,
831 unsigned int best_error_ppm,
832 unsigned int *error_ppm)
833{
9ca3ba01
ID
834 /*
835 * For CHV ignore the error and consider only the P value.
836 * Prefer a bigger P value based on HW requirements.
837 */
838 if (IS_CHERRYVIEW(dev)) {
839 *error_ppm = 0;
840
841 return calculated_clock->p > best_clock->p;
842 }
843
24be4e46
ID
844 if (WARN_ON_ONCE(!target_freq))
845 return false;
846
d5dd62bd
ID
847 *error_ppm = div_u64(1000000ULL *
848 abs(target_freq - calculated_clock->dot),
849 target_freq);
850 /*
851 * Prefer a better P value over a better (smaller) error if the error
852 * is small. Ensure this preference for future configurations too by
853 * setting the error to 0.
854 */
855 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
856 *error_ppm = 0;
857
858 return true;
859 }
860
861 return *error_ppm + 10 < best_error_ppm;
862}
863
a0c4da24 864static bool
a93e255f
ACO
865vlv_find_best_dpll(const intel_limit_t *limit,
866 struct intel_crtc_state *crtc_state,
ee9300bb
DV
867 int target, int refclk, intel_clock_t *match_clock,
868 intel_clock_t *best_clock)
a0c4da24 869{
a93e255f 870 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 871 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 872 intel_clock_t clock;
69e4f900 873 unsigned int bestppm = 1000000;
27e639bf
VS
874 /* min update 19.2 MHz */
875 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 876 bool found = false;
a0c4da24 877
6b4bf1c4
VS
878 target *= 5; /* fast clock */
879
880 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
881
882 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 883 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 884 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 885 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 886 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 887 clock.p = clock.p1 * clock.p2;
a0c4da24 888 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 889 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 890 unsigned int ppm;
69e4f900 891
6b4bf1c4
VS
892 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
893 refclk * clock.m1);
894
895 vlv_clock(refclk, &clock);
43b0ac53 896
f01b7962
VS
897 if (!intel_PLL_is_valid(dev, limit,
898 &clock))
43b0ac53
VS
899 continue;
900
d5dd62bd
ID
901 if (!vlv_PLL_is_optimal(dev, target,
902 &clock,
903 best_clock,
904 bestppm, &ppm))
905 continue;
6b4bf1c4 906
d5dd62bd
ID
907 *best_clock = clock;
908 bestppm = ppm;
909 found = true;
a0c4da24
JB
910 }
911 }
912 }
913 }
a0c4da24 914
49e497ef 915 return found;
a0c4da24 916}
a4fc5ed6 917
ef9348c8 918static bool
a93e255f
ACO
919chv_find_best_dpll(const intel_limit_t *limit,
920 struct intel_crtc_state *crtc_state,
ef9348c8
CML
921 int target, int refclk, intel_clock_t *match_clock,
922 intel_clock_t *best_clock)
923{
a93e255f 924 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 925 struct drm_device *dev = crtc->base.dev;
9ca3ba01 926 unsigned int best_error_ppm;
ef9348c8
CML
927 intel_clock_t clock;
928 uint64_t m2;
929 int found = false;
930
931 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 932 best_error_ppm = 1000000;
ef9348c8
CML
933
934 /*
935 * Based on hardware doc, the n always set to 1, and m1 always
936 * set to 2. If requires to support 200Mhz refclk, we need to
937 * revisit this because n may not 1 anymore.
938 */
939 clock.n = 1, clock.m1 = 2;
940 target *= 5; /* fast clock */
941
942 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
943 for (clock.p2 = limit->p2.p2_fast;
944 clock.p2 >= limit->p2.p2_slow;
945 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 946 unsigned int error_ppm;
ef9348c8
CML
947
948 clock.p = clock.p1 * clock.p2;
949
950 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
951 clock.n) << 22, refclk * clock.m1);
952
953 if (m2 > INT_MAX/clock.m1)
954 continue;
955
956 clock.m2 = m2;
957
958 chv_clock(refclk, &clock);
959
960 if (!intel_PLL_is_valid(dev, limit, &clock))
961 continue;
962
9ca3ba01
ID
963 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
964 best_error_ppm, &error_ppm))
965 continue;
966
967 *best_clock = clock;
968 best_error_ppm = error_ppm;
969 found = true;
ef9348c8
CML
970 }
971 }
972
973 return found;
974}
975
5ab7b0b7
ID
976bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
977 intel_clock_t *best_clock)
978{
979 int refclk = i9xx_get_refclk(crtc_state, 0);
980
981 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
982 target_clock, refclk, NULL, best_clock);
983}
984
20ddf665
VS
985bool intel_crtc_active(struct drm_crtc *crtc)
986{
987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
988
989 /* Be paranoid as we can arrive here with only partial
990 * state retrieved from the hardware during setup.
991 *
241bfc38 992 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
993 * as Haswell has gained clock readout/fastboot support.
994 *
66e514c1 995 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 996 * properly reconstruct framebuffers.
c3d1f436
MR
997 *
998 * FIXME: The intel_crtc->active here should be switched to
999 * crtc->state->active once we have proper CRTC states wired up
1000 * for atomic.
20ddf665 1001 */
c3d1f436 1002 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1003 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1004}
1005
a5c961d1
PZ
1006enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1007 enum pipe pipe)
1008{
1009 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1011
6e3c9717 1012 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1013}
1014
fbf49ea2
VS
1015static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1016{
1017 struct drm_i915_private *dev_priv = dev->dev_private;
1018 u32 reg = PIPEDSL(pipe);
1019 u32 line1, line2;
1020 u32 line_mask;
1021
1022 if (IS_GEN2(dev))
1023 line_mask = DSL_LINEMASK_GEN2;
1024 else
1025 line_mask = DSL_LINEMASK_GEN3;
1026
1027 line1 = I915_READ(reg) & line_mask;
1028 mdelay(5);
1029 line2 = I915_READ(reg) & line_mask;
1030
1031 return line1 == line2;
1032}
1033
ab7ad7f6
KP
1034/*
1035 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1036 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1037 *
1038 * After disabling a pipe, we can't wait for vblank in the usual way,
1039 * spinning on the vblank interrupt status bit, since we won't actually
1040 * see an interrupt when the pipe is disabled.
1041 *
ab7ad7f6
KP
1042 * On Gen4 and above:
1043 * wait for the pipe register state bit to turn off
1044 *
1045 * Otherwise:
1046 * wait for the display line value to settle (it usually
1047 * ends up stopping at the start of the next frame).
58e10eb9 1048 *
9d0498a2 1049 */
575f7ab7 1050static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1051{
575f7ab7 1052 struct drm_device *dev = crtc->base.dev;
9d0498a2 1053 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1054 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1055 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1056
1057 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1058 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1059
1060 /* Wait for the Pipe State to go off */
58e10eb9
CW
1061 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1062 100))
284637d9 1063 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1064 } else {
ab7ad7f6 1065 /* Wait for the display line to settle */
fbf49ea2 1066 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1067 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1068 }
79e53945
JB
1069}
1070
b0ea7d37
DL
1071/*
1072 * ibx_digital_port_connected - is the specified port connected?
1073 * @dev_priv: i915 private structure
1074 * @port: the port to test
1075 *
1076 * Returns true if @port is connected, false otherwise.
1077 */
1078bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1079 struct intel_digital_port *port)
1080{
1081 u32 bit;
1082
c36346e3 1083 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1084 switch (port->port) {
c36346e3
DL
1085 case PORT_B:
1086 bit = SDE_PORTB_HOTPLUG;
1087 break;
1088 case PORT_C:
1089 bit = SDE_PORTC_HOTPLUG;
1090 break;
1091 case PORT_D:
1092 bit = SDE_PORTD_HOTPLUG;
1093 break;
1094 default:
1095 return true;
1096 }
1097 } else {
eba905b2 1098 switch (port->port) {
c36346e3
DL
1099 case PORT_B:
1100 bit = SDE_PORTB_HOTPLUG_CPT;
1101 break;
1102 case PORT_C:
1103 bit = SDE_PORTC_HOTPLUG_CPT;
1104 break;
1105 case PORT_D:
1106 bit = SDE_PORTD_HOTPLUG_CPT;
1107 break;
1108 default:
1109 return true;
1110 }
b0ea7d37
DL
1111 }
1112
1113 return I915_READ(SDEISR) & bit;
1114}
1115
b24e7179
JB
1116static const char *state_string(bool enabled)
1117{
1118 return enabled ? "on" : "off";
1119}
1120
1121/* Only for pre-ILK configs */
55607e8a
DV
1122void assert_pll(struct drm_i915_private *dev_priv,
1123 enum pipe pipe, bool state)
b24e7179
JB
1124{
1125 int reg;
1126 u32 val;
1127 bool cur_state;
1128
1129 reg = DPLL(pipe);
1130 val = I915_READ(reg);
1131 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1132 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1133 "PLL state assertion failure (expected %s, current %s)\n",
1134 state_string(state), state_string(cur_state));
1135}
b24e7179 1136
23538ef1
JN
1137/* XXX: the dsi pll is shared between MIPI DSI ports */
1138static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1139{
1140 u32 val;
1141 bool cur_state;
1142
a580516d 1143 mutex_lock(&dev_priv->sb_lock);
23538ef1 1144 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1145 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1146
1147 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1148 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1149 "DSI PLL state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151}
1152#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1153#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1154
55607e8a 1155struct intel_shared_dpll *
e2b78267
DV
1156intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1157{
1158 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1159
6e3c9717 1160 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1161 return NULL;
1162
6e3c9717 1163 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1164}
1165
040484af 1166/* For ILK+ */
55607e8a
DV
1167void assert_shared_dpll(struct drm_i915_private *dev_priv,
1168 struct intel_shared_dpll *pll,
1169 bool state)
040484af 1170{
040484af 1171 bool cur_state;
5358901f 1172 struct intel_dpll_hw_state hw_state;
040484af 1173
92b27b08 1174 if (WARN (!pll,
46edb027 1175 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1176 return;
ee7b9f93 1177
5358901f 1178 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1179 I915_STATE_WARN(cur_state != state,
5358901f
DV
1180 "%s assertion failure (expected %s, current %s)\n",
1181 pll->name, state_string(state), state_string(cur_state));
040484af 1182}
040484af
JB
1183
1184static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1185 enum pipe pipe, bool state)
1186{
1187 int reg;
1188 u32 val;
1189 bool cur_state;
ad80a810
PZ
1190 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1191 pipe);
040484af 1192
affa9354
PZ
1193 if (HAS_DDI(dev_priv->dev)) {
1194 /* DDI does not have a specific FDI_TX register */
ad80a810 1195 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1196 val = I915_READ(reg);
ad80a810 1197 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1198 } else {
1199 reg = FDI_TX_CTL(pipe);
1200 val = I915_READ(reg);
1201 cur_state = !!(val & FDI_TX_ENABLE);
1202 }
e2c719b7 1203 I915_STATE_WARN(cur_state != state,
040484af
JB
1204 "FDI TX state assertion failure (expected %s, current %s)\n",
1205 state_string(state), state_string(cur_state));
1206}
1207#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1208#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1209
1210static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1211 enum pipe pipe, bool state)
1212{
1213 int reg;
1214 u32 val;
1215 bool cur_state;
1216
d63fa0dc
PZ
1217 reg = FDI_RX_CTL(pipe);
1218 val = I915_READ(reg);
1219 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1220 I915_STATE_WARN(cur_state != state,
040484af
JB
1221 "FDI RX state assertion failure (expected %s, current %s)\n",
1222 state_string(state), state_string(cur_state));
1223}
1224#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1225#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1226
1227static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1228 enum pipe pipe)
1229{
1230 int reg;
1231 u32 val;
1232
1233 /* ILK FDI PLL is always enabled */
3d13ef2e 1234 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1235 return;
1236
bf507ef7 1237 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1238 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1239 return;
1240
040484af
JB
1241 reg = FDI_TX_CTL(pipe);
1242 val = I915_READ(reg);
e2c719b7 1243 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1244}
1245
55607e8a
DV
1246void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1247 enum pipe pipe, bool state)
040484af
JB
1248{
1249 int reg;
1250 u32 val;
55607e8a 1251 bool cur_state;
040484af
JB
1252
1253 reg = FDI_RX_CTL(pipe);
1254 val = I915_READ(reg);
55607e8a 1255 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1256 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1257 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1258 state_string(state), state_string(cur_state));
040484af
JB
1259}
1260
b680c37a
DV
1261void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1262 enum pipe pipe)
ea0760cf 1263{
bedd4dba
JN
1264 struct drm_device *dev = dev_priv->dev;
1265 int pp_reg;
ea0760cf
JB
1266 u32 val;
1267 enum pipe panel_pipe = PIPE_A;
0de3b485 1268 bool locked = true;
ea0760cf 1269
bedd4dba
JN
1270 if (WARN_ON(HAS_DDI(dev)))
1271 return;
1272
1273 if (HAS_PCH_SPLIT(dev)) {
1274 u32 port_sel;
1275
ea0760cf 1276 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1277 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1278
1279 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1280 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1281 panel_pipe = PIPE_B;
1282 /* XXX: else fix for eDP */
1283 } else if (IS_VALLEYVIEW(dev)) {
1284 /* presumably write lock depends on pipe, not port select */
1285 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1286 panel_pipe = pipe;
ea0760cf
JB
1287 } else {
1288 pp_reg = PP_CONTROL;
bedd4dba
JN
1289 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1290 panel_pipe = PIPE_B;
ea0760cf
JB
1291 }
1292
1293 val = I915_READ(pp_reg);
1294 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1295 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1296 locked = false;
1297
e2c719b7 1298 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1299 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1300 pipe_name(pipe));
ea0760cf
JB
1301}
1302
93ce0ba6
JN
1303static void assert_cursor(struct drm_i915_private *dev_priv,
1304 enum pipe pipe, bool state)
1305{
1306 struct drm_device *dev = dev_priv->dev;
1307 bool cur_state;
1308
d9d82081 1309 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1310 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1311 else
5efb3e28 1312 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1313
e2c719b7 1314 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1315 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1316 pipe_name(pipe), state_string(state), state_string(cur_state));
1317}
1318#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1319#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1320
b840d907
JB
1321void assert_pipe(struct drm_i915_private *dev_priv,
1322 enum pipe pipe, bool state)
b24e7179
JB
1323{
1324 int reg;
1325 u32 val;
63d7bbe9 1326 bool cur_state;
702e7a56
PZ
1327 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1328 pipe);
b24e7179 1329
b6b5d049
VS
1330 /* if we need the pipe quirk it must be always on */
1331 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1332 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1333 state = true;
1334
f458ebbc 1335 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1336 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1337 cur_state = false;
1338 } else {
1339 reg = PIPECONF(cpu_transcoder);
1340 val = I915_READ(reg);
1341 cur_state = !!(val & PIPECONF_ENABLE);
1342 }
1343
e2c719b7 1344 I915_STATE_WARN(cur_state != state,
63d7bbe9 1345 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1346 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1347}
1348
931872fc
CW
1349static void assert_plane(struct drm_i915_private *dev_priv,
1350 enum plane plane, bool state)
b24e7179
JB
1351{
1352 int reg;
1353 u32 val;
931872fc 1354 bool cur_state;
b24e7179
JB
1355
1356 reg = DSPCNTR(plane);
1357 val = I915_READ(reg);
931872fc 1358 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1359 I915_STATE_WARN(cur_state != state,
931872fc
CW
1360 "plane %c assertion failure (expected %s, current %s)\n",
1361 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1362}
1363
931872fc
CW
1364#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1365#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1366
b24e7179
JB
1367static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1368 enum pipe pipe)
1369{
653e1026 1370 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1371 int reg, i;
1372 u32 val;
1373 int cur_pipe;
1374
653e1026
VS
1375 /* Primary planes are fixed to pipes on gen4+ */
1376 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1377 reg = DSPCNTR(pipe);
1378 val = I915_READ(reg);
e2c719b7 1379 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1380 "plane %c assertion failure, should be disabled but not\n",
1381 plane_name(pipe));
19ec1358 1382 return;
28c05794 1383 }
19ec1358 1384
b24e7179 1385 /* Need to check both planes against the pipe */
055e393f 1386 for_each_pipe(dev_priv, i) {
b24e7179
JB
1387 reg = DSPCNTR(i);
1388 val = I915_READ(reg);
1389 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1390 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1391 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1392 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1393 plane_name(i), pipe_name(pipe));
b24e7179
JB
1394 }
1395}
1396
19332d7a
JB
1397static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399{
20674eef 1400 struct drm_device *dev = dev_priv->dev;
1fe47785 1401 int reg, sprite;
19332d7a
JB
1402 u32 val;
1403
7feb8b88 1404 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1405 for_each_sprite(dev_priv, pipe, sprite) {
7feb8b88 1406 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1407 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1408 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1409 sprite, pipe_name(pipe));
1410 }
1411 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1412 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 1413 reg = SPCNTR(pipe, sprite);
20674eef 1414 val = I915_READ(reg);
e2c719b7 1415 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1416 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1417 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1418 }
1419 } else if (INTEL_INFO(dev)->gen >= 7) {
1420 reg = SPRCTL(pipe);
19332d7a 1421 val = I915_READ(reg);
e2c719b7 1422 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1423 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1424 plane_name(pipe), pipe_name(pipe));
1425 } else if (INTEL_INFO(dev)->gen >= 5) {
1426 reg = DVSCNTR(pipe);
19332d7a 1427 val = I915_READ(reg);
e2c719b7 1428 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1429 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1430 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1431 }
1432}
1433
08c71e5e
VS
1434static void assert_vblank_disabled(struct drm_crtc *crtc)
1435{
e2c719b7 1436 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1437 drm_crtc_vblank_put(crtc);
1438}
1439
89eff4be 1440static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1441{
1442 u32 val;
1443 bool enabled;
1444
e2c719b7 1445 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1446
92f2584a
JB
1447 val = I915_READ(PCH_DREF_CONTROL);
1448 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1449 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1450 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1451}
1452
ab9412ba
DV
1453static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe)
92f2584a
JB
1455{
1456 int reg;
1457 u32 val;
1458 bool enabled;
1459
ab9412ba 1460 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1461 val = I915_READ(reg);
1462 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1463 I915_STATE_WARN(enabled,
9db4a9c7
JB
1464 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1465 pipe_name(pipe));
92f2584a
JB
1466}
1467
4e634389
KP
1468static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1469 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1470{
1471 if ((val & DP_PORT_EN) == 0)
1472 return false;
1473
1474 if (HAS_PCH_CPT(dev_priv->dev)) {
1475 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1476 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1477 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1478 return false;
44f37d1f
CML
1479 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1480 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1481 return false;
f0575e92
KP
1482 } else {
1483 if ((val & DP_PIPE_MASK) != (pipe << 30))
1484 return false;
1485 }
1486 return true;
1487}
1488
1519b995
KP
1489static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1490 enum pipe pipe, u32 val)
1491{
dc0fa718 1492 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1493 return false;
1494
1495 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1496 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1497 return false;
44f37d1f
CML
1498 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1499 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1500 return false;
1519b995 1501 } else {
dc0fa718 1502 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1503 return false;
1504 }
1505 return true;
1506}
1507
1508static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1509 enum pipe pipe, u32 val)
1510{
1511 if ((val & LVDS_PORT_EN) == 0)
1512 return false;
1513
1514 if (HAS_PCH_CPT(dev_priv->dev)) {
1515 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1516 return false;
1517 } else {
1518 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1519 return false;
1520 }
1521 return true;
1522}
1523
1524static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1525 enum pipe pipe, u32 val)
1526{
1527 if ((val & ADPA_DAC_ENABLE) == 0)
1528 return false;
1529 if (HAS_PCH_CPT(dev_priv->dev)) {
1530 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1531 return false;
1532 } else {
1533 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1534 return false;
1535 }
1536 return true;
1537}
1538
291906f1 1539static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1540 enum pipe pipe, int reg, u32 port_sel)
291906f1 1541{
47a05eca 1542 u32 val = I915_READ(reg);
e2c719b7 1543 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1544 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1545 reg, pipe_name(pipe));
de9a35ab 1546
e2c719b7 1547 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1548 && (val & DP_PIPEB_SELECT),
de9a35ab 1549 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1550}
1551
1552static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1553 enum pipe pipe, int reg)
1554{
47a05eca 1555 u32 val = I915_READ(reg);
e2c719b7 1556 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1557 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1558 reg, pipe_name(pipe));
de9a35ab 1559
e2c719b7 1560 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1561 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1562 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1563}
1564
1565static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1566 enum pipe pipe)
1567{
1568 int reg;
1569 u32 val;
291906f1 1570
f0575e92
KP
1571 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1572 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1573 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1574
1575 reg = PCH_ADPA;
1576 val = I915_READ(reg);
e2c719b7 1577 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1578 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1579 pipe_name(pipe));
291906f1
JB
1580
1581 reg = PCH_LVDS;
1582 val = I915_READ(reg);
e2c719b7 1583 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1584 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1585 pipe_name(pipe));
291906f1 1586
e2debe91
PZ
1587 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1588 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1589 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1590}
1591
40e9cf64
JB
1592static void intel_init_dpio(struct drm_device *dev)
1593{
1594 struct drm_i915_private *dev_priv = dev->dev_private;
1595
1596 if (!IS_VALLEYVIEW(dev))
1597 return;
1598
a09caddd
CML
1599 /*
1600 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1601 * CHV x1 PHY (DP/HDMI D)
1602 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1603 */
1604 if (IS_CHERRYVIEW(dev)) {
1605 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1606 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1607 } else {
1608 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1609 }
5382f5f3
JB
1610}
1611
d288f65f 1612static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1613 const struct intel_crtc_state *pipe_config)
87442f73 1614{
426115cf
DV
1615 struct drm_device *dev = crtc->base.dev;
1616 struct drm_i915_private *dev_priv = dev->dev_private;
1617 int reg = DPLL(crtc->pipe);
d288f65f 1618 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1619
426115cf 1620 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1621
1622 /* No really, not for ILK+ */
1623 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1624
1625 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1626 if (IS_MOBILE(dev_priv->dev))
426115cf 1627 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1628
426115cf
DV
1629 I915_WRITE(reg, dpll);
1630 POSTING_READ(reg);
1631 udelay(150);
1632
1633 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1634 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1635
d288f65f 1636 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1637 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1638
1639 /* We do this three times for luck */
426115cf 1640 I915_WRITE(reg, dpll);
87442f73
DV
1641 POSTING_READ(reg);
1642 udelay(150); /* wait for warmup */
426115cf 1643 I915_WRITE(reg, dpll);
87442f73
DV
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
426115cf 1646 I915_WRITE(reg, dpll);
87442f73
DV
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
1649}
1650
d288f65f 1651static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1652 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1653{
1654 struct drm_device *dev = crtc->base.dev;
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656 int pipe = crtc->pipe;
1657 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1658 u32 tmp;
1659
1660 assert_pipe_disabled(dev_priv, crtc->pipe);
1661
1662 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1663
a580516d 1664 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1665
1666 /* Enable back the 10bit clock to display controller */
1667 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1668 tmp |= DPIO_DCLKP_EN;
1669 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1670
54433e91
VS
1671 mutex_unlock(&dev_priv->sb_lock);
1672
9d556c99
CML
1673 /*
1674 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1675 */
1676 udelay(1);
1677
1678 /* Enable PLL */
d288f65f 1679 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1680
1681 /* Check PLL is locked */
a11b0703 1682 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1683 DRM_ERROR("PLL %d failed to lock\n", pipe);
1684
a11b0703 1685 /* not sure when this should be written */
d288f65f 1686 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703 1687 POSTING_READ(DPLL_MD(pipe));
9d556c99
CML
1688}
1689
1c4e0274
VS
1690static int intel_num_dvo_pipes(struct drm_device *dev)
1691{
1692 struct intel_crtc *crtc;
1693 int count = 0;
1694
1695 for_each_intel_crtc(dev, crtc)
1696 count += crtc->active &&
409ee761 1697 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1698
1699 return count;
1700}
1701
66e3d5c0 1702static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1703{
66e3d5c0
DV
1704 struct drm_device *dev = crtc->base.dev;
1705 struct drm_i915_private *dev_priv = dev->dev_private;
1706 int reg = DPLL(crtc->pipe);
6e3c9717 1707 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1708
66e3d5c0 1709 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1710
63d7bbe9 1711 /* No really, not for ILK+ */
3d13ef2e 1712 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1713
1714 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1715 if (IS_MOBILE(dev) && !IS_I830(dev))
1716 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1717
1c4e0274
VS
1718 /* Enable DVO 2x clock on both PLLs if necessary */
1719 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1720 /*
1721 * It appears to be important that we don't enable this
1722 * for the current pipe before otherwise configuring the
1723 * PLL. No idea how this should be handled if multiple
1724 * DVO outputs are enabled simultaneosly.
1725 */
1726 dpll |= DPLL_DVO_2X_MODE;
1727 I915_WRITE(DPLL(!crtc->pipe),
1728 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1729 }
66e3d5c0
DV
1730
1731 /* Wait for the clocks to stabilize. */
1732 POSTING_READ(reg);
1733 udelay(150);
1734
1735 if (INTEL_INFO(dev)->gen >= 4) {
1736 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1737 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1738 } else {
1739 /* The pixel multiplier can only be updated once the
1740 * DPLL is enabled and the clocks are stable.
1741 *
1742 * So write it again.
1743 */
1744 I915_WRITE(reg, dpll);
1745 }
63d7bbe9
JB
1746
1747 /* We do this three times for luck */
66e3d5c0 1748 I915_WRITE(reg, dpll);
63d7bbe9
JB
1749 POSTING_READ(reg);
1750 udelay(150); /* wait for warmup */
66e3d5c0 1751 I915_WRITE(reg, dpll);
63d7bbe9
JB
1752 POSTING_READ(reg);
1753 udelay(150); /* wait for warmup */
66e3d5c0 1754 I915_WRITE(reg, dpll);
63d7bbe9
JB
1755 POSTING_READ(reg);
1756 udelay(150); /* wait for warmup */
1757}
1758
1759/**
50b44a44 1760 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1761 * @dev_priv: i915 private structure
1762 * @pipe: pipe PLL to disable
1763 *
1764 * Disable the PLL for @pipe, making sure the pipe is off first.
1765 *
1766 * Note! This is for pre-ILK only.
1767 */
1c4e0274 1768static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1769{
1c4e0274
VS
1770 struct drm_device *dev = crtc->base.dev;
1771 struct drm_i915_private *dev_priv = dev->dev_private;
1772 enum pipe pipe = crtc->pipe;
1773
1774 /* Disable DVO 2x clock on both PLLs if necessary */
1775 if (IS_I830(dev) &&
409ee761 1776 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1777 intel_num_dvo_pipes(dev) == 1) {
1778 I915_WRITE(DPLL(PIPE_B),
1779 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1780 I915_WRITE(DPLL(PIPE_A),
1781 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1782 }
1783
b6b5d049
VS
1784 /* Don't disable pipe or pipe PLLs if needed */
1785 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1786 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1787 return;
1788
1789 /* Make sure the pipe isn't still relying on us */
1790 assert_pipe_disabled(dev_priv, pipe);
1791
50b44a44
DV
1792 I915_WRITE(DPLL(pipe), 0);
1793 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1794}
1795
f6071166
JB
1796static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1797{
1798 u32 val = 0;
1799
1800 /* Make sure the pipe isn't still relying on us */
1801 assert_pipe_disabled(dev_priv, pipe);
1802
e5cbfbfb
ID
1803 /*
1804 * Leave integrated clock source and reference clock enabled for pipe B.
1805 * The latter is needed for VGA hotplug / manual detection.
1806 */
f6071166 1807 if (pipe == PIPE_B)
e5cbfbfb 1808 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1809 I915_WRITE(DPLL(pipe), val);
1810 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1811
1812}
1813
1814static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1815{
d752048d 1816 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1817 u32 val;
1818
a11b0703
VS
1819 /* Make sure the pipe isn't still relying on us */
1820 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1821
a11b0703 1822 /* Set PLL en = 0 */
d17ec4ce 1823 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1824 if (pipe != PIPE_A)
1825 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1826 I915_WRITE(DPLL(pipe), val);
1827 POSTING_READ(DPLL(pipe));
d752048d 1828
a580516d 1829 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1830
1831 /* Disable 10bit clock to display controller */
1832 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1833 val &= ~DPIO_DCLKP_EN;
1834 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1835
61407f6d
VS
1836 /* disable left/right clock distribution */
1837 if (pipe != PIPE_B) {
1838 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1839 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1840 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1841 } else {
1842 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1843 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1844 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1845 }
1846
a580516d 1847 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1848}
1849
e4607fcf 1850void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1851 struct intel_digital_port *dport,
1852 unsigned int expected_mask)
89b667f8
JB
1853{
1854 u32 port_mask;
00fc31b7 1855 int dpll_reg;
89b667f8 1856
e4607fcf
CML
1857 switch (dport->port) {
1858 case PORT_B:
89b667f8 1859 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1860 dpll_reg = DPLL(0);
e4607fcf
CML
1861 break;
1862 case PORT_C:
89b667f8 1863 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1864 dpll_reg = DPLL(0);
9b6de0a1 1865 expected_mask <<= 4;
00fc31b7
CML
1866 break;
1867 case PORT_D:
1868 port_mask = DPLL_PORTD_READY_MASK;
1869 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1870 break;
1871 default:
1872 BUG();
1873 }
89b667f8 1874
9b6de0a1
VS
1875 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1876 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1877 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1878}
1879
b14b1055
DV
1880static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1881{
1882 struct drm_device *dev = crtc->base.dev;
1883 struct drm_i915_private *dev_priv = dev->dev_private;
1884 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1885
be19f0ff
CW
1886 if (WARN_ON(pll == NULL))
1887 return;
1888
3e369b76 1889 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1890 if (pll->active == 0) {
1891 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1892 WARN_ON(pll->on);
1893 assert_shared_dpll_disabled(dev_priv, pll);
1894
1895 pll->mode_set(dev_priv, pll);
1896 }
1897}
1898
92f2584a 1899/**
85b3894f 1900 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1901 * @dev_priv: i915 private structure
1902 * @pipe: pipe PLL to enable
1903 *
1904 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1905 * drives the transcoder clock.
1906 */
85b3894f 1907static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1908{
3d13ef2e
DL
1909 struct drm_device *dev = crtc->base.dev;
1910 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1911 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1912
87a875bb 1913 if (WARN_ON(pll == NULL))
48da64a8
CW
1914 return;
1915
3e369b76 1916 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1917 return;
ee7b9f93 1918
74dd6928 1919 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1920 pll->name, pll->active, pll->on,
e2b78267 1921 crtc->base.base.id);
92f2584a 1922
cdbd2316
DV
1923 if (pll->active++) {
1924 WARN_ON(!pll->on);
e9d6944e 1925 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1926 return;
1927 }
f4a091c7 1928 WARN_ON(pll->on);
ee7b9f93 1929
bd2bb1b9
PZ
1930 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1931
46edb027 1932 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1933 pll->enable(dev_priv, pll);
ee7b9f93 1934 pll->on = true;
92f2584a
JB
1935}
1936
f6daaec2 1937static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1938{
3d13ef2e
DL
1939 struct drm_device *dev = crtc->base.dev;
1940 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1941 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1942
92f2584a 1943 /* PCH only available on ILK+ */
3d13ef2e 1944 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1945 if (WARN_ON(pll == NULL))
ee7b9f93 1946 return;
92f2584a 1947
3e369b76 1948 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1949 return;
7a419866 1950
46edb027
DV
1951 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1952 pll->name, pll->active, pll->on,
e2b78267 1953 crtc->base.base.id);
7a419866 1954
48da64a8 1955 if (WARN_ON(pll->active == 0)) {
e9d6944e 1956 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1957 return;
1958 }
1959
e9d6944e 1960 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1961 WARN_ON(!pll->on);
cdbd2316 1962 if (--pll->active)
7a419866 1963 return;
ee7b9f93 1964
46edb027 1965 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1966 pll->disable(dev_priv, pll);
ee7b9f93 1967 pll->on = false;
bd2bb1b9
PZ
1968
1969 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1970}
1971
b8a4f404
PZ
1972static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1973 enum pipe pipe)
040484af 1974{
23670b32 1975 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1976 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1978 uint32_t reg, val, pipeconf_val;
040484af
JB
1979
1980 /* PCH only available on ILK+ */
55522f37 1981 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1982
1983 /* Make sure PCH DPLL is enabled */
e72f9fbf 1984 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1985 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1986
1987 /* FDI must be feeding us bits for PCH ports */
1988 assert_fdi_tx_enabled(dev_priv, pipe);
1989 assert_fdi_rx_enabled(dev_priv, pipe);
1990
23670b32
DV
1991 if (HAS_PCH_CPT(dev)) {
1992 /* Workaround: Set the timing override bit before enabling the
1993 * pch transcoder. */
1994 reg = TRANS_CHICKEN2(pipe);
1995 val = I915_READ(reg);
1996 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1997 I915_WRITE(reg, val);
59c859d6 1998 }
23670b32 1999
ab9412ba 2000 reg = PCH_TRANSCONF(pipe);
040484af 2001 val = I915_READ(reg);
5f7f726d 2002 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
2003
2004 if (HAS_PCH_IBX(dev_priv->dev)) {
2005 /*
2006 * make the BPC in transcoder be consistent with
2007 * that in pipeconf reg.
2008 */
dfd07d72
DV
2009 val &= ~PIPECONF_BPC_MASK;
2010 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 2011 }
5f7f726d
PZ
2012
2013 val &= ~TRANS_INTERLACE_MASK;
2014 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 2015 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 2016 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
2017 val |= TRANS_LEGACY_INTERLACED_ILK;
2018 else
2019 val |= TRANS_INTERLACED;
5f7f726d
PZ
2020 else
2021 val |= TRANS_PROGRESSIVE;
2022
040484af
JB
2023 I915_WRITE(reg, val | TRANS_ENABLE);
2024 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 2025 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
2026}
2027
8fb033d7 2028static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 2029 enum transcoder cpu_transcoder)
040484af 2030{
8fb033d7 2031 u32 val, pipeconf_val;
8fb033d7
PZ
2032
2033 /* PCH only available on ILK+ */
55522f37 2034 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 2035
8fb033d7 2036 /* FDI must be feeding us bits for PCH ports */
1a240d4d 2037 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 2038 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 2039
223a6fdf
PZ
2040 /* Workaround: set timing override bit. */
2041 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2042 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
2043 I915_WRITE(_TRANSA_CHICKEN2, val);
2044
25f3ef11 2045 val = TRANS_ENABLE;
937bb610 2046 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 2047
9a76b1c6
PZ
2048 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2049 PIPECONF_INTERLACED_ILK)
a35f2679 2050 val |= TRANS_INTERLACED;
8fb033d7
PZ
2051 else
2052 val |= TRANS_PROGRESSIVE;
2053
ab9412ba
DV
2054 I915_WRITE(LPT_TRANSCONF, val);
2055 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 2056 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
2057}
2058
b8a4f404
PZ
2059static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2060 enum pipe pipe)
040484af 2061{
23670b32
DV
2062 struct drm_device *dev = dev_priv->dev;
2063 uint32_t reg, val;
040484af
JB
2064
2065 /* FDI relies on the transcoder */
2066 assert_fdi_tx_disabled(dev_priv, pipe);
2067 assert_fdi_rx_disabled(dev_priv, pipe);
2068
291906f1
JB
2069 /* Ports must be off as well */
2070 assert_pch_ports_disabled(dev_priv, pipe);
2071
ab9412ba 2072 reg = PCH_TRANSCONF(pipe);
040484af
JB
2073 val = I915_READ(reg);
2074 val &= ~TRANS_ENABLE;
2075 I915_WRITE(reg, val);
2076 /* wait for PCH transcoder off, transcoder state */
2077 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2078 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2079
2080 if (!HAS_PCH_IBX(dev)) {
2081 /* Workaround: Clear the timing override chicken bit again. */
2082 reg = TRANS_CHICKEN2(pipe);
2083 val = I915_READ(reg);
2084 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2085 I915_WRITE(reg, val);
2086 }
040484af
JB
2087}
2088
ab4d966c 2089static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2090{
8fb033d7
PZ
2091 u32 val;
2092
ab9412ba 2093 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2094 val &= ~TRANS_ENABLE;
ab9412ba 2095 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2096 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2097 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2098 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2099
2100 /* Workaround: clear timing override bit. */
2101 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2102 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2103 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2104}
2105
b24e7179 2106/**
309cfea8 2107 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2108 * @crtc: crtc responsible for the pipe
b24e7179 2109 *
0372264a 2110 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2111 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2112 */
e1fdc473 2113static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2114{
0372264a
PZ
2115 struct drm_device *dev = crtc->base.dev;
2116 struct drm_i915_private *dev_priv = dev->dev_private;
2117 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2119 pipe);
1a240d4d 2120 enum pipe pch_transcoder;
b24e7179
JB
2121 int reg;
2122 u32 val;
2123
58c6eaa2 2124 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2125 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2126 assert_sprites_disabled(dev_priv, pipe);
2127
681e5811 2128 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2129 pch_transcoder = TRANSCODER_A;
2130 else
2131 pch_transcoder = pipe;
2132
b24e7179
JB
2133 /*
2134 * A pipe without a PLL won't actually be able to drive bits from
2135 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2136 * need the check.
2137 */
50360403 2138 if (HAS_GMCH_DISPLAY(dev_priv->dev))
409ee761 2139 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2140 assert_dsi_pll_enabled(dev_priv);
2141 else
2142 assert_pll_enabled(dev_priv, pipe);
040484af 2143 else {
6e3c9717 2144 if (crtc->config->has_pch_encoder) {
040484af 2145 /* if driving the PCH, we need FDI enabled */
cc391bbb 2146 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2147 assert_fdi_tx_pll_enabled(dev_priv,
2148 (enum pipe) cpu_transcoder);
040484af
JB
2149 }
2150 /* FIXME: assert CPU port conditions for SNB+ */
2151 }
b24e7179 2152
702e7a56 2153 reg = PIPECONF(cpu_transcoder);
b24e7179 2154 val = I915_READ(reg);
7ad25d48 2155 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2156 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2157 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2158 return;
7ad25d48 2159 }
00d70b15
CW
2160
2161 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2162 POSTING_READ(reg);
b24e7179
JB
2163}
2164
2165/**
309cfea8 2166 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2167 * @crtc: crtc whose pipes is to be disabled
b24e7179 2168 *
575f7ab7
VS
2169 * Disable the pipe of @crtc, making sure that various hardware
2170 * specific requirements are met, if applicable, e.g. plane
2171 * disabled, panel fitter off, etc.
b24e7179
JB
2172 *
2173 * Will wait until the pipe has shut down before returning.
2174 */
575f7ab7 2175static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2176{
575f7ab7 2177 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2178 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2179 enum pipe pipe = crtc->pipe;
b24e7179
JB
2180 int reg;
2181 u32 val;
2182
2183 /*
2184 * Make sure planes won't keep trying to pump pixels to us,
2185 * or we might hang the display.
2186 */
2187 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2188 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2189 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2190
702e7a56 2191 reg = PIPECONF(cpu_transcoder);
b24e7179 2192 val = I915_READ(reg);
00d70b15
CW
2193 if ((val & PIPECONF_ENABLE) == 0)
2194 return;
2195
67adc644
VS
2196 /*
2197 * Double wide has implications for planes
2198 * so best keep it disabled when not needed.
2199 */
6e3c9717 2200 if (crtc->config->double_wide)
67adc644
VS
2201 val &= ~PIPECONF_DOUBLE_WIDE;
2202
2203 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2204 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2205 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2206 val &= ~PIPECONF_ENABLE;
2207
2208 I915_WRITE(reg, val);
2209 if ((val & PIPECONF_ENABLE) == 0)
2210 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2211}
2212
2213/**
262ca2b0 2214 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2215 * @plane: plane to be enabled
2216 * @crtc: crtc for the plane
b24e7179 2217 *
fdd508a6 2218 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2219 */
fdd508a6
VS
2220static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2221 struct drm_crtc *crtc)
b24e7179 2222{
fdd508a6
VS
2223 struct drm_device *dev = plane->dev;
2224 struct drm_i915_private *dev_priv = dev->dev_private;
2225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2226
2227 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2228 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b70709a6 2229 to_intel_plane_state(plane->state)->visible = true;
939c2fe8 2230
fdd508a6
VS
2231 dev_priv->display.update_primary_plane(crtc, plane->fb,
2232 crtc->x, crtc->y);
b24e7179
JB
2233}
2234
693db184
CW
2235static bool need_vtd_wa(struct drm_device *dev)
2236{
2237#ifdef CONFIG_INTEL_IOMMU
2238 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2239 return true;
2240#endif
2241 return false;
2242}
2243
50470bb0 2244unsigned int
6761dd31
TU
2245intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2246 uint64_t fb_format_modifier)
a57ce0b2 2247{
6761dd31
TU
2248 unsigned int tile_height;
2249 uint32_t pixel_bytes;
a57ce0b2 2250
b5d0e9bf
DL
2251 switch (fb_format_modifier) {
2252 case DRM_FORMAT_MOD_NONE:
2253 tile_height = 1;
2254 break;
2255 case I915_FORMAT_MOD_X_TILED:
2256 tile_height = IS_GEN2(dev) ? 16 : 8;
2257 break;
2258 case I915_FORMAT_MOD_Y_TILED:
2259 tile_height = 32;
2260 break;
2261 case I915_FORMAT_MOD_Yf_TILED:
6761dd31
TU
2262 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2263 switch (pixel_bytes) {
b5d0e9bf 2264 default:
6761dd31 2265 case 1:
b5d0e9bf
DL
2266 tile_height = 64;
2267 break;
6761dd31
TU
2268 case 2:
2269 case 4:
b5d0e9bf
DL
2270 tile_height = 32;
2271 break;
6761dd31 2272 case 8:
b5d0e9bf
DL
2273 tile_height = 16;
2274 break;
6761dd31 2275 case 16:
b5d0e9bf
DL
2276 WARN_ONCE(1,
2277 "128-bit pixels are not supported for display!");
2278 tile_height = 16;
2279 break;
2280 }
2281 break;
2282 default:
2283 MISSING_CASE(fb_format_modifier);
2284 tile_height = 1;
2285 break;
2286 }
091df6cb 2287
6761dd31
TU
2288 return tile_height;
2289}
2290
2291unsigned int
2292intel_fb_align_height(struct drm_device *dev, unsigned int height,
2293 uint32_t pixel_format, uint64_t fb_format_modifier)
2294{
2295 return ALIGN(height, intel_tile_height(dev, pixel_format,
2296 fb_format_modifier));
a57ce0b2
JB
2297}
2298
f64b98cd
TU
2299static int
2300intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2301 const struct drm_plane_state *plane_state)
2302{
50470bb0 2303 struct intel_rotation_info *info = &view->rotation_info;
50470bb0 2304
f64b98cd
TU
2305 *view = i915_ggtt_view_normal;
2306
50470bb0
TU
2307 if (!plane_state)
2308 return 0;
2309
121920fa 2310 if (!intel_rotation_90_or_270(plane_state->rotation))
50470bb0
TU
2311 return 0;
2312
9abc4648 2313 *view = i915_ggtt_view_rotated;
50470bb0
TU
2314
2315 info->height = fb->height;
2316 info->pixel_format = fb->pixel_format;
2317 info->pitch = fb->pitches[0];
2318 info->fb_modifier = fb->modifier[0];
2319
f64b98cd
TU
2320 return 0;
2321}
2322
127bd2ac 2323int
850c4cdc
TU
2324intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2325 struct drm_framebuffer *fb,
82bc3b2d 2326 const struct drm_plane_state *plane_state,
a4872ba6 2327 struct intel_engine_cs *pipelined)
6b95a207 2328{
850c4cdc 2329 struct drm_device *dev = fb->dev;
ce453d81 2330 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2331 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2332 struct i915_ggtt_view view;
6b95a207
KH
2333 u32 alignment;
2334 int ret;
2335
ebcdd39e
MR
2336 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2337
7b911adc
TU
2338 switch (fb->modifier[0]) {
2339 case DRM_FORMAT_MOD_NONE:
1fada4cc
DL
2340 if (INTEL_INFO(dev)->gen >= 9)
2341 alignment = 256 * 1024;
2342 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2343 alignment = 128 * 1024;
a6c45cf0 2344 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2345 alignment = 4 * 1024;
2346 else
2347 alignment = 64 * 1024;
6b95a207 2348 break;
7b911adc 2349 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2350 if (INTEL_INFO(dev)->gen >= 9)
2351 alignment = 256 * 1024;
2352 else {
2353 /* pin() will align the object as required by fence */
2354 alignment = 0;
2355 }
6b95a207 2356 break;
7b911adc 2357 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2358 case I915_FORMAT_MOD_Yf_TILED:
2359 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2360 "Y tiling bo slipped through, driver bug!\n"))
2361 return -EINVAL;
2362 alignment = 1 * 1024 * 1024;
2363 break;
6b95a207 2364 default:
7b911adc
TU
2365 MISSING_CASE(fb->modifier[0]);
2366 return -EINVAL;
6b95a207
KH
2367 }
2368
f64b98cd
TU
2369 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2370 if (ret)
2371 return ret;
2372
693db184
CW
2373 /* Note that the w/a also requires 64 PTE of padding following the
2374 * bo. We currently fill all unused PTE with the shadow page and so
2375 * we should always have valid PTE following the scanout preventing
2376 * the VT-d warning.
2377 */
2378 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2379 alignment = 256 * 1024;
2380
d6dd6843
PZ
2381 /*
2382 * Global gtt pte registers are special registers which actually forward
2383 * writes to a chunk of system memory. Which means that there is no risk
2384 * that the register values disappear as soon as we call
2385 * intel_runtime_pm_put(), so it is correct to wrap only the
2386 * pin/unpin/fence and not more.
2387 */
2388 intel_runtime_pm_get(dev_priv);
2389
ce453d81 2390 dev_priv->mm.interruptible = false;
e6617330 2391 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
f64b98cd 2392 &view);
48b956c5 2393 if (ret)
ce453d81 2394 goto err_interruptible;
6b95a207
KH
2395
2396 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2397 * fence, whereas 965+ only requires a fence if using
2398 * framebuffer compression. For simplicity, we always install
2399 * a fence as the cost is not that onerous.
2400 */
06d98131 2401 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2402 if (ret)
2403 goto err_unpin;
1690e1eb 2404
9a5a53b3 2405 i915_gem_object_pin_fence(obj);
6b95a207 2406
ce453d81 2407 dev_priv->mm.interruptible = true;
d6dd6843 2408 intel_runtime_pm_put(dev_priv);
6b95a207 2409 return 0;
48b956c5
CW
2410
2411err_unpin:
f64b98cd 2412 i915_gem_object_unpin_from_display_plane(obj, &view);
ce453d81
CW
2413err_interruptible:
2414 dev_priv->mm.interruptible = true;
d6dd6843 2415 intel_runtime_pm_put(dev_priv);
48b956c5 2416 return ret;
6b95a207
KH
2417}
2418
82bc3b2d
TU
2419static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2420 const struct drm_plane_state *plane_state)
1690e1eb 2421{
82bc3b2d 2422 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd
TU
2423 struct i915_ggtt_view view;
2424 int ret;
82bc3b2d 2425
ebcdd39e
MR
2426 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2427
f64b98cd
TU
2428 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2429 WARN_ONCE(ret, "Couldn't get view from plane state!");
2430
1690e1eb 2431 i915_gem_object_unpin_fence(obj);
f64b98cd 2432 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2433}
2434
c2c75131
DV
2435/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2436 * is assumed to be a power-of-two. */
bc752862
CW
2437unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2438 unsigned int tiling_mode,
2439 unsigned int cpp,
2440 unsigned int pitch)
c2c75131 2441{
bc752862
CW
2442 if (tiling_mode != I915_TILING_NONE) {
2443 unsigned int tile_rows, tiles;
c2c75131 2444
bc752862
CW
2445 tile_rows = *y / 8;
2446 *y %= 8;
c2c75131 2447
bc752862
CW
2448 tiles = *x / (512/cpp);
2449 *x %= 512/cpp;
2450
2451 return tile_rows * pitch * 8 + tiles * 4096;
2452 } else {
2453 unsigned int offset;
2454
2455 offset = *y * pitch + *x * cpp;
2456 *y = 0;
2457 *x = (offset & 4095) / cpp;
2458 return offset & -4096;
2459 }
c2c75131
DV
2460}
2461
b35d63fa 2462static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2463{
2464 switch (format) {
2465 case DISPPLANE_8BPP:
2466 return DRM_FORMAT_C8;
2467 case DISPPLANE_BGRX555:
2468 return DRM_FORMAT_XRGB1555;
2469 case DISPPLANE_BGRX565:
2470 return DRM_FORMAT_RGB565;
2471 default:
2472 case DISPPLANE_BGRX888:
2473 return DRM_FORMAT_XRGB8888;
2474 case DISPPLANE_RGBX888:
2475 return DRM_FORMAT_XBGR8888;
2476 case DISPPLANE_BGRX101010:
2477 return DRM_FORMAT_XRGB2101010;
2478 case DISPPLANE_RGBX101010:
2479 return DRM_FORMAT_XBGR2101010;
2480 }
2481}
2482
bc8d7dff
DL
2483static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2484{
2485 switch (format) {
2486 case PLANE_CTL_FORMAT_RGB_565:
2487 return DRM_FORMAT_RGB565;
2488 default:
2489 case PLANE_CTL_FORMAT_XRGB_8888:
2490 if (rgb_order) {
2491 if (alpha)
2492 return DRM_FORMAT_ABGR8888;
2493 else
2494 return DRM_FORMAT_XBGR8888;
2495 } else {
2496 if (alpha)
2497 return DRM_FORMAT_ARGB8888;
2498 else
2499 return DRM_FORMAT_XRGB8888;
2500 }
2501 case PLANE_CTL_FORMAT_XRGB_2101010:
2502 if (rgb_order)
2503 return DRM_FORMAT_XBGR2101010;
2504 else
2505 return DRM_FORMAT_XRGB2101010;
2506 }
2507}
2508
5724dbd1 2509static bool
f6936e29
DV
2510intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2511 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2512{
2513 struct drm_device *dev = crtc->base.dev;
2514 struct drm_i915_gem_object *obj = NULL;
2515 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2516 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2517 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2518 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2519 PAGE_SIZE);
2520
2521 size_aligned -= base_aligned;
46f297fb 2522
ff2652ea
CW
2523 if (plane_config->size == 0)
2524 return false;
2525
f37b5c2b
DV
2526 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2527 base_aligned,
2528 base_aligned,
2529 size_aligned);
46f297fb 2530 if (!obj)
484b41dd 2531 return false;
46f297fb 2532
49af449b
DL
2533 obj->tiling_mode = plane_config->tiling;
2534 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2535 obj->stride = fb->pitches[0];
46f297fb 2536
6bf129df
DL
2537 mode_cmd.pixel_format = fb->pixel_format;
2538 mode_cmd.width = fb->width;
2539 mode_cmd.height = fb->height;
2540 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2541 mode_cmd.modifier[0] = fb->modifier[0];
2542 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2543
2544 mutex_lock(&dev->struct_mutex);
6bf129df 2545 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2546 &mode_cmd, obj)) {
46f297fb
JB
2547 DRM_DEBUG_KMS("intel fb init failed\n");
2548 goto out_unref_obj;
2549 }
46f297fb 2550 mutex_unlock(&dev->struct_mutex);
484b41dd 2551
f6936e29 2552 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2553 return true;
46f297fb
JB
2554
2555out_unref_obj:
2556 drm_gem_object_unreference(&obj->base);
2557 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2558 return false;
2559}
2560
afd65eb4
MR
2561/* Update plane->state->fb to match plane->fb after driver-internal updates */
2562static void
2563update_state_fb(struct drm_plane *plane)
2564{
2565 if (plane->fb == plane->state->fb)
2566 return;
2567
2568 if (plane->state->fb)
2569 drm_framebuffer_unreference(plane->state->fb);
2570 plane->state->fb = plane->fb;
2571 if (plane->state->fb)
2572 drm_framebuffer_reference(plane->state->fb);
2573}
2574
5724dbd1 2575static void
f6936e29
DV
2576intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2577 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2578{
2579 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2580 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2581 struct drm_crtc *c;
2582 struct intel_crtc *i;
2ff8fde1 2583 struct drm_i915_gem_object *obj;
88595ac9
DV
2584 struct drm_plane *primary = intel_crtc->base.primary;
2585 struct drm_framebuffer *fb;
484b41dd 2586
2d14030b 2587 if (!plane_config->fb)
484b41dd
JB
2588 return;
2589
f6936e29 2590 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2591 fb = &plane_config->fb->base;
2592 goto valid_fb;
f55548b5 2593 }
484b41dd 2594
2d14030b 2595 kfree(plane_config->fb);
484b41dd
JB
2596
2597 /*
2598 * Failed to alloc the obj, check to see if we should share
2599 * an fb with another CRTC instead
2600 */
70e1e0ec 2601 for_each_crtc(dev, c) {
484b41dd
JB
2602 i = to_intel_crtc(c);
2603
2604 if (c == &intel_crtc->base)
2605 continue;
2606
2ff8fde1
MR
2607 if (!i->active)
2608 continue;
2609
88595ac9
DV
2610 fb = c->primary->fb;
2611 if (!fb)
484b41dd
JB
2612 continue;
2613
88595ac9 2614 obj = intel_fb_obj(fb);
2ff8fde1 2615 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2616 drm_framebuffer_reference(fb);
2617 goto valid_fb;
484b41dd
JB
2618 }
2619 }
88595ac9
DV
2620
2621 return;
2622
2623valid_fb:
2624 obj = intel_fb_obj(fb);
2625 if (obj->tiling_mode != I915_TILING_NONE)
2626 dev_priv->preserve_bios_swizzle = true;
2627
2628 primary->fb = fb;
2629 primary->state->crtc = &intel_crtc->base;
2630 primary->crtc = &intel_crtc->base;
2631 update_state_fb(primary);
2632 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
46f297fb
JB
2633}
2634
29b9bde6
DV
2635static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2636 struct drm_framebuffer *fb,
2637 int x, int y)
81255565
JB
2638{
2639 struct drm_device *dev = crtc->dev;
2640 struct drm_i915_private *dev_priv = dev->dev_private;
2641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2642 struct drm_plane *primary = crtc->primary;
2643 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2644 struct drm_i915_gem_object *obj;
81255565 2645 int plane = intel_crtc->plane;
e506a0c6 2646 unsigned long linear_offset;
81255565 2647 u32 dspcntr;
f45651ba 2648 u32 reg = DSPCNTR(plane);
48404c1e 2649 int pixel_size;
f45651ba 2650
b70709a6 2651 if (!visible || !fb) {
fdd508a6
VS
2652 I915_WRITE(reg, 0);
2653 if (INTEL_INFO(dev)->gen >= 4)
2654 I915_WRITE(DSPSURF(plane), 0);
2655 else
2656 I915_WRITE(DSPADDR(plane), 0);
2657 POSTING_READ(reg);
2658 return;
2659 }
2660
c9ba6fad
VS
2661 obj = intel_fb_obj(fb);
2662 if (WARN_ON(obj == NULL))
2663 return;
2664
2665 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2666
f45651ba
VS
2667 dspcntr = DISPPLANE_GAMMA_ENABLE;
2668
fdd508a6 2669 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2670
2671 if (INTEL_INFO(dev)->gen < 4) {
2672 if (intel_crtc->pipe == PIPE_B)
2673 dspcntr |= DISPPLANE_SEL_PIPE_B;
2674
2675 /* pipesrc and dspsize control the size that is scaled from,
2676 * which should always be the user's requested size.
2677 */
2678 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2679 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2680 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2681 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2682 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2683 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2684 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2685 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2686 I915_WRITE(PRIMPOS(plane), 0);
2687 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2688 }
81255565 2689
57779d06
VS
2690 switch (fb->pixel_format) {
2691 case DRM_FORMAT_C8:
81255565
JB
2692 dspcntr |= DISPPLANE_8BPP;
2693 break;
57779d06 2694 case DRM_FORMAT_XRGB1555:
57779d06 2695 dspcntr |= DISPPLANE_BGRX555;
81255565 2696 break;
57779d06
VS
2697 case DRM_FORMAT_RGB565:
2698 dspcntr |= DISPPLANE_BGRX565;
2699 break;
2700 case DRM_FORMAT_XRGB8888:
57779d06
VS
2701 dspcntr |= DISPPLANE_BGRX888;
2702 break;
2703 case DRM_FORMAT_XBGR8888:
57779d06
VS
2704 dspcntr |= DISPPLANE_RGBX888;
2705 break;
2706 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2707 dspcntr |= DISPPLANE_BGRX101010;
2708 break;
2709 case DRM_FORMAT_XBGR2101010:
57779d06 2710 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2711 break;
2712 default:
baba133a 2713 BUG();
81255565 2714 }
57779d06 2715
f45651ba
VS
2716 if (INTEL_INFO(dev)->gen >= 4 &&
2717 obj->tiling_mode != I915_TILING_NONE)
2718 dspcntr |= DISPPLANE_TILED;
81255565 2719
de1aa629
VS
2720 if (IS_G4X(dev))
2721 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2722
b9897127 2723 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2724
c2c75131
DV
2725 if (INTEL_INFO(dev)->gen >= 4) {
2726 intel_crtc->dspaddr_offset =
bc752862 2727 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2728 pixel_size,
bc752862 2729 fb->pitches[0]);
c2c75131
DV
2730 linear_offset -= intel_crtc->dspaddr_offset;
2731 } else {
e506a0c6 2732 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2733 }
e506a0c6 2734
8e7d688b 2735 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2736 dspcntr |= DISPPLANE_ROTATE_180;
2737
6e3c9717
ACO
2738 x += (intel_crtc->config->pipe_src_w - 1);
2739 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2740
2741 /* Finding the last pixel of the last line of the display
2742 data and adding to linear_offset*/
2743 linear_offset +=
6e3c9717
ACO
2744 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2745 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2746 }
2747
2748 I915_WRITE(reg, dspcntr);
2749
01f2c773 2750 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2751 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2752 I915_WRITE(DSPSURF(plane),
2753 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2754 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2755 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2756 } else
f343c5f6 2757 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2758 POSTING_READ(reg);
17638cd6
JB
2759}
2760
29b9bde6
DV
2761static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2762 struct drm_framebuffer *fb,
2763 int x, int y)
17638cd6
JB
2764{
2765 struct drm_device *dev = crtc->dev;
2766 struct drm_i915_private *dev_priv = dev->dev_private;
2767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2768 struct drm_plane *primary = crtc->primary;
2769 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2770 struct drm_i915_gem_object *obj;
17638cd6 2771 int plane = intel_crtc->plane;
e506a0c6 2772 unsigned long linear_offset;
17638cd6 2773 u32 dspcntr;
f45651ba 2774 u32 reg = DSPCNTR(plane);
48404c1e 2775 int pixel_size;
f45651ba 2776
b70709a6 2777 if (!visible || !fb) {
fdd508a6
VS
2778 I915_WRITE(reg, 0);
2779 I915_WRITE(DSPSURF(plane), 0);
2780 POSTING_READ(reg);
2781 return;
2782 }
2783
c9ba6fad
VS
2784 obj = intel_fb_obj(fb);
2785 if (WARN_ON(obj == NULL))
2786 return;
2787
2788 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2789
f45651ba
VS
2790 dspcntr = DISPPLANE_GAMMA_ENABLE;
2791
fdd508a6 2792 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2793
2794 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2795 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2796
57779d06
VS
2797 switch (fb->pixel_format) {
2798 case DRM_FORMAT_C8:
17638cd6
JB
2799 dspcntr |= DISPPLANE_8BPP;
2800 break;
57779d06
VS
2801 case DRM_FORMAT_RGB565:
2802 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2803 break;
57779d06 2804 case DRM_FORMAT_XRGB8888:
57779d06
VS
2805 dspcntr |= DISPPLANE_BGRX888;
2806 break;
2807 case DRM_FORMAT_XBGR8888:
57779d06
VS
2808 dspcntr |= DISPPLANE_RGBX888;
2809 break;
2810 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2811 dspcntr |= DISPPLANE_BGRX101010;
2812 break;
2813 case DRM_FORMAT_XBGR2101010:
57779d06 2814 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2815 break;
2816 default:
baba133a 2817 BUG();
17638cd6
JB
2818 }
2819
2820 if (obj->tiling_mode != I915_TILING_NONE)
2821 dspcntr |= DISPPLANE_TILED;
17638cd6 2822
f45651ba 2823 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2824 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2825
b9897127 2826 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2827 intel_crtc->dspaddr_offset =
bc752862 2828 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2829 pixel_size,
bc752862 2830 fb->pitches[0]);
c2c75131 2831 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2832 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2833 dspcntr |= DISPPLANE_ROTATE_180;
2834
2835 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2836 x += (intel_crtc->config->pipe_src_w - 1);
2837 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2838
2839 /* Finding the last pixel of the last line of the display
2840 data and adding to linear_offset*/
2841 linear_offset +=
6e3c9717
ACO
2842 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2843 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2844 }
2845 }
2846
2847 I915_WRITE(reg, dspcntr);
17638cd6 2848
01f2c773 2849 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2850 I915_WRITE(DSPSURF(plane),
2851 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2852 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2853 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2854 } else {
2855 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2856 I915_WRITE(DSPLINOFF(plane), linear_offset);
2857 }
17638cd6 2858 POSTING_READ(reg);
17638cd6
JB
2859}
2860
b321803d
DL
2861u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2862 uint32_t pixel_format)
2863{
2864 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2865
2866 /*
2867 * The stride is either expressed as a multiple of 64 bytes
2868 * chunks for linear buffers or in number of tiles for tiled
2869 * buffers.
2870 */
2871 switch (fb_modifier) {
2872 case DRM_FORMAT_MOD_NONE:
2873 return 64;
2874 case I915_FORMAT_MOD_X_TILED:
2875 if (INTEL_INFO(dev)->gen == 2)
2876 return 128;
2877 return 512;
2878 case I915_FORMAT_MOD_Y_TILED:
2879 /* No need to check for old gens and Y tiling since this is
2880 * about the display engine and those will be blocked before
2881 * we get here.
2882 */
2883 return 128;
2884 case I915_FORMAT_MOD_Yf_TILED:
2885 if (bits_per_pixel == 8)
2886 return 64;
2887 else
2888 return 128;
2889 default:
2890 MISSING_CASE(fb_modifier);
2891 return 64;
2892 }
2893}
2894
121920fa
TU
2895unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2896 struct drm_i915_gem_object *obj)
2897{
9abc4648 2898 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
121920fa
TU
2899
2900 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
9abc4648 2901 view = &i915_ggtt_view_rotated;
121920fa
TU
2902
2903 return i915_gem_obj_ggtt_offset_view(obj, view);
2904}
2905
a1b2278e
CK
2906/*
2907 * This function detaches (aka. unbinds) unused scalers in hardware
2908 */
2909void skl_detach_scalers(struct intel_crtc *intel_crtc)
2910{
2911 struct drm_device *dev;
2912 struct drm_i915_private *dev_priv;
2913 struct intel_crtc_scaler_state *scaler_state;
2914 int i;
2915
2916 if (!intel_crtc || !intel_crtc->config)
2917 return;
2918
2919 dev = intel_crtc->base.dev;
2920 dev_priv = dev->dev_private;
2921 scaler_state = &intel_crtc->config->scaler_state;
2922
2923 /* loop through and disable scalers that aren't in use */
2924 for (i = 0; i < intel_crtc->num_scalers; i++) {
2925 if (!scaler_state->scalers[i].in_use) {
2926 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2927 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2928 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2929 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2930 intel_crtc->base.base.id, intel_crtc->pipe, i);
2931 }
2932 }
2933}
2934
6156a456 2935u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2936{
6156a456 2937 switch (pixel_format) {
d161cf7a 2938 case DRM_FORMAT_C8:
c34ce3d1 2939 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2940 case DRM_FORMAT_RGB565:
c34ce3d1 2941 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2942 case DRM_FORMAT_XBGR8888:
c34ce3d1 2943 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2944 case DRM_FORMAT_XRGB8888:
c34ce3d1 2945 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2946 /*
2947 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2948 * to be already pre-multiplied. We need to add a knob (or a different
2949 * DRM_FORMAT) for user-space to configure that.
2950 */
f75fb42a 2951 case DRM_FORMAT_ABGR8888:
c34ce3d1 2952 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 2953 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 2954 case DRM_FORMAT_ARGB8888:
c34ce3d1 2955 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 2956 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 2957 case DRM_FORMAT_XRGB2101010:
c34ce3d1 2958 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 2959 case DRM_FORMAT_XBGR2101010:
c34ce3d1 2960 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 2961 case DRM_FORMAT_YUYV:
c34ce3d1 2962 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 2963 case DRM_FORMAT_YVYU:
c34ce3d1 2964 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 2965 case DRM_FORMAT_UYVY:
c34ce3d1 2966 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 2967 case DRM_FORMAT_VYUY:
c34ce3d1 2968 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 2969 default:
4249eeef 2970 MISSING_CASE(pixel_format);
70d21f0e 2971 }
8cfcba41 2972
c34ce3d1 2973 return 0;
6156a456 2974}
70d21f0e 2975
6156a456
CK
2976u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2977{
6156a456 2978 switch (fb_modifier) {
30af77c4 2979 case DRM_FORMAT_MOD_NONE:
70d21f0e 2980 break;
30af77c4 2981 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 2982 return PLANE_CTL_TILED_X;
b321803d 2983 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 2984 return PLANE_CTL_TILED_Y;
b321803d 2985 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 2986 return PLANE_CTL_TILED_YF;
70d21f0e 2987 default:
6156a456 2988 MISSING_CASE(fb_modifier);
70d21f0e 2989 }
8cfcba41 2990
c34ce3d1 2991 return 0;
6156a456 2992}
70d21f0e 2993
6156a456
CK
2994u32 skl_plane_ctl_rotation(unsigned int rotation)
2995{
3b7a5119 2996 switch (rotation) {
6156a456
CK
2997 case BIT(DRM_ROTATE_0):
2998 break;
1e8df167
SJ
2999 /*
3000 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3001 * while i915 HW rotation is clockwise, thats why this swapping.
3002 */
3b7a5119 3003 case BIT(DRM_ROTATE_90):
1e8df167 3004 return PLANE_CTL_ROTATE_270;
3b7a5119 3005 case BIT(DRM_ROTATE_180):
c34ce3d1 3006 return PLANE_CTL_ROTATE_180;
3b7a5119 3007 case BIT(DRM_ROTATE_270):
1e8df167 3008 return PLANE_CTL_ROTATE_90;
6156a456
CK
3009 default:
3010 MISSING_CASE(rotation);
3011 }
3012
c34ce3d1 3013 return 0;
6156a456
CK
3014}
3015
3016static void skylake_update_primary_plane(struct drm_crtc *crtc,
3017 struct drm_framebuffer *fb,
3018 int x, int y)
3019{
3020 struct drm_device *dev = crtc->dev;
3021 struct drm_i915_private *dev_priv = dev->dev_private;
3022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
3023 struct drm_plane *plane = crtc->primary;
3024 bool visible = to_intel_plane_state(plane->state)->visible;
6156a456
CK
3025 struct drm_i915_gem_object *obj;
3026 int pipe = intel_crtc->pipe;
3027 u32 plane_ctl, stride_div, stride;
3028 u32 tile_height, plane_offset, plane_size;
3029 unsigned int rotation;
3030 int x_offset, y_offset;
3031 unsigned long surf_addr;
6156a456
CK
3032 struct intel_crtc_state *crtc_state = intel_crtc->config;
3033 struct intel_plane_state *plane_state;
3034 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3035 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3036 int scaler_id = -1;
3037
6156a456
CK
3038 plane_state = to_intel_plane_state(plane->state);
3039
b70709a6 3040 if (!visible || !fb) {
6156a456
CK
3041 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3042 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3043 POSTING_READ(PLANE_CTL(pipe, 0));
3044 return;
3b7a5119 3045 }
70d21f0e 3046
6156a456
CK
3047 plane_ctl = PLANE_CTL_ENABLE |
3048 PLANE_CTL_PIPE_GAMMA_ENABLE |
3049 PLANE_CTL_PIPE_CSC_ENABLE;
3050
3051 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3052 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3053 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3054
3055 rotation = plane->state->rotation;
3056 plane_ctl |= skl_plane_ctl_rotation(rotation);
3057
b321803d
DL
3058 obj = intel_fb_obj(fb);
3059 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3060 fb->pixel_format);
3b7a5119
SJ
3061 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3062
6156a456
CK
3063 /*
3064 * FIXME: intel_plane_state->src, dst aren't set when transitional
3065 * update_plane helpers are called from legacy paths.
3066 * Once full atomic crtc is available, below check can be avoided.
3067 */
3068 if (drm_rect_width(&plane_state->src)) {
3069 scaler_id = plane_state->scaler_id;
3070 src_x = plane_state->src.x1 >> 16;
3071 src_y = plane_state->src.y1 >> 16;
3072 src_w = drm_rect_width(&plane_state->src) >> 16;
3073 src_h = drm_rect_height(&plane_state->src) >> 16;
3074 dst_x = plane_state->dst.x1;
3075 dst_y = plane_state->dst.y1;
3076 dst_w = drm_rect_width(&plane_state->dst);
3077 dst_h = drm_rect_height(&plane_state->dst);
3078
3079 WARN_ON(x != src_x || y != src_y);
3080 } else {
3081 src_w = intel_crtc->config->pipe_src_w;
3082 src_h = intel_crtc->config->pipe_src_h;
3083 }
3084
3b7a5119
SJ
3085 if (intel_rotation_90_or_270(rotation)) {
3086 /* stride = Surface height in tiles */
2614f17d 3087 tile_height = intel_tile_height(dev, fb->pixel_format,
3b7a5119
SJ
3088 fb->modifier[0]);
3089 stride = DIV_ROUND_UP(fb->height, tile_height);
6156a456 3090 x_offset = stride * tile_height - y - src_h;
3b7a5119 3091 y_offset = x;
6156a456 3092 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3093 } else {
3094 stride = fb->pitches[0] / stride_div;
3095 x_offset = x;
3096 y_offset = y;
6156a456 3097 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3098 }
3099 plane_offset = y_offset << 16 | x_offset;
b321803d 3100
70d21f0e 3101 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3102 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3103 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3104 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3105
3106 if (scaler_id >= 0) {
3107 uint32_t ps_ctrl = 0;
3108
3109 WARN_ON(!dst_w || !dst_h);
3110 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3111 crtc_state->scaler_state.scalers[scaler_id].mode;
3112 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3113 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3114 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3115 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3116 I915_WRITE(PLANE_POS(pipe, 0), 0);
3117 } else {
3118 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3119 }
3120
121920fa 3121 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3122
3123 POSTING_READ(PLANE_SURF(pipe, 0));
3124}
3125
17638cd6
JB
3126/* Assume fb object is pinned & idle & fenced and just update base pointers */
3127static int
3128intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3129 int x, int y, enum mode_set_atomic state)
3130{
3131 struct drm_device *dev = crtc->dev;
3132 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3133
6b8e6ed0
CW
3134 if (dev_priv->display.disable_fbc)
3135 dev_priv->display.disable_fbc(dev);
81255565 3136
29b9bde6
DV
3137 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3138
3139 return 0;
81255565
JB
3140}
3141
7514747d 3142static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3143{
96a02917
VS
3144 struct drm_crtc *crtc;
3145
70e1e0ec 3146 for_each_crtc(dev, crtc) {
96a02917
VS
3147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3148 enum plane plane = intel_crtc->plane;
3149
3150 intel_prepare_page_flip(dev, plane);
3151 intel_finish_page_flip_plane(dev, plane);
3152 }
7514747d
VS
3153}
3154
3155static void intel_update_primary_planes(struct drm_device *dev)
3156{
3157 struct drm_i915_private *dev_priv = dev->dev_private;
3158 struct drm_crtc *crtc;
96a02917 3159
70e1e0ec 3160 for_each_crtc(dev, crtc) {
96a02917
VS
3161 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3162
51fd371b 3163 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
3164 /*
3165 * FIXME: Once we have proper support for primary planes (and
3166 * disabling them without disabling the entire crtc) allow again
66e514c1 3167 * a NULL crtc->primary->fb.
947fdaad 3168 */
f4510a27 3169 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 3170 dev_priv->display.update_primary_plane(crtc,
66e514c1 3171 crtc->primary->fb,
262ca2b0
MR
3172 crtc->x,
3173 crtc->y);
51fd371b 3174 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
3175 }
3176}
3177
ce22dba9
ML
3178void intel_crtc_reset(struct intel_crtc *crtc)
3179{
3180 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3181
3182 if (!crtc->active)
3183 return;
3184
3185 intel_crtc_disable_planes(&crtc->base);
3186 dev_priv->display.crtc_disable(&crtc->base);
3187 dev_priv->display.crtc_enable(&crtc->base);
3188 intel_crtc_enable_planes(&crtc->base);
3189}
3190
7514747d
VS
3191void intel_prepare_reset(struct drm_device *dev)
3192{
f98ce92f
VS
3193 struct drm_i915_private *dev_priv = to_i915(dev);
3194 struct intel_crtc *crtc;
3195
7514747d
VS
3196 /* no reset support for gen2 */
3197 if (IS_GEN2(dev))
3198 return;
3199
3200 /* reset doesn't touch the display */
3201 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3202 return;
3203
3204 drm_modeset_lock_all(dev);
f98ce92f
VS
3205
3206 /*
3207 * Disabling the crtcs gracefully seems nicer. Also the
3208 * g33 docs say we should at least disable all the planes.
3209 */
3210 for_each_intel_crtc(dev, crtc) {
ce22dba9
ML
3211 if (!crtc->active)
3212 continue;
3213
3214 intel_crtc_disable_planes(&crtc->base);
3215 dev_priv->display.crtc_disable(&crtc->base);
f98ce92f 3216 }
7514747d
VS
3217}
3218
3219void intel_finish_reset(struct drm_device *dev)
3220{
3221 struct drm_i915_private *dev_priv = to_i915(dev);
3222
3223 /*
3224 * Flips in the rings will be nuked by the reset,
3225 * so complete all pending flips so that user space
3226 * will get its events and not get stuck.
3227 */
3228 intel_complete_page_flips(dev);
3229
3230 /* no reset support for gen2 */
3231 if (IS_GEN2(dev))
3232 return;
3233
3234 /* reset doesn't touch the display */
3235 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3236 /*
3237 * Flips in the rings have been nuked by the reset,
3238 * so update the base address of all primary
3239 * planes to the the last fb to make sure we're
3240 * showing the correct fb after a reset.
3241 */
3242 intel_update_primary_planes(dev);
3243 return;
3244 }
3245
3246 /*
3247 * The display has been reset as well,
3248 * so need a full re-initialization.
3249 */
3250 intel_runtime_pm_disable_interrupts(dev_priv);
3251 intel_runtime_pm_enable_interrupts(dev_priv);
3252
3253 intel_modeset_init_hw(dev);
3254
3255 spin_lock_irq(&dev_priv->irq_lock);
3256 if (dev_priv->display.hpd_irq_setup)
3257 dev_priv->display.hpd_irq_setup(dev);
3258 spin_unlock_irq(&dev_priv->irq_lock);
3259
3260 intel_modeset_setup_hw_state(dev, true);
3261
3262 intel_hpd_init(dev_priv);
3263
3264 drm_modeset_unlock_all(dev);
3265}
3266
2e2f351d 3267static void
14667a4b
CW
3268intel_finish_fb(struct drm_framebuffer *old_fb)
3269{
2ff8fde1 3270 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2e2f351d 3271 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14667a4b
CW
3272 bool was_interruptible = dev_priv->mm.interruptible;
3273 int ret;
3274
14667a4b
CW
3275 /* Big Hammer, we also need to ensure that any pending
3276 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3277 * current scanout is retired before unpinning the old
2e2f351d
CW
3278 * framebuffer. Note that we rely on userspace rendering
3279 * into the buffer attached to the pipe they are waiting
3280 * on. If not, userspace generates a GPU hang with IPEHR
3281 * point to the MI_WAIT_FOR_EVENT.
14667a4b
CW
3282 *
3283 * This should only fail upon a hung GPU, in which case we
3284 * can safely continue.
3285 */
3286 dev_priv->mm.interruptible = false;
2e2f351d 3287 ret = i915_gem_object_wait_rendering(obj, true);
14667a4b
CW
3288 dev_priv->mm.interruptible = was_interruptible;
3289
2e2f351d 3290 WARN_ON(ret);
14667a4b
CW
3291}
3292
7d5e3799
CW
3293static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3294{
3295 struct drm_device *dev = crtc->dev;
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3298 bool pending;
3299
3300 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3301 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3302 return false;
3303
5e2d7afc 3304 spin_lock_irq(&dev->event_lock);
7d5e3799 3305 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3306 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3307
3308 return pending;
3309}
3310
e30e8f75
GP
3311static void intel_update_pipe_size(struct intel_crtc *crtc)
3312{
3313 struct drm_device *dev = crtc->base.dev;
3314 struct drm_i915_private *dev_priv = dev->dev_private;
3315 const struct drm_display_mode *adjusted_mode;
3316
3317 if (!i915.fastboot)
3318 return;
3319
3320 /*
3321 * Update pipe size and adjust fitter if needed: the reason for this is
3322 * that in compute_mode_changes we check the native mode (not the pfit
3323 * mode) to see if we can flip rather than do a full mode set. In the
3324 * fastboot case, we'll flip, but if we don't update the pipesrc and
3325 * pfit state, we'll end up with a big fb scanned out into the wrong
3326 * sized surface.
3327 *
3328 * To fix this properly, we need to hoist the checks up into
3329 * compute_mode_changes (or above), check the actual pfit state and
3330 * whether the platform allows pfit disable with pipe active, and only
3331 * then update the pipesrc and pfit state, even on the flip path.
3332 */
3333
6e3c9717 3334 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3335
3336 I915_WRITE(PIPESRC(crtc->pipe),
3337 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3338 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3339 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3340 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3341 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3342 I915_WRITE(PF_CTL(crtc->pipe), 0);
3343 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3344 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3345 }
6e3c9717
ACO
3346 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3347 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3348}
3349
5e84e1a4
ZW
3350static void intel_fdi_normal_train(struct drm_crtc *crtc)
3351{
3352 struct drm_device *dev = crtc->dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3355 int pipe = intel_crtc->pipe;
3356 u32 reg, temp;
3357
3358 /* enable normal train */
3359 reg = FDI_TX_CTL(pipe);
3360 temp = I915_READ(reg);
61e499bf 3361 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3362 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3363 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3364 } else {
3365 temp &= ~FDI_LINK_TRAIN_NONE;
3366 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3367 }
5e84e1a4
ZW
3368 I915_WRITE(reg, temp);
3369
3370 reg = FDI_RX_CTL(pipe);
3371 temp = I915_READ(reg);
3372 if (HAS_PCH_CPT(dev)) {
3373 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3374 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3375 } else {
3376 temp &= ~FDI_LINK_TRAIN_NONE;
3377 temp |= FDI_LINK_TRAIN_NONE;
3378 }
3379 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3380
3381 /* wait one idle pattern time */
3382 POSTING_READ(reg);
3383 udelay(1000);
357555c0
JB
3384
3385 /* IVB wants error correction enabled */
3386 if (IS_IVYBRIDGE(dev))
3387 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3388 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3389}
3390
8db9d77b
ZW
3391/* The FDI link training functions for ILK/Ibexpeak. */
3392static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3393{
3394 struct drm_device *dev = crtc->dev;
3395 struct drm_i915_private *dev_priv = dev->dev_private;
3396 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3397 int pipe = intel_crtc->pipe;
5eddb70b 3398 u32 reg, temp, tries;
8db9d77b 3399
1c8562f6 3400 /* FDI needs bits from pipe first */
0fc932b8 3401 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3402
e1a44743
AJ
3403 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3404 for train result */
5eddb70b
CW
3405 reg = FDI_RX_IMR(pipe);
3406 temp = I915_READ(reg);
e1a44743
AJ
3407 temp &= ~FDI_RX_SYMBOL_LOCK;
3408 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3409 I915_WRITE(reg, temp);
3410 I915_READ(reg);
e1a44743
AJ
3411 udelay(150);
3412
8db9d77b 3413 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3414 reg = FDI_TX_CTL(pipe);
3415 temp = I915_READ(reg);
627eb5a3 3416 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3417 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3418 temp &= ~FDI_LINK_TRAIN_NONE;
3419 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3420 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3421
5eddb70b
CW
3422 reg = FDI_RX_CTL(pipe);
3423 temp = I915_READ(reg);
8db9d77b
ZW
3424 temp &= ~FDI_LINK_TRAIN_NONE;
3425 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3426 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3427
3428 POSTING_READ(reg);
8db9d77b
ZW
3429 udelay(150);
3430
5b2adf89 3431 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3432 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3433 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3434 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3435
5eddb70b 3436 reg = FDI_RX_IIR(pipe);
e1a44743 3437 for (tries = 0; tries < 5; tries++) {
5eddb70b 3438 temp = I915_READ(reg);
8db9d77b
ZW
3439 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3440
3441 if ((temp & FDI_RX_BIT_LOCK)) {
3442 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3443 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3444 break;
3445 }
8db9d77b 3446 }
e1a44743 3447 if (tries == 5)
5eddb70b 3448 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3449
3450 /* Train 2 */
5eddb70b
CW
3451 reg = FDI_TX_CTL(pipe);
3452 temp = I915_READ(reg);
8db9d77b
ZW
3453 temp &= ~FDI_LINK_TRAIN_NONE;
3454 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3455 I915_WRITE(reg, temp);
8db9d77b 3456
5eddb70b
CW
3457 reg = FDI_RX_CTL(pipe);
3458 temp = I915_READ(reg);
8db9d77b
ZW
3459 temp &= ~FDI_LINK_TRAIN_NONE;
3460 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3461 I915_WRITE(reg, temp);
8db9d77b 3462
5eddb70b
CW
3463 POSTING_READ(reg);
3464 udelay(150);
8db9d77b 3465
5eddb70b 3466 reg = FDI_RX_IIR(pipe);
e1a44743 3467 for (tries = 0; tries < 5; tries++) {
5eddb70b 3468 temp = I915_READ(reg);
8db9d77b
ZW
3469 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3470
3471 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3472 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3473 DRM_DEBUG_KMS("FDI train 2 done.\n");
3474 break;
3475 }
8db9d77b 3476 }
e1a44743 3477 if (tries == 5)
5eddb70b 3478 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3479
3480 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3481
8db9d77b
ZW
3482}
3483
0206e353 3484static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3485 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3486 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3487 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3488 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3489};
3490
3491/* The FDI link training functions for SNB/Cougarpoint. */
3492static void gen6_fdi_link_train(struct drm_crtc *crtc)
3493{
3494 struct drm_device *dev = crtc->dev;
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497 int pipe = intel_crtc->pipe;
fa37d39e 3498 u32 reg, temp, i, retry;
8db9d77b 3499
e1a44743
AJ
3500 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3501 for train result */
5eddb70b
CW
3502 reg = FDI_RX_IMR(pipe);
3503 temp = I915_READ(reg);
e1a44743
AJ
3504 temp &= ~FDI_RX_SYMBOL_LOCK;
3505 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3506 I915_WRITE(reg, temp);
3507
3508 POSTING_READ(reg);
e1a44743
AJ
3509 udelay(150);
3510
8db9d77b 3511 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3512 reg = FDI_TX_CTL(pipe);
3513 temp = I915_READ(reg);
627eb5a3 3514 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3515 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3516 temp &= ~FDI_LINK_TRAIN_NONE;
3517 temp |= FDI_LINK_TRAIN_PATTERN_1;
3518 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3519 /* SNB-B */
3520 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3521 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3522
d74cf324
DV
3523 I915_WRITE(FDI_RX_MISC(pipe),
3524 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3525
5eddb70b
CW
3526 reg = FDI_RX_CTL(pipe);
3527 temp = I915_READ(reg);
8db9d77b
ZW
3528 if (HAS_PCH_CPT(dev)) {
3529 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3530 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3531 } else {
3532 temp &= ~FDI_LINK_TRAIN_NONE;
3533 temp |= FDI_LINK_TRAIN_PATTERN_1;
3534 }
5eddb70b
CW
3535 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3536
3537 POSTING_READ(reg);
8db9d77b
ZW
3538 udelay(150);
3539
0206e353 3540 for (i = 0; i < 4; i++) {
5eddb70b
CW
3541 reg = FDI_TX_CTL(pipe);
3542 temp = I915_READ(reg);
8db9d77b
ZW
3543 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3544 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3545 I915_WRITE(reg, temp);
3546
3547 POSTING_READ(reg);
8db9d77b
ZW
3548 udelay(500);
3549
fa37d39e
SP
3550 for (retry = 0; retry < 5; retry++) {
3551 reg = FDI_RX_IIR(pipe);
3552 temp = I915_READ(reg);
3553 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3554 if (temp & FDI_RX_BIT_LOCK) {
3555 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3556 DRM_DEBUG_KMS("FDI train 1 done.\n");
3557 break;
3558 }
3559 udelay(50);
8db9d77b 3560 }
fa37d39e
SP
3561 if (retry < 5)
3562 break;
8db9d77b
ZW
3563 }
3564 if (i == 4)
5eddb70b 3565 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3566
3567 /* Train 2 */
5eddb70b
CW
3568 reg = FDI_TX_CTL(pipe);
3569 temp = I915_READ(reg);
8db9d77b
ZW
3570 temp &= ~FDI_LINK_TRAIN_NONE;
3571 temp |= FDI_LINK_TRAIN_PATTERN_2;
3572 if (IS_GEN6(dev)) {
3573 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3574 /* SNB-B */
3575 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3576 }
5eddb70b 3577 I915_WRITE(reg, temp);
8db9d77b 3578
5eddb70b
CW
3579 reg = FDI_RX_CTL(pipe);
3580 temp = I915_READ(reg);
8db9d77b
ZW
3581 if (HAS_PCH_CPT(dev)) {
3582 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3583 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3584 } else {
3585 temp &= ~FDI_LINK_TRAIN_NONE;
3586 temp |= FDI_LINK_TRAIN_PATTERN_2;
3587 }
5eddb70b
CW
3588 I915_WRITE(reg, temp);
3589
3590 POSTING_READ(reg);
8db9d77b
ZW
3591 udelay(150);
3592
0206e353 3593 for (i = 0; i < 4; i++) {
5eddb70b
CW
3594 reg = FDI_TX_CTL(pipe);
3595 temp = I915_READ(reg);
8db9d77b
ZW
3596 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3597 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3598 I915_WRITE(reg, temp);
3599
3600 POSTING_READ(reg);
8db9d77b
ZW
3601 udelay(500);
3602
fa37d39e
SP
3603 for (retry = 0; retry < 5; retry++) {
3604 reg = FDI_RX_IIR(pipe);
3605 temp = I915_READ(reg);
3606 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3607 if (temp & FDI_RX_SYMBOL_LOCK) {
3608 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3609 DRM_DEBUG_KMS("FDI train 2 done.\n");
3610 break;
3611 }
3612 udelay(50);
8db9d77b 3613 }
fa37d39e
SP
3614 if (retry < 5)
3615 break;
8db9d77b
ZW
3616 }
3617 if (i == 4)
5eddb70b 3618 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3619
3620 DRM_DEBUG_KMS("FDI train done.\n");
3621}
3622
357555c0
JB
3623/* Manual link training for Ivy Bridge A0 parts */
3624static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3625{
3626 struct drm_device *dev = crtc->dev;
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629 int pipe = intel_crtc->pipe;
139ccd3f 3630 u32 reg, temp, i, j;
357555c0
JB
3631
3632 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3633 for train result */
3634 reg = FDI_RX_IMR(pipe);
3635 temp = I915_READ(reg);
3636 temp &= ~FDI_RX_SYMBOL_LOCK;
3637 temp &= ~FDI_RX_BIT_LOCK;
3638 I915_WRITE(reg, temp);
3639
3640 POSTING_READ(reg);
3641 udelay(150);
3642
01a415fd
DV
3643 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3644 I915_READ(FDI_RX_IIR(pipe)));
3645
139ccd3f
JB
3646 /* Try each vswing and preemphasis setting twice before moving on */
3647 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3648 /* disable first in case we need to retry */
3649 reg = FDI_TX_CTL(pipe);
3650 temp = I915_READ(reg);
3651 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3652 temp &= ~FDI_TX_ENABLE;
3653 I915_WRITE(reg, temp);
357555c0 3654
139ccd3f
JB
3655 reg = FDI_RX_CTL(pipe);
3656 temp = I915_READ(reg);
3657 temp &= ~FDI_LINK_TRAIN_AUTO;
3658 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3659 temp &= ~FDI_RX_ENABLE;
3660 I915_WRITE(reg, temp);
357555c0 3661
139ccd3f 3662 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3663 reg = FDI_TX_CTL(pipe);
3664 temp = I915_READ(reg);
139ccd3f 3665 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3666 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3667 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3668 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3669 temp |= snb_b_fdi_train_param[j/2];
3670 temp |= FDI_COMPOSITE_SYNC;
3671 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3672
139ccd3f
JB
3673 I915_WRITE(FDI_RX_MISC(pipe),
3674 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3675
139ccd3f 3676 reg = FDI_RX_CTL(pipe);
357555c0 3677 temp = I915_READ(reg);
139ccd3f
JB
3678 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3679 temp |= FDI_COMPOSITE_SYNC;
3680 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3681
139ccd3f
JB
3682 POSTING_READ(reg);
3683 udelay(1); /* should be 0.5us */
357555c0 3684
139ccd3f
JB
3685 for (i = 0; i < 4; i++) {
3686 reg = FDI_RX_IIR(pipe);
3687 temp = I915_READ(reg);
3688 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3689
139ccd3f
JB
3690 if (temp & FDI_RX_BIT_LOCK ||
3691 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3692 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3693 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3694 i);
3695 break;
3696 }
3697 udelay(1); /* should be 0.5us */
3698 }
3699 if (i == 4) {
3700 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3701 continue;
3702 }
357555c0 3703
139ccd3f 3704 /* Train 2 */
357555c0
JB
3705 reg = FDI_TX_CTL(pipe);
3706 temp = I915_READ(reg);
139ccd3f
JB
3707 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3708 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3709 I915_WRITE(reg, temp);
3710
3711 reg = FDI_RX_CTL(pipe);
3712 temp = I915_READ(reg);
3713 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3714 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3715 I915_WRITE(reg, temp);
3716
3717 POSTING_READ(reg);
139ccd3f 3718 udelay(2); /* should be 1.5us */
357555c0 3719
139ccd3f
JB
3720 for (i = 0; i < 4; i++) {
3721 reg = FDI_RX_IIR(pipe);
3722 temp = I915_READ(reg);
3723 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3724
139ccd3f
JB
3725 if (temp & FDI_RX_SYMBOL_LOCK ||
3726 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3727 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3728 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3729 i);
3730 goto train_done;
3731 }
3732 udelay(2); /* should be 1.5us */
357555c0 3733 }
139ccd3f
JB
3734 if (i == 4)
3735 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3736 }
357555c0 3737
139ccd3f 3738train_done:
357555c0
JB
3739 DRM_DEBUG_KMS("FDI train done.\n");
3740}
3741
88cefb6c 3742static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3743{
88cefb6c 3744 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3745 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3746 int pipe = intel_crtc->pipe;
5eddb70b 3747 u32 reg, temp;
79e53945 3748
c64e311e 3749
c98e9dcf 3750 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3751 reg = FDI_RX_CTL(pipe);
3752 temp = I915_READ(reg);
627eb5a3 3753 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3754 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3755 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3756 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3757
3758 POSTING_READ(reg);
c98e9dcf
JB
3759 udelay(200);
3760
3761 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3762 temp = I915_READ(reg);
3763 I915_WRITE(reg, temp | FDI_PCDCLK);
3764
3765 POSTING_READ(reg);
c98e9dcf
JB
3766 udelay(200);
3767
20749730
PZ
3768 /* Enable CPU FDI TX PLL, always on for Ironlake */
3769 reg = FDI_TX_CTL(pipe);
3770 temp = I915_READ(reg);
3771 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3772 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3773
20749730
PZ
3774 POSTING_READ(reg);
3775 udelay(100);
6be4a607 3776 }
0e23b99d
JB
3777}
3778
88cefb6c
DV
3779static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3780{
3781 struct drm_device *dev = intel_crtc->base.dev;
3782 struct drm_i915_private *dev_priv = dev->dev_private;
3783 int pipe = intel_crtc->pipe;
3784 u32 reg, temp;
3785
3786 /* Switch from PCDclk to Rawclk */
3787 reg = FDI_RX_CTL(pipe);
3788 temp = I915_READ(reg);
3789 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3790
3791 /* Disable CPU FDI TX PLL */
3792 reg = FDI_TX_CTL(pipe);
3793 temp = I915_READ(reg);
3794 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3795
3796 POSTING_READ(reg);
3797 udelay(100);
3798
3799 reg = FDI_RX_CTL(pipe);
3800 temp = I915_READ(reg);
3801 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3802
3803 /* Wait for the clocks to turn off. */
3804 POSTING_READ(reg);
3805 udelay(100);
3806}
3807
0fc932b8
JB
3808static void ironlake_fdi_disable(struct drm_crtc *crtc)
3809{
3810 struct drm_device *dev = crtc->dev;
3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3813 int pipe = intel_crtc->pipe;
3814 u32 reg, temp;
3815
3816 /* disable CPU FDI tx and PCH FDI rx */
3817 reg = FDI_TX_CTL(pipe);
3818 temp = I915_READ(reg);
3819 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3820 POSTING_READ(reg);
3821
3822 reg = FDI_RX_CTL(pipe);
3823 temp = I915_READ(reg);
3824 temp &= ~(0x7 << 16);
dfd07d72 3825 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3826 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3827
3828 POSTING_READ(reg);
3829 udelay(100);
3830
3831 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3832 if (HAS_PCH_IBX(dev))
6f06ce18 3833 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3834
3835 /* still set train pattern 1 */
3836 reg = FDI_TX_CTL(pipe);
3837 temp = I915_READ(reg);
3838 temp &= ~FDI_LINK_TRAIN_NONE;
3839 temp |= FDI_LINK_TRAIN_PATTERN_1;
3840 I915_WRITE(reg, temp);
3841
3842 reg = FDI_RX_CTL(pipe);
3843 temp = I915_READ(reg);
3844 if (HAS_PCH_CPT(dev)) {
3845 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3846 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3847 } else {
3848 temp &= ~FDI_LINK_TRAIN_NONE;
3849 temp |= FDI_LINK_TRAIN_PATTERN_1;
3850 }
3851 /* BPC in FDI rx is consistent with that in PIPECONF */
3852 temp &= ~(0x07 << 16);
dfd07d72 3853 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3854 I915_WRITE(reg, temp);
3855
3856 POSTING_READ(reg);
3857 udelay(100);
3858}
3859
5dce5b93
CW
3860bool intel_has_pending_fb_unpin(struct drm_device *dev)
3861{
3862 struct intel_crtc *crtc;
3863
3864 /* Note that we don't need to be called with mode_config.lock here
3865 * as our list of CRTC objects is static for the lifetime of the
3866 * device and so cannot disappear as we iterate. Similarly, we can
3867 * happily treat the predicates as racy, atomic checks as userspace
3868 * cannot claim and pin a new fb without at least acquring the
3869 * struct_mutex and so serialising with us.
3870 */
d3fcc808 3871 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3872 if (atomic_read(&crtc->unpin_work_count) == 0)
3873 continue;
3874
3875 if (crtc->unpin_work)
3876 intel_wait_for_vblank(dev, crtc->pipe);
3877
3878 return true;
3879 }
3880
3881 return false;
3882}
3883
d6bbafa1
CW
3884static void page_flip_completed(struct intel_crtc *intel_crtc)
3885{
3886 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3887 struct intel_unpin_work *work = intel_crtc->unpin_work;
3888
3889 /* ensure that the unpin work is consistent wrt ->pending. */
3890 smp_rmb();
3891 intel_crtc->unpin_work = NULL;
3892
3893 if (work->event)
3894 drm_send_vblank_event(intel_crtc->base.dev,
3895 intel_crtc->pipe,
3896 work->event);
3897
3898 drm_crtc_vblank_put(&intel_crtc->base);
3899
3900 wake_up_all(&dev_priv->pending_flip_queue);
3901 queue_work(dev_priv->wq, &work->work);
3902
3903 trace_i915_flip_complete(intel_crtc->plane,
3904 work->pending_flip_obj);
3905}
3906
46a55d30 3907void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3908{
0f91128d 3909 struct drm_device *dev = crtc->dev;
5bb61643 3910 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3911
2c10d571 3912 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3913 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3914 !intel_crtc_has_pending_flip(crtc),
3915 60*HZ) == 0)) {
3916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3917
5e2d7afc 3918 spin_lock_irq(&dev->event_lock);
9c787942
CW
3919 if (intel_crtc->unpin_work) {
3920 WARN_ONCE(1, "Removing stuck page flip\n");
3921 page_flip_completed(intel_crtc);
3922 }
5e2d7afc 3923 spin_unlock_irq(&dev->event_lock);
9c787942 3924 }
5bb61643 3925
975d568a
CW
3926 if (crtc->primary->fb) {
3927 mutex_lock(&dev->struct_mutex);
3928 intel_finish_fb(crtc->primary->fb);
3929 mutex_unlock(&dev->struct_mutex);
3930 }
e6c3a2a6
CW
3931}
3932
e615efe4
ED
3933/* Program iCLKIP clock to the desired frequency */
3934static void lpt_program_iclkip(struct drm_crtc *crtc)
3935{
3936 struct drm_device *dev = crtc->dev;
3937 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3938 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3939 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3940 u32 temp;
3941
a580516d 3942 mutex_lock(&dev_priv->sb_lock);
09153000 3943
e615efe4
ED
3944 /* It is necessary to ungate the pixclk gate prior to programming
3945 * the divisors, and gate it back when it is done.
3946 */
3947 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3948
3949 /* Disable SSCCTL */
3950 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3951 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3952 SBI_SSCCTL_DISABLE,
3953 SBI_ICLK);
e615efe4
ED
3954
3955 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3956 if (clock == 20000) {
e615efe4
ED
3957 auxdiv = 1;
3958 divsel = 0x41;
3959 phaseinc = 0x20;
3960 } else {
3961 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3962 * but the adjusted_mode->crtc_clock in in KHz. To get the
3963 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3964 * convert the virtual clock precision to KHz here for higher
3965 * precision.
3966 */
3967 u32 iclk_virtual_root_freq = 172800 * 1000;
3968 u32 iclk_pi_range = 64;
3969 u32 desired_divisor, msb_divisor_value, pi_value;
3970
12d7ceed 3971 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3972 msb_divisor_value = desired_divisor / iclk_pi_range;
3973 pi_value = desired_divisor % iclk_pi_range;
3974
3975 auxdiv = 0;
3976 divsel = msb_divisor_value - 2;
3977 phaseinc = pi_value;
3978 }
3979
3980 /* This should not happen with any sane values */
3981 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3982 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3983 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3984 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3985
3986 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3987 clock,
e615efe4
ED
3988 auxdiv,
3989 divsel,
3990 phasedir,
3991 phaseinc);
3992
3993 /* Program SSCDIVINTPHASE6 */
988d6ee8 3994 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3995 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3996 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3997 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3998 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3999 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4000 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 4001 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
4002
4003 /* Program SSCAUXDIV */
988d6ee8 4004 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
4005 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4006 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 4007 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
4008
4009 /* Enable modulator and associated divider */
988d6ee8 4010 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 4011 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 4012 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
4013
4014 /* Wait for initialization time */
4015 udelay(24);
4016
4017 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000 4018
a580516d 4019 mutex_unlock(&dev_priv->sb_lock);
e615efe4
ED
4020}
4021
275f01b2
DV
4022static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4023 enum pipe pch_transcoder)
4024{
4025 struct drm_device *dev = crtc->base.dev;
4026 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4027 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4028
4029 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4030 I915_READ(HTOTAL(cpu_transcoder)));
4031 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4032 I915_READ(HBLANK(cpu_transcoder)));
4033 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4034 I915_READ(HSYNC(cpu_transcoder)));
4035
4036 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4037 I915_READ(VTOTAL(cpu_transcoder)));
4038 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4039 I915_READ(VBLANK(cpu_transcoder)));
4040 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4041 I915_READ(VSYNC(cpu_transcoder)));
4042 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4043 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4044}
4045
003632d9 4046static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4047{
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 uint32_t temp;
4050
4051 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4052 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4053 return;
4054
4055 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4056 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4057
003632d9
ACO
4058 temp &= ~FDI_BC_BIFURCATION_SELECT;
4059 if (enable)
4060 temp |= FDI_BC_BIFURCATION_SELECT;
4061
4062 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4063 I915_WRITE(SOUTH_CHICKEN1, temp);
4064 POSTING_READ(SOUTH_CHICKEN1);
4065}
4066
4067static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4068{
4069 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4070
4071 switch (intel_crtc->pipe) {
4072 case PIPE_A:
4073 break;
4074 case PIPE_B:
6e3c9717 4075 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4076 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4077 else
003632d9 4078 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4079
4080 break;
4081 case PIPE_C:
003632d9 4082 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4083
4084 break;
4085 default:
4086 BUG();
4087 }
4088}
4089
f67a559d
JB
4090/*
4091 * Enable PCH resources required for PCH ports:
4092 * - PCH PLLs
4093 * - FDI training & RX/TX
4094 * - update transcoder timings
4095 * - DP transcoding bits
4096 * - transcoder
4097 */
4098static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4099{
4100 struct drm_device *dev = crtc->dev;
4101 struct drm_i915_private *dev_priv = dev->dev_private;
4102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4103 int pipe = intel_crtc->pipe;
ee7b9f93 4104 u32 reg, temp;
2c07245f 4105
ab9412ba 4106 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4107
1fbc0d78
DV
4108 if (IS_IVYBRIDGE(dev))
4109 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4110
cd986abb
DV
4111 /* Write the TU size bits before fdi link training, so that error
4112 * detection works. */
4113 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4114 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4115
c98e9dcf 4116 /* For PCH output, training FDI link */
674cf967 4117 dev_priv->display.fdi_link_train(crtc);
2c07245f 4118
3ad8a208
DV
4119 /* We need to program the right clock selection before writing the pixel
4120 * mutliplier into the DPLL. */
303b81e0 4121 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4122 u32 sel;
4b645f14 4123
c98e9dcf 4124 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4125 temp |= TRANS_DPLL_ENABLE(pipe);
4126 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 4127 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
4128 temp |= sel;
4129 else
4130 temp &= ~sel;
c98e9dcf 4131 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4132 }
5eddb70b 4133
3ad8a208
DV
4134 /* XXX: pch pll's can be enabled any time before we enable the PCH
4135 * transcoder, and we actually should do this to not upset any PCH
4136 * transcoder that already use the clock when we share it.
4137 *
4138 * Note that enable_shared_dpll tries to do the right thing, but
4139 * get_shared_dpll unconditionally resets the pll - we need that to have
4140 * the right LVDS enable sequence. */
85b3894f 4141 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4142
d9b6cb56
JB
4143 /* set transcoder timing, panel must allow it */
4144 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4145 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4146
303b81e0 4147 intel_fdi_normal_train(crtc);
5e84e1a4 4148
c98e9dcf 4149 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4150 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 4151 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
4152 reg = TRANS_DP_CTL(pipe);
4153 temp = I915_READ(reg);
4154 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4155 TRANS_DP_SYNC_MASK |
4156 TRANS_DP_BPC_MASK);
e3ef4479 4157 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4158 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
4159
4160 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4161 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 4162 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4163 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4164
4165 switch (intel_trans_dp_port_sel(crtc)) {
4166 case PCH_DP_B:
5eddb70b 4167 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
4168 break;
4169 case PCH_DP_C:
5eddb70b 4170 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
4171 break;
4172 case PCH_DP_D:
5eddb70b 4173 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4174 break;
4175 default:
e95d41e1 4176 BUG();
32f9d658 4177 }
2c07245f 4178
5eddb70b 4179 I915_WRITE(reg, temp);
6be4a607 4180 }
b52eb4dc 4181
b8a4f404 4182 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4183}
4184
1507e5bd
PZ
4185static void lpt_pch_enable(struct drm_crtc *crtc)
4186{
4187 struct drm_device *dev = crtc->dev;
4188 struct drm_i915_private *dev_priv = dev->dev_private;
4189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4190 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4191
ab9412ba 4192 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4193
8c52b5e8 4194 lpt_program_iclkip(crtc);
1507e5bd 4195
0540e488 4196 /* Set transcoder timing. */
275f01b2 4197 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4198
937bb610 4199 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4200}
4201
190f68c5
ACO
4202struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4203 struct intel_crtc_state *crtc_state)
ee7b9f93 4204{
e2b78267 4205 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4206 struct intel_shared_dpll *pll;
e2b78267 4207 enum intel_dpll_id i;
ee7b9f93 4208
98b6bd99
DV
4209 if (HAS_PCH_IBX(dev_priv->dev)) {
4210 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4211 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4212 pll = &dev_priv->shared_dplls[i];
98b6bd99 4213
46edb027
DV
4214 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4215 crtc->base.base.id, pll->name);
98b6bd99 4216
8bd31e67 4217 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 4218
98b6bd99
DV
4219 goto found;
4220 }
4221
bcddf610
S
4222 if (IS_BROXTON(dev_priv->dev)) {
4223 /* PLL is attached to port in bxt */
4224 struct intel_encoder *encoder;
4225 struct intel_digital_port *intel_dig_port;
4226
4227 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4228 if (WARN_ON(!encoder))
4229 return NULL;
4230
4231 intel_dig_port = enc_to_dig_port(&encoder->base);
4232 /* 1:1 mapping between ports and PLLs */
4233 i = (enum intel_dpll_id)intel_dig_port->port;
4234 pll = &dev_priv->shared_dplls[i];
4235 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4236 crtc->base.base.id, pll->name);
4237 WARN_ON(pll->new_config->crtc_mask);
4238
4239 goto found;
4240 }
4241
e72f9fbf
DV
4242 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4243 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4244
4245 /* Only want to check enabled timings first */
8bd31e67 4246 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
4247 continue;
4248
190f68c5 4249 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
4250 &pll->new_config->hw_state,
4251 sizeof(pll->new_config->hw_state)) == 0) {
4252 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4253 crtc->base.base.id, pll->name,
8bd31e67
ACO
4254 pll->new_config->crtc_mask,
4255 pll->active);
ee7b9f93
JB
4256 goto found;
4257 }
4258 }
4259
4260 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4261 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4262 pll = &dev_priv->shared_dplls[i];
8bd31e67 4263 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
4264 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4265 crtc->base.base.id, pll->name);
ee7b9f93
JB
4266 goto found;
4267 }
4268 }
4269
4270 return NULL;
4271
4272found:
8bd31e67 4273 if (pll->new_config->crtc_mask == 0)
190f68c5 4274 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 4275
190f68c5 4276 crtc_state->shared_dpll = i;
46edb027
DV
4277 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4278 pipe_name(crtc->pipe));
ee7b9f93 4279
8bd31e67 4280 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 4281
ee7b9f93
JB
4282 return pll;
4283}
4284
8bd31e67
ACO
4285/**
4286 * intel_shared_dpll_start_config - start a new PLL staged config
4287 * @dev_priv: DRM device
4288 * @clear_pipes: mask of pipes that will have their PLLs freed
4289 *
4290 * Starts a new PLL staged config, copying the current config but
4291 * releasing the references of pipes specified in clear_pipes.
4292 */
4293static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4294 unsigned clear_pipes)
4295{
4296 struct intel_shared_dpll *pll;
4297 enum intel_dpll_id i;
4298
4299 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4300 pll = &dev_priv->shared_dplls[i];
4301
4302 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4303 GFP_KERNEL);
4304 if (!pll->new_config)
4305 goto cleanup;
4306
4307 pll->new_config->crtc_mask &= ~clear_pipes;
4308 }
4309
4310 return 0;
4311
4312cleanup:
4313 while (--i >= 0) {
4314 pll = &dev_priv->shared_dplls[i];
f354d733 4315 kfree(pll->new_config);
8bd31e67
ACO
4316 pll->new_config = NULL;
4317 }
4318
4319 return -ENOMEM;
4320}
4321
4322static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4323{
4324 struct intel_shared_dpll *pll;
4325 enum intel_dpll_id i;
4326
4327 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4328 pll = &dev_priv->shared_dplls[i];
4329
4330 WARN_ON(pll->new_config == &pll->config);
4331
4332 pll->config = *pll->new_config;
4333 kfree(pll->new_config);
4334 pll->new_config = NULL;
4335 }
4336}
4337
4338static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4339{
4340 struct intel_shared_dpll *pll;
4341 enum intel_dpll_id i;
4342
4343 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4344 pll = &dev_priv->shared_dplls[i];
4345
4346 WARN_ON(pll->new_config == &pll->config);
4347
4348 kfree(pll->new_config);
4349 pll->new_config = NULL;
4350 }
4351}
4352
a1520318 4353static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4354{
4355 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4356 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4357 u32 temp;
4358
4359 temp = I915_READ(dslreg);
4360 udelay(500);
4361 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4362 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4363 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4364 }
4365}
4366
a1b2278e
CK
4367/**
4368 * skl_update_scaler_users - Stages update to crtc's scaler state
4369 * @intel_crtc: crtc
4370 * @crtc_state: crtc_state
4371 * @plane: plane (NULL indicates crtc is requesting update)
4372 * @plane_state: plane's state
4373 * @force_detach: request unconditional detachment of scaler
4374 *
4375 * This function updates scaler state for requested plane or crtc.
4376 * To request scaler usage update for a plane, caller shall pass plane pointer.
4377 * To request scaler usage update for crtc, caller shall pass plane pointer
4378 * as NULL.
4379 *
4380 * Return
4381 * 0 - scaler_usage updated successfully
4382 * error - requested scaling cannot be supported or other error condition
4383 */
4384int
4385skl_update_scaler_users(
4386 struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4387 struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4388 int force_detach)
4389{
4390 int need_scaling;
4391 int idx;
4392 int src_w, src_h, dst_w, dst_h;
4393 int *scaler_id;
4394 struct drm_framebuffer *fb;
4395 struct intel_crtc_scaler_state *scaler_state;
6156a456 4396 unsigned int rotation;
a1b2278e
CK
4397
4398 if (!intel_crtc || !crtc_state)
4399 return 0;
4400
4401 scaler_state = &crtc_state->scaler_state;
4402
4403 idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4404 fb = intel_plane ? plane_state->base.fb : NULL;
4405
4406 if (intel_plane) {
4407 src_w = drm_rect_width(&plane_state->src) >> 16;
4408 src_h = drm_rect_height(&plane_state->src) >> 16;
4409 dst_w = drm_rect_width(&plane_state->dst);
4410 dst_h = drm_rect_height(&plane_state->dst);
4411 scaler_id = &plane_state->scaler_id;
6156a456 4412 rotation = plane_state->base.rotation;
a1b2278e
CK
4413 } else {
4414 struct drm_display_mode *adjusted_mode =
4415 &crtc_state->base.adjusted_mode;
4416 src_w = crtc_state->pipe_src_w;
4417 src_h = crtc_state->pipe_src_h;
4418 dst_w = adjusted_mode->hdisplay;
4419 dst_h = adjusted_mode->vdisplay;
4420 scaler_id = &scaler_state->scaler_id;
6156a456 4421 rotation = DRM_ROTATE_0;
a1b2278e 4422 }
6156a456
CK
4423
4424 need_scaling = intel_rotation_90_or_270(rotation) ?
4425 (src_h != dst_w || src_w != dst_h):
4426 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4427
4428 /*
4429 * if plane is being disabled or scaler is no more required or force detach
4430 * - free scaler binded to this plane/crtc
4431 * - in order to do this, update crtc->scaler_usage
4432 *
4433 * Here scaler state in crtc_state is set free so that
4434 * scaler can be assigned to other user. Actual register
4435 * update to free the scaler is done in plane/panel-fit programming.
4436 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4437 */
4438 if (force_detach || !need_scaling || (intel_plane &&
4439 (!fb || !plane_state->visible))) {
4440 if (*scaler_id >= 0) {
4441 scaler_state->scaler_users &= ~(1 << idx);
4442 scaler_state->scalers[*scaler_id].in_use = 0;
4443
4444 DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4445 "crtc_state = %p scaler_users = 0x%x\n",
4446 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4447 intel_plane ? intel_plane->base.base.id :
4448 intel_crtc->base.base.id, crtc_state,
4449 scaler_state->scaler_users);
4450 *scaler_id = -1;
4451 }
4452 return 0;
4453 }
4454
4455 /* range checks */
4456 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4457 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4458
4459 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4460 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4461 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4462 "size is out of scaler range\n",
4463 intel_plane ? "PLANE" : "CRTC",
4464 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4465 intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4466 return -EINVAL;
4467 }
4468
4469 /* check colorkey */
225c228a
CK
4470 if (WARN_ON(intel_plane &&
4471 intel_plane->ckey.flags != I915_SET_COLORKEY_NONE)) {
4472 DRM_DEBUG_KMS("PLANE:%d scaling %ux%u->%ux%u not allowed with colorkey",
4473 intel_plane->base.base.id, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4474 return -EINVAL;
4475 }
4476
4477 /* Check src format */
4478 if (intel_plane) {
4479 switch (fb->pixel_format) {
4480 case DRM_FORMAT_RGB565:
4481 case DRM_FORMAT_XBGR8888:
4482 case DRM_FORMAT_XRGB8888:
4483 case DRM_FORMAT_ABGR8888:
4484 case DRM_FORMAT_ARGB8888:
4485 case DRM_FORMAT_XRGB2101010:
a1b2278e 4486 case DRM_FORMAT_XBGR2101010:
a1b2278e
CK
4487 case DRM_FORMAT_YUYV:
4488 case DRM_FORMAT_YVYU:
4489 case DRM_FORMAT_UYVY:
4490 case DRM_FORMAT_VYUY:
4491 break;
4492 default:
4493 DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4494 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4495 return -EINVAL;
4496 }
4497 }
4498
4499 /* mark this plane as a scaler user in crtc_state */
4500 scaler_state->scaler_users |= (1 << idx);
4501 DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4502 "crtc_state = %p scaler_users = 0x%x\n",
4503 intel_plane ? "PLANE" : "CRTC",
4504 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4505 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4506 return 0;
4507}
4508
4509static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
bd2e244f
JB
4510{
4511 struct drm_device *dev = crtc->base.dev;
4512 struct drm_i915_private *dev_priv = dev->dev_private;
4513 int pipe = crtc->pipe;
a1b2278e
CK
4514 struct intel_crtc_scaler_state *scaler_state =
4515 &crtc->config->scaler_state;
4516
4517 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4518
4519 /* To update pfit, first update scaler state */
4520 skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4521 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4522 skl_detach_scalers(crtc);
4523 if (!enable)
4524 return;
bd2e244f 4525
6e3c9717 4526 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4527 int id;
4528
4529 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4530 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4531 return;
4532 }
4533
4534 id = scaler_state->scaler_id;
4535 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4536 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4537 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4538 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4539
4540 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4541 }
4542}
4543
b074cec8
JB
4544static void ironlake_pfit_enable(struct intel_crtc *crtc)
4545{
4546 struct drm_device *dev = crtc->base.dev;
4547 struct drm_i915_private *dev_priv = dev->dev_private;
4548 int pipe = crtc->pipe;
4549
6e3c9717 4550 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4551 /* Force use of hard-coded filter coefficients
4552 * as some pre-programmed values are broken,
4553 * e.g. x201.
4554 */
4555 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4556 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4557 PF_PIPE_SEL_IVB(pipe));
4558 else
4559 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4560 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4561 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4562 }
4563}
4564
4a3b8769 4565static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4566{
4567 struct drm_device *dev = crtc->dev;
4568 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4569 struct drm_plane *plane;
bb53d4ae
VS
4570 struct intel_plane *intel_plane;
4571
af2b653b
MR
4572 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4573 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4574 if (intel_plane->pipe == pipe)
4575 intel_plane_restore(&intel_plane->base);
af2b653b 4576 }
bb53d4ae
VS
4577}
4578
20bc8673 4579void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4580{
cea165c3
VS
4581 struct drm_device *dev = crtc->base.dev;
4582 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4583
6e3c9717 4584 if (!crtc->config->ips_enabled)
d77e4531
PZ
4585 return;
4586
cea165c3
VS
4587 /* We can only enable IPS after we enable a plane and wait for a vblank */
4588 intel_wait_for_vblank(dev, crtc->pipe);
4589
d77e4531 4590 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4591 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4592 mutex_lock(&dev_priv->rps.hw_lock);
4593 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4594 mutex_unlock(&dev_priv->rps.hw_lock);
4595 /* Quoting Art Runyan: "its not safe to expect any particular
4596 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4597 * mailbox." Moreover, the mailbox may return a bogus state,
4598 * so we need to just enable it and continue on.
2a114cc1
BW
4599 */
4600 } else {
4601 I915_WRITE(IPS_CTL, IPS_ENABLE);
4602 /* The bit only becomes 1 in the next vblank, so this wait here
4603 * is essentially intel_wait_for_vblank. If we don't have this
4604 * and don't wait for vblanks until the end of crtc_enable, then
4605 * the HW state readout code will complain that the expected
4606 * IPS_CTL value is not the one we read. */
4607 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4608 DRM_ERROR("Timed out waiting for IPS enable\n");
4609 }
d77e4531
PZ
4610}
4611
20bc8673 4612void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4613{
4614 struct drm_device *dev = crtc->base.dev;
4615 struct drm_i915_private *dev_priv = dev->dev_private;
4616
6e3c9717 4617 if (!crtc->config->ips_enabled)
d77e4531
PZ
4618 return;
4619
4620 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4621 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4622 mutex_lock(&dev_priv->rps.hw_lock);
4623 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4624 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4625 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4626 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4627 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4628 } else {
2a114cc1 4629 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4630 POSTING_READ(IPS_CTL);
4631 }
d77e4531
PZ
4632
4633 /* We need to wait for a vblank before we can disable the plane. */
4634 intel_wait_for_vblank(dev, crtc->pipe);
4635}
4636
4637/** Loads the palette/gamma unit for the CRTC with the prepared values */
4638static void intel_crtc_load_lut(struct drm_crtc *crtc)
4639{
4640 struct drm_device *dev = crtc->dev;
4641 struct drm_i915_private *dev_priv = dev->dev_private;
4642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4643 enum pipe pipe = intel_crtc->pipe;
4644 int palreg = PALETTE(pipe);
4645 int i;
4646 bool reenable_ips = false;
4647
4648 /* The clocks have to be on to load the palette. */
83d65738 4649 if (!crtc->state->enable || !intel_crtc->active)
d77e4531
PZ
4650 return;
4651
50360403 4652 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
409ee761 4653 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4654 assert_dsi_pll_enabled(dev_priv);
4655 else
4656 assert_pll_enabled(dev_priv, pipe);
4657 }
4658
4659 /* use legacy palette for Ironlake */
7a1db49a 4660 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4661 palreg = LGC_PALETTE(pipe);
4662
4663 /* Workaround : Do not read or write the pipe palette/gamma data while
4664 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4665 */
6e3c9717 4666 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4667 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4668 GAMMA_MODE_MODE_SPLIT)) {
4669 hsw_disable_ips(intel_crtc);
4670 reenable_ips = true;
4671 }
4672
4673 for (i = 0; i < 256; i++) {
4674 I915_WRITE(palreg + 4 * i,
4675 (intel_crtc->lut_r[i] << 16) |
4676 (intel_crtc->lut_g[i] << 8) |
4677 intel_crtc->lut_b[i]);
4678 }
4679
4680 if (reenable_ips)
4681 hsw_enable_ips(intel_crtc);
4682}
4683
7cac945f 4684static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4685{
7cac945f 4686 if (intel_crtc->overlay) {
d3eedb1a
VS
4687 struct drm_device *dev = intel_crtc->base.dev;
4688 struct drm_i915_private *dev_priv = dev->dev_private;
4689
4690 mutex_lock(&dev->struct_mutex);
4691 dev_priv->mm.interruptible = false;
4692 (void) intel_overlay_switch_off(intel_crtc->overlay);
4693 dev_priv->mm.interruptible = true;
4694 mutex_unlock(&dev->struct_mutex);
4695 }
4696
4697 /* Let userspace switch the overlay on again. In most cases userspace
4698 * has to recompute where to put it anyway.
4699 */
4700}
4701
87d4300a
ML
4702/**
4703 * intel_post_enable_primary - Perform operations after enabling primary plane
4704 * @crtc: the CRTC whose primary plane was just enabled
4705 *
4706 * Performs potentially sleeping operations that must be done after the primary
4707 * plane is enabled, such as updating FBC and IPS. Note that this may be
4708 * called due to an explicit primary plane update, or due to an implicit
4709 * re-enable that is caused when a sprite plane is updated to no longer
4710 * completely hide the primary plane.
4711 */
4712static void
4713intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4714{
4715 struct drm_device *dev = crtc->dev;
87d4300a 4716 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4718 int pipe = intel_crtc->pipe;
a5c4d7bc 4719
87d4300a
ML
4720 /*
4721 * BDW signals flip done immediately if the plane
4722 * is disabled, even if the plane enable is already
4723 * armed to occur at the next vblank :(
4724 */
4725 if (IS_BROADWELL(dev))
4726 intel_wait_for_vblank(dev, pipe);
a5c4d7bc 4727
87d4300a
ML
4728 /*
4729 * FIXME IPS should be fine as long as one plane is
4730 * enabled, but in practice it seems to have problems
4731 * when going from primary only to sprite only and vice
4732 * versa.
4733 */
a5c4d7bc
VS
4734 hsw_enable_ips(intel_crtc);
4735
4736 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4737 intel_fbc_update(dev);
a5c4d7bc 4738 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4739
4740 /*
87d4300a
ML
4741 * Gen2 reports pipe underruns whenever all planes are disabled.
4742 * So don't enable underrun reporting before at least some planes
4743 * are enabled.
4744 * FIXME: Need to fix the logic to work when we turn off all planes
4745 * but leave the pipe running.
f99d7069 4746 */
87d4300a
ML
4747 if (IS_GEN2(dev))
4748 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4749
4750 /* Underruns don't raise interrupts, so check manually. */
4751 if (HAS_GMCH_DISPLAY(dev))
4752 i9xx_check_fifo_underruns(dev_priv);
a5c4d7bc
VS
4753}
4754
87d4300a
ML
4755/**
4756 * intel_pre_disable_primary - Perform operations before disabling primary plane
4757 * @crtc: the CRTC whose primary plane is to be disabled
4758 *
4759 * Performs potentially sleeping operations that must be done before the
4760 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4761 * be called due to an explicit primary plane update, or due to an implicit
4762 * disable that is caused when a sprite plane completely hides the primary
4763 * plane.
4764 */
4765static void
4766intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4767{
4768 struct drm_device *dev = crtc->dev;
4769 struct drm_i915_private *dev_priv = dev->dev_private;
4770 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4771 int pipe = intel_crtc->pipe;
a5c4d7bc 4772
87d4300a
ML
4773 /*
4774 * Gen2 reports pipe underruns whenever all planes are disabled.
4775 * So diasble underrun reporting before all the planes get disabled.
4776 * FIXME: Need to fix the logic to work when we turn off all planes
4777 * but leave the pipe running.
4778 */
4779 if (IS_GEN2(dev))
4780 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4781
87d4300a
ML
4782 /*
4783 * Vblank time updates from the shadow to live plane control register
4784 * are blocked if the memory self-refresh mode is active at that
4785 * moment. So to make sure the plane gets truly disabled, disable
4786 * first the self-refresh mode. The self-refresh enable bit in turn
4787 * will be checked/applied by the HW only at the next frame start
4788 * event which is after the vblank start event, so we need to have a
4789 * wait-for-vblank between disabling the plane and the pipe.
4790 */
4791 if (HAS_GMCH_DISPLAY(dev))
4792 intel_set_memory_cxsr(dev_priv, false);
4793
4794 mutex_lock(&dev->struct_mutex);
e35fef21 4795 if (dev_priv->fbc.crtc == intel_crtc)
7ff0ebcc 4796 intel_fbc_disable(dev);
87d4300a 4797 mutex_unlock(&dev->struct_mutex);
a5c4d7bc 4798
87d4300a
ML
4799 /*
4800 * FIXME IPS should be fine as long as one plane is
4801 * enabled, but in practice it seems to have problems
4802 * when going from primary only to sprite only and vice
4803 * versa.
4804 */
a5c4d7bc 4805 hsw_disable_ips(intel_crtc);
87d4300a
ML
4806}
4807
4808static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4809{
2d847d45
RV
4810 struct drm_device *dev = crtc->dev;
4811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4812 int pipe = intel_crtc->pipe;
4813
87d4300a
ML
4814 intel_enable_primary_hw_plane(crtc->primary, crtc);
4815 intel_enable_sprite_planes(crtc);
4816 intel_crtc_update_cursor(crtc, true);
87d4300a
ML
4817
4818 intel_post_enable_primary(crtc);
2d847d45
RV
4819
4820 /*
4821 * FIXME: Once we grow proper nuclear flip support out of this we need
4822 * to compute the mask of flip planes precisely. For the time being
4823 * consider this a flip to a NULL plane.
4824 */
4825 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
87d4300a
ML
4826}
4827
4828static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4829{
4830 struct drm_device *dev = crtc->dev;
4831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4832 struct intel_plane *intel_plane;
4833 int pipe = intel_crtc->pipe;
4834
4835 intel_crtc_wait_for_pending_flips(crtc);
4836
4837 intel_pre_disable_primary(crtc);
a5c4d7bc 4838
7cac945f 4839 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8
ML
4840 for_each_intel_plane(dev, intel_plane) {
4841 if (intel_plane->pipe == pipe) {
4842 struct drm_crtc *from = intel_plane->base.crtc;
4843
4844 intel_plane->disable_plane(&intel_plane->base,
4845 from ?: crtc, true);
4846 }
4847 }
f98551ae 4848
f99d7069
DV
4849 /*
4850 * FIXME: Once we grow proper nuclear flip support out of this we need
4851 * to compute the mask of flip planes precisely. For the time being
4852 * consider this a flip to a NULL plane.
4853 */
4854 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4855}
4856
f67a559d
JB
4857static void ironlake_crtc_enable(struct drm_crtc *crtc)
4858{
4859 struct drm_device *dev = crtc->dev;
4860 struct drm_i915_private *dev_priv = dev->dev_private;
4861 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4862 struct intel_encoder *encoder;
f67a559d 4863 int pipe = intel_crtc->pipe;
f67a559d 4864
83d65738 4865 WARN_ON(!crtc->state->enable);
08a48469 4866
f67a559d
JB
4867 if (intel_crtc->active)
4868 return;
4869
6e3c9717 4870 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4871 intel_prepare_shared_dpll(intel_crtc);
4872
6e3c9717 4873 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4874 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4875
4876 intel_set_pipe_timings(intel_crtc);
4877
6e3c9717 4878 if (intel_crtc->config->has_pch_encoder) {
29407aab 4879 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4880 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4881 }
4882
4883 ironlake_set_pipeconf(crtc);
4884
f67a559d 4885 intel_crtc->active = true;
8664281b 4886
a72e4c9f
DV
4887 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4888 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4889
f6736a1a 4890 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4891 if (encoder->pre_enable)
4892 encoder->pre_enable(encoder);
f67a559d 4893
6e3c9717 4894 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4895 /* Note: FDI PLL enabling _must_ be done before we enable the
4896 * cpu pipes, hence this is separate from all the other fdi/pch
4897 * enabling. */
88cefb6c 4898 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4899 } else {
4900 assert_fdi_tx_disabled(dev_priv, pipe);
4901 assert_fdi_rx_disabled(dev_priv, pipe);
4902 }
f67a559d 4903
b074cec8 4904 ironlake_pfit_enable(intel_crtc);
f67a559d 4905
9c54c0dd
JB
4906 /*
4907 * On ILK+ LUT must be loaded before the pipe is running but with
4908 * clocks enabled
4909 */
4910 intel_crtc_load_lut(crtc);
4911
f37fcc2a 4912 intel_update_watermarks(crtc);
e1fdc473 4913 intel_enable_pipe(intel_crtc);
f67a559d 4914
6e3c9717 4915 if (intel_crtc->config->has_pch_encoder)
f67a559d 4916 ironlake_pch_enable(crtc);
c98e9dcf 4917
f9b61ff6
DV
4918 assert_vblank_disabled(crtc);
4919 drm_crtc_vblank_on(crtc);
4920
fa5c73b1
DV
4921 for_each_encoder_on_crtc(dev, crtc, encoder)
4922 encoder->enable(encoder);
61b77ddd
DV
4923
4924 if (HAS_PCH_CPT(dev))
a1520318 4925 cpt_verify_modeset(dev, intel_crtc->pipe);
6be4a607
JB
4926}
4927
42db64ef
PZ
4928/* IPS only exists on ULT machines and is tied to pipe A. */
4929static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4930{
f5adf94e 4931 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4932}
4933
e4916946
PZ
4934/*
4935 * This implements the workaround described in the "notes" section of the mode
4936 * set sequence documentation. When going from no pipes or single pipe to
4937 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4938 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4939 */
4940static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4941{
4942 struct drm_device *dev = crtc->base.dev;
4943 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4944
4945 /* We want to get the other_active_crtc only if there's only 1 other
4946 * active crtc. */
d3fcc808 4947 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4948 if (!crtc_it->active || crtc_it == crtc)
4949 continue;
4950
4951 if (other_active_crtc)
4952 return;
4953
4954 other_active_crtc = crtc_it;
4955 }
4956 if (!other_active_crtc)
4957 return;
4958
4959 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4960 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4961}
4962
4f771f10
PZ
4963static void haswell_crtc_enable(struct drm_crtc *crtc)
4964{
4965 struct drm_device *dev = crtc->dev;
4966 struct drm_i915_private *dev_priv = dev->dev_private;
4967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4968 struct intel_encoder *encoder;
4969 int pipe = intel_crtc->pipe;
4f771f10 4970
83d65738 4971 WARN_ON(!crtc->state->enable);
4f771f10
PZ
4972
4973 if (intel_crtc->active)
4974 return;
4975
df8ad70c
DV
4976 if (intel_crtc_to_shared_dpll(intel_crtc))
4977 intel_enable_shared_dpll(intel_crtc);
4978
6e3c9717 4979 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4980 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4981
4982 intel_set_pipe_timings(intel_crtc);
4983
6e3c9717
ACO
4984 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4985 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4986 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4987 }
4988
6e3c9717 4989 if (intel_crtc->config->has_pch_encoder) {
229fca97 4990 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4991 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4992 }
4993
4994 haswell_set_pipeconf(crtc);
4995
4996 intel_set_pipe_csc(crtc);
4997
4f771f10 4998 intel_crtc->active = true;
8664281b 4999
a72e4c9f 5000 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
5001 for_each_encoder_on_crtc(dev, crtc, encoder)
5002 if (encoder->pre_enable)
5003 encoder->pre_enable(encoder);
5004
6e3c9717 5005 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
5006 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5007 true);
4fe9467d
ID
5008 dev_priv->display.fdi_link_train(crtc);
5009 }
5010
1f544388 5011 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 5012
ff6d9f55 5013 if (INTEL_INFO(dev)->gen == 9)
a1b2278e 5014 skylake_pfit_update(intel_crtc, 1);
ff6d9f55 5015 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 5016 ironlake_pfit_enable(intel_crtc);
ff6d9f55
JB
5017 else
5018 MISSING_CASE(INTEL_INFO(dev)->gen);
4f771f10
PZ
5019
5020 /*
5021 * On ILK+ LUT must be loaded before the pipe is running but with
5022 * clocks enabled
5023 */
5024 intel_crtc_load_lut(crtc);
5025
1f544388 5026 intel_ddi_set_pipe_settings(crtc);
8228c251 5027 intel_ddi_enable_transcoder_func(crtc);
4f771f10 5028
f37fcc2a 5029 intel_update_watermarks(crtc);
e1fdc473 5030 intel_enable_pipe(intel_crtc);
42db64ef 5031
6e3c9717 5032 if (intel_crtc->config->has_pch_encoder)
1507e5bd 5033 lpt_pch_enable(crtc);
4f771f10 5034
6e3c9717 5035 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
5036 intel_ddi_set_vc_payload_alloc(crtc, true);
5037
f9b61ff6
DV
5038 assert_vblank_disabled(crtc);
5039 drm_crtc_vblank_on(crtc);
5040
8807e55b 5041 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 5042 encoder->enable(encoder);
8807e55b
JN
5043 intel_opregion_notify_encoder(encoder, true);
5044 }
4f771f10 5045
e4916946
PZ
5046 /* If we change the relative order between pipe/planes enabling, we need
5047 * to change the workaround. */
5048 haswell_mode_set_planes_workaround(intel_crtc);
4f771f10
PZ
5049}
5050
3f8dce3a
DV
5051static void ironlake_pfit_disable(struct intel_crtc *crtc)
5052{
5053 struct drm_device *dev = crtc->base.dev;
5054 struct drm_i915_private *dev_priv = dev->dev_private;
5055 int pipe = crtc->pipe;
5056
5057 /* To avoid upsetting the power well on haswell only disable the pfit if
5058 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 5059 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
5060 I915_WRITE(PF_CTL(pipe), 0);
5061 I915_WRITE(PF_WIN_POS(pipe), 0);
5062 I915_WRITE(PF_WIN_SZ(pipe), 0);
5063 }
5064}
5065
6be4a607
JB
5066static void ironlake_crtc_disable(struct drm_crtc *crtc)
5067{
5068 struct drm_device *dev = crtc->dev;
5069 struct drm_i915_private *dev_priv = dev->dev_private;
5070 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5071 struct intel_encoder *encoder;
6be4a607 5072 int pipe = intel_crtc->pipe;
5eddb70b 5073 u32 reg, temp;
b52eb4dc 5074
f7abfe8b
CW
5075 if (!intel_crtc->active)
5076 return;
5077
ea9d758d
DV
5078 for_each_encoder_on_crtc(dev, crtc, encoder)
5079 encoder->disable(encoder);
5080
f9b61ff6
DV
5081 drm_crtc_vblank_off(crtc);
5082 assert_vblank_disabled(crtc);
5083
6e3c9717 5084 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 5085 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 5086
575f7ab7 5087 intel_disable_pipe(intel_crtc);
32f9d658 5088
3f8dce3a 5089 ironlake_pfit_disable(intel_crtc);
2c07245f 5090
5a74f70a
VS
5091 if (intel_crtc->config->has_pch_encoder)
5092 ironlake_fdi_disable(crtc);
5093
bf49ec8c
DV
5094 for_each_encoder_on_crtc(dev, crtc, encoder)
5095 if (encoder->post_disable)
5096 encoder->post_disable(encoder);
2c07245f 5097
6e3c9717 5098 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5099 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5100
d925c59a
DV
5101 if (HAS_PCH_CPT(dev)) {
5102 /* disable TRANS_DP_CTL */
5103 reg = TRANS_DP_CTL(pipe);
5104 temp = I915_READ(reg);
5105 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5106 TRANS_DP_PORT_SEL_MASK);
5107 temp |= TRANS_DP_PORT_SEL_NONE;
5108 I915_WRITE(reg, temp);
5109
5110 /* disable DPLL_SEL */
5111 temp = I915_READ(PCH_DPLL_SEL);
11887397 5112 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5113 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5114 }
e3421a18 5115
d925c59a 5116 /* disable PCH DPLL */
e72f9fbf 5117 intel_disable_shared_dpll(intel_crtc);
8db9d77b 5118
d925c59a
DV
5119 ironlake_fdi_pll_disable(intel_crtc);
5120 }
6b383a7f 5121
f7abfe8b 5122 intel_crtc->active = false;
46ba614c 5123 intel_update_watermarks(crtc);
d1ebd816
BW
5124
5125 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5126 intel_fbc_update(dev);
d1ebd816 5127 mutex_unlock(&dev->struct_mutex);
6be4a607 5128}
1b3c7a47 5129
4f771f10 5130static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5131{
4f771f10
PZ
5132 struct drm_device *dev = crtc->dev;
5133 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5135 struct intel_encoder *encoder;
6e3c9717 5136 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5137
4f771f10
PZ
5138 if (!intel_crtc->active)
5139 return;
5140
8807e55b
JN
5141 for_each_encoder_on_crtc(dev, crtc, encoder) {
5142 intel_opregion_notify_encoder(encoder, false);
4f771f10 5143 encoder->disable(encoder);
8807e55b 5144 }
4f771f10 5145
f9b61ff6
DV
5146 drm_crtc_vblank_off(crtc);
5147 assert_vblank_disabled(crtc);
5148
6e3c9717 5149 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
5150 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5151 false);
575f7ab7 5152 intel_disable_pipe(intel_crtc);
4f771f10 5153
6e3c9717 5154 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5155 intel_ddi_set_vc_payload_alloc(crtc, false);
5156
ad80a810 5157 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5158
ff6d9f55 5159 if (INTEL_INFO(dev)->gen == 9)
a1b2278e 5160 skylake_pfit_update(intel_crtc, 0);
ff6d9f55 5161 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 5162 ironlake_pfit_disable(intel_crtc);
ff6d9f55
JB
5163 else
5164 MISSING_CASE(INTEL_INFO(dev)->gen);
4f771f10 5165
1f544388 5166 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5167
6e3c9717 5168 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 5169 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 5170 intel_ddi_fdi_disable(crtc);
83616634 5171 }
4f771f10 5172
97b040aa
ID
5173 for_each_encoder_on_crtc(dev, crtc, encoder)
5174 if (encoder->post_disable)
5175 encoder->post_disable(encoder);
5176
4f771f10 5177 intel_crtc->active = false;
46ba614c 5178 intel_update_watermarks(crtc);
4f771f10
PZ
5179
5180 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5181 intel_fbc_update(dev);
4f771f10 5182 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
5183
5184 if (intel_crtc_to_shared_dpll(intel_crtc))
5185 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
5186}
5187
2dd24552
JB
5188static void i9xx_pfit_enable(struct intel_crtc *crtc)
5189{
5190 struct drm_device *dev = crtc->base.dev;
5191 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5192 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5193
681a8504 5194 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5195 return;
5196
2dd24552 5197 /*
c0b03411
DV
5198 * The panel fitter should only be adjusted whilst the pipe is disabled,
5199 * according to register description and PRM.
2dd24552 5200 */
c0b03411
DV
5201 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5202 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5203
b074cec8
JB
5204 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5205 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5206
5207 /* Border color in case we don't scale up to the full screen. Black by
5208 * default, change to something else for debugging. */
5209 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5210}
5211
d05410f9
DA
5212static enum intel_display_power_domain port_to_power_domain(enum port port)
5213{
5214 switch (port) {
5215 case PORT_A:
5216 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5217 case PORT_B:
5218 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5219 case PORT_C:
5220 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5221 case PORT_D:
5222 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5223 default:
5224 WARN_ON_ONCE(1);
5225 return POWER_DOMAIN_PORT_OTHER;
5226 }
5227}
5228
77d22dca
ID
5229#define for_each_power_domain(domain, mask) \
5230 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5231 if ((1 << (domain)) & (mask))
5232
319be8ae
ID
5233enum intel_display_power_domain
5234intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5235{
5236 struct drm_device *dev = intel_encoder->base.dev;
5237 struct intel_digital_port *intel_dig_port;
5238
5239 switch (intel_encoder->type) {
5240 case INTEL_OUTPUT_UNKNOWN:
5241 /* Only DDI platforms should ever use this output type */
5242 WARN_ON_ONCE(!HAS_DDI(dev));
5243 case INTEL_OUTPUT_DISPLAYPORT:
5244 case INTEL_OUTPUT_HDMI:
5245 case INTEL_OUTPUT_EDP:
5246 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5247 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5248 case INTEL_OUTPUT_DP_MST:
5249 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5250 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5251 case INTEL_OUTPUT_ANALOG:
5252 return POWER_DOMAIN_PORT_CRT;
5253 case INTEL_OUTPUT_DSI:
5254 return POWER_DOMAIN_PORT_DSI;
5255 default:
5256 return POWER_DOMAIN_PORT_OTHER;
5257 }
5258}
5259
5260static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5261{
319be8ae
ID
5262 struct drm_device *dev = crtc->dev;
5263 struct intel_encoder *intel_encoder;
5264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5265 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
5266 unsigned long mask;
5267 enum transcoder transcoder;
5268
5269 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5270
5271 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5272 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
5273 if (intel_crtc->config->pch_pfit.enabled ||
5274 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
5275 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5276
319be8ae
ID
5277 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5278 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5279
77d22dca
ID
5280 return mask;
5281}
5282
679dacd4 5283static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
77d22dca 5284{
679dacd4 5285 struct drm_device *dev = state->dev;
77d22dca
ID
5286 struct drm_i915_private *dev_priv = dev->dev_private;
5287 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5288 struct intel_crtc *crtc;
5289
5290 /*
5291 * First get all needed power domains, then put all unneeded, to avoid
5292 * any unnecessary toggling of the power wells.
5293 */
d3fcc808 5294 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
5295 enum intel_display_power_domain domain;
5296
83d65738 5297 if (!crtc->base.state->enable)
77d22dca
ID
5298 continue;
5299
319be8ae 5300 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
5301
5302 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5303 intel_display_power_get(dev_priv, domain);
5304 }
5305
50f6e502 5306 if (dev_priv->display.modeset_global_resources)
679dacd4 5307 dev_priv->display.modeset_global_resources(state);
50f6e502 5308
d3fcc808 5309 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
5310 enum intel_display_power_domain domain;
5311
5312 for_each_power_domain(domain, crtc->enabled_power_domains)
5313 intel_display_power_put(dev_priv, domain);
5314
5315 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5316 }
5317
5318 intel_display_set_init_power(dev_priv, false);
5319}
5320
560a7ae4
DL
5321static void intel_update_max_cdclk(struct drm_device *dev)
5322{
5323 struct drm_i915_private *dev_priv = dev->dev_private;
5324
5325 if (IS_SKYLAKE(dev)) {
5326 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5327
5328 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5329 dev_priv->max_cdclk_freq = 675000;
5330 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5331 dev_priv->max_cdclk_freq = 540000;
5332 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5333 dev_priv->max_cdclk_freq = 450000;
5334 else
5335 dev_priv->max_cdclk_freq = 337500;
5336 } else if (IS_BROADWELL(dev)) {
5337 /*
5338 * FIXME with extra cooling we can allow
5339 * 540 MHz for ULX and 675 Mhz for ULT.
5340 * How can we know if extra cooling is
5341 * available? PCI ID, VTB, something else?
5342 */
5343 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5344 dev_priv->max_cdclk_freq = 450000;
5345 else if (IS_BDW_ULX(dev))
5346 dev_priv->max_cdclk_freq = 450000;
5347 else if (IS_BDW_ULT(dev))
5348 dev_priv->max_cdclk_freq = 540000;
5349 else
5350 dev_priv->max_cdclk_freq = 675000;
5351 } else if (IS_VALLEYVIEW(dev)) {
5352 dev_priv->max_cdclk_freq = 400000;
5353 } else {
5354 /* otherwise assume cdclk is fixed */
5355 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5356 }
5357
5358 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5359 dev_priv->max_cdclk_freq);
5360}
5361
5362static void intel_update_cdclk(struct drm_device *dev)
5363{
5364 struct drm_i915_private *dev_priv = dev->dev_private;
5365
5366 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5367 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5368 dev_priv->cdclk_freq);
5369
5370 /*
5371 * Program the gmbus_freq based on the cdclk frequency.
5372 * BSpec erroneously claims we should aim for 4MHz, but
5373 * in fact 1MHz is the correct frequency.
5374 */
5375 if (IS_VALLEYVIEW(dev)) {
5376 /*
5377 * Program the gmbus_freq based on the cdclk frequency.
5378 * BSpec erroneously claims we should aim for 4MHz, but
5379 * in fact 1MHz is the correct frequency.
5380 */
5381 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5382 }
5383
5384 if (dev_priv->max_cdclk_freq == 0)
5385 intel_update_max_cdclk(dev);
5386}
5387
70d0c574 5388static void broxton_set_cdclk(struct drm_device *dev, int frequency)
f8437dd1
VK
5389{
5390 struct drm_i915_private *dev_priv = dev->dev_private;
5391 uint32_t divider;
5392 uint32_t ratio;
5393 uint32_t current_freq;
5394 int ret;
5395
5396 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5397 switch (frequency) {
5398 case 144000:
5399 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5400 ratio = BXT_DE_PLL_RATIO(60);
5401 break;
5402 case 288000:
5403 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5404 ratio = BXT_DE_PLL_RATIO(60);
5405 break;
5406 case 384000:
5407 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5408 ratio = BXT_DE_PLL_RATIO(60);
5409 break;
5410 case 576000:
5411 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5412 ratio = BXT_DE_PLL_RATIO(60);
5413 break;
5414 case 624000:
5415 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5416 ratio = BXT_DE_PLL_RATIO(65);
5417 break;
5418 case 19200:
5419 /*
5420 * Bypass frequency with DE PLL disabled. Init ratio, divider
5421 * to suppress GCC warning.
5422 */
5423 ratio = 0;
5424 divider = 0;
5425 break;
5426 default:
5427 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5428
5429 return;
5430 }
5431
5432 mutex_lock(&dev_priv->rps.hw_lock);
5433 /* Inform power controller of upcoming frequency change */
5434 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5435 0x80000000);
5436 mutex_unlock(&dev_priv->rps.hw_lock);
5437
5438 if (ret) {
5439 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5440 ret, frequency);
5441 return;
5442 }
5443
5444 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5445 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5446 current_freq = current_freq * 500 + 1000;
5447
5448 /*
5449 * DE PLL has to be disabled when
5450 * - setting to 19.2MHz (bypass, PLL isn't used)
5451 * - before setting to 624MHz (PLL needs toggling)
5452 * - before setting to any frequency from 624MHz (PLL needs toggling)
5453 */
5454 if (frequency == 19200 || frequency == 624000 ||
5455 current_freq == 624000) {
5456 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5457 /* Timeout 200us */
5458 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5459 1))
5460 DRM_ERROR("timout waiting for DE PLL unlock\n");
5461 }
5462
5463 if (frequency != 19200) {
5464 uint32_t val;
5465
5466 val = I915_READ(BXT_DE_PLL_CTL);
5467 val &= ~BXT_DE_PLL_RATIO_MASK;
5468 val |= ratio;
5469 I915_WRITE(BXT_DE_PLL_CTL, val);
5470
5471 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5472 /* Timeout 200us */
5473 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5474 DRM_ERROR("timeout waiting for DE PLL lock\n");
5475
5476 val = I915_READ(CDCLK_CTL);
5477 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5478 val |= divider;
5479 /*
5480 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5481 * enable otherwise.
5482 */
5483 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5484 if (frequency >= 500000)
5485 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5486
5487 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5488 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5489 val |= (frequency - 1000) / 500;
5490 I915_WRITE(CDCLK_CTL, val);
5491 }
5492
5493 mutex_lock(&dev_priv->rps.hw_lock);
5494 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5495 DIV_ROUND_UP(frequency, 25000));
5496 mutex_unlock(&dev_priv->rps.hw_lock);
5497
5498 if (ret) {
5499 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5500 ret, frequency);
5501 return;
5502 }
5503
a47871bd 5504 intel_update_cdclk(dev);
f8437dd1
VK
5505}
5506
5507void broxton_init_cdclk(struct drm_device *dev)
5508{
5509 struct drm_i915_private *dev_priv = dev->dev_private;
5510 uint32_t val;
5511
5512 /*
5513 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5514 * or else the reset will hang because there is no PCH to respond.
5515 * Move the handshake programming to initialization sequence.
5516 * Previously was left up to BIOS.
5517 */
5518 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5519 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5520 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5521
5522 /* Enable PG1 for cdclk */
5523 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5524
5525 /* check if cd clock is enabled */
5526 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5527 DRM_DEBUG_KMS("Display already initialized\n");
5528 return;
5529 }
5530
5531 /*
5532 * FIXME:
5533 * - The initial CDCLK needs to be read from VBT.
5534 * Need to make this change after VBT has changes for BXT.
5535 * - check if setting the max (or any) cdclk freq is really necessary
5536 * here, it belongs to modeset time
5537 */
5538 broxton_set_cdclk(dev, 624000);
5539
5540 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5541 POSTING_READ(DBUF_CTL);
5542
f8437dd1
VK
5543 udelay(10);
5544
5545 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5546 DRM_ERROR("DBuf power enable timeout!\n");
5547}
5548
5549void broxton_uninit_cdclk(struct drm_device *dev)
5550{
5551 struct drm_i915_private *dev_priv = dev->dev_private;
5552
5553 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5554 POSTING_READ(DBUF_CTL);
5555
f8437dd1
VK
5556 udelay(10);
5557
5558 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5559 DRM_ERROR("DBuf power disable timeout!\n");
5560
5561 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5562 broxton_set_cdclk(dev, 19200);
5563
5564 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5565}
5566
5d96d8af
DL
5567static const struct skl_cdclk_entry {
5568 unsigned int freq;
5569 unsigned int vco;
5570} skl_cdclk_frequencies[] = {
5571 { .freq = 308570, .vco = 8640 },
5572 { .freq = 337500, .vco = 8100 },
5573 { .freq = 432000, .vco = 8640 },
5574 { .freq = 450000, .vco = 8100 },
5575 { .freq = 540000, .vco = 8100 },
5576 { .freq = 617140, .vco = 8640 },
5577 { .freq = 675000, .vco = 8100 },
5578};
5579
5580static unsigned int skl_cdclk_decimal(unsigned int freq)
5581{
5582 return (freq - 1000) / 500;
5583}
5584
5585static unsigned int skl_cdclk_get_vco(unsigned int freq)
5586{
5587 unsigned int i;
5588
5589 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5590 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5591
5592 if (e->freq == freq)
5593 return e->vco;
5594 }
5595
5596 return 8100;
5597}
5598
5599static void
5600skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5601{
5602 unsigned int min_freq;
5603 u32 val;
5604
5605 /* select the minimum CDCLK before enabling DPLL 0 */
5606 val = I915_READ(CDCLK_CTL);
5607 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5608 val |= CDCLK_FREQ_337_308;
5609
5610 if (required_vco == 8640)
5611 min_freq = 308570;
5612 else
5613 min_freq = 337500;
5614
5615 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5616
5617 I915_WRITE(CDCLK_CTL, val);
5618 POSTING_READ(CDCLK_CTL);
5619
5620 /*
5621 * We always enable DPLL0 with the lowest link rate possible, but still
5622 * taking into account the VCO required to operate the eDP panel at the
5623 * desired frequency. The usual DP link rates operate with a VCO of
5624 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5625 * The modeset code is responsible for the selection of the exact link
5626 * rate later on, with the constraint of choosing a frequency that
5627 * works with required_vco.
5628 */
5629 val = I915_READ(DPLL_CTRL1);
5630
5631 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5632 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5633 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5634 if (required_vco == 8640)
5635 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5636 SKL_DPLL0);
5637 else
5638 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5639 SKL_DPLL0);
5640
5641 I915_WRITE(DPLL_CTRL1, val);
5642 POSTING_READ(DPLL_CTRL1);
5643
5644 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5645
5646 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5647 DRM_ERROR("DPLL0 not locked\n");
5648}
5649
5650static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5651{
5652 int ret;
5653 u32 val;
5654
5655 /* inform PCU we want to change CDCLK */
5656 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5657 mutex_lock(&dev_priv->rps.hw_lock);
5658 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5659 mutex_unlock(&dev_priv->rps.hw_lock);
5660
5661 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5662}
5663
5664static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5665{
5666 unsigned int i;
5667
5668 for (i = 0; i < 15; i++) {
5669 if (skl_cdclk_pcu_ready(dev_priv))
5670 return true;
5671 udelay(10);
5672 }
5673
5674 return false;
5675}
5676
5677static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5678{
560a7ae4 5679 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5680 u32 freq_select, pcu_ack;
5681
5682 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5683
5684 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5685 DRM_ERROR("failed to inform PCU about cdclk change\n");
5686 return;
5687 }
5688
5689 /* set CDCLK_CTL */
5690 switch(freq) {
5691 case 450000:
5692 case 432000:
5693 freq_select = CDCLK_FREQ_450_432;
5694 pcu_ack = 1;
5695 break;
5696 case 540000:
5697 freq_select = CDCLK_FREQ_540;
5698 pcu_ack = 2;
5699 break;
5700 case 308570:
5701 case 337500:
5702 default:
5703 freq_select = CDCLK_FREQ_337_308;
5704 pcu_ack = 0;
5705 break;
5706 case 617140:
5707 case 675000:
5708 freq_select = CDCLK_FREQ_675_617;
5709 pcu_ack = 3;
5710 break;
5711 }
5712
5713 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5714 POSTING_READ(CDCLK_CTL);
5715
5716 /* inform PCU of the change */
5717 mutex_lock(&dev_priv->rps.hw_lock);
5718 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5719 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5720
5721 intel_update_cdclk(dev);
5d96d8af
DL
5722}
5723
5724void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5725{
5726 /* disable DBUF power */
5727 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5728 POSTING_READ(DBUF_CTL);
5729
5730 udelay(10);
5731
5732 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5733 DRM_ERROR("DBuf power disable timeout\n");
5734
5735 /* disable DPLL0 */
5736 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5737 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5738 DRM_ERROR("Couldn't disable DPLL0\n");
5739
5740 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5741}
5742
5743void skl_init_cdclk(struct drm_i915_private *dev_priv)
5744{
5745 u32 val;
5746 unsigned int required_vco;
5747
5748 /* enable PCH reset handshake */
5749 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5750 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5751
5752 /* enable PG1 and Misc I/O */
5753 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5754
5755 /* DPLL0 already enabed !? */
5756 if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5757 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5758 return;
5759 }
5760
5761 /* enable DPLL0 */
5762 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5763 skl_dpll0_enable(dev_priv, required_vco);
5764
5765 /* set CDCLK to the frequency the BIOS chose */
5766 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5767
5768 /* enable DBUF power */
5769 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5770 POSTING_READ(DBUF_CTL);
5771
5772 udelay(10);
5773
5774 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5775 DRM_ERROR("DBuf power enable timeout\n");
5776}
5777
dfcab17e 5778/* returns HPLL frequency in kHz */
f8bf63fd 5779static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 5780{
586f49dc 5781 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 5782
586f49dc 5783 /* Obtain SKU information */
a580516d 5784 mutex_lock(&dev_priv->sb_lock);
586f49dc
JB
5785 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5786 CCK_FUSE_HPLL_FREQ_MASK;
a580516d 5787 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5788
dfcab17e 5789 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
5790}
5791
5792/* Adjust CDclk dividers to allow high res or save power if possible */
5793static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5794{
5795 struct drm_i915_private *dev_priv = dev->dev_private;
5796 u32 val, cmd;
5797
164dfd28
VK
5798 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5799 != dev_priv->cdclk_freq);
d60c4473 5800
dfcab17e 5801 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5802 cmd = 2;
dfcab17e 5803 else if (cdclk == 266667)
30a970c6
JB
5804 cmd = 1;
5805 else
5806 cmd = 0;
5807
5808 mutex_lock(&dev_priv->rps.hw_lock);
5809 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5810 val &= ~DSPFREQGUAR_MASK;
5811 val |= (cmd << DSPFREQGUAR_SHIFT);
5812 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5813 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5814 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5815 50)) {
5816 DRM_ERROR("timed out waiting for CDclk change\n");
5817 }
5818 mutex_unlock(&dev_priv->rps.hw_lock);
5819
54433e91
VS
5820 mutex_lock(&dev_priv->sb_lock);
5821
dfcab17e 5822 if (cdclk == 400000) {
6bcda4f0 5823 u32 divider;
30a970c6 5824
6bcda4f0 5825 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5826
30a970c6
JB
5827 /* adjust cdclk divider */
5828 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 5829 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
5830 val |= divider;
5831 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5832
5833 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5834 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5835 50))
5836 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5837 }
5838
30a970c6
JB
5839 /* adjust self-refresh exit latency value */
5840 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5841 val &= ~0x7f;
5842
5843 /*
5844 * For high bandwidth configs, we set a higher latency in the bunit
5845 * so that the core display fetch happens in time to avoid underruns.
5846 */
dfcab17e 5847 if (cdclk == 400000)
30a970c6
JB
5848 val |= 4500 / 250; /* 4.5 usec */
5849 else
5850 val |= 3000 / 250; /* 3.0 usec */
5851 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5852
a580516d 5853 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5854
b6283055 5855 intel_update_cdclk(dev);
30a970c6
JB
5856}
5857
383c5a6a
VS
5858static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5859{
5860 struct drm_i915_private *dev_priv = dev->dev_private;
5861 u32 val, cmd;
5862
164dfd28
VK
5863 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5864 != dev_priv->cdclk_freq);
383c5a6a
VS
5865
5866 switch (cdclk) {
383c5a6a
VS
5867 case 333333:
5868 case 320000:
383c5a6a 5869 case 266667:
383c5a6a 5870 case 200000:
383c5a6a
VS
5871 break;
5872 default:
5f77eeb0 5873 MISSING_CASE(cdclk);
383c5a6a
VS
5874 return;
5875 }
5876
9d0d3fda
VS
5877 /*
5878 * Specs are full of misinformation, but testing on actual
5879 * hardware has shown that we just need to write the desired
5880 * CCK divider into the Punit register.
5881 */
5882 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5883
383c5a6a
VS
5884 mutex_lock(&dev_priv->rps.hw_lock);
5885 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5886 val &= ~DSPFREQGUAR_MASK_CHV;
5887 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5888 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5889 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5890 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5891 50)) {
5892 DRM_ERROR("timed out waiting for CDclk change\n");
5893 }
5894 mutex_unlock(&dev_priv->rps.hw_lock);
5895
b6283055 5896 intel_update_cdclk(dev);
383c5a6a
VS
5897}
5898
30a970c6
JB
5899static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5900 int max_pixclk)
5901{
6bcda4f0 5902 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5903 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5904
30a970c6
JB
5905 /*
5906 * Really only a few cases to deal with, as only 4 CDclks are supported:
5907 * 200MHz
5908 * 267MHz
29dc7ef3 5909 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5910 * 400MHz (VLV only)
5911 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5912 * of the lower bin and adjust if needed.
e37c67a1
VS
5913 *
5914 * We seem to get an unstable or solid color picture at 200MHz.
5915 * Not sure what's wrong. For now use 200MHz only when all pipes
5916 * are off.
30a970c6 5917 */
6cca3195
VS
5918 if (!IS_CHERRYVIEW(dev_priv) &&
5919 max_pixclk > freq_320*limit/100)
dfcab17e 5920 return 400000;
6cca3195 5921 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5922 return freq_320;
e37c67a1 5923 else if (max_pixclk > 0)
dfcab17e 5924 return 266667;
e37c67a1
VS
5925 else
5926 return 200000;
30a970c6
JB
5927}
5928
f8437dd1
VK
5929static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5930 int max_pixclk)
5931{
5932 /*
5933 * FIXME:
5934 * - remove the guardband, it's not needed on BXT
5935 * - set 19.2MHz bypass frequency if there are no active pipes
5936 */
5937 if (max_pixclk > 576000*9/10)
5938 return 624000;
5939 else if (max_pixclk > 384000*9/10)
5940 return 576000;
5941 else if (max_pixclk > 288000*9/10)
5942 return 384000;
5943 else if (max_pixclk > 144000*9/10)
5944 return 288000;
5945 else
5946 return 144000;
5947}
5948
a821fc46
ACO
5949/* Compute the max pixel clock for new configuration. Uses atomic state if
5950 * that's non-NULL, look at current state otherwise. */
5951static int intel_mode_max_pixclk(struct drm_device *dev,
5952 struct drm_atomic_state *state)
30a970c6 5953{
30a970c6 5954 struct intel_crtc *intel_crtc;
304603f4 5955 struct intel_crtc_state *crtc_state;
30a970c6
JB
5956 int max_pixclk = 0;
5957
d3fcc808 5958 for_each_intel_crtc(dev, intel_crtc) {
a821fc46
ACO
5959 if (state)
5960 crtc_state =
5961 intel_atomic_get_crtc_state(state, intel_crtc);
5962 else
5963 crtc_state = intel_crtc->config;
304603f4
ACO
5964 if (IS_ERR(crtc_state))
5965 return PTR_ERR(crtc_state);
5966
5967 if (!crtc_state->base.enable)
5968 continue;
5969
5970 max_pixclk = max(max_pixclk,
5971 crtc_state->base.adjusted_mode.crtc_clock);
30a970c6
JB
5972 }
5973
5974 return max_pixclk;
5975}
5976
0a9ab303 5977static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
30a970c6 5978{
304603f4 5979 struct drm_i915_private *dev_priv = to_i915(state->dev);
0a9ab303
ACO
5980 struct drm_crtc *crtc;
5981 struct drm_crtc_state *crtc_state;
a821fc46 5982 int max_pixclk = intel_mode_max_pixclk(state->dev, state);
0a9ab303 5983 int cdclk, i;
30a970c6 5984
304603f4
ACO
5985 if (max_pixclk < 0)
5986 return max_pixclk;
30a970c6 5987
f8437dd1
VK
5988 if (IS_VALLEYVIEW(dev_priv))
5989 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5990 else
5991 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5992
5993 if (cdclk == dev_priv->cdclk_freq)
304603f4 5994 return 0;
30a970c6 5995
0a9ab303
ACO
5996 /* add all active pipes to the state */
5997 for_each_crtc(state->dev, crtc) {
5998 if (!crtc->state->enable)
5999 continue;
6000
6001 crtc_state = drm_atomic_get_crtc_state(state, crtc);
6002 if (IS_ERR(crtc_state))
6003 return PTR_ERR(crtc_state);
6004 }
6005
2f2d7aa1 6006 /* disable/enable all currently active pipes while we change cdclk */
0a9ab303
ACO
6007 for_each_crtc_in_state(state, crtc, crtc_state, i)
6008 if (crtc_state->enable)
6009 crtc_state->mode_changed = true;
304603f4
ACO
6010
6011 return 0;
30a970c6
JB
6012}
6013
1e69cd74
VS
6014static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6015{
6016 unsigned int credits, default_credits;
6017
6018 if (IS_CHERRYVIEW(dev_priv))
6019 default_credits = PFI_CREDIT(12);
6020 else
6021 default_credits = PFI_CREDIT(8);
6022
164dfd28 6023 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
1e69cd74
VS
6024 /* CHV suggested value is 31 or 63 */
6025 if (IS_CHERRYVIEW(dev_priv))
6026 credits = PFI_CREDIT_31;
6027 else
6028 credits = PFI_CREDIT(15);
6029 } else {
6030 credits = default_credits;
6031 }
6032
6033 /*
6034 * WA - write default credits before re-programming
6035 * FIXME: should we also set the resend bit here?
6036 */
6037 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6038 default_credits);
6039
6040 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6041 credits | PFI_CREDIT_RESEND);
6042
6043 /*
6044 * FIXME is this guaranteed to clear
6045 * immediately or should we poll for it?
6046 */
6047 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6048}
6049
a821fc46 6050static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
30a970c6 6051{
a821fc46 6052 struct drm_device *dev = old_state->dev;
30a970c6 6053 struct drm_i915_private *dev_priv = dev->dev_private;
a821fc46 6054 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
304603f4
ACO
6055 int req_cdclk;
6056
a821fc46
ACO
6057 /* The path in intel_mode_max_pixclk() with a NULL atomic state should
6058 * never fail. */
304603f4
ACO
6059 if (WARN_ON(max_pixclk < 0))
6060 return;
30a970c6 6061
304603f4 6062 req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
30a970c6 6063
164dfd28 6064 if (req_cdclk != dev_priv->cdclk_freq) {
738c05c0
ID
6065 /*
6066 * FIXME: We can end up here with all power domains off, yet
6067 * with a CDCLK frequency other than the minimum. To account
6068 * for this take the PIPE-A power domain, which covers the HW
6069 * blocks needed for the following programming. This can be
6070 * removed once it's guaranteed that we get here either with
6071 * the minimum CDCLK set, or the required power domains
6072 * enabled.
6073 */
6074 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6075
383c5a6a
VS
6076 if (IS_CHERRYVIEW(dev))
6077 cherryview_set_cdclk(dev, req_cdclk);
6078 else
6079 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6080
1e69cd74
VS
6081 vlv_program_pfi_credits(dev_priv);
6082
738c05c0 6083 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 6084 }
30a970c6
JB
6085}
6086
89b667f8
JB
6087static void valleyview_crtc_enable(struct drm_crtc *crtc)
6088{
6089 struct drm_device *dev = crtc->dev;
a72e4c9f 6090 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6091 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6092 struct intel_encoder *encoder;
6093 int pipe = intel_crtc->pipe;
23538ef1 6094 bool is_dsi;
89b667f8 6095
83d65738 6096 WARN_ON(!crtc->state->enable);
89b667f8
JB
6097
6098 if (intel_crtc->active)
6099 return;
6100
409ee761 6101 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 6102
1ae0d137
VS
6103 if (!is_dsi) {
6104 if (IS_CHERRYVIEW(dev))
6e3c9717 6105 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 6106 else
6e3c9717 6107 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 6108 }
5b18e57c 6109
6e3c9717 6110 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6111 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6112
6113 intel_set_pipe_timings(intel_crtc);
6114
c14b0485
VS
6115 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6116 struct drm_i915_private *dev_priv = dev->dev_private;
6117
6118 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6119 I915_WRITE(CHV_CANVAS(pipe), 0);
6120 }
6121
5b18e57c
DV
6122 i9xx_set_pipeconf(intel_crtc);
6123
89b667f8 6124 intel_crtc->active = true;
89b667f8 6125
a72e4c9f 6126 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6127
89b667f8
JB
6128 for_each_encoder_on_crtc(dev, crtc, encoder)
6129 if (encoder->pre_pll_enable)
6130 encoder->pre_pll_enable(encoder);
6131
9d556c99
CML
6132 if (!is_dsi) {
6133 if (IS_CHERRYVIEW(dev))
6e3c9717 6134 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6135 else
6e3c9717 6136 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6137 }
89b667f8
JB
6138
6139 for_each_encoder_on_crtc(dev, crtc, encoder)
6140 if (encoder->pre_enable)
6141 encoder->pre_enable(encoder);
6142
2dd24552
JB
6143 i9xx_pfit_enable(intel_crtc);
6144
63cbb074
VS
6145 intel_crtc_load_lut(crtc);
6146
f37fcc2a 6147 intel_update_watermarks(crtc);
e1fdc473 6148 intel_enable_pipe(intel_crtc);
be6a6f8e 6149
4b3a9526
VS
6150 assert_vblank_disabled(crtc);
6151 drm_crtc_vblank_on(crtc);
6152
f9b61ff6
DV
6153 for_each_encoder_on_crtc(dev, crtc, encoder)
6154 encoder->enable(encoder);
89b667f8
JB
6155}
6156
f13c2ef3
DV
6157static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6158{
6159 struct drm_device *dev = crtc->base.dev;
6160 struct drm_i915_private *dev_priv = dev->dev_private;
6161
6e3c9717
ACO
6162 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6163 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6164}
6165
0b8765c6 6166static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6167{
6168 struct drm_device *dev = crtc->dev;
a72e4c9f 6169 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6171 struct intel_encoder *encoder;
79e53945 6172 int pipe = intel_crtc->pipe;
79e53945 6173
83d65738 6174 WARN_ON(!crtc->state->enable);
08a48469 6175
f7abfe8b
CW
6176 if (intel_crtc->active)
6177 return;
6178
f13c2ef3
DV
6179 i9xx_set_pll_dividers(intel_crtc);
6180
6e3c9717 6181 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6182 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6183
6184 intel_set_pipe_timings(intel_crtc);
6185
5b18e57c
DV
6186 i9xx_set_pipeconf(intel_crtc);
6187
f7abfe8b 6188 intel_crtc->active = true;
6b383a7f 6189
4a3436e8 6190 if (!IS_GEN2(dev))
a72e4c9f 6191 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6192
9d6d9f19
MK
6193 for_each_encoder_on_crtc(dev, crtc, encoder)
6194 if (encoder->pre_enable)
6195 encoder->pre_enable(encoder);
6196
f6736a1a
DV
6197 i9xx_enable_pll(intel_crtc);
6198
2dd24552
JB
6199 i9xx_pfit_enable(intel_crtc);
6200
63cbb074
VS
6201 intel_crtc_load_lut(crtc);
6202
f37fcc2a 6203 intel_update_watermarks(crtc);
e1fdc473 6204 intel_enable_pipe(intel_crtc);
be6a6f8e 6205
4b3a9526
VS
6206 assert_vblank_disabled(crtc);
6207 drm_crtc_vblank_on(crtc);
6208
f9b61ff6
DV
6209 for_each_encoder_on_crtc(dev, crtc, encoder)
6210 encoder->enable(encoder);
0b8765c6 6211}
79e53945 6212
87476d63
DV
6213static void i9xx_pfit_disable(struct intel_crtc *crtc)
6214{
6215 struct drm_device *dev = crtc->base.dev;
6216 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6217
6e3c9717 6218 if (!crtc->config->gmch_pfit.control)
328d8e82 6219 return;
87476d63 6220
328d8e82 6221 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6222
328d8e82
DV
6223 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6224 I915_READ(PFIT_CONTROL));
6225 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6226}
6227
0b8765c6
JB
6228static void i9xx_crtc_disable(struct drm_crtc *crtc)
6229{
6230 struct drm_device *dev = crtc->dev;
6231 struct drm_i915_private *dev_priv = dev->dev_private;
6232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6233 struct intel_encoder *encoder;
0b8765c6 6234 int pipe = intel_crtc->pipe;
ef9c3aee 6235
f7abfe8b
CW
6236 if (!intel_crtc->active)
6237 return;
6238
6304cd91
VS
6239 /*
6240 * On gen2 planes are double buffered but the pipe isn't, so we must
6241 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
6242 * We also need to wait on all gmch platforms because of the
6243 * self-refresh mode constraint explained above.
6304cd91 6244 */
564ed191 6245 intel_wait_for_vblank(dev, pipe);
6304cd91 6246
4b3a9526
VS
6247 for_each_encoder_on_crtc(dev, crtc, encoder)
6248 encoder->disable(encoder);
6249
f9b61ff6
DV
6250 drm_crtc_vblank_off(crtc);
6251 assert_vblank_disabled(crtc);
6252
575f7ab7 6253 intel_disable_pipe(intel_crtc);
24a1f16d 6254
87476d63 6255 i9xx_pfit_disable(intel_crtc);
24a1f16d 6256
89b667f8
JB
6257 for_each_encoder_on_crtc(dev, crtc, encoder)
6258 if (encoder->post_disable)
6259 encoder->post_disable(encoder);
6260
409ee761 6261 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
6262 if (IS_CHERRYVIEW(dev))
6263 chv_disable_pll(dev_priv, pipe);
6264 else if (IS_VALLEYVIEW(dev))
6265 vlv_disable_pll(dev_priv, pipe);
6266 else
1c4e0274 6267 i9xx_disable_pll(intel_crtc);
076ed3b2 6268 }
0b8765c6 6269
4a3436e8 6270 if (!IS_GEN2(dev))
a72e4c9f 6271 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 6272
f7abfe8b 6273 intel_crtc->active = false;
46ba614c 6274 intel_update_watermarks(crtc);
f37fcc2a 6275
efa9624e 6276 mutex_lock(&dev->struct_mutex);
7ff0ebcc 6277 intel_fbc_update(dev);
efa9624e 6278 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
6279}
6280
ee7b9f93
JB
6281static void i9xx_crtc_off(struct drm_crtc *crtc)
6282{
6283}
6284
b04c5bd6
BF
6285/* Master function to enable/disable CRTC and corresponding power wells */
6286void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
6287{
6288 struct drm_device *dev = crtc->dev;
6289 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 6290 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
6291 enum intel_display_power_domain domain;
6292 unsigned long domains;
976f8a20 6293
0e572fe7
DV
6294 if (enable) {
6295 if (!intel_crtc->active) {
e1e9fb84
DV
6296 domains = get_crtc_power_domains(crtc);
6297 for_each_power_domain(domain, domains)
6298 intel_display_power_get(dev_priv, domain);
6299 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
6300
6301 dev_priv->display.crtc_enable(crtc);
ce22dba9 6302 intel_crtc_enable_planes(crtc);
0e572fe7
DV
6303 }
6304 } else {
6305 if (intel_crtc->active) {
ce22dba9 6306 intel_crtc_disable_planes(crtc);
0e572fe7
DV
6307 dev_priv->display.crtc_disable(crtc);
6308
e1e9fb84
DV
6309 domains = intel_crtc->enabled_power_domains;
6310 for_each_power_domain(domain, domains)
6311 intel_display_power_put(dev_priv, domain);
6312 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
6313 }
6314 }
b04c5bd6
BF
6315}
6316
6317/**
6318 * Sets the power management mode of the pipe and plane.
6319 */
6320void intel_crtc_update_dpms(struct drm_crtc *crtc)
6321{
6322 struct drm_device *dev = crtc->dev;
6323 struct intel_encoder *intel_encoder;
6324 bool enable = false;
6325
6326 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6327 enable |= intel_encoder->connectors_active;
6328
6329 intel_crtc_control(crtc, enable);
0f63cca2
ACO
6330
6331 crtc->state->active = enable;
976f8a20
DV
6332}
6333
cdd59983
CW
6334static void intel_crtc_disable(struct drm_crtc *crtc)
6335{
cdd59983 6336 struct drm_device *dev = crtc->dev;
976f8a20 6337 struct drm_connector *connector;
ee7b9f93 6338 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 6339
976f8a20 6340 /* crtc should still be enabled when we disable it. */
83d65738 6341 WARN_ON(!crtc->state->enable);
976f8a20 6342
ce22dba9 6343 intel_crtc_disable_planes(crtc);
976f8a20 6344 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
6345 dev_priv->display.off(crtc);
6346
70a101f8 6347 drm_plane_helper_disable(crtc->primary);
976f8a20
DV
6348
6349 /* Update computed state. */
6350 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6351 if (!connector->encoder || !connector->encoder->crtc)
6352 continue;
6353
6354 if (connector->encoder->crtc != crtc)
6355 continue;
6356
6357 connector->dpms = DRM_MODE_DPMS_OFF;
6358 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
6359 }
6360}
6361
ea5b213a 6362void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6363{
4ef69c7a 6364 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6365
ea5b213a
CW
6366 drm_encoder_cleanup(encoder);
6367 kfree(intel_encoder);
7e7d76c3
JB
6368}
6369
9237329d 6370/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
6371 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6372 * state of the entire output pipe. */
9237329d 6373static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 6374{
5ab432ef
DV
6375 if (mode == DRM_MODE_DPMS_ON) {
6376 encoder->connectors_active = true;
6377
b2cabb0e 6378 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
6379 } else {
6380 encoder->connectors_active = false;
6381
b2cabb0e 6382 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 6383 }
79e53945
JB
6384}
6385
0a91ca29
DV
6386/* Cross check the actual hw state with our own modeset state tracking (and it's
6387 * internal consistency). */
b980514c 6388static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6389{
0a91ca29
DV
6390 if (connector->get_hw_state(connector)) {
6391 struct intel_encoder *encoder = connector->encoder;
6392 struct drm_crtc *crtc;
6393 bool encoder_enabled;
6394 enum pipe pipe;
6395
6396 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6397 connector->base.base.id,
c23cc417 6398 connector->base.name);
0a91ca29 6399
0e32b39c
DA
6400 /* there is no real hw state for MST connectors */
6401 if (connector->mst_port)
6402 return;
6403
e2c719b7 6404 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 6405 "wrong connector dpms state\n");
e2c719b7 6406 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 6407 "active connector not linked to encoder\n");
0a91ca29 6408
36cd7444 6409 if (encoder) {
e2c719b7 6410 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
6411 "encoder->connectors_active not set\n");
6412
6413 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
6414 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6415 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 6416 return;
0a91ca29 6417
36cd7444 6418 crtc = encoder->base.crtc;
0a91ca29 6419
83d65738
MR
6420 I915_STATE_WARN(!crtc->state->enable,
6421 "crtc not enabled\n");
e2c719b7
RC
6422 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6423 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
6424 "encoder active on the wrong pipe\n");
6425 }
0a91ca29 6426 }
79e53945
JB
6427}
6428
08d9bc92
ACO
6429int intel_connector_init(struct intel_connector *connector)
6430{
6431 struct drm_connector_state *connector_state;
6432
6433 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6434 if (!connector_state)
6435 return -ENOMEM;
6436
6437 connector->base.state = connector_state;
6438 return 0;
6439}
6440
6441struct intel_connector *intel_connector_alloc(void)
6442{
6443 struct intel_connector *connector;
6444
6445 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6446 if (!connector)
6447 return NULL;
6448
6449 if (intel_connector_init(connector) < 0) {
6450 kfree(connector);
6451 return NULL;
6452 }
6453
6454 return connector;
6455}
6456
5ab432ef
DV
6457/* Even simpler default implementation, if there's really no special case to
6458 * consider. */
6459void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 6460{
5ab432ef
DV
6461 /* All the simple cases only support two dpms states. */
6462 if (mode != DRM_MODE_DPMS_ON)
6463 mode = DRM_MODE_DPMS_OFF;
d4270e57 6464
5ab432ef
DV
6465 if (mode == connector->dpms)
6466 return;
6467
6468 connector->dpms = mode;
6469
6470 /* Only need to change hw state when actually enabled */
c9976dcf
CW
6471 if (connector->encoder)
6472 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 6473
b980514c 6474 intel_modeset_check_state(connector->dev);
79e53945
JB
6475}
6476
f0947c37
DV
6477/* Simple connector->get_hw_state implementation for encoders that support only
6478 * one connector and no cloning and hence the encoder state determines the state
6479 * of the connector. */
6480bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6481{
24929352 6482 enum pipe pipe = 0;
f0947c37 6483 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6484
f0947c37 6485 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6486}
6487
6d293983 6488static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6489{
6d293983
ACO
6490 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6491 return crtc_state->fdi_lanes;
d272ddfa
VS
6492
6493 return 0;
6494}
6495
6d293983 6496static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6497 struct intel_crtc_state *pipe_config)
1857e1da 6498{
6d293983
ACO
6499 struct drm_atomic_state *state = pipe_config->base.state;
6500 struct intel_crtc *other_crtc;
6501 struct intel_crtc_state *other_crtc_state;
6502
1857e1da
DV
6503 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6504 pipe_name(pipe), pipe_config->fdi_lanes);
6505 if (pipe_config->fdi_lanes > 4) {
6506 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6507 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6508 return -EINVAL;
1857e1da
DV
6509 }
6510
bafb6553 6511 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6512 if (pipe_config->fdi_lanes > 2) {
6513 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6514 pipe_config->fdi_lanes);
6d293983 6515 return -EINVAL;
1857e1da 6516 } else {
6d293983 6517 return 0;
1857e1da
DV
6518 }
6519 }
6520
6521 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6522 return 0;
1857e1da
DV
6523
6524 /* Ivybridge 3 pipe is really complicated */
6525 switch (pipe) {
6526 case PIPE_A:
6d293983 6527 return 0;
1857e1da 6528 case PIPE_B:
6d293983
ACO
6529 if (pipe_config->fdi_lanes <= 2)
6530 return 0;
6531
6532 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6533 other_crtc_state =
6534 intel_atomic_get_crtc_state(state, other_crtc);
6535 if (IS_ERR(other_crtc_state))
6536 return PTR_ERR(other_crtc_state);
6537
6538 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6539 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6540 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6541 return -EINVAL;
1857e1da 6542 }
6d293983 6543 return 0;
1857e1da 6544 case PIPE_C:
251cc67c
VS
6545 if (pipe_config->fdi_lanes > 2) {
6546 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6547 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6548 return -EINVAL;
251cc67c 6549 }
6d293983
ACO
6550
6551 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6552 other_crtc_state =
6553 intel_atomic_get_crtc_state(state, other_crtc);
6554 if (IS_ERR(other_crtc_state))
6555 return PTR_ERR(other_crtc_state);
6556
6557 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6558 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6559 return -EINVAL;
1857e1da 6560 }
6d293983 6561 return 0;
1857e1da
DV
6562 default:
6563 BUG();
6564 }
6565}
6566
e29c22c0
DV
6567#define RETRY 1
6568static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6569 struct intel_crtc_state *pipe_config)
877d48d5 6570{
1857e1da 6571 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 6572 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6573 int lane, link_bw, fdi_dotclock, ret;
6574 bool needs_recompute = false;
877d48d5 6575
e29c22c0 6576retry:
877d48d5
DV
6577 /* FDI is a binary signal running at ~2.7GHz, encoding
6578 * each output octet as 10 bits. The actual frequency
6579 * is stored as a divider into a 100MHz clock, and the
6580 * mode pixel clock is stored in units of 1KHz.
6581 * Hence the bw of each lane in terms of the mode signal
6582 * is:
6583 */
6584 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6585
241bfc38 6586 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6587
2bd89a07 6588 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6589 pipe_config->pipe_bpp);
6590
6591 pipe_config->fdi_lanes = lane;
6592
2bd89a07 6593 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6594 link_bw, &pipe_config->fdi_m_n);
1857e1da 6595
6d293983
ACO
6596 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6597 intel_crtc->pipe, pipe_config);
6598 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6599 pipe_config->pipe_bpp -= 2*3;
6600 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6601 pipe_config->pipe_bpp);
6602 needs_recompute = true;
6603 pipe_config->bw_constrained = true;
6604
6605 goto retry;
6606 }
6607
6608 if (needs_recompute)
6609 return RETRY;
6610
6d293983 6611 return ret;
877d48d5
DV
6612}
6613
8cfb3407
VS
6614static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6615 struct intel_crtc_state *pipe_config)
6616{
6617 if (pipe_config->pipe_bpp > 24)
6618 return false;
6619
6620 /* HSW can handle pixel rate up to cdclk? */
6621 if (IS_HASWELL(dev_priv->dev))
6622 return true;
6623
6624 /*
b432e5cf
VS
6625 * We compare against max which means we must take
6626 * the increased cdclk requirement into account when
6627 * calculating the new cdclk.
6628 *
6629 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6630 */
6631 return ilk_pipe_pixel_rate(pipe_config) <=
6632 dev_priv->max_cdclk_freq * 95 / 100;
6633}
6634
42db64ef 6635static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6636 struct intel_crtc_state *pipe_config)
42db64ef 6637{
8cfb3407
VS
6638 struct drm_device *dev = crtc->base.dev;
6639 struct drm_i915_private *dev_priv = dev->dev_private;
6640
d330a953 6641 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6642 hsw_crtc_supports_ips(crtc) &&
6643 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6644}
6645
a43f6e0f 6646static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6647 struct intel_crtc_state *pipe_config)
79e53945 6648{
a43f6e0f 6649 struct drm_device *dev = crtc->base.dev;
8bd31e67 6650 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 6651 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
d03c93d4 6652 int ret;
89749350 6653
ad3a4479 6654 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6655 if (INTEL_INFO(dev)->gen < 4) {
44913155 6656 int clock_limit = dev_priv->max_cdclk_freq;
cf532bb2
VS
6657
6658 /*
6659 * Enable pixel doubling when the dot clock
6660 * is > 90% of the (display) core speed.
6661 *
b397c96b
VS
6662 * GDG double wide on either pipe,
6663 * otherwise pipe A only.
cf532bb2 6664 */
b397c96b 6665 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 6666 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 6667 clock_limit *= 2;
cf532bb2 6668 pipe_config->double_wide = true;
ad3a4479
VS
6669 }
6670
241bfc38 6671 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 6672 return -EINVAL;
2c07245f 6673 }
89749350 6674
1d1d0e27
VS
6675 /*
6676 * Pipe horizontal size must be even in:
6677 * - DVO ganged mode
6678 * - LVDS dual channel mode
6679 * - Double wide pipe
6680 */
a93e255f 6681 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6682 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6683 pipe_config->pipe_src_w &= ~1;
6684
8693a824
DL
6685 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6686 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6687 */
6688 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6689 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 6690 return -EINVAL;
44f46b42 6691
f5adf94e 6692 if (HAS_IPS(dev))
a43f6e0f
DV
6693 hsw_compute_ips_config(crtc, pipe_config);
6694
877d48d5 6695 if (pipe_config->has_pch_encoder)
a43f6e0f 6696 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6697
d03c93d4
CK
6698 /* FIXME: remove below call once atomic mode set is place and all crtc
6699 * related checks called from atomic_crtc_check function */
6700 ret = 0;
6701 DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6702 crtc, pipe_config->base.state);
6703 ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6704
6705 return ret;
79e53945
JB
6706}
6707
1652d19e
VS
6708static int skylake_get_display_clock_speed(struct drm_device *dev)
6709{
6710 struct drm_i915_private *dev_priv = to_i915(dev);
6711 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6712 uint32_t cdctl = I915_READ(CDCLK_CTL);
6713 uint32_t linkrate;
6714
414355a7 6715 if (!(lcpll1 & LCPLL_PLL_ENABLE))
1652d19e 6716 return 24000; /* 24MHz is the cd freq with NSSC ref */
1652d19e
VS
6717
6718 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6719 return 540000;
6720
6721 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6722 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6723
71cd8423
DL
6724 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6725 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6726 /* vco 8640 */
6727 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6728 case CDCLK_FREQ_450_432:
6729 return 432000;
6730 case CDCLK_FREQ_337_308:
6731 return 308570;
6732 case CDCLK_FREQ_675_617:
6733 return 617140;
6734 default:
6735 WARN(1, "Unknown cd freq selection\n");
6736 }
6737 } else {
6738 /* vco 8100 */
6739 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6740 case CDCLK_FREQ_450_432:
6741 return 450000;
6742 case CDCLK_FREQ_337_308:
6743 return 337500;
6744 case CDCLK_FREQ_675_617:
6745 return 675000;
6746 default:
6747 WARN(1, "Unknown cd freq selection\n");
6748 }
6749 }
6750
6751 /* error case, do as if DPLL0 isn't enabled */
6752 return 24000;
6753}
6754
6755static int broadwell_get_display_clock_speed(struct drm_device *dev)
6756{
6757 struct drm_i915_private *dev_priv = dev->dev_private;
6758 uint32_t lcpll = I915_READ(LCPLL_CTL);
6759 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6760
6761 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6762 return 800000;
6763 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6764 return 450000;
6765 else if (freq == LCPLL_CLK_FREQ_450)
6766 return 450000;
6767 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6768 return 540000;
6769 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6770 return 337500;
6771 else
6772 return 675000;
6773}
6774
6775static int haswell_get_display_clock_speed(struct drm_device *dev)
6776{
6777 struct drm_i915_private *dev_priv = dev->dev_private;
6778 uint32_t lcpll = I915_READ(LCPLL_CTL);
6779 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6780
6781 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6782 return 800000;
6783 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6784 return 450000;
6785 else if (freq == LCPLL_CLK_FREQ_450)
6786 return 450000;
6787 else if (IS_HSW_ULT(dev))
6788 return 337500;
6789 else
6790 return 540000;
79e53945
JB
6791}
6792
25eb05fc
JB
6793static int valleyview_get_display_clock_speed(struct drm_device *dev)
6794{
d197b7d3 6795 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
6796 u32 val;
6797 int divider;
6798
6bcda4f0
VS
6799 if (dev_priv->hpll_freq == 0)
6800 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6801
a580516d 6802 mutex_lock(&dev_priv->sb_lock);
d197b7d3 6803 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
a580516d 6804 mutex_unlock(&dev_priv->sb_lock);
d197b7d3
VS
6805
6806 divider = val & DISPLAY_FREQUENCY_VALUES;
6807
7d007f40
VS
6808 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6809 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6810 "cdclk change in progress\n");
6811
6bcda4f0 6812 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
6813}
6814
b37a6434
VS
6815static int ilk_get_display_clock_speed(struct drm_device *dev)
6816{
6817 return 450000;
6818}
6819
e70236a8
JB
6820static int i945_get_display_clock_speed(struct drm_device *dev)
6821{
6822 return 400000;
6823}
79e53945 6824
e70236a8 6825static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6826{
e907f170 6827 return 333333;
e70236a8 6828}
79e53945 6829
e70236a8
JB
6830static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6831{
6832 return 200000;
6833}
79e53945 6834
257a7ffc
DV
6835static int pnv_get_display_clock_speed(struct drm_device *dev)
6836{
6837 u16 gcfgc = 0;
6838
6839 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6840
6841 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6842 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6843 return 266667;
257a7ffc 6844 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6845 return 333333;
257a7ffc 6846 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6847 return 444444;
257a7ffc
DV
6848 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6849 return 200000;
6850 default:
6851 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6852 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6853 return 133333;
257a7ffc 6854 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6855 return 166667;
257a7ffc
DV
6856 }
6857}
6858
e70236a8
JB
6859static int i915gm_get_display_clock_speed(struct drm_device *dev)
6860{
6861 u16 gcfgc = 0;
79e53945 6862
e70236a8
JB
6863 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6864
6865 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6866 return 133333;
e70236a8
JB
6867 else {
6868 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6869 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6870 return 333333;
e70236a8
JB
6871 default:
6872 case GC_DISPLAY_CLOCK_190_200_MHZ:
6873 return 190000;
79e53945 6874 }
e70236a8
JB
6875 }
6876}
6877
6878static int i865_get_display_clock_speed(struct drm_device *dev)
6879{
e907f170 6880 return 266667;
e70236a8
JB
6881}
6882
1b1d2716 6883static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6884{
6885 u16 hpllcc = 0;
1b1d2716 6886
65cd2b3f
VS
6887 /*
6888 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6889 * encoding is different :(
6890 * FIXME is this the right way to detect 852GM/852GMV?
6891 */
6892 if (dev->pdev->revision == 0x1)
6893 return 133333;
6894
1b1d2716
VS
6895 pci_bus_read_config_word(dev->pdev->bus,
6896 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6897
e70236a8
JB
6898 /* Assume that the hardware is in the high speed state. This
6899 * should be the default.
6900 */
6901 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6902 case GC_CLOCK_133_200:
1b1d2716 6903 case GC_CLOCK_133_200_2:
e70236a8
JB
6904 case GC_CLOCK_100_200:
6905 return 200000;
6906 case GC_CLOCK_166_250:
6907 return 250000;
6908 case GC_CLOCK_100_133:
e907f170 6909 return 133333;
1b1d2716
VS
6910 case GC_CLOCK_133_266:
6911 case GC_CLOCK_133_266_2:
6912 case GC_CLOCK_166_266:
6913 return 266667;
e70236a8 6914 }
79e53945 6915
e70236a8
JB
6916 /* Shouldn't happen */
6917 return 0;
6918}
79e53945 6919
e70236a8
JB
6920static int i830_get_display_clock_speed(struct drm_device *dev)
6921{
e907f170 6922 return 133333;
79e53945
JB
6923}
6924
34edce2f
VS
6925static unsigned int intel_hpll_vco(struct drm_device *dev)
6926{
6927 struct drm_i915_private *dev_priv = dev->dev_private;
6928 static const unsigned int blb_vco[8] = {
6929 [0] = 3200000,
6930 [1] = 4000000,
6931 [2] = 5333333,
6932 [3] = 4800000,
6933 [4] = 6400000,
6934 };
6935 static const unsigned int pnv_vco[8] = {
6936 [0] = 3200000,
6937 [1] = 4000000,
6938 [2] = 5333333,
6939 [3] = 4800000,
6940 [4] = 2666667,
6941 };
6942 static const unsigned int cl_vco[8] = {
6943 [0] = 3200000,
6944 [1] = 4000000,
6945 [2] = 5333333,
6946 [3] = 6400000,
6947 [4] = 3333333,
6948 [5] = 3566667,
6949 [6] = 4266667,
6950 };
6951 static const unsigned int elk_vco[8] = {
6952 [0] = 3200000,
6953 [1] = 4000000,
6954 [2] = 5333333,
6955 [3] = 4800000,
6956 };
6957 static const unsigned int ctg_vco[8] = {
6958 [0] = 3200000,
6959 [1] = 4000000,
6960 [2] = 5333333,
6961 [3] = 6400000,
6962 [4] = 2666667,
6963 [5] = 4266667,
6964 };
6965 const unsigned int *vco_table;
6966 unsigned int vco;
6967 uint8_t tmp = 0;
6968
6969 /* FIXME other chipsets? */
6970 if (IS_GM45(dev))
6971 vco_table = ctg_vco;
6972 else if (IS_G4X(dev))
6973 vco_table = elk_vco;
6974 else if (IS_CRESTLINE(dev))
6975 vco_table = cl_vco;
6976 else if (IS_PINEVIEW(dev))
6977 vco_table = pnv_vco;
6978 else if (IS_G33(dev))
6979 vco_table = blb_vco;
6980 else
6981 return 0;
6982
6983 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6984
6985 vco = vco_table[tmp & 0x7];
6986 if (vco == 0)
6987 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6988 else
6989 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6990
6991 return vco;
6992}
6993
6994static int gm45_get_display_clock_speed(struct drm_device *dev)
6995{
6996 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6997 uint16_t tmp = 0;
6998
6999 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7000
7001 cdclk_sel = (tmp >> 12) & 0x1;
7002
7003 switch (vco) {
7004 case 2666667:
7005 case 4000000:
7006 case 5333333:
7007 return cdclk_sel ? 333333 : 222222;
7008 case 3200000:
7009 return cdclk_sel ? 320000 : 228571;
7010 default:
7011 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7012 return 222222;
7013 }
7014}
7015
7016static int i965gm_get_display_clock_speed(struct drm_device *dev)
7017{
7018 static const uint8_t div_3200[] = { 16, 10, 8 };
7019 static const uint8_t div_4000[] = { 20, 12, 10 };
7020 static const uint8_t div_5333[] = { 24, 16, 14 };
7021 const uint8_t *div_table;
7022 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7023 uint16_t tmp = 0;
7024
7025 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7026
7027 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7028
7029 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7030 goto fail;
7031
7032 switch (vco) {
7033 case 3200000:
7034 div_table = div_3200;
7035 break;
7036 case 4000000:
7037 div_table = div_4000;
7038 break;
7039 case 5333333:
7040 div_table = div_5333;
7041 break;
7042 default:
7043 goto fail;
7044 }
7045
7046 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7047
7048 fail:
7049 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7050 return 200000;
7051}
7052
7053static int g33_get_display_clock_speed(struct drm_device *dev)
7054{
7055 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7056 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7057 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7058 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7059 const uint8_t *div_table;
7060 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7061 uint16_t tmp = 0;
7062
7063 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7064
7065 cdclk_sel = (tmp >> 4) & 0x7;
7066
7067 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7068 goto fail;
7069
7070 switch (vco) {
7071 case 3200000:
7072 div_table = div_3200;
7073 break;
7074 case 4000000:
7075 div_table = div_4000;
7076 break;
7077 case 4800000:
7078 div_table = div_4800;
7079 break;
7080 case 5333333:
7081 div_table = div_5333;
7082 break;
7083 default:
7084 goto fail;
7085 }
7086
7087 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7088
7089 fail:
7090 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7091 return 190476;
7092}
7093
2c07245f 7094static void
a65851af 7095intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7096{
a65851af
VS
7097 while (*num > DATA_LINK_M_N_MASK ||
7098 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7099 *num >>= 1;
7100 *den >>= 1;
7101 }
7102}
7103
a65851af
VS
7104static void compute_m_n(unsigned int m, unsigned int n,
7105 uint32_t *ret_m, uint32_t *ret_n)
7106{
7107 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7108 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7109 intel_reduce_m_n_ratio(ret_m, ret_n);
7110}
7111
e69d0bc1
DV
7112void
7113intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7114 int pixel_clock, int link_clock,
7115 struct intel_link_m_n *m_n)
2c07245f 7116{
e69d0bc1 7117 m_n->tu = 64;
a65851af
VS
7118
7119 compute_m_n(bits_per_pixel * pixel_clock,
7120 link_clock * nlanes * 8,
7121 &m_n->gmch_m, &m_n->gmch_n);
7122
7123 compute_m_n(pixel_clock, link_clock,
7124 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7125}
7126
a7615030
CW
7127static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7128{
d330a953
JN
7129 if (i915.panel_use_ssc >= 0)
7130 return i915.panel_use_ssc != 0;
41aa3448 7131 return dev_priv->vbt.lvds_use_ssc
435793df 7132 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7133}
7134
a93e255f
ACO
7135static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7136 int num_connectors)
c65d77d8 7137{
a93e255f 7138 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
7139 struct drm_i915_private *dev_priv = dev->dev_private;
7140 int refclk;
7141
a93e255f
ACO
7142 WARN_ON(!crtc_state->base.state);
7143
5ab7b0b7 7144 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
9a0ea498 7145 refclk = 100000;
a93e255f 7146 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 7147 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
7148 refclk = dev_priv->vbt.lvds_ssc_freq;
7149 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
7150 } else if (!IS_GEN2(dev)) {
7151 refclk = 96000;
7152 } else {
7153 refclk = 48000;
7154 }
7155
7156 return refclk;
7157}
7158
7429e9d4 7159static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7160{
7df00d7a 7161 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7162}
f47709a9 7163
7429e9d4
DV
7164static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7165{
7166 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7167}
7168
f47709a9 7169static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7170 struct intel_crtc_state *crtc_state,
a7516a05
JB
7171 intel_clock_t *reduced_clock)
7172{
f47709a9 7173 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7174 u32 fp, fp2 = 0;
7175
7176 if (IS_PINEVIEW(dev)) {
190f68c5 7177 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7178 if (reduced_clock)
7429e9d4 7179 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7180 } else {
190f68c5 7181 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7182 if (reduced_clock)
7429e9d4 7183 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7184 }
7185
190f68c5 7186 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7187
f47709a9 7188 crtc->lowfreq_avail = false;
a93e255f 7189 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7190 reduced_clock) {
190f68c5 7191 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7192 crtc->lowfreq_avail = true;
a7516a05 7193 } else {
190f68c5 7194 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7195 }
7196}
7197
5e69f97f
CML
7198static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7199 pipe)
89b667f8
JB
7200{
7201 u32 reg_val;
7202
7203 /*
7204 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7205 * and set it to a reasonable value instead.
7206 */
ab3c759a 7207 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7208 reg_val &= 0xffffff00;
7209 reg_val |= 0x00000030;
ab3c759a 7210 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7211
ab3c759a 7212 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7213 reg_val &= 0x8cffffff;
7214 reg_val = 0x8c000000;
ab3c759a 7215 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7216
ab3c759a 7217 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7218 reg_val &= 0xffffff00;
ab3c759a 7219 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7220
ab3c759a 7221 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7222 reg_val &= 0x00ffffff;
7223 reg_val |= 0xb0000000;
ab3c759a 7224 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7225}
7226
b551842d
DV
7227static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7228 struct intel_link_m_n *m_n)
7229{
7230 struct drm_device *dev = crtc->base.dev;
7231 struct drm_i915_private *dev_priv = dev->dev_private;
7232 int pipe = crtc->pipe;
7233
e3b95f1e
DV
7234 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7235 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7236 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7237 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7238}
7239
7240static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7241 struct intel_link_m_n *m_n,
7242 struct intel_link_m_n *m2_n2)
b551842d
DV
7243{
7244 struct drm_device *dev = crtc->base.dev;
7245 struct drm_i915_private *dev_priv = dev->dev_private;
7246 int pipe = crtc->pipe;
6e3c9717 7247 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7248
7249 if (INTEL_INFO(dev)->gen >= 5) {
7250 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7251 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7252 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7253 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7254 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7255 * for gen < 8) and if DRRS is supported (to make sure the
7256 * registers are not unnecessarily accessed).
7257 */
44395bfe 7258 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7259 crtc->config->has_drrs) {
f769cd24
VK
7260 I915_WRITE(PIPE_DATA_M2(transcoder),
7261 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7262 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7263 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7264 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7265 }
b551842d 7266 } else {
e3b95f1e
DV
7267 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7268 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7269 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7270 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7271 }
7272}
7273
fe3cd48d 7274void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7275{
fe3cd48d
R
7276 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7277
7278 if (m_n == M1_N1) {
7279 dp_m_n = &crtc->config->dp_m_n;
7280 dp_m2_n2 = &crtc->config->dp_m2_n2;
7281 } else if (m_n == M2_N2) {
7282
7283 /*
7284 * M2_N2 registers are not supported. Hence m2_n2 divider value
7285 * needs to be programmed into M1_N1.
7286 */
7287 dp_m_n = &crtc->config->dp_m2_n2;
7288 } else {
7289 DRM_ERROR("Unsupported divider value\n");
7290 return;
7291 }
7292
6e3c9717
ACO
7293 if (crtc->config->has_pch_encoder)
7294 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7295 else
fe3cd48d 7296 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7297}
7298
d288f65f 7299static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 7300 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
7301{
7302 u32 dpll, dpll_md;
7303
7304 /*
7305 * Enable DPIO clock input. We should never disable the reference
7306 * clock for pipe B, since VGA hotplug / manual detection depends
7307 * on it.
7308 */
7309 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7310 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7311 /* We should never disable this, set it here for state tracking */
7312 if (crtc->pipe == PIPE_B)
7313 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7314 dpll |= DPLL_VCO_ENABLE;
d288f65f 7315 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 7316
d288f65f 7317 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 7318 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 7319 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
7320}
7321
d288f65f 7322static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7323 const struct intel_crtc_state *pipe_config)
a0c4da24 7324{
f47709a9 7325 struct drm_device *dev = crtc->base.dev;
a0c4da24 7326 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 7327 int pipe = crtc->pipe;
bdd4b6a6 7328 u32 mdiv;
a0c4da24 7329 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7330 u32 coreclk, reg_val;
a0c4da24 7331
a580516d 7332 mutex_lock(&dev_priv->sb_lock);
09153000 7333
d288f65f
VS
7334 bestn = pipe_config->dpll.n;
7335 bestm1 = pipe_config->dpll.m1;
7336 bestm2 = pipe_config->dpll.m2;
7337 bestp1 = pipe_config->dpll.p1;
7338 bestp2 = pipe_config->dpll.p2;
a0c4da24 7339
89b667f8
JB
7340 /* See eDP HDMI DPIO driver vbios notes doc */
7341
7342 /* PLL B needs special handling */
bdd4b6a6 7343 if (pipe == PIPE_B)
5e69f97f 7344 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7345
7346 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7347 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7348
7349 /* Disable target IRef on PLL */
ab3c759a 7350 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7351 reg_val &= 0x00ffffff;
ab3c759a 7352 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7353
7354 /* Disable fast lock */
ab3c759a 7355 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7356
7357 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7358 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7359 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7360 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7361 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7362
7363 /*
7364 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7365 * but we don't support that).
7366 * Note: don't use the DAC post divider as it seems unstable.
7367 */
7368 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7369 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7370
a0c4da24 7371 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7372 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7373
89b667f8 7374 /* Set HBR and RBR LPF coefficients */
d288f65f 7375 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7376 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7377 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7378 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7379 0x009f0003);
89b667f8 7380 else
ab3c759a 7381 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7382 0x00d0000f);
7383
681a8504 7384 if (pipe_config->has_dp_encoder) {
89b667f8 7385 /* Use SSC source */
bdd4b6a6 7386 if (pipe == PIPE_A)
ab3c759a 7387 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7388 0x0df40000);
7389 else
ab3c759a 7390 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7391 0x0df70000);
7392 } else { /* HDMI or VGA */
7393 /* Use bend source */
bdd4b6a6 7394 if (pipe == PIPE_A)
ab3c759a 7395 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7396 0x0df70000);
7397 else
ab3c759a 7398 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7399 0x0df40000);
7400 }
a0c4da24 7401
ab3c759a 7402 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7403 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7404 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7405 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7406 coreclk |= 0x01000000;
ab3c759a 7407 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7408
ab3c759a 7409 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7410 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7411}
7412
d288f65f 7413static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 7414 struct intel_crtc_state *pipe_config)
1ae0d137 7415{
d288f65f 7416 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
7417 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7418 DPLL_VCO_ENABLE;
7419 if (crtc->pipe != PIPE_A)
d288f65f 7420 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 7421
d288f65f
VS
7422 pipe_config->dpll_hw_state.dpll_md =
7423 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
7424}
7425
d288f65f 7426static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7427 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7428{
7429 struct drm_device *dev = crtc->base.dev;
7430 struct drm_i915_private *dev_priv = dev->dev_private;
7431 int pipe = crtc->pipe;
7432 int dpll_reg = DPLL(crtc->pipe);
7433 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7434 u32 loopfilter, tribuf_calcntr;
9d556c99 7435 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7436 u32 dpio_val;
9cbe40c1 7437 int vco;
9d556c99 7438
d288f65f
VS
7439 bestn = pipe_config->dpll.n;
7440 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7441 bestm1 = pipe_config->dpll.m1;
7442 bestm2 = pipe_config->dpll.m2 >> 22;
7443 bestp1 = pipe_config->dpll.p1;
7444 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7445 vco = pipe_config->dpll.vco;
a945ce7e 7446 dpio_val = 0;
9cbe40c1 7447 loopfilter = 0;
9d556c99
CML
7448
7449 /*
7450 * Enable Refclk and SSC
7451 */
a11b0703 7452 I915_WRITE(dpll_reg,
d288f65f 7453 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703 7454
a580516d 7455 mutex_lock(&dev_priv->sb_lock);
9d556c99 7456
9d556c99
CML
7457 /* p1 and p2 divider */
7458 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7459 5 << DPIO_CHV_S1_DIV_SHIFT |
7460 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7461 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7462 1 << DPIO_CHV_K_DIV_SHIFT);
7463
7464 /* Feedback post-divider - m2 */
7465 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7466
7467 /* Feedback refclk divider - n and m1 */
7468 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7469 DPIO_CHV_M1_DIV_BY_2 |
7470 1 << DPIO_CHV_N_DIV_SHIFT);
7471
7472 /* M2 fraction division */
a945ce7e
VP
7473 if (bestm2_frac)
7474 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7475
7476 /* M2 fraction division enable */
a945ce7e
VP
7477 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7478 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7479 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7480 if (bestm2_frac)
7481 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7482 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7483
de3a0fde
VP
7484 /* Program digital lock detect threshold */
7485 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7486 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7487 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7488 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7489 if (!bestm2_frac)
7490 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7491 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7492
9d556c99 7493 /* Loop filter */
9cbe40c1
VP
7494 if (vco == 5400000) {
7495 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7496 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7497 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7498 tribuf_calcntr = 0x9;
7499 } else if (vco <= 6200000) {
7500 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7501 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7502 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7503 tribuf_calcntr = 0x9;
7504 } else if (vco <= 6480000) {
7505 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7506 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7507 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7508 tribuf_calcntr = 0x8;
7509 } else {
7510 /* Not supported. Apply the same limits as in the max case */
7511 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7512 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7513 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7514 tribuf_calcntr = 0;
7515 }
9d556c99
CML
7516 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7517
968040b2 7518 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7519 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7520 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7521 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7522
9d556c99
CML
7523 /* AFC Recal */
7524 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7525 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7526 DPIO_AFC_RECAL);
7527
a580516d 7528 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7529}
7530
d288f65f
VS
7531/**
7532 * vlv_force_pll_on - forcibly enable just the PLL
7533 * @dev_priv: i915 private structure
7534 * @pipe: pipe PLL to enable
7535 * @dpll: PLL configuration
7536 *
7537 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7538 * in cases where we need the PLL enabled even when @pipe is not going to
7539 * be enabled.
7540 */
7541void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7542 const struct dpll *dpll)
7543{
7544 struct intel_crtc *crtc =
7545 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 7546 struct intel_crtc_state pipe_config = {
a93e255f 7547 .base.crtc = &crtc->base,
d288f65f
VS
7548 .pixel_multiplier = 1,
7549 .dpll = *dpll,
7550 };
7551
7552 if (IS_CHERRYVIEW(dev)) {
7553 chv_update_pll(crtc, &pipe_config);
7554 chv_prepare_pll(crtc, &pipe_config);
7555 chv_enable_pll(crtc, &pipe_config);
7556 } else {
7557 vlv_update_pll(crtc, &pipe_config);
7558 vlv_prepare_pll(crtc, &pipe_config);
7559 vlv_enable_pll(crtc, &pipe_config);
7560 }
7561}
7562
7563/**
7564 * vlv_force_pll_off - forcibly disable just the PLL
7565 * @dev_priv: i915 private structure
7566 * @pipe: pipe PLL to disable
7567 *
7568 * Disable the PLL for @pipe. To be used in cases where we need
7569 * the PLL enabled even when @pipe is not going to be enabled.
7570 */
7571void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7572{
7573 if (IS_CHERRYVIEW(dev))
7574 chv_disable_pll(to_i915(dev), pipe);
7575 else
7576 vlv_disable_pll(to_i915(dev), pipe);
7577}
7578
f47709a9 7579static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 7580 struct intel_crtc_state *crtc_state,
f47709a9 7581 intel_clock_t *reduced_clock,
eb1cbe48
DV
7582 int num_connectors)
7583{
f47709a9 7584 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7585 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7586 u32 dpll;
7587 bool is_sdvo;
190f68c5 7588 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7589
190f68c5 7590 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7591
a93e255f
ACO
7592 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7593 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7594
7595 dpll = DPLL_VGA_MODE_DIS;
7596
a93e255f 7597 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7598 dpll |= DPLLB_MODE_LVDS;
7599 else
7600 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7601
ef1b460d 7602 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7603 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7604 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7605 }
198a037f
DV
7606
7607 if (is_sdvo)
4a33e48d 7608 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7609
190f68c5 7610 if (crtc_state->has_dp_encoder)
4a33e48d 7611 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7612
7613 /* compute bitmask from p1 value */
7614 if (IS_PINEVIEW(dev))
7615 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7616 else {
7617 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7618 if (IS_G4X(dev) && reduced_clock)
7619 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7620 }
7621 switch (clock->p2) {
7622 case 5:
7623 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7624 break;
7625 case 7:
7626 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7627 break;
7628 case 10:
7629 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7630 break;
7631 case 14:
7632 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7633 break;
7634 }
7635 if (INTEL_INFO(dev)->gen >= 4)
7636 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7637
190f68c5 7638 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7639 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7640 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7641 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7642 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7643 else
7644 dpll |= PLL_REF_INPUT_DREFCLK;
7645
7646 dpll |= DPLL_VCO_ENABLE;
190f68c5 7647 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7648
eb1cbe48 7649 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7650 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7651 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7652 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7653 }
7654}
7655
f47709a9 7656static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 7657 struct intel_crtc_state *crtc_state,
f47709a9 7658 intel_clock_t *reduced_clock,
eb1cbe48
DV
7659 int num_connectors)
7660{
f47709a9 7661 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7662 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7663 u32 dpll;
190f68c5 7664 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7665
190f68c5 7666 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7667
eb1cbe48
DV
7668 dpll = DPLL_VGA_MODE_DIS;
7669
a93e255f 7670 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7671 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7672 } else {
7673 if (clock->p1 == 2)
7674 dpll |= PLL_P1_DIVIDE_BY_TWO;
7675 else
7676 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7677 if (clock->p2 == 4)
7678 dpll |= PLL_P2_DIVIDE_BY_4;
7679 }
7680
a93e255f 7681 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7682 dpll |= DPLL_DVO_2X_MODE;
7683
a93e255f 7684 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7685 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7686 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7687 else
7688 dpll |= PLL_REF_INPUT_DREFCLK;
7689
7690 dpll |= DPLL_VCO_ENABLE;
190f68c5 7691 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7692}
7693
8a654f3b 7694static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7695{
7696 struct drm_device *dev = intel_crtc->base.dev;
7697 struct drm_i915_private *dev_priv = dev->dev_private;
7698 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7699 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 7700 struct drm_display_mode *adjusted_mode =
6e3c9717 7701 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7702 uint32_t crtc_vtotal, crtc_vblank_end;
7703 int vsyncshift = 0;
4d8a62ea
DV
7704
7705 /* We need to be careful not to changed the adjusted mode, for otherwise
7706 * the hw state checker will get angry at the mismatch. */
7707 crtc_vtotal = adjusted_mode->crtc_vtotal;
7708 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7709
609aeaca 7710 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7711 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7712 crtc_vtotal -= 1;
7713 crtc_vblank_end -= 1;
609aeaca 7714
409ee761 7715 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7716 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7717 else
7718 vsyncshift = adjusted_mode->crtc_hsync_start -
7719 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7720 if (vsyncshift < 0)
7721 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7722 }
7723
7724 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7725 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7726
fe2b8f9d 7727 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7728 (adjusted_mode->crtc_hdisplay - 1) |
7729 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7730 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7731 (adjusted_mode->crtc_hblank_start - 1) |
7732 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7733 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7734 (adjusted_mode->crtc_hsync_start - 1) |
7735 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7736
fe2b8f9d 7737 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7738 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7739 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7740 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7741 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7742 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7743 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7744 (adjusted_mode->crtc_vsync_start - 1) |
7745 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7746
b5e508d4
PZ
7747 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7748 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7749 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7750 * bits. */
7751 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7752 (pipe == PIPE_B || pipe == PIPE_C))
7753 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7754
b0e77b9c
PZ
7755 /* pipesrc controls the size that is scaled from, which should
7756 * always be the user's requested size.
7757 */
7758 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7759 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7760 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7761}
7762
1bd1bd80 7763static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7764 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7765{
7766 struct drm_device *dev = crtc->base.dev;
7767 struct drm_i915_private *dev_priv = dev->dev_private;
7768 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7769 uint32_t tmp;
7770
7771 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7772 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7773 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7774 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7775 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7776 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7777 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7778 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7779 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7780
7781 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7782 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7783 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7784 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7785 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7786 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7787 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7788 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7789 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7790
7791 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7792 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7793 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7794 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7795 }
7796
7797 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7798 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7799 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7800
2d112de7
ACO
7801 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7802 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7803}
7804
f6a83288 7805void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7806 struct intel_crtc_state *pipe_config)
babea61d 7807{
2d112de7
ACO
7808 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7809 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7810 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7811 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7812
2d112de7
ACO
7813 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7814 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7815 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7816 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7817
2d112de7 7818 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 7819
2d112de7
ACO
7820 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7821 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
7822}
7823
84b046f3
DV
7824static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7825{
7826 struct drm_device *dev = intel_crtc->base.dev;
7827 struct drm_i915_private *dev_priv = dev->dev_private;
7828 uint32_t pipeconf;
7829
9f11a9e4 7830 pipeconf = 0;
84b046f3 7831
b6b5d049
VS
7832 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7833 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7834 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7835
6e3c9717 7836 if (intel_crtc->config->double_wide)
cf532bb2 7837 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7838
ff9ce46e
DV
7839 /* only g4x and later have fancy bpc/dither controls */
7840 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 7841 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7842 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7843 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7844 PIPECONF_DITHER_TYPE_SP;
84b046f3 7845
6e3c9717 7846 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7847 case 18:
7848 pipeconf |= PIPECONF_6BPC;
7849 break;
7850 case 24:
7851 pipeconf |= PIPECONF_8BPC;
7852 break;
7853 case 30:
7854 pipeconf |= PIPECONF_10BPC;
7855 break;
7856 default:
7857 /* Case prevented by intel_choose_pipe_bpp_dither. */
7858 BUG();
84b046f3
DV
7859 }
7860 }
7861
7862 if (HAS_PIPE_CXSR(dev)) {
7863 if (intel_crtc->lowfreq_avail) {
7864 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7865 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7866 } else {
7867 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7868 }
7869 }
7870
6e3c9717 7871 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7872 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7873 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7874 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7875 else
7876 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7877 } else
84b046f3
DV
7878 pipeconf |= PIPECONF_PROGRESSIVE;
7879
6e3c9717 7880 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 7881 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7882
84b046f3
DV
7883 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7884 POSTING_READ(PIPECONF(intel_crtc->pipe));
7885}
7886
190f68c5
ACO
7887static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7888 struct intel_crtc_state *crtc_state)
79e53945 7889{
c7653199 7890 struct drm_device *dev = crtc->base.dev;
79e53945 7891 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7892 int refclk, num_connectors = 0;
652c393a 7893 intel_clock_t clock, reduced_clock;
a16af721 7894 bool ok, has_reduced_clock = false;
e9fd1c02 7895 bool is_lvds = false, is_dsi = false;
5eddb70b 7896 struct intel_encoder *encoder;
d4906093 7897 const intel_limit_t *limit;
55bb9992 7898 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 7899 struct drm_connector *connector;
55bb9992
ACO
7900 struct drm_connector_state *connector_state;
7901 int i;
79e53945 7902
dd3cd74a
ACO
7903 memset(&crtc_state->dpll_hw_state, 0,
7904 sizeof(crtc_state->dpll_hw_state));
7905
da3ced29 7906 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
7907 if (connector_state->crtc != &crtc->base)
7908 continue;
7909
7910 encoder = to_intel_encoder(connector_state->best_encoder);
7911
5eddb70b 7912 switch (encoder->type) {
79e53945
JB
7913 case INTEL_OUTPUT_LVDS:
7914 is_lvds = true;
7915 break;
e9fd1c02
JN
7916 case INTEL_OUTPUT_DSI:
7917 is_dsi = true;
7918 break;
6847d71b
PZ
7919 default:
7920 break;
79e53945 7921 }
43565a06 7922
c751ce4f 7923 num_connectors++;
79e53945
JB
7924 }
7925
f2335330 7926 if (is_dsi)
5b18e57c 7927 return 0;
f2335330 7928
190f68c5 7929 if (!crtc_state->clock_set) {
a93e255f 7930 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7931
e9fd1c02
JN
7932 /*
7933 * Returns a set of divisors for the desired target clock with
7934 * the given refclk, or FALSE. The returned values represent
7935 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7936 * 2) / p1 / p2.
7937 */
a93e255f
ACO
7938 limit = intel_limit(crtc_state, refclk);
7939 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7940 crtc_state->port_clock,
e9fd1c02 7941 refclk, NULL, &clock);
f2335330 7942 if (!ok) {
e9fd1c02
JN
7943 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7944 return -EINVAL;
7945 }
79e53945 7946
f2335330
JN
7947 if (is_lvds && dev_priv->lvds_downclock_avail) {
7948 /*
7949 * Ensure we match the reduced clock's P to the target
7950 * clock. If the clocks don't match, we can't switch
7951 * the display clock by using the FP0/FP1. In such case
7952 * we will disable the LVDS downclock feature.
7953 */
7954 has_reduced_clock =
a93e255f 7955 dev_priv->display.find_dpll(limit, crtc_state,
f2335330
JN
7956 dev_priv->lvds_downclock,
7957 refclk, &clock,
7958 &reduced_clock);
7959 }
7960 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7961 crtc_state->dpll.n = clock.n;
7962 crtc_state->dpll.m1 = clock.m1;
7963 crtc_state->dpll.m2 = clock.m2;
7964 crtc_state->dpll.p1 = clock.p1;
7965 crtc_state->dpll.p2 = clock.p2;
f47709a9 7966 }
7026d4ac 7967
e9fd1c02 7968 if (IS_GEN2(dev)) {
190f68c5 7969 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
7970 has_reduced_clock ? &reduced_clock : NULL,
7971 num_connectors);
9d556c99 7972 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 7973 chv_update_pll(crtc, crtc_state);
e9fd1c02 7974 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 7975 vlv_update_pll(crtc, crtc_state);
e9fd1c02 7976 } else {
190f68c5 7977 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 7978 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 7979 num_connectors);
e9fd1c02 7980 }
79e53945 7981
c8f7a0db 7982 return 0;
f564048e
EA
7983}
7984
2fa2fe9a 7985static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7986 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7987{
7988 struct drm_device *dev = crtc->base.dev;
7989 struct drm_i915_private *dev_priv = dev->dev_private;
7990 uint32_t tmp;
7991
dc9e7dec
VS
7992 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7993 return;
7994
2fa2fe9a 7995 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
7996 if (!(tmp & PFIT_ENABLE))
7997 return;
2fa2fe9a 7998
06922821 7999 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
8000 if (INTEL_INFO(dev)->gen < 4) {
8001 if (crtc->pipe != PIPE_B)
8002 return;
2fa2fe9a
DV
8003 } else {
8004 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8005 return;
8006 }
8007
06922821 8008 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
8009 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8010 if (INTEL_INFO(dev)->gen < 5)
8011 pipe_config->gmch_pfit.lvds_border_bits =
8012 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8013}
8014
acbec814 8015static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8016 struct intel_crtc_state *pipe_config)
acbec814
JB
8017{
8018 struct drm_device *dev = crtc->base.dev;
8019 struct drm_i915_private *dev_priv = dev->dev_private;
8020 int pipe = pipe_config->cpu_transcoder;
8021 intel_clock_t clock;
8022 u32 mdiv;
662c6ecb 8023 int refclk = 100000;
acbec814 8024
f573de5a
SK
8025 /* In case of MIPI DPLL will not even be used */
8026 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8027 return;
8028
a580516d 8029 mutex_lock(&dev_priv->sb_lock);
ab3c759a 8030 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 8031 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
8032
8033 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8034 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8035 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8036 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8037 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8038
f646628b 8039 vlv_clock(refclk, &clock);
acbec814 8040
f646628b
VS
8041 /* clock.dot is the fast clock */
8042 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
8043}
8044
5724dbd1
DL
8045static void
8046i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8047 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
8048{
8049 struct drm_device *dev = crtc->base.dev;
8050 struct drm_i915_private *dev_priv = dev->dev_private;
8051 u32 val, base, offset;
8052 int pipe = crtc->pipe, plane = crtc->plane;
8053 int fourcc, pixel_format;
6761dd31 8054 unsigned int aligned_height;
b113d5ee 8055 struct drm_framebuffer *fb;
1b842c89 8056 struct intel_framebuffer *intel_fb;
1ad292b5 8057
42a7b088
DL
8058 val = I915_READ(DSPCNTR(plane));
8059 if (!(val & DISPLAY_PLANE_ENABLE))
8060 return;
8061
d9806c9f 8062 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8063 if (!intel_fb) {
1ad292b5
JB
8064 DRM_DEBUG_KMS("failed to alloc fb\n");
8065 return;
8066 }
8067
1b842c89
DL
8068 fb = &intel_fb->base;
8069
18c5247e
DV
8070 if (INTEL_INFO(dev)->gen >= 4) {
8071 if (val & DISPPLANE_TILED) {
49af449b 8072 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8073 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8074 }
8075 }
1ad292b5
JB
8076
8077 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8078 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8079 fb->pixel_format = fourcc;
8080 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
8081
8082 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 8083 if (plane_config->tiling)
1ad292b5
JB
8084 offset = I915_READ(DSPTILEOFF(plane));
8085 else
8086 offset = I915_READ(DSPLINOFF(plane));
8087 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8088 } else {
8089 base = I915_READ(DSPADDR(plane));
8090 }
8091 plane_config->base = base;
8092
8093 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8094 fb->width = ((val >> 16) & 0xfff) + 1;
8095 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8096
8097 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8098 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8099
b113d5ee 8100 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8101 fb->pixel_format,
8102 fb->modifier[0]);
1ad292b5 8103
f37b5c2b 8104 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8105
2844a921
DL
8106 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8107 pipe_name(pipe), plane, fb->width, fb->height,
8108 fb->bits_per_pixel, base, fb->pitches[0],
8109 plane_config->size);
1ad292b5 8110
2d14030b 8111 plane_config->fb = intel_fb;
1ad292b5
JB
8112}
8113
70b23a98 8114static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8115 struct intel_crtc_state *pipe_config)
70b23a98
VS
8116{
8117 struct drm_device *dev = crtc->base.dev;
8118 struct drm_i915_private *dev_priv = dev->dev_private;
8119 int pipe = pipe_config->cpu_transcoder;
8120 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8121 intel_clock_t clock;
8122 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
8123 int refclk = 100000;
8124
a580516d 8125 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8126 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8127 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8128 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8129 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
a580516d 8130 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8131
8132 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8133 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
8134 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8135 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8136 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8137
8138 chv_clock(refclk, &clock);
8139
8140 /* clock.dot is the fast clock */
8141 pipe_config->port_clock = clock.dot / 5;
8142}
8143
0e8ffe1b 8144static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8145 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8146{
8147 struct drm_device *dev = crtc->base.dev;
8148 struct drm_i915_private *dev_priv = dev->dev_private;
8149 uint32_t tmp;
8150
f458ebbc
DV
8151 if (!intel_display_power_is_enabled(dev_priv,
8152 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
8153 return false;
8154
e143a21c 8155 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8156 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8157
0e8ffe1b
DV
8158 tmp = I915_READ(PIPECONF(crtc->pipe));
8159 if (!(tmp & PIPECONF_ENABLE))
8160 return false;
8161
42571aef
VS
8162 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8163 switch (tmp & PIPECONF_BPC_MASK) {
8164 case PIPECONF_6BPC:
8165 pipe_config->pipe_bpp = 18;
8166 break;
8167 case PIPECONF_8BPC:
8168 pipe_config->pipe_bpp = 24;
8169 break;
8170 case PIPECONF_10BPC:
8171 pipe_config->pipe_bpp = 30;
8172 break;
8173 default:
8174 break;
8175 }
8176 }
8177
b5a9fa09
DV
8178 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8179 pipe_config->limited_color_range = true;
8180
282740f7
VS
8181 if (INTEL_INFO(dev)->gen < 4)
8182 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8183
1bd1bd80
DV
8184 intel_get_pipe_timings(crtc, pipe_config);
8185
2fa2fe9a
DV
8186 i9xx_get_pfit_config(crtc, pipe_config);
8187
6c49f241
DV
8188 if (INTEL_INFO(dev)->gen >= 4) {
8189 tmp = I915_READ(DPLL_MD(crtc->pipe));
8190 pipe_config->pixel_multiplier =
8191 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8192 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8193 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8194 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8195 tmp = I915_READ(DPLL(crtc->pipe));
8196 pipe_config->pixel_multiplier =
8197 ((tmp & SDVO_MULTIPLIER_MASK)
8198 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8199 } else {
8200 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8201 * port and will be fixed up in the encoder->get_config
8202 * function. */
8203 pipe_config->pixel_multiplier = 1;
8204 }
8bcc2795
DV
8205 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8206 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
8207 /*
8208 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8209 * on 830. Filter it out here so that we don't
8210 * report errors due to that.
8211 */
8212 if (IS_I830(dev))
8213 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8214
8bcc2795
DV
8215 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8216 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8217 } else {
8218 /* Mask out read-only status bits. */
8219 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8220 DPLL_PORTC_READY_MASK |
8221 DPLL_PORTB_READY_MASK);
8bcc2795 8222 }
6c49f241 8223
70b23a98
VS
8224 if (IS_CHERRYVIEW(dev))
8225 chv_crtc_clock_get(crtc, pipe_config);
8226 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8227 vlv_crtc_clock_get(crtc, pipe_config);
8228 else
8229 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8230
0e8ffe1b
DV
8231 return true;
8232}
8233
dde86e2d 8234static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8235{
8236 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8237 struct intel_encoder *encoder;
74cfd7ac 8238 u32 val, final;
13d83a67 8239 bool has_lvds = false;
199e5d79 8240 bool has_cpu_edp = false;
199e5d79 8241 bool has_panel = false;
99eb6a01
KP
8242 bool has_ck505 = false;
8243 bool can_ssc = false;
13d83a67
JB
8244
8245 /* We need to take the global config into account */
b2784e15 8246 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8247 switch (encoder->type) {
8248 case INTEL_OUTPUT_LVDS:
8249 has_panel = true;
8250 has_lvds = true;
8251 break;
8252 case INTEL_OUTPUT_EDP:
8253 has_panel = true;
2de6905f 8254 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8255 has_cpu_edp = true;
8256 break;
6847d71b
PZ
8257 default:
8258 break;
13d83a67
JB
8259 }
8260 }
8261
99eb6a01 8262 if (HAS_PCH_IBX(dev)) {
41aa3448 8263 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8264 can_ssc = has_ck505;
8265 } else {
8266 has_ck505 = false;
8267 can_ssc = true;
8268 }
8269
2de6905f
ID
8270 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8271 has_panel, has_lvds, has_ck505);
13d83a67
JB
8272
8273 /* Ironlake: try to setup display ref clock before DPLL
8274 * enabling. This is only under driver's control after
8275 * PCH B stepping, previous chipset stepping should be
8276 * ignoring this setting.
8277 */
74cfd7ac
CW
8278 val = I915_READ(PCH_DREF_CONTROL);
8279
8280 /* As we must carefully and slowly disable/enable each source in turn,
8281 * compute the final state we want first and check if we need to
8282 * make any changes at all.
8283 */
8284 final = val;
8285 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8286 if (has_ck505)
8287 final |= DREF_NONSPREAD_CK505_ENABLE;
8288 else
8289 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8290
8291 final &= ~DREF_SSC_SOURCE_MASK;
8292 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8293 final &= ~DREF_SSC1_ENABLE;
8294
8295 if (has_panel) {
8296 final |= DREF_SSC_SOURCE_ENABLE;
8297
8298 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8299 final |= DREF_SSC1_ENABLE;
8300
8301 if (has_cpu_edp) {
8302 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8303 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8304 else
8305 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8306 } else
8307 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8308 } else {
8309 final |= DREF_SSC_SOURCE_DISABLE;
8310 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8311 }
8312
8313 if (final == val)
8314 return;
8315
13d83a67 8316 /* Always enable nonspread source */
74cfd7ac 8317 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8318
99eb6a01 8319 if (has_ck505)
74cfd7ac 8320 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8321 else
74cfd7ac 8322 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8323
199e5d79 8324 if (has_panel) {
74cfd7ac
CW
8325 val &= ~DREF_SSC_SOURCE_MASK;
8326 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8327
199e5d79 8328 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8329 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8330 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8331 val |= DREF_SSC1_ENABLE;
e77166b5 8332 } else
74cfd7ac 8333 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8334
8335 /* Get SSC going before enabling the outputs */
74cfd7ac 8336 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8337 POSTING_READ(PCH_DREF_CONTROL);
8338 udelay(200);
8339
74cfd7ac 8340 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8341
8342 /* Enable CPU source on CPU attached eDP */
199e5d79 8343 if (has_cpu_edp) {
99eb6a01 8344 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8345 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8346 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8347 } else
74cfd7ac 8348 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8349 } else
74cfd7ac 8350 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8351
74cfd7ac 8352 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8353 POSTING_READ(PCH_DREF_CONTROL);
8354 udelay(200);
8355 } else {
8356 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8357
74cfd7ac 8358 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8359
8360 /* Turn off CPU output */
74cfd7ac 8361 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8362
74cfd7ac 8363 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8364 POSTING_READ(PCH_DREF_CONTROL);
8365 udelay(200);
8366
8367 /* Turn off the SSC source */
74cfd7ac
CW
8368 val &= ~DREF_SSC_SOURCE_MASK;
8369 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
8370
8371 /* Turn off SSC1 */
74cfd7ac 8372 val &= ~DREF_SSC1_ENABLE;
199e5d79 8373
74cfd7ac 8374 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
8375 POSTING_READ(PCH_DREF_CONTROL);
8376 udelay(200);
8377 }
74cfd7ac
CW
8378
8379 BUG_ON(val != final);
13d83a67
JB
8380}
8381
f31f2d55 8382static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8383{
f31f2d55 8384 uint32_t tmp;
dde86e2d 8385
0ff066a9
PZ
8386 tmp = I915_READ(SOUTH_CHICKEN2);
8387 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8388 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8389
0ff066a9
PZ
8390 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8391 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8392 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8393
0ff066a9
PZ
8394 tmp = I915_READ(SOUTH_CHICKEN2);
8395 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8396 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8397
0ff066a9
PZ
8398 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8399 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8400 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8401}
8402
8403/* WaMPhyProgramming:hsw */
8404static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8405{
8406 uint32_t tmp;
dde86e2d
PZ
8407
8408 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8409 tmp &= ~(0xFF << 24);
8410 tmp |= (0x12 << 24);
8411 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8412
dde86e2d
PZ
8413 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8414 tmp |= (1 << 11);
8415 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8416
8417 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8418 tmp |= (1 << 11);
8419 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8420
dde86e2d
PZ
8421 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8422 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8423 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8424
8425 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8426 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8427 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8428
0ff066a9
PZ
8429 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8430 tmp &= ~(7 << 13);
8431 tmp |= (5 << 13);
8432 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8433
0ff066a9
PZ
8434 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8435 tmp &= ~(7 << 13);
8436 tmp |= (5 << 13);
8437 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8438
8439 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8440 tmp &= ~0xFF;
8441 tmp |= 0x1C;
8442 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8443
8444 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8445 tmp &= ~0xFF;
8446 tmp |= 0x1C;
8447 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8448
8449 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8450 tmp &= ~(0xFF << 16);
8451 tmp |= (0x1C << 16);
8452 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8453
8454 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8455 tmp &= ~(0xFF << 16);
8456 tmp |= (0x1C << 16);
8457 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8458
0ff066a9
PZ
8459 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8460 tmp |= (1 << 27);
8461 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8462
0ff066a9
PZ
8463 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8464 tmp |= (1 << 27);
8465 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8466
0ff066a9
PZ
8467 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8468 tmp &= ~(0xF << 28);
8469 tmp |= (4 << 28);
8470 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8471
0ff066a9
PZ
8472 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8473 tmp &= ~(0xF << 28);
8474 tmp |= (4 << 28);
8475 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8476}
8477
2fa86a1f
PZ
8478/* Implements 3 different sequences from BSpec chapter "Display iCLK
8479 * Programming" based on the parameters passed:
8480 * - Sequence to enable CLKOUT_DP
8481 * - Sequence to enable CLKOUT_DP without spread
8482 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8483 */
8484static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8485 bool with_fdi)
f31f2d55
PZ
8486{
8487 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8488 uint32_t reg, tmp;
8489
8490 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8491 with_spread = true;
8492 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8493 with_fdi, "LP PCH doesn't have FDI\n"))
8494 with_fdi = false;
f31f2d55 8495
a580516d 8496 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8497
8498 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8499 tmp &= ~SBI_SSCCTL_DISABLE;
8500 tmp |= SBI_SSCCTL_PATHALT;
8501 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8502
8503 udelay(24);
8504
2fa86a1f
PZ
8505 if (with_spread) {
8506 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8507 tmp &= ~SBI_SSCCTL_PATHALT;
8508 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8509
2fa86a1f
PZ
8510 if (with_fdi) {
8511 lpt_reset_fdi_mphy(dev_priv);
8512 lpt_program_fdi_mphy(dev_priv);
8513 }
8514 }
dde86e2d 8515
2fa86a1f
PZ
8516 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8517 SBI_GEN0 : SBI_DBUFF0;
8518 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8519 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8520 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8521
a580516d 8522 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8523}
8524
47701c3b
PZ
8525/* Sequence to disable CLKOUT_DP */
8526static void lpt_disable_clkout_dp(struct drm_device *dev)
8527{
8528 struct drm_i915_private *dev_priv = dev->dev_private;
8529 uint32_t reg, tmp;
8530
a580516d 8531 mutex_lock(&dev_priv->sb_lock);
47701c3b
PZ
8532
8533 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8534 SBI_GEN0 : SBI_DBUFF0;
8535 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8536 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8537 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8538
8539 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8540 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8541 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8542 tmp |= SBI_SSCCTL_PATHALT;
8543 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8544 udelay(32);
8545 }
8546 tmp |= SBI_SSCCTL_DISABLE;
8547 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8548 }
8549
a580516d 8550 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8551}
8552
bf8fa3d3
PZ
8553static void lpt_init_pch_refclk(struct drm_device *dev)
8554{
bf8fa3d3
PZ
8555 struct intel_encoder *encoder;
8556 bool has_vga = false;
8557
b2784e15 8558 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8559 switch (encoder->type) {
8560 case INTEL_OUTPUT_ANALOG:
8561 has_vga = true;
8562 break;
6847d71b
PZ
8563 default:
8564 break;
bf8fa3d3
PZ
8565 }
8566 }
8567
47701c3b
PZ
8568 if (has_vga)
8569 lpt_enable_clkout_dp(dev, true, true);
8570 else
8571 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
8572}
8573
dde86e2d
PZ
8574/*
8575 * Initialize reference clocks when the driver loads
8576 */
8577void intel_init_pch_refclk(struct drm_device *dev)
8578{
8579 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8580 ironlake_init_pch_refclk(dev);
8581 else if (HAS_PCH_LPT(dev))
8582 lpt_init_pch_refclk(dev);
8583}
8584
55bb9992 8585static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8586{
55bb9992 8587 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8588 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8589 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8590 struct drm_connector *connector;
55bb9992 8591 struct drm_connector_state *connector_state;
d9d444cb 8592 struct intel_encoder *encoder;
55bb9992 8593 int num_connectors = 0, i;
d9d444cb
JB
8594 bool is_lvds = false;
8595
da3ced29 8596 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8597 if (connector_state->crtc != crtc_state->base.crtc)
8598 continue;
8599
8600 encoder = to_intel_encoder(connector_state->best_encoder);
8601
d9d444cb
JB
8602 switch (encoder->type) {
8603 case INTEL_OUTPUT_LVDS:
8604 is_lvds = true;
8605 break;
6847d71b
PZ
8606 default:
8607 break;
d9d444cb
JB
8608 }
8609 num_connectors++;
8610 }
8611
8612 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8613 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8614 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8615 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8616 }
8617
8618 return 120000;
8619}
8620
6ff93609 8621static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8622{
c8203565 8623 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8625 int pipe = intel_crtc->pipe;
c8203565
PZ
8626 uint32_t val;
8627
78114071 8628 val = 0;
c8203565 8629
6e3c9717 8630 switch (intel_crtc->config->pipe_bpp) {
c8203565 8631 case 18:
dfd07d72 8632 val |= PIPECONF_6BPC;
c8203565
PZ
8633 break;
8634 case 24:
dfd07d72 8635 val |= PIPECONF_8BPC;
c8203565
PZ
8636 break;
8637 case 30:
dfd07d72 8638 val |= PIPECONF_10BPC;
c8203565
PZ
8639 break;
8640 case 36:
dfd07d72 8641 val |= PIPECONF_12BPC;
c8203565
PZ
8642 break;
8643 default:
cc769b62
PZ
8644 /* Case prevented by intel_choose_pipe_bpp_dither. */
8645 BUG();
c8203565
PZ
8646 }
8647
6e3c9717 8648 if (intel_crtc->config->dither)
c8203565
PZ
8649 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8650
6e3c9717 8651 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8652 val |= PIPECONF_INTERLACED_ILK;
8653 else
8654 val |= PIPECONF_PROGRESSIVE;
8655
6e3c9717 8656 if (intel_crtc->config->limited_color_range)
3685a8f3 8657 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8658
c8203565
PZ
8659 I915_WRITE(PIPECONF(pipe), val);
8660 POSTING_READ(PIPECONF(pipe));
8661}
8662
86d3efce
VS
8663/*
8664 * Set up the pipe CSC unit.
8665 *
8666 * Currently only full range RGB to limited range RGB conversion
8667 * is supported, but eventually this should handle various
8668 * RGB<->YCbCr scenarios as well.
8669 */
50f3b016 8670static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8671{
8672 struct drm_device *dev = crtc->dev;
8673 struct drm_i915_private *dev_priv = dev->dev_private;
8674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8675 int pipe = intel_crtc->pipe;
8676 uint16_t coeff = 0x7800; /* 1.0 */
8677
8678 /*
8679 * TODO: Check what kind of values actually come out of the pipe
8680 * with these coeff/postoff values and adjust to get the best
8681 * accuracy. Perhaps we even need to take the bpc value into
8682 * consideration.
8683 */
8684
6e3c9717 8685 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8686 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8687
8688 /*
8689 * GY/GU and RY/RU should be the other way around according
8690 * to BSpec, but reality doesn't agree. Just set them up in
8691 * a way that results in the correct picture.
8692 */
8693 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8694 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8695
8696 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8697 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8698
8699 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8700 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8701
8702 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8703 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8704 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8705
8706 if (INTEL_INFO(dev)->gen > 6) {
8707 uint16_t postoff = 0;
8708
6e3c9717 8709 if (intel_crtc->config->limited_color_range)
32cf0cb0 8710 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8711
8712 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8713 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8714 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8715
8716 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8717 } else {
8718 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8719
6e3c9717 8720 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8721 mode |= CSC_BLACK_SCREEN_OFFSET;
8722
8723 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8724 }
8725}
8726
6ff93609 8727static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8728{
756f85cf
PZ
8729 struct drm_device *dev = crtc->dev;
8730 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8732 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8733 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8734 uint32_t val;
8735
3eff4faa 8736 val = 0;
ee2b0b38 8737
6e3c9717 8738 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8739 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8740
6e3c9717 8741 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8742 val |= PIPECONF_INTERLACED_ILK;
8743 else
8744 val |= PIPECONF_PROGRESSIVE;
8745
702e7a56
PZ
8746 I915_WRITE(PIPECONF(cpu_transcoder), val);
8747 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8748
8749 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8750 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8751
3cdf122c 8752 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8753 val = 0;
8754
6e3c9717 8755 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8756 case 18:
8757 val |= PIPEMISC_DITHER_6_BPC;
8758 break;
8759 case 24:
8760 val |= PIPEMISC_DITHER_8_BPC;
8761 break;
8762 case 30:
8763 val |= PIPEMISC_DITHER_10_BPC;
8764 break;
8765 case 36:
8766 val |= PIPEMISC_DITHER_12_BPC;
8767 break;
8768 default:
8769 /* Case prevented by pipe_config_set_bpp. */
8770 BUG();
8771 }
8772
6e3c9717 8773 if (intel_crtc->config->dither)
756f85cf
PZ
8774 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8775
8776 I915_WRITE(PIPEMISC(pipe), val);
8777 }
ee2b0b38
PZ
8778}
8779
6591c6e4 8780static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8781 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8782 intel_clock_t *clock,
8783 bool *has_reduced_clock,
8784 intel_clock_t *reduced_clock)
8785{
8786 struct drm_device *dev = crtc->dev;
8787 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8788 int refclk;
d4906093 8789 const intel_limit_t *limit;
a16af721 8790 bool ret, is_lvds = false;
79e53945 8791
a93e255f 8792 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
79e53945 8793
55bb9992 8794 refclk = ironlake_get_refclk(crtc_state);
79e53945 8795
d4906093
ML
8796 /*
8797 * Returns a set of divisors for the desired target clock with the given
8798 * refclk, or FALSE. The returned values represent the clock equation:
8799 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8800 */
a93e255f
ACO
8801 limit = intel_limit(crtc_state, refclk);
8802 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8803 crtc_state->port_clock,
ee9300bb 8804 refclk, NULL, clock);
6591c6e4
PZ
8805 if (!ret)
8806 return false;
cda4b7d3 8807
ddc9003c 8808 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
8809 /*
8810 * Ensure we match the reduced clock's P to the target clock.
8811 * If the clocks don't match, we can't switch the display clock
8812 * by using the FP0/FP1. In such case we will disable the LVDS
8813 * downclock feature.
8814 */
ee9300bb 8815 *has_reduced_clock =
a93e255f 8816 dev_priv->display.find_dpll(limit, crtc_state,
ee9300bb
DV
8817 dev_priv->lvds_downclock,
8818 refclk, clock,
8819 reduced_clock);
652c393a 8820 }
61e9653f 8821
6591c6e4
PZ
8822 return true;
8823}
8824
d4b1931c
PZ
8825int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8826{
8827 /*
8828 * Account for spread spectrum to avoid
8829 * oversubscribing the link. Max center spread
8830 * is 2.5%; use 5% for safety's sake.
8831 */
8832 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8833 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8834}
8835
7429e9d4 8836static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8837{
7429e9d4 8838 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8839}
8840
de13a2e3 8841static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8842 struct intel_crtc_state *crtc_state,
7429e9d4 8843 u32 *fp,
9a7c7890 8844 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8845{
de13a2e3 8846 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8847 struct drm_device *dev = crtc->dev;
8848 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8849 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8850 struct drm_connector *connector;
55bb9992
ACO
8851 struct drm_connector_state *connector_state;
8852 struct intel_encoder *encoder;
de13a2e3 8853 uint32_t dpll;
55bb9992 8854 int factor, num_connectors = 0, i;
09ede541 8855 bool is_lvds = false, is_sdvo = false;
79e53945 8856
da3ced29 8857 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8858 if (connector_state->crtc != crtc_state->base.crtc)
8859 continue;
8860
8861 encoder = to_intel_encoder(connector_state->best_encoder);
8862
8863 switch (encoder->type) {
79e53945
JB
8864 case INTEL_OUTPUT_LVDS:
8865 is_lvds = true;
8866 break;
8867 case INTEL_OUTPUT_SDVO:
7d57382e 8868 case INTEL_OUTPUT_HDMI:
79e53945 8869 is_sdvo = true;
79e53945 8870 break;
6847d71b
PZ
8871 default:
8872 break;
79e53945 8873 }
43565a06 8874
c751ce4f 8875 num_connectors++;
79e53945 8876 }
79e53945 8877
c1858123 8878 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8879 factor = 21;
8880 if (is_lvds) {
8881 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8882 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8883 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8884 factor = 25;
190f68c5 8885 } else if (crtc_state->sdvo_tv_clock)
8febb297 8886 factor = 20;
c1858123 8887
190f68c5 8888 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8889 *fp |= FP_CB_TUNE;
2c07245f 8890
9a7c7890
DV
8891 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8892 *fp2 |= FP_CB_TUNE;
8893
5eddb70b 8894 dpll = 0;
2c07245f 8895
a07d6787
EA
8896 if (is_lvds)
8897 dpll |= DPLLB_MODE_LVDS;
8898 else
8899 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8900
190f68c5 8901 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8902 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8903
8904 if (is_sdvo)
4a33e48d 8905 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8906 if (crtc_state->has_dp_encoder)
4a33e48d 8907 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8908
a07d6787 8909 /* compute bitmask from p1 value */
190f68c5 8910 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8911 /* also FPA1 */
190f68c5 8912 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8913
190f68c5 8914 switch (crtc_state->dpll.p2) {
a07d6787
EA
8915 case 5:
8916 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8917 break;
8918 case 7:
8919 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8920 break;
8921 case 10:
8922 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8923 break;
8924 case 14:
8925 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8926 break;
79e53945
JB
8927 }
8928
b4c09f3b 8929 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8930 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8931 else
8932 dpll |= PLL_REF_INPUT_DREFCLK;
8933
959e16d6 8934 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8935}
8936
190f68c5
ACO
8937static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8938 struct intel_crtc_state *crtc_state)
de13a2e3 8939{
c7653199 8940 struct drm_device *dev = crtc->base.dev;
de13a2e3 8941 intel_clock_t clock, reduced_clock;
cbbab5bd 8942 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8943 bool ok, has_reduced_clock = false;
8b47047b 8944 bool is_lvds = false;
e2b78267 8945 struct intel_shared_dpll *pll;
de13a2e3 8946
dd3cd74a
ACO
8947 memset(&crtc_state->dpll_hw_state, 0,
8948 sizeof(crtc_state->dpll_hw_state));
8949
409ee761 8950 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 8951
5dc5298b
PZ
8952 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8953 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8954
190f68c5 8955 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8956 &has_reduced_clock, &reduced_clock);
190f68c5 8957 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8958 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8959 return -EINVAL;
79e53945 8960 }
f47709a9 8961 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8962 if (!crtc_state->clock_set) {
8963 crtc_state->dpll.n = clock.n;
8964 crtc_state->dpll.m1 = clock.m1;
8965 crtc_state->dpll.m2 = clock.m2;
8966 crtc_state->dpll.p1 = clock.p1;
8967 crtc_state->dpll.p2 = clock.p2;
f47709a9 8968 }
79e53945 8969
5dc5298b 8970 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8971 if (crtc_state->has_pch_encoder) {
8972 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8973 if (has_reduced_clock)
7429e9d4 8974 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8975
190f68c5 8976 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8977 &fp, &reduced_clock,
8978 has_reduced_clock ? &fp2 : NULL);
8979
190f68c5
ACO
8980 crtc_state->dpll_hw_state.dpll = dpll;
8981 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8982 if (has_reduced_clock)
190f68c5 8983 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8984 else
190f68c5 8985 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8986
190f68c5 8987 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 8988 if (pll == NULL) {
84f44ce7 8989 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8990 pipe_name(crtc->pipe));
4b645f14
JB
8991 return -EINVAL;
8992 }
3fb37703 8993 }
79e53945 8994
ab585dea 8995 if (is_lvds && has_reduced_clock)
c7653199 8996 crtc->lowfreq_avail = true;
bcd644e0 8997 else
c7653199 8998 crtc->lowfreq_avail = false;
e2b78267 8999
c8f7a0db 9000 return 0;
79e53945
JB
9001}
9002
eb14cb74
VS
9003static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9004 struct intel_link_m_n *m_n)
9005{
9006 struct drm_device *dev = crtc->base.dev;
9007 struct drm_i915_private *dev_priv = dev->dev_private;
9008 enum pipe pipe = crtc->pipe;
9009
9010 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9011 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9012 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9013 & ~TU_SIZE_MASK;
9014 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9015 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9016 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9017}
9018
9019static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9020 enum transcoder transcoder,
b95af8be
VK
9021 struct intel_link_m_n *m_n,
9022 struct intel_link_m_n *m2_n2)
72419203
DV
9023{
9024 struct drm_device *dev = crtc->base.dev;
9025 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 9026 enum pipe pipe = crtc->pipe;
72419203 9027
eb14cb74
VS
9028 if (INTEL_INFO(dev)->gen >= 5) {
9029 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9030 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9031 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9032 & ~TU_SIZE_MASK;
9033 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9034 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9035 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
9036 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9037 * gen < 8) and if DRRS is supported (to make sure the
9038 * registers are not unnecessarily read).
9039 */
9040 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 9041 crtc->config->has_drrs) {
b95af8be
VK
9042 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9043 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9044 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9045 & ~TU_SIZE_MASK;
9046 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9047 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9048 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9049 }
eb14cb74
VS
9050 } else {
9051 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9052 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9053 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9054 & ~TU_SIZE_MASK;
9055 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9056 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9057 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9058 }
9059}
9060
9061void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9062 struct intel_crtc_state *pipe_config)
eb14cb74 9063{
681a8504 9064 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9065 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9066 else
9067 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9068 &pipe_config->dp_m_n,
9069 &pipe_config->dp_m2_n2);
eb14cb74 9070}
72419203 9071
eb14cb74 9072static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9073 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9074{
9075 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9076 &pipe_config->fdi_m_n, NULL);
72419203
DV
9077}
9078
bd2e244f 9079static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9080 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9081{
9082 struct drm_device *dev = crtc->base.dev;
9083 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
9084 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9085 uint32_t ps_ctrl = 0;
9086 int id = -1;
9087 int i;
bd2e244f 9088
a1b2278e
CK
9089 /* find scaler attached to this pipe */
9090 for (i = 0; i < crtc->num_scalers; i++) {
9091 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9092 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9093 id = i;
9094 pipe_config->pch_pfit.enabled = true;
9095 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9096 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9097 break;
9098 }
9099 }
bd2e244f 9100
a1b2278e
CK
9101 scaler_state->scaler_id = id;
9102 if (id >= 0) {
9103 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9104 } else {
9105 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9106 }
9107}
9108
5724dbd1
DL
9109static void
9110skylake_get_initial_plane_config(struct intel_crtc *crtc,
9111 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9112{
9113 struct drm_device *dev = crtc->base.dev;
9114 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 9115 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9116 int pipe = crtc->pipe;
9117 int fourcc, pixel_format;
6761dd31 9118 unsigned int aligned_height;
bc8d7dff 9119 struct drm_framebuffer *fb;
1b842c89 9120 struct intel_framebuffer *intel_fb;
bc8d7dff 9121
d9806c9f 9122 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9123 if (!intel_fb) {
bc8d7dff
DL
9124 DRM_DEBUG_KMS("failed to alloc fb\n");
9125 return;
9126 }
9127
1b842c89
DL
9128 fb = &intel_fb->base;
9129
bc8d7dff 9130 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9131 if (!(val & PLANE_CTL_ENABLE))
9132 goto error;
9133
bc8d7dff
DL
9134 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9135 fourcc = skl_format_to_fourcc(pixel_format,
9136 val & PLANE_CTL_ORDER_RGBX,
9137 val & PLANE_CTL_ALPHA_MASK);
9138 fb->pixel_format = fourcc;
9139 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9140
40f46283
DL
9141 tiling = val & PLANE_CTL_TILED_MASK;
9142 switch (tiling) {
9143 case PLANE_CTL_TILED_LINEAR:
9144 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9145 break;
9146 case PLANE_CTL_TILED_X:
9147 plane_config->tiling = I915_TILING_X;
9148 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9149 break;
9150 case PLANE_CTL_TILED_Y:
9151 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9152 break;
9153 case PLANE_CTL_TILED_YF:
9154 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9155 break;
9156 default:
9157 MISSING_CASE(tiling);
9158 goto error;
9159 }
9160
bc8d7dff
DL
9161 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9162 plane_config->base = base;
9163
9164 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9165
9166 val = I915_READ(PLANE_SIZE(pipe, 0));
9167 fb->height = ((val >> 16) & 0xfff) + 1;
9168 fb->width = ((val >> 0) & 0x1fff) + 1;
9169
9170 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
9171 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9172 fb->pixel_format);
bc8d7dff
DL
9173 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9174
9175 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9176 fb->pixel_format,
9177 fb->modifier[0]);
bc8d7dff 9178
f37b5c2b 9179 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9180
9181 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9182 pipe_name(pipe), fb->width, fb->height,
9183 fb->bits_per_pixel, base, fb->pitches[0],
9184 plane_config->size);
9185
2d14030b 9186 plane_config->fb = intel_fb;
bc8d7dff
DL
9187 return;
9188
9189error:
9190 kfree(fb);
9191}
9192
2fa2fe9a 9193static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9194 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9195{
9196 struct drm_device *dev = crtc->base.dev;
9197 struct drm_i915_private *dev_priv = dev->dev_private;
9198 uint32_t tmp;
9199
9200 tmp = I915_READ(PF_CTL(crtc->pipe));
9201
9202 if (tmp & PF_ENABLE) {
fd4daa9c 9203 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9204 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9205 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9206
9207 /* We currently do not free assignements of panel fitters on
9208 * ivb/hsw (since we don't use the higher upscaling modes which
9209 * differentiates them) so just WARN about this case for now. */
9210 if (IS_GEN7(dev)) {
9211 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9212 PF_PIPE_SEL_IVB(crtc->pipe));
9213 }
2fa2fe9a 9214 }
79e53945
JB
9215}
9216
5724dbd1
DL
9217static void
9218ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9219 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9220{
9221 struct drm_device *dev = crtc->base.dev;
9222 struct drm_i915_private *dev_priv = dev->dev_private;
9223 u32 val, base, offset;
aeee5a49 9224 int pipe = crtc->pipe;
4c6baa59 9225 int fourcc, pixel_format;
6761dd31 9226 unsigned int aligned_height;
b113d5ee 9227 struct drm_framebuffer *fb;
1b842c89 9228 struct intel_framebuffer *intel_fb;
4c6baa59 9229
42a7b088
DL
9230 val = I915_READ(DSPCNTR(pipe));
9231 if (!(val & DISPLAY_PLANE_ENABLE))
9232 return;
9233
d9806c9f 9234 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9235 if (!intel_fb) {
4c6baa59
JB
9236 DRM_DEBUG_KMS("failed to alloc fb\n");
9237 return;
9238 }
9239
1b842c89
DL
9240 fb = &intel_fb->base;
9241
18c5247e
DV
9242 if (INTEL_INFO(dev)->gen >= 4) {
9243 if (val & DISPPLANE_TILED) {
49af449b 9244 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9245 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9246 }
9247 }
4c6baa59
JB
9248
9249 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9250 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9251 fb->pixel_format = fourcc;
9252 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9253
aeee5a49 9254 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9255 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9256 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9257 } else {
49af449b 9258 if (plane_config->tiling)
aeee5a49 9259 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9260 else
aeee5a49 9261 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9262 }
9263 plane_config->base = base;
9264
9265 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9266 fb->width = ((val >> 16) & 0xfff) + 1;
9267 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9268
9269 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9270 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9271
b113d5ee 9272 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9273 fb->pixel_format,
9274 fb->modifier[0]);
4c6baa59 9275
f37b5c2b 9276 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9277
2844a921
DL
9278 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9279 pipe_name(pipe), fb->width, fb->height,
9280 fb->bits_per_pixel, base, fb->pitches[0],
9281 plane_config->size);
b113d5ee 9282
2d14030b 9283 plane_config->fb = intel_fb;
4c6baa59
JB
9284}
9285
0e8ffe1b 9286static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9287 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9288{
9289 struct drm_device *dev = crtc->base.dev;
9290 struct drm_i915_private *dev_priv = dev->dev_private;
9291 uint32_t tmp;
9292
f458ebbc
DV
9293 if (!intel_display_power_is_enabled(dev_priv,
9294 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
9295 return false;
9296
e143a21c 9297 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 9298 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 9299
0e8ffe1b
DV
9300 tmp = I915_READ(PIPECONF(crtc->pipe));
9301 if (!(tmp & PIPECONF_ENABLE))
9302 return false;
9303
42571aef
VS
9304 switch (tmp & PIPECONF_BPC_MASK) {
9305 case PIPECONF_6BPC:
9306 pipe_config->pipe_bpp = 18;
9307 break;
9308 case PIPECONF_8BPC:
9309 pipe_config->pipe_bpp = 24;
9310 break;
9311 case PIPECONF_10BPC:
9312 pipe_config->pipe_bpp = 30;
9313 break;
9314 case PIPECONF_12BPC:
9315 pipe_config->pipe_bpp = 36;
9316 break;
9317 default:
9318 break;
9319 }
9320
b5a9fa09
DV
9321 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9322 pipe_config->limited_color_range = true;
9323
ab9412ba 9324 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
9325 struct intel_shared_dpll *pll;
9326
88adfff1
DV
9327 pipe_config->has_pch_encoder = true;
9328
627eb5a3
DV
9329 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9330 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9331 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9332
9333 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9334
c0d43d62 9335 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
9336 pipe_config->shared_dpll =
9337 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9338 } else {
9339 tmp = I915_READ(PCH_DPLL_SEL);
9340 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9341 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9342 else
9343 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9344 }
66e985c0
DV
9345
9346 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9347
9348 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9349 &pipe_config->dpll_hw_state));
c93f54cf
DV
9350
9351 tmp = pipe_config->dpll_hw_state.dpll;
9352 pipe_config->pixel_multiplier =
9353 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9354 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9355
9356 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9357 } else {
9358 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9359 }
9360
1bd1bd80
DV
9361 intel_get_pipe_timings(crtc, pipe_config);
9362
2fa2fe9a
DV
9363 ironlake_get_pfit_config(crtc, pipe_config);
9364
0e8ffe1b
DV
9365 return true;
9366}
9367
be256dc7
PZ
9368static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9369{
9370 struct drm_device *dev = dev_priv->dev;
be256dc7 9371 struct intel_crtc *crtc;
be256dc7 9372
d3fcc808 9373 for_each_intel_crtc(dev, crtc)
e2c719b7 9374 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9375 pipe_name(crtc->pipe));
9376
e2c719b7
RC
9377 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9378 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9379 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9380 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9381 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9382 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9383 "CPU PWM1 enabled\n");
c5107b87 9384 if (IS_HASWELL(dev))
e2c719b7 9385 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9386 "CPU PWM2 enabled\n");
e2c719b7 9387 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9388 "PCH PWM1 enabled\n");
e2c719b7 9389 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9390 "Utility pin enabled\n");
e2c719b7 9391 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9392
9926ada1
PZ
9393 /*
9394 * In theory we can still leave IRQs enabled, as long as only the HPD
9395 * interrupts remain enabled. We used to check for that, but since it's
9396 * gen-specific and since we only disable LCPLL after we fully disable
9397 * the interrupts, the check below should be enough.
9398 */
e2c719b7 9399 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9400}
9401
9ccd5aeb
PZ
9402static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9403{
9404 struct drm_device *dev = dev_priv->dev;
9405
9406 if (IS_HASWELL(dev))
9407 return I915_READ(D_COMP_HSW);
9408 else
9409 return I915_READ(D_COMP_BDW);
9410}
9411
3c4c9b81
PZ
9412static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9413{
9414 struct drm_device *dev = dev_priv->dev;
9415
9416 if (IS_HASWELL(dev)) {
9417 mutex_lock(&dev_priv->rps.hw_lock);
9418 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9419 val))
f475dadf 9420 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9421 mutex_unlock(&dev_priv->rps.hw_lock);
9422 } else {
9ccd5aeb
PZ
9423 I915_WRITE(D_COMP_BDW, val);
9424 POSTING_READ(D_COMP_BDW);
3c4c9b81 9425 }
be256dc7
PZ
9426}
9427
9428/*
9429 * This function implements pieces of two sequences from BSpec:
9430 * - Sequence for display software to disable LCPLL
9431 * - Sequence for display software to allow package C8+
9432 * The steps implemented here are just the steps that actually touch the LCPLL
9433 * register. Callers should take care of disabling all the display engine
9434 * functions, doing the mode unset, fixing interrupts, etc.
9435 */
6ff58d53
PZ
9436static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9437 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9438{
9439 uint32_t val;
9440
9441 assert_can_disable_lcpll(dev_priv);
9442
9443 val = I915_READ(LCPLL_CTL);
9444
9445 if (switch_to_fclk) {
9446 val |= LCPLL_CD_SOURCE_FCLK;
9447 I915_WRITE(LCPLL_CTL, val);
9448
9449 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9450 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9451 DRM_ERROR("Switching to FCLK failed\n");
9452
9453 val = I915_READ(LCPLL_CTL);
9454 }
9455
9456 val |= LCPLL_PLL_DISABLE;
9457 I915_WRITE(LCPLL_CTL, val);
9458 POSTING_READ(LCPLL_CTL);
9459
9460 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9461 DRM_ERROR("LCPLL still locked\n");
9462
9ccd5aeb 9463 val = hsw_read_dcomp(dev_priv);
be256dc7 9464 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9465 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9466 ndelay(100);
9467
9ccd5aeb
PZ
9468 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9469 1))
be256dc7
PZ
9470 DRM_ERROR("D_COMP RCOMP still in progress\n");
9471
9472 if (allow_power_down) {
9473 val = I915_READ(LCPLL_CTL);
9474 val |= LCPLL_POWER_DOWN_ALLOW;
9475 I915_WRITE(LCPLL_CTL, val);
9476 POSTING_READ(LCPLL_CTL);
9477 }
9478}
9479
9480/*
9481 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9482 * source.
9483 */
6ff58d53 9484static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9485{
9486 uint32_t val;
9487
9488 val = I915_READ(LCPLL_CTL);
9489
9490 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9491 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9492 return;
9493
a8a8bd54
PZ
9494 /*
9495 * Make sure we're not on PC8 state before disabling PC8, otherwise
9496 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9497 */
59bad947 9498 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9499
be256dc7
PZ
9500 if (val & LCPLL_POWER_DOWN_ALLOW) {
9501 val &= ~LCPLL_POWER_DOWN_ALLOW;
9502 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9503 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9504 }
9505
9ccd5aeb 9506 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9507 val |= D_COMP_COMP_FORCE;
9508 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9509 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9510
9511 val = I915_READ(LCPLL_CTL);
9512 val &= ~LCPLL_PLL_DISABLE;
9513 I915_WRITE(LCPLL_CTL, val);
9514
9515 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9516 DRM_ERROR("LCPLL not locked yet\n");
9517
9518 if (val & LCPLL_CD_SOURCE_FCLK) {
9519 val = I915_READ(LCPLL_CTL);
9520 val &= ~LCPLL_CD_SOURCE_FCLK;
9521 I915_WRITE(LCPLL_CTL, val);
9522
9523 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9524 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9525 DRM_ERROR("Switching back to LCPLL failed\n");
9526 }
215733fa 9527
59bad947 9528 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9529 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9530}
9531
765dab67
PZ
9532/*
9533 * Package states C8 and deeper are really deep PC states that can only be
9534 * reached when all the devices on the system allow it, so even if the graphics
9535 * device allows PC8+, it doesn't mean the system will actually get to these
9536 * states. Our driver only allows PC8+ when going into runtime PM.
9537 *
9538 * The requirements for PC8+ are that all the outputs are disabled, the power
9539 * well is disabled and most interrupts are disabled, and these are also
9540 * requirements for runtime PM. When these conditions are met, we manually do
9541 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9542 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9543 * hang the machine.
9544 *
9545 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9546 * the state of some registers, so when we come back from PC8+ we need to
9547 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9548 * need to take care of the registers kept by RC6. Notice that this happens even
9549 * if we don't put the device in PCI D3 state (which is what currently happens
9550 * because of the runtime PM support).
9551 *
9552 * For more, read "Display Sequences for Package C8" on the hardware
9553 * documentation.
9554 */
a14cb6fc 9555void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9556{
c67a470b
PZ
9557 struct drm_device *dev = dev_priv->dev;
9558 uint32_t val;
9559
c67a470b
PZ
9560 DRM_DEBUG_KMS("Enabling package C8+\n");
9561
c67a470b
PZ
9562 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9563 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9564 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9565 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9566 }
9567
9568 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9569 hsw_disable_lcpll(dev_priv, true, true);
9570}
9571
a14cb6fc 9572void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9573{
9574 struct drm_device *dev = dev_priv->dev;
9575 uint32_t val;
9576
c67a470b
PZ
9577 DRM_DEBUG_KMS("Disabling package C8+\n");
9578
9579 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9580 lpt_init_pch_refclk(dev);
9581
9582 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9583 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9584 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9585 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9586 }
9587
9588 intel_prepare_ddi(dev);
c67a470b
PZ
9589}
9590
a821fc46 9591static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
f8437dd1 9592{
a821fc46 9593 struct drm_device *dev = old_state->dev;
f8437dd1 9594 struct drm_i915_private *dev_priv = dev->dev_private;
a821fc46 9595 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
f8437dd1
VK
9596 int req_cdclk;
9597
9598 /* see the comment in valleyview_modeset_global_resources */
9599 if (WARN_ON(max_pixclk < 0))
9600 return;
9601
9602 req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9603
9604 if (req_cdclk != dev_priv->cdclk_freq)
9605 broxton_set_cdclk(dev, req_cdclk);
9606}
9607
b432e5cf
VS
9608/* compute the max rate for new configuration */
9609static int ilk_max_pixel_rate(struct drm_i915_private *dev_priv)
9610{
9611 struct drm_device *dev = dev_priv->dev;
9612 struct intel_crtc *intel_crtc;
9613 struct drm_crtc *crtc;
9614 int max_pixel_rate = 0;
9615 int pixel_rate;
9616
9617 for_each_crtc(dev, crtc) {
9618 if (!crtc->state->enable)
9619 continue;
9620
9621 intel_crtc = to_intel_crtc(crtc);
9622 pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
9623
9624 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9625 if (IS_BROADWELL(dev) && intel_crtc->config->ips_enabled)
9626 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9627
9628 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9629 }
9630
9631 return max_pixel_rate;
9632}
9633
9634static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9635{
9636 struct drm_i915_private *dev_priv = dev->dev_private;
9637 uint32_t val, data;
9638 int ret;
9639
9640 if (WARN((I915_READ(LCPLL_CTL) &
9641 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9642 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9643 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9644 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9645 "trying to change cdclk frequency with cdclk not enabled\n"))
9646 return;
9647
9648 mutex_lock(&dev_priv->rps.hw_lock);
9649 ret = sandybridge_pcode_write(dev_priv,
9650 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9651 mutex_unlock(&dev_priv->rps.hw_lock);
9652 if (ret) {
9653 DRM_ERROR("failed to inform pcode about cdclk change\n");
9654 return;
9655 }
9656
9657 val = I915_READ(LCPLL_CTL);
9658 val |= LCPLL_CD_SOURCE_FCLK;
9659 I915_WRITE(LCPLL_CTL, val);
9660
9661 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9662 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9663 DRM_ERROR("Switching to FCLK failed\n");
9664
9665 val = I915_READ(LCPLL_CTL);
9666 val &= ~LCPLL_CLK_FREQ_MASK;
9667
9668 switch (cdclk) {
9669 case 450000:
9670 val |= LCPLL_CLK_FREQ_450;
9671 data = 0;
9672 break;
9673 case 540000:
9674 val |= LCPLL_CLK_FREQ_54O_BDW;
9675 data = 1;
9676 break;
9677 case 337500:
9678 val |= LCPLL_CLK_FREQ_337_5_BDW;
9679 data = 2;
9680 break;
9681 case 675000:
9682 val |= LCPLL_CLK_FREQ_675_BDW;
9683 data = 3;
9684 break;
9685 default:
9686 WARN(1, "invalid cdclk frequency\n");
9687 return;
9688 }
9689
9690 I915_WRITE(LCPLL_CTL, val);
9691
9692 val = I915_READ(LCPLL_CTL);
9693 val &= ~LCPLL_CD_SOURCE_FCLK;
9694 I915_WRITE(LCPLL_CTL, val);
9695
9696 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9697 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9698 DRM_ERROR("Switching back to LCPLL failed\n");
9699
9700 mutex_lock(&dev_priv->rps.hw_lock);
9701 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9702 mutex_unlock(&dev_priv->rps.hw_lock);
9703
9704 intel_update_cdclk(dev);
9705
9706 WARN(cdclk != dev_priv->cdclk_freq,
9707 "cdclk requested %d kHz but got %d kHz\n",
9708 cdclk, dev_priv->cdclk_freq);
9709}
9710
9711static int broadwell_calc_cdclk(struct drm_i915_private *dev_priv,
9712 int max_pixel_rate)
9713{
9714 int cdclk;
9715
9716 /*
9717 * FIXME should also account for plane ratio
9718 * once 64bpp pixel formats are supported.
9719 */
9720 if (max_pixel_rate > 540000)
9721 cdclk = 675000;
9722 else if (max_pixel_rate > 450000)
9723 cdclk = 540000;
9724 else if (max_pixel_rate > 337500)
9725 cdclk = 450000;
9726 else
9727 cdclk = 337500;
9728
9729 /*
9730 * FIXME move the cdclk caclulation to
9731 * compute_config() so we can fail gracegully.
9732 */
9733 if (cdclk > dev_priv->max_cdclk_freq) {
9734 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9735 cdclk, dev_priv->max_cdclk_freq);
9736 cdclk = dev_priv->max_cdclk_freq;
9737 }
9738
9739 return cdclk;
9740}
9741
9742static int broadwell_modeset_global_pipes(struct drm_atomic_state *state)
9743{
9744 struct drm_i915_private *dev_priv = to_i915(state->dev);
9745 struct drm_crtc *crtc;
9746 struct drm_crtc_state *crtc_state;
9747 int max_pixclk = ilk_max_pixel_rate(dev_priv);
9748 int cdclk, i;
9749
9750 cdclk = broadwell_calc_cdclk(dev_priv, max_pixclk);
9751
9752 if (cdclk == dev_priv->cdclk_freq)
9753 return 0;
9754
9755 /* add all active pipes to the state */
9756 for_each_crtc(state->dev, crtc) {
9757 if (!crtc->state->enable)
9758 continue;
9759
9760 crtc_state = drm_atomic_get_crtc_state(state, crtc);
9761 if (IS_ERR(crtc_state))
9762 return PTR_ERR(crtc_state);
9763 }
9764
9765 /* disable/enable all currently active pipes while we change cdclk */
9766 for_each_crtc_in_state(state, crtc, crtc_state, i)
9767 if (crtc_state->enable)
9768 crtc_state->mode_changed = true;
9769
9770 return 0;
9771}
9772
9773static void broadwell_modeset_global_resources(struct drm_atomic_state *state)
9774{
9775 struct drm_device *dev = state->dev;
9776 struct drm_i915_private *dev_priv = dev->dev_private;
9777 int max_pixel_rate = ilk_max_pixel_rate(dev_priv);
9778 int req_cdclk = broadwell_calc_cdclk(dev_priv, max_pixel_rate);
9779
9780 if (req_cdclk != dev_priv->cdclk_freq)
9781 broadwell_set_cdclk(dev, req_cdclk);
9782}
9783
190f68c5
ACO
9784static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9785 struct intel_crtc_state *crtc_state)
09b4ddf9 9786{
190f68c5 9787 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 9788 return -EINVAL;
716c2e55 9789
c7653199 9790 crtc->lowfreq_avail = false;
644cef34 9791
c8f7a0db 9792 return 0;
79e53945
JB
9793}
9794
3760b59c
S
9795static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9796 enum port port,
9797 struct intel_crtc_state *pipe_config)
9798{
9799 switch (port) {
9800 case PORT_A:
9801 pipe_config->ddi_pll_sel = SKL_DPLL0;
9802 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9803 break;
9804 case PORT_B:
9805 pipe_config->ddi_pll_sel = SKL_DPLL1;
9806 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9807 break;
9808 case PORT_C:
9809 pipe_config->ddi_pll_sel = SKL_DPLL2;
9810 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9811 break;
9812 default:
9813 DRM_ERROR("Incorrect port type\n");
9814 }
9815}
9816
96b7dfb7
S
9817static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9818 enum port port,
5cec258b 9819 struct intel_crtc_state *pipe_config)
96b7dfb7 9820{
3148ade7 9821 u32 temp, dpll_ctl1;
96b7dfb7
S
9822
9823 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9824 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9825
9826 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
9827 case SKL_DPLL0:
9828 /*
9829 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9830 * of the shared DPLL framework and thus needs to be read out
9831 * separately
9832 */
9833 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9834 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9835 break;
96b7dfb7
S
9836 case SKL_DPLL1:
9837 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9838 break;
9839 case SKL_DPLL2:
9840 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9841 break;
9842 case SKL_DPLL3:
9843 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9844 break;
96b7dfb7
S
9845 }
9846}
9847
7d2c8175
DL
9848static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9849 enum port port,
5cec258b 9850 struct intel_crtc_state *pipe_config)
7d2c8175
DL
9851{
9852 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9853
9854 switch (pipe_config->ddi_pll_sel) {
9855 case PORT_CLK_SEL_WRPLL1:
9856 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9857 break;
9858 case PORT_CLK_SEL_WRPLL2:
9859 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9860 break;
9861 }
9862}
9863
26804afd 9864static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9865 struct intel_crtc_state *pipe_config)
26804afd
DV
9866{
9867 struct drm_device *dev = crtc->base.dev;
9868 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9869 struct intel_shared_dpll *pll;
26804afd
DV
9870 enum port port;
9871 uint32_t tmp;
9872
9873 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9874
9875 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9876
96b7dfb7
S
9877 if (IS_SKYLAKE(dev))
9878 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9879 else if (IS_BROXTON(dev))
9880 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9881 else
9882 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9883
d452c5b6
DV
9884 if (pipe_config->shared_dpll >= 0) {
9885 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9886
9887 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9888 &pipe_config->dpll_hw_state));
9889 }
9890
26804afd
DV
9891 /*
9892 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9893 * DDI E. So just check whether this pipe is wired to DDI E and whether
9894 * the PCH transcoder is on.
9895 */
ca370455
DL
9896 if (INTEL_INFO(dev)->gen < 9 &&
9897 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9898 pipe_config->has_pch_encoder = true;
9899
9900 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9901 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9902 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9903
9904 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9905 }
9906}
9907
0e8ffe1b 9908static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9909 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9910{
9911 struct drm_device *dev = crtc->base.dev;
9912 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 9913 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
9914 uint32_t tmp;
9915
f458ebbc 9916 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
9917 POWER_DOMAIN_PIPE(crtc->pipe)))
9918 return false;
9919
e143a21c 9920 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
9921 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9922
eccb140b
DV
9923 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9924 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9925 enum pipe trans_edp_pipe;
9926 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9927 default:
9928 WARN(1, "unknown pipe linked to edp transcoder\n");
9929 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9930 case TRANS_DDI_EDP_INPUT_A_ON:
9931 trans_edp_pipe = PIPE_A;
9932 break;
9933 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9934 trans_edp_pipe = PIPE_B;
9935 break;
9936 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9937 trans_edp_pipe = PIPE_C;
9938 break;
9939 }
9940
9941 if (trans_edp_pipe == crtc->pipe)
9942 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9943 }
9944
f458ebbc 9945 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 9946 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
9947 return false;
9948
eccb140b 9949 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
9950 if (!(tmp & PIPECONF_ENABLE))
9951 return false;
9952
26804afd 9953 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9954
1bd1bd80
DV
9955 intel_get_pipe_timings(crtc, pipe_config);
9956
a1b2278e
CK
9957 if (INTEL_INFO(dev)->gen >= 9) {
9958 skl_init_scalers(dev, crtc, pipe_config);
9959 }
9960
2fa2fe9a 9961 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
af99ceda
CK
9962
9963 if (INTEL_INFO(dev)->gen >= 9) {
9964 pipe_config->scaler_state.scaler_id = -1;
9965 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9966 }
9967
bd2e244f 9968 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
ff6d9f55 9969 if (INTEL_INFO(dev)->gen == 9)
bd2e244f 9970 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 9971 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 9972 ironlake_get_pfit_config(crtc, pipe_config);
ff6d9f55
JB
9973 else
9974 MISSING_CASE(INTEL_INFO(dev)->gen);
bd2e244f 9975 }
88adfff1 9976
e59150dc
JB
9977 if (IS_HASWELL(dev))
9978 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9979 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9980
ebb69c95
CT
9981 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9982 pipe_config->pixel_multiplier =
9983 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9984 } else {
9985 pipe_config->pixel_multiplier = 1;
9986 }
6c49f241 9987
0e8ffe1b
DV
9988 return true;
9989}
9990
560b85bb
CW
9991static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9992{
9993 struct drm_device *dev = crtc->dev;
9994 struct drm_i915_private *dev_priv = dev->dev_private;
9995 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 9996 uint32_t cntl = 0, size = 0;
560b85bb 9997
dc41c154 9998 if (base) {
3dd512fb
MR
9999 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
10000 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
10001 unsigned int stride = roundup_pow_of_two(width) * 4;
10002
10003 switch (stride) {
10004 default:
10005 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10006 width, stride);
10007 stride = 256;
10008 /* fallthrough */
10009 case 256:
10010 case 512:
10011 case 1024:
10012 case 2048:
10013 break;
4b0e333e
CW
10014 }
10015
dc41c154
VS
10016 cntl |= CURSOR_ENABLE |
10017 CURSOR_GAMMA_ENABLE |
10018 CURSOR_FORMAT_ARGB |
10019 CURSOR_STRIDE(stride);
10020
10021 size = (height << 12) | width;
4b0e333e 10022 }
560b85bb 10023
dc41c154
VS
10024 if (intel_crtc->cursor_cntl != 0 &&
10025 (intel_crtc->cursor_base != base ||
10026 intel_crtc->cursor_size != size ||
10027 intel_crtc->cursor_cntl != cntl)) {
10028 /* On these chipsets we can only modify the base/size/stride
10029 * whilst the cursor is disabled.
10030 */
10031 I915_WRITE(_CURACNTR, 0);
4b0e333e 10032 POSTING_READ(_CURACNTR);
dc41c154 10033 intel_crtc->cursor_cntl = 0;
4b0e333e 10034 }
560b85bb 10035
99d1f387 10036 if (intel_crtc->cursor_base != base) {
9db4a9c7 10037 I915_WRITE(_CURABASE, base);
99d1f387
VS
10038 intel_crtc->cursor_base = base;
10039 }
4726e0b0 10040
dc41c154
VS
10041 if (intel_crtc->cursor_size != size) {
10042 I915_WRITE(CURSIZE, size);
10043 intel_crtc->cursor_size = size;
4b0e333e 10044 }
560b85bb 10045
4b0e333e 10046 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
10047 I915_WRITE(_CURACNTR, cntl);
10048 POSTING_READ(_CURACNTR);
4b0e333e 10049 intel_crtc->cursor_cntl = cntl;
560b85bb 10050 }
560b85bb
CW
10051}
10052
560b85bb 10053static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
10054{
10055 struct drm_device *dev = crtc->dev;
10056 struct drm_i915_private *dev_priv = dev->dev_private;
10057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10058 int pipe = intel_crtc->pipe;
4b0e333e
CW
10059 uint32_t cntl;
10060
10061 cntl = 0;
10062 if (base) {
10063 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 10064 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
10065 case 64:
10066 cntl |= CURSOR_MODE_64_ARGB_AX;
10067 break;
10068 case 128:
10069 cntl |= CURSOR_MODE_128_ARGB_AX;
10070 break;
10071 case 256:
10072 cntl |= CURSOR_MODE_256_ARGB_AX;
10073 break;
10074 default:
3dd512fb 10075 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 10076 return;
65a21cd6 10077 }
4b0e333e 10078 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
10079
10080 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
10081 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 10082 }
65a21cd6 10083
8e7d688b 10084 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
10085 cntl |= CURSOR_ROTATE_180;
10086
4b0e333e
CW
10087 if (intel_crtc->cursor_cntl != cntl) {
10088 I915_WRITE(CURCNTR(pipe), cntl);
10089 POSTING_READ(CURCNTR(pipe));
10090 intel_crtc->cursor_cntl = cntl;
65a21cd6 10091 }
4b0e333e 10092
65a21cd6 10093 /* and commit changes on next vblank */
5efb3e28
VS
10094 I915_WRITE(CURBASE(pipe), base);
10095 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10096
10097 intel_crtc->cursor_base = base;
65a21cd6
JB
10098}
10099
cda4b7d3 10100/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
10101static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10102 bool on)
cda4b7d3
CW
10103{
10104 struct drm_device *dev = crtc->dev;
10105 struct drm_i915_private *dev_priv = dev->dev_private;
10106 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10107 int pipe = intel_crtc->pipe;
3d7d6510
MR
10108 int x = crtc->cursor_x;
10109 int y = crtc->cursor_y;
d6e4db15 10110 u32 base = 0, pos = 0;
cda4b7d3 10111
d6e4db15 10112 if (on)
cda4b7d3 10113 base = intel_crtc->cursor_addr;
cda4b7d3 10114
6e3c9717 10115 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
10116 base = 0;
10117
6e3c9717 10118 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
10119 base = 0;
10120
10121 if (x < 0) {
3dd512fb 10122 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
cda4b7d3
CW
10123 base = 0;
10124
10125 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10126 x = -x;
10127 }
10128 pos |= x << CURSOR_X_SHIFT;
10129
10130 if (y < 0) {
3dd512fb 10131 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
cda4b7d3
CW
10132 base = 0;
10133
10134 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10135 y = -y;
10136 }
10137 pos |= y << CURSOR_Y_SHIFT;
10138
4b0e333e 10139 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
10140 return;
10141
5efb3e28
VS
10142 I915_WRITE(CURPOS(pipe), pos);
10143
4398ad45
VS
10144 /* ILK+ do this automagically */
10145 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 10146 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
3dd512fb
MR
10147 base += (intel_crtc->base.cursor->state->crtc_h *
10148 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
4398ad45
VS
10149 }
10150
8ac54669 10151 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
10152 i845_update_cursor(crtc, base);
10153 else
10154 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
10155}
10156
dc41c154
VS
10157static bool cursor_size_ok(struct drm_device *dev,
10158 uint32_t width, uint32_t height)
10159{
10160 if (width == 0 || height == 0)
10161 return false;
10162
10163 /*
10164 * 845g/865g are special in that they are only limited by
10165 * the width of their cursors, the height is arbitrary up to
10166 * the precision of the register. Everything else requires
10167 * square cursors, limited to a few power-of-two sizes.
10168 */
10169 if (IS_845G(dev) || IS_I865G(dev)) {
10170 if ((width & 63) != 0)
10171 return false;
10172
10173 if (width > (IS_845G(dev) ? 64 : 512))
10174 return false;
10175
10176 if (height > 1023)
10177 return false;
10178 } else {
10179 switch (width | height) {
10180 case 256:
10181 case 128:
10182 if (IS_GEN2(dev))
10183 return false;
10184 case 64:
10185 break;
10186 default:
10187 return false;
10188 }
10189 }
10190
10191 return true;
10192}
10193
79e53945 10194static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 10195 u16 *blue, uint32_t start, uint32_t size)
79e53945 10196{
7203425a 10197 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 10198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 10199
7203425a 10200 for (i = start; i < end; i++) {
79e53945
JB
10201 intel_crtc->lut_r[i] = red[i] >> 8;
10202 intel_crtc->lut_g[i] = green[i] >> 8;
10203 intel_crtc->lut_b[i] = blue[i] >> 8;
10204 }
10205
10206 intel_crtc_load_lut(crtc);
10207}
10208
79e53945
JB
10209/* VESA 640x480x72Hz mode to set on the pipe */
10210static struct drm_display_mode load_detect_mode = {
10211 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10212 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10213};
10214
a8bb6818
DV
10215struct drm_framebuffer *
10216__intel_framebuffer_create(struct drm_device *dev,
10217 struct drm_mode_fb_cmd2 *mode_cmd,
10218 struct drm_i915_gem_object *obj)
d2dff872
CW
10219{
10220 struct intel_framebuffer *intel_fb;
10221 int ret;
10222
10223 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10224 if (!intel_fb) {
6ccb81f2 10225 drm_gem_object_unreference(&obj->base);
d2dff872
CW
10226 return ERR_PTR(-ENOMEM);
10227 }
10228
10229 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10230 if (ret)
10231 goto err;
d2dff872
CW
10232
10233 return &intel_fb->base;
dd4916c5 10234err:
6ccb81f2 10235 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
10236 kfree(intel_fb);
10237
10238 return ERR_PTR(ret);
d2dff872
CW
10239}
10240
b5ea642a 10241static struct drm_framebuffer *
a8bb6818
DV
10242intel_framebuffer_create(struct drm_device *dev,
10243 struct drm_mode_fb_cmd2 *mode_cmd,
10244 struct drm_i915_gem_object *obj)
10245{
10246 struct drm_framebuffer *fb;
10247 int ret;
10248
10249 ret = i915_mutex_lock_interruptible(dev);
10250 if (ret)
10251 return ERR_PTR(ret);
10252 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10253 mutex_unlock(&dev->struct_mutex);
10254
10255 return fb;
10256}
10257
d2dff872
CW
10258static u32
10259intel_framebuffer_pitch_for_width(int width, int bpp)
10260{
10261 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10262 return ALIGN(pitch, 64);
10263}
10264
10265static u32
10266intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10267{
10268 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10269 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10270}
10271
10272static struct drm_framebuffer *
10273intel_framebuffer_create_for_mode(struct drm_device *dev,
10274 struct drm_display_mode *mode,
10275 int depth, int bpp)
10276{
10277 struct drm_i915_gem_object *obj;
0fed39bd 10278 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
10279
10280 obj = i915_gem_alloc_object(dev,
10281 intel_framebuffer_size_for_mode(mode, bpp));
10282 if (obj == NULL)
10283 return ERR_PTR(-ENOMEM);
10284
10285 mode_cmd.width = mode->hdisplay;
10286 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10287 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10288 bpp);
5ca0c34a 10289 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
10290
10291 return intel_framebuffer_create(dev, &mode_cmd, obj);
10292}
10293
10294static struct drm_framebuffer *
10295mode_fits_in_fbdev(struct drm_device *dev,
10296 struct drm_display_mode *mode)
10297{
4520f53a 10298#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
10299 struct drm_i915_private *dev_priv = dev->dev_private;
10300 struct drm_i915_gem_object *obj;
10301 struct drm_framebuffer *fb;
10302
4c0e5528 10303 if (!dev_priv->fbdev)
d2dff872
CW
10304 return NULL;
10305
4c0e5528 10306 if (!dev_priv->fbdev->fb)
d2dff872
CW
10307 return NULL;
10308
4c0e5528
DV
10309 obj = dev_priv->fbdev->fb->obj;
10310 BUG_ON(!obj);
10311
8bcd4553 10312 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10313 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10314 fb->bits_per_pixel))
d2dff872
CW
10315 return NULL;
10316
01f2c773 10317 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10318 return NULL;
10319
10320 return fb;
4520f53a
DV
10321#else
10322 return NULL;
10323#endif
d2dff872
CW
10324}
10325
d3a40d1b
ACO
10326static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10327 struct drm_crtc *crtc,
10328 struct drm_display_mode *mode,
10329 struct drm_framebuffer *fb,
10330 int x, int y)
10331{
10332 struct drm_plane_state *plane_state;
10333 int hdisplay, vdisplay;
10334 int ret;
10335
10336 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10337 if (IS_ERR(plane_state))
10338 return PTR_ERR(plane_state);
10339
10340 if (mode)
10341 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10342 else
10343 hdisplay = vdisplay = 0;
10344
10345 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10346 if (ret)
10347 return ret;
10348 drm_atomic_set_fb_for_plane(plane_state, fb);
10349 plane_state->crtc_x = 0;
10350 plane_state->crtc_y = 0;
10351 plane_state->crtc_w = hdisplay;
10352 plane_state->crtc_h = vdisplay;
10353 plane_state->src_x = x << 16;
10354 plane_state->src_y = y << 16;
10355 plane_state->src_w = hdisplay << 16;
10356 plane_state->src_h = vdisplay << 16;
10357
10358 return 0;
10359}
10360
d2434ab7 10361bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10362 struct drm_display_mode *mode,
51fd371b
RC
10363 struct intel_load_detect_pipe *old,
10364 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10365{
10366 struct intel_crtc *intel_crtc;
d2434ab7
DV
10367 struct intel_encoder *intel_encoder =
10368 intel_attached_encoder(connector);
79e53945 10369 struct drm_crtc *possible_crtc;
4ef69c7a 10370 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10371 struct drm_crtc *crtc = NULL;
10372 struct drm_device *dev = encoder->dev;
94352cf9 10373 struct drm_framebuffer *fb;
51fd371b 10374 struct drm_mode_config *config = &dev->mode_config;
83a57153 10375 struct drm_atomic_state *state = NULL;
944b0c76 10376 struct drm_connector_state *connector_state;
4be07317 10377 struct intel_crtc_state *crtc_state;
51fd371b 10378 int ret, i = -1;
79e53945 10379
d2dff872 10380 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10381 connector->base.id, connector->name,
8e329a03 10382 encoder->base.id, encoder->name);
d2dff872 10383
51fd371b
RC
10384retry:
10385 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10386 if (ret)
10387 goto fail_unlock;
6e9f798d 10388
79e53945
JB
10389 /*
10390 * Algorithm gets a little messy:
7a5e4805 10391 *
79e53945
JB
10392 * - if the connector already has an assigned crtc, use it (but make
10393 * sure it's on first)
7a5e4805 10394 *
79e53945
JB
10395 * - try to find the first unused crtc that can drive this connector,
10396 * and use that if we find one
79e53945
JB
10397 */
10398
10399 /* See if we already have a CRTC for this connector */
10400 if (encoder->crtc) {
10401 crtc = encoder->crtc;
8261b191 10402
51fd371b 10403 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
10404 if (ret)
10405 goto fail_unlock;
10406 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
10407 if (ret)
10408 goto fail_unlock;
7b24056b 10409
24218aac 10410 old->dpms_mode = connector->dpms;
8261b191
CW
10411 old->load_detect_temp = false;
10412
10413 /* Make sure the crtc and connector are running */
24218aac
DV
10414 if (connector->dpms != DRM_MODE_DPMS_ON)
10415 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 10416
7173188d 10417 return true;
79e53945
JB
10418 }
10419
10420 /* Find an unused one (if possible) */
70e1e0ec 10421 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10422 i++;
10423 if (!(encoder->possible_crtcs & (1 << i)))
10424 continue;
83d65738 10425 if (possible_crtc->state->enable)
a459249c
VS
10426 continue;
10427 /* This can occur when applying the pipe A quirk on resume. */
10428 if (to_intel_crtc(possible_crtc)->new_enabled)
10429 continue;
10430
10431 crtc = possible_crtc;
10432 break;
79e53945
JB
10433 }
10434
10435 /*
10436 * If we didn't find an unused CRTC, don't use any.
10437 */
10438 if (!crtc) {
7173188d 10439 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 10440 goto fail_unlock;
79e53945
JB
10441 }
10442
51fd371b
RC
10443 ret = drm_modeset_lock(&crtc->mutex, ctx);
10444 if (ret)
4d02e2de
DV
10445 goto fail_unlock;
10446 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10447 if (ret)
51fd371b 10448 goto fail_unlock;
fc303101
DV
10449 intel_encoder->new_crtc = to_intel_crtc(crtc);
10450 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
10451
10452 intel_crtc = to_intel_crtc(crtc);
412b61d8 10453 intel_crtc->new_enabled = true;
24218aac 10454 old->dpms_mode = connector->dpms;
8261b191 10455 old->load_detect_temp = true;
d2dff872 10456 old->release_fb = NULL;
79e53945 10457
83a57153
ACO
10458 state = drm_atomic_state_alloc(dev);
10459 if (!state)
10460 return false;
10461
10462 state->acquire_ctx = ctx;
10463
944b0c76
ACO
10464 connector_state = drm_atomic_get_connector_state(state, connector);
10465 if (IS_ERR(connector_state)) {
10466 ret = PTR_ERR(connector_state);
10467 goto fail;
10468 }
10469
10470 connector_state->crtc = crtc;
10471 connector_state->best_encoder = &intel_encoder->base;
10472
4be07317
ACO
10473 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10474 if (IS_ERR(crtc_state)) {
10475 ret = PTR_ERR(crtc_state);
10476 goto fail;
10477 }
10478
49d6fa21 10479 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10480
6492711d
CW
10481 if (!mode)
10482 mode = &load_detect_mode;
79e53945 10483
d2dff872
CW
10484 /* We need a framebuffer large enough to accommodate all accesses
10485 * that the plane may generate whilst we perform load detection.
10486 * We can not rely on the fbcon either being present (we get called
10487 * during its initialisation to detect all boot displays, or it may
10488 * not even exist) or that it is large enough to satisfy the
10489 * requested mode.
10490 */
94352cf9
DV
10491 fb = mode_fits_in_fbdev(dev, mode);
10492 if (fb == NULL) {
d2dff872 10493 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
10494 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10495 old->release_fb = fb;
d2dff872
CW
10496 } else
10497 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10498 if (IS_ERR(fb)) {
d2dff872 10499 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10500 goto fail;
79e53945 10501 }
79e53945 10502
d3a40d1b
ACO
10503 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10504 if (ret)
10505 goto fail;
10506
8c7b5ccb
ACO
10507 drm_mode_copy(&crtc_state->base.mode, mode);
10508
10509 if (intel_set_mode(crtc, state)) {
6492711d 10510 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
10511 if (old->release_fb)
10512 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 10513 goto fail;
79e53945 10514 }
9128b040 10515 crtc->primary->crtc = crtc;
7173188d 10516
79e53945 10517 /* let the connector get through one full cycle before testing */
9d0498a2 10518 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10519 return true;
412b61d8
VS
10520
10521 fail:
83d65738 10522 intel_crtc->new_enabled = crtc->state->enable;
51fd371b 10523fail_unlock:
e5d958ef
ACO
10524 drm_atomic_state_free(state);
10525 state = NULL;
83a57153 10526
51fd371b
RC
10527 if (ret == -EDEADLK) {
10528 drm_modeset_backoff(ctx);
10529 goto retry;
10530 }
10531
412b61d8 10532 return false;
79e53945
JB
10533}
10534
d2434ab7 10535void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10536 struct intel_load_detect_pipe *old,
10537 struct drm_modeset_acquire_ctx *ctx)
79e53945 10538{
83a57153 10539 struct drm_device *dev = connector->dev;
d2434ab7
DV
10540 struct intel_encoder *intel_encoder =
10541 intel_attached_encoder(connector);
4ef69c7a 10542 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 10543 struct drm_crtc *crtc = encoder->crtc;
412b61d8 10544 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 10545 struct drm_atomic_state *state;
944b0c76 10546 struct drm_connector_state *connector_state;
4be07317 10547 struct intel_crtc_state *crtc_state;
d3a40d1b 10548 int ret;
79e53945 10549
d2dff872 10550 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10551 connector->base.id, connector->name,
8e329a03 10552 encoder->base.id, encoder->name);
d2dff872 10553
8261b191 10554 if (old->load_detect_temp) {
83a57153 10555 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
10556 if (!state)
10557 goto fail;
83a57153
ACO
10558
10559 state->acquire_ctx = ctx;
10560
944b0c76
ACO
10561 connector_state = drm_atomic_get_connector_state(state, connector);
10562 if (IS_ERR(connector_state))
10563 goto fail;
10564
4be07317
ACO
10565 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10566 if (IS_ERR(crtc_state))
10567 goto fail;
10568
fc303101
DV
10569 to_intel_connector(connector)->new_encoder = NULL;
10570 intel_encoder->new_crtc = NULL;
412b61d8 10571 intel_crtc->new_enabled = false;
944b0c76
ACO
10572
10573 connector_state->best_encoder = NULL;
10574 connector_state->crtc = NULL;
10575
49d6fa21 10576 crtc_state->base.enable = crtc_state->base.active = false;
4be07317 10577
d3a40d1b
ACO
10578 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10579 0, 0);
10580 if (ret)
10581 goto fail;
10582
2bfb4627
ACO
10583 ret = intel_set_mode(crtc, state);
10584 if (ret)
10585 goto fail;
d2dff872 10586
36206361
DV
10587 if (old->release_fb) {
10588 drm_framebuffer_unregister_private(old->release_fb);
10589 drm_framebuffer_unreference(old->release_fb);
10590 }
d2dff872 10591
0622a53c 10592 return;
79e53945
JB
10593 }
10594
c751ce4f 10595 /* Switch crtc and encoder back off if necessary */
24218aac
DV
10596 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10597 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
10598
10599 return;
10600fail:
10601 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10602 drm_atomic_state_free(state);
79e53945
JB
10603}
10604
da4a1efa 10605static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10606 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10607{
10608 struct drm_i915_private *dev_priv = dev->dev_private;
10609 u32 dpll = pipe_config->dpll_hw_state.dpll;
10610
10611 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10612 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10613 else if (HAS_PCH_SPLIT(dev))
10614 return 120000;
10615 else if (!IS_GEN2(dev))
10616 return 96000;
10617 else
10618 return 48000;
10619}
10620
79e53945 10621/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10622static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10623 struct intel_crtc_state *pipe_config)
79e53945 10624{
f1f644dc 10625 struct drm_device *dev = crtc->base.dev;
79e53945 10626 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10627 int pipe = pipe_config->cpu_transcoder;
293623f7 10628 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
10629 u32 fp;
10630 intel_clock_t clock;
da4a1efa 10631 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10632
10633 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10634 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10635 else
293623f7 10636 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10637
10638 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10639 if (IS_PINEVIEW(dev)) {
10640 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10641 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10642 } else {
10643 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10644 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10645 }
10646
a6c45cf0 10647 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10648 if (IS_PINEVIEW(dev))
10649 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10650 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10651 else
10652 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10653 DPLL_FPA01_P1_POST_DIV_SHIFT);
10654
10655 switch (dpll & DPLL_MODE_MASK) {
10656 case DPLLB_MODE_DAC_SERIAL:
10657 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10658 5 : 10;
10659 break;
10660 case DPLLB_MODE_LVDS:
10661 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10662 7 : 14;
10663 break;
10664 default:
28c97730 10665 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10666 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10667 return;
79e53945
JB
10668 }
10669
ac58c3f0 10670 if (IS_PINEVIEW(dev))
da4a1efa 10671 pineview_clock(refclk, &clock);
ac58c3f0 10672 else
da4a1efa 10673 i9xx_clock(refclk, &clock);
79e53945 10674 } else {
0fb58223 10675 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10676 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10677
10678 if (is_lvds) {
10679 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10680 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10681
10682 if (lvds & LVDS_CLKB_POWER_UP)
10683 clock.p2 = 7;
10684 else
10685 clock.p2 = 14;
79e53945
JB
10686 } else {
10687 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10688 clock.p1 = 2;
10689 else {
10690 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10691 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10692 }
10693 if (dpll & PLL_P2_DIVIDE_BY_4)
10694 clock.p2 = 4;
10695 else
10696 clock.p2 = 2;
79e53945 10697 }
da4a1efa
VS
10698
10699 i9xx_clock(refclk, &clock);
79e53945
JB
10700 }
10701
18442d08
VS
10702 /*
10703 * This value includes pixel_multiplier. We will use
241bfc38 10704 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10705 * encoder's get_config() function.
10706 */
10707 pipe_config->port_clock = clock.dot;
f1f644dc
JB
10708}
10709
6878da05
VS
10710int intel_dotclock_calculate(int link_freq,
10711 const struct intel_link_m_n *m_n)
f1f644dc 10712{
f1f644dc
JB
10713 /*
10714 * The calculation for the data clock is:
1041a02f 10715 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10716 * But we want to avoid losing precison if possible, so:
1041a02f 10717 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10718 *
10719 * and the link clock is simpler:
1041a02f 10720 * link_clock = (m * link_clock) / n
f1f644dc
JB
10721 */
10722
6878da05
VS
10723 if (!m_n->link_n)
10724 return 0;
f1f644dc 10725
6878da05
VS
10726 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10727}
f1f644dc 10728
18442d08 10729static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10730 struct intel_crtc_state *pipe_config)
6878da05
VS
10731{
10732 struct drm_device *dev = crtc->base.dev;
79e53945 10733
18442d08
VS
10734 /* read out port_clock from the DPLL */
10735 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10736
f1f644dc 10737 /*
18442d08 10738 * This value does not include pixel_multiplier.
241bfc38 10739 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
10740 * agree once we know their relationship in the encoder's
10741 * get_config() function.
79e53945 10742 */
2d112de7 10743 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
10744 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10745 &pipe_config->fdi_m_n);
79e53945
JB
10746}
10747
10748/** Returns the currently programmed mode of the given pipe. */
10749struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10750 struct drm_crtc *crtc)
10751{
548f245b 10752 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10753 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10754 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10755 struct drm_display_mode *mode;
5cec258b 10756 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
10757 int htot = I915_READ(HTOTAL(cpu_transcoder));
10758 int hsync = I915_READ(HSYNC(cpu_transcoder));
10759 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10760 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10761 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10762
10763 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10764 if (!mode)
10765 return NULL;
10766
f1f644dc
JB
10767 /*
10768 * Construct a pipe_config sufficient for getting the clock info
10769 * back out of crtc_clock_get.
10770 *
10771 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10772 * to use a real value here instead.
10773 */
293623f7 10774 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 10775 pipe_config.pixel_multiplier = 1;
293623f7
VS
10776 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10777 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10778 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
10779 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10780
773ae034 10781 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
10782 mode->hdisplay = (htot & 0xffff) + 1;
10783 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10784 mode->hsync_start = (hsync & 0xffff) + 1;
10785 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10786 mode->vdisplay = (vtot & 0xffff) + 1;
10787 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10788 mode->vsync_start = (vsync & 0xffff) + 1;
10789 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10790
10791 drm_mode_set_name(mode);
79e53945
JB
10792
10793 return mode;
10794}
10795
652c393a
JB
10796static void intel_decrease_pllclock(struct drm_crtc *crtc)
10797{
10798 struct drm_device *dev = crtc->dev;
fbee40df 10799 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 10801
baff296c 10802 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
10803 return;
10804
10805 if (!dev_priv->lvds_downclock_avail)
10806 return;
10807
10808 /*
10809 * Since this is called by a timer, we should never get here in
10810 * the manual case.
10811 */
10812 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
10813 int pipe = intel_crtc->pipe;
10814 int dpll_reg = DPLL(pipe);
10815 int dpll;
f6e5b160 10816
44d98a61 10817 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 10818
8ac5a6d5 10819 assert_panel_unlocked(dev_priv, pipe);
652c393a 10820
dc257cf1 10821 dpll = I915_READ(dpll_reg);
652c393a
JB
10822 dpll |= DISPLAY_RATE_SELECT_FPA1;
10823 I915_WRITE(dpll_reg, dpll);
9d0498a2 10824 intel_wait_for_vblank(dev, pipe);
652c393a
JB
10825 dpll = I915_READ(dpll_reg);
10826 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 10827 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
10828 }
10829
10830}
10831
f047e395
CW
10832void intel_mark_busy(struct drm_device *dev)
10833{
c67a470b
PZ
10834 struct drm_i915_private *dev_priv = dev->dev_private;
10835
f62a0076
CW
10836 if (dev_priv->mm.busy)
10837 return;
10838
43694d69 10839 intel_runtime_pm_get(dev_priv);
c67a470b 10840 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10841 if (INTEL_INFO(dev)->gen >= 6)
10842 gen6_rps_busy(dev_priv);
f62a0076 10843 dev_priv->mm.busy = true;
f047e395
CW
10844}
10845
10846void intel_mark_idle(struct drm_device *dev)
652c393a 10847{
c67a470b 10848 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10849 struct drm_crtc *crtc;
652c393a 10850
f62a0076
CW
10851 if (!dev_priv->mm.busy)
10852 return;
10853
10854 dev_priv->mm.busy = false;
10855
70e1e0ec 10856 for_each_crtc(dev, crtc) {
f4510a27 10857 if (!crtc->primary->fb)
652c393a
JB
10858 continue;
10859
725a5b54 10860 intel_decrease_pllclock(crtc);
652c393a 10861 }
b29c19b6 10862
3d13ef2e 10863 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10864 gen6_rps_idle(dev->dev_private);
bb4cdd53 10865
43694d69 10866 intel_runtime_pm_put(dev_priv);
652c393a
JB
10867}
10868
79e53945
JB
10869static void intel_crtc_destroy(struct drm_crtc *crtc)
10870{
10871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10872 struct drm_device *dev = crtc->dev;
10873 struct intel_unpin_work *work;
67e77c5a 10874
5e2d7afc 10875 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10876 work = intel_crtc->unpin_work;
10877 intel_crtc->unpin_work = NULL;
5e2d7afc 10878 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10879
10880 if (work) {
10881 cancel_work_sync(&work->work);
10882 kfree(work);
10883 }
79e53945
JB
10884
10885 drm_crtc_cleanup(crtc);
67e77c5a 10886
79e53945
JB
10887 kfree(intel_crtc);
10888}
10889
6b95a207
KH
10890static void intel_unpin_work_fn(struct work_struct *__work)
10891{
10892 struct intel_unpin_work *work =
10893 container_of(__work, struct intel_unpin_work, work);
b4a98e57 10894 struct drm_device *dev = work->crtc->dev;
f99d7069 10895 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 10896
b4a98e57 10897 mutex_lock(&dev->struct_mutex);
82bc3b2d 10898 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
05394f39 10899 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10900
7ff0ebcc 10901 intel_fbc_update(dev);
f06cc1b9
JH
10902
10903 if (work->flip_queued_req)
146d84f0 10904 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10905 mutex_unlock(&dev->struct_mutex);
10906
f99d7069 10907 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
89ed88ba 10908 drm_framebuffer_unreference(work->old_fb);
f99d7069 10909
b4a98e57
CW
10910 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10911 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10912
6b95a207
KH
10913 kfree(work);
10914}
10915
1afe3e9d 10916static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10917 struct drm_crtc *crtc)
6b95a207 10918{
6b95a207
KH
10919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10920 struct intel_unpin_work *work;
6b95a207
KH
10921 unsigned long flags;
10922
10923 /* Ignore early vblank irqs */
10924 if (intel_crtc == NULL)
10925 return;
10926
f326038a
DV
10927 /*
10928 * This is called both by irq handlers and the reset code (to complete
10929 * lost pageflips) so needs the full irqsave spinlocks.
10930 */
6b95a207
KH
10931 spin_lock_irqsave(&dev->event_lock, flags);
10932 work = intel_crtc->unpin_work;
e7d841ca
CW
10933
10934 /* Ensure we don't miss a work->pending update ... */
10935 smp_rmb();
10936
10937 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10938 spin_unlock_irqrestore(&dev->event_lock, flags);
10939 return;
10940 }
10941
d6bbafa1 10942 page_flip_completed(intel_crtc);
0af7e4df 10943
6b95a207 10944 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10945}
10946
1afe3e9d
JB
10947void intel_finish_page_flip(struct drm_device *dev, int pipe)
10948{
fbee40df 10949 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10950 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10951
49b14a5c 10952 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10953}
10954
10955void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10956{
fbee40df 10957 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10958 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10959
49b14a5c 10960 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10961}
10962
75f7f3ec
VS
10963/* Is 'a' after or equal to 'b'? */
10964static bool g4x_flip_count_after_eq(u32 a, u32 b)
10965{
10966 return !((a - b) & 0x80000000);
10967}
10968
10969static bool page_flip_finished(struct intel_crtc *crtc)
10970{
10971 struct drm_device *dev = crtc->base.dev;
10972 struct drm_i915_private *dev_priv = dev->dev_private;
10973
bdfa7542
VS
10974 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10975 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10976 return true;
10977
75f7f3ec
VS
10978 /*
10979 * The relevant registers doen't exist on pre-ctg.
10980 * As the flip done interrupt doesn't trigger for mmio
10981 * flips on gmch platforms, a flip count check isn't
10982 * really needed there. But since ctg has the registers,
10983 * include it in the check anyway.
10984 */
10985 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10986 return true;
10987
10988 /*
10989 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10990 * used the same base address. In that case the mmio flip might
10991 * have completed, but the CS hasn't even executed the flip yet.
10992 *
10993 * A flip count check isn't enough as the CS might have updated
10994 * the base address just after start of vblank, but before we
10995 * managed to process the interrupt. This means we'd complete the
10996 * CS flip too soon.
10997 *
10998 * Combining both checks should get us a good enough result. It may
10999 * still happen that the CS flip has been executed, but has not
11000 * yet actually completed. But in case the base address is the same
11001 * anyway, we don't really care.
11002 */
11003 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11004 crtc->unpin_work->gtt_offset &&
11005 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
11006 crtc->unpin_work->flip_count);
11007}
11008
6b95a207
KH
11009void intel_prepare_page_flip(struct drm_device *dev, int plane)
11010{
fbee40df 11011 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
11012 struct intel_crtc *intel_crtc =
11013 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
11014 unsigned long flags;
11015
f326038a
DV
11016
11017 /*
11018 * This is called both by irq handlers and the reset code (to complete
11019 * lost pageflips) so needs the full irqsave spinlocks.
11020 *
11021 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
11022 * generate a page-flip completion irq, i.e. every modeset
11023 * is also accompanied by a spurious intel_prepare_page_flip().
11024 */
6b95a207 11025 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 11026 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 11027 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
11028 spin_unlock_irqrestore(&dev->event_lock, flags);
11029}
11030
eba905b2 11031static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
11032{
11033 /* Ensure that the work item is consistent when activating it ... */
11034 smp_wmb();
11035 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
11036 /* and that it is marked active as soon as the irq could fire. */
11037 smp_wmb();
11038}
11039
8c9f3aaf
JB
11040static int intel_gen2_queue_flip(struct drm_device *dev,
11041 struct drm_crtc *crtc,
11042 struct drm_framebuffer *fb,
ed8d1975 11043 struct drm_i915_gem_object *obj,
a4872ba6 11044 struct intel_engine_cs *ring,
ed8d1975 11045 uint32_t flags)
8c9f3aaf 11046{
8c9f3aaf 11047 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
11048 u32 flip_mask;
11049 int ret;
11050
6d90c952 11051 ret = intel_ring_begin(ring, 6);
8c9f3aaf 11052 if (ret)
4fa62c89 11053 return ret;
8c9f3aaf
JB
11054
11055 /* Can't queue multiple flips, so wait for the previous
11056 * one to finish before executing the next.
11057 */
11058 if (intel_crtc->plane)
11059 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11060 else
11061 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
11062 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11063 intel_ring_emit(ring, MI_NOOP);
11064 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11065 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11066 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 11067 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 11068 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
11069
11070 intel_mark_page_flip_active(intel_crtc);
09246732 11071 __intel_ring_advance(ring);
83d4092b 11072 return 0;
8c9f3aaf
JB
11073}
11074
11075static int intel_gen3_queue_flip(struct drm_device *dev,
11076 struct drm_crtc *crtc,
11077 struct drm_framebuffer *fb,
ed8d1975 11078 struct drm_i915_gem_object *obj,
a4872ba6 11079 struct intel_engine_cs *ring,
ed8d1975 11080 uint32_t flags)
8c9f3aaf 11081{
8c9f3aaf 11082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
11083 u32 flip_mask;
11084 int ret;
11085
6d90c952 11086 ret = intel_ring_begin(ring, 6);
8c9f3aaf 11087 if (ret)
4fa62c89 11088 return ret;
8c9f3aaf
JB
11089
11090 if (intel_crtc->plane)
11091 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11092 else
11093 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
11094 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11095 intel_ring_emit(ring, MI_NOOP);
11096 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11097 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11098 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 11099 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
11100 intel_ring_emit(ring, MI_NOOP);
11101
e7d841ca 11102 intel_mark_page_flip_active(intel_crtc);
09246732 11103 __intel_ring_advance(ring);
83d4092b 11104 return 0;
8c9f3aaf
JB
11105}
11106
11107static int intel_gen4_queue_flip(struct drm_device *dev,
11108 struct drm_crtc *crtc,
11109 struct drm_framebuffer *fb,
ed8d1975 11110 struct drm_i915_gem_object *obj,
a4872ba6 11111 struct intel_engine_cs *ring,
ed8d1975 11112 uint32_t flags)
8c9f3aaf
JB
11113{
11114 struct drm_i915_private *dev_priv = dev->dev_private;
11115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11116 uint32_t pf, pipesrc;
11117 int ret;
11118
6d90c952 11119 ret = intel_ring_begin(ring, 4);
8c9f3aaf 11120 if (ret)
4fa62c89 11121 return ret;
8c9f3aaf
JB
11122
11123 /* i965+ uses the linear or tiled offsets from the
11124 * Display Registers (which do not change across a page-flip)
11125 * so we need only reprogram the base address.
11126 */
6d90c952
DV
11127 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11128 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11129 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 11130 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 11131 obj->tiling_mode);
8c9f3aaf
JB
11132
11133 /* XXX Enabling the panel-fitter across page-flip is so far
11134 * untested on non-native modes, so ignore it for now.
11135 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11136 */
11137 pf = 0;
11138 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11139 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
11140
11141 intel_mark_page_flip_active(intel_crtc);
09246732 11142 __intel_ring_advance(ring);
83d4092b 11143 return 0;
8c9f3aaf
JB
11144}
11145
11146static int intel_gen6_queue_flip(struct drm_device *dev,
11147 struct drm_crtc *crtc,
11148 struct drm_framebuffer *fb,
ed8d1975 11149 struct drm_i915_gem_object *obj,
a4872ba6 11150 struct intel_engine_cs *ring,
ed8d1975 11151 uint32_t flags)
8c9f3aaf
JB
11152{
11153 struct drm_i915_private *dev_priv = dev->dev_private;
11154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11155 uint32_t pf, pipesrc;
11156 int ret;
11157
6d90c952 11158 ret = intel_ring_begin(ring, 4);
8c9f3aaf 11159 if (ret)
4fa62c89 11160 return ret;
8c9f3aaf 11161
6d90c952
DV
11162 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11163 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11164 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 11165 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 11166
dc257cf1
DV
11167 /* Contrary to the suggestions in the documentation,
11168 * "Enable Panel Fitter" does not seem to be required when page
11169 * flipping with a non-native mode, and worse causes a normal
11170 * modeset to fail.
11171 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11172 */
11173 pf = 0;
8c9f3aaf 11174 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11175 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
11176
11177 intel_mark_page_flip_active(intel_crtc);
09246732 11178 __intel_ring_advance(ring);
83d4092b 11179 return 0;
8c9f3aaf
JB
11180}
11181
7c9017e5
JB
11182static int intel_gen7_queue_flip(struct drm_device *dev,
11183 struct drm_crtc *crtc,
11184 struct drm_framebuffer *fb,
ed8d1975 11185 struct drm_i915_gem_object *obj,
a4872ba6 11186 struct intel_engine_cs *ring,
ed8d1975 11187 uint32_t flags)
7c9017e5 11188{
7c9017e5 11189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 11190 uint32_t plane_bit = 0;
ffe74d75
CW
11191 int len, ret;
11192
eba905b2 11193 switch (intel_crtc->plane) {
cb05d8de
DV
11194 case PLANE_A:
11195 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11196 break;
11197 case PLANE_B:
11198 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11199 break;
11200 case PLANE_C:
11201 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11202 break;
11203 default:
11204 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 11205 return -ENODEV;
cb05d8de
DV
11206 }
11207
ffe74d75 11208 len = 4;
f476828a 11209 if (ring->id == RCS) {
ffe74d75 11210 len += 6;
f476828a
DL
11211 /*
11212 * On Gen 8, SRM is now taking an extra dword to accommodate
11213 * 48bits addresses, and we need a NOOP for the batch size to
11214 * stay even.
11215 */
11216 if (IS_GEN8(dev))
11217 len += 2;
11218 }
ffe74d75 11219
f66fab8e
VS
11220 /*
11221 * BSpec MI_DISPLAY_FLIP for IVB:
11222 * "The full packet must be contained within the same cache line."
11223 *
11224 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11225 * cacheline, if we ever start emitting more commands before
11226 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11227 * then do the cacheline alignment, and finally emit the
11228 * MI_DISPLAY_FLIP.
11229 */
11230 ret = intel_ring_cacheline_align(ring);
11231 if (ret)
4fa62c89 11232 return ret;
f66fab8e 11233
ffe74d75 11234 ret = intel_ring_begin(ring, len);
7c9017e5 11235 if (ret)
4fa62c89 11236 return ret;
7c9017e5 11237
ffe74d75
CW
11238 /* Unmask the flip-done completion message. Note that the bspec says that
11239 * we should do this for both the BCS and RCS, and that we must not unmask
11240 * more than one flip event at any time (or ensure that one flip message
11241 * can be sent by waiting for flip-done prior to queueing new flips).
11242 * Experimentation says that BCS works despite DERRMR masking all
11243 * flip-done completion events and that unmasking all planes at once
11244 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11245 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11246 */
11247 if (ring->id == RCS) {
11248 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11249 intel_ring_emit(ring, DERRMR);
11250 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11251 DERRMR_PIPEB_PRI_FLIP_DONE |
11252 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
11253 if (IS_GEN8(dev))
11254 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11255 MI_SRM_LRM_GLOBAL_GTT);
11256 else
11257 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11258 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
11259 intel_ring_emit(ring, DERRMR);
11260 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
11261 if (IS_GEN8(dev)) {
11262 intel_ring_emit(ring, 0);
11263 intel_ring_emit(ring, MI_NOOP);
11264 }
ffe74d75
CW
11265 }
11266
cb05d8de 11267 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 11268 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 11269 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 11270 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
11271
11272 intel_mark_page_flip_active(intel_crtc);
09246732 11273 __intel_ring_advance(ring);
83d4092b 11274 return 0;
7c9017e5
JB
11275}
11276
84c33a64
SG
11277static bool use_mmio_flip(struct intel_engine_cs *ring,
11278 struct drm_i915_gem_object *obj)
11279{
11280 /*
11281 * This is not being used for older platforms, because
11282 * non-availability of flip done interrupt forces us to use
11283 * CS flips. Older platforms derive flip done using some clever
11284 * tricks involving the flip_pending status bits and vblank irqs.
11285 * So using MMIO flips there would disrupt this mechanism.
11286 */
11287
8e09bf83
CW
11288 if (ring == NULL)
11289 return true;
11290
84c33a64
SG
11291 if (INTEL_INFO(ring->dev)->gen < 5)
11292 return false;
11293
11294 if (i915.use_mmio_flip < 0)
11295 return false;
11296 else if (i915.use_mmio_flip > 0)
11297 return true;
14bf993e
OM
11298 else if (i915.enable_execlists)
11299 return true;
84c33a64 11300 else
b4716185 11301 return ring != i915_gem_request_get_ring(obj->last_write_req);
84c33a64
SG
11302}
11303
ff944564
DL
11304static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11305{
11306 struct drm_device *dev = intel_crtc->base.dev;
11307 struct drm_i915_private *dev_priv = dev->dev_private;
11308 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564
DL
11309 const enum pipe pipe = intel_crtc->pipe;
11310 u32 ctl, stride;
11311
11312 ctl = I915_READ(PLANE_CTL(pipe, 0));
11313 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
11314 switch (fb->modifier[0]) {
11315 case DRM_FORMAT_MOD_NONE:
11316 break;
11317 case I915_FORMAT_MOD_X_TILED:
ff944564 11318 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
11319 break;
11320 case I915_FORMAT_MOD_Y_TILED:
11321 ctl |= PLANE_CTL_TILED_Y;
11322 break;
11323 case I915_FORMAT_MOD_Yf_TILED:
11324 ctl |= PLANE_CTL_TILED_YF;
11325 break;
11326 default:
11327 MISSING_CASE(fb->modifier[0]);
11328 }
ff944564
DL
11329
11330 /*
11331 * The stride is either expressed as a multiple of 64 bytes chunks for
11332 * linear buffers or in number of tiles for tiled buffers.
11333 */
2ebef630
TU
11334 stride = fb->pitches[0] /
11335 intel_fb_stride_alignment(dev, fb->modifier[0],
11336 fb->pixel_format);
ff944564
DL
11337
11338 /*
11339 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11340 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11341 */
11342 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11343 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11344
11345 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11346 POSTING_READ(PLANE_SURF(pipe, 0));
11347}
11348
11349static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
11350{
11351 struct drm_device *dev = intel_crtc->base.dev;
11352 struct drm_i915_private *dev_priv = dev->dev_private;
11353 struct intel_framebuffer *intel_fb =
11354 to_intel_framebuffer(intel_crtc->base.primary->fb);
11355 struct drm_i915_gem_object *obj = intel_fb->obj;
11356 u32 dspcntr;
11357 u32 reg;
11358
84c33a64
SG
11359 reg = DSPCNTR(intel_crtc->plane);
11360 dspcntr = I915_READ(reg);
11361
c5d97472
DL
11362 if (obj->tiling_mode != I915_TILING_NONE)
11363 dspcntr |= DISPPLANE_TILED;
11364 else
11365 dspcntr &= ~DISPPLANE_TILED;
11366
84c33a64
SG
11367 I915_WRITE(reg, dspcntr);
11368
11369 I915_WRITE(DSPSURF(intel_crtc->plane),
11370 intel_crtc->unpin_work->gtt_offset);
11371 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 11372
ff944564
DL
11373}
11374
11375/*
11376 * XXX: This is the temporary way to update the plane registers until we get
11377 * around to using the usual plane update functions for MMIO flips
11378 */
11379static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11380{
11381 struct drm_device *dev = intel_crtc->base.dev;
11382 bool atomic_update;
11383 u32 start_vbl_count;
11384
11385 intel_mark_page_flip_active(intel_crtc);
11386
11387 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
11388
11389 if (INTEL_INFO(dev)->gen >= 9)
11390 skl_do_mmio_flip(intel_crtc);
11391 else
11392 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11393 ilk_do_mmio_flip(intel_crtc);
11394
9362c7c5
ACO
11395 if (atomic_update)
11396 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
11397}
11398
9362c7c5 11399static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 11400{
b2cfe0ab
CW
11401 struct intel_mmio_flip *mmio_flip =
11402 container_of(work, struct intel_mmio_flip, work);
84c33a64 11403
eed29a5b
DV
11404 if (mmio_flip->req)
11405 WARN_ON(__i915_wait_request(mmio_flip->req,
b2cfe0ab 11406 mmio_flip->crtc->reset_counter,
bcafc4e3
CW
11407 false, NULL,
11408 &mmio_flip->i915->rps.mmioflips));
84c33a64 11409
b2cfe0ab
CW
11410 intel_do_mmio_flip(mmio_flip->crtc);
11411
eed29a5b 11412 i915_gem_request_unreference__unlocked(mmio_flip->req);
b2cfe0ab 11413 kfree(mmio_flip);
84c33a64
SG
11414}
11415
11416static int intel_queue_mmio_flip(struct drm_device *dev,
11417 struct drm_crtc *crtc,
11418 struct drm_framebuffer *fb,
11419 struct drm_i915_gem_object *obj,
11420 struct intel_engine_cs *ring,
11421 uint32_t flags)
11422{
b2cfe0ab
CW
11423 struct intel_mmio_flip *mmio_flip;
11424
11425 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11426 if (mmio_flip == NULL)
11427 return -ENOMEM;
84c33a64 11428
bcafc4e3 11429 mmio_flip->i915 = to_i915(dev);
eed29a5b 11430 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
b2cfe0ab 11431 mmio_flip->crtc = to_intel_crtc(crtc);
536f5b5e 11432
b2cfe0ab
CW
11433 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11434 schedule_work(&mmio_flip->work);
84c33a64 11435
84c33a64
SG
11436 return 0;
11437}
11438
8c9f3aaf
JB
11439static int intel_default_queue_flip(struct drm_device *dev,
11440 struct drm_crtc *crtc,
11441 struct drm_framebuffer *fb,
ed8d1975 11442 struct drm_i915_gem_object *obj,
a4872ba6 11443 struct intel_engine_cs *ring,
ed8d1975 11444 uint32_t flags)
8c9f3aaf
JB
11445{
11446 return -ENODEV;
11447}
11448
d6bbafa1
CW
11449static bool __intel_pageflip_stall_check(struct drm_device *dev,
11450 struct drm_crtc *crtc)
11451{
11452 struct drm_i915_private *dev_priv = dev->dev_private;
11453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11454 struct intel_unpin_work *work = intel_crtc->unpin_work;
11455 u32 addr;
11456
11457 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11458 return true;
11459
11460 if (!work->enable_stall_check)
11461 return false;
11462
11463 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
11464 if (work->flip_queued_req &&
11465 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
11466 return false;
11467
1e3feefd 11468 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
11469 }
11470
1e3feefd 11471 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
11472 return false;
11473
11474 /* Potential stall - if we see that the flip has happened,
11475 * assume a missed interrupt. */
11476 if (INTEL_INFO(dev)->gen >= 4)
11477 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11478 else
11479 addr = I915_READ(DSPADDR(intel_crtc->plane));
11480
11481 /* There is a potential issue here with a false positive after a flip
11482 * to the same address. We could address this by checking for a
11483 * non-incrementing frame counter.
11484 */
11485 return addr == work->gtt_offset;
11486}
11487
11488void intel_check_page_flip(struct drm_device *dev, int pipe)
11489{
11490 struct drm_i915_private *dev_priv = dev->dev_private;
11491 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 11493 struct intel_unpin_work *work;
f326038a 11494
6c51d46f 11495 WARN_ON(!in_interrupt());
d6bbafa1
CW
11496
11497 if (crtc == NULL)
11498 return;
11499
f326038a 11500 spin_lock(&dev->event_lock);
6ad790c0
CW
11501 work = intel_crtc->unpin_work;
11502 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 11503 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 11504 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 11505 page_flip_completed(intel_crtc);
6ad790c0 11506 work = NULL;
d6bbafa1 11507 }
6ad790c0
CW
11508 if (work != NULL &&
11509 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11510 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 11511 spin_unlock(&dev->event_lock);
d6bbafa1
CW
11512}
11513
6b95a207
KH
11514static int intel_crtc_page_flip(struct drm_crtc *crtc,
11515 struct drm_framebuffer *fb,
ed8d1975
KP
11516 struct drm_pending_vblank_event *event,
11517 uint32_t page_flip_flags)
6b95a207
KH
11518{
11519 struct drm_device *dev = crtc->dev;
11520 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 11521 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 11522 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 11523 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 11524 struct drm_plane *primary = crtc->primary;
a071fa00 11525 enum pipe pipe = intel_crtc->pipe;
6b95a207 11526 struct intel_unpin_work *work;
a4872ba6 11527 struct intel_engine_cs *ring;
cf5d8a46 11528 bool mmio_flip;
52e68630 11529 int ret;
6b95a207 11530
2ff8fde1
MR
11531 /*
11532 * drm_mode_page_flip_ioctl() should already catch this, but double
11533 * check to be safe. In the future we may enable pageflipping from
11534 * a disabled primary plane.
11535 */
11536 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11537 return -EBUSY;
11538
e6a595d2 11539 /* Can't change pixel format via MI display flips. */
f4510a27 11540 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
11541 return -EINVAL;
11542
11543 /*
11544 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11545 * Note that pitch changes could also affect these register.
11546 */
11547 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
11548 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11549 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
11550 return -EINVAL;
11551
f900db47
CW
11552 if (i915_terminally_wedged(&dev_priv->gpu_error))
11553 goto out_hang;
11554
b14c5679 11555 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
11556 if (work == NULL)
11557 return -ENOMEM;
11558
6b95a207 11559 work->event = event;
b4a98e57 11560 work->crtc = crtc;
ab8d6675 11561 work->old_fb = old_fb;
6b95a207
KH
11562 INIT_WORK(&work->work, intel_unpin_work_fn);
11563
87b6b101 11564 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
11565 if (ret)
11566 goto free_work;
11567
6b95a207 11568 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 11569 spin_lock_irq(&dev->event_lock);
6b95a207 11570 if (intel_crtc->unpin_work) {
d6bbafa1
CW
11571 /* Before declaring the flip queue wedged, check if
11572 * the hardware completed the operation behind our backs.
11573 */
11574 if (__intel_pageflip_stall_check(dev, crtc)) {
11575 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11576 page_flip_completed(intel_crtc);
11577 } else {
11578 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 11579 spin_unlock_irq(&dev->event_lock);
468f0b44 11580
d6bbafa1
CW
11581 drm_crtc_vblank_put(crtc);
11582 kfree(work);
11583 return -EBUSY;
11584 }
6b95a207
KH
11585 }
11586 intel_crtc->unpin_work = work;
5e2d7afc 11587 spin_unlock_irq(&dev->event_lock);
6b95a207 11588
b4a98e57
CW
11589 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11590 flush_workqueue(dev_priv->wq);
11591
75dfca80 11592 /* Reference the objects for the scheduled work. */
ab8d6675 11593 drm_framebuffer_reference(work->old_fb);
05394f39 11594 drm_gem_object_reference(&obj->base);
6b95a207 11595
f4510a27 11596 crtc->primary->fb = fb;
afd65eb4 11597 update_state_fb(crtc->primary);
1ed1f968 11598
e1f99ce6 11599 work->pending_flip_obj = obj;
e1f99ce6 11600
89ed88ba
CW
11601 ret = i915_mutex_lock_interruptible(dev);
11602 if (ret)
11603 goto cleanup;
11604
b4a98e57 11605 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 11606 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 11607
75f7f3ec 11608 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 11609 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 11610
4fa62c89
VS
11611 if (IS_VALLEYVIEW(dev)) {
11612 ring = &dev_priv->ring[BCS];
ab8d6675 11613 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
11614 /* vlv: DISPLAY_FLIP fails to change tiling */
11615 ring = NULL;
48bf5b2d 11616 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 11617 ring = &dev_priv->ring[BCS];
4fa62c89 11618 } else if (INTEL_INFO(dev)->gen >= 7) {
b4716185 11619 ring = i915_gem_request_get_ring(obj->last_write_req);
4fa62c89
VS
11620 if (ring == NULL || ring->id != RCS)
11621 ring = &dev_priv->ring[BCS];
11622 } else {
11623 ring = &dev_priv->ring[RCS];
11624 }
11625
cf5d8a46
CW
11626 mmio_flip = use_mmio_flip(ring, obj);
11627
11628 /* When using CS flips, we want to emit semaphores between rings.
11629 * However, when using mmio flips we will create a task to do the
11630 * synchronisation, so all we want here is to pin the framebuffer
11631 * into the display plane and skip any waits.
11632 */
82bc3b2d 11633 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
cf5d8a46 11634 crtc->primary->state,
b4716185 11635 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring);
8c9f3aaf
JB
11636 if (ret)
11637 goto cleanup_pending;
6b95a207 11638
121920fa
TU
11639 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11640 + intel_crtc->dspaddr_offset;
4fa62c89 11641
cf5d8a46 11642 if (mmio_flip) {
84c33a64
SG
11643 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11644 page_flip_flags);
d6bbafa1
CW
11645 if (ret)
11646 goto cleanup_unpin;
11647
f06cc1b9
JH
11648 i915_gem_request_assign(&work->flip_queued_req,
11649 obj->last_write_req);
d6bbafa1 11650 } else {
d94b5030
CW
11651 if (obj->last_write_req) {
11652 ret = i915_gem_check_olr(obj->last_write_req);
11653 if (ret)
11654 goto cleanup_unpin;
11655 }
11656
84c33a64 11657 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
11658 page_flip_flags);
11659 if (ret)
11660 goto cleanup_unpin;
11661
f06cc1b9
JH
11662 i915_gem_request_assign(&work->flip_queued_req,
11663 intel_ring_get_request(ring));
d6bbafa1
CW
11664 }
11665
1e3feefd 11666 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11667 work->enable_stall_check = true;
4fa62c89 11668
ab8d6675 11669 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a071fa00
DV
11670 INTEL_FRONTBUFFER_PRIMARY(pipe));
11671
7ff0ebcc 11672 intel_fbc_disable(dev);
f99d7069 11673 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
11674 mutex_unlock(&dev->struct_mutex);
11675
e5510fac
JB
11676 trace_i915_flip_request(intel_crtc->plane, obj);
11677
6b95a207 11678 return 0;
96b099fd 11679
4fa62c89 11680cleanup_unpin:
82bc3b2d 11681 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 11682cleanup_pending:
b4a98e57 11683 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11684 mutex_unlock(&dev->struct_mutex);
11685cleanup:
f4510a27 11686 crtc->primary->fb = old_fb;
afd65eb4 11687 update_state_fb(crtc->primary);
89ed88ba
CW
11688
11689 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11690 drm_framebuffer_unreference(work->old_fb);
96b099fd 11691
5e2d7afc 11692 spin_lock_irq(&dev->event_lock);
96b099fd 11693 intel_crtc->unpin_work = NULL;
5e2d7afc 11694 spin_unlock_irq(&dev->event_lock);
96b099fd 11695
87b6b101 11696 drm_crtc_vblank_put(crtc);
7317c75e 11697free_work:
96b099fd
CW
11698 kfree(work);
11699
f900db47
CW
11700 if (ret == -EIO) {
11701out_hang:
53a366b9 11702 ret = intel_plane_restore(primary);
f0d3dad3 11703 if (ret == 0 && event) {
5e2d7afc 11704 spin_lock_irq(&dev->event_lock);
a071fa00 11705 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 11706 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11707 }
f900db47 11708 }
96b099fd 11709 return ret;
6b95a207
KH
11710}
11711
65b38e0d 11712static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
11713 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11714 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
11715 .atomic_begin = intel_begin_crtc_commit,
11716 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
11717};
11718
9a935856
DV
11719/**
11720 * intel_modeset_update_staged_output_state
11721 *
11722 * Updates the staged output configuration state, e.g. after we've read out the
11723 * current hw state.
11724 */
11725static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 11726{
7668851f 11727 struct intel_crtc *crtc;
9a935856
DV
11728 struct intel_encoder *encoder;
11729 struct intel_connector *connector;
f6e5b160 11730
3a3371ff 11731 for_each_intel_connector(dev, connector) {
9a935856
DV
11732 connector->new_encoder =
11733 to_intel_encoder(connector->base.encoder);
11734 }
f6e5b160 11735
b2784e15 11736 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11737 encoder->new_crtc =
11738 to_intel_crtc(encoder->base.crtc);
11739 }
7668851f 11740
d3fcc808 11741 for_each_intel_crtc(dev, crtc) {
83d65738 11742 crtc->new_enabled = crtc->base.state->enable;
7668851f 11743 }
f6e5b160
CW
11744}
11745
d29b2f9d
ACO
11746/* Transitional helper to copy current connector/encoder state to
11747 * connector->state. This is needed so that code that is partially
11748 * converted to atomic does the right thing.
11749 */
11750static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11751{
11752 struct intel_connector *connector;
11753
11754 for_each_intel_connector(dev, connector) {
11755 if (connector->base.encoder) {
11756 connector->base.state->best_encoder =
11757 connector->base.encoder;
11758 connector->base.state->crtc =
11759 connector->base.encoder->crtc;
11760 } else {
11761 connector->base.state->best_encoder = NULL;
11762 connector->base.state->crtc = NULL;
11763 }
11764 }
11765}
11766
a821fc46 11767/* Fixup legacy state after an atomic state swap.
9a935856 11768 */
a821fc46 11769static void intel_modeset_fixup_state(struct drm_atomic_state *state)
9a935856 11770{
a821fc46 11771 struct intel_crtc *crtc;
9a935856 11772 struct intel_encoder *encoder;
a821fc46 11773 struct intel_connector *connector;
d5432a9d 11774
a821fc46
ACO
11775 for_each_intel_connector(state->dev, connector) {
11776 connector->base.encoder = connector->base.state->best_encoder;
11777 if (connector->base.encoder)
11778 connector->base.encoder->crtc =
11779 connector->base.state->crtc;
9a935856 11780 }
f6e5b160 11781
d5432a9d
ACO
11782 /* Update crtc of disabled encoders */
11783 for_each_intel_encoder(state->dev, encoder) {
11784 int num_connectors = 0;
11785
a821fc46
ACO
11786 for_each_intel_connector(state->dev, connector)
11787 if (connector->base.encoder == &encoder->base)
d5432a9d
ACO
11788 num_connectors++;
11789
11790 if (num_connectors == 0)
11791 encoder->base.crtc = NULL;
9a935856 11792 }
7668851f 11793
a821fc46
ACO
11794 for_each_intel_crtc(state->dev, crtc) {
11795 crtc->base.enabled = crtc->base.state->enable;
11796 crtc->config = to_intel_crtc_state(crtc->base.state);
7668851f 11797 }
d29b2f9d 11798
d5432a9d
ACO
11799 /* Copy the new configuration to the staged state, to keep the few
11800 * pieces of code that haven't been converted yet happy */
11801 intel_modeset_update_staged_output_state(state->dev);
9a935856
DV
11802}
11803
050f7aeb 11804static void
eba905b2 11805connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 11806 struct intel_crtc_state *pipe_config)
050f7aeb
DV
11807{
11808 int bpp = pipe_config->pipe_bpp;
11809
11810 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11811 connector->base.base.id,
c23cc417 11812 connector->base.name);
050f7aeb
DV
11813
11814 /* Don't use an invalid EDID bpc value */
11815 if (connector->base.display_info.bpc &&
11816 connector->base.display_info.bpc * 3 < bpp) {
11817 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11818 bpp, connector->base.display_info.bpc*3);
11819 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11820 }
11821
11822 /* Clamp bpp to 8 on screens without EDID 1.4 */
11823 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11824 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11825 bpp);
11826 pipe_config->pipe_bpp = 24;
11827 }
11828}
11829
4e53c2e0 11830static int
050f7aeb 11831compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 11832 struct intel_crtc_state *pipe_config)
4e53c2e0 11833{
050f7aeb 11834 struct drm_device *dev = crtc->base.dev;
1486017f 11835 struct drm_atomic_state *state;
da3ced29
ACO
11836 struct drm_connector *connector;
11837 struct drm_connector_state *connector_state;
1486017f 11838 int bpp, i;
4e53c2e0 11839
d328c9d7 11840 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
4e53c2e0 11841 bpp = 10*3;
d328c9d7
DV
11842 else if (INTEL_INFO(dev)->gen >= 5)
11843 bpp = 12*3;
11844 else
11845 bpp = 8*3;
11846
4e53c2e0 11847
4e53c2e0
DV
11848 pipe_config->pipe_bpp = bpp;
11849
1486017f
ACO
11850 state = pipe_config->base.state;
11851
4e53c2e0 11852 /* Clamp display bpp to EDID value */
da3ced29
ACO
11853 for_each_connector_in_state(state, connector, connector_state, i) {
11854 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
11855 continue;
11856
da3ced29
ACO
11857 connected_sink_compute_bpp(to_intel_connector(connector),
11858 pipe_config);
4e53c2e0
DV
11859 }
11860
11861 return bpp;
11862}
11863
644db711
DV
11864static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11865{
11866 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11867 "type: 0x%x flags: 0x%x\n",
1342830c 11868 mode->crtc_clock,
644db711
DV
11869 mode->crtc_hdisplay, mode->crtc_hsync_start,
11870 mode->crtc_hsync_end, mode->crtc_htotal,
11871 mode->crtc_vdisplay, mode->crtc_vsync_start,
11872 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11873}
11874
c0b03411 11875static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 11876 struct intel_crtc_state *pipe_config,
c0b03411
DV
11877 const char *context)
11878{
6a60cd87
CK
11879 struct drm_device *dev = crtc->base.dev;
11880 struct drm_plane *plane;
11881 struct intel_plane *intel_plane;
11882 struct intel_plane_state *state;
11883 struct drm_framebuffer *fb;
11884
11885 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11886 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
11887
11888 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11889 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11890 pipe_config->pipe_bpp, pipe_config->dither);
11891 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11892 pipe_config->has_pch_encoder,
11893 pipe_config->fdi_lanes,
11894 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11895 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11896 pipe_config->fdi_m_n.tu);
eb14cb74
VS
11897 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11898 pipe_config->has_dp_encoder,
11899 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11900 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11901 pipe_config->dp_m_n.tu);
b95af8be
VK
11902
11903 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11904 pipe_config->has_dp_encoder,
11905 pipe_config->dp_m2_n2.gmch_m,
11906 pipe_config->dp_m2_n2.gmch_n,
11907 pipe_config->dp_m2_n2.link_m,
11908 pipe_config->dp_m2_n2.link_n,
11909 pipe_config->dp_m2_n2.tu);
11910
55072d19
DV
11911 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11912 pipe_config->has_audio,
11913 pipe_config->has_infoframe);
11914
c0b03411 11915 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 11916 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 11917 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
11918 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11919 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 11920 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
11921 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11922 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
11923 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11924 crtc->num_scalers,
11925 pipe_config->scaler_state.scaler_users,
11926 pipe_config->scaler_state.scaler_id);
c0b03411
DV
11927 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11928 pipe_config->gmch_pfit.control,
11929 pipe_config->gmch_pfit.pgm_ratios,
11930 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 11931 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 11932 pipe_config->pch_pfit.pos,
fd4daa9c
CW
11933 pipe_config->pch_pfit.size,
11934 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 11935 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 11936 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 11937
415ff0f6
TU
11938 if (IS_BROXTON(dev)) {
11939 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
11940 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11941 "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
11942 pipe_config->ddi_pll_sel,
11943 pipe_config->dpll_hw_state.ebb0,
11944 pipe_config->dpll_hw_state.pll0,
11945 pipe_config->dpll_hw_state.pll1,
11946 pipe_config->dpll_hw_state.pll2,
11947 pipe_config->dpll_hw_state.pll3,
11948 pipe_config->dpll_hw_state.pll6,
11949 pipe_config->dpll_hw_state.pll8,
11950 pipe_config->dpll_hw_state.pcsdw12);
11951 } else if (IS_SKYLAKE(dev)) {
11952 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11953 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11954 pipe_config->ddi_pll_sel,
11955 pipe_config->dpll_hw_state.ctrl1,
11956 pipe_config->dpll_hw_state.cfgcr1,
11957 pipe_config->dpll_hw_state.cfgcr2);
11958 } else if (HAS_DDI(dev)) {
11959 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11960 pipe_config->ddi_pll_sel,
11961 pipe_config->dpll_hw_state.wrpll);
11962 } else {
11963 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11964 "fp0: 0x%x, fp1: 0x%x\n",
11965 pipe_config->dpll_hw_state.dpll,
11966 pipe_config->dpll_hw_state.dpll_md,
11967 pipe_config->dpll_hw_state.fp0,
11968 pipe_config->dpll_hw_state.fp1);
11969 }
11970
6a60cd87
CK
11971 DRM_DEBUG_KMS("planes on this crtc\n");
11972 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11973 intel_plane = to_intel_plane(plane);
11974 if (intel_plane->pipe != crtc->pipe)
11975 continue;
11976
11977 state = to_intel_plane_state(plane->state);
11978 fb = state->base.fb;
11979 if (!fb) {
11980 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11981 "disabled, scaler_id = %d\n",
11982 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11983 plane->base.id, intel_plane->pipe,
11984 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11985 drm_plane_index(plane), state->scaler_id);
11986 continue;
11987 }
11988
11989 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11990 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11991 plane->base.id, intel_plane->pipe,
11992 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11993 drm_plane_index(plane));
11994 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11995 fb->base.id, fb->width, fb->height, fb->pixel_format);
11996 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11997 state->scaler_id,
11998 state->src.x1 >> 16, state->src.y1 >> 16,
11999 drm_rect_width(&state->src) >> 16,
12000 drm_rect_height(&state->src) >> 16,
12001 state->dst.x1, state->dst.y1,
12002 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12003 }
c0b03411
DV
12004}
12005
bc079e8b
VS
12006static bool encoders_cloneable(const struct intel_encoder *a,
12007 const struct intel_encoder *b)
accfc0c5 12008{
bc079e8b
VS
12009 /* masks could be asymmetric, so check both ways */
12010 return a == b || (a->cloneable & (1 << b->type) &&
12011 b->cloneable & (1 << a->type));
12012}
12013
98a221da
ACO
12014static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12015 struct intel_crtc *crtc,
bc079e8b
VS
12016 struct intel_encoder *encoder)
12017{
bc079e8b 12018 struct intel_encoder *source_encoder;
da3ced29 12019 struct drm_connector *connector;
98a221da
ACO
12020 struct drm_connector_state *connector_state;
12021 int i;
bc079e8b 12022
da3ced29 12023 for_each_connector_in_state(state, connector, connector_state, i) {
98a221da 12024 if (connector_state->crtc != &crtc->base)
bc079e8b
VS
12025 continue;
12026
98a221da
ACO
12027 source_encoder =
12028 to_intel_encoder(connector_state->best_encoder);
bc079e8b
VS
12029 if (!encoders_cloneable(encoder, source_encoder))
12030 return false;
12031 }
12032
12033 return true;
12034}
12035
98a221da
ACO
12036static bool check_encoder_cloning(struct drm_atomic_state *state,
12037 struct intel_crtc *crtc)
bc079e8b 12038{
accfc0c5 12039 struct intel_encoder *encoder;
da3ced29 12040 struct drm_connector *connector;
98a221da
ACO
12041 struct drm_connector_state *connector_state;
12042 int i;
accfc0c5 12043
da3ced29 12044 for_each_connector_in_state(state, connector, connector_state, i) {
98a221da
ACO
12045 if (connector_state->crtc != &crtc->base)
12046 continue;
12047
12048 encoder = to_intel_encoder(connector_state->best_encoder);
12049 if (!check_single_encoder_cloning(state, crtc, encoder))
bc079e8b 12050 return false;
accfc0c5
DV
12051 }
12052
bc079e8b 12053 return true;
accfc0c5
DV
12054}
12055
5448a00d 12056static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12057{
5448a00d
ACO
12058 struct drm_device *dev = state->dev;
12059 struct intel_encoder *encoder;
da3ced29 12060 struct drm_connector *connector;
5448a00d 12061 struct drm_connector_state *connector_state;
00f0b378 12062 unsigned int used_ports = 0;
5448a00d 12063 int i;
00f0b378
VS
12064
12065 /*
12066 * Walk the connector list instead of the encoder
12067 * list to detect the problem on ddi platforms
12068 * where there's just one encoder per digital port.
12069 */
da3ced29 12070 for_each_connector_in_state(state, connector, connector_state, i) {
5448a00d 12071 if (!connector_state->best_encoder)
00f0b378
VS
12072 continue;
12073
5448a00d
ACO
12074 encoder = to_intel_encoder(connector_state->best_encoder);
12075
12076 WARN_ON(!connector_state->crtc);
00f0b378
VS
12077
12078 switch (encoder->type) {
12079 unsigned int port_mask;
12080 case INTEL_OUTPUT_UNKNOWN:
12081 if (WARN_ON(!HAS_DDI(dev)))
12082 break;
12083 case INTEL_OUTPUT_DISPLAYPORT:
12084 case INTEL_OUTPUT_HDMI:
12085 case INTEL_OUTPUT_EDP:
12086 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12087
12088 /* the same port mustn't appear more than once */
12089 if (used_ports & port_mask)
12090 return false;
12091
12092 used_ports |= port_mask;
12093 default:
12094 break;
12095 }
12096 }
12097
12098 return true;
12099}
12100
83a57153
ACO
12101static void
12102clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12103{
12104 struct drm_crtc_state tmp_state;
663a3640 12105 struct intel_crtc_scaler_state scaler_state;
4978cc93
ACO
12106 struct intel_dpll_hw_state dpll_hw_state;
12107 enum intel_dpll_id shared_dpll;
8504c74c 12108 uint32_t ddi_pll_sel;
83a57153 12109
7546a384
ACO
12110 /* FIXME: before the switch to atomic started, a new pipe_config was
12111 * kzalloc'd. Code that depends on any field being zero should be
12112 * fixed, so that the crtc_state can be safely duplicated. For now,
12113 * only fields that are know to not cause problems are preserved. */
12114
83a57153 12115 tmp_state = crtc_state->base;
663a3640 12116 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12117 shared_dpll = crtc_state->shared_dpll;
12118 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12119 ddi_pll_sel = crtc_state->ddi_pll_sel;
4978cc93 12120
83a57153 12121 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12122
83a57153 12123 crtc_state->base = tmp_state;
663a3640 12124 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12125 crtc_state->shared_dpll = shared_dpll;
12126 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12127 crtc_state->ddi_pll_sel = ddi_pll_sel;
83a57153
ACO
12128}
12129
548ee15b 12130static int
b8cecdf5 12131intel_modeset_pipe_config(struct drm_crtc *crtc,
548ee15b
ACO
12132 struct drm_atomic_state *state,
12133 struct intel_crtc_state *pipe_config)
ee7b9f93 12134{
7758a113 12135 struct intel_encoder *encoder;
da3ced29 12136 struct drm_connector *connector;
0b901879 12137 struct drm_connector_state *connector_state;
d328c9d7 12138 int base_bpp, ret = -EINVAL;
0b901879 12139 int i;
e29c22c0 12140 bool retry = true;
ee7b9f93 12141
98a221da 12142 if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
accfc0c5 12143 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
548ee15b 12144 return -EINVAL;
accfc0c5
DV
12145 }
12146
5448a00d 12147 if (!check_digital_port_conflicts(state)) {
00f0b378 12148 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
548ee15b 12149 return -EINVAL;
00f0b378
VS
12150 }
12151
83a57153 12152 clear_intel_crtc_state(pipe_config);
7758a113 12153
e143a21c
DV
12154 pipe_config->cpu_transcoder =
12155 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12156
2960bc9c
ID
12157 /*
12158 * Sanitize sync polarity flags based on requested ones. If neither
12159 * positive or negative polarity is requested, treat this as meaning
12160 * negative polarity.
12161 */
2d112de7 12162 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12163 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12164 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12165
2d112de7 12166 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12167 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12168 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12169
050f7aeb
DV
12170 /* Compute a starting value for pipe_config->pipe_bpp taking the source
12171 * plane pixel format and any sink constraints into account. Returns the
12172 * source plane bpp so that dithering can be selected on mismatches
12173 * after encoders and crtc also have had their say. */
d328c9d7
DV
12174 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12175 pipe_config);
12176 if (base_bpp < 0)
4e53c2e0
DV
12177 goto fail;
12178
e41a56be
VS
12179 /*
12180 * Determine the real pipe dimensions. Note that stereo modes can
12181 * increase the actual pipe size due to the frame doubling and
12182 * insertion of additional space for blanks between the frame. This
12183 * is stored in the crtc timings. We use the requested mode to do this
12184 * computation to clearly distinguish it from the adjusted mode, which
12185 * can be changed by the connectors in the below retry loop.
12186 */
2d112de7 12187 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12188 &pipe_config->pipe_src_w,
12189 &pipe_config->pipe_src_h);
e41a56be 12190
e29c22c0 12191encoder_retry:
ef1b460d 12192 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12193 pipe_config->port_clock = 0;
ef1b460d 12194 pipe_config->pixel_multiplier = 1;
ff9a6750 12195
135c81b8 12196 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12197 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12198 CRTC_STEREO_DOUBLE);
135c81b8 12199
7758a113
DV
12200 /* Pass our mode to the connectors and the CRTC to give them a chance to
12201 * adjust it according to limitations or connector properties, and also
12202 * a chance to reject the mode entirely.
47f1c6c9 12203 */
da3ced29 12204 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12205 if (connector_state->crtc != crtc)
7758a113 12206 continue;
7ae89233 12207
0b901879
ACO
12208 encoder = to_intel_encoder(connector_state->best_encoder);
12209
efea6e8e
DV
12210 if (!(encoder->compute_config(encoder, pipe_config))) {
12211 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12212 goto fail;
12213 }
ee7b9f93 12214 }
47f1c6c9 12215
ff9a6750
DV
12216 /* Set default port clock if not overwritten by the encoder. Needs to be
12217 * done afterwards in case the encoder adjusts the mode. */
12218 if (!pipe_config->port_clock)
2d112de7 12219 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12220 * pipe_config->pixel_multiplier;
ff9a6750 12221
a43f6e0f 12222 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12223 if (ret < 0) {
7758a113
DV
12224 DRM_DEBUG_KMS("CRTC fixup failed\n");
12225 goto fail;
ee7b9f93 12226 }
e29c22c0
DV
12227
12228 if (ret == RETRY) {
12229 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12230 ret = -EINVAL;
12231 goto fail;
12232 }
12233
12234 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12235 retry = false;
12236 goto encoder_retry;
12237 }
12238
d328c9d7 12239 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
4e53c2e0 12240 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12241 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12242
548ee15b 12243 return 0;
7758a113 12244fail:
548ee15b 12245 return ret;
ee7b9f93 12246}
47f1c6c9 12247
ea9d758d 12248static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 12249{
ea9d758d 12250 struct drm_encoder *encoder;
f6e5b160 12251 struct drm_device *dev = crtc->dev;
f6e5b160 12252
ea9d758d
DV
12253 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12254 if (encoder->crtc == crtc)
12255 return true;
12256
12257 return false;
12258}
12259
0a9ab303
ACO
12260static bool
12261needs_modeset(struct drm_crtc_state *state)
12262{
12263 return state->mode_changed || state->active_changed;
12264}
12265
ea9d758d 12266static void
0a9ab303 12267intel_modeset_update_state(struct drm_atomic_state *state)
ea9d758d 12268{
0a9ab303 12269 struct drm_device *dev = state->dev;
ba41c0de 12270 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d 12271 struct intel_encoder *intel_encoder;
0a9ab303
ACO
12272 struct drm_crtc *crtc;
12273 struct drm_crtc_state *crtc_state;
ea9d758d 12274 struct drm_connector *connector;
0a9ab303 12275 int i;
ea9d758d 12276
ba41c0de
DV
12277 intel_shared_dpll_commit(dev_priv);
12278
b2784e15 12279 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
12280 if (!intel_encoder->base.crtc)
12281 continue;
12282
bd4b4827
ACO
12283 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12284 if (crtc != intel_encoder->base.crtc)
12285 continue;
0a9ab303 12286
bd4b4827
ACO
12287 if (crtc_state->enable && needs_modeset(crtc_state))
12288 intel_encoder->connectors_active = false;
ea9d758d 12289
bd4b4827
ACO
12290 break;
12291 }
ea9d758d
DV
12292 }
12293
a821fc46
ACO
12294 drm_atomic_helper_swap_state(state->dev, state);
12295 intel_modeset_fixup_state(state);
ea9d758d 12296
7668851f 12297 /* Double check state. */
0a9ab303
ACO
12298 for_each_crtc(dev, crtc) {
12299 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
ea9d758d
DV
12300 }
12301
12302 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12303 if (!connector->encoder || !connector->encoder->crtc)
12304 continue;
12305
bd4b4827
ACO
12306 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12307 if (crtc != connector->encoder->crtc)
12308 continue;
0a9ab303 12309
bd4b4827
ACO
12310 if (crtc->state->enable && needs_modeset(crtc->state)) {
12311 struct drm_property *dpms_property =
12312 dev->mode_config.dpms_property;
ea9d758d 12313
bd4b4827
ACO
12314 connector->dpms = DRM_MODE_DPMS_ON;
12315 drm_object_property_set_value(&connector->base,
12316 dpms_property,
12317 DRM_MODE_DPMS_ON);
68d34720 12318
bd4b4827
ACO
12319 intel_encoder = to_intel_encoder(connector->encoder);
12320 intel_encoder->connectors_active = true;
12321 }
ea9d758d 12322
bd4b4827 12323 break;
ea9d758d
DV
12324 }
12325 }
12326
12327}
12328
3bd26263 12329static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12330{
3bd26263 12331 int diff;
f1f644dc
JB
12332
12333 if (clock1 == clock2)
12334 return true;
12335
12336 if (!clock1 || !clock2)
12337 return false;
12338
12339 diff = abs(clock1 - clock2);
12340
12341 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12342 return true;
12343
12344 return false;
12345}
12346
25c5b266
DV
12347#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12348 list_for_each_entry((intel_crtc), \
12349 &(dev)->mode_config.crtc_list, \
12350 base.head) \
0973f18f 12351 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12352
0e8ffe1b 12353static bool
2fa2fe9a 12354intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
12355 struct intel_crtc_state *current_config,
12356 struct intel_crtc_state *pipe_config)
0e8ffe1b 12357{
66e985c0
DV
12358#define PIPE_CONF_CHECK_X(name) \
12359 if (current_config->name != pipe_config->name) { \
12360 DRM_ERROR("mismatch in " #name " " \
12361 "(expected 0x%08x, found 0x%08x)\n", \
12362 current_config->name, \
12363 pipe_config->name); \
12364 return false; \
12365 }
12366
08a24034
DV
12367#define PIPE_CONF_CHECK_I(name) \
12368 if (current_config->name != pipe_config->name) { \
12369 DRM_ERROR("mismatch in " #name " " \
12370 "(expected %i, found %i)\n", \
12371 current_config->name, \
12372 pipe_config->name); \
12373 return false; \
88adfff1
DV
12374 }
12375
b95af8be
VK
12376/* This is required for BDW+ where there is only one set of registers for
12377 * switching between high and low RR.
12378 * This macro can be used whenever a comparison has to be made between one
12379 * hw state and multiple sw state variables.
12380 */
12381#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12382 if ((current_config->name != pipe_config->name) && \
12383 (current_config->alt_name != pipe_config->name)) { \
12384 DRM_ERROR("mismatch in " #name " " \
12385 "(expected %i or %i, found %i)\n", \
12386 current_config->name, \
12387 current_config->alt_name, \
12388 pipe_config->name); \
12389 return false; \
12390 }
12391
1bd1bd80
DV
12392#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12393 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 12394 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12395 "(expected %i, found %i)\n", \
12396 current_config->name & (mask), \
12397 pipe_config->name & (mask)); \
12398 return false; \
12399 }
12400
5e550656
VS
12401#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12402 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12403 DRM_ERROR("mismatch in " #name " " \
12404 "(expected %i, found %i)\n", \
12405 current_config->name, \
12406 pipe_config->name); \
12407 return false; \
12408 }
12409
bb760063
DV
12410#define PIPE_CONF_QUIRK(quirk) \
12411 ((current_config->quirks | pipe_config->quirks) & (quirk))
12412
eccb140b
DV
12413 PIPE_CONF_CHECK_I(cpu_transcoder);
12414
08a24034
DV
12415 PIPE_CONF_CHECK_I(has_pch_encoder);
12416 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
12417 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12418 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12419 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12420 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12421 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 12422
eb14cb74 12423 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
12424
12425 if (INTEL_INFO(dev)->gen < 8) {
12426 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12427 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12428 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12429 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12430 PIPE_CONF_CHECK_I(dp_m_n.tu);
12431
12432 if (current_config->has_drrs) {
12433 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12434 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12435 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12436 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12437 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12438 }
12439 } else {
12440 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12441 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12442 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12443 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12444 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12445 }
eb14cb74 12446
2d112de7
ACO
12447 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12448 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12449 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12450 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12451 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12452 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12453
2d112de7
ACO
12454 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12455 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12456 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12457 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12458 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12459 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12460
c93f54cf 12461 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12462 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
12463 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12464 IS_VALLEYVIEW(dev))
12465 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12466 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12467
9ed109a7
DV
12468 PIPE_CONF_CHECK_I(has_audio);
12469
2d112de7 12470 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12471 DRM_MODE_FLAG_INTERLACE);
12472
bb760063 12473 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12474 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12475 DRM_MODE_FLAG_PHSYNC);
2d112de7 12476 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12477 DRM_MODE_FLAG_NHSYNC);
2d112de7 12478 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12479 DRM_MODE_FLAG_PVSYNC);
2d112de7 12480 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12481 DRM_MODE_FLAG_NVSYNC);
12482 }
045ac3b5 12483
37327abd
VS
12484 PIPE_CONF_CHECK_I(pipe_src_w);
12485 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 12486
9953599b
DV
12487 /*
12488 * FIXME: BIOS likes to set up a cloned config with lvds+external
12489 * screen. Since we don't yet re-compute the pipe config when moving
12490 * just the lvds port away to another pipe the sw tracking won't match.
12491 *
12492 * Proper atomic modesets with recomputed global state will fix this.
12493 * Until then just don't check gmch state for inherited modes.
12494 */
12495 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12496 PIPE_CONF_CHECK_I(gmch_pfit.control);
12497 /* pfit ratios are autocomputed by the hw on gen4+ */
12498 if (INTEL_INFO(dev)->gen < 4)
12499 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12500 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12501 }
12502
fd4daa9c
CW
12503 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12504 if (current_config->pch_pfit.enabled) {
12505 PIPE_CONF_CHECK_I(pch_pfit.pos);
12506 PIPE_CONF_CHECK_I(pch_pfit.size);
12507 }
2fa2fe9a 12508
a1b2278e
CK
12509 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12510
e59150dc
JB
12511 /* BDW+ don't expose a synchronous way to read the state */
12512 if (IS_HASWELL(dev))
12513 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12514
282740f7
VS
12515 PIPE_CONF_CHECK_I(double_wide);
12516
26804afd
DV
12517 PIPE_CONF_CHECK_X(ddi_pll_sel);
12518
c0d43d62 12519 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 12520 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12521 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12522 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12523 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12524 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
12525 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12526 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12527 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12528
42571aef
VS
12529 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12530 PIPE_CONF_CHECK_I(pipe_bpp);
12531
2d112de7 12532 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12533 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12534
66e985c0 12535#undef PIPE_CONF_CHECK_X
08a24034 12536#undef PIPE_CONF_CHECK_I
b95af8be 12537#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 12538#undef PIPE_CONF_CHECK_FLAGS
5e550656 12539#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12540#undef PIPE_CONF_QUIRK
88adfff1 12541
0e8ffe1b
DV
12542 return true;
12543}
12544
08db6652
DL
12545static void check_wm_state(struct drm_device *dev)
12546{
12547 struct drm_i915_private *dev_priv = dev->dev_private;
12548 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12549 struct intel_crtc *intel_crtc;
12550 int plane;
12551
12552 if (INTEL_INFO(dev)->gen < 9)
12553 return;
12554
12555 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12556 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12557
12558 for_each_intel_crtc(dev, intel_crtc) {
12559 struct skl_ddb_entry *hw_entry, *sw_entry;
12560 const enum pipe pipe = intel_crtc->pipe;
12561
12562 if (!intel_crtc->active)
12563 continue;
12564
12565 /* planes */
dd740780 12566 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
12567 hw_entry = &hw_ddb.plane[pipe][plane];
12568 sw_entry = &sw_ddb->plane[pipe][plane];
12569
12570 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12571 continue;
12572
12573 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12574 "(expected (%u,%u), found (%u,%u))\n",
12575 pipe_name(pipe), plane + 1,
12576 sw_entry->start, sw_entry->end,
12577 hw_entry->start, hw_entry->end);
12578 }
12579
12580 /* cursor */
12581 hw_entry = &hw_ddb.cursor[pipe];
12582 sw_entry = &sw_ddb->cursor[pipe];
12583
12584 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12585 continue;
12586
12587 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12588 "(expected (%u,%u), found (%u,%u))\n",
12589 pipe_name(pipe),
12590 sw_entry->start, sw_entry->end,
12591 hw_entry->start, hw_entry->end);
12592 }
12593}
12594
91d1b4bd
DV
12595static void
12596check_connector_state(struct drm_device *dev)
8af6cf88 12597{
8af6cf88
DV
12598 struct intel_connector *connector;
12599
3a3371ff 12600 for_each_intel_connector(dev, connector) {
8af6cf88
DV
12601 /* This also checks the encoder/connector hw state with the
12602 * ->get_hw_state callbacks. */
12603 intel_connector_check_state(connector);
12604
e2c719b7 12605 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
12606 "connector's staged encoder doesn't match current encoder\n");
12607 }
91d1b4bd
DV
12608}
12609
12610static void
12611check_encoder_state(struct drm_device *dev)
12612{
12613 struct intel_encoder *encoder;
12614 struct intel_connector *connector;
8af6cf88 12615
b2784e15 12616 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
12617 bool enabled = false;
12618 bool active = false;
12619 enum pipe pipe, tracked_pipe;
12620
12621 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12622 encoder->base.base.id,
8e329a03 12623 encoder->base.name);
8af6cf88 12624
e2c719b7 12625 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 12626 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 12627 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
12628 "encoder's active_connectors set, but no crtc\n");
12629
3a3371ff 12630 for_each_intel_connector(dev, connector) {
8af6cf88
DV
12631 if (connector->base.encoder != &encoder->base)
12632 continue;
12633 enabled = true;
12634 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12635 active = true;
12636 }
0e32b39c
DA
12637 /*
12638 * for MST connectors if we unplug the connector is gone
12639 * away but the encoder is still connected to a crtc
12640 * until a modeset happens in response to the hotplug.
12641 */
12642 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12643 continue;
12644
e2c719b7 12645 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12646 "encoder's enabled state mismatch "
12647 "(expected %i, found %i)\n",
12648 !!encoder->base.crtc, enabled);
e2c719b7 12649 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
12650 "active encoder with no crtc\n");
12651
e2c719b7 12652 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
12653 "encoder's computed active state doesn't match tracked active state "
12654 "(expected %i, found %i)\n", active, encoder->connectors_active);
12655
12656 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 12657 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
12658 "encoder's hw state doesn't match sw tracking "
12659 "(expected %i, found %i)\n",
12660 encoder->connectors_active, active);
12661
12662 if (!encoder->base.crtc)
12663 continue;
12664
12665 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 12666 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
12667 "active encoder's pipe doesn't match"
12668 "(expected %i, found %i)\n",
12669 tracked_pipe, pipe);
12670
12671 }
91d1b4bd
DV
12672}
12673
12674static void
12675check_crtc_state(struct drm_device *dev)
12676{
fbee40df 12677 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12678 struct intel_crtc *crtc;
12679 struct intel_encoder *encoder;
5cec258b 12680 struct intel_crtc_state pipe_config;
8af6cf88 12681
d3fcc808 12682 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
12683 bool enabled = false;
12684 bool active = false;
12685
045ac3b5
JB
12686 memset(&pipe_config, 0, sizeof(pipe_config));
12687
8af6cf88
DV
12688 DRM_DEBUG_KMS("[CRTC:%d]\n",
12689 crtc->base.base.id);
12690
83d65738 12691 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
8af6cf88
DV
12692 "active crtc, but not enabled in sw tracking\n");
12693
b2784e15 12694 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
12695 if (encoder->base.crtc != &crtc->base)
12696 continue;
12697 enabled = true;
12698 if (encoder->connectors_active)
12699 active = true;
12700 }
6c49f241 12701
e2c719b7 12702 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
12703 "crtc's computed active state doesn't match tracked active state "
12704 "(expected %i, found %i)\n", active, crtc->active);
83d65738 12705 I915_STATE_WARN(enabled != crtc->base.state->enable,
8af6cf88 12706 "crtc's computed enabled state doesn't match tracked enabled state "
83d65738
MR
12707 "(expected %i, found %i)\n", enabled,
12708 crtc->base.state->enable);
8af6cf88 12709
0e8ffe1b
DV
12710 active = dev_priv->display.get_pipe_config(crtc,
12711 &pipe_config);
d62cf62a 12712
b6b5d049
VS
12713 /* hw state is inconsistent with the pipe quirk */
12714 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12715 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
12716 active = crtc->active;
12717
b2784e15 12718 for_each_intel_encoder(dev, encoder) {
3eaba51c 12719 enum pipe pipe;
6c49f241
DV
12720 if (encoder->base.crtc != &crtc->base)
12721 continue;
1d37b689 12722 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
12723 encoder->get_config(encoder, &pipe_config);
12724 }
12725
e2c719b7 12726 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
12727 "crtc active state doesn't match with hw state "
12728 "(expected %i, found %i)\n", crtc->active, active);
12729
c0b03411 12730 if (active &&
6e3c9717 12731 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 12732 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
12733 intel_dump_pipe_config(crtc, &pipe_config,
12734 "[hw state]");
6e3c9717 12735 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
12736 "[sw state]");
12737 }
8af6cf88
DV
12738 }
12739}
12740
91d1b4bd
DV
12741static void
12742check_shared_dpll_state(struct drm_device *dev)
12743{
fbee40df 12744 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12745 struct intel_crtc *crtc;
12746 struct intel_dpll_hw_state dpll_hw_state;
12747 int i;
5358901f
DV
12748
12749 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12750 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12751 int enabled_crtcs = 0, active_crtcs = 0;
12752 bool active;
12753
12754 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12755
12756 DRM_DEBUG_KMS("%s\n", pll->name);
12757
12758 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12759
e2c719b7 12760 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 12761 "more active pll users than references: %i vs %i\n",
3e369b76 12762 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 12763 I915_STATE_WARN(pll->active && !pll->on,
5358901f 12764 "pll in active use but not on in sw tracking\n");
e2c719b7 12765 I915_STATE_WARN(pll->on && !pll->active,
35c95375 12766 "pll in on but not on in use in sw tracking\n");
e2c719b7 12767 I915_STATE_WARN(pll->on != active,
5358901f
DV
12768 "pll on state mismatch (expected %i, found %i)\n",
12769 pll->on, active);
12770
d3fcc808 12771 for_each_intel_crtc(dev, crtc) {
83d65738 12772 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
12773 enabled_crtcs++;
12774 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12775 active_crtcs++;
12776 }
e2c719b7 12777 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
12778 "pll active crtcs mismatch (expected %i, found %i)\n",
12779 pll->active, active_crtcs);
e2c719b7 12780 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 12781 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 12782 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 12783
e2c719b7 12784 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
12785 sizeof(dpll_hw_state)),
12786 "pll hw state mismatch\n");
5358901f 12787 }
8af6cf88
DV
12788}
12789
91d1b4bd
DV
12790void
12791intel_modeset_check_state(struct drm_device *dev)
12792{
08db6652 12793 check_wm_state(dev);
91d1b4bd
DV
12794 check_connector_state(dev);
12795 check_encoder_state(dev);
12796 check_crtc_state(dev);
12797 check_shared_dpll_state(dev);
12798}
12799
5cec258b 12800void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
12801 int dotclock)
12802{
12803 /*
12804 * FDI already provided one idea for the dotclock.
12805 * Yell if the encoder disagrees.
12806 */
2d112de7 12807 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 12808 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 12809 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
12810}
12811
80715b2f
VS
12812static void update_scanline_offset(struct intel_crtc *crtc)
12813{
12814 struct drm_device *dev = crtc->base.dev;
12815
12816 /*
12817 * The scanline counter increments at the leading edge of hsync.
12818 *
12819 * On most platforms it starts counting from vtotal-1 on the
12820 * first active line. That means the scanline counter value is
12821 * always one less than what we would expect. Ie. just after
12822 * start of vblank, which also occurs at start of hsync (on the
12823 * last active line), the scanline counter will read vblank_start-1.
12824 *
12825 * On gen2 the scanline counter starts counting from 1 instead
12826 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12827 * to keep the value positive), instead of adding one.
12828 *
12829 * On HSW+ the behaviour of the scanline counter depends on the output
12830 * type. For DP ports it behaves like most other platforms, but on HDMI
12831 * there's an extra 1 line difference. So we need to add two instead of
12832 * one to the value.
12833 */
12834 if (IS_GEN2(dev)) {
6e3c9717 12835 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
12836 int vtotal;
12837
12838 vtotal = mode->crtc_vtotal;
12839 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12840 vtotal /= 2;
12841
12842 crtc->scanline_offset = vtotal - 1;
12843 } else if (HAS_DDI(dev) &&
409ee761 12844 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
12845 crtc->scanline_offset = 2;
12846 } else
12847 crtc->scanline_offset = 1;
12848}
12849
5cec258b 12850static struct intel_crtc_state *
7f27126e 12851intel_modeset_compute_config(struct drm_crtc *crtc,
0a9ab303 12852 struct drm_atomic_state *state)
7f27126e 12853{
548ee15b 12854 struct intel_crtc_state *pipe_config;
0b901879
ACO
12855 int ret = 0;
12856
12857 ret = drm_atomic_add_affected_connectors(state, crtc);
12858 if (ret)
12859 return ERR_PTR(ret);
7f27126e 12860
8c7b5ccb
ACO
12861 ret = drm_atomic_helper_check_modeset(state->dev, state);
12862 if (ret)
12863 return ERR_PTR(ret);
7f27126e 12864
7f27126e
JB
12865 /*
12866 * Note this needs changes when we start tracking multiple modes
12867 * and crtcs. At that point we'll need to compute the whole config
12868 * (i.e. one pipe_config for each crtc) rather than just the one
12869 * for this crtc.
12870 */
548ee15b
ACO
12871 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12872 if (IS_ERR(pipe_config))
12873 return pipe_config;
83a57153 12874
4fed33f6 12875 if (!pipe_config->base.enable)
548ee15b 12876 return pipe_config;
7f27126e 12877
8c7b5ccb 12878 ret = intel_modeset_pipe_config(crtc, state, pipe_config);
548ee15b
ACO
12879 if (ret)
12880 return ERR_PTR(ret);
12881
8d8c9b51
ACO
12882 /* Check things that can only be changed through modeset */
12883 if (pipe_config->has_audio !=
12884 to_intel_crtc(crtc)->config->has_audio)
12885 pipe_config->base.mode_changed = true;
12886
12887 /*
12888 * Note we have an issue here with infoframes: current code
12889 * only updates them on the full mode set path per hw
12890 * requirements. So here we should be checking for any
12891 * required changes and forcing a mode set.
12892 */
12893
548ee15b 12894 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,"[modeset]");
db7542dd 12895
8c7b5ccb
ACO
12896 ret = drm_atomic_helper_check_planes(state->dev, state);
12897 if (ret)
12898 return ERR_PTR(ret);
12899
548ee15b 12900 return pipe_config;
7f27126e
JB
12901}
12902
0a9ab303 12903static int __intel_set_mode_setup_plls(struct drm_atomic_state *state)
ed6739ef 12904{
225da59b 12905 struct drm_device *dev = state->dev;
ed6739ef 12906 struct drm_i915_private *dev_priv = to_i915(dev);
0a9ab303 12907 unsigned clear_pipes = 0;
ed6739ef 12908 struct intel_crtc *intel_crtc;
0a9ab303
ACO
12909 struct intel_crtc_state *intel_crtc_state;
12910 struct drm_crtc *crtc;
12911 struct drm_crtc_state *crtc_state;
ed6739ef 12912 int ret = 0;
0a9ab303 12913 int i;
ed6739ef
ACO
12914
12915 if (!dev_priv->display.crtc_compute_clock)
12916 return 0;
12917
0a9ab303
ACO
12918 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12919 intel_crtc = to_intel_crtc(crtc);
4978cc93 12920 intel_crtc_state = to_intel_crtc_state(crtc_state);
0a9ab303 12921
4978cc93 12922 if (needs_modeset(crtc_state)) {
0a9ab303 12923 clear_pipes |= 1 << intel_crtc->pipe;
4978cc93 12924 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
4978cc93 12925 }
0a9ab303
ACO
12926 }
12927
ed6739ef
ACO
12928 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12929 if (ret)
12930 goto done;
12931
0a9ab303
ACO
12932 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12933 if (!needs_modeset(crtc_state) || !crtc_state->enable)
225da59b
ACO
12934 continue;
12935
0a9ab303
ACO
12936 intel_crtc = to_intel_crtc(crtc);
12937 intel_crtc_state = to_intel_crtc_state(crtc_state);
12938
ed6739ef 12939 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
0a9ab303 12940 intel_crtc_state);
ed6739ef
ACO
12941 if (ret) {
12942 intel_shared_dpll_abort_config(dev_priv);
12943 goto done;
12944 }
12945 }
12946
12947done:
12948 return ret;
12949}
12950
054518dd
ACO
12951/* Code that should eventually be part of atomic_check() */
12952static int __intel_set_mode_checks(struct drm_atomic_state *state)
12953{
12954 struct drm_device *dev = state->dev;
12955 int ret;
12956
12957 /*
12958 * See if the config requires any additional preparation, e.g.
12959 * to adjust global state with pipes off. We need to do this
12960 * here so we can get the modeset_pipe updated config for the new
12961 * mode set on this crtc. For other crtcs we need to use the
12962 * adjusted_mode bits in the crtc directly.
12963 */
b432e5cf
VS
12964 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev) || IS_BROADWELL(dev)) {
12965 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev))
12966 ret = valleyview_modeset_global_pipes(state);
12967 else
12968 ret = broadwell_modeset_global_pipes(state);
12969
054518dd
ACO
12970 if (ret)
12971 return ret;
12972 }
12973
12974 ret = __intel_set_mode_setup_plls(state);
12975 if (ret)
12976 return ret;
12977
12978 return 0;
12979}
12980
0a9ab303 12981static int __intel_set_mode(struct drm_crtc *modeset_crtc,
0a9ab303 12982 struct intel_crtc_state *pipe_config)
a6778b3c 12983{
0a9ab303 12984 struct drm_device *dev = modeset_crtc->dev;
fbee40df 12985 struct drm_i915_private *dev_priv = dev->dev_private;
304603f4 12986 struct drm_atomic_state *state = pipe_config->base.state;
0a9ab303
ACO
12987 struct drm_crtc *crtc;
12988 struct drm_crtc_state *crtc_state;
c0c36b94 12989 int ret = 0;
0a9ab303 12990 int i;
a6778b3c 12991
054518dd
ACO
12992 ret = __intel_set_mode_checks(state);
12993 if (ret < 0)
12994 return ret;
12995
d4afb8cc
ACO
12996 ret = drm_atomic_helper_prepare_planes(dev, state);
12997 if (ret)
12998 return ret;
12999
0a9ab303
ACO
13000 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13001 if (!needs_modeset(crtc_state))
13002 continue;
460da916 13003
0a9ab303
ACO
13004 if (!crtc_state->enable) {
13005 intel_crtc_disable(crtc);
13006 } else if (crtc->state->enable) {
13007 intel_crtc_disable_planes(crtc);
13008 dev_priv->display.crtc_disable(crtc);
ce22dba9 13009 }
ea9d758d 13010 }
a6778b3c 13011
6c4c86f5
DV
13012 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
13013 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
13014 *
13015 * Note we'll need to fix this up when we start tracking multiple
13016 * pipes; here we assume a single modeset_pipe and only track the
13017 * single crtc and mode.
f6e5b160 13018 */
0a9ab303 13019 if (pipe_config->base.enable && needs_modeset(&pipe_config->base)) {
8c7b5ccb 13020 modeset_crtc->mode = pipe_config->base.mode;
c326c0a9
VS
13021
13022 /*
13023 * Calculate and store various constants which
13024 * are later needed by vblank and swap-completion
13025 * timestamping. They are derived from true hwmode.
13026 */
0a9ab303 13027 drm_calc_timestamping_constants(modeset_crtc,
2d112de7 13028 &pipe_config->base.adjusted_mode);
b8cecdf5 13029 }
7758a113 13030
ea9d758d
DV
13031 /* Only after disabling all output pipelines that will be changed can we
13032 * update the the output configuration. */
0a9ab303 13033 intel_modeset_update_state(state);
f6e5b160 13034
a821fc46
ACO
13035 /* The state has been swaped above, so state actually contains the
13036 * old state now. */
13037
304603f4 13038 modeset_update_crtc_power_domains(state);
47fab737 13039
d4afb8cc 13040 drm_atomic_helper_commit_planes(dev, state);
a6778b3c
DV
13041
13042 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
0a9ab303 13043 for_each_crtc_in_state(state, crtc, crtc_state, i) {
a821fc46 13044 if (!needs_modeset(crtc->state) || !crtc->state->enable)
0a9ab303
ACO
13045 continue;
13046
13047 update_scanline_offset(to_intel_crtc(crtc));
80715b2f 13048
0a9ab303
ACO
13049 dev_priv->display.crtc_enable(crtc);
13050 intel_crtc_enable_planes(crtc);
80715b2f 13051 }
a6778b3c 13052
a6778b3c 13053 /* FIXME: add subpixel order */
83a57153 13054
d4afb8cc
ACO
13055 drm_atomic_helper_cleanup_planes(dev, state);
13056
2bfb4627
ACO
13057 drm_atomic_state_free(state);
13058
9eb45f22 13059 return 0;
f6e5b160
CW
13060}
13061
0a9ab303 13062static int intel_set_mode_with_config(struct drm_crtc *crtc,
0a9ab303 13063 struct intel_crtc_state *pipe_config)
f30da187
DV
13064{
13065 int ret;
13066
8c7b5ccb 13067 ret = __intel_set_mode(crtc, pipe_config);
f30da187
DV
13068
13069 if (ret == 0)
13070 intel_modeset_check_state(crtc->dev);
13071
13072 return ret;
13073}
13074
7f27126e 13075static int intel_set_mode(struct drm_crtc *crtc,
83a57153 13076 struct drm_atomic_state *state)
7f27126e 13077{
5cec258b 13078 struct intel_crtc_state *pipe_config;
83a57153 13079 int ret = 0;
7f27126e 13080
8c7b5ccb 13081 pipe_config = intel_modeset_compute_config(crtc, state);
83a57153
ACO
13082 if (IS_ERR(pipe_config)) {
13083 ret = PTR_ERR(pipe_config);
13084 goto out;
13085 }
13086
8c7b5ccb 13087 ret = intel_set_mode_with_config(crtc, pipe_config);
83a57153
ACO
13088 if (ret)
13089 goto out;
7f27126e 13090
83a57153
ACO
13091out:
13092 return ret;
7f27126e
JB
13093}
13094
c0c36b94
CW
13095void intel_crtc_restore_mode(struct drm_crtc *crtc)
13096{
83a57153
ACO
13097 struct drm_device *dev = crtc->dev;
13098 struct drm_atomic_state *state;
4be07317 13099 struct intel_crtc *intel_crtc;
83a57153
ACO
13100 struct intel_encoder *encoder;
13101 struct intel_connector *connector;
13102 struct drm_connector_state *connector_state;
4be07317 13103 struct intel_crtc_state *crtc_state;
2bfb4627 13104 int ret;
83a57153
ACO
13105
13106 state = drm_atomic_state_alloc(dev);
13107 if (!state) {
13108 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
13109 crtc->base.id);
13110 return;
13111 }
13112
13113 state->acquire_ctx = dev->mode_config.acquire_ctx;
13114
13115 /* The force restore path in the HW readout code relies on the staged
13116 * config still keeping the user requested config while the actual
13117 * state has been overwritten by the configuration read from HW. We
13118 * need to copy the staged config to the atomic state, otherwise the
13119 * mode set will just reapply the state the HW is already in. */
13120 for_each_intel_encoder(dev, encoder) {
13121 if (&encoder->new_crtc->base != crtc)
13122 continue;
13123
13124 for_each_intel_connector(dev, connector) {
13125 if (connector->new_encoder != encoder)
13126 continue;
13127
13128 connector_state = drm_atomic_get_connector_state(state, &connector->base);
13129 if (IS_ERR(connector_state)) {
13130 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
13131 connector->base.base.id,
13132 connector->base.name,
13133 PTR_ERR(connector_state));
13134 continue;
13135 }
13136
13137 connector_state->crtc = crtc;
13138 connector_state->best_encoder = &encoder->base;
13139 }
13140 }
13141
4be07317
ACO
13142 for_each_intel_crtc(dev, intel_crtc) {
13143 if (intel_crtc->new_enabled == intel_crtc->base.enabled)
13144 continue;
13145
13146 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
13147 if (IS_ERR(crtc_state)) {
13148 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
13149 intel_crtc->base.base.id,
13150 PTR_ERR(crtc_state));
13151 continue;
13152 }
13153
49d6fa21
ML
13154 crtc_state->base.active = crtc_state->base.enable =
13155 intel_crtc->new_enabled;
8c7b5ccb
ACO
13156
13157 if (&intel_crtc->base == crtc)
13158 drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
4be07317
ACO
13159 }
13160
d3a40d1b
ACO
13161 intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
13162 crtc->primary->fb, crtc->x, crtc->y);
13163
2bfb4627
ACO
13164 ret = intel_set_mode(crtc, state);
13165 if (ret)
13166 drm_atomic_state_free(state);
c0c36b94
CW
13167}
13168
25c5b266
DV
13169#undef for_each_intel_crtc_masked
13170
b7885264
ACO
13171static bool intel_connector_in_mode_set(struct intel_connector *connector,
13172 struct drm_mode_set *set)
13173{
13174 int ro;
13175
13176 for (ro = 0; ro < set->num_connectors; ro++)
13177 if (set->connectors[ro] == &connector->base)
13178 return true;
13179
13180 return false;
13181}
13182
2e431051 13183static int
9a935856
DV
13184intel_modeset_stage_output_state(struct drm_device *dev,
13185 struct drm_mode_set *set,
944b0c76 13186 struct drm_atomic_state *state)
50f56119 13187{
9a935856 13188 struct intel_connector *connector;
d5432a9d 13189 struct drm_connector *drm_connector;
944b0c76 13190 struct drm_connector_state *connector_state;
d5432a9d
ACO
13191 struct drm_crtc *crtc;
13192 struct drm_crtc_state *crtc_state;
13193 int i, ret;
50f56119 13194
9abdda74 13195 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
13196 * of connectors. For paranoia, double-check this. */
13197 WARN_ON(!set->fb && (set->num_connectors != 0));
13198 WARN_ON(set->fb && (set->num_connectors == 0));
13199
3a3371ff 13200 for_each_intel_connector(dev, connector) {
b7885264
ACO
13201 bool in_mode_set = intel_connector_in_mode_set(connector, set);
13202
d5432a9d
ACO
13203 if (!in_mode_set && connector->base.state->crtc != set->crtc)
13204 continue;
13205
13206 connector_state =
13207 drm_atomic_get_connector_state(state, &connector->base);
13208 if (IS_ERR(connector_state))
13209 return PTR_ERR(connector_state);
13210
b7885264
ACO
13211 if (in_mode_set) {
13212 int pipe = to_intel_crtc(set->crtc)->pipe;
d5432a9d
ACO
13213 connector_state->best_encoder =
13214 &intel_find_encoder(connector, pipe)->base;
50f56119
DV
13215 }
13216
d5432a9d 13217 if (connector->base.state->crtc != set->crtc)
b7885264
ACO
13218 continue;
13219
9a935856
DV
13220 /* If we disable the crtc, disable all its connectors. Also, if
13221 * the connector is on the changing crtc but not on the new
13222 * connector list, disable it. */
b7885264 13223 if (!set->fb || !in_mode_set) {
d5432a9d 13224 connector_state->best_encoder = NULL;
9a935856
DV
13225
13226 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
13227 connector->base.base.id,
c23cc417 13228 connector->base.name);
9a935856 13229 }
50f56119 13230 }
9a935856 13231 /* connector->new_encoder is now updated for all connectors. */
50f56119 13232
d5432a9d
ACO
13233 for_each_connector_in_state(state, drm_connector, connector_state, i) {
13234 connector = to_intel_connector(drm_connector);
13235
13236 if (!connector_state->best_encoder) {
13237 ret = drm_atomic_set_crtc_for_connector(connector_state,
13238 NULL);
13239 if (ret)
13240 return ret;
7668851f 13241
50f56119 13242 continue;
d5432a9d 13243 }
50f56119 13244
d5432a9d
ACO
13245 if (intel_connector_in_mode_set(connector, set)) {
13246 struct drm_crtc *crtc = connector->base.state->crtc;
13247
13248 /* If this connector was in a previous crtc, add it
13249 * to the state. We might need to disable it. */
13250 if (crtc) {
13251 crtc_state =
13252 drm_atomic_get_crtc_state(state, crtc);
13253 if (IS_ERR(crtc_state))
13254 return PTR_ERR(crtc_state);
13255 }
13256
13257 ret = drm_atomic_set_crtc_for_connector(connector_state,
13258 set->crtc);
13259 if (ret)
13260 return ret;
13261 }
50f56119
DV
13262
13263 /* Make sure the new CRTC will work with the encoder */
d5432a9d
ACO
13264 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
13265 connector_state->crtc)) {
5e2b584e 13266 return -EINVAL;
50f56119 13267 }
944b0c76 13268
9a935856
DV
13269 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
13270 connector->base.base.id,
c23cc417 13271 connector->base.name,
d5432a9d 13272 connector_state->crtc->base.id);
944b0c76 13273
d5432a9d
ACO
13274 if (connector_state->best_encoder != &connector->encoder->base)
13275 connector->encoder =
13276 to_intel_encoder(connector_state->best_encoder);
0e32b39c 13277 }
7668851f 13278
d5432a9d 13279 for_each_crtc_in_state(state, crtc, crtc_state, i) {
49d6fa21
ML
13280 bool has_connectors;
13281
d5432a9d
ACO
13282 ret = drm_atomic_add_affected_connectors(state, crtc);
13283 if (ret)
13284 return ret;
4be07317 13285
49d6fa21
ML
13286 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
13287 if (has_connectors != crtc_state->enable)
13288 crtc_state->enable =
13289 crtc_state->active = has_connectors;
7668851f
VS
13290 }
13291
8c7b5ccb
ACO
13292 ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
13293 set->fb, set->x, set->y);
13294 if (ret)
13295 return ret;
13296
13297 crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
13298 if (IS_ERR(crtc_state))
13299 return PTR_ERR(crtc_state);
13300
13301 if (set->mode)
13302 drm_mode_copy(&crtc_state->mode, set->mode);
13303
13304 if (set->num_connectors)
13305 crtc_state->active = true;
13306
2e431051
DV
13307 return 0;
13308}
13309
bb546623
ACO
13310static bool primary_plane_visible(struct drm_crtc *crtc)
13311{
13312 struct intel_plane_state *plane_state =
13313 to_intel_plane_state(crtc->primary->state);
13314
13315 return plane_state->visible;
13316}
13317
2e431051
DV
13318static int intel_crtc_set_config(struct drm_mode_set *set)
13319{
13320 struct drm_device *dev;
83a57153 13321 struct drm_atomic_state *state = NULL;
5cec258b 13322 struct intel_crtc_state *pipe_config;
bb546623 13323 bool primary_plane_was_visible;
2e431051 13324 int ret;
2e431051 13325
8d3e375e
DV
13326 BUG_ON(!set);
13327 BUG_ON(!set->crtc);
13328 BUG_ON(!set->crtc->helper_private);
2e431051 13329
7e53f3a4
DV
13330 /* Enforce sane interface api - has been abused by the fb helper. */
13331 BUG_ON(!set->mode && set->fb);
13332 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 13333
2e431051
DV
13334 if (set->fb) {
13335 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
13336 set->crtc->base.id, set->fb->base.id,
13337 (int)set->num_connectors, set->x, set->y);
13338 } else {
13339 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
13340 }
13341
13342 dev = set->crtc->dev;
13343
83a57153 13344 state = drm_atomic_state_alloc(dev);
7cbf41d6
ACO
13345 if (!state)
13346 return -ENOMEM;
83a57153
ACO
13347
13348 state->acquire_ctx = dev->mode_config.acquire_ctx;
13349
462a425a 13350 ret = intel_modeset_stage_output_state(dev, set, state);
2e431051 13351 if (ret)
7cbf41d6 13352 goto out;
2e431051 13353
8c7b5ccb 13354 pipe_config = intel_modeset_compute_config(set->crtc, state);
20664591 13355 if (IS_ERR(pipe_config)) {
6ac0483b 13356 ret = PTR_ERR(pipe_config);
7cbf41d6 13357 goto out;
20664591 13358 }
50f52756 13359
1f9954d0
JB
13360 intel_update_pipe_size(to_intel_crtc(set->crtc));
13361
bb546623
ACO
13362 primary_plane_was_visible = primary_plane_visible(set->crtc);
13363
8c7b5ccb 13364 ret = intel_set_mode_with_config(set->crtc, pipe_config);
bb546623
ACO
13365
13366 if (ret == 0 &&
13367 pipe_config->base.enable &&
13368 pipe_config->base.planes_changed &&
13369 !needs_modeset(&pipe_config->base)) {
3b150f08 13370 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
3b150f08
MR
13371
13372 /*
13373 * We need to make sure the primary plane is re-enabled if it
13374 * has previously been turned off.
13375 */
bb546623
ACO
13376 if (ret == 0 && !primary_plane_was_visible &&
13377 primary_plane_visible(set->crtc)) {
3b150f08 13378 WARN_ON(!intel_crtc->active);
87d4300a 13379 intel_post_enable_primary(set->crtc);
3b150f08
MR
13380 }
13381
7ca51a3a
JB
13382 /*
13383 * In the fastboot case this may be our only check of the
13384 * state after boot. It would be better to only do it on
13385 * the first update, but we don't have a nice way of doing that
13386 * (and really, set_config isn't used much for high freq page
13387 * flipping, so increasing its cost here shouldn't be a big
13388 * deal).
13389 */
d330a953 13390 if (i915.fastboot && ret == 0)
7ca51a3a 13391 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
13392 }
13393
2d05eae1 13394 if (ret) {
bf67dfeb
DV
13395 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
13396 set->crtc->base.id, ret);
2d05eae1 13397 }
50f56119 13398
7cbf41d6 13399out:
2bfb4627
ACO
13400 if (ret)
13401 drm_atomic_state_free(state);
50f56119
DV
13402 return ret;
13403}
f6e5b160
CW
13404
13405static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 13406 .gamma_set = intel_crtc_gamma_set,
50f56119 13407 .set_config = intel_crtc_set_config,
f6e5b160
CW
13408 .destroy = intel_crtc_destroy,
13409 .page_flip = intel_crtc_page_flip,
1356837e
MR
13410 .atomic_duplicate_state = intel_crtc_duplicate_state,
13411 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
13412};
13413
5358901f
DV
13414static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13415 struct intel_shared_dpll *pll,
13416 struct intel_dpll_hw_state *hw_state)
ee7b9f93 13417{
5358901f 13418 uint32_t val;
ee7b9f93 13419
f458ebbc 13420 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
13421 return false;
13422
5358901f 13423 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
13424 hw_state->dpll = val;
13425 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13426 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
13427
13428 return val & DPLL_VCO_ENABLE;
13429}
13430
15bdd4cf
DV
13431static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13432 struct intel_shared_dpll *pll)
13433{
3e369b76
ACO
13434 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13435 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
13436}
13437
e7b903d2
DV
13438static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13439 struct intel_shared_dpll *pll)
13440{
e7b903d2 13441 /* PCH refclock must be enabled first */
89eff4be 13442 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 13443
3e369b76 13444 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
13445
13446 /* Wait for the clocks to stabilize. */
13447 POSTING_READ(PCH_DPLL(pll->id));
13448 udelay(150);
13449
13450 /* The pixel multiplier can only be updated once the
13451 * DPLL is enabled and the clocks are stable.
13452 *
13453 * So write it again.
13454 */
3e369b76 13455 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 13456 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13457 udelay(200);
13458}
13459
13460static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13461 struct intel_shared_dpll *pll)
13462{
13463 struct drm_device *dev = dev_priv->dev;
13464 struct intel_crtc *crtc;
e7b903d2
DV
13465
13466 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 13467 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
13468 if (intel_crtc_to_shared_dpll(crtc) == pll)
13469 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
13470 }
13471
15bdd4cf
DV
13472 I915_WRITE(PCH_DPLL(pll->id), 0);
13473 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13474 udelay(200);
13475}
13476
46edb027
DV
13477static char *ibx_pch_dpll_names[] = {
13478 "PCH DPLL A",
13479 "PCH DPLL B",
13480};
13481
7c74ade1 13482static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 13483{
e7b903d2 13484 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
13485 int i;
13486
7c74ade1 13487 dev_priv->num_shared_dpll = 2;
ee7b9f93 13488
e72f9fbf 13489 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
13490 dev_priv->shared_dplls[i].id = i;
13491 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 13492 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
13493 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13494 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
13495 dev_priv->shared_dplls[i].get_hw_state =
13496 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
13497 }
13498}
13499
7c74ade1
DV
13500static void intel_shared_dpll_init(struct drm_device *dev)
13501{
e7b903d2 13502 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 13503
b6283055
VS
13504 intel_update_cdclk(dev);
13505
9cd86933
DV
13506 if (HAS_DDI(dev))
13507 intel_ddi_pll_init(dev);
13508 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
13509 ibx_pch_dpll_init(dev);
13510 else
13511 dev_priv->num_shared_dpll = 0;
13512
13513 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
13514}
13515
1fc0a8f7
TU
13516/**
13517 * intel_wm_need_update - Check whether watermarks need updating
13518 * @plane: drm plane
13519 * @state: new plane state
13520 *
13521 * Check current plane state versus the new one to determine whether
13522 * watermarks need to be recalculated.
13523 *
13524 * Returns true or false.
13525 */
13526bool intel_wm_need_update(struct drm_plane *plane,
13527 struct drm_plane_state *state)
13528{
13529 /* Update watermarks on tiling changes. */
13530 if (!plane->state->fb || !state->fb ||
13531 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13532 plane->state->rotation != state->rotation)
13533 return true;
13534
13535 return false;
13536}
13537
6beb8c23
MR
13538/**
13539 * intel_prepare_plane_fb - Prepare fb for usage on plane
13540 * @plane: drm plane to prepare for
13541 * @fb: framebuffer to prepare for presentation
13542 *
13543 * Prepares a framebuffer for usage on a display plane. Generally this
13544 * involves pinning the underlying object and updating the frontbuffer tracking
13545 * bits. Some older platforms need special physical address handling for
13546 * cursor planes.
13547 *
13548 * Returns 0 on success, negative error code on failure.
13549 */
13550int
13551intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee
TU
13552 struct drm_framebuffer *fb,
13553 const struct drm_plane_state *new_state)
465c120c
MR
13554{
13555 struct drm_device *dev = plane->dev;
6beb8c23
MR
13556 struct intel_plane *intel_plane = to_intel_plane(plane);
13557 enum pipe pipe = intel_plane->pipe;
13558 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13559 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13560 unsigned frontbuffer_bits = 0;
13561 int ret = 0;
465c120c 13562
ea2c67bb 13563 if (!obj)
465c120c
MR
13564 return 0;
13565
6beb8c23
MR
13566 switch (plane->type) {
13567 case DRM_PLANE_TYPE_PRIMARY:
13568 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13569 break;
13570 case DRM_PLANE_TYPE_CURSOR:
13571 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13572 break;
13573 case DRM_PLANE_TYPE_OVERLAY:
13574 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13575 break;
13576 }
465c120c 13577
6beb8c23 13578 mutex_lock(&dev->struct_mutex);
465c120c 13579
6beb8c23
MR
13580 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13581 INTEL_INFO(dev)->cursor_needs_physical) {
13582 int align = IS_I830(dev) ? 16 * 1024 : 256;
13583 ret = i915_gem_object_attach_phys(obj, align);
13584 if (ret)
13585 DRM_DEBUG_KMS("failed to attach phys object\n");
13586 } else {
82bc3b2d 13587 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
6beb8c23 13588 }
465c120c 13589
6beb8c23
MR
13590 if (ret == 0)
13591 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 13592
4c34574f 13593 mutex_unlock(&dev->struct_mutex);
465c120c 13594
6beb8c23
MR
13595 return ret;
13596}
13597
38f3ce3a
MR
13598/**
13599 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13600 * @plane: drm plane to clean up for
13601 * @fb: old framebuffer that was on plane
13602 *
13603 * Cleans up a framebuffer that has just been removed from a plane.
13604 */
13605void
13606intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee
TU
13607 struct drm_framebuffer *fb,
13608 const struct drm_plane_state *old_state)
38f3ce3a
MR
13609{
13610 struct drm_device *dev = plane->dev;
13611 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13612
13613 if (WARN_ON(!obj))
13614 return;
13615
13616 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13617 !INTEL_INFO(dev)->cursor_needs_physical) {
13618 mutex_lock(&dev->struct_mutex);
82bc3b2d 13619 intel_unpin_fb_obj(fb, old_state);
38f3ce3a
MR
13620 mutex_unlock(&dev->struct_mutex);
13621 }
465c120c
MR
13622}
13623
6156a456
CK
13624int
13625skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13626{
13627 int max_scale;
13628 struct drm_device *dev;
13629 struct drm_i915_private *dev_priv;
13630 int crtc_clock, cdclk;
13631
13632 if (!intel_crtc || !crtc_state)
13633 return DRM_PLANE_HELPER_NO_SCALING;
13634
13635 dev = intel_crtc->base.dev;
13636 dev_priv = dev->dev_private;
13637 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13638 cdclk = dev_priv->display.get_display_clock_speed(dev);
13639
13640 if (!crtc_clock || !cdclk)
13641 return DRM_PLANE_HELPER_NO_SCALING;
13642
13643 /*
13644 * skl max scale is lower of:
13645 * close to 3 but not 3, -1 is for that purpose
13646 * or
13647 * cdclk/crtc_clock
13648 */
13649 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13650
13651 return max_scale;
13652}
13653
465c120c 13654static int
3c692a41
GP
13655intel_check_primary_plane(struct drm_plane *plane,
13656 struct intel_plane_state *state)
13657{
32b7eeec
MR
13658 struct drm_device *dev = plane->dev;
13659 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 13660 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 13661 struct intel_crtc *intel_crtc;
6156a456 13662 struct intel_crtc_state *crtc_state;
2b875c22 13663 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
13664 struct drm_rect *dest = &state->dst;
13665 struct drm_rect *src = &state->src;
13666 const struct drm_rect *clip = &state->clip;
d8106366 13667 bool can_position = false;
6156a456
CK
13668 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13669 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
465c120c
MR
13670 int ret;
13671
ea2c67bb
MR
13672 crtc = crtc ? crtc : plane->crtc;
13673 intel_crtc = to_intel_crtc(crtc);
6156a456
CK
13674 crtc_state = state->base.state ?
13675 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
ea2c67bb 13676
6156a456 13677 if (INTEL_INFO(dev)->gen >= 9) {
225c228a
CK
13678 /* use scaler when colorkey is not required */
13679 if (to_intel_plane(plane)->ckey.flags == I915_SET_COLORKEY_NONE) {
13680 min_scale = 1;
13681 max_scale = skl_max_scale(intel_crtc, crtc_state);
13682 }
d8106366 13683 can_position = true;
6156a456 13684 }
d8106366 13685
c59cb179
MR
13686 ret = drm_plane_helper_check_update(plane, crtc, fb,
13687 src, dest, clip,
6156a456
CK
13688 min_scale,
13689 max_scale,
d8106366
SJ
13690 can_position, true,
13691 &state->visible);
c59cb179
MR
13692 if (ret)
13693 return ret;
465c120c 13694
32b7eeec 13695 if (intel_crtc->active) {
b70709a6
ML
13696 struct intel_plane_state *old_state =
13697 to_intel_plane_state(plane->state);
13698
32b7eeec
MR
13699 intel_crtc->atomic.wait_for_flips = true;
13700
13701 /*
13702 * FBC does not work on some platforms for rotated
13703 * planes, so disable it when rotation is not 0 and
13704 * update it when rotation is set back to 0.
13705 *
13706 * FIXME: This is redundant with the fbc update done in
13707 * the primary plane enable function except that that
13708 * one is done too late. We eventually need to unify
13709 * this.
13710 */
b70709a6 13711 if (state->visible &&
32b7eeec 13712 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
e35fef21 13713 dev_priv->fbc.crtc == intel_crtc &&
8e7d688b 13714 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
13715 intel_crtc->atomic.disable_fbc = true;
13716 }
13717
b70709a6 13718 if (state->visible && !old_state->visible) {
32b7eeec
MR
13719 /*
13720 * BDW signals flip done immediately if the plane
13721 * is disabled, even if the plane enable is already
13722 * armed to occur at the next vblank :(
13723 */
b70709a6 13724 if (IS_BROADWELL(dev))
32b7eeec
MR
13725 intel_crtc->atomic.wait_vblank = true;
13726 }
13727
13728 intel_crtc->atomic.fb_bits |=
13729 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13730
13731 intel_crtc->atomic.update_fbc = true;
0fda6568 13732
1fc0a8f7 13733 if (intel_wm_need_update(plane, &state->base))
0fda6568 13734 intel_crtc->atomic.update_wm = true;
ccc759dc
GP
13735 }
13736
6156a456
CK
13737 if (INTEL_INFO(dev)->gen >= 9) {
13738 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13739 to_intel_plane(plane), state, 0);
13740 if (ret)
13741 return ret;
13742 }
13743
14af293f
GP
13744 return 0;
13745}
13746
13747static void
13748intel_commit_primary_plane(struct drm_plane *plane,
13749 struct intel_plane_state *state)
13750{
2b875c22
MR
13751 struct drm_crtc *crtc = state->base.crtc;
13752 struct drm_framebuffer *fb = state->base.fb;
13753 struct drm_device *dev = plane->dev;
14af293f 13754 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 13755 struct intel_crtc *intel_crtc;
14af293f
GP
13756 struct drm_rect *src = &state->src;
13757
ea2c67bb
MR
13758 crtc = crtc ? crtc : plane->crtc;
13759 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
13760
13761 plane->fb = fb;
9dc806fc
MR
13762 crtc->x = src->x1 >> 16;
13763 crtc->y = src->y1 >> 16;
ccc759dc 13764
ccc759dc 13765 if (intel_crtc->active) {
27321ae8 13766 if (state->visible)
ccc759dc
GP
13767 /* FIXME: kill this fastboot hack */
13768 intel_update_pipe_size(intel_crtc);
465c120c 13769
27321ae8
ML
13770 dev_priv->display.update_primary_plane(crtc, plane->fb,
13771 crtc->x, crtc->y);
ccc759dc 13772 }
465c120c
MR
13773}
13774
a8ad0d8e
ML
13775static void
13776intel_disable_primary_plane(struct drm_plane *plane,
13777 struct drm_crtc *crtc,
13778 bool force)
13779{
13780 struct drm_device *dev = plane->dev;
13781 struct drm_i915_private *dev_priv = dev->dev_private;
13782
a8ad0d8e
ML
13783 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13784}
13785
32b7eeec 13786static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 13787{
32b7eeec 13788 struct drm_device *dev = crtc->dev;
140fd38d 13789 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 13790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
13791 struct intel_plane *intel_plane;
13792 struct drm_plane *p;
13793 unsigned fb_bits = 0;
13794
13795 /* Track fb's for any planes being disabled */
13796 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13797 intel_plane = to_intel_plane(p);
13798
13799 if (intel_crtc->atomic.disabled_planes &
13800 (1 << drm_plane_index(p))) {
13801 switch (p->type) {
13802 case DRM_PLANE_TYPE_PRIMARY:
13803 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13804 break;
13805 case DRM_PLANE_TYPE_CURSOR:
13806 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13807 break;
13808 case DRM_PLANE_TYPE_OVERLAY:
13809 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13810 break;
13811 }
3c692a41 13812
ea2c67bb
MR
13813 mutex_lock(&dev->struct_mutex);
13814 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13815 mutex_unlock(&dev->struct_mutex);
13816 }
13817 }
3c692a41 13818
32b7eeec
MR
13819 if (intel_crtc->atomic.wait_for_flips)
13820 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 13821
32b7eeec
MR
13822 if (intel_crtc->atomic.disable_fbc)
13823 intel_fbc_disable(dev);
3c692a41 13824
32b7eeec
MR
13825 if (intel_crtc->atomic.pre_disable_primary)
13826 intel_pre_disable_primary(crtc);
3c692a41 13827
32b7eeec
MR
13828 if (intel_crtc->atomic.update_wm)
13829 intel_update_watermarks(crtc);
3c692a41 13830
32b7eeec 13831 intel_runtime_pm_get(dev_priv);
3c692a41 13832
c34c9ee4
MR
13833 /* Perform vblank evasion around commit operation */
13834 if (intel_crtc->active)
13835 intel_crtc->atomic.evade =
13836 intel_pipe_update_start(intel_crtc,
13837 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
13838}
13839
13840static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13841{
13842 struct drm_device *dev = crtc->dev;
13843 struct drm_i915_private *dev_priv = dev->dev_private;
13844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13845 struct drm_plane *p;
13846
c34c9ee4
MR
13847 if (intel_crtc->atomic.evade)
13848 intel_pipe_update_end(intel_crtc,
13849 intel_crtc->atomic.start_vbl_count);
3c692a41 13850
140fd38d 13851 intel_runtime_pm_put(dev_priv);
3c692a41 13852
32b7eeec
MR
13853 if (intel_crtc->atomic.wait_vblank)
13854 intel_wait_for_vblank(dev, intel_crtc->pipe);
13855
13856 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13857
13858 if (intel_crtc->atomic.update_fbc) {
ccc759dc 13859 mutex_lock(&dev->struct_mutex);
7ff0ebcc 13860 intel_fbc_update(dev);
ccc759dc 13861 mutex_unlock(&dev->struct_mutex);
38f3ce3a 13862 }
3c692a41 13863
32b7eeec
MR
13864 if (intel_crtc->atomic.post_enable_primary)
13865 intel_post_enable_primary(crtc);
3c692a41 13866
32b7eeec
MR
13867 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13868 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13869 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13870 false, false);
13871
13872 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
13873}
13874
cf4c7c12 13875/**
4a3b8769
MR
13876 * intel_plane_destroy - destroy a plane
13877 * @plane: plane to destroy
cf4c7c12 13878 *
4a3b8769
MR
13879 * Common destruction function for all types of planes (primary, cursor,
13880 * sprite).
cf4c7c12 13881 */
4a3b8769 13882void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13883{
13884 struct intel_plane *intel_plane = to_intel_plane(plane);
13885 drm_plane_cleanup(plane);
13886 kfree(intel_plane);
13887}
13888
65a3fea0 13889const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13890 .update_plane = drm_atomic_helper_update_plane,
13891 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13892 .destroy = intel_plane_destroy,
c196e1d6 13893 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13894 .atomic_get_property = intel_plane_atomic_get_property,
13895 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13896 .atomic_duplicate_state = intel_plane_duplicate_state,
13897 .atomic_destroy_state = intel_plane_destroy_state,
13898
465c120c
MR
13899};
13900
13901static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13902 int pipe)
13903{
13904 struct intel_plane *primary;
8e7d688b 13905 struct intel_plane_state *state;
465c120c
MR
13906 const uint32_t *intel_primary_formats;
13907 int num_formats;
13908
13909 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13910 if (primary == NULL)
13911 return NULL;
13912
8e7d688b
MR
13913 state = intel_create_plane_state(&primary->base);
13914 if (!state) {
ea2c67bb
MR
13915 kfree(primary);
13916 return NULL;
13917 }
8e7d688b 13918 primary->base.state = &state->base;
ea2c67bb 13919
465c120c
MR
13920 primary->can_scale = false;
13921 primary->max_downscale = 1;
6156a456
CK
13922 if (INTEL_INFO(dev)->gen >= 9) {
13923 primary->can_scale = true;
af99ceda 13924 state->scaler_id = -1;
6156a456 13925 }
465c120c
MR
13926 primary->pipe = pipe;
13927 primary->plane = pipe;
c59cb179
MR
13928 primary->check_plane = intel_check_primary_plane;
13929 primary->commit_plane = intel_commit_primary_plane;
a8ad0d8e 13930 primary->disable_plane = intel_disable_primary_plane;
08e221fb 13931 primary->ckey.flags = I915_SET_COLORKEY_NONE;
465c120c
MR
13932 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13933 primary->plane = !pipe;
13934
6c0fd451
DL
13935 if (INTEL_INFO(dev)->gen >= 9) {
13936 intel_primary_formats = skl_primary_formats;
13937 num_formats = ARRAY_SIZE(skl_primary_formats);
13938 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
13939 intel_primary_formats = i965_primary_formats;
13940 num_formats = ARRAY_SIZE(i965_primary_formats);
6c0fd451
DL
13941 } else {
13942 intel_primary_formats = i8xx_primary_formats;
13943 num_formats = ARRAY_SIZE(i8xx_primary_formats);
465c120c
MR
13944 }
13945
13946 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 13947 &intel_plane_funcs,
465c120c
MR
13948 intel_primary_formats, num_formats,
13949 DRM_PLANE_TYPE_PRIMARY);
48404c1e 13950
3b7a5119
SJ
13951 if (INTEL_INFO(dev)->gen >= 4)
13952 intel_create_rotation_property(dev, primary);
48404c1e 13953
ea2c67bb
MR
13954 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13955
465c120c
MR
13956 return &primary->base;
13957}
13958
3b7a5119
SJ
13959void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13960{
13961 if (!dev->mode_config.rotation_property) {
13962 unsigned long flags = BIT(DRM_ROTATE_0) |
13963 BIT(DRM_ROTATE_180);
13964
13965 if (INTEL_INFO(dev)->gen >= 9)
13966 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13967
13968 dev->mode_config.rotation_property =
13969 drm_mode_create_rotation_property(dev, flags);
13970 }
13971 if (dev->mode_config.rotation_property)
13972 drm_object_attach_property(&plane->base.base,
13973 dev->mode_config.rotation_property,
13974 plane->base.state->rotation);
13975}
13976
3d7d6510 13977static int
852e787c
GP
13978intel_check_cursor_plane(struct drm_plane *plane,
13979 struct intel_plane_state *state)
3d7d6510 13980{
2b875c22 13981 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 13982 struct drm_device *dev = plane->dev;
2b875c22 13983 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
13984 struct drm_rect *dest = &state->dst;
13985 struct drm_rect *src = &state->src;
13986 const struct drm_rect *clip = &state->clip;
757f9a3e 13987 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 13988 struct intel_crtc *intel_crtc;
757f9a3e
GP
13989 unsigned stride;
13990 int ret;
3d7d6510 13991
ea2c67bb
MR
13992 crtc = crtc ? crtc : plane->crtc;
13993 intel_crtc = to_intel_crtc(crtc);
13994
757f9a3e 13995 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 13996 src, dest, clip,
3d7d6510
MR
13997 DRM_PLANE_HELPER_NO_SCALING,
13998 DRM_PLANE_HELPER_NO_SCALING,
852e787c 13999 true, true, &state->visible);
757f9a3e
GP
14000 if (ret)
14001 return ret;
14002
14003
14004 /* if we want to turn off the cursor ignore width and height */
14005 if (!obj)
32b7eeec 14006 goto finish;
757f9a3e 14007
757f9a3e 14008 /* Check for which cursor types we support */
ea2c67bb
MR
14009 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
14010 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14011 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
14012 return -EINVAL;
14013 }
14014
ea2c67bb
MR
14015 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14016 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
14017 DRM_DEBUG_KMS("buffer is too small\n");
14018 return -ENOMEM;
14019 }
14020
3a656b54 14021 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e
GP
14022 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14023 ret = -EINVAL;
14024 }
757f9a3e 14025
32b7eeec
MR
14026finish:
14027 if (intel_crtc->active) {
3749f463 14028 if (plane->state->crtc_w != state->base.crtc_w)
32b7eeec
MR
14029 intel_crtc->atomic.update_wm = true;
14030
14031 intel_crtc->atomic.fb_bits |=
14032 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
14033 }
14034
757f9a3e 14035 return ret;
852e787c 14036}
3d7d6510 14037
a8ad0d8e
ML
14038static void
14039intel_disable_cursor_plane(struct drm_plane *plane,
14040 struct drm_crtc *crtc,
14041 bool force)
14042{
14043 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14044
14045 if (!force) {
14046 plane->fb = NULL;
14047 intel_crtc->cursor_bo = NULL;
14048 intel_crtc->cursor_addr = 0;
14049 }
14050
14051 intel_crtc_update_cursor(crtc, false);
14052}
14053
f4a2cf29 14054static void
852e787c
GP
14055intel_commit_cursor_plane(struct drm_plane *plane,
14056 struct intel_plane_state *state)
14057{
2b875c22 14058 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
14059 struct drm_device *dev = plane->dev;
14060 struct intel_crtc *intel_crtc;
2b875c22 14061 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 14062 uint32_t addr;
852e787c 14063
ea2c67bb
MR
14064 crtc = crtc ? crtc : plane->crtc;
14065 intel_crtc = to_intel_crtc(crtc);
14066
2b875c22 14067 plane->fb = state->base.fb;
ea2c67bb
MR
14068 crtc->cursor_x = state->base.crtc_x;
14069 crtc->cursor_y = state->base.crtc_y;
14070
a912f12f
GP
14071 if (intel_crtc->cursor_bo == obj)
14072 goto update;
4ed91096 14073
f4a2cf29 14074 if (!obj)
a912f12f 14075 addr = 0;
f4a2cf29 14076 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 14077 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 14078 else
a912f12f 14079 addr = obj->phys_handle->busaddr;
852e787c 14080
a912f12f
GP
14081 intel_crtc->cursor_addr = addr;
14082 intel_crtc->cursor_bo = obj;
14083update:
852e787c 14084
32b7eeec 14085 if (intel_crtc->active)
a912f12f 14086 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
14087}
14088
3d7d6510
MR
14089static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14090 int pipe)
14091{
14092 struct intel_plane *cursor;
8e7d688b 14093 struct intel_plane_state *state;
3d7d6510
MR
14094
14095 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14096 if (cursor == NULL)
14097 return NULL;
14098
8e7d688b
MR
14099 state = intel_create_plane_state(&cursor->base);
14100 if (!state) {
ea2c67bb
MR
14101 kfree(cursor);
14102 return NULL;
14103 }
8e7d688b 14104 cursor->base.state = &state->base;
ea2c67bb 14105
3d7d6510
MR
14106 cursor->can_scale = false;
14107 cursor->max_downscale = 1;
14108 cursor->pipe = pipe;
14109 cursor->plane = pipe;
c59cb179
MR
14110 cursor->check_plane = intel_check_cursor_plane;
14111 cursor->commit_plane = intel_commit_cursor_plane;
a8ad0d8e 14112 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510
MR
14113
14114 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 14115 &intel_plane_funcs,
3d7d6510
MR
14116 intel_cursor_formats,
14117 ARRAY_SIZE(intel_cursor_formats),
14118 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
14119
14120 if (INTEL_INFO(dev)->gen >= 4) {
14121 if (!dev->mode_config.rotation_property)
14122 dev->mode_config.rotation_property =
14123 drm_mode_create_rotation_property(dev,
14124 BIT(DRM_ROTATE_0) |
14125 BIT(DRM_ROTATE_180));
14126 if (dev->mode_config.rotation_property)
14127 drm_object_attach_property(&cursor->base.base,
14128 dev->mode_config.rotation_property,
8e7d688b 14129 state->base.rotation);
4398ad45
VS
14130 }
14131
af99ceda
CK
14132 if (INTEL_INFO(dev)->gen >=9)
14133 state->scaler_id = -1;
14134
ea2c67bb
MR
14135 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14136
3d7d6510
MR
14137 return &cursor->base;
14138}
14139
549e2bfb
CK
14140static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14141 struct intel_crtc_state *crtc_state)
14142{
14143 int i;
14144 struct intel_scaler *intel_scaler;
14145 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14146
14147 for (i = 0; i < intel_crtc->num_scalers; i++) {
14148 intel_scaler = &scaler_state->scalers[i];
14149 intel_scaler->in_use = 0;
14150 intel_scaler->id = i;
14151
14152 intel_scaler->mode = PS_SCALER_MODE_DYN;
14153 }
14154
14155 scaler_state->scaler_id = -1;
14156}
14157
b358d0a6 14158static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 14159{
fbee40df 14160 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 14161 struct intel_crtc *intel_crtc;
f5de6e07 14162 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
14163 struct drm_plane *primary = NULL;
14164 struct drm_plane *cursor = NULL;
465c120c 14165 int i, ret;
79e53945 14166
955382f3 14167 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
14168 if (intel_crtc == NULL)
14169 return;
14170
f5de6e07
ACO
14171 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14172 if (!crtc_state)
14173 goto fail;
550acefd
ACO
14174 intel_crtc->config = crtc_state;
14175 intel_crtc->base.state = &crtc_state->base;
07878248 14176 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 14177
549e2bfb
CK
14178 /* initialize shared scalers */
14179 if (INTEL_INFO(dev)->gen >= 9) {
14180 if (pipe == PIPE_C)
14181 intel_crtc->num_scalers = 1;
14182 else
14183 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14184
14185 skl_init_scalers(dev, intel_crtc, crtc_state);
14186 }
14187
465c120c 14188 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
14189 if (!primary)
14190 goto fail;
14191
14192 cursor = intel_cursor_plane_create(dev, pipe);
14193 if (!cursor)
14194 goto fail;
14195
465c120c 14196 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
14197 cursor, &intel_crtc_funcs);
14198 if (ret)
14199 goto fail;
79e53945
JB
14200
14201 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
14202 for (i = 0; i < 256; i++) {
14203 intel_crtc->lut_r[i] = i;
14204 intel_crtc->lut_g[i] = i;
14205 intel_crtc->lut_b[i] = i;
14206 }
14207
1f1c2e24
VS
14208 /*
14209 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 14210 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 14211 */
80824003
JB
14212 intel_crtc->pipe = pipe;
14213 intel_crtc->plane = pipe;
3a77c4c4 14214 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 14215 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 14216 intel_crtc->plane = !pipe;
80824003
JB
14217 }
14218
4b0e333e
CW
14219 intel_crtc->cursor_base = ~0;
14220 intel_crtc->cursor_cntl = ~0;
dc41c154 14221 intel_crtc->cursor_size = ~0;
8d7849db 14222
22fd0fab
JB
14223 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14224 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14225 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14226 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14227
79e53945 14228 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
14229
14230 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
14231 return;
14232
14233fail:
14234 if (primary)
14235 drm_plane_cleanup(primary);
14236 if (cursor)
14237 drm_plane_cleanup(cursor);
f5de6e07 14238 kfree(crtc_state);
3d7d6510 14239 kfree(intel_crtc);
79e53945
JB
14240}
14241
752aa88a
JB
14242enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14243{
14244 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 14245 struct drm_device *dev = connector->base.dev;
752aa88a 14246
51fd371b 14247 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 14248
d3babd3f 14249 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
14250 return INVALID_PIPE;
14251
14252 return to_intel_crtc(encoder->crtc)->pipe;
14253}
14254
08d7b3d1 14255int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 14256 struct drm_file *file)
08d7b3d1 14257{
08d7b3d1 14258 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 14259 struct drm_crtc *drmmode_crtc;
c05422d5 14260 struct intel_crtc *crtc;
08d7b3d1 14261
7707e653 14262 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 14263
7707e653 14264 if (!drmmode_crtc) {
08d7b3d1 14265 DRM_ERROR("no such CRTC id\n");
3f2c2057 14266 return -ENOENT;
08d7b3d1
CW
14267 }
14268
7707e653 14269 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 14270 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 14271
c05422d5 14272 return 0;
08d7b3d1
CW
14273}
14274
66a9278e 14275static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 14276{
66a9278e
DV
14277 struct drm_device *dev = encoder->base.dev;
14278 struct intel_encoder *source_encoder;
79e53945 14279 int index_mask = 0;
79e53945
JB
14280 int entry = 0;
14281
b2784e15 14282 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 14283 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
14284 index_mask |= (1 << entry);
14285
79e53945
JB
14286 entry++;
14287 }
4ef69c7a 14288
79e53945
JB
14289 return index_mask;
14290}
14291
4d302442
CW
14292static bool has_edp_a(struct drm_device *dev)
14293{
14294 struct drm_i915_private *dev_priv = dev->dev_private;
14295
14296 if (!IS_MOBILE(dev))
14297 return false;
14298
14299 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14300 return false;
14301
e3589908 14302 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
14303 return false;
14304
14305 return true;
14306}
14307
84b4e042
JB
14308static bool intel_crt_present(struct drm_device *dev)
14309{
14310 struct drm_i915_private *dev_priv = dev->dev_private;
14311
884497ed
DL
14312 if (INTEL_INFO(dev)->gen >= 9)
14313 return false;
14314
cf404ce4 14315 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
14316 return false;
14317
14318 if (IS_CHERRYVIEW(dev))
14319 return false;
14320
14321 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14322 return false;
14323
14324 return true;
14325}
14326
79e53945
JB
14327static void intel_setup_outputs(struct drm_device *dev)
14328{
725e30ad 14329 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 14330 struct intel_encoder *encoder;
cb0953d7 14331 bool dpd_is_edp = false;
79e53945 14332
c9093354 14333 intel_lvds_init(dev);
79e53945 14334
84b4e042 14335 if (intel_crt_present(dev))
79935fca 14336 intel_crt_init(dev);
cb0953d7 14337
c776eb2e
VK
14338 if (IS_BROXTON(dev)) {
14339 /*
14340 * FIXME: Broxton doesn't support port detection via the
14341 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14342 * detect the ports.
14343 */
14344 intel_ddi_init(dev, PORT_A);
14345 intel_ddi_init(dev, PORT_B);
14346 intel_ddi_init(dev, PORT_C);
14347 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
14348 int found;
14349
de31facd
JB
14350 /*
14351 * Haswell uses DDI functions to detect digital outputs.
14352 * On SKL pre-D0 the strap isn't connected, so we assume
14353 * it's there.
14354 */
0e72a5b5 14355 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
de31facd
JB
14356 /* WaIgnoreDDIAStrap: skl */
14357 if (found ||
14358 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
0e72a5b5
ED
14359 intel_ddi_init(dev, PORT_A);
14360
14361 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14362 * register */
14363 found = I915_READ(SFUSE_STRAP);
14364
14365 if (found & SFUSE_STRAP_DDIB_DETECTED)
14366 intel_ddi_init(dev, PORT_B);
14367 if (found & SFUSE_STRAP_DDIC_DETECTED)
14368 intel_ddi_init(dev, PORT_C);
14369 if (found & SFUSE_STRAP_DDID_DETECTED)
14370 intel_ddi_init(dev, PORT_D);
14371 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14372 int found;
5d8a7752 14373 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14374
14375 if (has_edp_a(dev))
14376 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14377
dc0fa718 14378 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14379 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 14380 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 14381 if (!found)
e2debe91 14382 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14383 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14384 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14385 }
14386
dc0fa718 14387 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14388 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14389
dc0fa718 14390 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14391 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14392
5eb08b69 14393 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14394 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14395
270b3042 14396 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14397 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 14398 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
14399 /*
14400 * The DP_DETECTED bit is the latched state of the DDC
14401 * SDA pin at boot. However since eDP doesn't require DDC
14402 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14403 * eDP ports may have been muxed to an alternate function.
14404 * Thus we can't rely on the DP_DETECTED bit alone to detect
14405 * eDP ports. Consult the VBT as well as DP_DETECTED to
14406 * detect eDP ports.
14407 */
d2182a66
VS
14408 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14409 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
14410 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14411 PORT_B);
e17ac6db
VS
14412 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14413 intel_dp_is_edp(dev, PORT_B))
14414 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 14415
d2182a66
VS
14416 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14417 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
14418 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14419 PORT_C);
e17ac6db
VS
14420 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14421 intel_dp_is_edp(dev, PORT_C))
14422 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 14423
9418c1f1 14424 if (IS_CHERRYVIEW(dev)) {
e17ac6db 14425 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
14426 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14427 PORT_D);
e17ac6db
VS
14428 /* eDP not supported on port D, so don't check VBT */
14429 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14430 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
14431 }
14432
3cfca973 14433 intel_dsi_init(dev);
103a196f 14434 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 14435 bool found = false;
7d57382e 14436
e2debe91 14437 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14438 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 14439 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
14440 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14441 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14442 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14443 }
27185ae1 14444
e7281eab 14445 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 14446 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14447 }
13520b05
KH
14448
14449 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14450
e2debe91 14451 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14452 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 14453 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 14454 }
27185ae1 14455
e2debe91 14456 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14457
b01f2c3a
JB
14458 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14459 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14460 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14461 }
e7281eab 14462 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 14463 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14464 }
27185ae1 14465
b01f2c3a 14466 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 14467 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14468 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14469 } else if (IS_GEN2(dev))
79e53945
JB
14470 intel_dvo_init(dev);
14471
103a196f 14472 if (SUPPORTS_TV(dev))
79e53945
JB
14473 intel_tv_init(dev);
14474
0bc12bcb 14475 intel_psr_init(dev);
7c8f8a70 14476
b2784e15 14477 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14478 encoder->base.possible_crtcs = encoder->crtc_mask;
14479 encoder->base.possible_clones =
66a9278e 14480 intel_encoder_clones(encoder);
79e53945 14481 }
47356eb6 14482
dde86e2d 14483 intel_init_pch_refclk(dev);
270b3042
DV
14484
14485 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14486}
14487
14488static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14489{
60a5ca01 14490 struct drm_device *dev = fb->dev;
79e53945 14491 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14492
ef2d633e 14493 drm_framebuffer_cleanup(fb);
60a5ca01 14494 mutex_lock(&dev->struct_mutex);
ef2d633e 14495 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14496 drm_gem_object_unreference(&intel_fb->obj->base);
14497 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14498 kfree(intel_fb);
14499}
14500
14501static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14502 struct drm_file *file,
79e53945
JB
14503 unsigned int *handle)
14504{
14505 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14506 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14507
05394f39 14508 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14509}
14510
14511static const struct drm_framebuffer_funcs intel_fb_funcs = {
14512 .destroy = intel_user_framebuffer_destroy,
14513 .create_handle = intel_user_framebuffer_create_handle,
14514};
14515
b321803d
DL
14516static
14517u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14518 uint32_t pixel_format)
14519{
14520 u32 gen = INTEL_INFO(dev)->gen;
14521
14522 if (gen >= 9) {
14523 /* "The stride in bytes must not exceed the of the size of 8K
14524 * pixels and 32K bytes."
14525 */
14526 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14527 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14528 return 32*1024;
14529 } else if (gen >= 4) {
14530 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14531 return 16*1024;
14532 else
14533 return 32*1024;
14534 } else if (gen >= 3) {
14535 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14536 return 8*1024;
14537 else
14538 return 16*1024;
14539 } else {
14540 /* XXX DSPC is limited to 4k tiled */
14541 return 8*1024;
14542 }
14543}
14544
b5ea642a
DV
14545static int intel_framebuffer_init(struct drm_device *dev,
14546 struct intel_framebuffer *intel_fb,
14547 struct drm_mode_fb_cmd2 *mode_cmd,
14548 struct drm_i915_gem_object *obj)
79e53945 14549{
6761dd31 14550 unsigned int aligned_height;
79e53945 14551 int ret;
b321803d 14552 u32 pitch_limit, stride_alignment;
79e53945 14553
dd4916c5
DV
14554 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14555
2a80eada
DV
14556 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14557 /* Enforce that fb modifier and tiling mode match, but only for
14558 * X-tiled. This is needed for FBC. */
14559 if (!!(obj->tiling_mode == I915_TILING_X) !=
14560 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14561 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14562 return -EINVAL;
14563 }
14564 } else {
14565 if (obj->tiling_mode == I915_TILING_X)
14566 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14567 else if (obj->tiling_mode == I915_TILING_Y) {
14568 DRM_DEBUG("No Y tiling for legacy addfb\n");
14569 return -EINVAL;
14570 }
14571 }
14572
9a8f0a12
TU
14573 /* Passed in modifier sanity checking. */
14574 switch (mode_cmd->modifier[0]) {
14575 case I915_FORMAT_MOD_Y_TILED:
14576 case I915_FORMAT_MOD_Yf_TILED:
14577 if (INTEL_INFO(dev)->gen < 9) {
14578 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14579 mode_cmd->modifier[0]);
14580 return -EINVAL;
14581 }
14582 case DRM_FORMAT_MOD_NONE:
14583 case I915_FORMAT_MOD_X_TILED:
14584 break;
14585 default:
c0f40428
JB
14586 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14587 mode_cmd->modifier[0]);
57cd6508 14588 return -EINVAL;
c16ed4be 14589 }
57cd6508 14590
b321803d
DL
14591 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14592 mode_cmd->pixel_format);
14593 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14594 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14595 mode_cmd->pitches[0], stride_alignment);
57cd6508 14596 return -EINVAL;
c16ed4be 14597 }
57cd6508 14598
b321803d
DL
14599 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14600 mode_cmd->pixel_format);
a35cdaa0 14601 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
14602 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14603 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 14604 "tiled" : "linear",
a35cdaa0 14605 mode_cmd->pitches[0], pitch_limit);
5d7bd705 14606 return -EINVAL;
c16ed4be 14607 }
5d7bd705 14608
2a80eada 14609 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
14610 mode_cmd->pitches[0] != obj->stride) {
14611 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14612 mode_cmd->pitches[0], obj->stride);
5d7bd705 14613 return -EINVAL;
c16ed4be 14614 }
5d7bd705 14615
57779d06 14616 /* Reject formats not supported by any plane early. */
308e5bcb 14617 switch (mode_cmd->pixel_format) {
57779d06 14618 case DRM_FORMAT_C8:
04b3924d
VS
14619 case DRM_FORMAT_RGB565:
14620 case DRM_FORMAT_XRGB8888:
14621 case DRM_FORMAT_ARGB8888:
57779d06
VS
14622 break;
14623 case DRM_FORMAT_XRGB1555:
c16ed4be 14624 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
14625 DRM_DEBUG("unsupported pixel format: %s\n",
14626 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14627 return -EINVAL;
c16ed4be 14628 }
57779d06 14629 break;
57779d06 14630 case DRM_FORMAT_ABGR8888:
6c0fd451
DL
14631 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14632 DRM_DEBUG("unsupported pixel format: %s\n",
14633 drm_get_format_name(mode_cmd->pixel_format));
14634 return -EINVAL;
14635 }
14636 break;
14637 case DRM_FORMAT_XBGR8888:
04b3924d 14638 case DRM_FORMAT_XRGB2101010:
57779d06 14639 case DRM_FORMAT_XBGR2101010:
c16ed4be 14640 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
14641 DRM_DEBUG("unsupported pixel format: %s\n",
14642 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14643 return -EINVAL;
c16ed4be 14644 }
b5626747 14645 break;
7531208b
DL
14646 case DRM_FORMAT_ABGR2101010:
14647 if (!IS_VALLEYVIEW(dev)) {
14648 DRM_DEBUG("unsupported pixel format: %s\n",
14649 drm_get_format_name(mode_cmd->pixel_format));
14650 return -EINVAL;
14651 }
14652 break;
04b3924d
VS
14653 case DRM_FORMAT_YUYV:
14654 case DRM_FORMAT_UYVY:
14655 case DRM_FORMAT_YVYU:
14656 case DRM_FORMAT_VYUY:
c16ed4be 14657 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14658 DRM_DEBUG("unsupported pixel format: %s\n",
14659 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14660 return -EINVAL;
c16ed4be 14661 }
57cd6508
CW
14662 break;
14663 default:
4ee62c76
VS
14664 DRM_DEBUG("unsupported pixel format: %s\n",
14665 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14666 return -EINVAL;
14667 }
14668
90f9a336
VS
14669 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14670 if (mode_cmd->offsets[0] != 0)
14671 return -EINVAL;
14672
ec2c981e 14673 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14674 mode_cmd->pixel_format,
14675 mode_cmd->modifier[0]);
53155c0a
DV
14676 /* FIXME drm helper for size checks (especially planar formats)? */
14677 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14678 return -EINVAL;
14679
c7d73f6a
DV
14680 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14681 intel_fb->obj = obj;
80075d49 14682 intel_fb->obj->framebuffer_references++;
c7d73f6a 14683
79e53945
JB
14684 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14685 if (ret) {
14686 DRM_ERROR("framebuffer init failed %d\n", ret);
14687 return ret;
14688 }
14689
79e53945
JB
14690 return 0;
14691}
14692
79e53945
JB
14693static struct drm_framebuffer *
14694intel_user_framebuffer_create(struct drm_device *dev,
14695 struct drm_file *filp,
308e5bcb 14696 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 14697{
05394f39 14698 struct drm_i915_gem_object *obj;
79e53945 14699
308e5bcb
JB
14700 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14701 mode_cmd->handles[0]));
c8725226 14702 if (&obj->base == NULL)
cce13ff7 14703 return ERR_PTR(-ENOENT);
79e53945 14704
d2dff872 14705 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
14706}
14707
4520f53a 14708#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 14709static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14710{
14711}
14712#endif
14713
79e53945 14714static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14715 .fb_create = intel_user_framebuffer_create,
0632fef6 14716 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14717 .atomic_check = intel_atomic_check,
14718 .atomic_commit = intel_atomic_commit,
79e53945
JB
14719};
14720
e70236a8
JB
14721/* Set up chip specific display functions */
14722static void intel_init_display(struct drm_device *dev)
14723{
14724 struct drm_i915_private *dev_priv = dev->dev_private;
14725
ee9300bb
DV
14726 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14727 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14728 else if (IS_CHERRYVIEW(dev))
14729 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14730 else if (IS_VALLEYVIEW(dev))
14731 dev_priv->display.find_dpll = vlv_find_best_dpll;
14732 else if (IS_PINEVIEW(dev))
14733 dev_priv->display.find_dpll = pnv_find_best_dpll;
14734 else
14735 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14736
bc8d7dff
DL
14737 if (INTEL_INFO(dev)->gen >= 9) {
14738 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14739 dev_priv->display.get_initial_plane_config =
14740 skylake_get_initial_plane_config;
bc8d7dff
DL
14741 dev_priv->display.crtc_compute_clock =
14742 haswell_crtc_compute_clock;
14743 dev_priv->display.crtc_enable = haswell_crtc_enable;
14744 dev_priv->display.crtc_disable = haswell_crtc_disable;
41da1f5d 14745 dev_priv->display.off = i9xx_crtc_off;
bc8d7dff
DL
14746 dev_priv->display.update_primary_plane =
14747 skylake_update_primary_plane;
14748 } else if (HAS_DDI(dev)) {
0e8ffe1b 14749 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14750 dev_priv->display.get_initial_plane_config =
14751 ironlake_get_initial_plane_config;
797d0259
ACO
14752 dev_priv->display.crtc_compute_clock =
14753 haswell_crtc_compute_clock;
4f771f10
PZ
14754 dev_priv->display.crtc_enable = haswell_crtc_enable;
14755 dev_priv->display.crtc_disable = haswell_crtc_disable;
41da1f5d 14756 dev_priv->display.off = i9xx_crtc_off;
bc8d7dff
DL
14757 dev_priv->display.update_primary_plane =
14758 ironlake_update_primary_plane;
09b4ddf9 14759 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14760 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14761 dev_priv->display.get_initial_plane_config =
14762 ironlake_get_initial_plane_config;
3fb37703
ACO
14763 dev_priv->display.crtc_compute_clock =
14764 ironlake_crtc_compute_clock;
76e5a89c
DV
14765 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14766 dev_priv->display.crtc_disable = ironlake_crtc_disable;
41da1f5d 14767 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
14768 dev_priv->display.update_primary_plane =
14769 ironlake_update_primary_plane;
89b667f8
JB
14770 } else if (IS_VALLEYVIEW(dev)) {
14771 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14772 dev_priv->display.get_initial_plane_config =
14773 i9xx_get_initial_plane_config;
d6dfee7a 14774 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14775 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14776 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14777 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
14778 dev_priv->display.update_primary_plane =
14779 i9xx_update_primary_plane;
f564048e 14780 } else {
0e8ffe1b 14781 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14782 dev_priv->display.get_initial_plane_config =
14783 i9xx_get_initial_plane_config;
d6dfee7a 14784 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14785 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14786 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 14787 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
14788 dev_priv->display.update_primary_plane =
14789 i9xx_update_primary_plane;
f564048e 14790 }
e70236a8 14791
e70236a8 14792 /* Returns the core display clock speed */
1652d19e
VS
14793 if (IS_SKYLAKE(dev))
14794 dev_priv->display.get_display_clock_speed =
14795 skylake_get_display_clock_speed;
14796 else if (IS_BROADWELL(dev))
14797 dev_priv->display.get_display_clock_speed =
14798 broadwell_get_display_clock_speed;
14799 else if (IS_HASWELL(dev))
14800 dev_priv->display.get_display_clock_speed =
14801 haswell_get_display_clock_speed;
14802 else if (IS_VALLEYVIEW(dev))
25eb05fc
JB
14803 dev_priv->display.get_display_clock_speed =
14804 valleyview_get_display_clock_speed;
b37a6434
VS
14805 else if (IS_GEN5(dev))
14806 dev_priv->display.get_display_clock_speed =
14807 ilk_get_display_clock_speed;
a7c66cd8 14808 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
34edce2f 14809 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
e70236a8
JB
14810 dev_priv->display.get_display_clock_speed =
14811 i945_get_display_clock_speed;
34edce2f
VS
14812 else if (IS_GM45(dev))
14813 dev_priv->display.get_display_clock_speed =
14814 gm45_get_display_clock_speed;
14815 else if (IS_CRESTLINE(dev))
14816 dev_priv->display.get_display_clock_speed =
14817 i965gm_get_display_clock_speed;
14818 else if (IS_PINEVIEW(dev))
14819 dev_priv->display.get_display_clock_speed =
14820 pnv_get_display_clock_speed;
14821 else if (IS_G33(dev) || IS_G4X(dev))
14822 dev_priv->display.get_display_clock_speed =
14823 g33_get_display_clock_speed;
e70236a8
JB
14824 else if (IS_I915G(dev))
14825 dev_priv->display.get_display_clock_speed =
14826 i915_get_display_clock_speed;
257a7ffc 14827 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14828 dev_priv->display.get_display_clock_speed =
14829 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
14830 else if (IS_PINEVIEW(dev))
14831 dev_priv->display.get_display_clock_speed =
14832 pnv_get_display_clock_speed;
e70236a8
JB
14833 else if (IS_I915GM(dev))
14834 dev_priv->display.get_display_clock_speed =
14835 i915gm_get_display_clock_speed;
14836 else if (IS_I865G(dev))
14837 dev_priv->display.get_display_clock_speed =
14838 i865_get_display_clock_speed;
f0f8a9ce 14839 else if (IS_I85X(dev))
e70236a8 14840 dev_priv->display.get_display_clock_speed =
1b1d2716 14841 i85x_get_display_clock_speed;
623e01e5
VS
14842 else { /* 830 */
14843 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
14844 dev_priv->display.get_display_clock_speed =
14845 i830_get_display_clock_speed;
623e01e5 14846 }
e70236a8 14847
7c10a2b5 14848 if (IS_GEN5(dev)) {
3bb11b53 14849 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14850 } else if (IS_GEN6(dev)) {
14851 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14852 } else if (IS_IVYBRIDGE(dev)) {
14853 /* FIXME: detect B0+ stepping and use auto training */
14854 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14855 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14856 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
b432e5cf
VS
14857 if (IS_BROADWELL(dev))
14858 dev_priv->display.modeset_global_resources =
14859 broadwell_modeset_global_resources;
30a970c6
JB
14860 } else if (IS_VALLEYVIEW(dev)) {
14861 dev_priv->display.modeset_global_resources =
14862 valleyview_modeset_global_resources;
f8437dd1
VK
14863 } else if (IS_BROXTON(dev)) {
14864 dev_priv->display.modeset_global_resources =
14865 broxton_modeset_global_resources;
e70236a8 14866 }
8c9f3aaf 14867
8c9f3aaf
JB
14868 switch (INTEL_INFO(dev)->gen) {
14869 case 2:
14870 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14871 break;
14872
14873 case 3:
14874 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14875 break;
14876
14877 case 4:
14878 case 5:
14879 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14880 break;
14881
14882 case 6:
14883 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14884 break;
7c9017e5 14885 case 7:
4e0bbc31 14886 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14887 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14888 break;
830c81db 14889 case 9:
ba343e02
TU
14890 /* Drop through - unsupported since execlist only. */
14891 default:
14892 /* Default just returns -ENODEV to indicate unsupported */
14893 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14894 }
7bd688cd
JN
14895
14896 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
14897
14898 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14899}
14900
b690e96c
JB
14901/*
14902 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14903 * resume, or other times. This quirk makes sure that's the case for
14904 * affected systems.
14905 */
0206e353 14906static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
14907{
14908 struct drm_i915_private *dev_priv = dev->dev_private;
14909
14910 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 14911 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
14912}
14913
b6b5d049
VS
14914static void quirk_pipeb_force(struct drm_device *dev)
14915{
14916 struct drm_i915_private *dev_priv = dev->dev_private;
14917
14918 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14919 DRM_INFO("applying pipe b force quirk\n");
14920}
14921
435793df
KP
14922/*
14923 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14924 */
14925static void quirk_ssc_force_disable(struct drm_device *dev)
14926{
14927 struct drm_i915_private *dev_priv = dev->dev_private;
14928 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 14929 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
14930}
14931
4dca20ef 14932/*
5a15ab5b
CE
14933 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14934 * brightness value
4dca20ef
CE
14935 */
14936static void quirk_invert_brightness(struct drm_device *dev)
14937{
14938 struct drm_i915_private *dev_priv = dev->dev_private;
14939 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 14940 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
14941}
14942
9c72cc6f
SD
14943/* Some VBT's incorrectly indicate no backlight is present */
14944static void quirk_backlight_present(struct drm_device *dev)
14945{
14946 struct drm_i915_private *dev_priv = dev->dev_private;
14947 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14948 DRM_INFO("applying backlight present quirk\n");
14949}
14950
b690e96c
JB
14951struct intel_quirk {
14952 int device;
14953 int subsystem_vendor;
14954 int subsystem_device;
14955 void (*hook)(struct drm_device *dev);
14956};
14957
5f85f176
EE
14958/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14959struct intel_dmi_quirk {
14960 void (*hook)(struct drm_device *dev);
14961 const struct dmi_system_id (*dmi_id_list)[];
14962};
14963
14964static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14965{
14966 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14967 return 1;
14968}
14969
14970static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14971 {
14972 .dmi_id_list = &(const struct dmi_system_id[]) {
14973 {
14974 .callback = intel_dmi_reverse_brightness,
14975 .ident = "NCR Corporation",
14976 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14977 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14978 },
14979 },
14980 { } /* terminating entry */
14981 },
14982 .hook = quirk_invert_brightness,
14983 },
14984};
14985
c43b5634 14986static struct intel_quirk intel_quirks[] = {
b690e96c
JB
14987 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14988 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14989
b690e96c
JB
14990 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14991 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14992
5f080c0f
VS
14993 /* 830 needs to leave pipe A & dpll A up */
14994 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14995
b6b5d049
VS
14996 /* 830 needs to leave pipe B & dpll B up */
14997 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14998
435793df
KP
14999 /* Lenovo U160 cannot use SSC on LVDS */
15000 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
15001
15002 /* Sony Vaio Y cannot use SSC on LVDS */
15003 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 15004
be505f64
AH
15005 /* Acer Aspire 5734Z must invert backlight brightness */
15006 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15007
15008 /* Acer/eMachines G725 */
15009 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15010
15011 /* Acer/eMachines e725 */
15012 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15013
15014 /* Acer/Packard Bell NCL20 */
15015 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15016
15017 /* Acer Aspire 4736Z */
15018 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
15019
15020 /* Acer Aspire 5336 */
15021 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
15022
15023 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15024 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 15025
dfb3d47b
SD
15026 /* Acer C720 Chromebook (Core i3 4005U) */
15027 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15028
b2a9601c 15029 /* Apple Macbook 2,1 (Core 2 T7400) */
15030 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15031
d4967d8c
SD
15032 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15033 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
15034
15035 /* HP Chromebook 14 (Celeron 2955U) */
15036 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
15037
15038 /* Dell Chromebook 11 */
15039 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
15040};
15041
15042static void intel_init_quirks(struct drm_device *dev)
15043{
15044 struct pci_dev *d = dev->pdev;
15045 int i;
15046
15047 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15048 struct intel_quirk *q = &intel_quirks[i];
15049
15050 if (d->device == q->device &&
15051 (d->subsystem_vendor == q->subsystem_vendor ||
15052 q->subsystem_vendor == PCI_ANY_ID) &&
15053 (d->subsystem_device == q->subsystem_device ||
15054 q->subsystem_device == PCI_ANY_ID))
15055 q->hook(dev);
15056 }
5f85f176
EE
15057 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15058 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15059 intel_dmi_quirks[i].hook(dev);
15060 }
b690e96c
JB
15061}
15062
9cce37f4
JB
15063/* Disable the VGA plane that we never use */
15064static void i915_disable_vga(struct drm_device *dev)
15065{
15066 struct drm_i915_private *dev_priv = dev->dev_private;
15067 u8 sr1;
766aa1c4 15068 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 15069
2b37c616 15070 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 15071 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 15072 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
15073 sr1 = inb(VGA_SR_DATA);
15074 outb(sr1 | 1<<5, VGA_SR_DATA);
15075 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15076 udelay(300);
15077
01f5a626 15078 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
15079 POSTING_READ(vga_reg);
15080}
15081
f817586c
DV
15082void intel_modeset_init_hw(struct drm_device *dev)
15083{
b6283055 15084 intel_update_cdclk(dev);
a8f78b58 15085 intel_prepare_ddi(dev);
f817586c 15086 intel_init_clock_gating(dev);
8090c6b9 15087 intel_enable_gt_powersave(dev);
f817586c
DV
15088}
15089
79e53945
JB
15090void intel_modeset_init(struct drm_device *dev)
15091{
652c393a 15092 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 15093 int sprite, ret;
8cc87b75 15094 enum pipe pipe;
46f297fb 15095 struct intel_crtc *crtc;
79e53945
JB
15096
15097 drm_mode_config_init(dev);
15098
15099 dev->mode_config.min_width = 0;
15100 dev->mode_config.min_height = 0;
15101
019d96cb
DA
15102 dev->mode_config.preferred_depth = 24;
15103 dev->mode_config.prefer_shadow = 1;
15104
25bab385
TU
15105 dev->mode_config.allow_fb_modifiers = true;
15106
e6ecefaa 15107 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 15108
b690e96c
JB
15109 intel_init_quirks(dev);
15110
1fa61106
ED
15111 intel_init_pm(dev);
15112
e3c74757
BW
15113 if (INTEL_INFO(dev)->num_pipes == 0)
15114 return;
15115
e70236a8 15116 intel_init_display(dev);
7c10a2b5 15117 intel_init_audio(dev);
e70236a8 15118
a6c45cf0
CW
15119 if (IS_GEN2(dev)) {
15120 dev->mode_config.max_width = 2048;
15121 dev->mode_config.max_height = 2048;
15122 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
15123 dev->mode_config.max_width = 4096;
15124 dev->mode_config.max_height = 4096;
79e53945 15125 } else {
a6c45cf0
CW
15126 dev->mode_config.max_width = 8192;
15127 dev->mode_config.max_height = 8192;
79e53945 15128 }
068be561 15129
dc41c154
VS
15130 if (IS_845G(dev) || IS_I865G(dev)) {
15131 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15132 dev->mode_config.cursor_height = 1023;
15133 } else if (IS_GEN2(dev)) {
068be561
DL
15134 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15135 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15136 } else {
15137 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15138 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15139 }
15140
5d4545ae 15141 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 15142
28c97730 15143 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
15144 INTEL_INFO(dev)->num_pipes,
15145 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 15146
055e393f 15147 for_each_pipe(dev_priv, pipe) {
8cc87b75 15148 intel_crtc_init(dev, pipe);
3bdcfc0c 15149 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 15150 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 15151 if (ret)
06da8da2 15152 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 15153 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 15154 }
79e53945
JB
15155 }
15156
f42bb70d
JB
15157 intel_init_dpio(dev);
15158
e72f9fbf 15159 intel_shared_dpll_init(dev);
ee7b9f93 15160
9cce37f4
JB
15161 /* Just disable it once at startup */
15162 i915_disable_vga(dev);
79e53945 15163 intel_setup_outputs(dev);
11be49eb
CW
15164
15165 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 15166 intel_fbc_disable(dev);
fa9fa083 15167
6e9f798d 15168 drm_modeset_lock_all(dev);
fa9fa083 15169 intel_modeset_setup_hw_state(dev, false);
6e9f798d 15170 drm_modeset_unlock_all(dev);
46f297fb 15171
d3fcc808 15172 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
15173 if (!crtc->active)
15174 continue;
15175
46f297fb 15176 /*
46f297fb
JB
15177 * Note that reserving the BIOS fb up front prevents us
15178 * from stuffing other stolen allocations like the ring
15179 * on top. This prevents some ugliness at boot time, and
15180 * can even allow for smooth boot transitions if the BIOS
15181 * fb is large enough for the active pipe configuration.
15182 */
5724dbd1
DL
15183 if (dev_priv->display.get_initial_plane_config) {
15184 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
15185 &crtc->plane_config);
15186 /*
15187 * If the fb is shared between multiple heads, we'll
15188 * just get the first one.
15189 */
f6936e29 15190 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
46f297fb 15191 }
46f297fb 15192 }
2c7111db
CW
15193}
15194
7fad798e
DV
15195static void intel_enable_pipe_a(struct drm_device *dev)
15196{
15197 struct intel_connector *connector;
15198 struct drm_connector *crt = NULL;
15199 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 15200 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
15201
15202 /* We can't just switch on the pipe A, we need to set things up with a
15203 * proper mode and output configuration. As a gross hack, enable pipe A
15204 * by enabling the load detect pipe once. */
3a3371ff 15205 for_each_intel_connector(dev, connector) {
7fad798e
DV
15206 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15207 crt = &connector->base;
15208 break;
15209 }
15210 }
15211
15212 if (!crt)
15213 return;
15214
208bf9fd 15215 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 15216 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
15217}
15218
fa555837
DV
15219static bool
15220intel_check_plane_mapping(struct intel_crtc *crtc)
15221{
7eb552ae
BW
15222 struct drm_device *dev = crtc->base.dev;
15223 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
15224 u32 reg, val;
15225
7eb552ae 15226 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
15227 return true;
15228
15229 reg = DSPCNTR(!crtc->plane);
15230 val = I915_READ(reg);
15231
15232 if ((val & DISPLAY_PLANE_ENABLE) &&
15233 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15234 return false;
15235
15236 return true;
15237}
15238
24929352
DV
15239static void intel_sanitize_crtc(struct intel_crtc *crtc)
15240{
15241 struct drm_device *dev = crtc->base.dev;
15242 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 15243 u32 reg;
24929352 15244
24929352 15245 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 15246 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
15247 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15248
d3eaf884 15249 /* restore vblank interrupts to correct state */
9625604c 15250 drm_crtc_vblank_reset(&crtc->base);
d297e103
VS
15251 if (crtc->active) {
15252 update_scanline_offset(crtc);
9625604c
DV
15253 drm_crtc_vblank_on(&crtc->base);
15254 }
d3eaf884 15255
24929352 15256 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
15257 * disable the crtc (and hence change the state) if it is wrong. Note
15258 * that gen4+ has a fixed plane -> pipe mapping. */
15259 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
15260 struct intel_connector *connector;
15261 bool plane;
15262
24929352
DV
15263 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15264 crtc->base.base.id);
15265
15266 /* Pipe has the wrong plane attached and the plane is active.
15267 * Temporarily change the plane mapping and disable everything
15268 * ... */
15269 plane = crtc->plane;
b70709a6 15270 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 15271 crtc->plane = !plane;
ce22dba9 15272 intel_crtc_disable_planes(&crtc->base);
24929352
DV
15273 dev_priv->display.crtc_disable(&crtc->base);
15274 crtc->plane = plane;
15275
15276 /* ... and break all links. */
3a3371ff 15277 for_each_intel_connector(dev, connector) {
24929352
DV
15278 if (connector->encoder->base.crtc != &crtc->base)
15279 continue;
15280
7f1950fb
EE
15281 connector->base.dpms = DRM_MODE_DPMS_OFF;
15282 connector->base.encoder = NULL;
24929352 15283 }
7f1950fb
EE
15284 /* multiple connectors may have the same encoder:
15285 * handle them and break crtc link separately */
3a3371ff 15286 for_each_intel_connector(dev, connector)
7f1950fb
EE
15287 if (connector->encoder->base.crtc == &crtc->base) {
15288 connector->encoder->base.crtc = NULL;
15289 connector->encoder->connectors_active = false;
15290 }
24929352
DV
15291
15292 WARN_ON(crtc->active);
83d65738 15293 crtc->base.state->enable = false;
49d6fa21 15294 crtc->base.state->active = false;
24929352
DV
15295 crtc->base.enabled = false;
15296 }
24929352 15297
7fad798e
DV
15298 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15299 crtc->pipe == PIPE_A && !crtc->active) {
15300 /* BIOS forgot to enable pipe A, this mostly happens after
15301 * resume. Force-enable the pipe to fix this, the update_dpms
15302 * call below we restore the pipe to the right state, but leave
15303 * the required bits on. */
15304 intel_enable_pipe_a(dev);
15305 }
15306
24929352
DV
15307 /* Adjust the state of the output pipe according to whether we
15308 * have active connectors/encoders. */
15309 intel_crtc_update_dpms(&crtc->base);
15310
83d65738 15311 if (crtc->active != crtc->base.state->enable) {
24929352
DV
15312 struct intel_encoder *encoder;
15313
15314 /* This can happen either due to bugs in the get_hw_state
15315 * functions or because the pipe is force-enabled due to the
15316 * pipe A quirk. */
15317 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15318 crtc->base.base.id,
83d65738 15319 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
15320 crtc->active ? "enabled" : "disabled");
15321
83d65738 15322 crtc->base.state->enable = crtc->active;
49d6fa21 15323 crtc->base.state->active = crtc->active;
24929352
DV
15324 crtc->base.enabled = crtc->active;
15325
15326 /* Because we only establish the connector -> encoder ->
15327 * crtc links if something is active, this means the
15328 * crtc is now deactivated. Break the links. connector
15329 * -> encoder links are only establish when things are
15330 * actually up, hence no need to break them. */
15331 WARN_ON(crtc->active);
15332
15333 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15334 WARN_ON(encoder->connectors_active);
15335 encoder->base.crtc = NULL;
15336 }
15337 }
c5ab3bc0 15338
a3ed6aad 15339 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15340 /*
15341 * We start out with underrun reporting disabled to avoid races.
15342 * For correct bookkeeping mark this on active crtcs.
15343 *
c5ab3bc0
DV
15344 * Also on gmch platforms we dont have any hardware bits to
15345 * disable the underrun reporting. Which means we need to start
15346 * out with underrun reporting disabled also on inactive pipes,
15347 * since otherwise we'll complain about the garbage we read when
15348 * e.g. coming up after runtime pm.
15349 *
4cc31489
DV
15350 * No protection against concurrent access is required - at
15351 * worst a fifo underrun happens which also sets this to false.
15352 */
15353 crtc->cpu_fifo_underrun_disabled = true;
15354 crtc->pch_fifo_underrun_disabled = true;
15355 }
24929352
DV
15356}
15357
15358static void intel_sanitize_encoder(struct intel_encoder *encoder)
15359{
15360 struct intel_connector *connector;
15361 struct drm_device *dev = encoder->base.dev;
15362
15363 /* We need to check both for a crtc link (meaning that the
15364 * encoder is active and trying to read from a pipe) and the
15365 * pipe itself being active. */
15366 bool has_active_crtc = encoder->base.crtc &&
15367 to_intel_crtc(encoder->base.crtc)->active;
15368
15369 if (encoder->connectors_active && !has_active_crtc) {
15370 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15371 encoder->base.base.id,
8e329a03 15372 encoder->base.name);
24929352
DV
15373
15374 /* Connector is active, but has no active pipe. This is
15375 * fallout from our resume register restoring. Disable
15376 * the encoder manually again. */
15377 if (encoder->base.crtc) {
15378 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15379 encoder->base.base.id,
8e329a03 15380 encoder->base.name);
24929352 15381 encoder->disable(encoder);
a62d1497
VS
15382 if (encoder->post_disable)
15383 encoder->post_disable(encoder);
24929352 15384 }
7f1950fb
EE
15385 encoder->base.crtc = NULL;
15386 encoder->connectors_active = false;
24929352
DV
15387
15388 /* Inconsistent output/port/pipe state happens presumably due to
15389 * a bug in one of the get_hw_state functions. Or someplace else
15390 * in our code, like the register restore mess on resume. Clamp
15391 * things to off as a safer default. */
3a3371ff 15392 for_each_intel_connector(dev, connector) {
24929352
DV
15393 if (connector->encoder != encoder)
15394 continue;
7f1950fb
EE
15395 connector->base.dpms = DRM_MODE_DPMS_OFF;
15396 connector->base.encoder = NULL;
24929352
DV
15397 }
15398 }
15399 /* Enabled encoders without active connectors will be fixed in
15400 * the crtc fixup. */
15401}
15402
04098753 15403void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15404{
15405 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 15406 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15407
04098753
ID
15408 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15409 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15410 i915_disable_vga(dev);
15411 }
15412}
15413
15414void i915_redisable_vga(struct drm_device *dev)
15415{
15416 struct drm_i915_private *dev_priv = dev->dev_private;
15417
8dc8a27c
PZ
15418 /* This function can be called both from intel_modeset_setup_hw_state or
15419 * at a very early point in our resume sequence, where the power well
15420 * structures are not yet restored. Since this function is at a very
15421 * paranoid "someone might have enabled VGA while we were not looking"
15422 * level, just check if the power well is enabled instead of trying to
15423 * follow the "don't touch the power well if we don't need it" policy
15424 * the rest of the driver uses. */
f458ebbc 15425 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15426 return;
15427
04098753 15428 i915_redisable_vga_power_on(dev);
0fde901f
KM
15429}
15430
98ec7739
VS
15431static bool primary_get_hw_state(struct intel_crtc *crtc)
15432{
15433 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15434
15435 if (!crtc->active)
15436 return false;
15437
15438 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
15439}
15440
30e984df 15441static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
15442{
15443 struct drm_i915_private *dev_priv = dev->dev_private;
15444 enum pipe pipe;
24929352
DV
15445 struct intel_crtc *crtc;
15446 struct intel_encoder *encoder;
15447 struct intel_connector *connector;
5358901f 15448 int i;
24929352 15449
d3fcc808 15450 for_each_intel_crtc(dev, crtc) {
b70709a6
ML
15451 struct drm_plane *primary = crtc->base.primary;
15452 struct intel_plane_state *plane_state;
15453
6e3c9717 15454 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 15455
6e3c9717 15456 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 15457
0e8ffe1b 15458 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 15459 crtc->config);
24929352 15460
83d65738 15461 crtc->base.state->enable = crtc->active;
49d6fa21 15462 crtc->base.state->active = crtc->active;
24929352 15463 crtc->base.enabled = crtc->active;
b70709a6
ML
15464
15465 plane_state = to_intel_plane_state(primary->state);
15466 plane_state->visible = primary_get_hw_state(crtc);
24929352
DV
15467
15468 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15469 crtc->base.base.id,
15470 crtc->active ? "enabled" : "disabled");
15471 }
15472
5358901f
DV
15473 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15474 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15475
3e369b76
ACO
15476 pll->on = pll->get_hw_state(dev_priv, pll,
15477 &pll->config.hw_state);
5358901f 15478 pll->active = 0;
3e369b76 15479 pll->config.crtc_mask = 0;
d3fcc808 15480 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 15481 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 15482 pll->active++;
3e369b76 15483 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 15484 }
5358901f 15485 }
5358901f 15486
1e6f2ddc 15487 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 15488 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 15489
3e369b76 15490 if (pll->config.crtc_mask)
bd2bb1b9 15491 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
15492 }
15493
b2784e15 15494 for_each_intel_encoder(dev, encoder) {
24929352
DV
15495 pipe = 0;
15496
15497 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
15498 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15499 encoder->base.crtc = &crtc->base;
6e3c9717 15500 encoder->get_config(encoder, crtc->config);
24929352
DV
15501 } else {
15502 encoder->base.crtc = NULL;
15503 }
15504
15505 encoder->connectors_active = false;
6f2bcceb 15506 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 15507 encoder->base.base.id,
8e329a03 15508 encoder->base.name,
24929352 15509 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 15510 pipe_name(pipe));
24929352
DV
15511 }
15512
3a3371ff 15513 for_each_intel_connector(dev, connector) {
24929352
DV
15514 if (connector->get_hw_state(connector)) {
15515 connector->base.dpms = DRM_MODE_DPMS_ON;
15516 connector->encoder->connectors_active = true;
15517 connector->base.encoder = &connector->encoder->base;
15518 } else {
15519 connector->base.dpms = DRM_MODE_DPMS_OFF;
15520 connector->base.encoder = NULL;
15521 }
15522 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15523 connector->base.base.id,
c23cc417 15524 connector->base.name,
24929352
DV
15525 connector->base.encoder ? "enabled" : "disabled");
15526 }
30e984df
DV
15527}
15528
15529/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15530 * and i915 state tracking structures. */
15531void intel_modeset_setup_hw_state(struct drm_device *dev,
15532 bool force_restore)
15533{
15534 struct drm_i915_private *dev_priv = dev->dev_private;
15535 enum pipe pipe;
30e984df
DV
15536 struct intel_crtc *crtc;
15537 struct intel_encoder *encoder;
35c95375 15538 int i;
30e984df
DV
15539
15540 intel_modeset_readout_hw_state(dev);
24929352 15541
babea61d
JB
15542 /*
15543 * Now that we have the config, copy it to each CRTC struct
15544 * Note that this could go away if we move to using crtc_config
15545 * checking everywhere.
15546 */
d3fcc808 15547 for_each_intel_crtc(dev, crtc) {
d330a953 15548 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
15549 intel_mode_from_pipe_config(&crtc->base.mode,
15550 crtc->config);
babea61d
JB
15551 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15552 crtc->base.base.id);
15553 drm_mode_debug_printmodeline(&crtc->base.mode);
15554 }
15555 }
15556
24929352 15557 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 15558 for_each_intel_encoder(dev, encoder) {
24929352
DV
15559 intel_sanitize_encoder(encoder);
15560 }
15561
055e393f 15562 for_each_pipe(dev_priv, pipe) {
24929352
DV
15563 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15564 intel_sanitize_crtc(crtc);
6e3c9717
ACO
15565 intel_dump_pipe_config(crtc, crtc->config,
15566 "[setup_hw_state]");
24929352 15567 }
9a935856 15568
d29b2f9d
ACO
15569 intel_modeset_update_connector_atomic_state(dev);
15570
35c95375
DV
15571 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15572 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15573
15574 if (!pll->on || pll->active)
15575 continue;
15576
15577 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15578
15579 pll->disable(dev_priv, pll);
15580 pll->on = false;
15581 }
15582
3078999f
PB
15583 if (IS_GEN9(dev))
15584 skl_wm_get_hw_state(dev);
15585 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
15586 ilk_wm_get_hw_state(dev);
15587
45e2b5f6 15588 if (force_restore) {
7d0bc1ea
VS
15589 i915_redisable_vga(dev);
15590
f30da187
DV
15591 /*
15592 * We need to use raw interfaces for restoring state to avoid
15593 * checking (bogus) intermediate states.
15594 */
055e393f 15595 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
15596 struct drm_crtc *crtc =
15597 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 15598
83a57153 15599 intel_crtc_restore_mode(crtc);
45e2b5f6
DV
15600 }
15601 } else {
15602 intel_modeset_update_staged_output_state(dev);
15603 }
8af6cf88
DV
15604
15605 intel_modeset_check_state(dev);
2c7111db
CW
15606}
15607
15608void intel_modeset_gem_init(struct drm_device *dev)
15609{
92122789 15610 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 15611 struct drm_crtc *c;
2ff8fde1 15612 struct drm_i915_gem_object *obj;
e0d6149b 15613 int ret;
484b41dd 15614
ae48434c
ID
15615 mutex_lock(&dev->struct_mutex);
15616 intel_init_gt_powersave(dev);
15617 mutex_unlock(&dev->struct_mutex);
15618
92122789
JB
15619 /*
15620 * There may be no VBT; and if the BIOS enabled SSC we can
15621 * just keep using it to avoid unnecessary flicker. Whereas if the
15622 * BIOS isn't using it, don't assume it will work even if the VBT
15623 * indicates as much.
15624 */
15625 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15626 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15627 DREF_SSC1_ENABLE);
15628
1833b134 15629 intel_modeset_init_hw(dev);
02e792fb
DV
15630
15631 intel_setup_overlay(dev);
484b41dd
JB
15632
15633 /*
15634 * Make sure any fbs we allocated at startup are properly
15635 * pinned & fenced. When we do the allocation it's too early
15636 * for this.
15637 */
70e1e0ec 15638 for_each_crtc(dev, c) {
2ff8fde1
MR
15639 obj = intel_fb_obj(c->primary->fb);
15640 if (obj == NULL)
484b41dd
JB
15641 continue;
15642
e0d6149b
TU
15643 mutex_lock(&dev->struct_mutex);
15644 ret = intel_pin_and_fence_fb_obj(c->primary,
15645 c->primary->fb,
15646 c->primary->state,
15647 NULL);
15648 mutex_unlock(&dev->struct_mutex);
15649 if (ret) {
484b41dd
JB
15650 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15651 to_intel_crtc(c)->pipe);
66e514c1
DA
15652 drm_framebuffer_unreference(c->primary->fb);
15653 c->primary->fb = NULL;
afd65eb4 15654 update_state_fb(c->primary);
484b41dd
JB
15655 }
15656 }
0962c3c9
VS
15657
15658 intel_backlight_register(dev);
79e53945
JB
15659}
15660
4932e2c3
ID
15661void intel_connector_unregister(struct intel_connector *intel_connector)
15662{
15663 struct drm_connector *connector = &intel_connector->base;
15664
15665 intel_panel_destroy_backlight(connector);
34ea3d38 15666 drm_connector_unregister(connector);
4932e2c3
ID
15667}
15668
79e53945
JB
15669void intel_modeset_cleanup(struct drm_device *dev)
15670{
652c393a 15671 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 15672 struct drm_connector *connector;
652c393a 15673
2eb5252e
ID
15674 intel_disable_gt_powersave(dev);
15675
0962c3c9
VS
15676 intel_backlight_unregister(dev);
15677
fd0c0642
DV
15678 /*
15679 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15680 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
15681 * experience fancy races otherwise.
15682 */
2aeb7d3a 15683 intel_irq_uninstall(dev_priv);
eb21b92b 15684
fd0c0642
DV
15685 /*
15686 * Due to the hpd irq storm handling the hotplug work can re-arm the
15687 * poll handlers. Hence disable polling after hpd handling is shut down.
15688 */
f87ea761 15689 drm_kms_helper_poll_fini(dev);
fd0c0642 15690
652c393a
JB
15691 mutex_lock(&dev->struct_mutex);
15692
723bfd70
JB
15693 intel_unregister_dsm_handler();
15694
7ff0ebcc 15695 intel_fbc_disable(dev);
e70236a8 15696
69341a5e
KH
15697 mutex_unlock(&dev->struct_mutex);
15698
1630fe75
CW
15699 /* flush any delayed tasks or pending work */
15700 flush_scheduled_work();
15701
db31af1d
JN
15702 /* destroy the backlight and sysfs files before encoders/connectors */
15703 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
15704 struct intel_connector *intel_connector;
15705
15706 intel_connector = to_intel_connector(connector);
15707 intel_connector->unregister(intel_connector);
db31af1d 15708 }
d9255d57 15709
79e53945 15710 drm_mode_config_cleanup(dev);
4d7bb011
DV
15711
15712 intel_cleanup_overlay(dev);
ae48434c
ID
15713
15714 mutex_lock(&dev->struct_mutex);
15715 intel_cleanup_gt_powersave(dev);
15716 mutex_unlock(&dev->struct_mutex);
79e53945
JB
15717}
15718
f1c79df3
ZW
15719/*
15720 * Return which encoder is currently attached for connector.
15721 */
df0e9248 15722struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 15723{
df0e9248
CW
15724 return &intel_attached_encoder(connector)->base;
15725}
f1c79df3 15726
df0e9248
CW
15727void intel_connector_attach_encoder(struct intel_connector *connector,
15728 struct intel_encoder *encoder)
15729{
15730 connector->encoder = encoder;
15731 drm_mode_connector_attach_encoder(&connector->base,
15732 &encoder->base);
79e53945 15733}
28d52043
DA
15734
15735/*
15736 * set vga decode state - true == enable VGA decode
15737 */
15738int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15739{
15740 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 15741 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
15742 u16 gmch_ctrl;
15743
75fa041d
CW
15744 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15745 DRM_ERROR("failed to read control word\n");
15746 return -EIO;
15747 }
15748
c0cc8a55
CW
15749 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15750 return 0;
15751
28d52043
DA
15752 if (state)
15753 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15754 else
15755 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
15756
15757 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15758 DRM_ERROR("failed to write control word\n");
15759 return -EIO;
15760 }
15761
28d52043
DA
15762 return 0;
15763}
c4a1d9e4 15764
c4a1d9e4 15765struct intel_display_error_state {
ff57f1b0
PZ
15766
15767 u32 power_well_driver;
15768
63b66e5b
CW
15769 int num_transcoders;
15770
c4a1d9e4
CW
15771 struct intel_cursor_error_state {
15772 u32 control;
15773 u32 position;
15774 u32 base;
15775 u32 size;
52331309 15776 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
15777
15778 struct intel_pipe_error_state {
ddf9c536 15779 bool power_domain_on;
c4a1d9e4 15780 u32 source;
f301b1e1 15781 u32 stat;
52331309 15782 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
15783
15784 struct intel_plane_error_state {
15785 u32 control;
15786 u32 stride;
15787 u32 size;
15788 u32 pos;
15789 u32 addr;
15790 u32 surface;
15791 u32 tile_offset;
52331309 15792 } plane[I915_MAX_PIPES];
63b66e5b
CW
15793
15794 struct intel_transcoder_error_state {
ddf9c536 15795 bool power_domain_on;
63b66e5b
CW
15796 enum transcoder cpu_transcoder;
15797
15798 u32 conf;
15799
15800 u32 htotal;
15801 u32 hblank;
15802 u32 hsync;
15803 u32 vtotal;
15804 u32 vblank;
15805 u32 vsync;
15806 } transcoder[4];
c4a1d9e4
CW
15807};
15808
15809struct intel_display_error_state *
15810intel_display_capture_error_state(struct drm_device *dev)
15811{
fbee40df 15812 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 15813 struct intel_display_error_state *error;
63b66e5b
CW
15814 int transcoders[] = {
15815 TRANSCODER_A,
15816 TRANSCODER_B,
15817 TRANSCODER_C,
15818 TRANSCODER_EDP,
15819 };
c4a1d9e4
CW
15820 int i;
15821
63b66e5b
CW
15822 if (INTEL_INFO(dev)->num_pipes == 0)
15823 return NULL;
15824
9d1cb914 15825 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
15826 if (error == NULL)
15827 return NULL;
15828
190be112 15829 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
15830 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15831
055e393f 15832 for_each_pipe(dev_priv, i) {
ddf9c536 15833 error->pipe[i].power_domain_on =
f458ebbc
DV
15834 __intel_display_power_is_enabled(dev_priv,
15835 POWER_DOMAIN_PIPE(i));
ddf9c536 15836 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
15837 continue;
15838
5efb3e28
VS
15839 error->cursor[i].control = I915_READ(CURCNTR(i));
15840 error->cursor[i].position = I915_READ(CURPOS(i));
15841 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
15842
15843 error->plane[i].control = I915_READ(DSPCNTR(i));
15844 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 15845 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 15846 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
15847 error->plane[i].pos = I915_READ(DSPPOS(i));
15848 }
ca291363
PZ
15849 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15850 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
15851 if (INTEL_INFO(dev)->gen >= 4) {
15852 error->plane[i].surface = I915_READ(DSPSURF(i));
15853 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15854 }
15855
c4a1d9e4 15856 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 15857
3abfce77 15858 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 15859 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
15860 }
15861
15862 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15863 if (HAS_DDI(dev_priv->dev))
15864 error->num_transcoders++; /* Account for eDP. */
15865
15866 for (i = 0; i < error->num_transcoders; i++) {
15867 enum transcoder cpu_transcoder = transcoders[i];
15868
ddf9c536 15869 error->transcoder[i].power_domain_on =
f458ebbc 15870 __intel_display_power_is_enabled(dev_priv,
38cc1daf 15871 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 15872 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
15873 continue;
15874
63b66e5b
CW
15875 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15876
15877 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15878 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15879 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15880 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15881 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15882 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15883 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
15884 }
15885
15886 return error;
15887}
15888
edc3d884
MK
15889#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15890
c4a1d9e4 15891void
edc3d884 15892intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
15893 struct drm_device *dev,
15894 struct intel_display_error_state *error)
15895{
055e393f 15896 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
15897 int i;
15898
63b66e5b
CW
15899 if (!error)
15900 return;
15901
edc3d884 15902 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 15903 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 15904 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 15905 error->power_well_driver);
055e393f 15906 for_each_pipe(dev_priv, i) {
edc3d884 15907 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
15908 err_printf(m, " Power: %s\n",
15909 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 15910 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 15911 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
15912
15913 err_printf(m, "Plane [%d]:\n", i);
15914 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15915 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 15916 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
15917 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15918 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 15919 }
4b71a570 15920 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 15921 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 15922 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
15923 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15924 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
15925 }
15926
edc3d884
MK
15927 err_printf(m, "Cursor [%d]:\n", i);
15928 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15929 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15930 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 15931 }
63b66e5b
CW
15932
15933 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 15934 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 15935 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
15936 err_printf(m, " Power: %s\n",
15937 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
15938 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15939 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15940 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15941 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15942 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15943 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15944 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15945 }
c4a1d9e4 15946}
e2fcdaa9
VS
15947
15948void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15949{
15950 struct intel_crtc *crtc;
15951
15952 for_each_intel_crtc(dev, crtc) {
15953 struct intel_unpin_work *work;
e2fcdaa9 15954
5e2d7afc 15955 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
15956
15957 work = crtc->unpin_work;
15958
15959 if (work && work->event &&
15960 work->event->base.file_priv == file) {
15961 kfree(work->event);
15962 work->event = NULL;
15963 }
15964
5e2d7afc 15965 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
15966 }
15967}