]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Update queue_flip() to take a request structure
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
79e53945 47
465c120c 48/* Primary plane formats for gen <= 3 */
568db4f2 49static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
465c120c 52 DRM_FORMAT_XRGB1555,
67fe7dc5 53 DRM_FORMAT_XRGB8888,
465c120c
MR
54};
55
56/* Primary plane formats for gen >= 4 */
568db4f2 57static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64};
65
66static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
465c120c 70 DRM_FORMAT_XBGR8888,
67fe7dc5 71 DRM_FORMAT_ARGB8888,
465c120c
MR
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
465c120c 74 DRM_FORMAT_XBGR2101010,
465c120c
MR
75};
76
3d7d6510
MR
77/* Cursor formats */
78static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80};
81
6b383a7f 82static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 83
f1f644dc 84static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 85 struct intel_crtc_state *pipe_config);
18442d08 86static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 87 struct intel_crtc_state *pipe_config);
f1f644dc 88
568c634a 89static int intel_set_mode(struct drm_atomic_state *state);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 102static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 103 const struct intel_crtc_state *pipe_config);
d288f65f 104static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 105 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
106static void intel_begin_crtc_commit(struct drm_crtc *crtc);
107static void intel_finish_crtc_commit(struct drm_crtc *crtc);
549e2bfb
CK
108static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
109 struct intel_crtc_state *crtc_state);
5ab7b0b7
ID
110static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
111 int num_connectors);
e7457a9a 112
0e32b39c
DA
113static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
114{
115 if (!connector->mst_port)
116 return connector->encoder;
117 else
118 return &connector->mst_port->mst_encoders[pipe]->base;
119}
120
79e53945 121typedef struct {
0206e353 122 int min, max;
79e53945
JB
123} intel_range_t;
124
125typedef struct {
0206e353
AJ
126 int dot_limit;
127 int p2_slow, p2_fast;
79e53945
JB
128} intel_p2_t;
129
d4906093
ML
130typedef struct intel_limit intel_limit_t;
131struct intel_limit {
0206e353
AJ
132 intel_range_t dot, vco, n, m, m1, m2, p, p1;
133 intel_p2_t p2;
d4906093 134};
79e53945 135
d2acd215
DV
136int
137intel_pch_rawclk(struct drm_device *dev)
138{
139 struct drm_i915_private *dev_priv = dev->dev_private;
140
141 WARN_ON(!HAS_PCH_SPLIT(dev));
142
143 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
144}
145
021357ac
CW
146static inline u32 /* units of 100MHz */
147intel_fdi_link_freq(struct drm_device *dev)
148{
8b99e68c
CW
149 if (IS_GEN5(dev)) {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
152 } else
153 return 27;
021357ac
CW
154}
155
5d536e28 156static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 157 .dot = { .min = 25000, .max = 350000 },
9c333719 158 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 159 .n = { .min = 2, .max = 16 },
0206e353
AJ
160 .m = { .min = 96, .max = 140 },
161 .m1 = { .min = 18, .max = 26 },
162 .m2 = { .min = 6, .max = 16 },
163 .p = { .min = 4, .max = 128 },
164 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
165 .p2 = { .dot_limit = 165000,
166 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
167};
168
5d536e28
DV
169static const intel_limit_t intel_limits_i8xx_dvo = {
170 .dot = { .min = 25000, .max = 350000 },
9c333719 171 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 172 .n = { .min = 2, .max = 16 },
5d536e28
DV
173 .m = { .min = 96, .max = 140 },
174 .m1 = { .min = 18, .max = 26 },
175 .m2 = { .min = 6, .max = 16 },
176 .p = { .min = 4, .max = 128 },
177 .p1 = { .min = 2, .max = 33 },
178 .p2 = { .dot_limit = 165000,
179 .p2_slow = 4, .p2_fast = 4 },
180};
181
e4b36699 182static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 183 .dot = { .min = 25000, .max = 350000 },
9c333719 184 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 185 .n = { .min = 2, .max = 16 },
0206e353
AJ
186 .m = { .min = 96, .max = 140 },
187 .m1 = { .min = 18, .max = 26 },
188 .m2 = { .min = 6, .max = 16 },
189 .p = { .min = 4, .max = 128 },
190 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
191 .p2 = { .dot_limit = 165000,
192 .p2_slow = 14, .p2_fast = 7 },
e4b36699 193};
273e27ca 194
e4b36699 195static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
196 .dot = { .min = 20000, .max = 400000 },
197 .vco = { .min = 1400000, .max = 2800000 },
198 .n = { .min = 1, .max = 6 },
199 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
200 .m1 = { .min = 8, .max = 18 },
201 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
202 .p = { .min = 5, .max = 80 },
203 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
204 .p2 = { .dot_limit = 200000,
205 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
206};
207
208static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
209 .dot = { .min = 20000, .max = 400000 },
210 .vco = { .min = 1400000, .max = 2800000 },
211 .n = { .min = 1, .max = 6 },
212 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
213 .m1 = { .min = 8, .max = 18 },
214 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
215 .p = { .min = 7, .max = 98 },
216 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
217 .p2 = { .dot_limit = 112000,
218 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
219};
220
273e27ca 221
e4b36699 222static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
223 .dot = { .min = 25000, .max = 270000 },
224 .vco = { .min = 1750000, .max = 3500000},
225 .n = { .min = 1, .max = 4 },
226 .m = { .min = 104, .max = 138 },
227 .m1 = { .min = 17, .max = 23 },
228 .m2 = { .min = 5, .max = 11 },
229 .p = { .min = 10, .max = 30 },
230 .p1 = { .min = 1, .max = 3},
231 .p2 = { .dot_limit = 270000,
232 .p2_slow = 10,
233 .p2_fast = 10
044c7c41 234 },
e4b36699
KP
235};
236
237static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
238 .dot = { .min = 22000, .max = 400000 },
239 .vco = { .min = 1750000, .max = 3500000},
240 .n = { .min = 1, .max = 4 },
241 .m = { .min = 104, .max = 138 },
242 .m1 = { .min = 16, .max = 23 },
243 .m2 = { .min = 5, .max = 11 },
244 .p = { .min = 5, .max = 80 },
245 .p1 = { .min = 1, .max = 8},
246 .p2 = { .dot_limit = 165000,
247 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
248};
249
250static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
251 .dot = { .min = 20000, .max = 115000 },
252 .vco = { .min = 1750000, .max = 3500000 },
253 .n = { .min = 1, .max = 3 },
254 .m = { .min = 104, .max = 138 },
255 .m1 = { .min = 17, .max = 23 },
256 .m2 = { .min = 5, .max = 11 },
257 .p = { .min = 28, .max = 112 },
258 .p1 = { .min = 2, .max = 8 },
259 .p2 = { .dot_limit = 0,
260 .p2_slow = 14, .p2_fast = 14
044c7c41 261 },
e4b36699
KP
262};
263
264static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
265 .dot = { .min = 80000, .max = 224000 },
266 .vco = { .min = 1750000, .max = 3500000 },
267 .n = { .min = 1, .max = 3 },
268 .m = { .min = 104, .max = 138 },
269 .m1 = { .min = 17, .max = 23 },
270 .m2 = { .min = 5, .max = 11 },
271 .p = { .min = 14, .max = 42 },
272 .p1 = { .min = 2, .max = 6 },
273 .p2 = { .dot_limit = 0,
274 .p2_slow = 7, .p2_fast = 7
044c7c41 275 },
e4b36699
KP
276};
277
f2b115e6 278static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
279 .dot = { .min = 20000, .max = 400000},
280 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 281 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
282 .n = { .min = 3, .max = 6 },
283 .m = { .min = 2, .max = 256 },
273e27ca 284 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
285 .m1 = { .min = 0, .max = 0 },
286 .m2 = { .min = 0, .max = 254 },
287 .p = { .min = 5, .max = 80 },
288 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
289 .p2 = { .dot_limit = 200000,
290 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
291};
292
f2b115e6 293static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
294 .dot = { .min = 20000, .max = 400000 },
295 .vco = { .min = 1700000, .max = 3500000 },
296 .n = { .min = 3, .max = 6 },
297 .m = { .min = 2, .max = 256 },
298 .m1 = { .min = 0, .max = 0 },
299 .m2 = { .min = 0, .max = 254 },
300 .p = { .min = 7, .max = 112 },
301 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
302 .p2 = { .dot_limit = 112000,
303 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
304};
305
273e27ca
EA
306/* Ironlake / Sandybridge
307 *
308 * We calculate clock using (register_value + 2) for N/M1/M2, so here
309 * the range value for them is (actual_value - 2).
310 */
b91ad0ec 311static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
312 .dot = { .min = 25000, .max = 350000 },
313 .vco = { .min = 1760000, .max = 3510000 },
314 .n = { .min = 1, .max = 5 },
315 .m = { .min = 79, .max = 127 },
316 .m1 = { .min = 12, .max = 22 },
317 .m2 = { .min = 5, .max = 9 },
318 .p = { .min = 5, .max = 80 },
319 .p1 = { .min = 1, .max = 8 },
320 .p2 = { .dot_limit = 225000,
321 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
322};
323
b91ad0ec 324static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
325 .dot = { .min = 25000, .max = 350000 },
326 .vco = { .min = 1760000, .max = 3510000 },
327 .n = { .min = 1, .max = 3 },
328 .m = { .min = 79, .max = 118 },
329 .m1 = { .min = 12, .max = 22 },
330 .m2 = { .min = 5, .max = 9 },
331 .p = { .min = 28, .max = 112 },
332 .p1 = { .min = 2, .max = 8 },
333 .p2 = { .dot_limit = 225000,
334 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
335};
336
337static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
338 .dot = { .min = 25000, .max = 350000 },
339 .vco = { .min = 1760000, .max = 3510000 },
340 .n = { .min = 1, .max = 3 },
341 .m = { .min = 79, .max = 127 },
342 .m1 = { .min = 12, .max = 22 },
343 .m2 = { .min = 5, .max = 9 },
344 .p = { .min = 14, .max = 56 },
345 .p1 = { .min = 2, .max = 8 },
346 .p2 = { .dot_limit = 225000,
347 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
348};
349
273e27ca 350/* LVDS 100mhz refclk limits. */
b91ad0ec 351static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
352 .dot = { .min = 25000, .max = 350000 },
353 .vco = { .min = 1760000, .max = 3510000 },
354 .n = { .min = 1, .max = 2 },
355 .m = { .min = 79, .max = 126 },
356 .m1 = { .min = 12, .max = 22 },
357 .m2 = { .min = 5, .max = 9 },
358 .p = { .min = 28, .max = 112 },
0206e353 359 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
360 .p2 = { .dot_limit = 225000,
361 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
362};
363
364static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
365 .dot = { .min = 25000, .max = 350000 },
366 .vco = { .min = 1760000, .max = 3510000 },
367 .n = { .min = 1, .max = 3 },
368 .m = { .min = 79, .max = 126 },
369 .m1 = { .min = 12, .max = 22 },
370 .m2 = { .min = 5, .max = 9 },
371 .p = { .min = 14, .max = 42 },
0206e353 372 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
373 .p2 = { .dot_limit = 225000,
374 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
375};
376
dc730512 377static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
378 /*
379 * These are the data rate limits (measured in fast clocks)
380 * since those are the strictest limits we have. The fast
381 * clock and actual rate limits are more relaxed, so checking
382 * them would make no difference.
383 */
384 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 385 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 386 .n = { .min = 1, .max = 7 },
a0c4da24
JB
387 .m1 = { .min = 2, .max = 3 },
388 .m2 = { .min = 11, .max = 156 },
b99ab663 389 .p1 = { .min = 2, .max = 3 },
5fdc9c49 390 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
391};
392
ef9348c8
CML
393static const intel_limit_t intel_limits_chv = {
394 /*
395 * These are the data rate limits (measured in fast clocks)
396 * since those are the strictest limits we have. The fast
397 * clock and actual rate limits are more relaxed, so checking
398 * them would make no difference.
399 */
400 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 401 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
402 .n = { .min = 1, .max = 1 },
403 .m1 = { .min = 2, .max = 2 },
404 .m2 = { .min = 24 << 22, .max = 175 << 22 },
405 .p1 = { .min = 2, .max = 4 },
406 .p2 = { .p2_slow = 1, .p2_fast = 14 },
407};
408
5ab7b0b7
ID
409static const intel_limit_t intel_limits_bxt = {
410 /* FIXME: find real dot limits */
411 .dot = { .min = 0, .max = INT_MAX },
412 .vco = { .min = 4800000, .max = 6480000 },
413 .n = { .min = 1, .max = 1 },
414 .m1 = { .min = 2, .max = 2 },
415 /* FIXME: find real m2 limits */
416 .m2 = { .min = 2 << 22, .max = 255 << 22 },
417 .p1 = { .min = 2, .max = 4 },
418 .p2 = { .p2_slow = 1, .p2_fast = 20 },
419};
420
6b4bf1c4
VS
421static void vlv_clock(int refclk, intel_clock_t *clock)
422{
423 clock->m = clock->m1 * clock->m2;
424 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
425 if (WARN_ON(clock->n == 0 || clock->p == 0))
426 return;
fb03ac01
VS
427 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
428 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
429}
430
cdba954e
ACO
431static bool
432needs_modeset(struct drm_crtc_state *state)
433{
434 return state->mode_changed || state->active_changed;
435}
436
e0638cdf
PZ
437/**
438 * Returns whether any output on the specified pipe is of the specified type
439 */
4093561b 440bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 441{
409ee761 442 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
443 struct intel_encoder *encoder;
444
409ee761 445 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
446 if (encoder->type == type)
447 return true;
448
449 return false;
450}
451
d0737e1d
ACO
452/**
453 * Returns whether any output on the specified pipe will have the specified
454 * type after a staged modeset is complete, i.e., the same as
455 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
456 * encoder->crtc.
457 */
a93e255f
ACO
458static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
459 int type)
d0737e1d 460{
a93e255f 461 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 462 struct drm_connector *connector;
a93e255f 463 struct drm_connector_state *connector_state;
d0737e1d 464 struct intel_encoder *encoder;
a93e255f
ACO
465 int i, num_connectors = 0;
466
da3ced29 467 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
468 if (connector_state->crtc != crtc_state->base.crtc)
469 continue;
470
471 num_connectors++;
d0737e1d 472
a93e255f
ACO
473 encoder = to_intel_encoder(connector_state->best_encoder);
474 if (encoder->type == type)
d0737e1d 475 return true;
a93e255f
ACO
476 }
477
478 WARN_ON(num_connectors == 0);
d0737e1d
ACO
479
480 return false;
481}
482
a93e255f
ACO
483static const intel_limit_t *
484intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 485{
a93e255f 486 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 487 const intel_limit_t *limit;
b91ad0ec 488
a93e255f 489 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 490 if (intel_is_dual_link_lvds(dev)) {
1b894b59 491 if (refclk == 100000)
b91ad0ec
ZW
492 limit = &intel_limits_ironlake_dual_lvds_100m;
493 else
494 limit = &intel_limits_ironlake_dual_lvds;
495 } else {
1b894b59 496 if (refclk == 100000)
b91ad0ec
ZW
497 limit = &intel_limits_ironlake_single_lvds_100m;
498 else
499 limit = &intel_limits_ironlake_single_lvds;
500 }
c6bb3538 501 } else
b91ad0ec 502 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
503
504 return limit;
505}
506
a93e255f
ACO
507static const intel_limit_t *
508intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 509{
a93e255f 510 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
511 const intel_limit_t *limit;
512
a93e255f 513 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 514 if (intel_is_dual_link_lvds(dev))
e4b36699 515 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 516 else
e4b36699 517 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
518 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
519 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 520 limit = &intel_limits_g4x_hdmi;
a93e255f 521 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 522 limit = &intel_limits_g4x_sdvo;
044c7c41 523 } else /* The option is for other outputs */
e4b36699 524 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
525
526 return limit;
527}
528
a93e255f
ACO
529static const intel_limit_t *
530intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 531{
a93e255f 532 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
533 const intel_limit_t *limit;
534
5ab7b0b7
ID
535 if (IS_BROXTON(dev))
536 limit = &intel_limits_bxt;
537 else if (HAS_PCH_SPLIT(dev))
a93e255f 538 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 539 else if (IS_G4X(dev)) {
a93e255f 540 limit = intel_g4x_limit(crtc_state);
f2b115e6 541 } else if (IS_PINEVIEW(dev)) {
a93e255f 542 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 543 limit = &intel_limits_pineview_lvds;
2177832f 544 else
f2b115e6 545 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
546 } else if (IS_CHERRYVIEW(dev)) {
547 limit = &intel_limits_chv;
a0c4da24 548 } else if (IS_VALLEYVIEW(dev)) {
dc730512 549 limit = &intel_limits_vlv;
a6c45cf0 550 } else if (!IS_GEN2(dev)) {
a93e255f 551 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
552 limit = &intel_limits_i9xx_lvds;
553 else
554 limit = &intel_limits_i9xx_sdvo;
79e53945 555 } else {
a93e255f 556 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 557 limit = &intel_limits_i8xx_lvds;
a93e255f 558 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 559 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
560 else
561 limit = &intel_limits_i8xx_dac;
79e53945
JB
562 }
563 return limit;
564}
565
f2b115e6
AJ
566/* m1 is reserved as 0 in Pineview, n is a ring counter */
567static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 568{
2177832f
SL
569 clock->m = clock->m2 + 2;
570 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
571 if (WARN_ON(clock->n == 0 || clock->p == 0))
572 return;
fb03ac01
VS
573 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
574 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
575}
576
7429e9d4
DV
577static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
578{
579 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
580}
581
ac58c3f0 582static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 583{
7429e9d4 584 clock->m = i9xx_dpll_compute_m(clock);
79e53945 585 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
586 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
587 return;
fb03ac01
VS
588 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
589 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
590}
591
ef9348c8
CML
592static void chv_clock(int refclk, intel_clock_t *clock)
593{
594 clock->m = clock->m1 * clock->m2;
595 clock->p = clock->p1 * clock->p2;
596 if (WARN_ON(clock->n == 0 || clock->p == 0))
597 return;
598 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
599 clock->n << 22);
600 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
601}
602
7c04d1d9 603#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
604/**
605 * Returns whether the given set of divisors are valid for a given refclk with
606 * the given connectors.
607 */
608
1b894b59
CW
609static bool intel_PLL_is_valid(struct drm_device *dev,
610 const intel_limit_t *limit,
611 const intel_clock_t *clock)
79e53945 612{
f01b7962
VS
613 if (clock->n < limit->n.min || limit->n.max < clock->n)
614 INTELPllInvalid("n out of range\n");
79e53945 615 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 616 INTELPllInvalid("p1 out of range\n");
79e53945 617 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 618 INTELPllInvalid("m2 out of range\n");
79e53945 619 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 620 INTELPllInvalid("m1 out of range\n");
f01b7962 621
5ab7b0b7 622 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
623 if (clock->m1 <= clock->m2)
624 INTELPllInvalid("m1 <= m2\n");
625
5ab7b0b7 626 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
627 if (clock->p < limit->p.min || limit->p.max < clock->p)
628 INTELPllInvalid("p out of range\n");
629 if (clock->m < limit->m.min || limit->m.max < clock->m)
630 INTELPllInvalid("m out of range\n");
631 }
632
79e53945 633 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 634 INTELPllInvalid("vco out of range\n");
79e53945
JB
635 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
636 * connector, etc., rather than just a single range.
637 */
638 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 639 INTELPllInvalid("dot out of range\n");
79e53945
JB
640
641 return true;
642}
643
3b1429d9
VS
644static int
645i9xx_select_p2_div(const intel_limit_t *limit,
646 const struct intel_crtc_state *crtc_state,
647 int target)
79e53945 648{
3b1429d9 649 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 650
a93e255f 651 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 652 /*
a210b028
DV
653 * For LVDS just rely on its current settings for dual-channel.
654 * We haven't figured out how to reliably set up different
655 * single/dual channel state, if we even can.
79e53945 656 */
1974cad0 657 if (intel_is_dual_link_lvds(dev))
3b1429d9 658 return limit->p2.p2_fast;
79e53945 659 else
3b1429d9 660 return limit->p2.p2_slow;
79e53945
JB
661 } else {
662 if (target < limit->p2.dot_limit)
3b1429d9 663 return limit->p2.p2_slow;
79e53945 664 else
3b1429d9 665 return limit->p2.p2_fast;
79e53945 666 }
3b1429d9
VS
667}
668
669static bool
670i9xx_find_best_dpll(const intel_limit_t *limit,
671 struct intel_crtc_state *crtc_state,
672 int target, int refclk, intel_clock_t *match_clock,
673 intel_clock_t *best_clock)
674{
675 struct drm_device *dev = crtc_state->base.crtc->dev;
676 intel_clock_t clock;
677 int err = target;
79e53945 678
0206e353 679 memset(best_clock, 0, sizeof(*best_clock));
79e53945 680
3b1429d9
VS
681 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
682
42158660
ZY
683 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
684 clock.m1++) {
685 for (clock.m2 = limit->m2.min;
686 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 687 if (clock.m2 >= clock.m1)
42158660
ZY
688 break;
689 for (clock.n = limit->n.min;
690 clock.n <= limit->n.max; clock.n++) {
691 for (clock.p1 = limit->p1.min;
692 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
693 int this_err;
694
ac58c3f0
DV
695 i9xx_clock(refclk, &clock);
696 if (!intel_PLL_is_valid(dev, limit,
697 &clock))
698 continue;
699 if (match_clock &&
700 clock.p != match_clock->p)
701 continue;
702
703 this_err = abs(clock.dot - target);
704 if (this_err < err) {
705 *best_clock = clock;
706 err = this_err;
707 }
708 }
709 }
710 }
711 }
712
713 return (err != target);
714}
715
716static bool
a93e255f
ACO
717pnv_find_best_dpll(const intel_limit_t *limit,
718 struct intel_crtc_state *crtc_state,
ee9300bb
DV
719 int target, int refclk, intel_clock_t *match_clock,
720 intel_clock_t *best_clock)
79e53945 721{
3b1429d9 722 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 723 intel_clock_t clock;
79e53945
JB
724 int err = target;
725
0206e353 726 memset(best_clock, 0, sizeof(*best_clock));
79e53945 727
3b1429d9
VS
728 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
729
42158660
ZY
730 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
731 clock.m1++) {
732 for (clock.m2 = limit->m2.min;
733 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
734 for (clock.n = limit->n.min;
735 clock.n <= limit->n.max; clock.n++) {
736 for (clock.p1 = limit->p1.min;
737 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
738 int this_err;
739
ac58c3f0 740 pineview_clock(refclk, &clock);
1b894b59
CW
741 if (!intel_PLL_is_valid(dev, limit,
742 &clock))
79e53945 743 continue;
cec2f356
SP
744 if (match_clock &&
745 clock.p != match_clock->p)
746 continue;
79e53945
JB
747
748 this_err = abs(clock.dot - target);
749 if (this_err < err) {
750 *best_clock = clock;
751 err = this_err;
752 }
753 }
754 }
755 }
756 }
757
758 return (err != target);
759}
760
d4906093 761static bool
a93e255f
ACO
762g4x_find_best_dpll(const intel_limit_t *limit,
763 struct intel_crtc_state *crtc_state,
ee9300bb
DV
764 int target, int refclk, intel_clock_t *match_clock,
765 intel_clock_t *best_clock)
d4906093 766{
3b1429d9 767 struct drm_device *dev = crtc_state->base.crtc->dev;
d4906093
ML
768 intel_clock_t clock;
769 int max_n;
3b1429d9 770 bool found = false;
6ba770dc
AJ
771 /* approximately equals target * 0.00585 */
772 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
773
774 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
775
776 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
d4906093 778 max_n = limit->n.max;
f77f13e2 779 /* based on hardware requirement, prefer smaller n to precision */
d4906093 780 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 781 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
782 for (clock.m1 = limit->m1.max;
783 clock.m1 >= limit->m1.min; clock.m1--) {
784 for (clock.m2 = limit->m2.max;
785 clock.m2 >= limit->m2.min; clock.m2--) {
786 for (clock.p1 = limit->p1.max;
787 clock.p1 >= limit->p1.min; clock.p1--) {
788 int this_err;
789
ac58c3f0 790 i9xx_clock(refclk, &clock);
1b894b59
CW
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
d4906093 793 continue;
1b894b59
CW
794
795 this_err = abs(clock.dot - target);
d4906093
ML
796 if (this_err < err_most) {
797 *best_clock = clock;
798 err_most = this_err;
799 max_n = clock.n;
800 found = true;
801 }
802 }
803 }
804 }
805 }
2c07245f
ZW
806 return found;
807}
808
d5dd62bd
ID
809/*
810 * Check if the calculated PLL configuration is more optimal compared to the
811 * best configuration and error found so far. Return the calculated error.
812 */
813static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
814 const intel_clock_t *calculated_clock,
815 const intel_clock_t *best_clock,
816 unsigned int best_error_ppm,
817 unsigned int *error_ppm)
818{
9ca3ba01
ID
819 /*
820 * For CHV ignore the error and consider only the P value.
821 * Prefer a bigger P value based on HW requirements.
822 */
823 if (IS_CHERRYVIEW(dev)) {
824 *error_ppm = 0;
825
826 return calculated_clock->p > best_clock->p;
827 }
828
24be4e46
ID
829 if (WARN_ON_ONCE(!target_freq))
830 return false;
831
d5dd62bd
ID
832 *error_ppm = div_u64(1000000ULL *
833 abs(target_freq - calculated_clock->dot),
834 target_freq);
835 /*
836 * Prefer a better P value over a better (smaller) error if the error
837 * is small. Ensure this preference for future configurations too by
838 * setting the error to 0.
839 */
840 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
841 *error_ppm = 0;
842
843 return true;
844 }
845
846 return *error_ppm + 10 < best_error_ppm;
847}
848
a0c4da24 849static bool
a93e255f
ACO
850vlv_find_best_dpll(const intel_limit_t *limit,
851 struct intel_crtc_state *crtc_state,
ee9300bb
DV
852 int target, int refclk, intel_clock_t *match_clock,
853 intel_clock_t *best_clock)
a0c4da24 854{
a93e255f 855 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 856 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 857 intel_clock_t clock;
69e4f900 858 unsigned int bestppm = 1000000;
27e639bf
VS
859 /* min update 19.2 MHz */
860 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 861 bool found = false;
a0c4da24 862
6b4bf1c4
VS
863 target *= 5; /* fast clock */
864
865 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
866
867 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 868 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 869 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 870 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 871 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 872 clock.p = clock.p1 * clock.p2;
a0c4da24 873 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 874 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 875 unsigned int ppm;
69e4f900 876
6b4bf1c4
VS
877 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
878 refclk * clock.m1);
879
880 vlv_clock(refclk, &clock);
43b0ac53 881
f01b7962
VS
882 if (!intel_PLL_is_valid(dev, limit,
883 &clock))
43b0ac53
VS
884 continue;
885
d5dd62bd
ID
886 if (!vlv_PLL_is_optimal(dev, target,
887 &clock,
888 best_clock,
889 bestppm, &ppm))
890 continue;
6b4bf1c4 891
d5dd62bd
ID
892 *best_clock = clock;
893 bestppm = ppm;
894 found = true;
a0c4da24
JB
895 }
896 }
897 }
898 }
a0c4da24 899
49e497ef 900 return found;
a0c4da24 901}
a4fc5ed6 902
ef9348c8 903static bool
a93e255f
ACO
904chv_find_best_dpll(const intel_limit_t *limit,
905 struct intel_crtc_state *crtc_state,
ef9348c8
CML
906 int target, int refclk, intel_clock_t *match_clock,
907 intel_clock_t *best_clock)
908{
a93e255f 909 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 910 struct drm_device *dev = crtc->base.dev;
9ca3ba01 911 unsigned int best_error_ppm;
ef9348c8
CML
912 intel_clock_t clock;
913 uint64_t m2;
914 int found = false;
915
916 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 917 best_error_ppm = 1000000;
ef9348c8
CML
918
919 /*
920 * Based on hardware doc, the n always set to 1, and m1 always
921 * set to 2. If requires to support 200Mhz refclk, we need to
922 * revisit this because n may not 1 anymore.
923 */
924 clock.n = 1, clock.m1 = 2;
925 target *= 5; /* fast clock */
926
927 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
928 for (clock.p2 = limit->p2.p2_fast;
929 clock.p2 >= limit->p2.p2_slow;
930 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 931 unsigned int error_ppm;
ef9348c8
CML
932
933 clock.p = clock.p1 * clock.p2;
934
935 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
936 clock.n) << 22, refclk * clock.m1);
937
938 if (m2 > INT_MAX/clock.m1)
939 continue;
940
941 clock.m2 = m2;
942
943 chv_clock(refclk, &clock);
944
945 if (!intel_PLL_is_valid(dev, limit, &clock))
946 continue;
947
9ca3ba01
ID
948 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
949 best_error_ppm, &error_ppm))
950 continue;
951
952 *best_clock = clock;
953 best_error_ppm = error_ppm;
954 found = true;
ef9348c8
CML
955 }
956 }
957
958 return found;
959}
960
5ab7b0b7
ID
961bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
962 intel_clock_t *best_clock)
963{
964 int refclk = i9xx_get_refclk(crtc_state, 0);
965
966 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
967 target_clock, refclk, NULL, best_clock);
968}
969
20ddf665
VS
970bool intel_crtc_active(struct drm_crtc *crtc)
971{
972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
973
974 /* Be paranoid as we can arrive here with only partial
975 * state retrieved from the hardware during setup.
976 *
241bfc38 977 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
978 * as Haswell has gained clock readout/fastboot support.
979 *
66e514c1 980 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 981 * properly reconstruct framebuffers.
c3d1f436
MR
982 *
983 * FIXME: The intel_crtc->active here should be switched to
984 * crtc->state->active once we have proper CRTC states wired up
985 * for atomic.
20ddf665 986 */
c3d1f436 987 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 988 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
989}
990
a5c961d1
PZ
991enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
992 enum pipe pipe)
993{
994 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
995 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
996
6e3c9717 997 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
998}
999
fbf49ea2
VS
1000static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1001{
1002 struct drm_i915_private *dev_priv = dev->dev_private;
1003 u32 reg = PIPEDSL(pipe);
1004 u32 line1, line2;
1005 u32 line_mask;
1006
1007 if (IS_GEN2(dev))
1008 line_mask = DSL_LINEMASK_GEN2;
1009 else
1010 line_mask = DSL_LINEMASK_GEN3;
1011
1012 line1 = I915_READ(reg) & line_mask;
1013 mdelay(5);
1014 line2 = I915_READ(reg) & line_mask;
1015
1016 return line1 == line2;
1017}
1018
ab7ad7f6
KP
1019/*
1020 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1021 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1022 *
1023 * After disabling a pipe, we can't wait for vblank in the usual way,
1024 * spinning on the vblank interrupt status bit, since we won't actually
1025 * see an interrupt when the pipe is disabled.
1026 *
ab7ad7f6
KP
1027 * On Gen4 and above:
1028 * wait for the pipe register state bit to turn off
1029 *
1030 * Otherwise:
1031 * wait for the display line value to settle (it usually
1032 * ends up stopping at the start of the next frame).
58e10eb9 1033 *
9d0498a2 1034 */
575f7ab7 1035static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1036{
575f7ab7 1037 struct drm_device *dev = crtc->base.dev;
9d0498a2 1038 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1039 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1040 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1041
1042 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1043 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1044
1045 /* Wait for the Pipe State to go off */
58e10eb9
CW
1046 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1047 100))
284637d9 1048 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1049 } else {
ab7ad7f6 1050 /* Wait for the display line to settle */
fbf49ea2 1051 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1052 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1053 }
79e53945
JB
1054}
1055
b0ea7d37
DL
1056/*
1057 * ibx_digital_port_connected - is the specified port connected?
1058 * @dev_priv: i915 private structure
1059 * @port: the port to test
1060 *
1061 * Returns true if @port is connected, false otherwise.
1062 */
1063bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1064 struct intel_digital_port *port)
1065{
1066 u32 bit;
1067
c36346e3 1068 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1069 switch (port->port) {
c36346e3
DL
1070 case PORT_B:
1071 bit = SDE_PORTB_HOTPLUG;
1072 break;
1073 case PORT_C:
1074 bit = SDE_PORTC_HOTPLUG;
1075 break;
1076 case PORT_D:
1077 bit = SDE_PORTD_HOTPLUG;
1078 break;
1079 default:
1080 return true;
1081 }
1082 } else {
eba905b2 1083 switch (port->port) {
c36346e3
DL
1084 case PORT_B:
1085 bit = SDE_PORTB_HOTPLUG_CPT;
1086 break;
1087 case PORT_C:
1088 bit = SDE_PORTC_HOTPLUG_CPT;
1089 break;
1090 case PORT_D:
1091 bit = SDE_PORTD_HOTPLUG_CPT;
1092 break;
1093 default:
1094 return true;
1095 }
b0ea7d37
DL
1096 }
1097
1098 return I915_READ(SDEISR) & bit;
1099}
1100
b24e7179
JB
1101static const char *state_string(bool enabled)
1102{
1103 return enabled ? "on" : "off";
1104}
1105
1106/* Only for pre-ILK configs */
55607e8a
DV
1107void assert_pll(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
b24e7179
JB
1109{
1110 int reg;
1111 u32 val;
1112 bool cur_state;
1113
1114 reg = DPLL(pipe);
1115 val = I915_READ(reg);
1116 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1117 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1118 "PLL state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120}
b24e7179 1121
23538ef1
JN
1122/* XXX: the dsi pll is shared between MIPI DSI ports */
1123static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1124{
1125 u32 val;
1126 bool cur_state;
1127
a580516d 1128 mutex_lock(&dev_priv->sb_lock);
23538ef1 1129 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1130 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1131
1132 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1133 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1134 "DSI PLL state assertion failure (expected %s, current %s)\n",
1135 state_string(state), state_string(cur_state));
1136}
1137#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1138#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1139
55607e8a 1140struct intel_shared_dpll *
e2b78267
DV
1141intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1142{
1143 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1144
6e3c9717 1145 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1146 return NULL;
1147
6e3c9717 1148 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1149}
1150
040484af 1151/* For ILK+ */
55607e8a
DV
1152void assert_shared_dpll(struct drm_i915_private *dev_priv,
1153 struct intel_shared_dpll *pll,
1154 bool state)
040484af 1155{
040484af 1156 bool cur_state;
5358901f 1157 struct intel_dpll_hw_state hw_state;
040484af 1158
92b27b08 1159 if (WARN (!pll,
46edb027 1160 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1161 return;
ee7b9f93 1162
5358901f 1163 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1164 I915_STATE_WARN(cur_state != state,
5358901f
DV
1165 "%s assertion failure (expected %s, current %s)\n",
1166 pll->name, state_string(state), state_string(cur_state));
040484af 1167}
040484af
JB
1168
1169static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1170 enum pipe pipe, bool state)
1171{
1172 int reg;
1173 u32 val;
1174 bool cur_state;
ad80a810
PZ
1175 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1176 pipe);
040484af 1177
affa9354
PZ
1178 if (HAS_DDI(dev_priv->dev)) {
1179 /* DDI does not have a specific FDI_TX register */
ad80a810 1180 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1181 val = I915_READ(reg);
ad80a810 1182 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1183 } else {
1184 reg = FDI_TX_CTL(pipe);
1185 val = I915_READ(reg);
1186 cur_state = !!(val & FDI_TX_ENABLE);
1187 }
e2c719b7 1188 I915_STATE_WARN(cur_state != state,
040484af
JB
1189 "FDI TX state assertion failure (expected %s, current %s)\n",
1190 state_string(state), state_string(cur_state));
1191}
1192#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1193#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1194
1195static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1196 enum pipe pipe, bool state)
1197{
1198 int reg;
1199 u32 val;
1200 bool cur_state;
1201
d63fa0dc
PZ
1202 reg = FDI_RX_CTL(pipe);
1203 val = I915_READ(reg);
1204 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1205 I915_STATE_WARN(cur_state != state,
040484af
JB
1206 "FDI RX state assertion failure (expected %s, current %s)\n",
1207 state_string(state), state_string(cur_state));
1208}
1209#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1210#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1211
1212static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1213 enum pipe pipe)
1214{
1215 int reg;
1216 u32 val;
1217
1218 /* ILK FDI PLL is always enabled */
3d13ef2e 1219 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1220 return;
1221
bf507ef7 1222 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1223 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1224 return;
1225
040484af
JB
1226 reg = FDI_TX_CTL(pipe);
1227 val = I915_READ(reg);
e2c719b7 1228 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1229}
1230
55607e8a
DV
1231void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1232 enum pipe pipe, bool state)
040484af
JB
1233{
1234 int reg;
1235 u32 val;
55607e8a 1236 bool cur_state;
040484af
JB
1237
1238 reg = FDI_RX_CTL(pipe);
1239 val = I915_READ(reg);
55607e8a 1240 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1241 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1242 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1243 state_string(state), state_string(cur_state));
040484af
JB
1244}
1245
b680c37a
DV
1246void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
ea0760cf 1248{
bedd4dba
JN
1249 struct drm_device *dev = dev_priv->dev;
1250 int pp_reg;
ea0760cf
JB
1251 u32 val;
1252 enum pipe panel_pipe = PIPE_A;
0de3b485 1253 bool locked = true;
ea0760cf 1254
bedd4dba
JN
1255 if (WARN_ON(HAS_DDI(dev)))
1256 return;
1257
1258 if (HAS_PCH_SPLIT(dev)) {
1259 u32 port_sel;
1260
ea0760cf 1261 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1262 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1263
1264 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1265 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1266 panel_pipe = PIPE_B;
1267 /* XXX: else fix for eDP */
1268 } else if (IS_VALLEYVIEW(dev)) {
1269 /* presumably write lock depends on pipe, not port select */
1270 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1271 panel_pipe = pipe;
ea0760cf
JB
1272 } else {
1273 pp_reg = PP_CONTROL;
bedd4dba
JN
1274 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1275 panel_pipe = PIPE_B;
ea0760cf
JB
1276 }
1277
1278 val = I915_READ(pp_reg);
1279 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1280 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1281 locked = false;
1282
e2c719b7 1283 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1284 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1285 pipe_name(pipe));
ea0760cf
JB
1286}
1287
93ce0ba6
JN
1288static void assert_cursor(struct drm_i915_private *dev_priv,
1289 enum pipe pipe, bool state)
1290{
1291 struct drm_device *dev = dev_priv->dev;
1292 bool cur_state;
1293
d9d82081 1294 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1295 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1296 else
5efb3e28 1297 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1298
e2c719b7 1299 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1300 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1301 pipe_name(pipe), state_string(state), state_string(cur_state));
1302}
1303#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1304#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1305
b840d907
JB
1306void assert_pipe(struct drm_i915_private *dev_priv,
1307 enum pipe pipe, bool state)
b24e7179
JB
1308{
1309 int reg;
1310 u32 val;
63d7bbe9 1311 bool cur_state;
702e7a56
PZ
1312 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1313 pipe);
b24e7179 1314
b6b5d049
VS
1315 /* if we need the pipe quirk it must be always on */
1316 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1317 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1318 state = true;
1319
f458ebbc 1320 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1321 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1322 cur_state = false;
1323 } else {
1324 reg = PIPECONF(cpu_transcoder);
1325 val = I915_READ(reg);
1326 cur_state = !!(val & PIPECONF_ENABLE);
1327 }
1328
e2c719b7 1329 I915_STATE_WARN(cur_state != state,
63d7bbe9 1330 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1331 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1332}
1333
931872fc
CW
1334static void assert_plane(struct drm_i915_private *dev_priv,
1335 enum plane plane, bool state)
b24e7179
JB
1336{
1337 int reg;
1338 u32 val;
931872fc 1339 bool cur_state;
b24e7179
JB
1340
1341 reg = DSPCNTR(plane);
1342 val = I915_READ(reg);
931872fc 1343 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1344 I915_STATE_WARN(cur_state != state,
931872fc
CW
1345 "plane %c assertion failure (expected %s, current %s)\n",
1346 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1347}
1348
931872fc
CW
1349#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1350#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1351
b24e7179
JB
1352static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1353 enum pipe pipe)
1354{
653e1026 1355 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1356 int reg, i;
1357 u32 val;
1358 int cur_pipe;
1359
653e1026
VS
1360 /* Primary planes are fixed to pipes on gen4+ */
1361 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1362 reg = DSPCNTR(pipe);
1363 val = I915_READ(reg);
e2c719b7 1364 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1365 "plane %c assertion failure, should be disabled but not\n",
1366 plane_name(pipe));
19ec1358 1367 return;
28c05794 1368 }
19ec1358 1369
b24e7179 1370 /* Need to check both planes against the pipe */
055e393f 1371 for_each_pipe(dev_priv, i) {
b24e7179
JB
1372 reg = DSPCNTR(i);
1373 val = I915_READ(reg);
1374 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1375 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1376 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1377 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1378 plane_name(i), pipe_name(pipe));
b24e7179
JB
1379 }
1380}
1381
19332d7a
JB
1382static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1383 enum pipe pipe)
1384{
20674eef 1385 struct drm_device *dev = dev_priv->dev;
1fe47785 1386 int reg, sprite;
19332d7a
JB
1387 u32 val;
1388
7feb8b88 1389 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1390 for_each_sprite(dev_priv, pipe, sprite) {
7feb8b88 1391 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1392 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1393 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1394 sprite, pipe_name(pipe));
1395 }
1396 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1397 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 1398 reg = SPCNTR(pipe, sprite);
20674eef 1399 val = I915_READ(reg);
e2c719b7 1400 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1401 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1402 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1403 }
1404 } else if (INTEL_INFO(dev)->gen >= 7) {
1405 reg = SPRCTL(pipe);
19332d7a 1406 val = I915_READ(reg);
e2c719b7 1407 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1408 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1409 plane_name(pipe), pipe_name(pipe));
1410 } else if (INTEL_INFO(dev)->gen >= 5) {
1411 reg = DVSCNTR(pipe);
19332d7a 1412 val = I915_READ(reg);
e2c719b7 1413 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1414 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1415 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1416 }
1417}
1418
08c71e5e
VS
1419static void assert_vblank_disabled(struct drm_crtc *crtc)
1420{
e2c719b7 1421 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1422 drm_crtc_vblank_put(crtc);
1423}
1424
89eff4be 1425static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1426{
1427 u32 val;
1428 bool enabled;
1429
e2c719b7 1430 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1431
92f2584a
JB
1432 val = I915_READ(PCH_DREF_CONTROL);
1433 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1434 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1435 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1436}
1437
ab9412ba
DV
1438static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1439 enum pipe pipe)
92f2584a
JB
1440{
1441 int reg;
1442 u32 val;
1443 bool enabled;
1444
ab9412ba 1445 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1446 val = I915_READ(reg);
1447 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1448 I915_STATE_WARN(enabled,
9db4a9c7
JB
1449 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1450 pipe_name(pipe));
92f2584a
JB
1451}
1452
4e634389
KP
1453static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1455{
1456 if ((val & DP_PORT_EN) == 0)
1457 return false;
1458
1459 if (HAS_PCH_CPT(dev_priv->dev)) {
1460 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1461 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1462 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1463 return false;
44f37d1f
CML
1464 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1465 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1466 return false;
f0575e92
KP
1467 } else {
1468 if ((val & DP_PIPE_MASK) != (pipe << 30))
1469 return false;
1470 }
1471 return true;
1472}
1473
1519b995
KP
1474static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1475 enum pipe pipe, u32 val)
1476{
dc0fa718 1477 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1478 return false;
1479
1480 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1481 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1482 return false;
44f37d1f
CML
1483 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1484 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1485 return false;
1519b995 1486 } else {
dc0fa718 1487 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1488 return false;
1489 }
1490 return true;
1491}
1492
1493static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1494 enum pipe pipe, u32 val)
1495{
1496 if ((val & LVDS_PORT_EN) == 0)
1497 return false;
1498
1499 if (HAS_PCH_CPT(dev_priv->dev)) {
1500 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1501 return false;
1502 } else {
1503 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1504 return false;
1505 }
1506 return true;
1507}
1508
1509static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1510 enum pipe pipe, u32 val)
1511{
1512 if ((val & ADPA_DAC_ENABLE) == 0)
1513 return false;
1514 if (HAS_PCH_CPT(dev_priv->dev)) {
1515 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1516 return false;
1517 } else {
1518 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1519 return false;
1520 }
1521 return true;
1522}
1523
291906f1 1524static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1525 enum pipe pipe, int reg, u32 port_sel)
291906f1 1526{
47a05eca 1527 u32 val = I915_READ(reg);
e2c719b7 1528 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1529 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1530 reg, pipe_name(pipe));
de9a35ab 1531
e2c719b7 1532 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1533 && (val & DP_PIPEB_SELECT),
de9a35ab 1534 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1535}
1536
1537static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1538 enum pipe pipe, int reg)
1539{
47a05eca 1540 u32 val = I915_READ(reg);
e2c719b7 1541 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1542 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1543 reg, pipe_name(pipe));
de9a35ab 1544
e2c719b7 1545 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1546 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1547 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1548}
1549
1550static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1551 enum pipe pipe)
1552{
1553 int reg;
1554 u32 val;
291906f1 1555
f0575e92
KP
1556 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1557 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1558 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1559
1560 reg = PCH_ADPA;
1561 val = I915_READ(reg);
e2c719b7 1562 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1563 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1564 pipe_name(pipe));
291906f1
JB
1565
1566 reg = PCH_LVDS;
1567 val = I915_READ(reg);
e2c719b7 1568 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1569 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1570 pipe_name(pipe));
291906f1 1571
e2debe91
PZ
1572 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1573 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1574 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1575}
1576
40e9cf64
JB
1577static void intel_init_dpio(struct drm_device *dev)
1578{
1579 struct drm_i915_private *dev_priv = dev->dev_private;
1580
1581 if (!IS_VALLEYVIEW(dev))
1582 return;
1583
a09caddd
CML
1584 /*
1585 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1586 * CHV x1 PHY (DP/HDMI D)
1587 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1588 */
1589 if (IS_CHERRYVIEW(dev)) {
1590 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1591 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1592 } else {
1593 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1594 }
5382f5f3
JB
1595}
1596
d288f65f 1597static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1598 const struct intel_crtc_state *pipe_config)
87442f73 1599{
426115cf
DV
1600 struct drm_device *dev = crtc->base.dev;
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 int reg = DPLL(crtc->pipe);
d288f65f 1603 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1604
426115cf 1605 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1606
1607 /* No really, not for ILK+ */
1608 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1609
1610 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1611 if (IS_MOBILE(dev_priv->dev))
426115cf 1612 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1613
426115cf
DV
1614 I915_WRITE(reg, dpll);
1615 POSTING_READ(reg);
1616 udelay(150);
1617
1618 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1619 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1620
d288f65f 1621 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1622 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1623
1624 /* We do this three times for luck */
426115cf 1625 I915_WRITE(reg, dpll);
87442f73
DV
1626 POSTING_READ(reg);
1627 udelay(150); /* wait for warmup */
426115cf 1628 I915_WRITE(reg, dpll);
87442f73
DV
1629 POSTING_READ(reg);
1630 udelay(150); /* wait for warmup */
426115cf 1631 I915_WRITE(reg, dpll);
87442f73
DV
1632 POSTING_READ(reg);
1633 udelay(150); /* wait for warmup */
1634}
1635
d288f65f 1636static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1637 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1638{
1639 struct drm_device *dev = crtc->base.dev;
1640 struct drm_i915_private *dev_priv = dev->dev_private;
1641 int pipe = crtc->pipe;
1642 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1643 u32 tmp;
1644
1645 assert_pipe_disabled(dev_priv, crtc->pipe);
1646
1647 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1648
a580516d 1649 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1650
1651 /* Enable back the 10bit clock to display controller */
1652 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1653 tmp |= DPIO_DCLKP_EN;
1654 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1655
54433e91
VS
1656 mutex_unlock(&dev_priv->sb_lock);
1657
9d556c99
CML
1658 /*
1659 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1660 */
1661 udelay(1);
1662
1663 /* Enable PLL */
d288f65f 1664 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1665
1666 /* Check PLL is locked */
a11b0703 1667 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1668 DRM_ERROR("PLL %d failed to lock\n", pipe);
1669
a11b0703 1670 /* not sure when this should be written */
d288f65f 1671 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703 1672 POSTING_READ(DPLL_MD(pipe));
9d556c99
CML
1673}
1674
1c4e0274
VS
1675static int intel_num_dvo_pipes(struct drm_device *dev)
1676{
1677 struct intel_crtc *crtc;
1678 int count = 0;
1679
1680 for_each_intel_crtc(dev, crtc)
3538b9df 1681 count += crtc->base.state->active &&
409ee761 1682 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1683
1684 return count;
1685}
1686
66e3d5c0 1687static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1688{
66e3d5c0
DV
1689 struct drm_device *dev = crtc->base.dev;
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691 int reg = DPLL(crtc->pipe);
6e3c9717 1692 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1693
66e3d5c0 1694 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1695
63d7bbe9 1696 /* No really, not for ILK+ */
3d13ef2e 1697 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1698
1699 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1700 if (IS_MOBILE(dev) && !IS_I830(dev))
1701 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1702
1c4e0274
VS
1703 /* Enable DVO 2x clock on both PLLs if necessary */
1704 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1705 /*
1706 * It appears to be important that we don't enable this
1707 * for the current pipe before otherwise configuring the
1708 * PLL. No idea how this should be handled if multiple
1709 * DVO outputs are enabled simultaneosly.
1710 */
1711 dpll |= DPLL_DVO_2X_MODE;
1712 I915_WRITE(DPLL(!crtc->pipe),
1713 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1714 }
66e3d5c0
DV
1715
1716 /* Wait for the clocks to stabilize. */
1717 POSTING_READ(reg);
1718 udelay(150);
1719
1720 if (INTEL_INFO(dev)->gen >= 4) {
1721 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1722 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1723 } else {
1724 /* The pixel multiplier can only be updated once the
1725 * DPLL is enabled and the clocks are stable.
1726 *
1727 * So write it again.
1728 */
1729 I915_WRITE(reg, dpll);
1730 }
63d7bbe9
JB
1731
1732 /* We do this three times for luck */
66e3d5c0 1733 I915_WRITE(reg, dpll);
63d7bbe9
JB
1734 POSTING_READ(reg);
1735 udelay(150); /* wait for warmup */
66e3d5c0 1736 I915_WRITE(reg, dpll);
63d7bbe9
JB
1737 POSTING_READ(reg);
1738 udelay(150); /* wait for warmup */
66e3d5c0 1739 I915_WRITE(reg, dpll);
63d7bbe9
JB
1740 POSTING_READ(reg);
1741 udelay(150); /* wait for warmup */
1742}
1743
1744/**
50b44a44 1745 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1746 * @dev_priv: i915 private structure
1747 * @pipe: pipe PLL to disable
1748 *
1749 * Disable the PLL for @pipe, making sure the pipe is off first.
1750 *
1751 * Note! This is for pre-ILK only.
1752 */
1c4e0274 1753static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1754{
1c4e0274
VS
1755 struct drm_device *dev = crtc->base.dev;
1756 struct drm_i915_private *dev_priv = dev->dev_private;
1757 enum pipe pipe = crtc->pipe;
1758
1759 /* Disable DVO 2x clock on both PLLs if necessary */
1760 if (IS_I830(dev) &&
409ee761 1761 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
3538b9df 1762 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1763 I915_WRITE(DPLL(PIPE_B),
1764 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1765 I915_WRITE(DPLL(PIPE_A),
1766 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1767 }
1768
b6b5d049
VS
1769 /* Don't disable pipe or pipe PLLs if needed */
1770 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1771 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1772 return;
1773
1774 /* Make sure the pipe isn't still relying on us */
1775 assert_pipe_disabled(dev_priv, pipe);
1776
50b44a44
DV
1777 I915_WRITE(DPLL(pipe), 0);
1778 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1779}
1780
f6071166
JB
1781static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1782{
1783 u32 val = 0;
1784
1785 /* Make sure the pipe isn't still relying on us */
1786 assert_pipe_disabled(dev_priv, pipe);
1787
e5cbfbfb
ID
1788 /*
1789 * Leave integrated clock source and reference clock enabled for pipe B.
1790 * The latter is needed for VGA hotplug / manual detection.
1791 */
f6071166 1792 if (pipe == PIPE_B)
e5cbfbfb 1793 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1794 I915_WRITE(DPLL(pipe), val);
1795 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1796
1797}
1798
1799static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1800{
d752048d 1801 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1802 u32 val;
1803
a11b0703
VS
1804 /* Make sure the pipe isn't still relying on us */
1805 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1806
a11b0703 1807 /* Set PLL en = 0 */
d17ec4ce 1808 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1809 if (pipe != PIPE_A)
1810 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1811 I915_WRITE(DPLL(pipe), val);
1812 POSTING_READ(DPLL(pipe));
d752048d 1813
a580516d 1814 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1815
1816 /* Disable 10bit clock to display controller */
1817 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1818 val &= ~DPIO_DCLKP_EN;
1819 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1820
61407f6d
VS
1821 /* disable left/right clock distribution */
1822 if (pipe != PIPE_B) {
1823 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1824 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1825 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1826 } else {
1827 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1828 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1829 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1830 }
1831
a580516d 1832 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1833}
1834
e4607fcf 1835void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1836 struct intel_digital_port *dport,
1837 unsigned int expected_mask)
89b667f8
JB
1838{
1839 u32 port_mask;
00fc31b7 1840 int dpll_reg;
89b667f8 1841
e4607fcf
CML
1842 switch (dport->port) {
1843 case PORT_B:
89b667f8 1844 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1845 dpll_reg = DPLL(0);
e4607fcf
CML
1846 break;
1847 case PORT_C:
89b667f8 1848 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1849 dpll_reg = DPLL(0);
9b6de0a1 1850 expected_mask <<= 4;
00fc31b7
CML
1851 break;
1852 case PORT_D:
1853 port_mask = DPLL_PORTD_READY_MASK;
1854 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1855 break;
1856 default:
1857 BUG();
1858 }
89b667f8 1859
9b6de0a1
VS
1860 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1861 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1862 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1863}
1864
b14b1055
DV
1865static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1866{
1867 struct drm_device *dev = crtc->base.dev;
1868 struct drm_i915_private *dev_priv = dev->dev_private;
1869 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1870
be19f0ff
CW
1871 if (WARN_ON(pll == NULL))
1872 return;
1873
3e369b76 1874 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1875 if (pll->active == 0) {
1876 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1877 WARN_ON(pll->on);
1878 assert_shared_dpll_disabled(dev_priv, pll);
1879
1880 pll->mode_set(dev_priv, pll);
1881 }
1882}
1883
92f2584a 1884/**
85b3894f 1885 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1886 * @dev_priv: i915 private structure
1887 * @pipe: pipe PLL to enable
1888 *
1889 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1890 * drives the transcoder clock.
1891 */
85b3894f 1892static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1893{
3d13ef2e
DL
1894 struct drm_device *dev = crtc->base.dev;
1895 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1896 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1897
87a875bb 1898 if (WARN_ON(pll == NULL))
48da64a8
CW
1899 return;
1900
3e369b76 1901 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1902 return;
ee7b9f93 1903
74dd6928 1904 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1905 pll->name, pll->active, pll->on,
e2b78267 1906 crtc->base.base.id);
92f2584a 1907
cdbd2316
DV
1908 if (pll->active++) {
1909 WARN_ON(!pll->on);
e9d6944e 1910 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1911 return;
1912 }
f4a091c7 1913 WARN_ON(pll->on);
ee7b9f93 1914
bd2bb1b9
PZ
1915 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1916
46edb027 1917 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1918 pll->enable(dev_priv, pll);
ee7b9f93 1919 pll->on = true;
92f2584a
JB
1920}
1921
f6daaec2 1922static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1923{
3d13ef2e
DL
1924 struct drm_device *dev = crtc->base.dev;
1925 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1926 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1927
92f2584a 1928 /* PCH only available on ILK+ */
3d13ef2e 1929 BUG_ON(INTEL_INFO(dev)->gen < 5);
eddfcbcd
ML
1930 if (pll == NULL)
1931 return;
92f2584a 1932
eddfcbcd 1933 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
48da64a8 1934 return;
7a419866 1935
46edb027
DV
1936 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1937 pll->name, pll->active, pll->on,
e2b78267 1938 crtc->base.base.id);
7a419866 1939
48da64a8 1940 if (WARN_ON(pll->active == 0)) {
e9d6944e 1941 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1942 return;
1943 }
1944
e9d6944e 1945 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1946 WARN_ON(!pll->on);
cdbd2316 1947 if (--pll->active)
7a419866 1948 return;
ee7b9f93 1949
46edb027 1950 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1951 pll->disable(dev_priv, pll);
ee7b9f93 1952 pll->on = false;
bd2bb1b9
PZ
1953
1954 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1955}
1956
b8a4f404
PZ
1957static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1958 enum pipe pipe)
040484af 1959{
23670b32 1960 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1961 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1963 uint32_t reg, val, pipeconf_val;
040484af
JB
1964
1965 /* PCH only available on ILK+ */
55522f37 1966 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1967
1968 /* Make sure PCH DPLL is enabled */
e72f9fbf 1969 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1970 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1971
1972 /* FDI must be feeding us bits for PCH ports */
1973 assert_fdi_tx_enabled(dev_priv, pipe);
1974 assert_fdi_rx_enabled(dev_priv, pipe);
1975
23670b32
DV
1976 if (HAS_PCH_CPT(dev)) {
1977 /* Workaround: Set the timing override bit before enabling the
1978 * pch transcoder. */
1979 reg = TRANS_CHICKEN2(pipe);
1980 val = I915_READ(reg);
1981 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1982 I915_WRITE(reg, val);
59c859d6 1983 }
23670b32 1984
ab9412ba 1985 reg = PCH_TRANSCONF(pipe);
040484af 1986 val = I915_READ(reg);
5f7f726d 1987 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1988
1989 if (HAS_PCH_IBX(dev_priv->dev)) {
1990 /*
c5de7c6f
VS
1991 * Make the BPC in transcoder be consistent with
1992 * that in pipeconf reg. For HDMI we must use 8bpc
1993 * here for both 8bpc and 12bpc.
e9bcff5c 1994 */
dfd07d72 1995 val &= ~PIPECONF_BPC_MASK;
c5de7c6f
VS
1996 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1997 val |= PIPECONF_8BPC;
1998 else
1999 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 2000 }
5f7f726d
PZ
2001
2002 val &= ~TRANS_INTERLACE_MASK;
2003 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 2004 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 2005 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
2006 val |= TRANS_LEGACY_INTERLACED_ILK;
2007 else
2008 val |= TRANS_INTERLACED;
5f7f726d
PZ
2009 else
2010 val |= TRANS_PROGRESSIVE;
2011
040484af
JB
2012 I915_WRITE(reg, val | TRANS_ENABLE);
2013 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 2014 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
2015}
2016
8fb033d7 2017static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 2018 enum transcoder cpu_transcoder)
040484af 2019{
8fb033d7 2020 u32 val, pipeconf_val;
8fb033d7
PZ
2021
2022 /* PCH only available on ILK+ */
55522f37 2023 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 2024
8fb033d7 2025 /* FDI must be feeding us bits for PCH ports */
1a240d4d 2026 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 2027 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 2028
223a6fdf
PZ
2029 /* Workaround: set timing override bit. */
2030 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2031 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
2032 I915_WRITE(_TRANSA_CHICKEN2, val);
2033
25f3ef11 2034 val = TRANS_ENABLE;
937bb610 2035 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 2036
9a76b1c6
PZ
2037 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2038 PIPECONF_INTERLACED_ILK)
a35f2679 2039 val |= TRANS_INTERLACED;
8fb033d7
PZ
2040 else
2041 val |= TRANS_PROGRESSIVE;
2042
ab9412ba
DV
2043 I915_WRITE(LPT_TRANSCONF, val);
2044 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 2045 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
2046}
2047
b8a4f404
PZ
2048static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2049 enum pipe pipe)
040484af 2050{
23670b32
DV
2051 struct drm_device *dev = dev_priv->dev;
2052 uint32_t reg, val;
040484af
JB
2053
2054 /* FDI relies on the transcoder */
2055 assert_fdi_tx_disabled(dev_priv, pipe);
2056 assert_fdi_rx_disabled(dev_priv, pipe);
2057
291906f1
JB
2058 /* Ports must be off as well */
2059 assert_pch_ports_disabled(dev_priv, pipe);
2060
ab9412ba 2061 reg = PCH_TRANSCONF(pipe);
040484af
JB
2062 val = I915_READ(reg);
2063 val &= ~TRANS_ENABLE;
2064 I915_WRITE(reg, val);
2065 /* wait for PCH transcoder off, transcoder state */
2066 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2067 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2068
2069 if (!HAS_PCH_IBX(dev)) {
2070 /* Workaround: Clear the timing override chicken bit again. */
2071 reg = TRANS_CHICKEN2(pipe);
2072 val = I915_READ(reg);
2073 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2074 I915_WRITE(reg, val);
2075 }
040484af
JB
2076}
2077
ab4d966c 2078static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2079{
8fb033d7
PZ
2080 u32 val;
2081
ab9412ba 2082 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2083 val &= ~TRANS_ENABLE;
ab9412ba 2084 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2085 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2086 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2087 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2088
2089 /* Workaround: clear timing override bit. */
2090 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2091 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2092 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2093}
2094
b24e7179 2095/**
309cfea8 2096 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2097 * @crtc: crtc responsible for the pipe
b24e7179 2098 *
0372264a 2099 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2100 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2101 */
e1fdc473 2102static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2103{
0372264a
PZ
2104 struct drm_device *dev = crtc->base.dev;
2105 struct drm_i915_private *dev_priv = dev->dev_private;
2106 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2107 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2108 pipe);
1a240d4d 2109 enum pipe pch_transcoder;
b24e7179
JB
2110 int reg;
2111 u32 val;
2112
58c6eaa2 2113 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2114 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2115 assert_sprites_disabled(dev_priv, pipe);
2116
681e5811 2117 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2118 pch_transcoder = TRANSCODER_A;
2119 else
2120 pch_transcoder = pipe;
2121
b24e7179
JB
2122 /*
2123 * A pipe without a PLL won't actually be able to drive bits from
2124 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2125 * need the check.
2126 */
50360403 2127 if (HAS_GMCH_DISPLAY(dev_priv->dev))
409ee761 2128 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2129 assert_dsi_pll_enabled(dev_priv);
2130 else
2131 assert_pll_enabled(dev_priv, pipe);
040484af 2132 else {
6e3c9717 2133 if (crtc->config->has_pch_encoder) {
040484af 2134 /* if driving the PCH, we need FDI enabled */
cc391bbb 2135 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2136 assert_fdi_tx_pll_enabled(dev_priv,
2137 (enum pipe) cpu_transcoder);
040484af
JB
2138 }
2139 /* FIXME: assert CPU port conditions for SNB+ */
2140 }
b24e7179 2141
702e7a56 2142 reg = PIPECONF(cpu_transcoder);
b24e7179 2143 val = I915_READ(reg);
7ad25d48 2144 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2145 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2146 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2147 return;
7ad25d48 2148 }
00d70b15
CW
2149
2150 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2151 POSTING_READ(reg);
b24e7179
JB
2152}
2153
2154/**
309cfea8 2155 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2156 * @crtc: crtc whose pipes is to be disabled
b24e7179 2157 *
575f7ab7
VS
2158 * Disable the pipe of @crtc, making sure that various hardware
2159 * specific requirements are met, if applicable, e.g. plane
2160 * disabled, panel fitter off, etc.
b24e7179
JB
2161 *
2162 * Will wait until the pipe has shut down before returning.
2163 */
575f7ab7 2164static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2165{
575f7ab7 2166 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2167 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2168 enum pipe pipe = crtc->pipe;
b24e7179
JB
2169 int reg;
2170 u32 val;
2171
2172 /*
2173 * Make sure planes won't keep trying to pump pixels to us,
2174 * or we might hang the display.
2175 */
2176 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2177 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2178 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2179
702e7a56 2180 reg = PIPECONF(cpu_transcoder);
b24e7179 2181 val = I915_READ(reg);
00d70b15
CW
2182 if ((val & PIPECONF_ENABLE) == 0)
2183 return;
2184
67adc644
VS
2185 /*
2186 * Double wide has implications for planes
2187 * so best keep it disabled when not needed.
2188 */
6e3c9717 2189 if (crtc->config->double_wide)
67adc644
VS
2190 val &= ~PIPECONF_DOUBLE_WIDE;
2191
2192 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2193 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2194 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2195 val &= ~PIPECONF_ENABLE;
2196
2197 I915_WRITE(reg, val);
2198 if ((val & PIPECONF_ENABLE) == 0)
2199 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2200}
2201
693db184
CW
2202static bool need_vtd_wa(struct drm_device *dev)
2203{
2204#ifdef CONFIG_INTEL_IOMMU
2205 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2206 return true;
2207#endif
2208 return false;
2209}
2210
50470bb0 2211unsigned int
6761dd31
TU
2212intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2213 uint64_t fb_format_modifier)
a57ce0b2 2214{
6761dd31
TU
2215 unsigned int tile_height;
2216 uint32_t pixel_bytes;
a57ce0b2 2217
b5d0e9bf
DL
2218 switch (fb_format_modifier) {
2219 case DRM_FORMAT_MOD_NONE:
2220 tile_height = 1;
2221 break;
2222 case I915_FORMAT_MOD_X_TILED:
2223 tile_height = IS_GEN2(dev) ? 16 : 8;
2224 break;
2225 case I915_FORMAT_MOD_Y_TILED:
2226 tile_height = 32;
2227 break;
2228 case I915_FORMAT_MOD_Yf_TILED:
6761dd31
TU
2229 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2230 switch (pixel_bytes) {
b5d0e9bf 2231 default:
6761dd31 2232 case 1:
b5d0e9bf
DL
2233 tile_height = 64;
2234 break;
6761dd31
TU
2235 case 2:
2236 case 4:
b5d0e9bf
DL
2237 tile_height = 32;
2238 break;
6761dd31 2239 case 8:
b5d0e9bf
DL
2240 tile_height = 16;
2241 break;
6761dd31 2242 case 16:
b5d0e9bf
DL
2243 WARN_ONCE(1,
2244 "128-bit pixels are not supported for display!");
2245 tile_height = 16;
2246 break;
2247 }
2248 break;
2249 default:
2250 MISSING_CASE(fb_format_modifier);
2251 tile_height = 1;
2252 break;
2253 }
091df6cb 2254
6761dd31
TU
2255 return tile_height;
2256}
2257
2258unsigned int
2259intel_fb_align_height(struct drm_device *dev, unsigned int height,
2260 uint32_t pixel_format, uint64_t fb_format_modifier)
2261{
2262 return ALIGN(height, intel_tile_height(dev, pixel_format,
2263 fb_format_modifier));
a57ce0b2
JB
2264}
2265
f64b98cd
TU
2266static int
2267intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2268 const struct drm_plane_state *plane_state)
2269{
50470bb0 2270 struct intel_rotation_info *info = &view->rotation_info;
50470bb0 2271
f64b98cd
TU
2272 *view = i915_ggtt_view_normal;
2273
50470bb0
TU
2274 if (!plane_state)
2275 return 0;
2276
121920fa 2277 if (!intel_rotation_90_or_270(plane_state->rotation))
50470bb0
TU
2278 return 0;
2279
9abc4648 2280 *view = i915_ggtt_view_rotated;
50470bb0
TU
2281
2282 info->height = fb->height;
2283 info->pixel_format = fb->pixel_format;
2284 info->pitch = fb->pitches[0];
2285 info->fb_modifier = fb->modifier[0];
2286
f64b98cd
TU
2287 return 0;
2288}
2289
4e9a86b6
VS
2290static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2291{
2292 if (INTEL_INFO(dev_priv)->gen >= 9)
2293 return 256 * 1024;
985b8bb4
VS
2294 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2295 IS_VALLEYVIEW(dev_priv))
4e9a86b6
VS
2296 return 128 * 1024;
2297 else if (INTEL_INFO(dev_priv)->gen >= 4)
2298 return 4 * 1024;
2299 else
44c5905e 2300 return 0;
4e9a86b6
VS
2301}
2302
127bd2ac 2303int
850c4cdc
TU
2304intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2305 struct drm_framebuffer *fb,
82bc3b2d 2306 const struct drm_plane_state *plane_state,
91af127f
JH
2307 struct intel_engine_cs *pipelined,
2308 struct drm_i915_gem_request **pipelined_request)
6b95a207 2309{
850c4cdc 2310 struct drm_device *dev = fb->dev;
ce453d81 2311 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2312 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2313 struct i915_ggtt_view view;
6b95a207
KH
2314 u32 alignment;
2315 int ret;
2316
ebcdd39e
MR
2317 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2318
7b911adc
TU
2319 switch (fb->modifier[0]) {
2320 case DRM_FORMAT_MOD_NONE:
4e9a86b6 2321 alignment = intel_linear_alignment(dev_priv);
6b95a207 2322 break;
7b911adc 2323 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2324 if (INTEL_INFO(dev)->gen >= 9)
2325 alignment = 256 * 1024;
2326 else {
2327 /* pin() will align the object as required by fence */
2328 alignment = 0;
2329 }
6b95a207 2330 break;
7b911adc 2331 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2332 case I915_FORMAT_MOD_Yf_TILED:
2333 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2334 "Y tiling bo slipped through, driver bug!\n"))
2335 return -EINVAL;
2336 alignment = 1 * 1024 * 1024;
2337 break;
6b95a207 2338 default:
7b911adc
TU
2339 MISSING_CASE(fb->modifier[0]);
2340 return -EINVAL;
6b95a207
KH
2341 }
2342
f64b98cd
TU
2343 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2344 if (ret)
2345 return ret;
2346
693db184
CW
2347 /* Note that the w/a also requires 64 PTE of padding following the
2348 * bo. We currently fill all unused PTE with the shadow page and so
2349 * we should always have valid PTE following the scanout preventing
2350 * the VT-d warning.
2351 */
2352 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2353 alignment = 256 * 1024;
2354
d6dd6843
PZ
2355 /*
2356 * Global gtt pte registers are special registers which actually forward
2357 * writes to a chunk of system memory. Which means that there is no risk
2358 * that the register values disappear as soon as we call
2359 * intel_runtime_pm_put(), so it is correct to wrap only the
2360 * pin/unpin/fence and not more.
2361 */
2362 intel_runtime_pm_get(dev_priv);
2363
ce453d81 2364 dev_priv->mm.interruptible = false;
e6617330 2365 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
91af127f 2366 pipelined_request, &view);
48b956c5 2367 if (ret)
ce453d81 2368 goto err_interruptible;
6b95a207
KH
2369
2370 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2371 * fence, whereas 965+ only requires a fence if using
2372 * framebuffer compression. For simplicity, we always install
2373 * a fence as the cost is not that onerous.
2374 */
06d98131 2375 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2376 if (ret)
2377 goto err_unpin;
1690e1eb 2378
9a5a53b3 2379 i915_gem_object_pin_fence(obj);
6b95a207 2380
ce453d81 2381 dev_priv->mm.interruptible = true;
d6dd6843 2382 intel_runtime_pm_put(dev_priv);
6b95a207 2383 return 0;
48b956c5
CW
2384
2385err_unpin:
f64b98cd 2386 i915_gem_object_unpin_from_display_plane(obj, &view);
ce453d81
CW
2387err_interruptible:
2388 dev_priv->mm.interruptible = true;
d6dd6843 2389 intel_runtime_pm_put(dev_priv);
48b956c5 2390 return ret;
6b95a207
KH
2391}
2392
82bc3b2d
TU
2393static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2394 const struct drm_plane_state *plane_state)
1690e1eb 2395{
82bc3b2d 2396 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd
TU
2397 struct i915_ggtt_view view;
2398 int ret;
82bc3b2d 2399
ebcdd39e
MR
2400 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2401
f64b98cd
TU
2402 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2403 WARN_ONCE(ret, "Couldn't get view from plane state!");
2404
1690e1eb 2405 i915_gem_object_unpin_fence(obj);
f64b98cd 2406 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2407}
2408
c2c75131
DV
2409/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2410 * is assumed to be a power-of-two. */
4e9a86b6
VS
2411unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2412 int *x, int *y,
bc752862
CW
2413 unsigned int tiling_mode,
2414 unsigned int cpp,
2415 unsigned int pitch)
c2c75131 2416{
bc752862
CW
2417 if (tiling_mode != I915_TILING_NONE) {
2418 unsigned int tile_rows, tiles;
c2c75131 2419
bc752862
CW
2420 tile_rows = *y / 8;
2421 *y %= 8;
c2c75131 2422
bc752862
CW
2423 tiles = *x / (512/cpp);
2424 *x %= 512/cpp;
2425
2426 return tile_rows * pitch * 8 + tiles * 4096;
2427 } else {
4e9a86b6 2428 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
bc752862
CW
2429 unsigned int offset;
2430
2431 offset = *y * pitch + *x * cpp;
4e9a86b6
VS
2432 *y = (offset & alignment) / pitch;
2433 *x = ((offset & alignment) - *y * pitch) / cpp;
2434 return offset & ~alignment;
bc752862 2435 }
c2c75131
DV
2436}
2437
b35d63fa 2438static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2439{
2440 switch (format) {
2441 case DISPPLANE_8BPP:
2442 return DRM_FORMAT_C8;
2443 case DISPPLANE_BGRX555:
2444 return DRM_FORMAT_XRGB1555;
2445 case DISPPLANE_BGRX565:
2446 return DRM_FORMAT_RGB565;
2447 default:
2448 case DISPPLANE_BGRX888:
2449 return DRM_FORMAT_XRGB8888;
2450 case DISPPLANE_RGBX888:
2451 return DRM_FORMAT_XBGR8888;
2452 case DISPPLANE_BGRX101010:
2453 return DRM_FORMAT_XRGB2101010;
2454 case DISPPLANE_RGBX101010:
2455 return DRM_FORMAT_XBGR2101010;
2456 }
2457}
2458
bc8d7dff
DL
2459static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2460{
2461 switch (format) {
2462 case PLANE_CTL_FORMAT_RGB_565:
2463 return DRM_FORMAT_RGB565;
2464 default:
2465 case PLANE_CTL_FORMAT_XRGB_8888:
2466 if (rgb_order) {
2467 if (alpha)
2468 return DRM_FORMAT_ABGR8888;
2469 else
2470 return DRM_FORMAT_XBGR8888;
2471 } else {
2472 if (alpha)
2473 return DRM_FORMAT_ARGB8888;
2474 else
2475 return DRM_FORMAT_XRGB8888;
2476 }
2477 case PLANE_CTL_FORMAT_XRGB_2101010:
2478 if (rgb_order)
2479 return DRM_FORMAT_XBGR2101010;
2480 else
2481 return DRM_FORMAT_XRGB2101010;
2482 }
2483}
2484
5724dbd1 2485static bool
f6936e29
DV
2486intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2487 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2488{
2489 struct drm_device *dev = crtc->base.dev;
2490 struct drm_i915_gem_object *obj = NULL;
2491 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2492 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2493 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2494 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2495 PAGE_SIZE);
2496
2497 size_aligned -= base_aligned;
46f297fb 2498
ff2652ea
CW
2499 if (plane_config->size == 0)
2500 return false;
2501
f37b5c2b
DV
2502 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2503 base_aligned,
2504 base_aligned,
2505 size_aligned);
46f297fb 2506 if (!obj)
484b41dd 2507 return false;
46f297fb 2508
49af449b
DL
2509 obj->tiling_mode = plane_config->tiling;
2510 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2511 obj->stride = fb->pitches[0];
46f297fb 2512
6bf129df
DL
2513 mode_cmd.pixel_format = fb->pixel_format;
2514 mode_cmd.width = fb->width;
2515 mode_cmd.height = fb->height;
2516 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2517 mode_cmd.modifier[0] = fb->modifier[0];
2518 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2519
2520 mutex_lock(&dev->struct_mutex);
6bf129df 2521 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2522 &mode_cmd, obj)) {
46f297fb
JB
2523 DRM_DEBUG_KMS("intel fb init failed\n");
2524 goto out_unref_obj;
2525 }
46f297fb 2526 mutex_unlock(&dev->struct_mutex);
484b41dd 2527
f6936e29 2528 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2529 return true;
46f297fb
JB
2530
2531out_unref_obj:
2532 drm_gem_object_unreference(&obj->base);
2533 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2534 return false;
2535}
2536
afd65eb4
MR
2537/* Update plane->state->fb to match plane->fb after driver-internal updates */
2538static void
2539update_state_fb(struct drm_plane *plane)
2540{
2541 if (plane->fb == plane->state->fb)
2542 return;
2543
2544 if (plane->state->fb)
2545 drm_framebuffer_unreference(plane->state->fb);
2546 plane->state->fb = plane->fb;
2547 if (plane->state->fb)
2548 drm_framebuffer_reference(plane->state->fb);
2549}
2550
5724dbd1 2551static void
f6936e29
DV
2552intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2553 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2554{
2555 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2556 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2557 struct drm_crtc *c;
2558 struct intel_crtc *i;
2ff8fde1 2559 struct drm_i915_gem_object *obj;
88595ac9
DV
2560 struct drm_plane *primary = intel_crtc->base.primary;
2561 struct drm_framebuffer *fb;
484b41dd 2562
2d14030b 2563 if (!plane_config->fb)
484b41dd
JB
2564 return;
2565
f6936e29 2566 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2567 fb = &plane_config->fb->base;
2568 goto valid_fb;
f55548b5 2569 }
484b41dd 2570
2d14030b 2571 kfree(plane_config->fb);
484b41dd
JB
2572
2573 /*
2574 * Failed to alloc the obj, check to see if we should share
2575 * an fb with another CRTC instead
2576 */
70e1e0ec 2577 for_each_crtc(dev, c) {
484b41dd
JB
2578 i = to_intel_crtc(c);
2579
2580 if (c == &intel_crtc->base)
2581 continue;
2582
2ff8fde1
MR
2583 if (!i->active)
2584 continue;
2585
88595ac9
DV
2586 fb = c->primary->fb;
2587 if (!fb)
484b41dd
JB
2588 continue;
2589
88595ac9 2590 obj = intel_fb_obj(fb);
2ff8fde1 2591 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2592 drm_framebuffer_reference(fb);
2593 goto valid_fb;
484b41dd
JB
2594 }
2595 }
88595ac9
DV
2596
2597 return;
2598
2599valid_fb:
2600 obj = intel_fb_obj(fb);
2601 if (obj->tiling_mode != I915_TILING_NONE)
2602 dev_priv->preserve_bios_swizzle = true;
2603
2604 primary->fb = fb;
36750f28 2605 primary->crtc = primary->state->crtc = &intel_crtc->base;
88595ac9 2606 update_state_fb(primary);
36750f28 2607 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
88595ac9 2608 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
46f297fb
JB
2609}
2610
29b9bde6
DV
2611static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2612 struct drm_framebuffer *fb,
2613 int x, int y)
81255565
JB
2614{
2615 struct drm_device *dev = crtc->dev;
2616 struct drm_i915_private *dev_priv = dev->dev_private;
2617 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2618 struct drm_plane *primary = crtc->primary;
2619 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2620 struct drm_i915_gem_object *obj;
81255565 2621 int plane = intel_crtc->plane;
e506a0c6 2622 unsigned long linear_offset;
81255565 2623 u32 dspcntr;
f45651ba 2624 u32 reg = DSPCNTR(plane);
48404c1e 2625 int pixel_size;
f45651ba 2626
b70709a6 2627 if (!visible || !fb) {
fdd508a6
VS
2628 I915_WRITE(reg, 0);
2629 if (INTEL_INFO(dev)->gen >= 4)
2630 I915_WRITE(DSPSURF(plane), 0);
2631 else
2632 I915_WRITE(DSPADDR(plane), 0);
2633 POSTING_READ(reg);
2634 return;
2635 }
2636
c9ba6fad
VS
2637 obj = intel_fb_obj(fb);
2638 if (WARN_ON(obj == NULL))
2639 return;
2640
2641 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2642
f45651ba
VS
2643 dspcntr = DISPPLANE_GAMMA_ENABLE;
2644
fdd508a6 2645 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2646
2647 if (INTEL_INFO(dev)->gen < 4) {
2648 if (intel_crtc->pipe == PIPE_B)
2649 dspcntr |= DISPPLANE_SEL_PIPE_B;
2650
2651 /* pipesrc and dspsize control the size that is scaled from,
2652 * which should always be the user's requested size.
2653 */
2654 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2655 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2656 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2657 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2658 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2659 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2660 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2661 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2662 I915_WRITE(PRIMPOS(plane), 0);
2663 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2664 }
81255565 2665
57779d06
VS
2666 switch (fb->pixel_format) {
2667 case DRM_FORMAT_C8:
81255565
JB
2668 dspcntr |= DISPPLANE_8BPP;
2669 break;
57779d06 2670 case DRM_FORMAT_XRGB1555:
57779d06 2671 dspcntr |= DISPPLANE_BGRX555;
81255565 2672 break;
57779d06
VS
2673 case DRM_FORMAT_RGB565:
2674 dspcntr |= DISPPLANE_BGRX565;
2675 break;
2676 case DRM_FORMAT_XRGB8888:
57779d06
VS
2677 dspcntr |= DISPPLANE_BGRX888;
2678 break;
2679 case DRM_FORMAT_XBGR8888:
57779d06
VS
2680 dspcntr |= DISPPLANE_RGBX888;
2681 break;
2682 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2683 dspcntr |= DISPPLANE_BGRX101010;
2684 break;
2685 case DRM_FORMAT_XBGR2101010:
57779d06 2686 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2687 break;
2688 default:
baba133a 2689 BUG();
81255565 2690 }
57779d06 2691
f45651ba
VS
2692 if (INTEL_INFO(dev)->gen >= 4 &&
2693 obj->tiling_mode != I915_TILING_NONE)
2694 dspcntr |= DISPPLANE_TILED;
81255565 2695
de1aa629
VS
2696 if (IS_G4X(dev))
2697 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2698
b9897127 2699 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2700
c2c75131
DV
2701 if (INTEL_INFO(dev)->gen >= 4) {
2702 intel_crtc->dspaddr_offset =
4e9a86b6
VS
2703 intel_gen4_compute_page_offset(dev_priv,
2704 &x, &y, obj->tiling_mode,
b9897127 2705 pixel_size,
bc752862 2706 fb->pitches[0]);
c2c75131
DV
2707 linear_offset -= intel_crtc->dspaddr_offset;
2708 } else {
e506a0c6 2709 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2710 }
e506a0c6 2711
8e7d688b 2712 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2713 dspcntr |= DISPPLANE_ROTATE_180;
2714
6e3c9717
ACO
2715 x += (intel_crtc->config->pipe_src_w - 1);
2716 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2717
2718 /* Finding the last pixel of the last line of the display
2719 data and adding to linear_offset*/
2720 linear_offset +=
6e3c9717
ACO
2721 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2722 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2723 }
2724
2725 I915_WRITE(reg, dspcntr);
2726
01f2c773 2727 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2728 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2729 I915_WRITE(DSPSURF(plane),
2730 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2731 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2732 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2733 } else
f343c5f6 2734 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2735 POSTING_READ(reg);
17638cd6
JB
2736}
2737
29b9bde6
DV
2738static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2739 struct drm_framebuffer *fb,
2740 int x, int y)
17638cd6
JB
2741{
2742 struct drm_device *dev = crtc->dev;
2743 struct drm_i915_private *dev_priv = dev->dev_private;
2744 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2745 struct drm_plane *primary = crtc->primary;
2746 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2747 struct drm_i915_gem_object *obj;
17638cd6 2748 int plane = intel_crtc->plane;
e506a0c6 2749 unsigned long linear_offset;
17638cd6 2750 u32 dspcntr;
f45651ba 2751 u32 reg = DSPCNTR(plane);
48404c1e 2752 int pixel_size;
f45651ba 2753
b70709a6 2754 if (!visible || !fb) {
fdd508a6
VS
2755 I915_WRITE(reg, 0);
2756 I915_WRITE(DSPSURF(plane), 0);
2757 POSTING_READ(reg);
2758 return;
2759 }
2760
c9ba6fad
VS
2761 obj = intel_fb_obj(fb);
2762 if (WARN_ON(obj == NULL))
2763 return;
2764
2765 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2766
f45651ba
VS
2767 dspcntr = DISPPLANE_GAMMA_ENABLE;
2768
fdd508a6 2769 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2770
2771 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2772 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2773
57779d06
VS
2774 switch (fb->pixel_format) {
2775 case DRM_FORMAT_C8:
17638cd6
JB
2776 dspcntr |= DISPPLANE_8BPP;
2777 break;
57779d06
VS
2778 case DRM_FORMAT_RGB565:
2779 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2780 break;
57779d06 2781 case DRM_FORMAT_XRGB8888:
57779d06
VS
2782 dspcntr |= DISPPLANE_BGRX888;
2783 break;
2784 case DRM_FORMAT_XBGR8888:
57779d06
VS
2785 dspcntr |= DISPPLANE_RGBX888;
2786 break;
2787 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2788 dspcntr |= DISPPLANE_BGRX101010;
2789 break;
2790 case DRM_FORMAT_XBGR2101010:
57779d06 2791 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2792 break;
2793 default:
baba133a 2794 BUG();
17638cd6
JB
2795 }
2796
2797 if (obj->tiling_mode != I915_TILING_NONE)
2798 dspcntr |= DISPPLANE_TILED;
17638cd6 2799
f45651ba 2800 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2801 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2802
b9897127 2803 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2804 intel_crtc->dspaddr_offset =
4e9a86b6
VS
2805 intel_gen4_compute_page_offset(dev_priv,
2806 &x, &y, obj->tiling_mode,
b9897127 2807 pixel_size,
bc752862 2808 fb->pitches[0]);
c2c75131 2809 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2810 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2811 dspcntr |= DISPPLANE_ROTATE_180;
2812
2813 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2814 x += (intel_crtc->config->pipe_src_w - 1);
2815 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2816
2817 /* Finding the last pixel of the last line of the display
2818 data and adding to linear_offset*/
2819 linear_offset +=
6e3c9717
ACO
2820 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2821 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2822 }
2823 }
2824
2825 I915_WRITE(reg, dspcntr);
17638cd6 2826
01f2c773 2827 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2828 I915_WRITE(DSPSURF(plane),
2829 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2830 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2831 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2832 } else {
2833 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2834 I915_WRITE(DSPLINOFF(plane), linear_offset);
2835 }
17638cd6 2836 POSTING_READ(reg);
17638cd6
JB
2837}
2838
b321803d
DL
2839u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2840 uint32_t pixel_format)
2841{
2842 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2843
2844 /*
2845 * The stride is either expressed as a multiple of 64 bytes
2846 * chunks for linear buffers or in number of tiles for tiled
2847 * buffers.
2848 */
2849 switch (fb_modifier) {
2850 case DRM_FORMAT_MOD_NONE:
2851 return 64;
2852 case I915_FORMAT_MOD_X_TILED:
2853 if (INTEL_INFO(dev)->gen == 2)
2854 return 128;
2855 return 512;
2856 case I915_FORMAT_MOD_Y_TILED:
2857 /* No need to check for old gens and Y tiling since this is
2858 * about the display engine and those will be blocked before
2859 * we get here.
2860 */
2861 return 128;
2862 case I915_FORMAT_MOD_Yf_TILED:
2863 if (bits_per_pixel == 8)
2864 return 64;
2865 else
2866 return 128;
2867 default:
2868 MISSING_CASE(fb_modifier);
2869 return 64;
2870 }
2871}
2872
121920fa
TU
2873unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2874 struct drm_i915_gem_object *obj)
2875{
9abc4648 2876 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
121920fa
TU
2877
2878 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
9abc4648 2879 view = &i915_ggtt_view_rotated;
121920fa
TU
2880
2881 return i915_gem_obj_ggtt_offset_view(obj, view);
2882}
2883
a1b2278e
CK
2884/*
2885 * This function detaches (aka. unbinds) unused scalers in hardware
2886 */
0583236e 2887static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e
CK
2888{
2889 struct drm_device *dev;
2890 struct drm_i915_private *dev_priv;
2891 struct intel_crtc_scaler_state *scaler_state;
2892 int i;
2893
a1b2278e
CK
2894 dev = intel_crtc->base.dev;
2895 dev_priv = dev->dev_private;
2896 scaler_state = &intel_crtc->config->scaler_state;
2897
2898 /* loop through and disable scalers that aren't in use */
2899 for (i = 0; i < intel_crtc->num_scalers; i++) {
2900 if (!scaler_state->scalers[i].in_use) {
2901 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2902 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2903 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2904 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2905 intel_crtc->base.base.id, intel_crtc->pipe, i);
2906 }
2907 }
2908}
2909
6156a456 2910u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2911{
6156a456 2912 switch (pixel_format) {
d161cf7a 2913 case DRM_FORMAT_C8:
c34ce3d1 2914 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2915 case DRM_FORMAT_RGB565:
c34ce3d1 2916 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2917 case DRM_FORMAT_XBGR8888:
c34ce3d1 2918 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2919 case DRM_FORMAT_XRGB8888:
c34ce3d1 2920 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2921 /*
2922 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2923 * to be already pre-multiplied. We need to add a knob (or a different
2924 * DRM_FORMAT) for user-space to configure that.
2925 */
f75fb42a 2926 case DRM_FORMAT_ABGR8888:
c34ce3d1 2927 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 2928 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 2929 case DRM_FORMAT_ARGB8888:
c34ce3d1 2930 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 2931 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 2932 case DRM_FORMAT_XRGB2101010:
c34ce3d1 2933 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 2934 case DRM_FORMAT_XBGR2101010:
c34ce3d1 2935 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 2936 case DRM_FORMAT_YUYV:
c34ce3d1 2937 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 2938 case DRM_FORMAT_YVYU:
c34ce3d1 2939 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 2940 case DRM_FORMAT_UYVY:
c34ce3d1 2941 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 2942 case DRM_FORMAT_VYUY:
c34ce3d1 2943 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 2944 default:
4249eeef 2945 MISSING_CASE(pixel_format);
70d21f0e 2946 }
8cfcba41 2947
c34ce3d1 2948 return 0;
6156a456 2949}
70d21f0e 2950
6156a456
CK
2951u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2952{
6156a456 2953 switch (fb_modifier) {
30af77c4 2954 case DRM_FORMAT_MOD_NONE:
70d21f0e 2955 break;
30af77c4 2956 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 2957 return PLANE_CTL_TILED_X;
b321803d 2958 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 2959 return PLANE_CTL_TILED_Y;
b321803d 2960 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 2961 return PLANE_CTL_TILED_YF;
70d21f0e 2962 default:
6156a456 2963 MISSING_CASE(fb_modifier);
70d21f0e 2964 }
8cfcba41 2965
c34ce3d1 2966 return 0;
6156a456 2967}
70d21f0e 2968
6156a456
CK
2969u32 skl_plane_ctl_rotation(unsigned int rotation)
2970{
3b7a5119 2971 switch (rotation) {
6156a456
CK
2972 case BIT(DRM_ROTATE_0):
2973 break;
1e8df167
SJ
2974 /*
2975 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2976 * while i915 HW rotation is clockwise, thats why this swapping.
2977 */
3b7a5119 2978 case BIT(DRM_ROTATE_90):
1e8df167 2979 return PLANE_CTL_ROTATE_270;
3b7a5119 2980 case BIT(DRM_ROTATE_180):
c34ce3d1 2981 return PLANE_CTL_ROTATE_180;
3b7a5119 2982 case BIT(DRM_ROTATE_270):
1e8df167 2983 return PLANE_CTL_ROTATE_90;
6156a456
CK
2984 default:
2985 MISSING_CASE(rotation);
2986 }
2987
c34ce3d1 2988 return 0;
6156a456
CK
2989}
2990
2991static void skylake_update_primary_plane(struct drm_crtc *crtc,
2992 struct drm_framebuffer *fb,
2993 int x, int y)
2994{
2995 struct drm_device *dev = crtc->dev;
2996 struct drm_i915_private *dev_priv = dev->dev_private;
2997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2998 struct drm_plane *plane = crtc->primary;
2999 bool visible = to_intel_plane_state(plane->state)->visible;
6156a456
CK
3000 struct drm_i915_gem_object *obj;
3001 int pipe = intel_crtc->pipe;
3002 u32 plane_ctl, stride_div, stride;
3003 u32 tile_height, plane_offset, plane_size;
3004 unsigned int rotation;
3005 int x_offset, y_offset;
3006 unsigned long surf_addr;
6156a456
CK
3007 struct intel_crtc_state *crtc_state = intel_crtc->config;
3008 struct intel_plane_state *plane_state;
3009 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3010 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3011 int scaler_id = -1;
3012
6156a456
CK
3013 plane_state = to_intel_plane_state(plane->state);
3014
b70709a6 3015 if (!visible || !fb) {
6156a456
CK
3016 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3017 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3018 POSTING_READ(PLANE_CTL(pipe, 0));
3019 return;
3b7a5119 3020 }
70d21f0e 3021
6156a456
CK
3022 plane_ctl = PLANE_CTL_ENABLE |
3023 PLANE_CTL_PIPE_GAMMA_ENABLE |
3024 PLANE_CTL_PIPE_CSC_ENABLE;
3025
3026 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3027 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3028 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3029
3030 rotation = plane->state->rotation;
3031 plane_ctl |= skl_plane_ctl_rotation(rotation);
3032
b321803d
DL
3033 obj = intel_fb_obj(fb);
3034 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3035 fb->pixel_format);
3b7a5119
SJ
3036 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3037
6156a456
CK
3038 /*
3039 * FIXME: intel_plane_state->src, dst aren't set when transitional
3040 * update_plane helpers are called from legacy paths.
3041 * Once full atomic crtc is available, below check can be avoided.
3042 */
3043 if (drm_rect_width(&plane_state->src)) {
3044 scaler_id = plane_state->scaler_id;
3045 src_x = plane_state->src.x1 >> 16;
3046 src_y = plane_state->src.y1 >> 16;
3047 src_w = drm_rect_width(&plane_state->src) >> 16;
3048 src_h = drm_rect_height(&plane_state->src) >> 16;
3049 dst_x = plane_state->dst.x1;
3050 dst_y = plane_state->dst.y1;
3051 dst_w = drm_rect_width(&plane_state->dst);
3052 dst_h = drm_rect_height(&plane_state->dst);
3053
3054 WARN_ON(x != src_x || y != src_y);
3055 } else {
3056 src_w = intel_crtc->config->pipe_src_w;
3057 src_h = intel_crtc->config->pipe_src_h;
3058 }
3059
3b7a5119
SJ
3060 if (intel_rotation_90_or_270(rotation)) {
3061 /* stride = Surface height in tiles */
2614f17d 3062 tile_height = intel_tile_height(dev, fb->pixel_format,
3b7a5119
SJ
3063 fb->modifier[0]);
3064 stride = DIV_ROUND_UP(fb->height, tile_height);
6156a456 3065 x_offset = stride * tile_height - y - src_h;
3b7a5119 3066 y_offset = x;
6156a456 3067 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3068 } else {
3069 stride = fb->pitches[0] / stride_div;
3070 x_offset = x;
3071 y_offset = y;
6156a456 3072 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3073 }
3074 plane_offset = y_offset << 16 | x_offset;
b321803d 3075
70d21f0e 3076 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3077 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3078 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3079 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3080
3081 if (scaler_id >= 0) {
3082 uint32_t ps_ctrl = 0;
3083
3084 WARN_ON(!dst_w || !dst_h);
3085 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3086 crtc_state->scaler_state.scalers[scaler_id].mode;
3087 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3088 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3089 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3090 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3091 I915_WRITE(PLANE_POS(pipe, 0), 0);
3092 } else {
3093 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3094 }
3095
121920fa 3096 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3097
3098 POSTING_READ(PLANE_SURF(pipe, 0));
3099}
3100
17638cd6
JB
3101/* Assume fb object is pinned & idle & fenced and just update base pointers */
3102static int
3103intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3104 int x, int y, enum mode_set_atomic state)
3105{
3106 struct drm_device *dev = crtc->dev;
3107 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3108
6b8e6ed0
CW
3109 if (dev_priv->display.disable_fbc)
3110 dev_priv->display.disable_fbc(dev);
81255565 3111
29b9bde6
DV
3112 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3113
3114 return 0;
81255565
JB
3115}
3116
7514747d 3117static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3118{
96a02917
VS
3119 struct drm_crtc *crtc;
3120
70e1e0ec 3121 for_each_crtc(dev, crtc) {
96a02917
VS
3122 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3123 enum plane plane = intel_crtc->plane;
3124
3125 intel_prepare_page_flip(dev, plane);
3126 intel_finish_page_flip_plane(dev, plane);
3127 }
7514747d
VS
3128}
3129
3130static void intel_update_primary_planes(struct drm_device *dev)
3131{
3132 struct drm_i915_private *dev_priv = dev->dev_private;
3133 struct drm_crtc *crtc;
96a02917 3134
70e1e0ec 3135 for_each_crtc(dev, crtc) {
96a02917
VS
3136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3137
51fd371b 3138 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
3139 /*
3140 * FIXME: Once we have proper support for primary planes (and
3141 * disabling them without disabling the entire crtc) allow again
66e514c1 3142 * a NULL crtc->primary->fb.
947fdaad 3143 */
f4510a27 3144 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 3145 dev_priv->display.update_primary_plane(crtc,
66e514c1 3146 crtc->primary->fb,
262ca2b0
MR
3147 crtc->x,
3148 crtc->y);
51fd371b 3149 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
3150 }
3151}
3152
7514747d
VS
3153void intel_prepare_reset(struct drm_device *dev)
3154{
3155 /* no reset support for gen2 */
3156 if (IS_GEN2(dev))
3157 return;
3158
3159 /* reset doesn't touch the display */
3160 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3161 return;
3162
3163 drm_modeset_lock_all(dev);
f98ce92f
VS
3164 /*
3165 * Disabling the crtcs gracefully seems nicer. Also the
3166 * g33 docs say we should at least disable all the planes.
3167 */
6b72d486 3168 intel_display_suspend(dev);
7514747d
VS
3169}
3170
3171void intel_finish_reset(struct drm_device *dev)
3172{
3173 struct drm_i915_private *dev_priv = to_i915(dev);
3174
3175 /*
3176 * Flips in the rings will be nuked by the reset,
3177 * so complete all pending flips so that user space
3178 * will get its events and not get stuck.
3179 */
3180 intel_complete_page_flips(dev);
3181
3182 /* no reset support for gen2 */
3183 if (IS_GEN2(dev))
3184 return;
3185
3186 /* reset doesn't touch the display */
3187 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3188 /*
3189 * Flips in the rings have been nuked by the reset,
3190 * so update the base address of all primary
3191 * planes to the the last fb to make sure we're
3192 * showing the correct fb after a reset.
3193 */
3194 intel_update_primary_planes(dev);
3195 return;
3196 }
3197
3198 /*
3199 * The display has been reset as well,
3200 * so need a full re-initialization.
3201 */
3202 intel_runtime_pm_disable_interrupts(dev_priv);
3203 intel_runtime_pm_enable_interrupts(dev_priv);
3204
3205 intel_modeset_init_hw(dev);
3206
3207 spin_lock_irq(&dev_priv->irq_lock);
3208 if (dev_priv->display.hpd_irq_setup)
3209 dev_priv->display.hpd_irq_setup(dev);
3210 spin_unlock_irq(&dev_priv->irq_lock);
3211
3212 intel_modeset_setup_hw_state(dev, true);
3213
3214 intel_hpd_init(dev_priv);
3215
3216 drm_modeset_unlock_all(dev);
3217}
3218
2e2f351d 3219static void
14667a4b
CW
3220intel_finish_fb(struct drm_framebuffer *old_fb)
3221{
2ff8fde1 3222 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2e2f351d 3223 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14667a4b
CW
3224 bool was_interruptible = dev_priv->mm.interruptible;
3225 int ret;
3226
14667a4b
CW
3227 /* Big Hammer, we also need to ensure that any pending
3228 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3229 * current scanout is retired before unpinning the old
2e2f351d
CW
3230 * framebuffer. Note that we rely on userspace rendering
3231 * into the buffer attached to the pipe they are waiting
3232 * on. If not, userspace generates a GPU hang with IPEHR
3233 * point to the MI_WAIT_FOR_EVENT.
14667a4b
CW
3234 *
3235 * This should only fail upon a hung GPU, in which case we
3236 * can safely continue.
3237 */
3238 dev_priv->mm.interruptible = false;
2e2f351d 3239 ret = i915_gem_object_wait_rendering(obj, true);
14667a4b
CW
3240 dev_priv->mm.interruptible = was_interruptible;
3241
2e2f351d 3242 WARN_ON(ret);
14667a4b
CW
3243}
3244
7d5e3799
CW
3245static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3246{
3247 struct drm_device *dev = crtc->dev;
3248 struct drm_i915_private *dev_priv = dev->dev_private;
3249 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3250 bool pending;
3251
3252 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3253 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3254 return false;
3255
5e2d7afc 3256 spin_lock_irq(&dev->event_lock);
7d5e3799 3257 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3258 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3259
3260 return pending;
3261}
3262
e30e8f75
GP
3263static void intel_update_pipe_size(struct intel_crtc *crtc)
3264{
3265 struct drm_device *dev = crtc->base.dev;
3266 struct drm_i915_private *dev_priv = dev->dev_private;
3267 const struct drm_display_mode *adjusted_mode;
3268
3269 if (!i915.fastboot)
3270 return;
3271
3272 /*
3273 * Update pipe size and adjust fitter if needed: the reason for this is
3274 * that in compute_mode_changes we check the native mode (not the pfit
3275 * mode) to see if we can flip rather than do a full mode set. In the
3276 * fastboot case, we'll flip, but if we don't update the pipesrc and
3277 * pfit state, we'll end up with a big fb scanned out into the wrong
3278 * sized surface.
3279 *
3280 * To fix this properly, we need to hoist the checks up into
3281 * compute_mode_changes (or above), check the actual pfit state and
3282 * whether the platform allows pfit disable with pipe active, and only
3283 * then update the pipesrc and pfit state, even on the flip path.
3284 */
3285
6e3c9717 3286 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3287
3288 I915_WRITE(PIPESRC(crtc->pipe),
3289 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3290 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3291 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3292 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3293 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3294 I915_WRITE(PF_CTL(crtc->pipe), 0);
3295 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3296 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3297 }
6e3c9717
ACO
3298 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3299 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3300}
3301
5e84e1a4
ZW
3302static void intel_fdi_normal_train(struct drm_crtc *crtc)
3303{
3304 struct drm_device *dev = crtc->dev;
3305 struct drm_i915_private *dev_priv = dev->dev_private;
3306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3307 int pipe = intel_crtc->pipe;
3308 u32 reg, temp;
3309
3310 /* enable normal train */
3311 reg = FDI_TX_CTL(pipe);
3312 temp = I915_READ(reg);
61e499bf 3313 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3314 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3315 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3316 } else {
3317 temp &= ~FDI_LINK_TRAIN_NONE;
3318 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3319 }
5e84e1a4
ZW
3320 I915_WRITE(reg, temp);
3321
3322 reg = FDI_RX_CTL(pipe);
3323 temp = I915_READ(reg);
3324 if (HAS_PCH_CPT(dev)) {
3325 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3326 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3327 } else {
3328 temp &= ~FDI_LINK_TRAIN_NONE;
3329 temp |= FDI_LINK_TRAIN_NONE;
3330 }
3331 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3332
3333 /* wait one idle pattern time */
3334 POSTING_READ(reg);
3335 udelay(1000);
357555c0
JB
3336
3337 /* IVB wants error correction enabled */
3338 if (IS_IVYBRIDGE(dev))
3339 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3340 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3341}
3342
8db9d77b
ZW
3343/* The FDI link training functions for ILK/Ibexpeak. */
3344static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3345{
3346 struct drm_device *dev = crtc->dev;
3347 struct drm_i915_private *dev_priv = dev->dev_private;
3348 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3349 int pipe = intel_crtc->pipe;
5eddb70b 3350 u32 reg, temp, tries;
8db9d77b 3351
1c8562f6 3352 /* FDI needs bits from pipe first */
0fc932b8 3353 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3354
e1a44743
AJ
3355 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3356 for train result */
5eddb70b
CW
3357 reg = FDI_RX_IMR(pipe);
3358 temp = I915_READ(reg);
e1a44743
AJ
3359 temp &= ~FDI_RX_SYMBOL_LOCK;
3360 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3361 I915_WRITE(reg, temp);
3362 I915_READ(reg);
e1a44743
AJ
3363 udelay(150);
3364
8db9d77b 3365 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3366 reg = FDI_TX_CTL(pipe);
3367 temp = I915_READ(reg);
627eb5a3 3368 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3369 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3370 temp &= ~FDI_LINK_TRAIN_NONE;
3371 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3372 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3373
5eddb70b
CW
3374 reg = FDI_RX_CTL(pipe);
3375 temp = I915_READ(reg);
8db9d77b
ZW
3376 temp &= ~FDI_LINK_TRAIN_NONE;
3377 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3378 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3379
3380 POSTING_READ(reg);
8db9d77b
ZW
3381 udelay(150);
3382
5b2adf89 3383 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3384 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3385 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3386 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3387
5eddb70b 3388 reg = FDI_RX_IIR(pipe);
e1a44743 3389 for (tries = 0; tries < 5; tries++) {
5eddb70b 3390 temp = I915_READ(reg);
8db9d77b
ZW
3391 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3392
3393 if ((temp & FDI_RX_BIT_LOCK)) {
3394 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3395 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3396 break;
3397 }
8db9d77b 3398 }
e1a44743 3399 if (tries == 5)
5eddb70b 3400 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3401
3402 /* Train 2 */
5eddb70b
CW
3403 reg = FDI_TX_CTL(pipe);
3404 temp = I915_READ(reg);
8db9d77b
ZW
3405 temp &= ~FDI_LINK_TRAIN_NONE;
3406 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3407 I915_WRITE(reg, temp);
8db9d77b 3408
5eddb70b
CW
3409 reg = FDI_RX_CTL(pipe);
3410 temp = I915_READ(reg);
8db9d77b
ZW
3411 temp &= ~FDI_LINK_TRAIN_NONE;
3412 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3413 I915_WRITE(reg, temp);
8db9d77b 3414
5eddb70b
CW
3415 POSTING_READ(reg);
3416 udelay(150);
8db9d77b 3417
5eddb70b 3418 reg = FDI_RX_IIR(pipe);
e1a44743 3419 for (tries = 0; tries < 5; tries++) {
5eddb70b 3420 temp = I915_READ(reg);
8db9d77b
ZW
3421 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3422
3423 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3424 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3425 DRM_DEBUG_KMS("FDI train 2 done.\n");
3426 break;
3427 }
8db9d77b 3428 }
e1a44743 3429 if (tries == 5)
5eddb70b 3430 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3431
3432 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3433
8db9d77b
ZW
3434}
3435
0206e353 3436static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3437 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3438 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3439 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3440 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3441};
3442
3443/* The FDI link training functions for SNB/Cougarpoint. */
3444static void gen6_fdi_link_train(struct drm_crtc *crtc)
3445{
3446 struct drm_device *dev = crtc->dev;
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3449 int pipe = intel_crtc->pipe;
fa37d39e 3450 u32 reg, temp, i, retry;
8db9d77b 3451
e1a44743
AJ
3452 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3453 for train result */
5eddb70b
CW
3454 reg = FDI_RX_IMR(pipe);
3455 temp = I915_READ(reg);
e1a44743
AJ
3456 temp &= ~FDI_RX_SYMBOL_LOCK;
3457 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3458 I915_WRITE(reg, temp);
3459
3460 POSTING_READ(reg);
e1a44743
AJ
3461 udelay(150);
3462
8db9d77b 3463 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3464 reg = FDI_TX_CTL(pipe);
3465 temp = I915_READ(reg);
627eb5a3 3466 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3467 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3468 temp &= ~FDI_LINK_TRAIN_NONE;
3469 temp |= FDI_LINK_TRAIN_PATTERN_1;
3470 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3471 /* SNB-B */
3472 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3473 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3474
d74cf324
DV
3475 I915_WRITE(FDI_RX_MISC(pipe),
3476 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3477
5eddb70b
CW
3478 reg = FDI_RX_CTL(pipe);
3479 temp = I915_READ(reg);
8db9d77b
ZW
3480 if (HAS_PCH_CPT(dev)) {
3481 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3482 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3483 } else {
3484 temp &= ~FDI_LINK_TRAIN_NONE;
3485 temp |= FDI_LINK_TRAIN_PATTERN_1;
3486 }
5eddb70b
CW
3487 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3488
3489 POSTING_READ(reg);
8db9d77b
ZW
3490 udelay(150);
3491
0206e353 3492 for (i = 0; i < 4; i++) {
5eddb70b
CW
3493 reg = FDI_TX_CTL(pipe);
3494 temp = I915_READ(reg);
8db9d77b
ZW
3495 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3496 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3497 I915_WRITE(reg, temp);
3498
3499 POSTING_READ(reg);
8db9d77b
ZW
3500 udelay(500);
3501
fa37d39e
SP
3502 for (retry = 0; retry < 5; retry++) {
3503 reg = FDI_RX_IIR(pipe);
3504 temp = I915_READ(reg);
3505 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3506 if (temp & FDI_RX_BIT_LOCK) {
3507 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3508 DRM_DEBUG_KMS("FDI train 1 done.\n");
3509 break;
3510 }
3511 udelay(50);
8db9d77b 3512 }
fa37d39e
SP
3513 if (retry < 5)
3514 break;
8db9d77b
ZW
3515 }
3516 if (i == 4)
5eddb70b 3517 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3518
3519 /* Train 2 */
5eddb70b
CW
3520 reg = FDI_TX_CTL(pipe);
3521 temp = I915_READ(reg);
8db9d77b
ZW
3522 temp &= ~FDI_LINK_TRAIN_NONE;
3523 temp |= FDI_LINK_TRAIN_PATTERN_2;
3524 if (IS_GEN6(dev)) {
3525 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3526 /* SNB-B */
3527 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3528 }
5eddb70b 3529 I915_WRITE(reg, temp);
8db9d77b 3530
5eddb70b
CW
3531 reg = FDI_RX_CTL(pipe);
3532 temp = I915_READ(reg);
8db9d77b
ZW
3533 if (HAS_PCH_CPT(dev)) {
3534 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3535 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3536 } else {
3537 temp &= ~FDI_LINK_TRAIN_NONE;
3538 temp |= FDI_LINK_TRAIN_PATTERN_2;
3539 }
5eddb70b
CW
3540 I915_WRITE(reg, temp);
3541
3542 POSTING_READ(reg);
8db9d77b
ZW
3543 udelay(150);
3544
0206e353 3545 for (i = 0; i < 4; i++) {
5eddb70b
CW
3546 reg = FDI_TX_CTL(pipe);
3547 temp = I915_READ(reg);
8db9d77b
ZW
3548 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3549 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3550 I915_WRITE(reg, temp);
3551
3552 POSTING_READ(reg);
8db9d77b
ZW
3553 udelay(500);
3554
fa37d39e
SP
3555 for (retry = 0; retry < 5; retry++) {
3556 reg = FDI_RX_IIR(pipe);
3557 temp = I915_READ(reg);
3558 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3559 if (temp & FDI_RX_SYMBOL_LOCK) {
3560 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3561 DRM_DEBUG_KMS("FDI train 2 done.\n");
3562 break;
3563 }
3564 udelay(50);
8db9d77b 3565 }
fa37d39e
SP
3566 if (retry < 5)
3567 break;
8db9d77b
ZW
3568 }
3569 if (i == 4)
5eddb70b 3570 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3571
3572 DRM_DEBUG_KMS("FDI train done.\n");
3573}
3574
357555c0
JB
3575/* Manual link training for Ivy Bridge A0 parts */
3576static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3577{
3578 struct drm_device *dev = crtc->dev;
3579 struct drm_i915_private *dev_priv = dev->dev_private;
3580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3581 int pipe = intel_crtc->pipe;
139ccd3f 3582 u32 reg, temp, i, j;
357555c0
JB
3583
3584 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3585 for train result */
3586 reg = FDI_RX_IMR(pipe);
3587 temp = I915_READ(reg);
3588 temp &= ~FDI_RX_SYMBOL_LOCK;
3589 temp &= ~FDI_RX_BIT_LOCK;
3590 I915_WRITE(reg, temp);
3591
3592 POSTING_READ(reg);
3593 udelay(150);
3594
01a415fd
DV
3595 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3596 I915_READ(FDI_RX_IIR(pipe)));
3597
139ccd3f
JB
3598 /* Try each vswing and preemphasis setting twice before moving on */
3599 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3600 /* disable first in case we need to retry */
3601 reg = FDI_TX_CTL(pipe);
3602 temp = I915_READ(reg);
3603 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3604 temp &= ~FDI_TX_ENABLE;
3605 I915_WRITE(reg, temp);
357555c0 3606
139ccd3f
JB
3607 reg = FDI_RX_CTL(pipe);
3608 temp = I915_READ(reg);
3609 temp &= ~FDI_LINK_TRAIN_AUTO;
3610 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3611 temp &= ~FDI_RX_ENABLE;
3612 I915_WRITE(reg, temp);
357555c0 3613
139ccd3f 3614 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3615 reg = FDI_TX_CTL(pipe);
3616 temp = I915_READ(reg);
139ccd3f 3617 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3618 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3619 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3620 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3621 temp |= snb_b_fdi_train_param[j/2];
3622 temp |= FDI_COMPOSITE_SYNC;
3623 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3624
139ccd3f
JB
3625 I915_WRITE(FDI_RX_MISC(pipe),
3626 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3627
139ccd3f 3628 reg = FDI_RX_CTL(pipe);
357555c0 3629 temp = I915_READ(reg);
139ccd3f
JB
3630 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3631 temp |= FDI_COMPOSITE_SYNC;
3632 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3633
139ccd3f
JB
3634 POSTING_READ(reg);
3635 udelay(1); /* should be 0.5us */
357555c0 3636
139ccd3f
JB
3637 for (i = 0; i < 4; i++) {
3638 reg = FDI_RX_IIR(pipe);
3639 temp = I915_READ(reg);
3640 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3641
139ccd3f
JB
3642 if (temp & FDI_RX_BIT_LOCK ||
3643 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3644 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3645 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3646 i);
3647 break;
3648 }
3649 udelay(1); /* should be 0.5us */
3650 }
3651 if (i == 4) {
3652 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3653 continue;
3654 }
357555c0 3655
139ccd3f 3656 /* Train 2 */
357555c0
JB
3657 reg = FDI_TX_CTL(pipe);
3658 temp = I915_READ(reg);
139ccd3f
JB
3659 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3660 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3661 I915_WRITE(reg, temp);
3662
3663 reg = FDI_RX_CTL(pipe);
3664 temp = I915_READ(reg);
3665 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3666 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3667 I915_WRITE(reg, temp);
3668
3669 POSTING_READ(reg);
139ccd3f 3670 udelay(2); /* should be 1.5us */
357555c0 3671
139ccd3f
JB
3672 for (i = 0; i < 4; i++) {
3673 reg = FDI_RX_IIR(pipe);
3674 temp = I915_READ(reg);
3675 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3676
139ccd3f
JB
3677 if (temp & FDI_RX_SYMBOL_LOCK ||
3678 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3679 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3680 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3681 i);
3682 goto train_done;
3683 }
3684 udelay(2); /* should be 1.5us */
357555c0 3685 }
139ccd3f
JB
3686 if (i == 4)
3687 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3688 }
357555c0 3689
139ccd3f 3690train_done:
357555c0
JB
3691 DRM_DEBUG_KMS("FDI train done.\n");
3692}
3693
88cefb6c 3694static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3695{
88cefb6c 3696 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3697 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3698 int pipe = intel_crtc->pipe;
5eddb70b 3699 u32 reg, temp;
79e53945 3700
c64e311e 3701
c98e9dcf 3702 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3703 reg = FDI_RX_CTL(pipe);
3704 temp = I915_READ(reg);
627eb5a3 3705 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3706 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3707 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3708 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3709
3710 POSTING_READ(reg);
c98e9dcf
JB
3711 udelay(200);
3712
3713 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3714 temp = I915_READ(reg);
3715 I915_WRITE(reg, temp | FDI_PCDCLK);
3716
3717 POSTING_READ(reg);
c98e9dcf
JB
3718 udelay(200);
3719
20749730
PZ
3720 /* Enable CPU FDI TX PLL, always on for Ironlake */
3721 reg = FDI_TX_CTL(pipe);
3722 temp = I915_READ(reg);
3723 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3724 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3725
20749730
PZ
3726 POSTING_READ(reg);
3727 udelay(100);
6be4a607 3728 }
0e23b99d
JB
3729}
3730
88cefb6c
DV
3731static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3732{
3733 struct drm_device *dev = intel_crtc->base.dev;
3734 struct drm_i915_private *dev_priv = dev->dev_private;
3735 int pipe = intel_crtc->pipe;
3736 u32 reg, temp;
3737
3738 /* Switch from PCDclk to Rawclk */
3739 reg = FDI_RX_CTL(pipe);
3740 temp = I915_READ(reg);
3741 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3742
3743 /* Disable CPU FDI TX PLL */
3744 reg = FDI_TX_CTL(pipe);
3745 temp = I915_READ(reg);
3746 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3747
3748 POSTING_READ(reg);
3749 udelay(100);
3750
3751 reg = FDI_RX_CTL(pipe);
3752 temp = I915_READ(reg);
3753 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3754
3755 /* Wait for the clocks to turn off. */
3756 POSTING_READ(reg);
3757 udelay(100);
3758}
3759
0fc932b8
JB
3760static void ironlake_fdi_disable(struct drm_crtc *crtc)
3761{
3762 struct drm_device *dev = crtc->dev;
3763 struct drm_i915_private *dev_priv = dev->dev_private;
3764 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3765 int pipe = intel_crtc->pipe;
3766 u32 reg, temp;
3767
3768 /* disable CPU FDI tx and PCH FDI rx */
3769 reg = FDI_TX_CTL(pipe);
3770 temp = I915_READ(reg);
3771 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3772 POSTING_READ(reg);
3773
3774 reg = FDI_RX_CTL(pipe);
3775 temp = I915_READ(reg);
3776 temp &= ~(0x7 << 16);
dfd07d72 3777 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3778 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3779
3780 POSTING_READ(reg);
3781 udelay(100);
3782
3783 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3784 if (HAS_PCH_IBX(dev))
6f06ce18 3785 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3786
3787 /* still set train pattern 1 */
3788 reg = FDI_TX_CTL(pipe);
3789 temp = I915_READ(reg);
3790 temp &= ~FDI_LINK_TRAIN_NONE;
3791 temp |= FDI_LINK_TRAIN_PATTERN_1;
3792 I915_WRITE(reg, temp);
3793
3794 reg = FDI_RX_CTL(pipe);
3795 temp = I915_READ(reg);
3796 if (HAS_PCH_CPT(dev)) {
3797 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3798 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3799 } else {
3800 temp &= ~FDI_LINK_TRAIN_NONE;
3801 temp |= FDI_LINK_TRAIN_PATTERN_1;
3802 }
3803 /* BPC in FDI rx is consistent with that in PIPECONF */
3804 temp &= ~(0x07 << 16);
dfd07d72 3805 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3806 I915_WRITE(reg, temp);
3807
3808 POSTING_READ(reg);
3809 udelay(100);
3810}
3811
5dce5b93
CW
3812bool intel_has_pending_fb_unpin(struct drm_device *dev)
3813{
3814 struct intel_crtc *crtc;
3815
3816 /* Note that we don't need to be called with mode_config.lock here
3817 * as our list of CRTC objects is static for the lifetime of the
3818 * device and so cannot disappear as we iterate. Similarly, we can
3819 * happily treat the predicates as racy, atomic checks as userspace
3820 * cannot claim and pin a new fb without at least acquring the
3821 * struct_mutex and so serialising with us.
3822 */
d3fcc808 3823 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3824 if (atomic_read(&crtc->unpin_work_count) == 0)
3825 continue;
3826
3827 if (crtc->unpin_work)
3828 intel_wait_for_vblank(dev, crtc->pipe);
3829
3830 return true;
3831 }
3832
3833 return false;
3834}
3835
d6bbafa1
CW
3836static void page_flip_completed(struct intel_crtc *intel_crtc)
3837{
3838 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3839 struct intel_unpin_work *work = intel_crtc->unpin_work;
3840
3841 /* ensure that the unpin work is consistent wrt ->pending. */
3842 smp_rmb();
3843 intel_crtc->unpin_work = NULL;
3844
3845 if (work->event)
3846 drm_send_vblank_event(intel_crtc->base.dev,
3847 intel_crtc->pipe,
3848 work->event);
3849
3850 drm_crtc_vblank_put(&intel_crtc->base);
3851
3852 wake_up_all(&dev_priv->pending_flip_queue);
3853 queue_work(dev_priv->wq, &work->work);
3854
3855 trace_i915_flip_complete(intel_crtc->plane,
3856 work->pending_flip_obj);
3857}
3858
46a55d30 3859void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3860{
0f91128d 3861 struct drm_device *dev = crtc->dev;
5bb61643 3862 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3863
2c10d571 3864 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3865 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3866 !intel_crtc_has_pending_flip(crtc),
3867 60*HZ) == 0)) {
3868 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3869
5e2d7afc 3870 spin_lock_irq(&dev->event_lock);
9c787942
CW
3871 if (intel_crtc->unpin_work) {
3872 WARN_ONCE(1, "Removing stuck page flip\n");
3873 page_flip_completed(intel_crtc);
3874 }
5e2d7afc 3875 spin_unlock_irq(&dev->event_lock);
9c787942 3876 }
5bb61643 3877
975d568a
CW
3878 if (crtc->primary->fb) {
3879 mutex_lock(&dev->struct_mutex);
3880 intel_finish_fb(crtc->primary->fb);
3881 mutex_unlock(&dev->struct_mutex);
3882 }
e6c3a2a6
CW
3883}
3884
e615efe4
ED
3885/* Program iCLKIP clock to the desired frequency */
3886static void lpt_program_iclkip(struct drm_crtc *crtc)
3887{
3888 struct drm_device *dev = crtc->dev;
3889 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3890 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3891 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3892 u32 temp;
3893
a580516d 3894 mutex_lock(&dev_priv->sb_lock);
09153000 3895
e615efe4
ED
3896 /* It is necessary to ungate the pixclk gate prior to programming
3897 * the divisors, and gate it back when it is done.
3898 */
3899 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3900
3901 /* Disable SSCCTL */
3902 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3903 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3904 SBI_SSCCTL_DISABLE,
3905 SBI_ICLK);
e615efe4
ED
3906
3907 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3908 if (clock == 20000) {
e615efe4
ED
3909 auxdiv = 1;
3910 divsel = 0x41;
3911 phaseinc = 0x20;
3912 } else {
3913 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3914 * but the adjusted_mode->crtc_clock in in KHz. To get the
3915 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3916 * convert the virtual clock precision to KHz here for higher
3917 * precision.
3918 */
3919 u32 iclk_virtual_root_freq = 172800 * 1000;
3920 u32 iclk_pi_range = 64;
3921 u32 desired_divisor, msb_divisor_value, pi_value;
3922
12d7ceed 3923 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3924 msb_divisor_value = desired_divisor / iclk_pi_range;
3925 pi_value = desired_divisor % iclk_pi_range;
3926
3927 auxdiv = 0;
3928 divsel = msb_divisor_value - 2;
3929 phaseinc = pi_value;
3930 }
3931
3932 /* This should not happen with any sane values */
3933 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3934 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3935 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3936 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3937
3938 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3939 clock,
e615efe4
ED
3940 auxdiv,
3941 divsel,
3942 phasedir,
3943 phaseinc);
3944
3945 /* Program SSCDIVINTPHASE6 */
988d6ee8 3946 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3947 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3948 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3949 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3950 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3951 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3952 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3953 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3954
3955 /* Program SSCAUXDIV */
988d6ee8 3956 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3957 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3958 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3959 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3960
3961 /* Enable modulator and associated divider */
988d6ee8 3962 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3963 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3964 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3965
3966 /* Wait for initialization time */
3967 udelay(24);
3968
3969 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000 3970
a580516d 3971 mutex_unlock(&dev_priv->sb_lock);
e615efe4
ED
3972}
3973
275f01b2
DV
3974static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3975 enum pipe pch_transcoder)
3976{
3977 struct drm_device *dev = crtc->base.dev;
3978 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3979 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3980
3981 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3982 I915_READ(HTOTAL(cpu_transcoder)));
3983 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3984 I915_READ(HBLANK(cpu_transcoder)));
3985 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3986 I915_READ(HSYNC(cpu_transcoder)));
3987
3988 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3989 I915_READ(VTOTAL(cpu_transcoder)));
3990 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3991 I915_READ(VBLANK(cpu_transcoder)));
3992 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3993 I915_READ(VSYNC(cpu_transcoder)));
3994 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3995 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3996}
3997
003632d9 3998static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
3999{
4000 struct drm_i915_private *dev_priv = dev->dev_private;
4001 uint32_t temp;
4002
4003 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4004 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4005 return;
4006
4007 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4008 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4009
003632d9
ACO
4010 temp &= ~FDI_BC_BIFURCATION_SELECT;
4011 if (enable)
4012 temp |= FDI_BC_BIFURCATION_SELECT;
4013
4014 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4015 I915_WRITE(SOUTH_CHICKEN1, temp);
4016 POSTING_READ(SOUTH_CHICKEN1);
4017}
4018
4019static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4020{
4021 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4022
4023 switch (intel_crtc->pipe) {
4024 case PIPE_A:
4025 break;
4026 case PIPE_B:
6e3c9717 4027 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4028 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4029 else
003632d9 4030 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4031
4032 break;
4033 case PIPE_C:
003632d9 4034 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4035
4036 break;
4037 default:
4038 BUG();
4039 }
4040}
4041
f67a559d
JB
4042/*
4043 * Enable PCH resources required for PCH ports:
4044 * - PCH PLLs
4045 * - FDI training & RX/TX
4046 * - update transcoder timings
4047 * - DP transcoding bits
4048 * - transcoder
4049 */
4050static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4051{
4052 struct drm_device *dev = crtc->dev;
4053 struct drm_i915_private *dev_priv = dev->dev_private;
4054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4055 int pipe = intel_crtc->pipe;
ee7b9f93 4056 u32 reg, temp;
2c07245f 4057
ab9412ba 4058 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4059
1fbc0d78
DV
4060 if (IS_IVYBRIDGE(dev))
4061 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4062
cd986abb
DV
4063 /* Write the TU size bits before fdi link training, so that error
4064 * detection works. */
4065 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4066 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4067
c98e9dcf 4068 /* For PCH output, training FDI link */
674cf967 4069 dev_priv->display.fdi_link_train(crtc);
2c07245f 4070
3ad8a208
DV
4071 /* We need to program the right clock selection before writing the pixel
4072 * mutliplier into the DPLL. */
303b81e0 4073 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4074 u32 sel;
4b645f14 4075
c98e9dcf 4076 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4077 temp |= TRANS_DPLL_ENABLE(pipe);
4078 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 4079 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
4080 temp |= sel;
4081 else
4082 temp &= ~sel;
c98e9dcf 4083 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4084 }
5eddb70b 4085
3ad8a208
DV
4086 /* XXX: pch pll's can be enabled any time before we enable the PCH
4087 * transcoder, and we actually should do this to not upset any PCH
4088 * transcoder that already use the clock when we share it.
4089 *
4090 * Note that enable_shared_dpll tries to do the right thing, but
4091 * get_shared_dpll unconditionally resets the pll - we need that to have
4092 * the right LVDS enable sequence. */
85b3894f 4093 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4094
d9b6cb56
JB
4095 /* set transcoder timing, panel must allow it */
4096 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4097 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4098
303b81e0 4099 intel_fdi_normal_train(crtc);
5e84e1a4 4100
c98e9dcf 4101 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4102 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 4103 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
4104 reg = TRANS_DP_CTL(pipe);
4105 temp = I915_READ(reg);
4106 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4107 TRANS_DP_SYNC_MASK |
4108 TRANS_DP_BPC_MASK);
e3ef4479 4109 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4110 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
4111
4112 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4113 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 4114 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4115 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4116
4117 switch (intel_trans_dp_port_sel(crtc)) {
4118 case PCH_DP_B:
5eddb70b 4119 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
4120 break;
4121 case PCH_DP_C:
5eddb70b 4122 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
4123 break;
4124 case PCH_DP_D:
5eddb70b 4125 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4126 break;
4127 default:
e95d41e1 4128 BUG();
32f9d658 4129 }
2c07245f 4130
5eddb70b 4131 I915_WRITE(reg, temp);
6be4a607 4132 }
b52eb4dc 4133
b8a4f404 4134 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4135}
4136
1507e5bd
PZ
4137static void lpt_pch_enable(struct drm_crtc *crtc)
4138{
4139 struct drm_device *dev = crtc->dev;
4140 struct drm_i915_private *dev_priv = dev->dev_private;
4141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4142 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4143
ab9412ba 4144 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4145
8c52b5e8 4146 lpt_program_iclkip(crtc);
1507e5bd 4147
0540e488 4148 /* Set transcoder timing. */
275f01b2 4149 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4150
937bb610 4151 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4152}
4153
190f68c5
ACO
4154struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4155 struct intel_crtc_state *crtc_state)
ee7b9f93 4156{
e2b78267 4157 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4158 struct intel_shared_dpll *pll;
de419ab6 4159 struct intel_shared_dpll_config *shared_dpll;
e2b78267 4160 enum intel_dpll_id i;
ee7b9f93 4161
de419ab6
ML
4162 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4163
98b6bd99
DV
4164 if (HAS_PCH_IBX(dev_priv->dev)) {
4165 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4166 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4167 pll = &dev_priv->shared_dplls[i];
98b6bd99 4168
46edb027
DV
4169 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4170 crtc->base.base.id, pll->name);
98b6bd99 4171
de419ab6 4172 WARN_ON(shared_dpll[i].crtc_mask);
f2a69f44 4173
98b6bd99
DV
4174 goto found;
4175 }
4176
bcddf610
S
4177 if (IS_BROXTON(dev_priv->dev)) {
4178 /* PLL is attached to port in bxt */
4179 struct intel_encoder *encoder;
4180 struct intel_digital_port *intel_dig_port;
4181
4182 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4183 if (WARN_ON(!encoder))
4184 return NULL;
4185
4186 intel_dig_port = enc_to_dig_port(&encoder->base);
4187 /* 1:1 mapping between ports and PLLs */
4188 i = (enum intel_dpll_id)intel_dig_port->port;
4189 pll = &dev_priv->shared_dplls[i];
4190 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4191 crtc->base.base.id, pll->name);
de419ab6 4192 WARN_ON(shared_dpll[i].crtc_mask);
bcddf610
S
4193
4194 goto found;
4195 }
4196
e72f9fbf
DV
4197 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4198 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4199
4200 /* Only want to check enabled timings first */
de419ab6 4201 if (shared_dpll[i].crtc_mask == 0)
ee7b9f93
JB
4202 continue;
4203
190f68c5 4204 if (memcmp(&crtc_state->dpll_hw_state,
de419ab6
ML
4205 &shared_dpll[i].hw_state,
4206 sizeof(crtc_state->dpll_hw_state)) == 0) {
8bd31e67 4207 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4208 crtc->base.base.id, pll->name,
de419ab6 4209 shared_dpll[i].crtc_mask,
8bd31e67 4210 pll->active);
ee7b9f93
JB
4211 goto found;
4212 }
4213 }
4214
4215 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4216 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4217 pll = &dev_priv->shared_dplls[i];
de419ab6 4218 if (shared_dpll[i].crtc_mask == 0) {
46edb027
DV
4219 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4220 crtc->base.base.id, pll->name);
ee7b9f93
JB
4221 goto found;
4222 }
4223 }
4224
4225 return NULL;
4226
4227found:
de419ab6
ML
4228 if (shared_dpll[i].crtc_mask == 0)
4229 shared_dpll[i].hw_state =
4230 crtc_state->dpll_hw_state;
f2a69f44 4231
190f68c5 4232 crtc_state->shared_dpll = i;
46edb027
DV
4233 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4234 pipe_name(crtc->pipe));
ee7b9f93 4235
de419ab6 4236 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
e04c7350 4237
ee7b9f93
JB
4238 return pll;
4239}
4240
de419ab6 4241static void intel_shared_dpll_commit(struct drm_atomic_state *state)
8bd31e67 4242{
de419ab6
ML
4243 struct drm_i915_private *dev_priv = to_i915(state->dev);
4244 struct intel_shared_dpll_config *shared_dpll;
8bd31e67
ACO
4245 struct intel_shared_dpll *pll;
4246 enum intel_dpll_id i;
4247
de419ab6
ML
4248 if (!to_intel_atomic_state(state)->dpll_set)
4249 return;
8bd31e67 4250
de419ab6 4251 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
8bd31e67
ACO
4252 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4253 pll = &dev_priv->shared_dplls[i];
de419ab6 4254 pll->config = shared_dpll[i];
8bd31e67
ACO
4255 }
4256}
4257
a1520318 4258static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4259{
4260 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4261 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4262 u32 temp;
4263
4264 temp = I915_READ(dslreg);
4265 udelay(500);
4266 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4267 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4268 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4269 }
4270}
4271
86adf9d7
ML
4272static int
4273skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4274 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4275 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4276{
86adf9d7
ML
4277 struct intel_crtc_scaler_state *scaler_state =
4278 &crtc_state->scaler_state;
4279 struct intel_crtc *intel_crtc =
4280 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4281 int need_scaling;
6156a456
CK
4282
4283 need_scaling = intel_rotation_90_or_270(rotation) ?
4284 (src_h != dst_w || src_w != dst_h):
4285 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4286
4287 /*
4288 * if plane is being disabled or scaler is no more required or force detach
4289 * - free scaler binded to this plane/crtc
4290 * - in order to do this, update crtc->scaler_usage
4291 *
4292 * Here scaler state in crtc_state is set free so that
4293 * scaler can be assigned to other user. Actual register
4294 * update to free the scaler is done in plane/panel-fit programming.
4295 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4296 */
86adf9d7 4297 if (force_detach || !need_scaling) {
a1b2278e 4298 if (*scaler_id >= 0) {
86adf9d7 4299 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4300 scaler_state->scalers[*scaler_id].in_use = 0;
4301
86adf9d7
ML
4302 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4303 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4304 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4305 scaler_state->scaler_users);
4306 *scaler_id = -1;
4307 }
4308 return 0;
4309 }
4310
4311 /* range checks */
4312 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4313 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4314
4315 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4316 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4317 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4318 "size is out of scaler range\n",
86adf9d7 4319 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4320 return -EINVAL;
4321 }
4322
86adf9d7
ML
4323 /* mark this plane as a scaler user in crtc_state */
4324 scaler_state->scaler_users |= (1 << scaler_user);
4325 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4326 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4327 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4328 scaler_state->scaler_users);
4329
4330 return 0;
4331}
4332
4333/**
4334 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4335 *
4336 * @state: crtc's scaler state
4337 * @force_detach: whether to forcibly disable scaler
4338 *
4339 * Return
4340 * 0 - scaler_usage updated successfully
4341 * error - requested scaling cannot be supported or other error condition
4342 */
4343int skl_update_scaler_crtc(struct intel_crtc_state *state, int force_detach)
4344{
4345 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4346 struct drm_display_mode *adjusted_mode =
4347 &state->base.adjusted_mode;
4348
4349 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4350 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4351
4352 return skl_update_scaler(state, force_detach, SKL_CRTC_INDEX,
4353 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4354 state->pipe_src_w, state->pipe_src_h,
4355 adjusted_mode->hdisplay, adjusted_mode->hdisplay);
4356}
4357
4358/**
4359 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4360 *
4361 * @state: crtc's scaler state
86adf9d7
ML
4362 * @plane_state: atomic plane state to update
4363 *
4364 * Return
4365 * 0 - scaler_usage updated successfully
4366 * error - requested scaling cannot be supported or other error condition
4367 */
da20eabd
ML
4368static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4369 struct intel_plane_state *plane_state)
86adf9d7
ML
4370{
4371
4372 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4373 struct intel_plane *intel_plane =
4374 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4375 struct drm_framebuffer *fb = plane_state->base.fb;
4376 int ret;
4377
4378 bool force_detach = !fb || !plane_state->visible;
4379
4380 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4381 intel_plane->base.base.id, intel_crtc->pipe,
4382 drm_plane_index(&intel_plane->base));
4383
4384 ret = skl_update_scaler(crtc_state, force_detach,
4385 drm_plane_index(&intel_plane->base),
4386 &plane_state->scaler_id,
4387 plane_state->base.rotation,
4388 drm_rect_width(&plane_state->src) >> 16,
4389 drm_rect_height(&plane_state->src) >> 16,
4390 drm_rect_width(&plane_state->dst),
4391 drm_rect_height(&plane_state->dst));
4392
4393 if (ret || plane_state->scaler_id < 0)
4394 return ret;
4395
a1b2278e 4396 /* check colorkey */
818ed961 4397 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
86adf9d7 4398 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
818ed961 4399 intel_plane->base.base.id);
a1b2278e
CK
4400 return -EINVAL;
4401 }
4402
4403 /* Check src format */
86adf9d7
ML
4404 switch (fb->pixel_format) {
4405 case DRM_FORMAT_RGB565:
4406 case DRM_FORMAT_XBGR8888:
4407 case DRM_FORMAT_XRGB8888:
4408 case DRM_FORMAT_ABGR8888:
4409 case DRM_FORMAT_ARGB8888:
4410 case DRM_FORMAT_XRGB2101010:
4411 case DRM_FORMAT_XBGR2101010:
4412 case DRM_FORMAT_YUYV:
4413 case DRM_FORMAT_YVYU:
4414 case DRM_FORMAT_UYVY:
4415 case DRM_FORMAT_VYUY:
4416 break;
4417 default:
4418 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4419 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4420 return -EINVAL;
a1b2278e
CK
4421 }
4422
a1b2278e
CK
4423 return 0;
4424}
4425
4426static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
bd2e244f
JB
4427{
4428 struct drm_device *dev = crtc->base.dev;
4429 struct drm_i915_private *dev_priv = dev->dev_private;
4430 int pipe = crtc->pipe;
a1b2278e
CK
4431 struct intel_crtc_scaler_state *scaler_state =
4432 &crtc->config->scaler_state;
4433
4434 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4435
4436 /* To update pfit, first update scaler state */
86adf9d7 4437 skl_update_scaler_crtc(crtc->config, !enable);
a1b2278e
CK
4438 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4439 skl_detach_scalers(crtc);
4440 if (!enable)
4441 return;
bd2e244f 4442
6e3c9717 4443 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4444 int id;
4445
4446 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4447 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4448 return;
4449 }
4450
4451 id = scaler_state->scaler_id;
4452 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4453 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4454 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4455 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4456
4457 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4458 }
4459}
4460
b074cec8
JB
4461static void ironlake_pfit_enable(struct intel_crtc *crtc)
4462{
4463 struct drm_device *dev = crtc->base.dev;
4464 struct drm_i915_private *dev_priv = dev->dev_private;
4465 int pipe = crtc->pipe;
4466
6e3c9717 4467 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4468 /* Force use of hard-coded filter coefficients
4469 * as some pre-programmed values are broken,
4470 * e.g. x201.
4471 */
4472 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4473 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4474 PF_PIPE_SEL_IVB(pipe));
4475 else
4476 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4477 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4478 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4479 }
4480}
4481
20bc8673 4482void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4483{
cea165c3
VS
4484 struct drm_device *dev = crtc->base.dev;
4485 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4486
6e3c9717 4487 if (!crtc->config->ips_enabled)
d77e4531
PZ
4488 return;
4489
cea165c3
VS
4490 /* We can only enable IPS after we enable a plane and wait for a vblank */
4491 intel_wait_for_vblank(dev, crtc->pipe);
4492
d77e4531 4493 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4494 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4495 mutex_lock(&dev_priv->rps.hw_lock);
4496 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4497 mutex_unlock(&dev_priv->rps.hw_lock);
4498 /* Quoting Art Runyan: "its not safe to expect any particular
4499 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4500 * mailbox." Moreover, the mailbox may return a bogus state,
4501 * so we need to just enable it and continue on.
2a114cc1
BW
4502 */
4503 } else {
4504 I915_WRITE(IPS_CTL, IPS_ENABLE);
4505 /* The bit only becomes 1 in the next vblank, so this wait here
4506 * is essentially intel_wait_for_vblank. If we don't have this
4507 * and don't wait for vblanks until the end of crtc_enable, then
4508 * the HW state readout code will complain that the expected
4509 * IPS_CTL value is not the one we read. */
4510 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4511 DRM_ERROR("Timed out waiting for IPS enable\n");
4512 }
d77e4531
PZ
4513}
4514
20bc8673 4515void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4516{
4517 struct drm_device *dev = crtc->base.dev;
4518 struct drm_i915_private *dev_priv = dev->dev_private;
4519
6e3c9717 4520 if (!crtc->config->ips_enabled)
d77e4531
PZ
4521 return;
4522
4523 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4524 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4525 mutex_lock(&dev_priv->rps.hw_lock);
4526 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4527 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4528 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4529 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4530 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4531 } else {
2a114cc1 4532 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4533 POSTING_READ(IPS_CTL);
4534 }
d77e4531
PZ
4535
4536 /* We need to wait for a vblank before we can disable the plane. */
4537 intel_wait_for_vblank(dev, crtc->pipe);
4538}
4539
4540/** Loads the palette/gamma unit for the CRTC with the prepared values */
4541static void intel_crtc_load_lut(struct drm_crtc *crtc)
4542{
4543 struct drm_device *dev = crtc->dev;
4544 struct drm_i915_private *dev_priv = dev->dev_private;
4545 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4546 enum pipe pipe = intel_crtc->pipe;
4547 int palreg = PALETTE(pipe);
4548 int i;
4549 bool reenable_ips = false;
4550
4551 /* The clocks have to be on to load the palette. */
53d9f4e9 4552 if (!crtc->state->active)
d77e4531
PZ
4553 return;
4554
50360403 4555 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
409ee761 4556 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4557 assert_dsi_pll_enabled(dev_priv);
4558 else
4559 assert_pll_enabled(dev_priv, pipe);
4560 }
4561
4562 /* use legacy palette for Ironlake */
7a1db49a 4563 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4564 palreg = LGC_PALETTE(pipe);
4565
4566 /* Workaround : Do not read or write the pipe palette/gamma data while
4567 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4568 */
6e3c9717 4569 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4570 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4571 GAMMA_MODE_MODE_SPLIT)) {
4572 hsw_disable_ips(intel_crtc);
4573 reenable_ips = true;
4574 }
4575
4576 for (i = 0; i < 256; i++) {
4577 I915_WRITE(palreg + 4 * i,
4578 (intel_crtc->lut_r[i] << 16) |
4579 (intel_crtc->lut_g[i] << 8) |
4580 intel_crtc->lut_b[i]);
4581 }
4582
4583 if (reenable_ips)
4584 hsw_enable_ips(intel_crtc);
4585}
4586
7cac945f 4587static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4588{
7cac945f 4589 if (intel_crtc->overlay) {
d3eedb1a
VS
4590 struct drm_device *dev = intel_crtc->base.dev;
4591 struct drm_i915_private *dev_priv = dev->dev_private;
4592
4593 mutex_lock(&dev->struct_mutex);
4594 dev_priv->mm.interruptible = false;
4595 (void) intel_overlay_switch_off(intel_crtc->overlay);
4596 dev_priv->mm.interruptible = true;
4597 mutex_unlock(&dev->struct_mutex);
4598 }
4599
4600 /* Let userspace switch the overlay on again. In most cases userspace
4601 * has to recompute where to put it anyway.
4602 */
4603}
4604
87d4300a
ML
4605/**
4606 * intel_post_enable_primary - Perform operations after enabling primary plane
4607 * @crtc: the CRTC whose primary plane was just enabled
4608 *
4609 * Performs potentially sleeping operations that must be done after the primary
4610 * plane is enabled, such as updating FBC and IPS. Note that this may be
4611 * called due to an explicit primary plane update, or due to an implicit
4612 * re-enable that is caused when a sprite plane is updated to no longer
4613 * completely hide the primary plane.
4614 */
4615static void
4616intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4617{
4618 struct drm_device *dev = crtc->dev;
87d4300a 4619 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4621 int pipe = intel_crtc->pipe;
a5c4d7bc 4622
87d4300a
ML
4623 /*
4624 * BDW signals flip done immediately if the plane
4625 * is disabled, even if the plane enable is already
4626 * armed to occur at the next vblank :(
4627 */
4628 if (IS_BROADWELL(dev))
4629 intel_wait_for_vblank(dev, pipe);
a5c4d7bc 4630
87d4300a
ML
4631 /*
4632 * FIXME IPS should be fine as long as one plane is
4633 * enabled, but in practice it seems to have problems
4634 * when going from primary only to sprite only and vice
4635 * versa.
4636 */
a5c4d7bc
VS
4637 hsw_enable_ips(intel_crtc);
4638
f99d7069 4639 /*
87d4300a
ML
4640 * Gen2 reports pipe underruns whenever all planes are disabled.
4641 * So don't enable underrun reporting before at least some planes
4642 * are enabled.
4643 * FIXME: Need to fix the logic to work when we turn off all planes
4644 * but leave the pipe running.
f99d7069 4645 */
87d4300a
ML
4646 if (IS_GEN2(dev))
4647 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4648
4649 /* Underruns don't raise interrupts, so check manually. */
4650 if (HAS_GMCH_DISPLAY(dev))
4651 i9xx_check_fifo_underruns(dev_priv);
a5c4d7bc
VS
4652}
4653
87d4300a
ML
4654/**
4655 * intel_pre_disable_primary - Perform operations before disabling primary plane
4656 * @crtc: the CRTC whose primary plane is to be disabled
4657 *
4658 * Performs potentially sleeping operations that must be done before the
4659 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4660 * be called due to an explicit primary plane update, or due to an implicit
4661 * disable that is caused when a sprite plane completely hides the primary
4662 * plane.
4663 */
4664static void
4665intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4666{
4667 struct drm_device *dev = crtc->dev;
4668 struct drm_i915_private *dev_priv = dev->dev_private;
4669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4670 int pipe = intel_crtc->pipe;
a5c4d7bc 4671
87d4300a
ML
4672 /*
4673 * Gen2 reports pipe underruns whenever all planes are disabled.
4674 * So diasble underrun reporting before all the planes get disabled.
4675 * FIXME: Need to fix the logic to work when we turn off all planes
4676 * but leave the pipe running.
4677 */
4678 if (IS_GEN2(dev))
4679 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4680
87d4300a
ML
4681 /*
4682 * Vblank time updates from the shadow to live plane control register
4683 * are blocked if the memory self-refresh mode is active at that
4684 * moment. So to make sure the plane gets truly disabled, disable
4685 * first the self-refresh mode. The self-refresh enable bit in turn
4686 * will be checked/applied by the HW only at the next frame start
4687 * event which is after the vblank start event, so we need to have a
4688 * wait-for-vblank between disabling the plane and the pipe.
4689 */
4690 if (HAS_GMCH_DISPLAY(dev))
4691 intel_set_memory_cxsr(dev_priv, false);
4692
87d4300a
ML
4693 /*
4694 * FIXME IPS should be fine as long as one plane is
4695 * enabled, but in practice it seems to have problems
4696 * when going from primary only to sprite only and vice
4697 * versa.
4698 */
a5c4d7bc 4699 hsw_disable_ips(intel_crtc);
87d4300a
ML
4700}
4701
ac21b225
ML
4702static void intel_post_plane_update(struct intel_crtc *crtc)
4703{
4704 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4705 struct drm_device *dev = crtc->base.dev;
4706 struct drm_plane *plane;
4707
4708 if (atomic->wait_vblank)
4709 intel_wait_for_vblank(dev, crtc->pipe);
4710
4711 intel_frontbuffer_flip(dev, atomic->fb_bits);
4712
4713 if (atomic->update_fbc) {
4714 mutex_lock(&dev->struct_mutex);
4715 intel_fbc_update(dev);
4716 mutex_unlock(&dev->struct_mutex);
4717 }
4718
4719 if (atomic->post_enable_primary)
4720 intel_post_enable_primary(&crtc->base);
4721
4722 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4723 intel_update_sprite_watermarks(plane, &crtc->base,
4724 0, 0, 0, false, false);
4725
4726 memset(atomic, 0, sizeof(*atomic));
4727}
4728
4729static void intel_pre_plane_update(struct intel_crtc *crtc)
4730{
4731 struct drm_device *dev = crtc->base.dev;
eddfcbcd 4732 struct drm_i915_private *dev_priv = dev->dev_private;
ac21b225
ML
4733 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4734 struct drm_plane *p;
4735
4736 /* Track fb's for any planes being disabled */
4737
4738 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4739 struct intel_plane *plane = to_intel_plane(p);
4740 unsigned fb_bits = 0;
4741
4742 switch (p->type) {
4743 case DRM_PLANE_TYPE_PRIMARY:
4744 fb_bits = INTEL_FRONTBUFFER_PRIMARY(plane->pipe);
4745 break;
4746 case DRM_PLANE_TYPE_CURSOR:
4747 fb_bits = INTEL_FRONTBUFFER_CURSOR(plane->pipe);
4748 break;
4749 case DRM_PLANE_TYPE_OVERLAY:
4750 fb_bits = INTEL_FRONTBUFFER_SPRITE(plane->pipe);
4751 break;
4752 }
4753
4754 mutex_lock(&dev->struct_mutex);
4755 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL, fb_bits);
4756 mutex_unlock(&dev->struct_mutex);
4757 }
4758
4759 if (atomic->wait_for_flips)
4760 intel_crtc_wait_for_pending_flips(&crtc->base);
4761
eddfcbcd
ML
4762 if (atomic->disable_fbc &&
4763 dev_priv->fbc.crtc == crtc) {
4764 mutex_lock(&dev->struct_mutex);
4765 if (dev_priv->fbc.crtc == crtc)
4766 intel_fbc_disable(dev);
4767 mutex_unlock(&dev->struct_mutex);
4768 }
ac21b225
ML
4769
4770 if (atomic->pre_disable_primary)
4771 intel_pre_disable_primary(&crtc->base);
4772}
4773
d032ffa0 4774static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
4775{
4776 struct drm_device *dev = crtc->dev;
4777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 4778 struct drm_plane *p;
87d4300a
ML
4779 int pipe = intel_crtc->pipe;
4780
7cac945f 4781 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 4782
d032ffa0
ML
4783 drm_for_each_plane_mask(p, dev, plane_mask)
4784 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 4785
f99d7069
DV
4786 /*
4787 * FIXME: Once we grow proper nuclear flip support out of this we need
4788 * to compute the mask of flip planes precisely. For the time being
4789 * consider this a flip to a NULL plane.
4790 */
4791 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4792}
4793
f67a559d
JB
4794static void ironlake_crtc_enable(struct drm_crtc *crtc)
4795{
4796 struct drm_device *dev = crtc->dev;
4797 struct drm_i915_private *dev_priv = dev->dev_private;
4798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4799 struct intel_encoder *encoder;
f67a559d 4800 int pipe = intel_crtc->pipe;
f67a559d 4801
53d9f4e9 4802 if (WARN_ON(intel_crtc->active))
f67a559d
JB
4803 return;
4804
6e3c9717 4805 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4806 intel_prepare_shared_dpll(intel_crtc);
4807
6e3c9717 4808 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4809 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4810
4811 intel_set_pipe_timings(intel_crtc);
4812
6e3c9717 4813 if (intel_crtc->config->has_pch_encoder) {
29407aab 4814 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4815 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4816 }
4817
4818 ironlake_set_pipeconf(crtc);
4819
f67a559d 4820 intel_crtc->active = true;
8664281b 4821
a72e4c9f
DV
4822 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4823 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4824
f6736a1a 4825 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4826 if (encoder->pre_enable)
4827 encoder->pre_enable(encoder);
f67a559d 4828
6e3c9717 4829 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4830 /* Note: FDI PLL enabling _must_ be done before we enable the
4831 * cpu pipes, hence this is separate from all the other fdi/pch
4832 * enabling. */
88cefb6c 4833 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4834 } else {
4835 assert_fdi_tx_disabled(dev_priv, pipe);
4836 assert_fdi_rx_disabled(dev_priv, pipe);
4837 }
f67a559d 4838
b074cec8 4839 ironlake_pfit_enable(intel_crtc);
f67a559d 4840
9c54c0dd
JB
4841 /*
4842 * On ILK+ LUT must be loaded before the pipe is running but with
4843 * clocks enabled
4844 */
4845 intel_crtc_load_lut(crtc);
4846
f37fcc2a 4847 intel_update_watermarks(crtc);
e1fdc473 4848 intel_enable_pipe(intel_crtc);
f67a559d 4849
6e3c9717 4850 if (intel_crtc->config->has_pch_encoder)
f67a559d 4851 ironlake_pch_enable(crtc);
c98e9dcf 4852
f9b61ff6
DV
4853 assert_vblank_disabled(crtc);
4854 drm_crtc_vblank_on(crtc);
4855
fa5c73b1
DV
4856 for_each_encoder_on_crtc(dev, crtc, encoder)
4857 encoder->enable(encoder);
61b77ddd
DV
4858
4859 if (HAS_PCH_CPT(dev))
a1520318 4860 cpt_verify_modeset(dev, intel_crtc->pipe);
6be4a607
JB
4861}
4862
42db64ef
PZ
4863/* IPS only exists on ULT machines and is tied to pipe A. */
4864static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4865{
f5adf94e 4866 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4867}
4868
4f771f10
PZ
4869static void haswell_crtc_enable(struct drm_crtc *crtc)
4870{
4871 struct drm_device *dev = crtc->dev;
4872 struct drm_i915_private *dev_priv = dev->dev_private;
4873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4874 struct intel_encoder *encoder;
99d736a2
ML
4875 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4876 struct intel_crtc_state *pipe_config =
4877 to_intel_crtc_state(crtc->state);
4f771f10 4878
53d9f4e9 4879 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
4880 return;
4881
df8ad70c
DV
4882 if (intel_crtc_to_shared_dpll(intel_crtc))
4883 intel_enable_shared_dpll(intel_crtc);
4884
6e3c9717 4885 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4886 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4887
4888 intel_set_pipe_timings(intel_crtc);
4889
6e3c9717
ACO
4890 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4891 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4892 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4893 }
4894
6e3c9717 4895 if (intel_crtc->config->has_pch_encoder) {
229fca97 4896 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4897 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4898 }
4899
4900 haswell_set_pipeconf(crtc);
4901
4902 intel_set_pipe_csc(crtc);
4903
4f771f10 4904 intel_crtc->active = true;
8664281b 4905
a72e4c9f 4906 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4907 for_each_encoder_on_crtc(dev, crtc, encoder)
4908 if (encoder->pre_enable)
4909 encoder->pre_enable(encoder);
4910
6e3c9717 4911 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4912 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4913 true);
4fe9467d
ID
4914 dev_priv->display.fdi_link_train(crtc);
4915 }
4916
1f544388 4917 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4918
ff6d9f55 4919 if (INTEL_INFO(dev)->gen == 9)
a1b2278e 4920 skylake_pfit_update(intel_crtc, 1);
ff6d9f55 4921 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 4922 ironlake_pfit_enable(intel_crtc);
ff6d9f55
JB
4923 else
4924 MISSING_CASE(INTEL_INFO(dev)->gen);
4f771f10
PZ
4925
4926 /*
4927 * On ILK+ LUT must be loaded before the pipe is running but with
4928 * clocks enabled
4929 */
4930 intel_crtc_load_lut(crtc);
4931
1f544388 4932 intel_ddi_set_pipe_settings(crtc);
8228c251 4933 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4934
f37fcc2a 4935 intel_update_watermarks(crtc);
e1fdc473 4936 intel_enable_pipe(intel_crtc);
42db64ef 4937
6e3c9717 4938 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4939 lpt_pch_enable(crtc);
4f771f10 4940
6e3c9717 4941 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4942 intel_ddi_set_vc_payload_alloc(crtc, true);
4943
f9b61ff6
DV
4944 assert_vblank_disabled(crtc);
4945 drm_crtc_vblank_on(crtc);
4946
8807e55b 4947 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4948 encoder->enable(encoder);
8807e55b
JN
4949 intel_opregion_notify_encoder(encoder, true);
4950 }
4f771f10 4951
e4916946
PZ
4952 /* If we change the relative order between pipe/planes enabling, we need
4953 * to change the workaround. */
99d736a2
ML
4954 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4955 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4956 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4957 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4958 }
4f771f10
PZ
4959}
4960
3f8dce3a
DV
4961static void ironlake_pfit_disable(struct intel_crtc *crtc)
4962{
4963 struct drm_device *dev = crtc->base.dev;
4964 struct drm_i915_private *dev_priv = dev->dev_private;
4965 int pipe = crtc->pipe;
4966
4967 /* To avoid upsetting the power well on haswell only disable the pfit if
4968 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4969 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4970 I915_WRITE(PF_CTL(pipe), 0);
4971 I915_WRITE(PF_WIN_POS(pipe), 0);
4972 I915_WRITE(PF_WIN_SZ(pipe), 0);
4973 }
4974}
4975
6be4a607
JB
4976static void ironlake_crtc_disable(struct drm_crtc *crtc)
4977{
4978 struct drm_device *dev = crtc->dev;
4979 struct drm_i915_private *dev_priv = dev->dev_private;
4980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4981 struct intel_encoder *encoder;
6be4a607 4982 int pipe = intel_crtc->pipe;
5eddb70b 4983 u32 reg, temp;
b52eb4dc 4984
ea9d758d
DV
4985 for_each_encoder_on_crtc(dev, crtc, encoder)
4986 encoder->disable(encoder);
4987
f9b61ff6
DV
4988 drm_crtc_vblank_off(crtc);
4989 assert_vblank_disabled(crtc);
4990
6e3c9717 4991 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4992 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4993
575f7ab7 4994 intel_disable_pipe(intel_crtc);
32f9d658 4995
3f8dce3a 4996 ironlake_pfit_disable(intel_crtc);
2c07245f 4997
5a74f70a
VS
4998 if (intel_crtc->config->has_pch_encoder)
4999 ironlake_fdi_disable(crtc);
5000
bf49ec8c
DV
5001 for_each_encoder_on_crtc(dev, crtc, encoder)
5002 if (encoder->post_disable)
5003 encoder->post_disable(encoder);
2c07245f 5004
6e3c9717 5005 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5006 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5007
d925c59a
DV
5008 if (HAS_PCH_CPT(dev)) {
5009 /* disable TRANS_DP_CTL */
5010 reg = TRANS_DP_CTL(pipe);
5011 temp = I915_READ(reg);
5012 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5013 TRANS_DP_PORT_SEL_MASK);
5014 temp |= TRANS_DP_PORT_SEL_NONE;
5015 I915_WRITE(reg, temp);
5016
5017 /* disable DPLL_SEL */
5018 temp = I915_READ(PCH_DPLL_SEL);
11887397 5019 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5020 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5021 }
e3421a18 5022
d925c59a
DV
5023 ironlake_fdi_pll_disable(intel_crtc);
5024 }
6be4a607 5025}
1b3c7a47 5026
4f771f10 5027static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5028{
4f771f10
PZ
5029 struct drm_device *dev = crtc->dev;
5030 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5032 struct intel_encoder *encoder;
6e3c9717 5033 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5034
8807e55b
JN
5035 for_each_encoder_on_crtc(dev, crtc, encoder) {
5036 intel_opregion_notify_encoder(encoder, false);
4f771f10 5037 encoder->disable(encoder);
8807e55b 5038 }
4f771f10 5039
f9b61ff6
DV
5040 drm_crtc_vblank_off(crtc);
5041 assert_vblank_disabled(crtc);
5042
6e3c9717 5043 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
5044 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5045 false);
575f7ab7 5046 intel_disable_pipe(intel_crtc);
4f771f10 5047
6e3c9717 5048 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5049 intel_ddi_set_vc_payload_alloc(crtc, false);
5050
ad80a810 5051 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5052
ff6d9f55 5053 if (INTEL_INFO(dev)->gen == 9)
a1b2278e 5054 skylake_pfit_update(intel_crtc, 0);
ff6d9f55 5055 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 5056 ironlake_pfit_disable(intel_crtc);
ff6d9f55
JB
5057 else
5058 MISSING_CASE(INTEL_INFO(dev)->gen);
4f771f10 5059
1f544388 5060 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5061
6e3c9717 5062 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 5063 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 5064 intel_ddi_fdi_disable(crtc);
83616634 5065 }
4f771f10 5066
97b040aa
ID
5067 for_each_encoder_on_crtc(dev, crtc, encoder)
5068 if (encoder->post_disable)
5069 encoder->post_disable(encoder);
4f771f10
PZ
5070}
5071
2dd24552
JB
5072static void i9xx_pfit_enable(struct intel_crtc *crtc)
5073{
5074 struct drm_device *dev = crtc->base.dev;
5075 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5076 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5077
681a8504 5078 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5079 return;
5080
2dd24552 5081 /*
c0b03411
DV
5082 * The panel fitter should only be adjusted whilst the pipe is disabled,
5083 * according to register description and PRM.
2dd24552 5084 */
c0b03411
DV
5085 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5086 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5087
b074cec8
JB
5088 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5089 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5090
5091 /* Border color in case we don't scale up to the full screen. Black by
5092 * default, change to something else for debugging. */
5093 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5094}
5095
d05410f9
DA
5096static enum intel_display_power_domain port_to_power_domain(enum port port)
5097{
5098 switch (port) {
5099 case PORT_A:
5100 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5101 case PORT_B:
5102 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5103 case PORT_C:
5104 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5105 case PORT_D:
5106 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5107 default:
5108 WARN_ON_ONCE(1);
5109 return POWER_DOMAIN_PORT_OTHER;
5110 }
5111}
5112
77d22dca
ID
5113#define for_each_power_domain(domain, mask) \
5114 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5115 if ((1 << (domain)) & (mask))
5116
319be8ae
ID
5117enum intel_display_power_domain
5118intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5119{
5120 struct drm_device *dev = intel_encoder->base.dev;
5121 struct intel_digital_port *intel_dig_port;
5122
5123 switch (intel_encoder->type) {
5124 case INTEL_OUTPUT_UNKNOWN:
5125 /* Only DDI platforms should ever use this output type */
5126 WARN_ON_ONCE(!HAS_DDI(dev));
5127 case INTEL_OUTPUT_DISPLAYPORT:
5128 case INTEL_OUTPUT_HDMI:
5129 case INTEL_OUTPUT_EDP:
5130 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5131 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5132 case INTEL_OUTPUT_DP_MST:
5133 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5134 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5135 case INTEL_OUTPUT_ANALOG:
5136 return POWER_DOMAIN_PORT_CRT;
5137 case INTEL_OUTPUT_DSI:
5138 return POWER_DOMAIN_PORT_DSI;
5139 default:
5140 return POWER_DOMAIN_PORT_OTHER;
5141 }
5142}
5143
5144static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5145{
319be8ae
ID
5146 struct drm_device *dev = crtc->dev;
5147 struct intel_encoder *intel_encoder;
5148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5149 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
5150 unsigned long mask;
5151 enum transcoder transcoder;
5152
5153 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5154
5155 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5156 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
5157 if (intel_crtc->config->pch_pfit.enabled ||
5158 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
5159 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5160
319be8ae
ID
5161 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5162 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5163
77d22dca
ID
5164 return mask;
5165}
5166
679dacd4 5167static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
77d22dca 5168{
679dacd4 5169 struct drm_device *dev = state->dev;
77d22dca
ID
5170 struct drm_i915_private *dev_priv = dev->dev_private;
5171 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5172 struct intel_crtc *crtc;
5173
5174 /*
5175 * First get all needed power domains, then put all unneeded, to avoid
5176 * any unnecessary toggling of the power wells.
5177 */
d3fcc808 5178 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
5179 enum intel_display_power_domain domain;
5180
83d65738 5181 if (!crtc->base.state->enable)
77d22dca
ID
5182 continue;
5183
319be8ae 5184 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
5185
5186 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5187 intel_display_power_get(dev_priv, domain);
5188 }
5189
27c329ed
ML
5190 if (dev_priv->display.modeset_commit_cdclk) {
5191 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5192
5193 if (cdclk != dev_priv->cdclk_freq &&
5194 !WARN_ON(!state->allow_modeset))
5195 dev_priv->display.modeset_commit_cdclk(state);
5196 }
50f6e502 5197
d3fcc808 5198 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
5199 enum intel_display_power_domain domain;
5200
5201 for_each_power_domain(domain, crtc->enabled_power_domains)
5202 intel_display_power_put(dev_priv, domain);
5203
5204 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5205 }
5206
5207 intel_display_set_init_power(dev_priv, false);
5208}
5209
560a7ae4
DL
5210static void intel_update_max_cdclk(struct drm_device *dev)
5211{
5212 struct drm_i915_private *dev_priv = dev->dev_private;
5213
5214 if (IS_SKYLAKE(dev)) {
5215 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5216
5217 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5218 dev_priv->max_cdclk_freq = 675000;
5219 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5220 dev_priv->max_cdclk_freq = 540000;
5221 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5222 dev_priv->max_cdclk_freq = 450000;
5223 else
5224 dev_priv->max_cdclk_freq = 337500;
5225 } else if (IS_BROADWELL(dev)) {
5226 /*
5227 * FIXME with extra cooling we can allow
5228 * 540 MHz for ULX and 675 Mhz for ULT.
5229 * How can we know if extra cooling is
5230 * available? PCI ID, VTB, something else?
5231 */
5232 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5233 dev_priv->max_cdclk_freq = 450000;
5234 else if (IS_BDW_ULX(dev))
5235 dev_priv->max_cdclk_freq = 450000;
5236 else if (IS_BDW_ULT(dev))
5237 dev_priv->max_cdclk_freq = 540000;
5238 else
5239 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5240 } else if (IS_CHERRYVIEW(dev)) {
5241 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5242 } else if (IS_VALLEYVIEW(dev)) {
5243 dev_priv->max_cdclk_freq = 400000;
5244 } else {
5245 /* otherwise assume cdclk is fixed */
5246 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5247 }
5248
5249 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5250 dev_priv->max_cdclk_freq);
5251}
5252
5253static void intel_update_cdclk(struct drm_device *dev)
5254{
5255 struct drm_i915_private *dev_priv = dev->dev_private;
5256
5257 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5258 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5259 dev_priv->cdclk_freq);
5260
5261 /*
5262 * Program the gmbus_freq based on the cdclk frequency.
5263 * BSpec erroneously claims we should aim for 4MHz, but
5264 * in fact 1MHz is the correct frequency.
5265 */
5266 if (IS_VALLEYVIEW(dev)) {
5267 /*
5268 * Program the gmbus_freq based on the cdclk frequency.
5269 * BSpec erroneously claims we should aim for 4MHz, but
5270 * in fact 1MHz is the correct frequency.
5271 */
5272 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5273 }
5274
5275 if (dev_priv->max_cdclk_freq == 0)
5276 intel_update_max_cdclk(dev);
5277}
5278
70d0c574 5279static void broxton_set_cdclk(struct drm_device *dev, int frequency)
f8437dd1
VK
5280{
5281 struct drm_i915_private *dev_priv = dev->dev_private;
5282 uint32_t divider;
5283 uint32_t ratio;
5284 uint32_t current_freq;
5285 int ret;
5286
5287 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5288 switch (frequency) {
5289 case 144000:
5290 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5291 ratio = BXT_DE_PLL_RATIO(60);
5292 break;
5293 case 288000:
5294 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5295 ratio = BXT_DE_PLL_RATIO(60);
5296 break;
5297 case 384000:
5298 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5299 ratio = BXT_DE_PLL_RATIO(60);
5300 break;
5301 case 576000:
5302 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5303 ratio = BXT_DE_PLL_RATIO(60);
5304 break;
5305 case 624000:
5306 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5307 ratio = BXT_DE_PLL_RATIO(65);
5308 break;
5309 case 19200:
5310 /*
5311 * Bypass frequency with DE PLL disabled. Init ratio, divider
5312 * to suppress GCC warning.
5313 */
5314 ratio = 0;
5315 divider = 0;
5316 break;
5317 default:
5318 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5319
5320 return;
5321 }
5322
5323 mutex_lock(&dev_priv->rps.hw_lock);
5324 /* Inform power controller of upcoming frequency change */
5325 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5326 0x80000000);
5327 mutex_unlock(&dev_priv->rps.hw_lock);
5328
5329 if (ret) {
5330 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5331 ret, frequency);
5332 return;
5333 }
5334
5335 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5336 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5337 current_freq = current_freq * 500 + 1000;
5338
5339 /*
5340 * DE PLL has to be disabled when
5341 * - setting to 19.2MHz (bypass, PLL isn't used)
5342 * - before setting to 624MHz (PLL needs toggling)
5343 * - before setting to any frequency from 624MHz (PLL needs toggling)
5344 */
5345 if (frequency == 19200 || frequency == 624000 ||
5346 current_freq == 624000) {
5347 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5348 /* Timeout 200us */
5349 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5350 1))
5351 DRM_ERROR("timout waiting for DE PLL unlock\n");
5352 }
5353
5354 if (frequency != 19200) {
5355 uint32_t val;
5356
5357 val = I915_READ(BXT_DE_PLL_CTL);
5358 val &= ~BXT_DE_PLL_RATIO_MASK;
5359 val |= ratio;
5360 I915_WRITE(BXT_DE_PLL_CTL, val);
5361
5362 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5363 /* Timeout 200us */
5364 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5365 DRM_ERROR("timeout waiting for DE PLL lock\n");
5366
5367 val = I915_READ(CDCLK_CTL);
5368 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5369 val |= divider;
5370 /*
5371 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5372 * enable otherwise.
5373 */
5374 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5375 if (frequency >= 500000)
5376 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5377
5378 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5379 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5380 val |= (frequency - 1000) / 500;
5381 I915_WRITE(CDCLK_CTL, val);
5382 }
5383
5384 mutex_lock(&dev_priv->rps.hw_lock);
5385 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5386 DIV_ROUND_UP(frequency, 25000));
5387 mutex_unlock(&dev_priv->rps.hw_lock);
5388
5389 if (ret) {
5390 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5391 ret, frequency);
5392 return;
5393 }
5394
a47871bd 5395 intel_update_cdclk(dev);
f8437dd1
VK
5396}
5397
5398void broxton_init_cdclk(struct drm_device *dev)
5399{
5400 struct drm_i915_private *dev_priv = dev->dev_private;
5401 uint32_t val;
5402
5403 /*
5404 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5405 * or else the reset will hang because there is no PCH to respond.
5406 * Move the handshake programming to initialization sequence.
5407 * Previously was left up to BIOS.
5408 */
5409 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5410 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5411 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5412
5413 /* Enable PG1 for cdclk */
5414 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5415
5416 /* check if cd clock is enabled */
5417 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5418 DRM_DEBUG_KMS("Display already initialized\n");
5419 return;
5420 }
5421
5422 /*
5423 * FIXME:
5424 * - The initial CDCLK needs to be read from VBT.
5425 * Need to make this change after VBT has changes for BXT.
5426 * - check if setting the max (or any) cdclk freq is really necessary
5427 * here, it belongs to modeset time
5428 */
5429 broxton_set_cdclk(dev, 624000);
5430
5431 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5432 POSTING_READ(DBUF_CTL);
5433
f8437dd1
VK
5434 udelay(10);
5435
5436 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5437 DRM_ERROR("DBuf power enable timeout!\n");
5438}
5439
5440void broxton_uninit_cdclk(struct drm_device *dev)
5441{
5442 struct drm_i915_private *dev_priv = dev->dev_private;
5443
5444 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5445 POSTING_READ(DBUF_CTL);
5446
f8437dd1
VK
5447 udelay(10);
5448
5449 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5450 DRM_ERROR("DBuf power disable timeout!\n");
5451
5452 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5453 broxton_set_cdclk(dev, 19200);
5454
5455 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5456}
5457
5d96d8af
DL
5458static const struct skl_cdclk_entry {
5459 unsigned int freq;
5460 unsigned int vco;
5461} skl_cdclk_frequencies[] = {
5462 { .freq = 308570, .vco = 8640 },
5463 { .freq = 337500, .vco = 8100 },
5464 { .freq = 432000, .vco = 8640 },
5465 { .freq = 450000, .vco = 8100 },
5466 { .freq = 540000, .vco = 8100 },
5467 { .freq = 617140, .vco = 8640 },
5468 { .freq = 675000, .vco = 8100 },
5469};
5470
5471static unsigned int skl_cdclk_decimal(unsigned int freq)
5472{
5473 return (freq - 1000) / 500;
5474}
5475
5476static unsigned int skl_cdclk_get_vco(unsigned int freq)
5477{
5478 unsigned int i;
5479
5480 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5481 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5482
5483 if (e->freq == freq)
5484 return e->vco;
5485 }
5486
5487 return 8100;
5488}
5489
5490static void
5491skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5492{
5493 unsigned int min_freq;
5494 u32 val;
5495
5496 /* select the minimum CDCLK before enabling DPLL 0 */
5497 val = I915_READ(CDCLK_CTL);
5498 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5499 val |= CDCLK_FREQ_337_308;
5500
5501 if (required_vco == 8640)
5502 min_freq = 308570;
5503 else
5504 min_freq = 337500;
5505
5506 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5507
5508 I915_WRITE(CDCLK_CTL, val);
5509 POSTING_READ(CDCLK_CTL);
5510
5511 /*
5512 * We always enable DPLL0 with the lowest link rate possible, but still
5513 * taking into account the VCO required to operate the eDP panel at the
5514 * desired frequency. The usual DP link rates operate with a VCO of
5515 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5516 * The modeset code is responsible for the selection of the exact link
5517 * rate later on, with the constraint of choosing a frequency that
5518 * works with required_vco.
5519 */
5520 val = I915_READ(DPLL_CTRL1);
5521
5522 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5523 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5524 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5525 if (required_vco == 8640)
5526 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5527 SKL_DPLL0);
5528 else
5529 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5530 SKL_DPLL0);
5531
5532 I915_WRITE(DPLL_CTRL1, val);
5533 POSTING_READ(DPLL_CTRL1);
5534
5535 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5536
5537 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5538 DRM_ERROR("DPLL0 not locked\n");
5539}
5540
5541static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5542{
5543 int ret;
5544 u32 val;
5545
5546 /* inform PCU we want to change CDCLK */
5547 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5548 mutex_lock(&dev_priv->rps.hw_lock);
5549 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5550 mutex_unlock(&dev_priv->rps.hw_lock);
5551
5552 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5553}
5554
5555static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5556{
5557 unsigned int i;
5558
5559 for (i = 0; i < 15; i++) {
5560 if (skl_cdclk_pcu_ready(dev_priv))
5561 return true;
5562 udelay(10);
5563 }
5564
5565 return false;
5566}
5567
5568static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5569{
560a7ae4 5570 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5571 u32 freq_select, pcu_ack;
5572
5573 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5574
5575 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5576 DRM_ERROR("failed to inform PCU about cdclk change\n");
5577 return;
5578 }
5579
5580 /* set CDCLK_CTL */
5581 switch(freq) {
5582 case 450000:
5583 case 432000:
5584 freq_select = CDCLK_FREQ_450_432;
5585 pcu_ack = 1;
5586 break;
5587 case 540000:
5588 freq_select = CDCLK_FREQ_540;
5589 pcu_ack = 2;
5590 break;
5591 case 308570:
5592 case 337500:
5593 default:
5594 freq_select = CDCLK_FREQ_337_308;
5595 pcu_ack = 0;
5596 break;
5597 case 617140:
5598 case 675000:
5599 freq_select = CDCLK_FREQ_675_617;
5600 pcu_ack = 3;
5601 break;
5602 }
5603
5604 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5605 POSTING_READ(CDCLK_CTL);
5606
5607 /* inform PCU of the change */
5608 mutex_lock(&dev_priv->rps.hw_lock);
5609 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5610 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5611
5612 intel_update_cdclk(dev);
5d96d8af
DL
5613}
5614
5615void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5616{
5617 /* disable DBUF power */
5618 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5619 POSTING_READ(DBUF_CTL);
5620
5621 udelay(10);
5622
5623 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5624 DRM_ERROR("DBuf power disable timeout\n");
5625
5626 /* disable DPLL0 */
5627 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5628 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5629 DRM_ERROR("Couldn't disable DPLL0\n");
5630
5631 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5632}
5633
5634void skl_init_cdclk(struct drm_i915_private *dev_priv)
5635{
5636 u32 val;
5637 unsigned int required_vco;
5638
5639 /* enable PCH reset handshake */
5640 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5641 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5642
5643 /* enable PG1 and Misc I/O */
5644 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5645
5646 /* DPLL0 already enabed !? */
5647 if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5648 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5649 return;
5650 }
5651
5652 /* enable DPLL0 */
5653 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5654 skl_dpll0_enable(dev_priv, required_vco);
5655
5656 /* set CDCLK to the frequency the BIOS chose */
5657 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5658
5659 /* enable DBUF power */
5660 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5661 POSTING_READ(DBUF_CTL);
5662
5663 udelay(10);
5664
5665 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5666 DRM_ERROR("DBuf power enable timeout\n");
5667}
5668
dfcab17e 5669/* returns HPLL frequency in kHz */
f8bf63fd 5670static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 5671{
586f49dc 5672 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 5673
586f49dc 5674 /* Obtain SKU information */
a580516d 5675 mutex_lock(&dev_priv->sb_lock);
586f49dc
JB
5676 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5677 CCK_FUSE_HPLL_FREQ_MASK;
a580516d 5678 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5679
dfcab17e 5680 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
5681}
5682
5683/* Adjust CDclk dividers to allow high res or save power if possible */
5684static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5685{
5686 struct drm_i915_private *dev_priv = dev->dev_private;
5687 u32 val, cmd;
5688
164dfd28
VK
5689 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5690 != dev_priv->cdclk_freq);
d60c4473 5691
dfcab17e 5692 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5693 cmd = 2;
dfcab17e 5694 else if (cdclk == 266667)
30a970c6
JB
5695 cmd = 1;
5696 else
5697 cmd = 0;
5698
5699 mutex_lock(&dev_priv->rps.hw_lock);
5700 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5701 val &= ~DSPFREQGUAR_MASK;
5702 val |= (cmd << DSPFREQGUAR_SHIFT);
5703 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5704 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5705 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5706 50)) {
5707 DRM_ERROR("timed out waiting for CDclk change\n");
5708 }
5709 mutex_unlock(&dev_priv->rps.hw_lock);
5710
54433e91
VS
5711 mutex_lock(&dev_priv->sb_lock);
5712
dfcab17e 5713 if (cdclk == 400000) {
6bcda4f0 5714 u32 divider;
30a970c6 5715
6bcda4f0 5716 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5717
30a970c6
JB
5718 /* adjust cdclk divider */
5719 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 5720 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
5721 val |= divider;
5722 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5723
5724 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5725 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5726 50))
5727 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5728 }
5729
30a970c6
JB
5730 /* adjust self-refresh exit latency value */
5731 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5732 val &= ~0x7f;
5733
5734 /*
5735 * For high bandwidth configs, we set a higher latency in the bunit
5736 * so that the core display fetch happens in time to avoid underruns.
5737 */
dfcab17e 5738 if (cdclk == 400000)
30a970c6
JB
5739 val |= 4500 / 250; /* 4.5 usec */
5740 else
5741 val |= 3000 / 250; /* 3.0 usec */
5742 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5743
a580516d 5744 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5745
b6283055 5746 intel_update_cdclk(dev);
30a970c6
JB
5747}
5748
383c5a6a
VS
5749static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5750{
5751 struct drm_i915_private *dev_priv = dev->dev_private;
5752 u32 val, cmd;
5753
164dfd28
VK
5754 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5755 != dev_priv->cdclk_freq);
383c5a6a
VS
5756
5757 switch (cdclk) {
383c5a6a
VS
5758 case 333333:
5759 case 320000:
383c5a6a 5760 case 266667:
383c5a6a 5761 case 200000:
383c5a6a
VS
5762 break;
5763 default:
5f77eeb0 5764 MISSING_CASE(cdclk);
383c5a6a
VS
5765 return;
5766 }
5767
9d0d3fda
VS
5768 /*
5769 * Specs are full of misinformation, but testing on actual
5770 * hardware has shown that we just need to write the desired
5771 * CCK divider into the Punit register.
5772 */
5773 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5774
383c5a6a
VS
5775 mutex_lock(&dev_priv->rps.hw_lock);
5776 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5777 val &= ~DSPFREQGUAR_MASK_CHV;
5778 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5779 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5780 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5781 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5782 50)) {
5783 DRM_ERROR("timed out waiting for CDclk change\n");
5784 }
5785 mutex_unlock(&dev_priv->rps.hw_lock);
5786
b6283055 5787 intel_update_cdclk(dev);
383c5a6a
VS
5788}
5789
30a970c6
JB
5790static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5791 int max_pixclk)
5792{
6bcda4f0 5793 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5794 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5795
30a970c6
JB
5796 /*
5797 * Really only a few cases to deal with, as only 4 CDclks are supported:
5798 * 200MHz
5799 * 267MHz
29dc7ef3 5800 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5801 * 400MHz (VLV only)
5802 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5803 * of the lower bin and adjust if needed.
e37c67a1
VS
5804 *
5805 * We seem to get an unstable or solid color picture at 200MHz.
5806 * Not sure what's wrong. For now use 200MHz only when all pipes
5807 * are off.
30a970c6 5808 */
6cca3195
VS
5809 if (!IS_CHERRYVIEW(dev_priv) &&
5810 max_pixclk > freq_320*limit/100)
dfcab17e 5811 return 400000;
6cca3195 5812 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5813 return freq_320;
e37c67a1 5814 else if (max_pixclk > 0)
dfcab17e 5815 return 266667;
e37c67a1
VS
5816 else
5817 return 200000;
30a970c6
JB
5818}
5819
f8437dd1
VK
5820static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5821 int max_pixclk)
5822{
5823 /*
5824 * FIXME:
5825 * - remove the guardband, it's not needed on BXT
5826 * - set 19.2MHz bypass frequency if there are no active pipes
5827 */
5828 if (max_pixclk > 576000*9/10)
5829 return 624000;
5830 else if (max_pixclk > 384000*9/10)
5831 return 576000;
5832 else if (max_pixclk > 288000*9/10)
5833 return 384000;
5834 else if (max_pixclk > 144000*9/10)
5835 return 288000;
5836 else
5837 return 144000;
5838}
5839
a821fc46
ACO
5840/* Compute the max pixel clock for new configuration. Uses atomic state if
5841 * that's non-NULL, look at current state otherwise. */
5842static int intel_mode_max_pixclk(struct drm_device *dev,
5843 struct drm_atomic_state *state)
30a970c6 5844{
30a970c6 5845 struct intel_crtc *intel_crtc;
304603f4 5846 struct intel_crtc_state *crtc_state;
30a970c6
JB
5847 int max_pixclk = 0;
5848
d3fcc808 5849 for_each_intel_crtc(dev, intel_crtc) {
27c329ed 5850 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
304603f4
ACO
5851 if (IS_ERR(crtc_state))
5852 return PTR_ERR(crtc_state);
5853
5854 if (!crtc_state->base.enable)
5855 continue;
5856
5857 max_pixclk = max(max_pixclk,
5858 crtc_state->base.adjusted_mode.crtc_clock);
30a970c6
JB
5859 }
5860
5861 return max_pixclk;
5862}
5863
27c329ed 5864static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 5865{
27c329ed
ML
5866 struct drm_device *dev = state->dev;
5867 struct drm_i915_private *dev_priv = dev->dev_private;
5868 int max_pixclk = intel_mode_max_pixclk(dev, state);
30a970c6 5869
304603f4
ACO
5870 if (max_pixclk < 0)
5871 return max_pixclk;
30a970c6 5872
27c329ed
ML
5873 to_intel_atomic_state(state)->cdclk =
5874 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 5875
27c329ed
ML
5876 return 0;
5877}
304603f4 5878
27c329ed
ML
5879static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5880{
5881 struct drm_device *dev = state->dev;
5882 struct drm_i915_private *dev_priv = dev->dev_private;
5883 int max_pixclk = intel_mode_max_pixclk(dev, state);
85a96e7a 5884
27c329ed
ML
5885 if (max_pixclk < 0)
5886 return max_pixclk;
85a96e7a 5887
27c329ed
ML
5888 to_intel_atomic_state(state)->cdclk =
5889 broxton_calc_cdclk(dev_priv, max_pixclk);
85a96e7a 5890
27c329ed 5891 return 0;
30a970c6
JB
5892}
5893
1e69cd74
VS
5894static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5895{
5896 unsigned int credits, default_credits;
5897
5898 if (IS_CHERRYVIEW(dev_priv))
5899 default_credits = PFI_CREDIT(12);
5900 else
5901 default_credits = PFI_CREDIT(8);
5902
164dfd28 5903 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
1e69cd74
VS
5904 /* CHV suggested value is 31 or 63 */
5905 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 5906 credits = PFI_CREDIT_63;
1e69cd74
VS
5907 else
5908 credits = PFI_CREDIT(15);
5909 } else {
5910 credits = default_credits;
5911 }
5912
5913 /*
5914 * WA - write default credits before re-programming
5915 * FIXME: should we also set the resend bit here?
5916 */
5917 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5918 default_credits);
5919
5920 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5921 credits | PFI_CREDIT_RESEND);
5922
5923 /*
5924 * FIXME is this guaranteed to clear
5925 * immediately or should we poll for it?
5926 */
5927 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5928}
5929
27c329ed 5930static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 5931{
a821fc46 5932 struct drm_device *dev = old_state->dev;
27c329ed 5933 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
30a970c6 5934 struct drm_i915_private *dev_priv = dev->dev_private;
30a970c6 5935
27c329ed
ML
5936 /*
5937 * FIXME: We can end up here with all power domains off, yet
5938 * with a CDCLK frequency other than the minimum. To account
5939 * for this take the PIPE-A power domain, which covers the HW
5940 * blocks needed for the following programming. This can be
5941 * removed once it's guaranteed that we get here either with
5942 * the minimum CDCLK set, or the required power domains
5943 * enabled.
5944 */
5945 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 5946
27c329ed
ML
5947 if (IS_CHERRYVIEW(dev))
5948 cherryview_set_cdclk(dev, req_cdclk);
5949 else
5950 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 5951
27c329ed 5952 vlv_program_pfi_credits(dev_priv);
1e69cd74 5953
27c329ed 5954 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
5955}
5956
89b667f8
JB
5957static void valleyview_crtc_enable(struct drm_crtc *crtc)
5958{
5959 struct drm_device *dev = crtc->dev;
a72e4c9f 5960 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
5961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5962 struct intel_encoder *encoder;
5963 int pipe = intel_crtc->pipe;
23538ef1 5964 bool is_dsi;
89b667f8 5965
53d9f4e9 5966 if (WARN_ON(intel_crtc->active))
89b667f8
JB
5967 return;
5968
409ee761 5969 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5970
1ae0d137
VS
5971 if (!is_dsi) {
5972 if (IS_CHERRYVIEW(dev))
6e3c9717 5973 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5974 else
6e3c9717 5975 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5976 }
5b18e57c 5977
6e3c9717 5978 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5979 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5980
5981 intel_set_pipe_timings(intel_crtc);
5982
c14b0485
VS
5983 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5984 struct drm_i915_private *dev_priv = dev->dev_private;
5985
5986 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5987 I915_WRITE(CHV_CANVAS(pipe), 0);
5988 }
5989
5b18e57c
DV
5990 i9xx_set_pipeconf(intel_crtc);
5991
89b667f8 5992 intel_crtc->active = true;
89b667f8 5993
a72e4c9f 5994 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5995
89b667f8
JB
5996 for_each_encoder_on_crtc(dev, crtc, encoder)
5997 if (encoder->pre_pll_enable)
5998 encoder->pre_pll_enable(encoder);
5999
9d556c99
CML
6000 if (!is_dsi) {
6001 if (IS_CHERRYVIEW(dev))
6e3c9717 6002 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6003 else
6e3c9717 6004 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6005 }
89b667f8
JB
6006
6007 for_each_encoder_on_crtc(dev, crtc, encoder)
6008 if (encoder->pre_enable)
6009 encoder->pre_enable(encoder);
6010
2dd24552
JB
6011 i9xx_pfit_enable(intel_crtc);
6012
63cbb074
VS
6013 intel_crtc_load_lut(crtc);
6014
f37fcc2a 6015 intel_update_watermarks(crtc);
e1fdc473 6016 intel_enable_pipe(intel_crtc);
be6a6f8e 6017
4b3a9526
VS
6018 assert_vblank_disabled(crtc);
6019 drm_crtc_vblank_on(crtc);
6020
f9b61ff6
DV
6021 for_each_encoder_on_crtc(dev, crtc, encoder)
6022 encoder->enable(encoder);
89b667f8
JB
6023}
6024
f13c2ef3
DV
6025static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6026{
6027 struct drm_device *dev = crtc->base.dev;
6028 struct drm_i915_private *dev_priv = dev->dev_private;
6029
6e3c9717
ACO
6030 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6031 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6032}
6033
0b8765c6 6034static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6035{
6036 struct drm_device *dev = crtc->dev;
a72e4c9f 6037 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6039 struct intel_encoder *encoder;
79e53945 6040 int pipe = intel_crtc->pipe;
79e53945 6041
53d9f4e9 6042 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6043 return;
6044
f13c2ef3
DV
6045 i9xx_set_pll_dividers(intel_crtc);
6046
6e3c9717 6047 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6048 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6049
6050 intel_set_pipe_timings(intel_crtc);
6051
5b18e57c
DV
6052 i9xx_set_pipeconf(intel_crtc);
6053
f7abfe8b 6054 intel_crtc->active = true;
6b383a7f 6055
4a3436e8 6056 if (!IS_GEN2(dev))
a72e4c9f 6057 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6058
9d6d9f19
MK
6059 for_each_encoder_on_crtc(dev, crtc, encoder)
6060 if (encoder->pre_enable)
6061 encoder->pre_enable(encoder);
6062
f6736a1a
DV
6063 i9xx_enable_pll(intel_crtc);
6064
2dd24552
JB
6065 i9xx_pfit_enable(intel_crtc);
6066
63cbb074
VS
6067 intel_crtc_load_lut(crtc);
6068
f37fcc2a 6069 intel_update_watermarks(crtc);
e1fdc473 6070 intel_enable_pipe(intel_crtc);
be6a6f8e 6071
4b3a9526
VS
6072 assert_vblank_disabled(crtc);
6073 drm_crtc_vblank_on(crtc);
6074
f9b61ff6
DV
6075 for_each_encoder_on_crtc(dev, crtc, encoder)
6076 encoder->enable(encoder);
0b8765c6 6077}
79e53945 6078
87476d63
DV
6079static void i9xx_pfit_disable(struct intel_crtc *crtc)
6080{
6081 struct drm_device *dev = crtc->base.dev;
6082 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6083
6e3c9717 6084 if (!crtc->config->gmch_pfit.control)
328d8e82 6085 return;
87476d63 6086
328d8e82 6087 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6088
328d8e82
DV
6089 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6090 I915_READ(PFIT_CONTROL));
6091 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6092}
6093
0b8765c6
JB
6094static void i9xx_crtc_disable(struct drm_crtc *crtc)
6095{
6096 struct drm_device *dev = crtc->dev;
6097 struct drm_i915_private *dev_priv = dev->dev_private;
6098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6099 struct intel_encoder *encoder;
0b8765c6 6100 int pipe = intel_crtc->pipe;
ef9c3aee 6101
6304cd91
VS
6102 /*
6103 * On gen2 planes are double buffered but the pipe isn't, so we must
6104 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
6105 * We also need to wait on all gmch platforms because of the
6106 * self-refresh mode constraint explained above.
6304cd91 6107 */
564ed191 6108 intel_wait_for_vblank(dev, pipe);
6304cd91 6109
4b3a9526
VS
6110 for_each_encoder_on_crtc(dev, crtc, encoder)
6111 encoder->disable(encoder);
6112
f9b61ff6
DV
6113 drm_crtc_vblank_off(crtc);
6114 assert_vblank_disabled(crtc);
6115
575f7ab7 6116 intel_disable_pipe(intel_crtc);
24a1f16d 6117
87476d63 6118 i9xx_pfit_disable(intel_crtc);
24a1f16d 6119
89b667f8
JB
6120 for_each_encoder_on_crtc(dev, crtc, encoder)
6121 if (encoder->post_disable)
6122 encoder->post_disable(encoder);
6123
409ee761 6124 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
6125 if (IS_CHERRYVIEW(dev))
6126 chv_disable_pll(dev_priv, pipe);
6127 else if (IS_VALLEYVIEW(dev))
6128 vlv_disable_pll(dev_priv, pipe);
6129 else
1c4e0274 6130 i9xx_disable_pll(intel_crtc);
076ed3b2 6131 }
0b8765c6 6132
4a3436e8 6133 if (!IS_GEN2(dev))
a72e4c9f 6134 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
0b8765c6
JB
6135}
6136
b17d48e2
ML
6137static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6138{
6139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6140 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6141 enum intel_display_power_domain domain;
6142 unsigned long domains;
6143
6144 if (!intel_crtc->active)
6145 return;
6146
a539205a
ML
6147 if (to_intel_plane_state(crtc->primary->state)->visible) {
6148 intel_crtc_wait_for_pending_flips(crtc);
6149 intel_pre_disable_primary(crtc);
6150 }
6151
d032ffa0 6152 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
b17d48e2
ML
6153 dev_priv->display.crtc_disable(crtc);
6154
6155 domains = intel_crtc->enabled_power_domains;
6156 for_each_power_domain(domain, domains)
6157 intel_display_power_put(dev_priv, domain);
6158 intel_crtc->enabled_power_domains = 0;
6159}
6160
6b72d486
ML
6161/*
6162 * turn all crtc's off, but do not adjust state
6163 * This has to be paired with a call to intel_modeset_setup_hw_state.
6164 */
9716c691 6165void intel_display_suspend(struct drm_device *dev)
ee7b9f93 6166{
6b72d486
ML
6167 struct drm_crtc *crtc;
6168
b17d48e2
ML
6169 for_each_crtc(dev, crtc)
6170 intel_crtc_disable_noatomic(crtc);
ee7b9f93
JB
6171}
6172
b04c5bd6 6173/* Master function to enable/disable CRTC and corresponding power wells */
5da76e94 6174int intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
6175{
6176 struct drm_device *dev = crtc->dev;
5da76e94
ML
6177 struct drm_mode_config *config = &dev->mode_config;
6178 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
0e572fe7 6179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5da76e94
ML
6180 struct intel_crtc_state *pipe_config;
6181 struct drm_atomic_state *state;
6182 int ret;
976f8a20 6183
1b509259 6184 if (enable == intel_crtc->active)
5da76e94 6185 return 0;
0e572fe7 6186
1b509259 6187 if (enable && !crtc->state->enable)
5da76e94 6188 return 0;
1b509259 6189
5da76e94
ML
6190 /* this function should be called with drm_modeset_lock_all for now */
6191 if (WARN_ON(!ctx))
6192 return -EIO;
6193 lockdep_assert_held(&ctx->ww_ctx);
1b509259 6194
5da76e94
ML
6195 state = drm_atomic_state_alloc(dev);
6196 if (WARN_ON(!state))
6197 return -ENOMEM;
1b509259 6198
5da76e94
ML
6199 state->acquire_ctx = ctx;
6200 state->allow_modeset = true;
6201
6202 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
6203 if (IS_ERR(pipe_config)) {
6204 ret = PTR_ERR(pipe_config);
6205 goto err;
0e572fe7 6206 }
5da76e94
ML
6207 pipe_config->base.active = enable;
6208
6209 ret = intel_set_mode(state);
6210 if (!ret)
6211 return ret;
6212
6213err:
6214 DRM_ERROR("Updating crtc active failed with %i\n", ret);
6215 drm_atomic_state_free(state);
6216 return ret;
b04c5bd6
BF
6217}
6218
6219/**
6220 * Sets the power management mode of the pipe and plane.
6221 */
6222void intel_crtc_update_dpms(struct drm_crtc *crtc)
6223{
6224 struct drm_device *dev = crtc->dev;
6225 struct intel_encoder *intel_encoder;
6226 bool enable = false;
6227
6228 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6229 enable |= intel_encoder->connectors_active;
6230
6231 intel_crtc_control(crtc, enable);
cdd59983
CW
6232}
6233
ea5b213a 6234void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6235{
4ef69c7a 6236 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6237
ea5b213a
CW
6238 drm_encoder_cleanup(encoder);
6239 kfree(intel_encoder);
7e7d76c3
JB
6240}
6241
9237329d 6242/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
6243 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6244 * state of the entire output pipe. */
9237329d 6245static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 6246{
5ab432ef
DV
6247 if (mode == DRM_MODE_DPMS_ON) {
6248 encoder->connectors_active = true;
6249
b2cabb0e 6250 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
6251 } else {
6252 encoder->connectors_active = false;
6253
b2cabb0e 6254 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 6255 }
79e53945
JB
6256}
6257
0a91ca29
DV
6258/* Cross check the actual hw state with our own modeset state tracking (and it's
6259 * internal consistency). */
b980514c 6260static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6261{
0a91ca29
DV
6262 if (connector->get_hw_state(connector)) {
6263 struct intel_encoder *encoder = connector->encoder;
6264 struct drm_crtc *crtc;
6265 bool encoder_enabled;
6266 enum pipe pipe;
6267
6268 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6269 connector->base.base.id,
c23cc417 6270 connector->base.name);
0a91ca29 6271
0e32b39c
DA
6272 /* there is no real hw state for MST connectors */
6273 if (connector->mst_port)
6274 return;
6275
e2c719b7 6276 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 6277 "wrong connector dpms state\n");
e2c719b7 6278 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 6279 "active connector not linked to encoder\n");
0a91ca29 6280
36cd7444 6281 if (encoder) {
e2c719b7 6282 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
6283 "encoder->connectors_active not set\n");
6284
6285 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
6286 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6287 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 6288 return;
0a91ca29 6289
36cd7444 6290 crtc = encoder->base.crtc;
0a91ca29 6291
83d65738
MR
6292 I915_STATE_WARN(!crtc->state->enable,
6293 "crtc not enabled\n");
e2c719b7
RC
6294 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6295 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
6296 "encoder active on the wrong pipe\n");
6297 }
0a91ca29 6298 }
79e53945
JB
6299}
6300
08d9bc92
ACO
6301int intel_connector_init(struct intel_connector *connector)
6302{
6303 struct drm_connector_state *connector_state;
6304
6305 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6306 if (!connector_state)
6307 return -ENOMEM;
6308
6309 connector->base.state = connector_state;
6310 return 0;
6311}
6312
6313struct intel_connector *intel_connector_alloc(void)
6314{
6315 struct intel_connector *connector;
6316
6317 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6318 if (!connector)
6319 return NULL;
6320
6321 if (intel_connector_init(connector) < 0) {
6322 kfree(connector);
6323 return NULL;
6324 }
6325
6326 return connector;
6327}
6328
5ab432ef
DV
6329/* Even simpler default implementation, if there's really no special case to
6330 * consider. */
6331void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 6332{
5ab432ef
DV
6333 /* All the simple cases only support two dpms states. */
6334 if (mode != DRM_MODE_DPMS_ON)
6335 mode = DRM_MODE_DPMS_OFF;
d4270e57 6336
5ab432ef
DV
6337 if (mode == connector->dpms)
6338 return;
6339
6340 connector->dpms = mode;
6341
6342 /* Only need to change hw state when actually enabled */
c9976dcf
CW
6343 if (connector->encoder)
6344 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 6345
b980514c 6346 intel_modeset_check_state(connector->dev);
79e53945
JB
6347}
6348
f0947c37
DV
6349/* Simple connector->get_hw_state implementation for encoders that support only
6350 * one connector and no cloning and hence the encoder state determines the state
6351 * of the connector. */
6352bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6353{
24929352 6354 enum pipe pipe = 0;
f0947c37 6355 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6356
f0947c37 6357 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6358}
6359
6d293983 6360static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6361{
6d293983
ACO
6362 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6363 return crtc_state->fdi_lanes;
d272ddfa
VS
6364
6365 return 0;
6366}
6367
6d293983 6368static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6369 struct intel_crtc_state *pipe_config)
1857e1da 6370{
6d293983
ACO
6371 struct drm_atomic_state *state = pipe_config->base.state;
6372 struct intel_crtc *other_crtc;
6373 struct intel_crtc_state *other_crtc_state;
6374
1857e1da
DV
6375 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6376 pipe_name(pipe), pipe_config->fdi_lanes);
6377 if (pipe_config->fdi_lanes > 4) {
6378 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6379 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6380 return -EINVAL;
1857e1da
DV
6381 }
6382
bafb6553 6383 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6384 if (pipe_config->fdi_lanes > 2) {
6385 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6386 pipe_config->fdi_lanes);
6d293983 6387 return -EINVAL;
1857e1da 6388 } else {
6d293983 6389 return 0;
1857e1da
DV
6390 }
6391 }
6392
6393 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6394 return 0;
1857e1da
DV
6395
6396 /* Ivybridge 3 pipe is really complicated */
6397 switch (pipe) {
6398 case PIPE_A:
6d293983 6399 return 0;
1857e1da 6400 case PIPE_B:
6d293983
ACO
6401 if (pipe_config->fdi_lanes <= 2)
6402 return 0;
6403
6404 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6405 other_crtc_state =
6406 intel_atomic_get_crtc_state(state, other_crtc);
6407 if (IS_ERR(other_crtc_state))
6408 return PTR_ERR(other_crtc_state);
6409
6410 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6411 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6412 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6413 return -EINVAL;
1857e1da 6414 }
6d293983 6415 return 0;
1857e1da 6416 case PIPE_C:
251cc67c
VS
6417 if (pipe_config->fdi_lanes > 2) {
6418 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6419 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6420 return -EINVAL;
251cc67c 6421 }
6d293983
ACO
6422
6423 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6424 other_crtc_state =
6425 intel_atomic_get_crtc_state(state, other_crtc);
6426 if (IS_ERR(other_crtc_state))
6427 return PTR_ERR(other_crtc_state);
6428
6429 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6430 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6431 return -EINVAL;
1857e1da 6432 }
6d293983 6433 return 0;
1857e1da
DV
6434 default:
6435 BUG();
6436 }
6437}
6438
e29c22c0
DV
6439#define RETRY 1
6440static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6441 struct intel_crtc_state *pipe_config)
877d48d5 6442{
1857e1da 6443 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 6444 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6445 int lane, link_bw, fdi_dotclock, ret;
6446 bool needs_recompute = false;
877d48d5 6447
e29c22c0 6448retry:
877d48d5
DV
6449 /* FDI is a binary signal running at ~2.7GHz, encoding
6450 * each output octet as 10 bits. The actual frequency
6451 * is stored as a divider into a 100MHz clock, and the
6452 * mode pixel clock is stored in units of 1KHz.
6453 * Hence the bw of each lane in terms of the mode signal
6454 * is:
6455 */
6456 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6457
241bfc38 6458 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6459
2bd89a07 6460 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6461 pipe_config->pipe_bpp);
6462
6463 pipe_config->fdi_lanes = lane;
6464
2bd89a07 6465 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6466 link_bw, &pipe_config->fdi_m_n);
1857e1da 6467
6d293983
ACO
6468 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6469 intel_crtc->pipe, pipe_config);
6470 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6471 pipe_config->pipe_bpp -= 2*3;
6472 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6473 pipe_config->pipe_bpp);
6474 needs_recompute = true;
6475 pipe_config->bw_constrained = true;
6476
6477 goto retry;
6478 }
6479
6480 if (needs_recompute)
6481 return RETRY;
6482
6d293983 6483 return ret;
877d48d5
DV
6484}
6485
8cfb3407
VS
6486static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6487 struct intel_crtc_state *pipe_config)
6488{
6489 if (pipe_config->pipe_bpp > 24)
6490 return false;
6491
6492 /* HSW can handle pixel rate up to cdclk? */
6493 if (IS_HASWELL(dev_priv->dev))
6494 return true;
6495
6496 /*
b432e5cf
VS
6497 * We compare against max which means we must take
6498 * the increased cdclk requirement into account when
6499 * calculating the new cdclk.
6500 *
6501 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6502 */
6503 return ilk_pipe_pixel_rate(pipe_config) <=
6504 dev_priv->max_cdclk_freq * 95 / 100;
6505}
6506
42db64ef 6507static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6508 struct intel_crtc_state *pipe_config)
42db64ef 6509{
8cfb3407
VS
6510 struct drm_device *dev = crtc->base.dev;
6511 struct drm_i915_private *dev_priv = dev->dev_private;
6512
d330a953 6513 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6514 hsw_crtc_supports_ips(crtc) &&
6515 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6516}
6517
a43f6e0f 6518static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6519 struct intel_crtc_state *pipe_config)
79e53945 6520{
a43f6e0f 6521 struct drm_device *dev = crtc->base.dev;
8bd31e67 6522 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 6523 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 6524
ad3a4479 6525 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6526 if (INTEL_INFO(dev)->gen < 4) {
44913155 6527 int clock_limit = dev_priv->max_cdclk_freq;
cf532bb2
VS
6528
6529 /*
6530 * Enable pixel doubling when the dot clock
6531 * is > 90% of the (display) core speed.
6532 *
b397c96b
VS
6533 * GDG double wide on either pipe,
6534 * otherwise pipe A only.
cf532bb2 6535 */
b397c96b 6536 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 6537 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 6538 clock_limit *= 2;
cf532bb2 6539 pipe_config->double_wide = true;
ad3a4479
VS
6540 }
6541
241bfc38 6542 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 6543 return -EINVAL;
2c07245f 6544 }
89749350 6545
1d1d0e27
VS
6546 /*
6547 * Pipe horizontal size must be even in:
6548 * - DVO ganged mode
6549 * - LVDS dual channel mode
6550 * - Double wide pipe
6551 */
a93e255f 6552 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6553 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6554 pipe_config->pipe_src_w &= ~1;
6555
8693a824
DL
6556 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6557 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6558 */
6559 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6560 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 6561 return -EINVAL;
44f46b42 6562
f5adf94e 6563 if (HAS_IPS(dev))
a43f6e0f
DV
6564 hsw_compute_ips_config(crtc, pipe_config);
6565
877d48d5 6566 if (pipe_config->has_pch_encoder)
a43f6e0f 6567 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6568
cf5a15be 6569 return 0;
79e53945
JB
6570}
6571
1652d19e
VS
6572static int skylake_get_display_clock_speed(struct drm_device *dev)
6573{
6574 struct drm_i915_private *dev_priv = to_i915(dev);
6575 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6576 uint32_t cdctl = I915_READ(CDCLK_CTL);
6577 uint32_t linkrate;
6578
414355a7 6579 if (!(lcpll1 & LCPLL_PLL_ENABLE))
1652d19e 6580 return 24000; /* 24MHz is the cd freq with NSSC ref */
1652d19e
VS
6581
6582 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6583 return 540000;
6584
6585 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6586 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6587
71cd8423
DL
6588 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6589 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6590 /* vco 8640 */
6591 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6592 case CDCLK_FREQ_450_432:
6593 return 432000;
6594 case CDCLK_FREQ_337_308:
6595 return 308570;
6596 case CDCLK_FREQ_675_617:
6597 return 617140;
6598 default:
6599 WARN(1, "Unknown cd freq selection\n");
6600 }
6601 } else {
6602 /* vco 8100 */
6603 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6604 case CDCLK_FREQ_450_432:
6605 return 450000;
6606 case CDCLK_FREQ_337_308:
6607 return 337500;
6608 case CDCLK_FREQ_675_617:
6609 return 675000;
6610 default:
6611 WARN(1, "Unknown cd freq selection\n");
6612 }
6613 }
6614
6615 /* error case, do as if DPLL0 isn't enabled */
6616 return 24000;
6617}
6618
6619static int broadwell_get_display_clock_speed(struct drm_device *dev)
6620{
6621 struct drm_i915_private *dev_priv = dev->dev_private;
6622 uint32_t lcpll = I915_READ(LCPLL_CTL);
6623 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6624
6625 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6626 return 800000;
6627 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6628 return 450000;
6629 else if (freq == LCPLL_CLK_FREQ_450)
6630 return 450000;
6631 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6632 return 540000;
6633 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6634 return 337500;
6635 else
6636 return 675000;
6637}
6638
6639static int haswell_get_display_clock_speed(struct drm_device *dev)
6640{
6641 struct drm_i915_private *dev_priv = dev->dev_private;
6642 uint32_t lcpll = I915_READ(LCPLL_CTL);
6643 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6644
6645 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6646 return 800000;
6647 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6648 return 450000;
6649 else if (freq == LCPLL_CLK_FREQ_450)
6650 return 450000;
6651 else if (IS_HSW_ULT(dev))
6652 return 337500;
6653 else
6654 return 540000;
79e53945
JB
6655}
6656
25eb05fc
JB
6657static int valleyview_get_display_clock_speed(struct drm_device *dev)
6658{
d197b7d3 6659 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
6660 u32 val;
6661 int divider;
6662
6bcda4f0
VS
6663 if (dev_priv->hpll_freq == 0)
6664 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6665
a580516d 6666 mutex_lock(&dev_priv->sb_lock);
d197b7d3 6667 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
a580516d 6668 mutex_unlock(&dev_priv->sb_lock);
d197b7d3
VS
6669
6670 divider = val & DISPLAY_FREQUENCY_VALUES;
6671
7d007f40
VS
6672 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6673 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6674 "cdclk change in progress\n");
6675
6bcda4f0 6676 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
6677}
6678
b37a6434
VS
6679static int ilk_get_display_clock_speed(struct drm_device *dev)
6680{
6681 return 450000;
6682}
6683
e70236a8
JB
6684static int i945_get_display_clock_speed(struct drm_device *dev)
6685{
6686 return 400000;
6687}
79e53945 6688
e70236a8 6689static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6690{
e907f170 6691 return 333333;
e70236a8 6692}
79e53945 6693
e70236a8
JB
6694static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6695{
6696 return 200000;
6697}
79e53945 6698
257a7ffc
DV
6699static int pnv_get_display_clock_speed(struct drm_device *dev)
6700{
6701 u16 gcfgc = 0;
6702
6703 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6704
6705 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6706 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6707 return 266667;
257a7ffc 6708 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6709 return 333333;
257a7ffc 6710 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6711 return 444444;
257a7ffc
DV
6712 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6713 return 200000;
6714 default:
6715 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6716 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6717 return 133333;
257a7ffc 6718 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6719 return 166667;
257a7ffc
DV
6720 }
6721}
6722
e70236a8
JB
6723static int i915gm_get_display_clock_speed(struct drm_device *dev)
6724{
6725 u16 gcfgc = 0;
79e53945 6726
e70236a8
JB
6727 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6728
6729 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6730 return 133333;
e70236a8
JB
6731 else {
6732 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6733 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6734 return 333333;
e70236a8
JB
6735 default:
6736 case GC_DISPLAY_CLOCK_190_200_MHZ:
6737 return 190000;
79e53945 6738 }
e70236a8
JB
6739 }
6740}
6741
6742static int i865_get_display_clock_speed(struct drm_device *dev)
6743{
e907f170 6744 return 266667;
e70236a8
JB
6745}
6746
1b1d2716 6747static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6748{
6749 u16 hpllcc = 0;
1b1d2716 6750
65cd2b3f
VS
6751 /*
6752 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6753 * encoding is different :(
6754 * FIXME is this the right way to detect 852GM/852GMV?
6755 */
6756 if (dev->pdev->revision == 0x1)
6757 return 133333;
6758
1b1d2716
VS
6759 pci_bus_read_config_word(dev->pdev->bus,
6760 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6761
e70236a8
JB
6762 /* Assume that the hardware is in the high speed state. This
6763 * should be the default.
6764 */
6765 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6766 case GC_CLOCK_133_200:
1b1d2716 6767 case GC_CLOCK_133_200_2:
e70236a8
JB
6768 case GC_CLOCK_100_200:
6769 return 200000;
6770 case GC_CLOCK_166_250:
6771 return 250000;
6772 case GC_CLOCK_100_133:
e907f170 6773 return 133333;
1b1d2716
VS
6774 case GC_CLOCK_133_266:
6775 case GC_CLOCK_133_266_2:
6776 case GC_CLOCK_166_266:
6777 return 266667;
e70236a8 6778 }
79e53945 6779
e70236a8
JB
6780 /* Shouldn't happen */
6781 return 0;
6782}
79e53945 6783
e70236a8
JB
6784static int i830_get_display_clock_speed(struct drm_device *dev)
6785{
e907f170 6786 return 133333;
79e53945
JB
6787}
6788
34edce2f
VS
6789static unsigned int intel_hpll_vco(struct drm_device *dev)
6790{
6791 struct drm_i915_private *dev_priv = dev->dev_private;
6792 static const unsigned int blb_vco[8] = {
6793 [0] = 3200000,
6794 [1] = 4000000,
6795 [2] = 5333333,
6796 [3] = 4800000,
6797 [4] = 6400000,
6798 };
6799 static const unsigned int pnv_vco[8] = {
6800 [0] = 3200000,
6801 [1] = 4000000,
6802 [2] = 5333333,
6803 [3] = 4800000,
6804 [4] = 2666667,
6805 };
6806 static const unsigned int cl_vco[8] = {
6807 [0] = 3200000,
6808 [1] = 4000000,
6809 [2] = 5333333,
6810 [3] = 6400000,
6811 [4] = 3333333,
6812 [5] = 3566667,
6813 [6] = 4266667,
6814 };
6815 static const unsigned int elk_vco[8] = {
6816 [0] = 3200000,
6817 [1] = 4000000,
6818 [2] = 5333333,
6819 [3] = 4800000,
6820 };
6821 static const unsigned int ctg_vco[8] = {
6822 [0] = 3200000,
6823 [1] = 4000000,
6824 [2] = 5333333,
6825 [3] = 6400000,
6826 [4] = 2666667,
6827 [5] = 4266667,
6828 };
6829 const unsigned int *vco_table;
6830 unsigned int vco;
6831 uint8_t tmp = 0;
6832
6833 /* FIXME other chipsets? */
6834 if (IS_GM45(dev))
6835 vco_table = ctg_vco;
6836 else if (IS_G4X(dev))
6837 vco_table = elk_vco;
6838 else if (IS_CRESTLINE(dev))
6839 vco_table = cl_vco;
6840 else if (IS_PINEVIEW(dev))
6841 vco_table = pnv_vco;
6842 else if (IS_G33(dev))
6843 vco_table = blb_vco;
6844 else
6845 return 0;
6846
6847 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6848
6849 vco = vco_table[tmp & 0x7];
6850 if (vco == 0)
6851 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6852 else
6853 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6854
6855 return vco;
6856}
6857
6858static int gm45_get_display_clock_speed(struct drm_device *dev)
6859{
6860 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6861 uint16_t tmp = 0;
6862
6863 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6864
6865 cdclk_sel = (tmp >> 12) & 0x1;
6866
6867 switch (vco) {
6868 case 2666667:
6869 case 4000000:
6870 case 5333333:
6871 return cdclk_sel ? 333333 : 222222;
6872 case 3200000:
6873 return cdclk_sel ? 320000 : 228571;
6874 default:
6875 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6876 return 222222;
6877 }
6878}
6879
6880static int i965gm_get_display_clock_speed(struct drm_device *dev)
6881{
6882 static const uint8_t div_3200[] = { 16, 10, 8 };
6883 static const uint8_t div_4000[] = { 20, 12, 10 };
6884 static const uint8_t div_5333[] = { 24, 16, 14 };
6885 const uint8_t *div_table;
6886 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6887 uint16_t tmp = 0;
6888
6889 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6890
6891 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6892
6893 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6894 goto fail;
6895
6896 switch (vco) {
6897 case 3200000:
6898 div_table = div_3200;
6899 break;
6900 case 4000000:
6901 div_table = div_4000;
6902 break;
6903 case 5333333:
6904 div_table = div_5333;
6905 break;
6906 default:
6907 goto fail;
6908 }
6909
6910 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6911
caf4e252 6912fail:
34edce2f
VS
6913 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6914 return 200000;
6915}
6916
6917static int g33_get_display_clock_speed(struct drm_device *dev)
6918{
6919 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6920 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6921 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6922 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6923 const uint8_t *div_table;
6924 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6925 uint16_t tmp = 0;
6926
6927 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6928
6929 cdclk_sel = (tmp >> 4) & 0x7;
6930
6931 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6932 goto fail;
6933
6934 switch (vco) {
6935 case 3200000:
6936 div_table = div_3200;
6937 break;
6938 case 4000000:
6939 div_table = div_4000;
6940 break;
6941 case 4800000:
6942 div_table = div_4800;
6943 break;
6944 case 5333333:
6945 div_table = div_5333;
6946 break;
6947 default:
6948 goto fail;
6949 }
6950
6951 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6952
caf4e252 6953fail:
34edce2f
VS
6954 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
6955 return 190476;
6956}
6957
2c07245f 6958static void
a65851af 6959intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 6960{
a65851af
VS
6961 while (*num > DATA_LINK_M_N_MASK ||
6962 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
6963 *num >>= 1;
6964 *den >>= 1;
6965 }
6966}
6967
a65851af
VS
6968static void compute_m_n(unsigned int m, unsigned int n,
6969 uint32_t *ret_m, uint32_t *ret_n)
6970{
6971 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6972 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6973 intel_reduce_m_n_ratio(ret_m, ret_n);
6974}
6975
e69d0bc1
DV
6976void
6977intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6978 int pixel_clock, int link_clock,
6979 struct intel_link_m_n *m_n)
2c07245f 6980{
e69d0bc1 6981 m_n->tu = 64;
a65851af
VS
6982
6983 compute_m_n(bits_per_pixel * pixel_clock,
6984 link_clock * nlanes * 8,
6985 &m_n->gmch_m, &m_n->gmch_n);
6986
6987 compute_m_n(pixel_clock, link_clock,
6988 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
6989}
6990
a7615030
CW
6991static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6992{
d330a953
JN
6993 if (i915.panel_use_ssc >= 0)
6994 return i915.panel_use_ssc != 0;
41aa3448 6995 return dev_priv->vbt.lvds_use_ssc
435793df 6996 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
6997}
6998
a93e255f
ACO
6999static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7000 int num_connectors)
c65d77d8 7001{
a93e255f 7002 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
7003 struct drm_i915_private *dev_priv = dev->dev_private;
7004 int refclk;
7005
a93e255f
ACO
7006 WARN_ON(!crtc_state->base.state);
7007
5ab7b0b7 7008 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
9a0ea498 7009 refclk = 100000;
a93e255f 7010 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 7011 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
7012 refclk = dev_priv->vbt.lvds_ssc_freq;
7013 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
7014 } else if (!IS_GEN2(dev)) {
7015 refclk = 96000;
7016 } else {
7017 refclk = 48000;
7018 }
7019
7020 return refclk;
7021}
7022
7429e9d4 7023static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7024{
7df00d7a 7025 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7026}
f47709a9 7027
7429e9d4
DV
7028static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7029{
7030 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7031}
7032
f47709a9 7033static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7034 struct intel_crtc_state *crtc_state,
a7516a05
JB
7035 intel_clock_t *reduced_clock)
7036{
f47709a9 7037 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7038 u32 fp, fp2 = 0;
7039
7040 if (IS_PINEVIEW(dev)) {
190f68c5 7041 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7042 if (reduced_clock)
7429e9d4 7043 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7044 } else {
190f68c5 7045 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7046 if (reduced_clock)
7429e9d4 7047 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7048 }
7049
190f68c5 7050 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7051
f47709a9 7052 crtc->lowfreq_avail = false;
a93e255f 7053 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7054 reduced_clock) {
190f68c5 7055 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7056 crtc->lowfreq_avail = true;
a7516a05 7057 } else {
190f68c5 7058 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7059 }
7060}
7061
5e69f97f
CML
7062static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7063 pipe)
89b667f8
JB
7064{
7065 u32 reg_val;
7066
7067 /*
7068 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7069 * and set it to a reasonable value instead.
7070 */
ab3c759a 7071 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7072 reg_val &= 0xffffff00;
7073 reg_val |= 0x00000030;
ab3c759a 7074 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7075
ab3c759a 7076 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7077 reg_val &= 0x8cffffff;
7078 reg_val = 0x8c000000;
ab3c759a 7079 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7080
ab3c759a 7081 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7082 reg_val &= 0xffffff00;
ab3c759a 7083 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7084
ab3c759a 7085 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7086 reg_val &= 0x00ffffff;
7087 reg_val |= 0xb0000000;
ab3c759a 7088 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7089}
7090
b551842d
DV
7091static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7092 struct intel_link_m_n *m_n)
7093{
7094 struct drm_device *dev = crtc->base.dev;
7095 struct drm_i915_private *dev_priv = dev->dev_private;
7096 int pipe = crtc->pipe;
7097
e3b95f1e
DV
7098 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7099 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7100 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7101 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7102}
7103
7104static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7105 struct intel_link_m_n *m_n,
7106 struct intel_link_m_n *m2_n2)
b551842d
DV
7107{
7108 struct drm_device *dev = crtc->base.dev;
7109 struct drm_i915_private *dev_priv = dev->dev_private;
7110 int pipe = crtc->pipe;
6e3c9717 7111 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7112
7113 if (INTEL_INFO(dev)->gen >= 5) {
7114 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7115 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7116 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7117 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7118 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7119 * for gen < 8) and if DRRS is supported (to make sure the
7120 * registers are not unnecessarily accessed).
7121 */
44395bfe 7122 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7123 crtc->config->has_drrs) {
f769cd24
VK
7124 I915_WRITE(PIPE_DATA_M2(transcoder),
7125 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7126 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7127 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7128 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7129 }
b551842d 7130 } else {
e3b95f1e
DV
7131 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7132 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7133 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7134 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7135 }
7136}
7137
fe3cd48d 7138void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7139{
fe3cd48d
R
7140 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7141
7142 if (m_n == M1_N1) {
7143 dp_m_n = &crtc->config->dp_m_n;
7144 dp_m2_n2 = &crtc->config->dp_m2_n2;
7145 } else if (m_n == M2_N2) {
7146
7147 /*
7148 * M2_N2 registers are not supported. Hence m2_n2 divider value
7149 * needs to be programmed into M1_N1.
7150 */
7151 dp_m_n = &crtc->config->dp_m2_n2;
7152 } else {
7153 DRM_ERROR("Unsupported divider value\n");
7154 return;
7155 }
7156
6e3c9717
ACO
7157 if (crtc->config->has_pch_encoder)
7158 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7159 else
fe3cd48d 7160 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7161}
7162
d288f65f 7163static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 7164 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
7165{
7166 u32 dpll, dpll_md;
7167
7168 /*
7169 * Enable DPIO clock input. We should never disable the reference
7170 * clock for pipe B, since VGA hotplug / manual detection depends
7171 * on it.
7172 */
7173 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7174 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7175 /* We should never disable this, set it here for state tracking */
7176 if (crtc->pipe == PIPE_B)
7177 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7178 dpll |= DPLL_VCO_ENABLE;
d288f65f 7179 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 7180
d288f65f 7181 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 7182 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 7183 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
7184}
7185
d288f65f 7186static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7187 const struct intel_crtc_state *pipe_config)
a0c4da24 7188{
f47709a9 7189 struct drm_device *dev = crtc->base.dev;
a0c4da24 7190 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 7191 int pipe = crtc->pipe;
bdd4b6a6 7192 u32 mdiv;
a0c4da24 7193 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7194 u32 coreclk, reg_val;
a0c4da24 7195
a580516d 7196 mutex_lock(&dev_priv->sb_lock);
09153000 7197
d288f65f
VS
7198 bestn = pipe_config->dpll.n;
7199 bestm1 = pipe_config->dpll.m1;
7200 bestm2 = pipe_config->dpll.m2;
7201 bestp1 = pipe_config->dpll.p1;
7202 bestp2 = pipe_config->dpll.p2;
a0c4da24 7203
89b667f8
JB
7204 /* See eDP HDMI DPIO driver vbios notes doc */
7205
7206 /* PLL B needs special handling */
bdd4b6a6 7207 if (pipe == PIPE_B)
5e69f97f 7208 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7209
7210 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7211 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7212
7213 /* Disable target IRef on PLL */
ab3c759a 7214 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7215 reg_val &= 0x00ffffff;
ab3c759a 7216 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7217
7218 /* Disable fast lock */
ab3c759a 7219 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7220
7221 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7222 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7223 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7224 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7225 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7226
7227 /*
7228 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7229 * but we don't support that).
7230 * Note: don't use the DAC post divider as it seems unstable.
7231 */
7232 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7233 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7234
a0c4da24 7235 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7236 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7237
89b667f8 7238 /* Set HBR and RBR LPF coefficients */
d288f65f 7239 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7240 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7241 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7242 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7243 0x009f0003);
89b667f8 7244 else
ab3c759a 7245 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7246 0x00d0000f);
7247
681a8504 7248 if (pipe_config->has_dp_encoder) {
89b667f8 7249 /* Use SSC source */
bdd4b6a6 7250 if (pipe == PIPE_A)
ab3c759a 7251 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7252 0x0df40000);
7253 else
ab3c759a 7254 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7255 0x0df70000);
7256 } else { /* HDMI or VGA */
7257 /* Use bend source */
bdd4b6a6 7258 if (pipe == PIPE_A)
ab3c759a 7259 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7260 0x0df70000);
7261 else
ab3c759a 7262 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7263 0x0df40000);
7264 }
a0c4da24 7265
ab3c759a 7266 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7267 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7268 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7269 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7270 coreclk |= 0x01000000;
ab3c759a 7271 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7272
ab3c759a 7273 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7274 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7275}
7276
d288f65f 7277static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 7278 struct intel_crtc_state *pipe_config)
1ae0d137 7279{
d288f65f 7280 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
7281 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7282 DPLL_VCO_ENABLE;
7283 if (crtc->pipe != PIPE_A)
d288f65f 7284 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 7285
d288f65f
VS
7286 pipe_config->dpll_hw_state.dpll_md =
7287 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
7288}
7289
d288f65f 7290static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7291 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7292{
7293 struct drm_device *dev = crtc->base.dev;
7294 struct drm_i915_private *dev_priv = dev->dev_private;
7295 int pipe = crtc->pipe;
7296 int dpll_reg = DPLL(crtc->pipe);
7297 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7298 u32 loopfilter, tribuf_calcntr;
9d556c99 7299 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7300 u32 dpio_val;
9cbe40c1 7301 int vco;
9d556c99 7302
d288f65f
VS
7303 bestn = pipe_config->dpll.n;
7304 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7305 bestm1 = pipe_config->dpll.m1;
7306 bestm2 = pipe_config->dpll.m2 >> 22;
7307 bestp1 = pipe_config->dpll.p1;
7308 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7309 vco = pipe_config->dpll.vco;
a945ce7e 7310 dpio_val = 0;
9cbe40c1 7311 loopfilter = 0;
9d556c99
CML
7312
7313 /*
7314 * Enable Refclk and SSC
7315 */
a11b0703 7316 I915_WRITE(dpll_reg,
d288f65f 7317 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703 7318
a580516d 7319 mutex_lock(&dev_priv->sb_lock);
9d556c99 7320
9d556c99
CML
7321 /* p1 and p2 divider */
7322 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7323 5 << DPIO_CHV_S1_DIV_SHIFT |
7324 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7325 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7326 1 << DPIO_CHV_K_DIV_SHIFT);
7327
7328 /* Feedback post-divider - m2 */
7329 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7330
7331 /* Feedback refclk divider - n and m1 */
7332 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7333 DPIO_CHV_M1_DIV_BY_2 |
7334 1 << DPIO_CHV_N_DIV_SHIFT);
7335
7336 /* M2 fraction division */
a945ce7e
VP
7337 if (bestm2_frac)
7338 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7339
7340 /* M2 fraction division enable */
a945ce7e
VP
7341 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7342 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7343 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7344 if (bestm2_frac)
7345 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7346 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7347
de3a0fde
VP
7348 /* Program digital lock detect threshold */
7349 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7350 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7351 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7352 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7353 if (!bestm2_frac)
7354 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7355 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7356
9d556c99 7357 /* Loop filter */
9cbe40c1
VP
7358 if (vco == 5400000) {
7359 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7360 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7361 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7362 tribuf_calcntr = 0x9;
7363 } else if (vco <= 6200000) {
7364 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7365 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7366 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7367 tribuf_calcntr = 0x9;
7368 } else if (vco <= 6480000) {
7369 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7370 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7371 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7372 tribuf_calcntr = 0x8;
7373 } else {
7374 /* Not supported. Apply the same limits as in the max case */
7375 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7376 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7377 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7378 tribuf_calcntr = 0;
7379 }
9d556c99
CML
7380 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7381
968040b2 7382 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7383 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7384 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7385 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7386
9d556c99
CML
7387 /* AFC Recal */
7388 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7389 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7390 DPIO_AFC_RECAL);
7391
a580516d 7392 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7393}
7394
d288f65f
VS
7395/**
7396 * vlv_force_pll_on - forcibly enable just the PLL
7397 * @dev_priv: i915 private structure
7398 * @pipe: pipe PLL to enable
7399 * @dpll: PLL configuration
7400 *
7401 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7402 * in cases where we need the PLL enabled even when @pipe is not going to
7403 * be enabled.
7404 */
7405void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7406 const struct dpll *dpll)
7407{
7408 struct intel_crtc *crtc =
7409 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 7410 struct intel_crtc_state pipe_config = {
a93e255f 7411 .base.crtc = &crtc->base,
d288f65f
VS
7412 .pixel_multiplier = 1,
7413 .dpll = *dpll,
7414 };
7415
7416 if (IS_CHERRYVIEW(dev)) {
7417 chv_update_pll(crtc, &pipe_config);
7418 chv_prepare_pll(crtc, &pipe_config);
7419 chv_enable_pll(crtc, &pipe_config);
7420 } else {
7421 vlv_update_pll(crtc, &pipe_config);
7422 vlv_prepare_pll(crtc, &pipe_config);
7423 vlv_enable_pll(crtc, &pipe_config);
7424 }
7425}
7426
7427/**
7428 * vlv_force_pll_off - forcibly disable just the PLL
7429 * @dev_priv: i915 private structure
7430 * @pipe: pipe PLL to disable
7431 *
7432 * Disable the PLL for @pipe. To be used in cases where we need
7433 * the PLL enabled even when @pipe is not going to be enabled.
7434 */
7435void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7436{
7437 if (IS_CHERRYVIEW(dev))
7438 chv_disable_pll(to_i915(dev), pipe);
7439 else
7440 vlv_disable_pll(to_i915(dev), pipe);
7441}
7442
f47709a9 7443static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 7444 struct intel_crtc_state *crtc_state,
f47709a9 7445 intel_clock_t *reduced_clock,
eb1cbe48
DV
7446 int num_connectors)
7447{
f47709a9 7448 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7449 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7450 u32 dpll;
7451 bool is_sdvo;
190f68c5 7452 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7453
190f68c5 7454 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7455
a93e255f
ACO
7456 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7457 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7458
7459 dpll = DPLL_VGA_MODE_DIS;
7460
a93e255f 7461 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7462 dpll |= DPLLB_MODE_LVDS;
7463 else
7464 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7465
ef1b460d 7466 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7467 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7468 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7469 }
198a037f
DV
7470
7471 if (is_sdvo)
4a33e48d 7472 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7473
190f68c5 7474 if (crtc_state->has_dp_encoder)
4a33e48d 7475 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7476
7477 /* compute bitmask from p1 value */
7478 if (IS_PINEVIEW(dev))
7479 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7480 else {
7481 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7482 if (IS_G4X(dev) && reduced_clock)
7483 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7484 }
7485 switch (clock->p2) {
7486 case 5:
7487 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7488 break;
7489 case 7:
7490 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7491 break;
7492 case 10:
7493 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7494 break;
7495 case 14:
7496 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7497 break;
7498 }
7499 if (INTEL_INFO(dev)->gen >= 4)
7500 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7501
190f68c5 7502 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7503 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7504 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7505 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7506 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7507 else
7508 dpll |= PLL_REF_INPUT_DREFCLK;
7509
7510 dpll |= DPLL_VCO_ENABLE;
190f68c5 7511 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7512
eb1cbe48 7513 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7514 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7515 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7516 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7517 }
7518}
7519
f47709a9 7520static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 7521 struct intel_crtc_state *crtc_state,
f47709a9 7522 intel_clock_t *reduced_clock,
eb1cbe48
DV
7523 int num_connectors)
7524{
f47709a9 7525 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7526 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7527 u32 dpll;
190f68c5 7528 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7529
190f68c5 7530 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7531
eb1cbe48
DV
7532 dpll = DPLL_VGA_MODE_DIS;
7533
a93e255f 7534 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7535 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7536 } else {
7537 if (clock->p1 == 2)
7538 dpll |= PLL_P1_DIVIDE_BY_TWO;
7539 else
7540 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7541 if (clock->p2 == 4)
7542 dpll |= PLL_P2_DIVIDE_BY_4;
7543 }
7544
a93e255f 7545 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7546 dpll |= DPLL_DVO_2X_MODE;
7547
a93e255f 7548 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7549 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7550 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7551 else
7552 dpll |= PLL_REF_INPUT_DREFCLK;
7553
7554 dpll |= DPLL_VCO_ENABLE;
190f68c5 7555 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7556}
7557
8a654f3b 7558static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7559{
7560 struct drm_device *dev = intel_crtc->base.dev;
7561 struct drm_i915_private *dev_priv = dev->dev_private;
7562 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7563 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 7564 struct drm_display_mode *adjusted_mode =
6e3c9717 7565 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7566 uint32_t crtc_vtotal, crtc_vblank_end;
7567 int vsyncshift = 0;
4d8a62ea
DV
7568
7569 /* We need to be careful not to changed the adjusted mode, for otherwise
7570 * the hw state checker will get angry at the mismatch. */
7571 crtc_vtotal = adjusted_mode->crtc_vtotal;
7572 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7573
609aeaca 7574 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7575 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7576 crtc_vtotal -= 1;
7577 crtc_vblank_end -= 1;
609aeaca 7578
409ee761 7579 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7580 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7581 else
7582 vsyncshift = adjusted_mode->crtc_hsync_start -
7583 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7584 if (vsyncshift < 0)
7585 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7586 }
7587
7588 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7589 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7590
fe2b8f9d 7591 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7592 (adjusted_mode->crtc_hdisplay - 1) |
7593 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7594 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7595 (adjusted_mode->crtc_hblank_start - 1) |
7596 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7597 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7598 (adjusted_mode->crtc_hsync_start - 1) |
7599 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7600
fe2b8f9d 7601 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7602 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7603 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7604 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7605 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7606 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7607 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7608 (adjusted_mode->crtc_vsync_start - 1) |
7609 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7610
b5e508d4
PZ
7611 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7612 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7613 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7614 * bits. */
7615 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7616 (pipe == PIPE_B || pipe == PIPE_C))
7617 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7618
b0e77b9c
PZ
7619 /* pipesrc controls the size that is scaled from, which should
7620 * always be the user's requested size.
7621 */
7622 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7623 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7624 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7625}
7626
1bd1bd80 7627static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7628 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7629{
7630 struct drm_device *dev = crtc->base.dev;
7631 struct drm_i915_private *dev_priv = dev->dev_private;
7632 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7633 uint32_t tmp;
7634
7635 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7636 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7637 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7638 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7639 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7640 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7641 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7642 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7643 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7644
7645 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7646 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7647 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7648 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7649 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7650 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7651 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7652 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7653 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7654
7655 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7656 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7657 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7658 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7659 }
7660
7661 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7662 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7663 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7664
2d112de7
ACO
7665 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7666 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7667}
7668
f6a83288 7669void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7670 struct intel_crtc_state *pipe_config)
babea61d 7671{
2d112de7
ACO
7672 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7673 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7674 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7675 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7676
2d112de7
ACO
7677 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7678 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7679 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7680 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7681
2d112de7 7682 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 7683
2d112de7
ACO
7684 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7685 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
7686}
7687
84b046f3
DV
7688static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7689{
7690 struct drm_device *dev = intel_crtc->base.dev;
7691 struct drm_i915_private *dev_priv = dev->dev_private;
7692 uint32_t pipeconf;
7693
9f11a9e4 7694 pipeconf = 0;
84b046f3 7695
b6b5d049
VS
7696 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7697 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7698 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7699
6e3c9717 7700 if (intel_crtc->config->double_wide)
cf532bb2 7701 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7702
ff9ce46e
DV
7703 /* only g4x and later have fancy bpc/dither controls */
7704 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 7705 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7706 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7707 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7708 PIPECONF_DITHER_TYPE_SP;
84b046f3 7709
6e3c9717 7710 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7711 case 18:
7712 pipeconf |= PIPECONF_6BPC;
7713 break;
7714 case 24:
7715 pipeconf |= PIPECONF_8BPC;
7716 break;
7717 case 30:
7718 pipeconf |= PIPECONF_10BPC;
7719 break;
7720 default:
7721 /* Case prevented by intel_choose_pipe_bpp_dither. */
7722 BUG();
84b046f3
DV
7723 }
7724 }
7725
7726 if (HAS_PIPE_CXSR(dev)) {
7727 if (intel_crtc->lowfreq_avail) {
7728 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7729 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7730 } else {
7731 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7732 }
7733 }
7734
6e3c9717 7735 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7736 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7737 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7738 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7739 else
7740 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7741 } else
84b046f3
DV
7742 pipeconf |= PIPECONF_PROGRESSIVE;
7743
6e3c9717 7744 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 7745 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7746
84b046f3
DV
7747 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7748 POSTING_READ(PIPECONF(intel_crtc->pipe));
7749}
7750
190f68c5
ACO
7751static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7752 struct intel_crtc_state *crtc_state)
79e53945 7753{
c7653199 7754 struct drm_device *dev = crtc->base.dev;
79e53945 7755 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7756 int refclk, num_connectors = 0;
652c393a 7757 intel_clock_t clock, reduced_clock;
a16af721 7758 bool ok, has_reduced_clock = false;
e9fd1c02 7759 bool is_lvds = false, is_dsi = false;
5eddb70b 7760 struct intel_encoder *encoder;
d4906093 7761 const intel_limit_t *limit;
55bb9992 7762 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 7763 struct drm_connector *connector;
55bb9992
ACO
7764 struct drm_connector_state *connector_state;
7765 int i;
79e53945 7766
dd3cd74a
ACO
7767 memset(&crtc_state->dpll_hw_state, 0,
7768 sizeof(crtc_state->dpll_hw_state));
7769
da3ced29 7770 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
7771 if (connector_state->crtc != &crtc->base)
7772 continue;
7773
7774 encoder = to_intel_encoder(connector_state->best_encoder);
7775
5eddb70b 7776 switch (encoder->type) {
79e53945
JB
7777 case INTEL_OUTPUT_LVDS:
7778 is_lvds = true;
7779 break;
e9fd1c02
JN
7780 case INTEL_OUTPUT_DSI:
7781 is_dsi = true;
7782 break;
6847d71b
PZ
7783 default:
7784 break;
79e53945 7785 }
43565a06 7786
c751ce4f 7787 num_connectors++;
79e53945
JB
7788 }
7789
f2335330 7790 if (is_dsi)
5b18e57c 7791 return 0;
f2335330 7792
190f68c5 7793 if (!crtc_state->clock_set) {
a93e255f 7794 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7795
e9fd1c02
JN
7796 /*
7797 * Returns a set of divisors for the desired target clock with
7798 * the given refclk, or FALSE. The returned values represent
7799 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7800 * 2) / p1 / p2.
7801 */
a93e255f
ACO
7802 limit = intel_limit(crtc_state, refclk);
7803 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7804 crtc_state->port_clock,
e9fd1c02 7805 refclk, NULL, &clock);
f2335330 7806 if (!ok) {
e9fd1c02
JN
7807 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7808 return -EINVAL;
7809 }
79e53945 7810
f2335330
JN
7811 if (is_lvds && dev_priv->lvds_downclock_avail) {
7812 /*
7813 * Ensure we match the reduced clock's P to the target
7814 * clock. If the clocks don't match, we can't switch
7815 * the display clock by using the FP0/FP1. In such case
7816 * we will disable the LVDS downclock feature.
7817 */
7818 has_reduced_clock =
a93e255f 7819 dev_priv->display.find_dpll(limit, crtc_state,
f2335330
JN
7820 dev_priv->lvds_downclock,
7821 refclk, &clock,
7822 &reduced_clock);
7823 }
7824 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7825 crtc_state->dpll.n = clock.n;
7826 crtc_state->dpll.m1 = clock.m1;
7827 crtc_state->dpll.m2 = clock.m2;
7828 crtc_state->dpll.p1 = clock.p1;
7829 crtc_state->dpll.p2 = clock.p2;
f47709a9 7830 }
7026d4ac 7831
e9fd1c02 7832 if (IS_GEN2(dev)) {
190f68c5 7833 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
7834 has_reduced_clock ? &reduced_clock : NULL,
7835 num_connectors);
9d556c99 7836 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 7837 chv_update_pll(crtc, crtc_state);
e9fd1c02 7838 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 7839 vlv_update_pll(crtc, crtc_state);
e9fd1c02 7840 } else {
190f68c5 7841 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 7842 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 7843 num_connectors);
e9fd1c02 7844 }
79e53945 7845
c8f7a0db 7846 return 0;
f564048e
EA
7847}
7848
2fa2fe9a 7849static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7850 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7851{
7852 struct drm_device *dev = crtc->base.dev;
7853 struct drm_i915_private *dev_priv = dev->dev_private;
7854 uint32_t tmp;
7855
dc9e7dec
VS
7856 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7857 return;
7858
2fa2fe9a 7859 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
7860 if (!(tmp & PFIT_ENABLE))
7861 return;
2fa2fe9a 7862
06922821 7863 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
7864 if (INTEL_INFO(dev)->gen < 4) {
7865 if (crtc->pipe != PIPE_B)
7866 return;
2fa2fe9a
DV
7867 } else {
7868 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7869 return;
7870 }
7871
06922821 7872 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
7873 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7874 if (INTEL_INFO(dev)->gen < 5)
7875 pipe_config->gmch_pfit.lvds_border_bits =
7876 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7877}
7878
acbec814 7879static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7880 struct intel_crtc_state *pipe_config)
acbec814
JB
7881{
7882 struct drm_device *dev = crtc->base.dev;
7883 struct drm_i915_private *dev_priv = dev->dev_private;
7884 int pipe = pipe_config->cpu_transcoder;
7885 intel_clock_t clock;
7886 u32 mdiv;
662c6ecb 7887 int refclk = 100000;
acbec814 7888
f573de5a
SK
7889 /* In case of MIPI DPLL will not even be used */
7890 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7891 return;
7892
a580516d 7893 mutex_lock(&dev_priv->sb_lock);
ab3c759a 7894 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 7895 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
7896
7897 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7898 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7899 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7900 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7901 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7902
f646628b 7903 vlv_clock(refclk, &clock);
acbec814 7904
f646628b
VS
7905 /* clock.dot is the fast clock */
7906 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
7907}
7908
5724dbd1
DL
7909static void
7910i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7911 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
7912{
7913 struct drm_device *dev = crtc->base.dev;
7914 struct drm_i915_private *dev_priv = dev->dev_private;
7915 u32 val, base, offset;
7916 int pipe = crtc->pipe, plane = crtc->plane;
7917 int fourcc, pixel_format;
6761dd31 7918 unsigned int aligned_height;
b113d5ee 7919 struct drm_framebuffer *fb;
1b842c89 7920 struct intel_framebuffer *intel_fb;
1ad292b5 7921
42a7b088
DL
7922 val = I915_READ(DSPCNTR(plane));
7923 if (!(val & DISPLAY_PLANE_ENABLE))
7924 return;
7925
d9806c9f 7926 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7927 if (!intel_fb) {
1ad292b5
JB
7928 DRM_DEBUG_KMS("failed to alloc fb\n");
7929 return;
7930 }
7931
1b842c89
DL
7932 fb = &intel_fb->base;
7933
18c5247e
DV
7934 if (INTEL_INFO(dev)->gen >= 4) {
7935 if (val & DISPPLANE_TILED) {
49af449b 7936 plane_config->tiling = I915_TILING_X;
18c5247e
DV
7937 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7938 }
7939 }
1ad292b5
JB
7940
7941 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7942 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7943 fb->pixel_format = fourcc;
7944 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
7945
7946 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 7947 if (plane_config->tiling)
1ad292b5
JB
7948 offset = I915_READ(DSPTILEOFF(plane));
7949 else
7950 offset = I915_READ(DSPLINOFF(plane));
7951 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7952 } else {
7953 base = I915_READ(DSPADDR(plane));
7954 }
7955 plane_config->base = base;
7956
7957 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
7958 fb->width = ((val >> 16) & 0xfff) + 1;
7959 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
7960
7961 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 7962 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 7963
b113d5ee 7964 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7965 fb->pixel_format,
7966 fb->modifier[0]);
1ad292b5 7967
f37b5c2b 7968 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 7969
2844a921
DL
7970 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7971 pipe_name(pipe), plane, fb->width, fb->height,
7972 fb->bits_per_pixel, base, fb->pitches[0],
7973 plane_config->size);
1ad292b5 7974
2d14030b 7975 plane_config->fb = intel_fb;
1ad292b5
JB
7976}
7977
70b23a98 7978static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7979 struct intel_crtc_state *pipe_config)
70b23a98
VS
7980{
7981 struct drm_device *dev = crtc->base.dev;
7982 struct drm_i915_private *dev_priv = dev->dev_private;
7983 int pipe = pipe_config->cpu_transcoder;
7984 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7985 intel_clock_t clock;
7986 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7987 int refclk = 100000;
7988
a580516d 7989 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
7990 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7991 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7992 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7993 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
a580516d 7994 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
7995
7996 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7997 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7998 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7999 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8000 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8001
8002 chv_clock(refclk, &clock);
8003
8004 /* clock.dot is the fast clock */
8005 pipe_config->port_clock = clock.dot / 5;
8006}
8007
0e8ffe1b 8008static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8009 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8010{
8011 struct drm_device *dev = crtc->base.dev;
8012 struct drm_i915_private *dev_priv = dev->dev_private;
8013 uint32_t tmp;
8014
f458ebbc
DV
8015 if (!intel_display_power_is_enabled(dev_priv,
8016 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
8017 return false;
8018
e143a21c 8019 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8020 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8021
0e8ffe1b
DV
8022 tmp = I915_READ(PIPECONF(crtc->pipe));
8023 if (!(tmp & PIPECONF_ENABLE))
8024 return false;
8025
42571aef
VS
8026 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8027 switch (tmp & PIPECONF_BPC_MASK) {
8028 case PIPECONF_6BPC:
8029 pipe_config->pipe_bpp = 18;
8030 break;
8031 case PIPECONF_8BPC:
8032 pipe_config->pipe_bpp = 24;
8033 break;
8034 case PIPECONF_10BPC:
8035 pipe_config->pipe_bpp = 30;
8036 break;
8037 default:
8038 break;
8039 }
8040 }
8041
b5a9fa09
DV
8042 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8043 pipe_config->limited_color_range = true;
8044
282740f7
VS
8045 if (INTEL_INFO(dev)->gen < 4)
8046 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8047
1bd1bd80
DV
8048 intel_get_pipe_timings(crtc, pipe_config);
8049
2fa2fe9a
DV
8050 i9xx_get_pfit_config(crtc, pipe_config);
8051
6c49f241
DV
8052 if (INTEL_INFO(dev)->gen >= 4) {
8053 tmp = I915_READ(DPLL_MD(crtc->pipe));
8054 pipe_config->pixel_multiplier =
8055 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8056 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8057 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8058 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8059 tmp = I915_READ(DPLL(crtc->pipe));
8060 pipe_config->pixel_multiplier =
8061 ((tmp & SDVO_MULTIPLIER_MASK)
8062 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8063 } else {
8064 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8065 * port and will be fixed up in the encoder->get_config
8066 * function. */
8067 pipe_config->pixel_multiplier = 1;
8068 }
8bcc2795
DV
8069 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8070 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
8071 /*
8072 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8073 * on 830. Filter it out here so that we don't
8074 * report errors due to that.
8075 */
8076 if (IS_I830(dev))
8077 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8078
8bcc2795
DV
8079 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8080 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8081 } else {
8082 /* Mask out read-only status bits. */
8083 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8084 DPLL_PORTC_READY_MASK |
8085 DPLL_PORTB_READY_MASK);
8bcc2795 8086 }
6c49f241 8087
70b23a98
VS
8088 if (IS_CHERRYVIEW(dev))
8089 chv_crtc_clock_get(crtc, pipe_config);
8090 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8091 vlv_crtc_clock_get(crtc, pipe_config);
8092 else
8093 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8094
0e8ffe1b
DV
8095 return true;
8096}
8097
dde86e2d 8098static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8099{
8100 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8101 struct intel_encoder *encoder;
74cfd7ac 8102 u32 val, final;
13d83a67 8103 bool has_lvds = false;
199e5d79 8104 bool has_cpu_edp = false;
199e5d79 8105 bool has_panel = false;
99eb6a01
KP
8106 bool has_ck505 = false;
8107 bool can_ssc = false;
13d83a67
JB
8108
8109 /* We need to take the global config into account */
b2784e15 8110 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8111 switch (encoder->type) {
8112 case INTEL_OUTPUT_LVDS:
8113 has_panel = true;
8114 has_lvds = true;
8115 break;
8116 case INTEL_OUTPUT_EDP:
8117 has_panel = true;
2de6905f 8118 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8119 has_cpu_edp = true;
8120 break;
6847d71b
PZ
8121 default:
8122 break;
13d83a67
JB
8123 }
8124 }
8125
99eb6a01 8126 if (HAS_PCH_IBX(dev)) {
41aa3448 8127 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8128 can_ssc = has_ck505;
8129 } else {
8130 has_ck505 = false;
8131 can_ssc = true;
8132 }
8133
2de6905f
ID
8134 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8135 has_panel, has_lvds, has_ck505);
13d83a67
JB
8136
8137 /* Ironlake: try to setup display ref clock before DPLL
8138 * enabling. This is only under driver's control after
8139 * PCH B stepping, previous chipset stepping should be
8140 * ignoring this setting.
8141 */
74cfd7ac
CW
8142 val = I915_READ(PCH_DREF_CONTROL);
8143
8144 /* As we must carefully and slowly disable/enable each source in turn,
8145 * compute the final state we want first and check if we need to
8146 * make any changes at all.
8147 */
8148 final = val;
8149 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8150 if (has_ck505)
8151 final |= DREF_NONSPREAD_CK505_ENABLE;
8152 else
8153 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8154
8155 final &= ~DREF_SSC_SOURCE_MASK;
8156 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8157 final &= ~DREF_SSC1_ENABLE;
8158
8159 if (has_panel) {
8160 final |= DREF_SSC_SOURCE_ENABLE;
8161
8162 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8163 final |= DREF_SSC1_ENABLE;
8164
8165 if (has_cpu_edp) {
8166 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8167 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8168 else
8169 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8170 } else
8171 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8172 } else {
8173 final |= DREF_SSC_SOURCE_DISABLE;
8174 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8175 }
8176
8177 if (final == val)
8178 return;
8179
13d83a67 8180 /* Always enable nonspread source */
74cfd7ac 8181 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8182
99eb6a01 8183 if (has_ck505)
74cfd7ac 8184 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8185 else
74cfd7ac 8186 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8187
199e5d79 8188 if (has_panel) {
74cfd7ac
CW
8189 val &= ~DREF_SSC_SOURCE_MASK;
8190 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8191
199e5d79 8192 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8193 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8194 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8195 val |= DREF_SSC1_ENABLE;
e77166b5 8196 } else
74cfd7ac 8197 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8198
8199 /* Get SSC going before enabling the outputs */
74cfd7ac 8200 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8201 POSTING_READ(PCH_DREF_CONTROL);
8202 udelay(200);
8203
74cfd7ac 8204 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8205
8206 /* Enable CPU source on CPU attached eDP */
199e5d79 8207 if (has_cpu_edp) {
99eb6a01 8208 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8209 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8210 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8211 } else
74cfd7ac 8212 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8213 } else
74cfd7ac 8214 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8215
74cfd7ac 8216 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8217 POSTING_READ(PCH_DREF_CONTROL);
8218 udelay(200);
8219 } else {
8220 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8221
74cfd7ac 8222 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8223
8224 /* Turn off CPU output */
74cfd7ac 8225 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8226
74cfd7ac 8227 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8228 POSTING_READ(PCH_DREF_CONTROL);
8229 udelay(200);
8230
8231 /* Turn off the SSC source */
74cfd7ac
CW
8232 val &= ~DREF_SSC_SOURCE_MASK;
8233 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
8234
8235 /* Turn off SSC1 */
74cfd7ac 8236 val &= ~DREF_SSC1_ENABLE;
199e5d79 8237
74cfd7ac 8238 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
8239 POSTING_READ(PCH_DREF_CONTROL);
8240 udelay(200);
8241 }
74cfd7ac
CW
8242
8243 BUG_ON(val != final);
13d83a67
JB
8244}
8245
f31f2d55 8246static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8247{
f31f2d55 8248 uint32_t tmp;
dde86e2d 8249
0ff066a9
PZ
8250 tmp = I915_READ(SOUTH_CHICKEN2);
8251 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8252 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8253
0ff066a9
PZ
8254 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8255 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8256 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8257
0ff066a9
PZ
8258 tmp = I915_READ(SOUTH_CHICKEN2);
8259 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8260 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8261
0ff066a9
PZ
8262 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8263 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8264 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8265}
8266
8267/* WaMPhyProgramming:hsw */
8268static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8269{
8270 uint32_t tmp;
dde86e2d
PZ
8271
8272 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8273 tmp &= ~(0xFF << 24);
8274 tmp |= (0x12 << 24);
8275 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8276
dde86e2d
PZ
8277 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8278 tmp |= (1 << 11);
8279 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8280
8281 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8282 tmp |= (1 << 11);
8283 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8284
dde86e2d
PZ
8285 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8286 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8287 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8288
8289 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8290 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8291 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8292
0ff066a9
PZ
8293 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8294 tmp &= ~(7 << 13);
8295 tmp |= (5 << 13);
8296 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8297
0ff066a9
PZ
8298 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8299 tmp &= ~(7 << 13);
8300 tmp |= (5 << 13);
8301 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8302
8303 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8304 tmp &= ~0xFF;
8305 tmp |= 0x1C;
8306 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8307
8308 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8309 tmp &= ~0xFF;
8310 tmp |= 0x1C;
8311 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8312
8313 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8314 tmp &= ~(0xFF << 16);
8315 tmp |= (0x1C << 16);
8316 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8317
8318 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8319 tmp &= ~(0xFF << 16);
8320 tmp |= (0x1C << 16);
8321 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8322
0ff066a9
PZ
8323 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8324 tmp |= (1 << 27);
8325 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8326
0ff066a9
PZ
8327 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8328 tmp |= (1 << 27);
8329 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8330
0ff066a9
PZ
8331 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8332 tmp &= ~(0xF << 28);
8333 tmp |= (4 << 28);
8334 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8335
0ff066a9
PZ
8336 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8337 tmp &= ~(0xF << 28);
8338 tmp |= (4 << 28);
8339 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8340}
8341
2fa86a1f
PZ
8342/* Implements 3 different sequences from BSpec chapter "Display iCLK
8343 * Programming" based on the parameters passed:
8344 * - Sequence to enable CLKOUT_DP
8345 * - Sequence to enable CLKOUT_DP without spread
8346 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8347 */
8348static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8349 bool with_fdi)
f31f2d55
PZ
8350{
8351 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8352 uint32_t reg, tmp;
8353
8354 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8355 with_spread = true;
8356 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8357 with_fdi, "LP PCH doesn't have FDI\n"))
8358 with_fdi = false;
f31f2d55 8359
a580516d 8360 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8361
8362 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8363 tmp &= ~SBI_SSCCTL_DISABLE;
8364 tmp |= SBI_SSCCTL_PATHALT;
8365 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8366
8367 udelay(24);
8368
2fa86a1f
PZ
8369 if (with_spread) {
8370 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8371 tmp &= ~SBI_SSCCTL_PATHALT;
8372 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8373
2fa86a1f
PZ
8374 if (with_fdi) {
8375 lpt_reset_fdi_mphy(dev_priv);
8376 lpt_program_fdi_mphy(dev_priv);
8377 }
8378 }
dde86e2d 8379
2fa86a1f
PZ
8380 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8381 SBI_GEN0 : SBI_DBUFF0;
8382 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8383 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8384 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8385
a580516d 8386 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8387}
8388
47701c3b
PZ
8389/* Sequence to disable CLKOUT_DP */
8390static void lpt_disable_clkout_dp(struct drm_device *dev)
8391{
8392 struct drm_i915_private *dev_priv = dev->dev_private;
8393 uint32_t reg, tmp;
8394
a580516d 8395 mutex_lock(&dev_priv->sb_lock);
47701c3b
PZ
8396
8397 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8398 SBI_GEN0 : SBI_DBUFF0;
8399 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8400 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8401 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8402
8403 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8404 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8405 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8406 tmp |= SBI_SSCCTL_PATHALT;
8407 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8408 udelay(32);
8409 }
8410 tmp |= SBI_SSCCTL_DISABLE;
8411 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8412 }
8413
a580516d 8414 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8415}
8416
bf8fa3d3
PZ
8417static void lpt_init_pch_refclk(struct drm_device *dev)
8418{
bf8fa3d3
PZ
8419 struct intel_encoder *encoder;
8420 bool has_vga = false;
8421
b2784e15 8422 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8423 switch (encoder->type) {
8424 case INTEL_OUTPUT_ANALOG:
8425 has_vga = true;
8426 break;
6847d71b
PZ
8427 default:
8428 break;
bf8fa3d3
PZ
8429 }
8430 }
8431
47701c3b
PZ
8432 if (has_vga)
8433 lpt_enable_clkout_dp(dev, true, true);
8434 else
8435 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
8436}
8437
dde86e2d
PZ
8438/*
8439 * Initialize reference clocks when the driver loads
8440 */
8441void intel_init_pch_refclk(struct drm_device *dev)
8442{
8443 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8444 ironlake_init_pch_refclk(dev);
8445 else if (HAS_PCH_LPT(dev))
8446 lpt_init_pch_refclk(dev);
8447}
8448
55bb9992 8449static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8450{
55bb9992 8451 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8452 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8453 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8454 struct drm_connector *connector;
55bb9992 8455 struct drm_connector_state *connector_state;
d9d444cb 8456 struct intel_encoder *encoder;
55bb9992 8457 int num_connectors = 0, i;
d9d444cb
JB
8458 bool is_lvds = false;
8459
da3ced29 8460 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8461 if (connector_state->crtc != crtc_state->base.crtc)
8462 continue;
8463
8464 encoder = to_intel_encoder(connector_state->best_encoder);
8465
d9d444cb
JB
8466 switch (encoder->type) {
8467 case INTEL_OUTPUT_LVDS:
8468 is_lvds = true;
8469 break;
6847d71b
PZ
8470 default:
8471 break;
d9d444cb
JB
8472 }
8473 num_connectors++;
8474 }
8475
8476 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8477 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8478 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8479 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8480 }
8481
8482 return 120000;
8483}
8484
6ff93609 8485static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8486{
c8203565 8487 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8488 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8489 int pipe = intel_crtc->pipe;
c8203565
PZ
8490 uint32_t val;
8491
78114071 8492 val = 0;
c8203565 8493
6e3c9717 8494 switch (intel_crtc->config->pipe_bpp) {
c8203565 8495 case 18:
dfd07d72 8496 val |= PIPECONF_6BPC;
c8203565
PZ
8497 break;
8498 case 24:
dfd07d72 8499 val |= PIPECONF_8BPC;
c8203565
PZ
8500 break;
8501 case 30:
dfd07d72 8502 val |= PIPECONF_10BPC;
c8203565
PZ
8503 break;
8504 case 36:
dfd07d72 8505 val |= PIPECONF_12BPC;
c8203565
PZ
8506 break;
8507 default:
cc769b62
PZ
8508 /* Case prevented by intel_choose_pipe_bpp_dither. */
8509 BUG();
c8203565
PZ
8510 }
8511
6e3c9717 8512 if (intel_crtc->config->dither)
c8203565
PZ
8513 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8514
6e3c9717 8515 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8516 val |= PIPECONF_INTERLACED_ILK;
8517 else
8518 val |= PIPECONF_PROGRESSIVE;
8519
6e3c9717 8520 if (intel_crtc->config->limited_color_range)
3685a8f3 8521 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8522
c8203565
PZ
8523 I915_WRITE(PIPECONF(pipe), val);
8524 POSTING_READ(PIPECONF(pipe));
8525}
8526
86d3efce
VS
8527/*
8528 * Set up the pipe CSC unit.
8529 *
8530 * Currently only full range RGB to limited range RGB conversion
8531 * is supported, but eventually this should handle various
8532 * RGB<->YCbCr scenarios as well.
8533 */
50f3b016 8534static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8535{
8536 struct drm_device *dev = crtc->dev;
8537 struct drm_i915_private *dev_priv = dev->dev_private;
8538 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8539 int pipe = intel_crtc->pipe;
8540 uint16_t coeff = 0x7800; /* 1.0 */
8541
8542 /*
8543 * TODO: Check what kind of values actually come out of the pipe
8544 * with these coeff/postoff values and adjust to get the best
8545 * accuracy. Perhaps we even need to take the bpc value into
8546 * consideration.
8547 */
8548
6e3c9717 8549 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8550 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8551
8552 /*
8553 * GY/GU and RY/RU should be the other way around according
8554 * to BSpec, but reality doesn't agree. Just set them up in
8555 * a way that results in the correct picture.
8556 */
8557 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8558 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8559
8560 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8561 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8562
8563 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8564 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8565
8566 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8567 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8568 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8569
8570 if (INTEL_INFO(dev)->gen > 6) {
8571 uint16_t postoff = 0;
8572
6e3c9717 8573 if (intel_crtc->config->limited_color_range)
32cf0cb0 8574 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8575
8576 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8577 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8578 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8579
8580 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8581 } else {
8582 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8583
6e3c9717 8584 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8585 mode |= CSC_BLACK_SCREEN_OFFSET;
8586
8587 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8588 }
8589}
8590
6ff93609 8591static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8592{
756f85cf
PZ
8593 struct drm_device *dev = crtc->dev;
8594 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8596 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8597 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8598 uint32_t val;
8599
3eff4faa 8600 val = 0;
ee2b0b38 8601
6e3c9717 8602 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8603 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8604
6e3c9717 8605 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8606 val |= PIPECONF_INTERLACED_ILK;
8607 else
8608 val |= PIPECONF_PROGRESSIVE;
8609
702e7a56
PZ
8610 I915_WRITE(PIPECONF(cpu_transcoder), val);
8611 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8612
8613 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8614 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8615
3cdf122c 8616 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8617 val = 0;
8618
6e3c9717 8619 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8620 case 18:
8621 val |= PIPEMISC_DITHER_6_BPC;
8622 break;
8623 case 24:
8624 val |= PIPEMISC_DITHER_8_BPC;
8625 break;
8626 case 30:
8627 val |= PIPEMISC_DITHER_10_BPC;
8628 break;
8629 case 36:
8630 val |= PIPEMISC_DITHER_12_BPC;
8631 break;
8632 default:
8633 /* Case prevented by pipe_config_set_bpp. */
8634 BUG();
8635 }
8636
6e3c9717 8637 if (intel_crtc->config->dither)
756f85cf
PZ
8638 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8639
8640 I915_WRITE(PIPEMISC(pipe), val);
8641 }
ee2b0b38
PZ
8642}
8643
6591c6e4 8644static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8645 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8646 intel_clock_t *clock,
8647 bool *has_reduced_clock,
8648 intel_clock_t *reduced_clock)
8649{
8650 struct drm_device *dev = crtc->dev;
8651 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8652 int refclk;
d4906093 8653 const intel_limit_t *limit;
a16af721 8654 bool ret, is_lvds = false;
79e53945 8655
a93e255f 8656 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
79e53945 8657
55bb9992 8658 refclk = ironlake_get_refclk(crtc_state);
79e53945 8659
d4906093
ML
8660 /*
8661 * Returns a set of divisors for the desired target clock with the given
8662 * refclk, or FALSE. The returned values represent the clock equation:
8663 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8664 */
a93e255f
ACO
8665 limit = intel_limit(crtc_state, refclk);
8666 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8667 crtc_state->port_clock,
ee9300bb 8668 refclk, NULL, clock);
6591c6e4
PZ
8669 if (!ret)
8670 return false;
cda4b7d3 8671
ddc9003c 8672 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
8673 /*
8674 * Ensure we match the reduced clock's P to the target clock.
8675 * If the clocks don't match, we can't switch the display clock
8676 * by using the FP0/FP1. In such case we will disable the LVDS
8677 * downclock feature.
8678 */
ee9300bb 8679 *has_reduced_clock =
a93e255f 8680 dev_priv->display.find_dpll(limit, crtc_state,
ee9300bb
DV
8681 dev_priv->lvds_downclock,
8682 refclk, clock,
8683 reduced_clock);
652c393a 8684 }
61e9653f 8685
6591c6e4
PZ
8686 return true;
8687}
8688
d4b1931c
PZ
8689int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8690{
8691 /*
8692 * Account for spread spectrum to avoid
8693 * oversubscribing the link. Max center spread
8694 * is 2.5%; use 5% for safety's sake.
8695 */
8696 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8697 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8698}
8699
7429e9d4 8700static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8701{
7429e9d4 8702 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8703}
8704
de13a2e3 8705static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8706 struct intel_crtc_state *crtc_state,
7429e9d4 8707 u32 *fp,
9a7c7890 8708 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8709{
de13a2e3 8710 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8711 struct drm_device *dev = crtc->dev;
8712 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8713 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8714 struct drm_connector *connector;
55bb9992
ACO
8715 struct drm_connector_state *connector_state;
8716 struct intel_encoder *encoder;
de13a2e3 8717 uint32_t dpll;
55bb9992 8718 int factor, num_connectors = 0, i;
09ede541 8719 bool is_lvds = false, is_sdvo = false;
79e53945 8720
da3ced29 8721 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8722 if (connector_state->crtc != crtc_state->base.crtc)
8723 continue;
8724
8725 encoder = to_intel_encoder(connector_state->best_encoder);
8726
8727 switch (encoder->type) {
79e53945
JB
8728 case INTEL_OUTPUT_LVDS:
8729 is_lvds = true;
8730 break;
8731 case INTEL_OUTPUT_SDVO:
7d57382e 8732 case INTEL_OUTPUT_HDMI:
79e53945 8733 is_sdvo = true;
79e53945 8734 break;
6847d71b
PZ
8735 default:
8736 break;
79e53945 8737 }
43565a06 8738
c751ce4f 8739 num_connectors++;
79e53945 8740 }
79e53945 8741
c1858123 8742 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8743 factor = 21;
8744 if (is_lvds) {
8745 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8746 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8747 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8748 factor = 25;
190f68c5 8749 } else if (crtc_state->sdvo_tv_clock)
8febb297 8750 factor = 20;
c1858123 8751
190f68c5 8752 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8753 *fp |= FP_CB_TUNE;
2c07245f 8754
9a7c7890
DV
8755 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8756 *fp2 |= FP_CB_TUNE;
8757
5eddb70b 8758 dpll = 0;
2c07245f 8759
a07d6787
EA
8760 if (is_lvds)
8761 dpll |= DPLLB_MODE_LVDS;
8762 else
8763 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8764
190f68c5 8765 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8766 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8767
8768 if (is_sdvo)
4a33e48d 8769 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8770 if (crtc_state->has_dp_encoder)
4a33e48d 8771 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8772
a07d6787 8773 /* compute bitmask from p1 value */
190f68c5 8774 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8775 /* also FPA1 */
190f68c5 8776 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8777
190f68c5 8778 switch (crtc_state->dpll.p2) {
a07d6787
EA
8779 case 5:
8780 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8781 break;
8782 case 7:
8783 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8784 break;
8785 case 10:
8786 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8787 break;
8788 case 14:
8789 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8790 break;
79e53945
JB
8791 }
8792
b4c09f3b 8793 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8794 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8795 else
8796 dpll |= PLL_REF_INPUT_DREFCLK;
8797
959e16d6 8798 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8799}
8800
190f68c5
ACO
8801static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8802 struct intel_crtc_state *crtc_state)
de13a2e3 8803{
c7653199 8804 struct drm_device *dev = crtc->base.dev;
de13a2e3 8805 intel_clock_t clock, reduced_clock;
cbbab5bd 8806 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8807 bool ok, has_reduced_clock = false;
8b47047b 8808 bool is_lvds = false;
e2b78267 8809 struct intel_shared_dpll *pll;
de13a2e3 8810
dd3cd74a
ACO
8811 memset(&crtc_state->dpll_hw_state, 0,
8812 sizeof(crtc_state->dpll_hw_state));
8813
409ee761 8814 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 8815
5dc5298b
PZ
8816 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8817 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8818
190f68c5 8819 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8820 &has_reduced_clock, &reduced_clock);
190f68c5 8821 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8822 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8823 return -EINVAL;
79e53945 8824 }
f47709a9 8825 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8826 if (!crtc_state->clock_set) {
8827 crtc_state->dpll.n = clock.n;
8828 crtc_state->dpll.m1 = clock.m1;
8829 crtc_state->dpll.m2 = clock.m2;
8830 crtc_state->dpll.p1 = clock.p1;
8831 crtc_state->dpll.p2 = clock.p2;
f47709a9 8832 }
79e53945 8833
5dc5298b 8834 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8835 if (crtc_state->has_pch_encoder) {
8836 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8837 if (has_reduced_clock)
7429e9d4 8838 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8839
190f68c5 8840 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8841 &fp, &reduced_clock,
8842 has_reduced_clock ? &fp2 : NULL);
8843
190f68c5
ACO
8844 crtc_state->dpll_hw_state.dpll = dpll;
8845 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8846 if (has_reduced_clock)
190f68c5 8847 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8848 else
190f68c5 8849 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8850
190f68c5 8851 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 8852 if (pll == NULL) {
84f44ce7 8853 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8854 pipe_name(crtc->pipe));
4b645f14
JB
8855 return -EINVAL;
8856 }
3fb37703 8857 }
79e53945 8858
ab585dea 8859 if (is_lvds && has_reduced_clock)
c7653199 8860 crtc->lowfreq_avail = true;
bcd644e0 8861 else
c7653199 8862 crtc->lowfreq_avail = false;
e2b78267 8863
c8f7a0db 8864 return 0;
79e53945
JB
8865}
8866
eb14cb74
VS
8867static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8868 struct intel_link_m_n *m_n)
8869{
8870 struct drm_device *dev = crtc->base.dev;
8871 struct drm_i915_private *dev_priv = dev->dev_private;
8872 enum pipe pipe = crtc->pipe;
8873
8874 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8875 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8876 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8877 & ~TU_SIZE_MASK;
8878 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8879 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8880 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8881}
8882
8883static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8884 enum transcoder transcoder,
b95af8be
VK
8885 struct intel_link_m_n *m_n,
8886 struct intel_link_m_n *m2_n2)
72419203
DV
8887{
8888 struct drm_device *dev = crtc->base.dev;
8889 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 8890 enum pipe pipe = crtc->pipe;
72419203 8891
eb14cb74
VS
8892 if (INTEL_INFO(dev)->gen >= 5) {
8893 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8894 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8895 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8896 & ~TU_SIZE_MASK;
8897 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8898 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8899 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
8900 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8901 * gen < 8) and if DRRS is supported (to make sure the
8902 * registers are not unnecessarily read).
8903 */
8904 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 8905 crtc->config->has_drrs) {
b95af8be
VK
8906 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8907 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8908 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8909 & ~TU_SIZE_MASK;
8910 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8911 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8912 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8913 }
eb14cb74
VS
8914 } else {
8915 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8916 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8917 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8918 & ~TU_SIZE_MASK;
8919 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8920 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8921 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8922 }
8923}
8924
8925void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 8926 struct intel_crtc_state *pipe_config)
eb14cb74 8927{
681a8504 8928 if (pipe_config->has_pch_encoder)
eb14cb74
VS
8929 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8930 else
8931 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
8932 &pipe_config->dp_m_n,
8933 &pipe_config->dp_m2_n2);
eb14cb74 8934}
72419203 8935
eb14cb74 8936static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 8937 struct intel_crtc_state *pipe_config)
eb14cb74
VS
8938{
8939 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 8940 &pipe_config->fdi_m_n, NULL);
72419203
DV
8941}
8942
bd2e244f 8943static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8944 struct intel_crtc_state *pipe_config)
bd2e244f
JB
8945{
8946 struct drm_device *dev = crtc->base.dev;
8947 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
8948 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8949 uint32_t ps_ctrl = 0;
8950 int id = -1;
8951 int i;
bd2e244f 8952
a1b2278e
CK
8953 /* find scaler attached to this pipe */
8954 for (i = 0; i < crtc->num_scalers; i++) {
8955 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8956 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8957 id = i;
8958 pipe_config->pch_pfit.enabled = true;
8959 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8960 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8961 break;
8962 }
8963 }
bd2e244f 8964
a1b2278e
CK
8965 scaler_state->scaler_id = id;
8966 if (id >= 0) {
8967 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8968 } else {
8969 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
8970 }
8971}
8972
5724dbd1
DL
8973static void
8974skylake_get_initial_plane_config(struct intel_crtc *crtc,
8975 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
8976{
8977 struct drm_device *dev = crtc->base.dev;
8978 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 8979 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
8980 int pipe = crtc->pipe;
8981 int fourcc, pixel_format;
6761dd31 8982 unsigned int aligned_height;
bc8d7dff 8983 struct drm_framebuffer *fb;
1b842c89 8984 struct intel_framebuffer *intel_fb;
bc8d7dff 8985
d9806c9f 8986 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8987 if (!intel_fb) {
bc8d7dff
DL
8988 DRM_DEBUG_KMS("failed to alloc fb\n");
8989 return;
8990 }
8991
1b842c89
DL
8992 fb = &intel_fb->base;
8993
bc8d7dff 8994 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
8995 if (!(val & PLANE_CTL_ENABLE))
8996 goto error;
8997
bc8d7dff
DL
8998 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8999 fourcc = skl_format_to_fourcc(pixel_format,
9000 val & PLANE_CTL_ORDER_RGBX,
9001 val & PLANE_CTL_ALPHA_MASK);
9002 fb->pixel_format = fourcc;
9003 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9004
40f46283
DL
9005 tiling = val & PLANE_CTL_TILED_MASK;
9006 switch (tiling) {
9007 case PLANE_CTL_TILED_LINEAR:
9008 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9009 break;
9010 case PLANE_CTL_TILED_X:
9011 plane_config->tiling = I915_TILING_X;
9012 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9013 break;
9014 case PLANE_CTL_TILED_Y:
9015 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9016 break;
9017 case PLANE_CTL_TILED_YF:
9018 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9019 break;
9020 default:
9021 MISSING_CASE(tiling);
9022 goto error;
9023 }
9024
bc8d7dff
DL
9025 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9026 plane_config->base = base;
9027
9028 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9029
9030 val = I915_READ(PLANE_SIZE(pipe, 0));
9031 fb->height = ((val >> 16) & 0xfff) + 1;
9032 fb->width = ((val >> 0) & 0x1fff) + 1;
9033
9034 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
9035 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9036 fb->pixel_format);
bc8d7dff
DL
9037 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9038
9039 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9040 fb->pixel_format,
9041 fb->modifier[0]);
bc8d7dff 9042
f37b5c2b 9043 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9044
9045 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9046 pipe_name(pipe), fb->width, fb->height,
9047 fb->bits_per_pixel, base, fb->pitches[0],
9048 plane_config->size);
9049
2d14030b 9050 plane_config->fb = intel_fb;
bc8d7dff
DL
9051 return;
9052
9053error:
9054 kfree(fb);
9055}
9056
2fa2fe9a 9057static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9058 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9059{
9060 struct drm_device *dev = crtc->base.dev;
9061 struct drm_i915_private *dev_priv = dev->dev_private;
9062 uint32_t tmp;
9063
9064 tmp = I915_READ(PF_CTL(crtc->pipe));
9065
9066 if (tmp & PF_ENABLE) {
fd4daa9c 9067 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9068 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9069 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9070
9071 /* We currently do not free assignements of panel fitters on
9072 * ivb/hsw (since we don't use the higher upscaling modes which
9073 * differentiates them) so just WARN about this case for now. */
9074 if (IS_GEN7(dev)) {
9075 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9076 PF_PIPE_SEL_IVB(crtc->pipe));
9077 }
2fa2fe9a 9078 }
79e53945
JB
9079}
9080
5724dbd1
DL
9081static void
9082ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9083 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9084{
9085 struct drm_device *dev = crtc->base.dev;
9086 struct drm_i915_private *dev_priv = dev->dev_private;
9087 u32 val, base, offset;
aeee5a49 9088 int pipe = crtc->pipe;
4c6baa59 9089 int fourcc, pixel_format;
6761dd31 9090 unsigned int aligned_height;
b113d5ee 9091 struct drm_framebuffer *fb;
1b842c89 9092 struct intel_framebuffer *intel_fb;
4c6baa59 9093
42a7b088
DL
9094 val = I915_READ(DSPCNTR(pipe));
9095 if (!(val & DISPLAY_PLANE_ENABLE))
9096 return;
9097
d9806c9f 9098 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9099 if (!intel_fb) {
4c6baa59
JB
9100 DRM_DEBUG_KMS("failed to alloc fb\n");
9101 return;
9102 }
9103
1b842c89
DL
9104 fb = &intel_fb->base;
9105
18c5247e
DV
9106 if (INTEL_INFO(dev)->gen >= 4) {
9107 if (val & DISPPLANE_TILED) {
49af449b 9108 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9109 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9110 }
9111 }
4c6baa59
JB
9112
9113 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9114 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9115 fb->pixel_format = fourcc;
9116 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9117
aeee5a49 9118 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9119 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9120 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9121 } else {
49af449b 9122 if (plane_config->tiling)
aeee5a49 9123 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9124 else
aeee5a49 9125 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9126 }
9127 plane_config->base = base;
9128
9129 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9130 fb->width = ((val >> 16) & 0xfff) + 1;
9131 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9132
9133 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9134 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9135
b113d5ee 9136 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9137 fb->pixel_format,
9138 fb->modifier[0]);
4c6baa59 9139
f37b5c2b 9140 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9141
2844a921
DL
9142 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9143 pipe_name(pipe), fb->width, fb->height,
9144 fb->bits_per_pixel, base, fb->pitches[0],
9145 plane_config->size);
b113d5ee 9146
2d14030b 9147 plane_config->fb = intel_fb;
4c6baa59
JB
9148}
9149
0e8ffe1b 9150static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9151 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9152{
9153 struct drm_device *dev = crtc->base.dev;
9154 struct drm_i915_private *dev_priv = dev->dev_private;
9155 uint32_t tmp;
9156
f458ebbc
DV
9157 if (!intel_display_power_is_enabled(dev_priv,
9158 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
9159 return false;
9160
e143a21c 9161 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 9162 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 9163
0e8ffe1b
DV
9164 tmp = I915_READ(PIPECONF(crtc->pipe));
9165 if (!(tmp & PIPECONF_ENABLE))
9166 return false;
9167
42571aef
VS
9168 switch (tmp & PIPECONF_BPC_MASK) {
9169 case PIPECONF_6BPC:
9170 pipe_config->pipe_bpp = 18;
9171 break;
9172 case PIPECONF_8BPC:
9173 pipe_config->pipe_bpp = 24;
9174 break;
9175 case PIPECONF_10BPC:
9176 pipe_config->pipe_bpp = 30;
9177 break;
9178 case PIPECONF_12BPC:
9179 pipe_config->pipe_bpp = 36;
9180 break;
9181 default:
9182 break;
9183 }
9184
b5a9fa09
DV
9185 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9186 pipe_config->limited_color_range = true;
9187
ab9412ba 9188 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
9189 struct intel_shared_dpll *pll;
9190
88adfff1
DV
9191 pipe_config->has_pch_encoder = true;
9192
627eb5a3
DV
9193 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9194 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9195 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9196
9197 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9198
c0d43d62 9199 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
9200 pipe_config->shared_dpll =
9201 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9202 } else {
9203 tmp = I915_READ(PCH_DPLL_SEL);
9204 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9205 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9206 else
9207 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9208 }
66e985c0
DV
9209
9210 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9211
9212 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9213 &pipe_config->dpll_hw_state));
c93f54cf
DV
9214
9215 tmp = pipe_config->dpll_hw_state.dpll;
9216 pipe_config->pixel_multiplier =
9217 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9218 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9219
9220 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9221 } else {
9222 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9223 }
9224
1bd1bd80
DV
9225 intel_get_pipe_timings(crtc, pipe_config);
9226
2fa2fe9a
DV
9227 ironlake_get_pfit_config(crtc, pipe_config);
9228
0e8ffe1b
DV
9229 return true;
9230}
9231
be256dc7
PZ
9232static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9233{
9234 struct drm_device *dev = dev_priv->dev;
be256dc7 9235 struct intel_crtc *crtc;
be256dc7 9236
d3fcc808 9237 for_each_intel_crtc(dev, crtc)
e2c719b7 9238 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9239 pipe_name(crtc->pipe));
9240
e2c719b7
RC
9241 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9242 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9243 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9244 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9245 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9246 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9247 "CPU PWM1 enabled\n");
c5107b87 9248 if (IS_HASWELL(dev))
e2c719b7 9249 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9250 "CPU PWM2 enabled\n");
e2c719b7 9251 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9252 "PCH PWM1 enabled\n");
e2c719b7 9253 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9254 "Utility pin enabled\n");
e2c719b7 9255 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9256
9926ada1
PZ
9257 /*
9258 * In theory we can still leave IRQs enabled, as long as only the HPD
9259 * interrupts remain enabled. We used to check for that, but since it's
9260 * gen-specific and since we only disable LCPLL after we fully disable
9261 * the interrupts, the check below should be enough.
9262 */
e2c719b7 9263 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9264}
9265
9ccd5aeb
PZ
9266static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9267{
9268 struct drm_device *dev = dev_priv->dev;
9269
9270 if (IS_HASWELL(dev))
9271 return I915_READ(D_COMP_HSW);
9272 else
9273 return I915_READ(D_COMP_BDW);
9274}
9275
3c4c9b81
PZ
9276static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9277{
9278 struct drm_device *dev = dev_priv->dev;
9279
9280 if (IS_HASWELL(dev)) {
9281 mutex_lock(&dev_priv->rps.hw_lock);
9282 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9283 val))
f475dadf 9284 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9285 mutex_unlock(&dev_priv->rps.hw_lock);
9286 } else {
9ccd5aeb
PZ
9287 I915_WRITE(D_COMP_BDW, val);
9288 POSTING_READ(D_COMP_BDW);
3c4c9b81 9289 }
be256dc7
PZ
9290}
9291
9292/*
9293 * This function implements pieces of two sequences from BSpec:
9294 * - Sequence for display software to disable LCPLL
9295 * - Sequence for display software to allow package C8+
9296 * The steps implemented here are just the steps that actually touch the LCPLL
9297 * register. Callers should take care of disabling all the display engine
9298 * functions, doing the mode unset, fixing interrupts, etc.
9299 */
6ff58d53
PZ
9300static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9301 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9302{
9303 uint32_t val;
9304
9305 assert_can_disable_lcpll(dev_priv);
9306
9307 val = I915_READ(LCPLL_CTL);
9308
9309 if (switch_to_fclk) {
9310 val |= LCPLL_CD_SOURCE_FCLK;
9311 I915_WRITE(LCPLL_CTL, val);
9312
9313 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9314 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9315 DRM_ERROR("Switching to FCLK failed\n");
9316
9317 val = I915_READ(LCPLL_CTL);
9318 }
9319
9320 val |= LCPLL_PLL_DISABLE;
9321 I915_WRITE(LCPLL_CTL, val);
9322 POSTING_READ(LCPLL_CTL);
9323
9324 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9325 DRM_ERROR("LCPLL still locked\n");
9326
9ccd5aeb 9327 val = hsw_read_dcomp(dev_priv);
be256dc7 9328 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9329 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9330 ndelay(100);
9331
9ccd5aeb
PZ
9332 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9333 1))
be256dc7
PZ
9334 DRM_ERROR("D_COMP RCOMP still in progress\n");
9335
9336 if (allow_power_down) {
9337 val = I915_READ(LCPLL_CTL);
9338 val |= LCPLL_POWER_DOWN_ALLOW;
9339 I915_WRITE(LCPLL_CTL, val);
9340 POSTING_READ(LCPLL_CTL);
9341 }
9342}
9343
9344/*
9345 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9346 * source.
9347 */
6ff58d53 9348static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9349{
9350 uint32_t val;
9351
9352 val = I915_READ(LCPLL_CTL);
9353
9354 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9355 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9356 return;
9357
a8a8bd54
PZ
9358 /*
9359 * Make sure we're not on PC8 state before disabling PC8, otherwise
9360 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9361 */
59bad947 9362 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9363
be256dc7
PZ
9364 if (val & LCPLL_POWER_DOWN_ALLOW) {
9365 val &= ~LCPLL_POWER_DOWN_ALLOW;
9366 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9367 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9368 }
9369
9ccd5aeb 9370 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9371 val |= D_COMP_COMP_FORCE;
9372 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9373 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9374
9375 val = I915_READ(LCPLL_CTL);
9376 val &= ~LCPLL_PLL_DISABLE;
9377 I915_WRITE(LCPLL_CTL, val);
9378
9379 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9380 DRM_ERROR("LCPLL not locked yet\n");
9381
9382 if (val & LCPLL_CD_SOURCE_FCLK) {
9383 val = I915_READ(LCPLL_CTL);
9384 val &= ~LCPLL_CD_SOURCE_FCLK;
9385 I915_WRITE(LCPLL_CTL, val);
9386
9387 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9388 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9389 DRM_ERROR("Switching back to LCPLL failed\n");
9390 }
215733fa 9391
59bad947 9392 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9393 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9394}
9395
765dab67
PZ
9396/*
9397 * Package states C8 and deeper are really deep PC states that can only be
9398 * reached when all the devices on the system allow it, so even if the graphics
9399 * device allows PC8+, it doesn't mean the system will actually get to these
9400 * states. Our driver only allows PC8+ when going into runtime PM.
9401 *
9402 * The requirements for PC8+ are that all the outputs are disabled, the power
9403 * well is disabled and most interrupts are disabled, and these are also
9404 * requirements for runtime PM. When these conditions are met, we manually do
9405 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9406 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9407 * hang the machine.
9408 *
9409 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9410 * the state of some registers, so when we come back from PC8+ we need to
9411 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9412 * need to take care of the registers kept by RC6. Notice that this happens even
9413 * if we don't put the device in PCI D3 state (which is what currently happens
9414 * because of the runtime PM support).
9415 *
9416 * For more, read "Display Sequences for Package C8" on the hardware
9417 * documentation.
9418 */
a14cb6fc 9419void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9420{
c67a470b
PZ
9421 struct drm_device *dev = dev_priv->dev;
9422 uint32_t val;
9423
c67a470b
PZ
9424 DRM_DEBUG_KMS("Enabling package C8+\n");
9425
c67a470b
PZ
9426 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9427 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9428 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9429 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9430 }
9431
9432 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9433 hsw_disable_lcpll(dev_priv, true, true);
9434}
9435
a14cb6fc 9436void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9437{
9438 struct drm_device *dev = dev_priv->dev;
9439 uint32_t val;
9440
c67a470b
PZ
9441 DRM_DEBUG_KMS("Disabling package C8+\n");
9442
9443 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9444 lpt_init_pch_refclk(dev);
9445
9446 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9447 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9448 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9449 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9450 }
9451
9452 intel_prepare_ddi(dev);
c67a470b
PZ
9453}
9454
27c329ed 9455static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 9456{
a821fc46 9457 struct drm_device *dev = old_state->dev;
27c329ed 9458 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
f8437dd1 9459
27c329ed 9460 broxton_set_cdclk(dev, req_cdclk);
f8437dd1
VK
9461}
9462
b432e5cf 9463/* compute the max rate for new configuration */
27c329ed 9464static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 9465{
b432e5cf 9466 struct intel_crtc *intel_crtc;
27c329ed 9467 struct intel_crtc_state *crtc_state;
b432e5cf 9468 int max_pixel_rate = 0;
b432e5cf 9469
27c329ed
ML
9470 for_each_intel_crtc(state->dev, intel_crtc) {
9471 int pixel_rate;
9472
9473 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9474 if (IS_ERR(crtc_state))
9475 return PTR_ERR(crtc_state);
9476
9477 if (!crtc_state->base.enable)
b432e5cf
VS
9478 continue;
9479
27c329ed 9480 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
9481
9482 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
27c329ed 9483 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
b432e5cf
VS
9484 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9485
9486 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9487 }
9488
9489 return max_pixel_rate;
9490}
9491
9492static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9493{
9494 struct drm_i915_private *dev_priv = dev->dev_private;
9495 uint32_t val, data;
9496 int ret;
9497
9498 if (WARN((I915_READ(LCPLL_CTL) &
9499 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9500 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9501 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9502 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9503 "trying to change cdclk frequency with cdclk not enabled\n"))
9504 return;
9505
9506 mutex_lock(&dev_priv->rps.hw_lock);
9507 ret = sandybridge_pcode_write(dev_priv,
9508 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9509 mutex_unlock(&dev_priv->rps.hw_lock);
9510 if (ret) {
9511 DRM_ERROR("failed to inform pcode about cdclk change\n");
9512 return;
9513 }
9514
9515 val = I915_READ(LCPLL_CTL);
9516 val |= LCPLL_CD_SOURCE_FCLK;
9517 I915_WRITE(LCPLL_CTL, val);
9518
9519 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9520 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9521 DRM_ERROR("Switching to FCLK failed\n");
9522
9523 val = I915_READ(LCPLL_CTL);
9524 val &= ~LCPLL_CLK_FREQ_MASK;
9525
9526 switch (cdclk) {
9527 case 450000:
9528 val |= LCPLL_CLK_FREQ_450;
9529 data = 0;
9530 break;
9531 case 540000:
9532 val |= LCPLL_CLK_FREQ_54O_BDW;
9533 data = 1;
9534 break;
9535 case 337500:
9536 val |= LCPLL_CLK_FREQ_337_5_BDW;
9537 data = 2;
9538 break;
9539 case 675000:
9540 val |= LCPLL_CLK_FREQ_675_BDW;
9541 data = 3;
9542 break;
9543 default:
9544 WARN(1, "invalid cdclk frequency\n");
9545 return;
9546 }
9547
9548 I915_WRITE(LCPLL_CTL, val);
9549
9550 val = I915_READ(LCPLL_CTL);
9551 val &= ~LCPLL_CD_SOURCE_FCLK;
9552 I915_WRITE(LCPLL_CTL, val);
9553
9554 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9555 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9556 DRM_ERROR("Switching back to LCPLL failed\n");
9557
9558 mutex_lock(&dev_priv->rps.hw_lock);
9559 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9560 mutex_unlock(&dev_priv->rps.hw_lock);
9561
9562 intel_update_cdclk(dev);
9563
9564 WARN(cdclk != dev_priv->cdclk_freq,
9565 "cdclk requested %d kHz but got %d kHz\n",
9566 cdclk, dev_priv->cdclk_freq);
9567}
9568
27c329ed 9569static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 9570{
27c329ed
ML
9571 struct drm_i915_private *dev_priv = to_i915(state->dev);
9572 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
9573 int cdclk;
9574
9575 /*
9576 * FIXME should also account for plane ratio
9577 * once 64bpp pixel formats are supported.
9578 */
27c329ed 9579 if (max_pixclk > 540000)
b432e5cf 9580 cdclk = 675000;
27c329ed 9581 else if (max_pixclk > 450000)
b432e5cf 9582 cdclk = 540000;
27c329ed 9583 else if (max_pixclk > 337500)
b432e5cf
VS
9584 cdclk = 450000;
9585 else
9586 cdclk = 337500;
9587
9588 /*
9589 * FIXME move the cdclk caclulation to
9590 * compute_config() so we can fail gracegully.
9591 */
9592 if (cdclk > dev_priv->max_cdclk_freq) {
9593 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9594 cdclk, dev_priv->max_cdclk_freq);
9595 cdclk = dev_priv->max_cdclk_freq;
9596 }
9597
27c329ed 9598 to_intel_atomic_state(state)->cdclk = cdclk;
b432e5cf
VS
9599
9600 return 0;
9601}
9602
27c329ed 9603static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 9604{
27c329ed
ML
9605 struct drm_device *dev = old_state->dev;
9606 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
b432e5cf 9607
27c329ed 9608 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
9609}
9610
190f68c5
ACO
9611static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9612 struct intel_crtc_state *crtc_state)
09b4ddf9 9613{
190f68c5 9614 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 9615 return -EINVAL;
716c2e55 9616
c7653199 9617 crtc->lowfreq_avail = false;
644cef34 9618
c8f7a0db 9619 return 0;
79e53945
JB
9620}
9621
3760b59c
S
9622static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9623 enum port port,
9624 struct intel_crtc_state *pipe_config)
9625{
9626 switch (port) {
9627 case PORT_A:
9628 pipe_config->ddi_pll_sel = SKL_DPLL0;
9629 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9630 break;
9631 case PORT_B:
9632 pipe_config->ddi_pll_sel = SKL_DPLL1;
9633 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9634 break;
9635 case PORT_C:
9636 pipe_config->ddi_pll_sel = SKL_DPLL2;
9637 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9638 break;
9639 default:
9640 DRM_ERROR("Incorrect port type\n");
9641 }
9642}
9643
96b7dfb7
S
9644static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9645 enum port port,
5cec258b 9646 struct intel_crtc_state *pipe_config)
96b7dfb7 9647{
3148ade7 9648 u32 temp, dpll_ctl1;
96b7dfb7
S
9649
9650 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9651 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9652
9653 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
9654 case SKL_DPLL0:
9655 /*
9656 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9657 * of the shared DPLL framework and thus needs to be read out
9658 * separately
9659 */
9660 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9661 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9662 break;
96b7dfb7
S
9663 case SKL_DPLL1:
9664 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9665 break;
9666 case SKL_DPLL2:
9667 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9668 break;
9669 case SKL_DPLL3:
9670 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9671 break;
96b7dfb7
S
9672 }
9673}
9674
7d2c8175
DL
9675static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9676 enum port port,
5cec258b 9677 struct intel_crtc_state *pipe_config)
7d2c8175
DL
9678{
9679 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9680
9681 switch (pipe_config->ddi_pll_sel) {
9682 case PORT_CLK_SEL_WRPLL1:
9683 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9684 break;
9685 case PORT_CLK_SEL_WRPLL2:
9686 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9687 break;
9688 }
9689}
9690
26804afd 9691static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9692 struct intel_crtc_state *pipe_config)
26804afd
DV
9693{
9694 struct drm_device *dev = crtc->base.dev;
9695 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9696 struct intel_shared_dpll *pll;
26804afd
DV
9697 enum port port;
9698 uint32_t tmp;
9699
9700 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9701
9702 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9703
96b7dfb7
S
9704 if (IS_SKYLAKE(dev))
9705 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9706 else if (IS_BROXTON(dev))
9707 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9708 else
9709 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9710
d452c5b6
DV
9711 if (pipe_config->shared_dpll >= 0) {
9712 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9713
9714 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9715 &pipe_config->dpll_hw_state));
9716 }
9717
26804afd
DV
9718 /*
9719 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9720 * DDI E. So just check whether this pipe is wired to DDI E and whether
9721 * the PCH transcoder is on.
9722 */
ca370455
DL
9723 if (INTEL_INFO(dev)->gen < 9 &&
9724 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9725 pipe_config->has_pch_encoder = true;
9726
9727 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9728 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9729 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9730
9731 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9732 }
9733}
9734
0e8ffe1b 9735static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9736 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9737{
9738 struct drm_device *dev = crtc->base.dev;
9739 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 9740 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
9741 uint32_t tmp;
9742
f458ebbc 9743 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
9744 POWER_DOMAIN_PIPE(crtc->pipe)))
9745 return false;
9746
e143a21c 9747 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
9748 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9749
eccb140b
DV
9750 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9751 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9752 enum pipe trans_edp_pipe;
9753 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9754 default:
9755 WARN(1, "unknown pipe linked to edp transcoder\n");
9756 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9757 case TRANS_DDI_EDP_INPUT_A_ON:
9758 trans_edp_pipe = PIPE_A;
9759 break;
9760 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9761 trans_edp_pipe = PIPE_B;
9762 break;
9763 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9764 trans_edp_pipe = PIPE_C;
9765 break;
9766 }
9767
9768 if (trans_edp_pipe == crtc->pipe)
9769 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9770 }
9771
f458ebbc 9772 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 9773 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
9774 return false;
9775
eccb140b 9776 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
9777 if (!(tmp & PIPECONF_ENABLE))
9778 return false;
9779
26804afd 9780 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9781
1bd1bd80
DV
9782 intel_get_pipe_timings(crtc, pipe_config);
9783
a1b2278e
CK
9784 if (INTEL_INFO(dev)->gen >= 9) {
9785 skl_init_scalers(dev, crtc, pipe_config);
9786 }
9787
2fa2fe9a 9788 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
af99ceda
CK
9789
9790 if (INTEL_INFO(dev)->gen >= 9) {
9791 pipe_config->scaler_state.scaler_id = -1;
9792 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9793 }
9794
bd2e244f 9795 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
ff6d9f55 9796 if (INTEL_INFO(dev)->gen == 9)
bd2e244f 9797 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 9798 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 9799 ironlake_get_pfit_config(crtc, pipe_config);
ff6d9f55
JB
9800 else
9801 MISSING_CASE(INTEL_INFO(dev)->gen);
bd2e244f 9802 }
88adfff1 9803
e59150dc
JB
9804 if (IS_HASWELL(dev))
9805 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9806 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9807
ebb69c95
CT
9808 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9809 pipe_config->pixel_multiplier =
9810 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9811 } else {
9812 pipe_config->pixel_multiplier = 1;
9813 }
6c49f241 9814
0e8ffe1b
DV
9815 return true;
9816}
9817
560b85bb
CW
9818static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9819{
9820 struct drm_device *dev = crtc->dev;
9821 struct drm_i915_private *dev_priv = dev->dev_private;
9822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 9823 uint32_t cntl = 0, size = 0;
560b85bb 9824
dc41c154 9825 if (base) {
3dd512fb
MR
9826 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9827 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
9828 unsigned int stride = roundup_pow_of_two(width) * 4;
9829
9830 switch (stride) {
9831 default:
9832 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9833 width, stride);
9834 stride = 256;
9835 /* fallthrough */
9836 case 256:
9837 case 512:
9838 case 1024:
9839 case 2048:
9840 break;
4b0e333e
CW
9841 }
9842
dc41c154
VS
9843 cntl |= CURSOR_ENABLE |
9844 CURSOR_GAMMA_ENABLE |
9845 CURSOR_FORMAT_ARGB |
9846 CURSOR_STRIDE(stride);
9847
9848 size = (height << 12) | width;
4b0e333e 9849 }
560b85bb 9850
dc41c154
VS
9851 if (intel_crtc->cursor_cntl != 0 &&
9852 (intel_crtc->cursor_base != base ||
9853 intel_crtc->cursor_size != size ||
9854 intel_crtc->cursor_cntl != cntl)) {
9855 /* On these chipsets we can only modify the base/size/stride
9856 * whilst the cursor is disabled.
9857 */
9858 I915_WRITE(_CURACNTR, 0);
4b0e333e 9859 POSTING_READ(_CURACNTR);
dc41c154 9860 intel_crtc->cursor_cntl = 0;
4b0e333e 9861 }
560b85bb 9862
99d1f387 9863 if (intel_crtc->cursor_base != base) {
9db4a9c7 9864 I915_WRITE(_CURABASE, base);
99d1f387
VS
9865 intel_crtc->cursor_base = base;
9866 }
4726e0b0 9867
dc41c154
VS
9868 if (intel_crtc->cursor_size != size) {
9869 I915_WRITE(CURSIZE, size);
9870 intel_crtc->cursor_size = size;
4b0e333e 9871 }
560b85bb 9872
4b0e333e 9873 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
9874 I915_WRITE(_CURACNTR, cntl);
9875 POSTING_READ(_CURACNTR);
4b0e333e 9876 intel_crtc->cursor_cntl = cntl;
560b85bb 9877 }
560b85bb
CW
9878}
9879
560b85bb 9880static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
9881{
9882 struct drm_device *dev = crtc->dev;
9883 struct drm_i915_private *dev_priv = dev->dev_private;
9884 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9885 int pipe = intel_crtc->pipe;
4b0e333e
CW
9886 uint32_t cntl;
9887
9888 cntl = 0;
9889 if (base) {
9890 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 9891 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
9892 case 64:
9893 cntl |= CURSOR_MODE_64_ARGB_AX;
9894 break;
9895 case 128:
9896 cntl |= CURSOR_MODE_128_ARGB_AX;
9897 break;
9898 case 256:
9899 cntl |= CURSOR_MODE_256_ARGB_AX;
9900 break;
9901 default:
3dd512fb 9902 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 9903 return;
65a21cd6 9904 }
4b0e333e 9905 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
9906
9907 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9908 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 9909 }
65a21cd6 9910
8e7d688b 9911 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
9912 cntl |= CURSOR_ROTATE_180;
9913
4b0e333e
CW
9914 if (intel_crtc->cursor_cntl != cntl) {
9915 I915_WRITE(CURCNTR(pipe), cntl);
9916 POSTING_READ(CURCNTR(pipe));
9917 intel_crtc->cursor_cntl = cntl;
65a21cd6 9918 }
4b0e333e 9919
65a21cd6 9920 /* and commit changes on next vblank */
5efb3e28
VS
9921 I915_WRITE(CURBASE(pipe), base);
9922 POSTING_READ(CURBASE(pipe));
99d1f387
VS
9923
9924 intel_crtc->cursor_base = base;
65a21cd6
JB
9925}
9926
cda4b7d3 9927/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
9928static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9929 bool on)
cda4b7d3
CW
9930{
9931 struct drm_device *dev = crtc->dev;
9932 struct drm_i915_private *dev_priv = dev->dev_private;
9933 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9934 int pipe = intel_crtc->pipe;
3d7d6510
MR
9935 int x = crtc->cursor_x;
9936 int y = crtc->cursor_y;
d6e4db15 9937 u32 base = 0, pos = 0;
cda4b7d3 9938
d6e4db15 9939 if (on)
cda4b7d3 9940 base = intel_crtc->cursor_addr;
cda4b7d3 9941
6e3c9717 9942 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
9943 base = 0;
9944
6e3c9717 9945 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
9946 base = 0;
9947
9948 if (x < 0) {
3dd512fb 9949 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
cda4b7d3
CW
9950 base = 0;
9951
9952 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9953 x = -x;
9954 }
9955 pos |= x << CURSOR_X_SHIFT;
9956
9957 if (y < 0) {
3dd512fb 9958 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
cda4b7d3
CW
9959 base = 0;
9960
9961 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9962 y = -y;
9963 }
9964 pos |= y << CURSOR_Y_SHIFT;
9965
4b0e333e 9966 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
9967 return;
9968
5efb3e28
VS
9969 I915_WRITE(CURPOS(pipe), pos);
9970
4398ad45
VS
9971 /* ILK+ do this automagically */
9972 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 9973 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
3dd512fb
MR
9974 base += (intel_crtc->base.cursor->state->crtc_h *
9975 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
4398ad45
VS
9976 }
9977
8ac54669 9978 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
9979 i845_update_cursor(crtc, base);
9980 else
9981 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
9982}
9983
dc41c154
VS
9984static bool cursor_size_ok(struct drm_device *dev,
9985 uint32_t width, uint32_t height)
9986{
9987 if (width == 0 || height == 0)
9988 return false;
9989
9990 /*
9991 * 845g/865g are special in that they are only limited by
9992 * the width of their cursors, the height is arbitrary up to
9993 * the precision of the register. Everything else requires
9994 * square cursors, limited to a few power-of-two sizes.
9995 */
9996 if (IS_845G(dev) || IS_I865G(dev)) {
9997 if ((width & 63) != 0)
9998 return false;
9999
10000 if (width > (IS_845G(dev) ? 64 : 512))
10001 return false;
10002
10003 if (height > 1023)
10004 return false;
10005 } else {
10006 switch (width | height) {
10007 case 256:
10008 case 128:
10009 if (IS_GEN2(dev))
10010 return false;
10011 case 64:
10012 break;
10013 default:
10014 return false;
10015 }
10016 }
10017
10018 return true;
10019}
10020
79e53945 10021static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 10022 u16 *blue, uint32_t start, uint32_t size)
79e53945 10023{
7203425a 10024 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 10025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 10026
7203425a 10027 for (i = start; i < end; i++) {
79e53945
JB
10028 intel_crtc->lut_r[i] = red[i] >> 8;
10029 intel_crtc->lut_g[i] = green[i] >> 8;
10030 intel_crtc->lut_b[i] = blue[i] >> 8;
10031 }
10032
10033 intel_crtc_load_lut(crtc);
10034}
10035
79e53945
JB
10036/* VESA 640x480x72Hz mode to set on the pipe */
10037static struct drm_display_mode load_detect_mode = {
10038 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10039 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10040};
10041
a8bb6818
DV
10042struct drm_framebuffer *
10043__intel_framebuffer_create(struct drm_device *dev,
10044 struct drm_mode_fb_cmd2 *mode_cmd,
10045 struct drm_i915_gem_object *obj)
d2dff872
CW
10046{
10047 struct intel_framebuffer *intel_fb;
10048 int ret;
10049
10050 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10051 if (!intel_fb) {
6ccb81f2 10052 drm_gem_object_unreference(&obj->base);
d2dff872
CW
10053 return ERR_PTR(-ENOMEM);
10054 }
10055
10056 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10057 if (ret)
10058 goto err;
d2dff872
CW
10059
10060 return &intel_fb->base;
dd4916c5 10061err:
6ccb81f2 10062 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
10063 kfree(intel_fb);
10064
10065 return ERR_PTR(ret);
d2dff872
CW
10066}
10067
b5ea642a 10068static struct drm_framebuffer *
a8bb6818
DV
10069intel_framebuffer_create(struct drm_device *dev,
10070 struct drm_mode_fb_cmd2 *mode_cmd,
10071 struct drm_i915_gem_object *obj)
10072{
10073 struct drm_framebuffer *fb;
10074 int ret;
10075
10076 ret = i915_mutex_lock_interruptible(dev);
10077 if (ret)
10078 return ERR_PTR(ret);
10079 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10080 mutex_unlock(&dev->struct_mutex);
10081
10082 return fb;
10083}
10084
d2dff872
CW
10085static u32
10086intel_framebuffer_pitch_for_width(int width, int bpp)
10087{
10088 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10089 return ALIGN(pitch, 64);
10090}
10091
10092static u32
10093intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10094{
10095 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10096 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10097}
10098
10099static struct drm_framebuffer *
10100intel_framebuffer_create_for_mode(struct drm_device *dev,
10101 struct drm_display_mode *mode,
10102 int depth, int bpp)
10103{
10104 struct drm_i915_gem_object *obj;
0fed39bd 10105 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
10106
10107 obj = i915_gem_alloc_object(dev,
10108 intel_framebuffer_size_for_mode(mode, bpp));
10109 if (obj == NULL)
10110 return ERR_PTR(-ENOMEM);
10111
10112 mode_cmd.width = mode->hdisplay;
10113 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10114 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10115 bpp);
5ca0c34a 10116 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
10117
10118 return intel_framebuffer_create(dev, &mode_cmd, obj);
10119}
10120
10121static struct drm_framebuffer *
10122mode_fits_in_fbdev(struct drm_device *dev,
10123 struct drm_display_mode *mode)
10124{
4520f53a 10125#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
10126 struct drm_i915_private *dev_priv = dev->dev_private;
10127 struct drm_i915_gem_object *obj;
10128 struct drm_framebuffer *fb;
10129
4c0e5528 10130 if (!dev_priv->fbdev)
d2dff872
CW
10131 return NULL;
10132
4c0e5528 10133 if (!dev_priv->fbdev->fb)
d2dff872
CW
10134 return NULL;
10135
4c0e5528
DV
10136 obj = dev_priv->fbdev->fb->obj;
10137 BUG_ON(!obj);
10138
8bcd4553 10139 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10140 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10141 fb->bits_per_pixel))
d2dff872
CW
10142 return NULL;
10143
01f2c773 10144 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10145 return NULL;
10146
10147 return fb;
4520f53a
DV
10148#else
10149 return NULL;
10150#endif
d2dff872
CW
10151}
10152
d3a40d1b
ACO
10153static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10154 struct drm_crtc *crtc,
10155 struct drm_display_mode *mode,
10156 struct drm_framebuffer *fb,
10157 int x, int y)
10158{
10159 struct drm_plane_state *plane_state;
10160 int hdisplay, vdisplay;
10161 int ret;
10162
10163 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10164 if (IS_ERR(plane_state))
10165 return PTR_ERR(plane_state);
10166
10167 if (mode)
10168 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10169 else
10170 hdisplay = vdisplay = 0;
10171
10172 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10173 if (ret)
10174 return ret;
10175 drm_atomic_set_fb_for_plane(plane_state, fb);
10176 plane_state->crtc_x = 0;
10177 plane_state->crtc_y = 0;
10178 plane_state->crtc_w = hdisplay;
10179 plane_state->crtc_h = vdisplay;
10180 plane_state->src_x = x << 16;
10181 plane_state->src_y = y << 16;
10182 plane_state->src_w = hdisplay << 16;
10183 plane_state->src_h = vdisplay << 16;
10184
10185 return 0;
10186}
10187
d2434ab7 10188bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10189 struct drm_display_mode *mode,
51fd371b
RC
10190 struct intel_load_detect_pipe *old,
10191 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10192{
10193 struct intel_crtc *intel_crtc;
d2434ab7
DV
10194 struct intel_encoder *intel_encoder =
10195 intel_attached_encoder(connector);
79e53945 10196 struct drm_crtc *possible_crtc;
4ef69c7a 10197 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10198 struct drm_crtc *crtc = NULL;
10199 struct drm_device *dev = encoder->dev;
94352cf9 10200 struct drm_framebuffer *fb;
51fd371b 10201 struct drm_mode_config *config = &dev->mode_config;
83a57153 10202 struct drm_atomic_state *state = NULL;
944b0c76 10203 struct drm_connector_state *connector_state;
4be07317 10204 struct intel_crtc_state *crtc_state;
51fd371b 10205 int ret, i = -1;
79e53945 10206
d2dff872 10207 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10208 connector->base.id, connector->name,
8e329a03 10209 encoder->base.id, encoder->name);
d2dff872 10210
51fd371b
RC
10211retry:
10212 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10213 if (ret)
10214 goto fail_unlock;
6e9f798d 10215
79e53945
JB
10216 /*
10217 * Algorithm gets a little messy:
7a5e4805 10218 *
79e53945
JB
10219 * - if the connector already has an assigned crtc, use it (but make
10220 * sure it's on first)
7a5e4805 10221 *
79e53945
JB
10222 * - try to find the first unused crtc that can drive this connector,
10223 * and use that if we find one
79e53945
JB
10224 */
10225
10226 /* See if we already have a CRTC for this connector */
10227 if (encoder->crtc) {
10228 crtc = encoder->crtc;
8261b191 10229
51fd371b 10230 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
10231 if (ret)
10232 goto fail_unlock;
10233 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
10234 if (ret)
10235 goto fail_unlock;
7b24056b 10236
24218aac 10237 old->dpms_mode = connector->dpms;
8261b191
CW
10238 old->load_detect_temp = false;
10239
10240 /* Make sure the crtc and connector are running */
24218aac
DV
10241 if (connector->dpms != DRM_MODE_DPMS_ON)
10242 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 10243
7173188d 10244 return true;
79e53945
JB
10245 }
10246
10247 /* Find an unused one (if possible) */
70e1e0ec 10248 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10249 i++;
10250 if (!(encoder->possible_crtcs & (1 << i)))
10251 continue;
83d65738 10252 if (possible_crtc->state->enable)
a459249c
VS
10253 continue;
10254 /* This can occur when applying the pipe A quirk on resume. */
10255 if (to_intel_crtc(possible_crtc)->new_enabled)
10256 continue;
10257
10258 crtc = possible_crtc;
10259 break;
79e53945
JB
10260 }
10261
10262 /*
10263 * If we didn't find an unused CRTC, don't use any.
10264 */
10265 if (!crtc) {
7173188d 10266 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 10267 goto fail_unlock;
79e53945
JB
10268 }
10269
51fd371b
RC
10270 ret = drm_modeset_lock(&crtc->mutex, ctx);
10271 if (ret)
4d02e2de
DV
10272 goto fail_unlock;
10273 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10274 if (ret)
51fd371b 10275 goto fail_unlock;
fc303101
DV
10276 intel_encoder->new_crtc = to_intel_crtc(crtc);
10277 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
10278
10279 intel_crtc = to_intel_crtc(crtc);
412b61d8 10280 intel_crtc->new_enabled = true;
24218aac 10281 old->dpms_mode = connector->dpms;
8261b191 10282 old->load_detect_temp = true;
d2dff872 10283 old->release_fb = NULL;
79e53945 10284
83a57153
ACO
10285 state = drm_atomic_state_alloc(dev);
10286 if (!state)
10287 return false;
10288
10289 state->acquire_ctx = ctx;
10290
944b0c76
ACO
10291 connector_state = drm_atomic_get_connector_state(state, connector);
10292 if (IS_ERR(connector_state)) {
10293 ret = PTR_ERR(connector_state);
10294 goto fail;
10295 }
10296
10297 connector_state->crtc = crtc;
10298 connector_state->best_encoder = &intel_encoder->base;
10299
4be07317
ACO
10300 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10301 if (IS_ERR(crtc_state)) {
10302 ret = PTR_ERR(crtc_state);
10303 goto fail;
10304 }
10305
49d6fa21 10306 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10307
6492711d
CW
10308 if (!mode)
10309 mode = &load_detect_mode;
79e53945 10310
d2dff872
CW
10311 /* We need a framebuffer large enough to accommodate all accesses
10312 * that the plane may generate whilst we perform load detection.
10313 * We can not rely on the fbcon either being present (we get called
10314 * during its initialisation to detect all boot displays, or it may
10315 * not even exist) or that it is large enough to satisfy the
10316 * requested mode.
10317 */
94352cf9
DV
10318 fb = mode_fits_in_fbdev(dev, mode);
10319 if (fb == NULL) {
d2dff872 10320 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
10321 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10322 old->release_fb = fb;
d2dff872
CW
10323 } else
10324 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10325 if (IS_ERR(fb)) {
d2dff872 10326 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10327 goto fail;
79e53945 10328 }
79e53945 10329
d3a40d1b
ACO
10330 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10331 if (ret)
10332 goto fail;
10333
8c7b5ccb
ACO
10334 drm_mode_copy(&crtc_state->base.mode, mode);
10335
568c634a 10336 if (intel_set_mode(state)) {
6492711d 10337 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
10338 if (old->release_fb)
10339 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 10340 goto fail;
79e53945 10341 }
9128b040 10342 crtc->primary->crtc = crtc;
7173188d 10343
79e53945 10344 /* let the connector get through one full cycle before testing */
9d0498a2 10345 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10346 return true;
412b61d8
VS
10347
10348 fail:
83d65738 10349 intel_crtc->new_enabled = crtc->state->enable;
51fd371b 10350fail_unlock:
e5d958ef
ACO
10351 drm_atomic_state_free(state);
10352 state = NULL;
83a57153 10353
51fd371b
RC
10354 if (ret == -EDEADLK) {
10355 drm_modeset_backoff(ctx);
10356 goto retry;
10357 }
10358
412b61d8 10359 return false;
79e53945
JB
10360}
10361
d2434ab7 10362void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10363 struct intel_load_detect_pipe *old,
10364 struct drm_modeset_acquire_ctx *ctx)
79e53945 10365{
83a57153 10366 struct drm_device *dev = connector->dev;
d2434ab7
DV
10367 struct intel_encoder *intel_encoder =
10368 intel_attached_encoder(connector);
4ef69c7a 10369 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 10370 struct drm_crtc *crtc = encoder->crtc;
412b61d8 10371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 10372 struct drm_atomic_state *state;
944b0c76 10373 struct drm_connector_state *connector_state;
4be07317 10374 struct intel_crtc_state *crtc_state;
d3a40d1b 10375 int ret;
79e53945 10376
d2dff872 10377 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10378 connector->base.id, connector->name,
8e329a03 10379 encoder->base.id, encoder->name);
d2dff872 10380
8261b191 10381 if (old->load_detect_temp) {
83a57153 10382 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
10383 if (!state)
10384 goto fail;
83a57153
ACO
10385
10386 state->acquire_ctx = ctx;
10387
944b0c76
ACO
10388 connector_state = drm_atomic_get_connector_state(state, connector);
10389 if (IS_ERR(connector_state))
10390 goto fail;
10391
4be07317
ACO
10392 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10393 if (IS_ERR(crtc_state))
10394 goto fail;
10395
fc303101
DV
10396 to_intel_connector(connector)->new_encoder = NULL;
10397 intel_encoder->new_crtc = NULL;
412b61d8 10398 intel_crtc->new_enabled = false;
944b0c76
ACO
10399
10400 connector_state->best_encoder = NULL;
10401 connector_state->crtc = NULL;
10402
49d6fa21 10403 crtc_state->base.enable = crtc_state->base.active = false;
4be07317 10404
d3a40d1b
ACO
10405 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10406 0, 0);
10407 if (ret)
10408 goto fail;
10409
568c634a 10410 ret = intel_set_mode(state);
2bfb4627
ACO
10411 if (ret)
10412 goto fail;
d2dff872 10413
36206361
DV
10414 if (old->release_fb) {
10415 drm_framebuffer_unregister_private(old->release_fb);
10416 drm_framebuffer_unreference(old->release_fb);
10417 }
d2dff872 10418
0622a53c 10419 return;
79e53945
JB
10420 }
10421
c751ce4f 10422 /* Switch crtc and encoder back off if necessary */
24218aac
DV
10423 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10424 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
10425
10426 return;
10427fail:
10428 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10429 drm_atomic_state_free(state);
79e53945
JB
10430}
10431
da4a1efa 10432static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10433 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10434{
10435 struct drm_i915_private *dev_priv = dev->dev_private;
10436 u32 dpll = pipe_config->dpll_hw_state.dpll;
10437
10438 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10439 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10440 else if (HAS_PCH_SPLIT(dev))
10441 return 120000;
10442 else if (!IS_GEN2(dev))
10443 return 96000;
10444 else
10445 return 48000;
10446}
10447
79e53945 10448/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10449static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10450 struct intel_crtc_state *pipe_config)
79e53945 10451{
f1f644dc 10452 struct drm_device *dev = crtc->base.dev;
79e53945 10453 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10454 int pipe = pipe_config->cpu_transcoder;
293623f7 10455 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
10456 u32 fp;
10457 intel_clock_t clock;
da4a1efa 10458 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10459
10460 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10461 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10462 else
293623f7 10463 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10464
10465 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10466 if (IS_PINEVIEW(dev)) {
10467 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10468 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10469 } else {
10470 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10471 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10472 }
10473
a6c45cf0 10474 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10475 if (IS_PINEVIEW(dev))
10476 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10477 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10478 else
10479 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10480 DPLL_FPA01_P1_POST_DIV_SHIFT);
10481
10482 switch (dpll & DPLL_MODE_MASK) {
10483 case DPLLB_MODE_DAC_SERIAL:
10484 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10485 5 : 10;
10486 break;
10487 case DPLLB_MODE_LVDS:
10488 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10489 7 : 14;
10490 break;
10491 default:
28c97730 10492 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10493 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10494 return;
79e53945
JB
10495 }
10496
ac58c3f0 10497 if (IS_PINEVIEW(dev))
da4a1efa 10498 pineview_clock(refclk, &clock);
ac58c3f0 10499 else
da4a1efa 10500 i9xx_clock(refclk, &clock);
79e53945 10501 } else {
0fb58223 10502 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10503 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10504
10505 if (is_lvds) {
10506 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10507 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10508
10509 if (lvds & LVDS_CLKB_POWER_UP)
10510 clock.p2 = 7;
10511 else
10512 clock.p2 = 14;
79e53945
JB
10513 } else {
10514 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10515 clock.p1 = 2;
10516 else {
10517 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10518 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10519 }
10520 if (dpll & PLL_P2_DIVIDE_BY_4)
10521 clock.p2 = 4;
10522 else
10523 clock.p2 = 2;
79e53945 10524 }
da4a1efa
VS
10525
10526 i9xx_clock(refclk, &clock);
79e53945
JB
10527 }
10528
18442d08
VS
10529 /*
10530 * This value includes pixel_multiplier. We will use
241bfc38 10531 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10532 * encoder's get_config() function.
10533 */
10534 pipe_config->port_clock = clock.dot;
f1f644dc
JB
10535}
10536
6878da05
VS
10537int intel_dotclock_calculate(int link_freq,
10538 const struct intel_link_m_n *m_n)
f1f644dc 10539{
f1f644dc
JB
10540 /*
10541 * The calculation for the data clock is:
1041a02f 10542 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10543 * But we want to avoid losing precison if possible, so:
1041a02f 10544 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10545 *
10546 * and the link clock is simpler:
1041a02f 10547 * link_clock = (m * link_clock) / n
f1f644dc
JB
10548 */
10549
6878da05
VS
10550 if (!m_n->link_n)
10551 return 0;
f1f644dc 10552
6878da05
VS
10553 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10554}
f1f644dc 10555
18442d08 10556static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10557 struct intel_crtc_state *pipe_config)
6878da05
VS
10558{
10559 struct drm_device *dev = crtc->base.dev;
79e53945 10560
18442d08
VS
10561 /* read out port_clock from the DPLL */
10562 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10563
f1f644dc 10564 /*
18442d08 10565 * This value does not include pixel_multiplier.
241bfc38 10566 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
10567 * agree once we know their relationship in the encoder's
10568 * get_config() function.
79e53945 10569 */
2d112de7 10570 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
10571 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10572 &pipe_config->fdi_m_n);
79e53945
JB
10573}
10574
10575/** Returns the currently programmed mode of the given pipe. */
10576struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10577 struct drm_crtc *crtc)
10578{
548f245b 10579 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10581 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10582 struct drm_display_mode *mode;
5cec258b 10583 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
10584 int htot = I915_READ(HTOTAL(cpu_transcoder));
10585 int hsync = I915_READ(HSYNC(cpu_transcoder));
10586 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10587 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10588 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10589
10590 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10591 if (!mode)
10592 return NULL;
10593
f1f644dc
JB
10594 /*
10595 * Construct a pipe_config sufficient for getting the clock info
10596 * back out of crtc_clock_get.
10597 *
10598 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10599 * to use a real value here instead.
10600 */
293623f7 10601 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 10602 pipe_config.pixel_multiplier = 1;
293623f7
VS
10603 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10604 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10605 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
10606 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10607
773ae034 10608 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
10609 mode->hdisplay = (htot & 0xffff) + 1;
10610 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10611 mode->hsync_start = (hsync & 0xffff) + 1;
10612 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10613 mode->vdisplay = (vtot & 0xffff) + 1;
10614 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10615 mode->vsync_start = (vsync & 0xffff) + 1;
10616 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10617
10618 drm_mode_set_name(mode);
79e53945
JB
10619
10620 return mode;
10621}
10622
652c393a
JB
10623static void intel_decrease_pllclock(struct drm_crtc *crtc)
10624{
10625 struct drm_device *dev = crtc->dev;
fbee40df 10626 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 10628
baff296c 10629 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
10630 return;
10631
10632 if (!dev_priv->lvds_downclock_avail)
10633 return;
10634
10635 /*
10636 * Since this is called by a timer, we should never get here in
10637 * the manual case.
10638 */
10639 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
10640 int pipe = intel_crtc->pipe;
10641 int dpll_reg = DPLL(pipe);
10642 int dpll;
f6e5b160 10643
44d98a61 10644 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 10645
8ac5a6d5 10646 assert_panel_unlocked(dev_priv, pipe);
652c393a 10647
dc257cf1 10648 dpll = I915_READ(dpll_reg);
652c393a
JB
10649 dpll |= DISPLAY_RATE_SELECT_FPA1;
10650 I915_WRITE(dpll_reg, dpll);
9d0498a2 10651 intel_wait_for_vblank(dev, pipe);
652c393a
JB
10652 dpll = I915_READ(dpll_reg);
10653 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 10654 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
10655 }
10656
10657}
10658
f047e395
CW
10659void intel_mark_busy(struct drm_device *dev)
10660{
c67a470b
PZ
10661 struct drm_i915_private *dev_priv = dev->dev_private;
10662
f62a0076
CW
10663 if (dev_priv->mm.busy)
10664 return;
10665
43694d69 10666 intel_runtime_pm_get(dev_priv);
c67a470b 10667 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10668 if (INTEL_INFO(dev)->gen >= 6)
10669 gen6_rps_busy(dev_priv);
f62a0076 10670 dev_priv->mm.busy = true;
f047e395
CW
10671}
10672
10673void intel_mark_idle(struct drm_device *dev)
652c393a 10674{
c67a470b 10675 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10676 struct drm_crtc *crtc;
652c393a 10677
f62a0076
CW
10678 if (!dev_priv->mm.busy)
10679 return;
10680
10681 dev_priv->mm.busy = false;
10682
70e1e0ec 10683 for_each_crtc(dev, crtc) {
f4510a27 10684 if (!crtc->primary->fb)
652c393a
JB
10685 continue;
10686
725a5b54 10687 intel_decrease_pllclock(crtc);
652c393a 10688 }
b29c19b6 10689
3d13ef2e 10690 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10691 gen6_rps_idle(dev->dev_private);
bb4cdd53 10692
43694d69 10693 intel_runtime_pm_put(dev_priv);
652c393a
JB
10694}
10695
79e53945
JB
10696static void intel_crtc_destroy(struct drm_crtc *crtc)
10697{
10698 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10699 struct drm_device *dev = crtc->dev;
10700 struct intel_unpin_work *work;
67e77c5a 10701
5e2d7afc 10702 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10703 work = intel_crtc->unpin_work;
10704 intel_crtc->unpin_work = NULL;
5e2d7afc 10705 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10706
10707 if (work) {
10708 cancel_work_sync(&work->work);
10709 kfree(work);
10710 }
79e53945
JB
10711
10712 drm_crtc_cleanup(crtc);
67e77c5a 10713
79e53945
JB
10714 kfree(intel_crtc);
10715}
10716
6b95a207
KH
10717static void intel_unpin_work_fn(struct work_struct *__work)
10718{
10719 struct intel_unpin_work *work =
10720 container_of(__work, struct intel_unpin_work, work);
b4a98e57 10721 struct drm_device *dev = work->crtc->dev;
f99d7069 10722 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 10723
b4a98e57 10724 mutex_lock(&dev->struct_mutex);
82bc3b2d 10725 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
05394f39 10726 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10727
7ff0ebcc 10728 intel_fbc_update(dev);
f06cc1b9
JH
10729
10730 if (work->flip_queued_req)
146d84f0 10731 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10732 mutex_unlock(&dev->struct_mutex);
10733
f99d7069 10734 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
89ed88ba 10735 drm_framebuffer_unreference(work->old_fb);
f99d7069 10736
b4a98e57
CW
10737 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10738 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10739
6b95a207
KH
10740 kfree(work);
10741}
10742
1afe3e9d 10743static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10744 struct drm_crtc *crtc)
6b95a207 10745{
6b95a207
KH
10746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10747 struct intel_unpin_work *work;
6b95a207
KH
10748 unsigned long flags;
10749
10750 /* Ignore early vblank irqs */
10751 if (intel_crtc == NULL)
10752 return;
10753
f326038a
DV
10754 /*
10755 * This is called both by irq handlers and the reset code (to complete
10756 * lost pageflips) so needs the full irqsave spinlocks.
10757 */
6b95a207
KH
10758 spin_lock_irqsave(&dev->event_lock, flags);
10759 work = intel_crtc->unpin_work;
e7d841ca
CW
10760
10761 /* Ensure we don't miss a work->pending update ... */
10762 smp_rmb();
10763
10764 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10765 spin_unlock_irqrestore(&dev->event_lock, flags);
10766 return;
10767 }
10768
d6bbafa1 10769 page_flip_completed(intel_crtc);
0af7e4df 10770
6b95a207 10771 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10772}
10773
1afe3e9d
JB
10774void intel_finish_page_flip(struct drm_device *dev, int pipe)
10775{
fbee40df 10776 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10777 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10778
49b14a5c 10779 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10780}
10781
10782void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10783{
fbee40df 10784 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10785 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10786
49b14a5c 10787 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10788}
10789
75f7f3ec
VS
10790/* Is 'a' after or equal to 'b'? */
10791static bool g4x_flip_count_after_eq(u32 a, u32 b)
10792{
10793 return !((a - b) & 0x80000000);
10794}
10795
10796static bool page_flip_finished(struct intel_crtc *crtc)
10797{
10798 struct drm_device *dev = crtc->base.dev;
10799 struct drm_i915_private *dev_priv = dev->dev_private;
10800
bdfa7542
VS
10801 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10802 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10803 return true;
10804
75f7f3ec
VS
10805 /*
10806 * The relevant registers doen't exist on pre-ctg.
10807 * As the flip done interrupt doesn't trigger for mmio
10808 * flips on gmch platforms, a flip count check isn't
10809 * really needed there. But since ctg has the registers,
10810 * include it in the check anyway.
10811 */
10812 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10813 return true;
10814
10815 /*
10816 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10817 * used the same base address. In that case the mmio flip might
10818 * have completed, but the CS hasn't even executed the flip yet.
10819 *
10820 * A flip count check isn't enough as the CS might have updated
10821 * the base address just after start of vblank, but before we
10822 * managed to process the interrupt. This means we'd complete the
10823 * CS flip too soon.
10824 *
10825 * Combining both checks should get us a good enough result. It may
10826 * still happen that the CS flip has been executed, but has not
10827 * yet actually completed. But in case the base address is the same
10828 * anyway, we don't really care.
10829 */
10830 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10831 crtc->unpin_work->gtt_offset &&
10832 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10833 crtc->unpin_work->flip_count);
10834}
10835
6b95a207
KH
10836void intel_prepare_page_flip(struct drm_device *dev, int plane)
10837{
fbee40df 10838 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
10839 struct intel_crtc *intel_crtc =
10840 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10841 unsigned long flags;
10842
f326038a
DV
10843
10844 /*
10845 * This is called both by irq handlers and the reset code (to complete
10846 * lost pageflips) so needs the full irqsave spinlocks.
10847 *
10848 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10849 * generate a page-flip completion irq, i.e. every modeset
10850 * is also accompanied by a spurious intel_prepare_page_flip().
10851 */
6b95a207 10852 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10853 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10854 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10855 spin_unlock_irqrestore(&dev->event_lock, flags);
10856}
10857
eba905b2 10858static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
10859{
10860 /* Ensure that the work item is consistent when activating it ... */
10861 smp_wmb();
10862 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10863 /* and that it is marked active as soon as the irq could fire. */
10864 smp_wmb();
10865}
10866
8c9f3aaf
JB
10867static int intel_gen2_queue_flip(struct drm_device *dev,
10868 struct drm_crtc *crtc,
10869 struct drm_framebuffer *fb,
ed8d1975 10870 struct drm_i915_gem_object *obj,
6258fbe2 10871 struct drm_i915_gem_request *req,
ed8d1975 10872 uint32_t flags)
8c9f3aaf 10873{
6258fbe2 10874 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10875 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10876 u32 flip_mask;
10877 int ret;
10878
6d90c952 10879 ret = intel_ring_begin(ring, 6);
8c9f3aaf 10880 if (ret)
4fa62c89 10881 return ret;
8c9f3aaf
JB
10882
10883 /* Can't queue multiple flips, so wait for the previous
10884 * one to finish before executing the next.
10885 */
10886 if (intel_crtc->plane)
10887 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10888 else
10889 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10890 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10891 intel_ring_emit(ring, MI_NOOP);
10892 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10893 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10894 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10895 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 10896 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
10897
10898 intel_mark_page_flip_active(intel_crtc);
83d4092b 10899 return 0;
8c9f3aaf
JB
10900}
10901
10902static int intel_gen3_queue_flip(struct drm_device *dev,
10903 struct drm_crtc *crtc,
10904 struct drm_framebuffer *fb,
ed8d1975 10905 struct drm_i915_gem_object *obj,
6258fbe2 10906 struct drm_i915_gem_request *req,
ed8d1975 10907 uint32_t flags)
8c9f3aaf 10908{
6258fbe2 10909 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10911 u32 flip_mask;
10912 int ret;
10913
6d90c952 10914 ret = intel_ring_begin(ring, 6);
8c9f3aaf 10915 if (ret)
4fa62c89 10916 return ret;
8c9f3aaf
JB
10917
10918 if (intel_crtc->plane)
10919 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10920 else
10921 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10922 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10923 intel_ring_emit(ring, MI_NOOP);
10924 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10925 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10926 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10927 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
10928 intel_ring_emit(ring, MI_NOOP);
10929
e7d841ca 10930 intel_mark_page_flip_active(intel_crtc);
83d4092b 10931 return 0;
8c9f3aaf
JB
10932}
10933
10934static int intel_gen4_queue_flip(struct drm_device *dev,
10935 struct drm_crtc *crtc,
10936 struct drm_framebuffer *fb,
ed8d1975 10937 struct drm_i915_gem_object *obj,
6258fbe2 10938 struct drm_i915_gem_request *req,
ed8d1975 10939 uint32_t flags)
8c9f3aaf 10940{
6258fbe2 10941 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
10942 struct drm_i915_private *dev_priv = dev->dev_private;
10943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10944 uint32_t pf, pipesrc;
10945 int ret;
10946
6d90c952 10947 ret = intel_ring_begin(ring, 4);
8c9f3aaf 10948 if (ret)
4fa62c89 10949 return ret;
8c9f3aaf
JB
10950
10951 /* i965+ uses the linear or tiled offsets from the
10952 * Display Registers (which do not change across a page-flip)
10953 * so we need only reprogram the base address.
10954 */
6d90c952
DV
10955 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10956 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10957 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10958 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 10959 obj->tiling_mode);
8c9f3aaf
JB
10960
10961 /* XXX Enabling the panel-fitter across page-flip is so far
10962 * untested on non-native modes, so ignore it for now.
10963 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10964 */
10965 pf = 0;
10966 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 10967 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
10968
10969 intel_mark_page_flip_active(intel_crtc);
83d4092b 10970 return 0;
8c9f3aaf
JB
10971}
10972
10973static int intel_gen6_queue_flip(struct drm_device *dev,
10974 struct drm_crtc *crtc,
10975 struct drm_framebuffer *fb,
ed8d1975 10976 struct drm_i915_gem_object *obj,
6258fbe2 10977 struct drm_i915_gem_request *req,
ed8d1975 10978 uint32_t flags)
8c9f3aaf 10979{
6258fbe2 10980 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
10981 struct drm_i915_private *dev_priv = dev->dev_private;
10982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10983 uint32_t pf, pipesrc;
10984 int ret;
10985
6d90c952 10986 ret = intel_ring_begin(ring, 4);
8c9f3aaf 10987 if (ret)
4fa62c89 10988 return ret;
8c9f3aaf 10989
6d90c952
DV
10990 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10991 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10992 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 10993 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 10994
dc257cf1
DV
10995 /* Contrary to the suggestions in the documentation,
10996 * "Enable Panel Fitter" does not seem to be required when page
10997 * flipping with a non-native mode, and worse causes a normal
10998 * modeset to fail.
10999 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11000 */
11001 pf = 0;
8c9f3aaf 11002 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11003 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
11004
11005 intel_mark_page_flip_active(intel_crtc);
83d4092b 11006 return 0;
8c9f3aaf
JB
11007}
11008
7c9017e5
JB
11009static int intel_gen7_queue_flip(struct drm_device *dev,
11010 struct drm_crtc *crtc,
11011 struct drm_framebuffer *fb,
ed8d1975 11012 struct drm_i915_gem_object *obj,
6258fbe2 11013 struct drm_i915_gem_request *req,
ed8d1975 11014 uint32_t flags)
7c9017e5 11015{
6258fbe2 11016 struct intel_engine_cs *ring = req->ring;
7c9017e5 11017 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 11018 uint32_t plane_bit = 0;
ffe74d75
CW
11019 int len, ret;
11020
eba905b2 11021 switch (intel_crtc->plane) {
cb05d8de
DV
11022 case PLANE_A:
11023 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11024 break;
11025 case PLANE_B:
11026 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11027 break;
11028 case PLANE_C:
11029 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11030 break;
11031 default:
11032 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 11033 return -ENODEV;
cb05d8de
DV
11034 }
11035
ffe74d75 11036 len = 4;
f476828a 11037 if (ring->id == RCS) {
ffe74d75 11038 len += 6;
f476828a
DL
11039 /*
11040 * On Gen 8, SRM is now taking an extra dword to accommodate
11041 * 48bits addresses, and we need a NOOP for the batch size to
11042 * stay even.
11043 */
11044 if (IS_GEN8(dev))
11045 len += 2;
11046 }
ffe74d75 11047
f66fab8e
VS
11048 /*
11049 * BSpec MI_DISPLAY_FLIP for IVB:
11050 * "The full packet must be contained within the same cache line."
11051 *
11052 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11053 * cacheline, if we ever start emitting more commands before
11054 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11055 * then do the cacheline alignment, and finally emit the
11056 * MI_DISPLAY_FLIP.
11057 */
11058 ret = intel_ring_cacheline_align(ring);
11059 if (ret)
4fa62c89 11060 return ret;
f66fab8e 11061
ffe74d75 11062 ret = intel_ring_begin(ring, len);
7c9017e5 11063 if (ret)
4fa62c89 11064 return ret;
7c9017e5 11065
ffe74d75
CW
11066 /* Unmask the flip-done completion message. Note that the bspec says that
11067 * we should do this for both the BCS and RCS, and that we must not unmask
11068 * more than one flip event at any time (or ensure that one flip message
11069 * can be sent by waiting for flip-done prior to queueing new flips).
11070 * Experimentation says that BCS works despite DERRMR masking all
11071 * flip-done completion events and that unmasking all planes at once
11072 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11073 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11074 */
11075 if (ring->id == RCS) {
11076 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11077 intel_ring_emit(ring, DERRMR);
11078 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11079 DERRMR_PIPEB_PRI_FLIP_DONE |
11080 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
11081 if (IS_GEN8(dev))
11082 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11083 MI_SRM_LRM_GLOBAL_GTT);
11084 else
11085 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11086 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
11087 intel_ring_emit(ring, DERRMR);
11088 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
11089 if (IS_GEN8(dev)) {
11090 intel_ring_emit(ring, 0);
11091 intel_ring_emit(ring, MI_NOOP);
11092 }
ffe74d75
CW
11093 }
11094
cb05d8de 11095 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 11096 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 11097 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 11098 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
11099
11100 intel_mark_page_flip_active(intel_crtc);
83d4092b 11101 return 0;
7c9017e5
JB
11102}
11103
84c33a64
SG
11104static bool use_mmio_flip(struct intel_engine_cs *ring,
11105 struct drm_i915_gem_object *obj)
11106{
11107 /*
11108 * This is not being used for older platforms, because
11109 * non-availability of flip done interrupt forces us to use
11110 * CS flips. Older platforms derive flip done using some clever
11111 * tricks involving the flip_pending status bits and vblank irqs.
11112 * So using MMIO flips there would disrupt this mechanism.
11113 */
11114
8e09bf83
CW
11115 if (ring == NULL)
11116 return true;
11117
84c33a64
SG
11118 if (INTEL_INFO(ring->dev)->gen < 5)
11119 return false;
11120
11121 if (i915.use_mmio_flip < 0)
11122 return false;
11123 else if (i915.use_mmio_flip > 0)
11124 return true;
14bf993e
OM
11125 else if (i915.enable_execlists)
11126 return true;
84c33a64 11127 else
b4716185 11128 return ring != i915_gem_request_get_ring(obj->last_write_req);
84c33a64
SG
11129}
11130
ff944564
DL
11131static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11132{
11133 struct drm_device *dev = intel_crtc->base.dev;
11134 struct drm_i915_private *dev_priv = dev->dev_private;
11135 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564
DL
11136 const enum pipe pipe = intel_crtc->pipe;
11137 u32 ctl, stride;
11138
11139 ctl = I915_READ(PLANE_CTL(pipe, 0));
11140 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
11141 switch (fb->modifier[0]) {
11142 case DRM_FORMAT_MOD_NONE:
11143 break;
11144 case I915_FORMAT_MOD_X_TILED:
ff944564 11145 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
11146 break;
11147 case I915_FORMAT_MOD_Y_TILED:
11148 ctl |= PLANE_CTL_TILED_Y;
11149 break;
11150 case I915_FORMAT_MOD_Yf_TILED:
11151 ctl |= PLANE_CTL_TILED_YF;
11152 break;
11153 default:
11154 MISSING_CASE(fb->modifier[0]);
11155 }
ff944564
DL
11156
11157 /*
11158 * The stride is either expressed as a multiple of 64 bytes chunks for
11159 * linear buffers or in number of tiles for tiled buffers.
11160 */
2ebef630
TU
11161 stride = fb->pitches[0] /
11162 intel_fb_stride_alignment(dev, fb->modifier[0],
11163 fb->pixel_format);
ff944564
DL
11164
11165 /*
11166 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11167 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11168 */
11169 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11170 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11171
11172 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11173 POSTING_READ(PLANE_SURF(pipe, 0));
11174}
11175
11176static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
11177{
11178 struct drm_device *dev = intel_crtc->base.dev;
11179 struct drm_i915_private *dev_priv = dev->dev_private;
11180 struct intel_framebuffer *intel_fb =
11181 to_intel_framebuffer(intel_crtc->base.primary->fb);
11182 struct drm_i915_gem_object *obj = intel_fb->obj;
11183 u32 dspcntr;
11184 u32 reg;
11185
84c33a64
SG
11186 reg = DSPCNTR(intel_crtc->plane);
11187 dspcntr = I915_READ(reg);
11188
c5d97472
DL
11189 if (obj->tiling_mode != I915_TILING_NONE)
11190 dspcntr |= DISPPLANE_TILED;
11191 else
11192 dspcntr &= ~DISPPLANE_TILED;
11193
84c33a64
SG
11194 I915_WRITE(reg, dspcntr);
11195
11196 I915_WRITE(DSPSURF(intel_crtc->plane),
11197 intel_crtc->unpin_work->gtt_offset);
11198 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 11199
ff944564
DL
11200}
11201
11202/*
11203 * XXX: This is the temporary way to update the plane registers until we get
11204 * around to using the usual plane update functions for MMIO flips
11205 */
11206static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11207{
11208 struct drm_device *dev = intel_crtc->base.dev;
11209 bool atomic_update;
11210 u32 start_vbl_count;
11211
11212 intel_mark_page_flip_active(intel_crtc);
11213
11214 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
11215
11216 if (INTEL_INFO(dev)->gen >= 9)
11217 skl_do_mmio_flip(intel_crtc);
11218 else
11219 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11220 ilk_do_mmio_flip(intel_crtc);
11221
9362c7c5
ACO
11222 if (atomic_update)
11223 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
11224}
11225
9362c7c5 11226static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 11227{
b2cfe0ab
CW
11228 struct intel_mmio_flip *mmio_flip =
11229 container_of(work, struct intel_mmio_flip, work);
84c33a64 11230
eed29a5b
DV
11231 if (mmio_flip->req)
11232 WARN_ON(__i915_wait_request(mmio_flip->req,
b2cfe0ab 11233 mmio_flip->crtc->reset_counter,
bcafc4e3
CW
11234 false, NULL,
11235 &mmio_flip->i915->rps.mmioflips));
84c33a64 11236
b2cfe0ab
CW
11237 intel_do_mmio_flip(mmio_flip->crtc);
11238
eed29a5b 11239 i915_gem_request_unreference__unlocked(mmio_flip->req);
b2cfe0ab 11240 kfree(mmio_flip);
84c33a64
SG
11241}
11242
11243static int intel_queue_mmio_flip(struct drm_device *dev,
11244 struct drm_crtc *crtc,
11245 struct drm_framebuffer *fb,
11246 struct drm_i915_gem_object *obj,
11247 struct intel_engine_cs *ring,
11248 uint32_t flags)
11249{
b2cfe0ab
CW
11250 struct intel_mmio_flip *mmio_flip;
11251
11252 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11253 if (mmio_flip == NULL)
11254 return -ENOMEM;
84c33a64 11255
bcafc4e3 11256 mmio_flip->i915 = to_i915(dev);
eed29a5b 11257 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
b2cfe0ab 11258 mmio_flip->crtc = to_intel_crtc(crtc);
536f5b5e 11259
b2cfe0ab
CW
11260 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11261 schedule_work(&mmio_flip->work);
84c33a64 11262
84c33a64
SG
11263 return 0;
11264}
11265
8c9f3aaf
JB
11266static int intel_default_queue_flip(struct drm_device *dev,
11267 struct drm_crtc *crtc,
11268 struct drm_framebuffer *fb,
ed8d1975 11269 struct drm_i915_gem_object *obj,
6258fbe2 11270 struct drm_i915_gem_request *req,
ed8d1975 11271 uint32_t flags)
8c9f3aaf
JB
11272{
11273 return -ENODEV;
11274}
11275
d6bbafa1
CW
11276static bool __intel_pageflip_stall_check(struct drm_device *dev,
11277 struct drm_crtc *crtc)
11278{
11279 struct drm_i915_private *dev_priv = dev->dev_private;
11280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11281 struct intel_unpin_work *work = intel_crtc->unpin_work;
11282 u32 addr;
11283
11284 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11285 return true;
11286
11287 if (!work->enable_stall_check)
11288 return false;
11289
11290 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
11291 if (work->flip_queued_req &&
11292 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
11293 return false;
11294
1e3feefd 11295 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
11296 }
11297
1e3feefd 11298 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
11299 return false;
11300
11301 /* Potential stall - if we see that the flip has happened,
11302 * assume a missed interrupt. */
11303 if (INTEL_INFO(dev)->gen >= 4)
11304 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11305 else
11306 addr = I915_READ(DSPADDR(intel_crtc->plane));
11307
11308 /* There is a potential issue here with a false positive after a flip
11309 * to the same address. We could address this by checking for a
11310 * non-incrementing frame counter.
11311 */
11312 return addr == work->gtt_offset;
11313}
11314
11315void intel_check_page_flip(struct drm_device *dev, int pipe)
11316{
11317 struct drm_i915_private *dev_priv = dev->dev_private;
11318 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 11320 struct intel_unpin_work *work;
f326038a 11321
6c51d46f 11322 WARN_ON(!in_interrupt());
d6bbafa1
CW
11323
11324 if (crtc == NULL)
11325 return;
11326
f326038a 11327 spin_lock(&dev->event_lock);
6ad790c0
CW
11328 work = intel_crtc->unpin_work;
11329 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 11330 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 11331 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 11332 page_flip_completed(intel_crtc);
6ad790c0 11333 work = NULL;
d6bbafa1 11334 }
6ad790c0
CW
11335 if (work != NULL &&
11336 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11337 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 11338 spin_unlock(&dev->event_lock);
d6bbafa1
CW
11339}
11340
6b95a207
KH
11341static int intel_crtc_page_flip(struct drm_crtc *crtc,
11342 struct drm_framebuffer *fb,
ed8d1975
KP
11343 struct drm_pending_vblank_event *event,
11344 uint32_t page_flip_flags)
6b95a207
KH
11345{
11346 struct drm_device *dev = crtc->dev;
11347 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 11348 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 11349 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 11350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 11351 struct drm_plane *primary = crtc->primary;
a071fa00 11352 enum pipe pipe = intel_crtc->pipe;
6b95a207 11353 struct intel_unpin_work *work;
a4872ba6 11354 struct intel_engine_cs *ring;
cf5d8a46 11355 bool mmio_flip;
91af127f 11356 struct drm_i915_gem_request *request = NULL;
52e68630 11357 int ret;
6b95a207 11358
2ff8fde1
MR
11359 /*
11360 * drm_mode_page_flip_ioctl() should already catch this, but double
11361 * check to be safe. In the future we may enable pageflipping from
11362 * a disabled primary plane.
11363 */
11364 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11365 return -EBUSY;
11366
e6a595d2 11367 /* Can't change pixel format via MI display flips. */
f4510a27 11368 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
11369 return -EINVAL;
11370
11371 /*
11372 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11373 * Note that pitch changes could also affect these register.
11374 */
11375 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
11376 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11377 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
11378 return -EINVAL;
11379
f900db47
CW
11380 if (i915_terminally_wedged(&dev_priv->gpu_error))
11381 goto out_hang;
11382
b14c5679 11383 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
11384 if (work == NULL)
11385 return -ENOMEM;
11386
6b95a207 11387 work->event = event;
b4a98e57 11388 work->crtc = crtc;
ab8d6675 11389 work->old_fb = old_fb;
6b95a207
KH
11390 INIT_WORK(&work->work, intel_unpin_work_fn);
11391
87b6b101 11392 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
11393 if (ret)
11394 goto free_work;
11395
6b95a207 11396 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 11397 spin_lock_irq(&dev->event_lock);
6b95a207 11398 if (intel_crtc->unpin_work) {
d6bbafa1
CW
11399 /* Before declaring the flip queue wedged, check if
11400 * the hardware completed the operation behind our backs.
11401 */
11402 if (__intel_pageflip_stall_check(dev, crtc)) {
11403 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11404 page_flip_completed(intel_crtc);
11405 } else {
11406 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 11407 spin_unlock_irq(&dev->event_lock);
468f0b44 11408
d6bbafa1
CW
11409 drm_crtc_vblank_put(crtc);
11410 kfree(work);
11411 return -EBUSY;
11412 }
6b95a207
KH
11413 }
11414 intel_crtc->unpin_work = work;
5e2d7afc 11415 spin_unlock_irq(&dev->event_lock);
6b95a207 11416
b4a98e57
CW
11417 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11418 flush_workqueue(dev_priv->wq);
11419
75dfca80 11420 /* Reference the objects for the scheduled work. */
ab8d6675 11421 drm_framebuffer_reference(work->old_fb);
05394f39 11422 drm_gem_object_reference(&obj->base);
6b95a207 11423
f4510a27 11424 crtc->primary->fb = fb;
afd65eb4 11425 update_state_fb(crtc->primary);
1ed1f968 11426
e1f99ce6 11427 work->pending_flip_obj = obj;
e1f99ce6 11428
89ed88ba
CW
11429 ret = i915_mutex_lock_interruptible(dev);
11430 if (ret)
11431 goto cleanup;
11432
b4a98e57 11433 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 11434 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 11435
75f7f3ec 11436 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 11437 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 11438
4fa62c89
VS
11439 if (IS_VALLEYVIEW(dev)) {
11440 ring = &dev_priv->ring[BCS];
ab8d6675 11441 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
11442 /* vlv: DISPLAY_FLIP fails to change tiling */
11443 ring = NULL;
48bf5b2d 11444 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 11445 ring = &dev_priv->ring[BCS];
4fa62c89 11446 } else if (INTEL_INFO(dev)->gen >= 7) {
b4716185 11447 ring = i915_gem_request_get_ring(obj->last_write_req);
4fa62c89
VS
11448 if (ring == NULL || ring->id != RCS)
11449 ring = &dev_priv->ring[BCS];
11450 } else {
11451 ring = &dev_priv->ring[RCS];
11452 }
11453
cf5d8a46
CW
11454 mmio_flip = use_mmio_flip(ring, obj);
11455
11456 /* When using CS flips, we want to emit semaphores between rings.
11457 * However, when using mmio flips we will create a task to do the
11458 * synchronisation, so all we want here is to pin the framebuffer
11459 * into the display plane and skip any waits.
11460 */
82bc3b2d 11461 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
cf5d8a46 11462 crtc->primary->state,
91af127f 11463 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
8c9f3aaf
JB
11464 if (ret)
11465 goto cleanup_pending;
6b95a207 11466
121920fa
TU
11467 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11468 + intel_crtc->dspaddr_offset;
4fa62c89 11469
cf5d8a46 11470 if (mmio_flip) {
84c33a64
SG
11471 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11472 page_flip_flags);
d6bbafa1
CW
11473 if (ret)
11474 goto cleanup_unpin;
11475
f06cc1b9
JH
11476 i915_gem_request_assign(&work->flip_queued_req,
11477 obj->last_write_req);
d6bbafa1 11478 } else {
d94b5030
CW
11479 if (obj->last_write_req) {
11480 ret = i915_gem_check_olr(obj->last_write_req);
11481 if (ret)
11482 goto cleanup_unpin;
11483 }
11484
6258fbe2
JH
11485 if (!request) {
11486 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11487 if (ret)
11488 goto cleanup_unpin;
11489 }
11490
11491 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
d6bbafa1
CW
11492 page_flip_flags);
11493 if (ret)
11494 goto cleanup_unpin;
11495
6258fbe2 11496 i915_gem_request_assign(&work->flip_queued_req, request);
d6bbafa1
CW
11497 }
11498
91af127f
JH
11499 if (request)
11500 i915_add_request_no_flush(request->ring);
11501
1e3feefd 11502 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11503 work->enable_stall_check = true;
4fa62c89 11504
ab8d6675 11505 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a071fa00
DV
11506 INTEL_FRONTBUFFER_PRIMARY(pipe));
11507
7ff0ebcc 11508 intel_fbc_disable(dev);
f99d7069 11509 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
11510 mutex_unlock(&dev->struct_mutex);
11511
e5510fac
JB
11512 trace_i915_flip_request(intel_crtc->plane, obj);
11513
6b95a207 11514 return 0;
96b099fd 11515
4fa62c89 11516cleanup_unpin:
82bc3b2d 11517 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 11518cleanup_pending:
91af127f
JH
11519 if (request)
11520 i915_gem_request_cancel(request);
b4a98e57 11521 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11522 mutex_unlock(&dev->struct_mutex);
11523cleanup:
f4510a27 11524 crtc->primary->fb = old_fb;
afd65eb4 11525 update_state_fb(crtc->primary);
89ed88ba
CW
11526
11527 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11528 drm_framebuffer_unreference(work->old_fb);
96b099fd 11529
5e2d7afc 11530 spin_lock_irq(&dev->event_lock);
96b099fd 11531 intel_crtc->unpin_work = NULL;
5e2d7afc 11532 spin_unlock_irq(&dev->event_lock);
96b099fd 11533
87b6b101 11534 drm_crtc_vblank_put(crtc);
7317c75e 11535free_work:
96b099fd
CW
11536 kfree(work);
11537
f900db47 11538 if (ret == -EIO) {
02e0efb5
ML
11539 struct drm_atomic_state *state;
11540 struct drm_plane_state *plane_state;
11541
f900db47 11542out_hang:
02e0efb5
ML
11543 state = drm_atomic_state_alloc(dev);
11544 if (!state)
11545 return -ENOMEM;
11546 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11547
11548retry:
11549 plane_state = drm_atomic_get_plane_state(state, primary);
11550 ret = PTR_ERR_OR_ZERO(plane_state);
11551 if (!ret) {
11552 drm_atomic_set_fb_for_plane(plane_state, fb);
11553
11554 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11555 if (!ret)
11556 ret = drm_atomic_commit(state);
11557 }
11558
11559 if (ret == -EDEADLK) {
11560 drm_modeset_backoff(state->acquire_ctx);
11561 drm_atomic_state_clear(state);
11562 goto retry;
11563 }
11564
11565 if (ret)
11566 drm_atomic_state_free(state);
11567
f0d3dad3 11568 if (ret == 0 && event) {
5e2d7afc 11569 spin_lock_irq(&dev->event_lock);
a071fa00 11570 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 11571 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11572 }
f900db47 11573 }
96b099fd 11574 return ret;
6b95a207
KH
11575}
11576
da20eabd
ML
11577
11578/**
11579 * intel_wm_need_update - Check whether watermarks need updating
11580 * @plane: drm plane
11581 * @state: new plane state
11582 *
11583 * Check current plane state versus the new one to determine whether
11584 * watermarks need to be recalculated.
11585 *
11586 * Returns true or false.
11587 */
11588static bool intel_wm_need_update(struct drm_plane *plane,
11589 struct drm_plane_state *state)
11590{
11591 /* Update watermarks on tiling changes. */
11592 if (!plane->state->fb || !state->fb ||
11593 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11594 plane->state->rotation != state->rotation)
11595 return true;
11596
11597 if (plane->state->crtc_w != state->crtc_w)
11598 return true;
11599
11600 return false;
11601}
11602
11603int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11604 struct drm_plane_state *plane_state)
11605{
11606 struct drm_crtc *crtc = crtc_state->crtc;
11607 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11608 struct drm_plane *plane = plane_state->plane;
11609 struct drm_device *dev = crtc->dev;
11610 struct drm_i915_private *dev_priv = dev->dev_private;
11611 struct intel_plane_state *old_plane_state =
11612 to_intel_plane_state(plane->state);
11613 int idx = intel_crtc->base.base.id, ret;
11614 int i = drm_plane_index(plane);
11615 bool mode_changed = needs_modeset(crtc_state);
11616 bool was_crtc_enabled = crtc->state->active;
11617 bool is_crtc_enabled = crtc_state->active;
11618
11619 bool turn_off, turn_on, visible, was_visible;
11620 struct drm_framebuffer *fb = plane_state->fb;
11621
11622 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11623 plane->type != DRM_PLANE_TYPE_CURSOR) {
11624 ret = skl_update_scaler_plane(
11625 to_intel_crtc_state(crtc_state),
11626 to_intel_plane_state(plane_state));
11627 if (ret)
11628 return ret;
11629 }
11630
11631 /*
11632 * Disabling a plane is always okay; we just need to update
11633 * fb tracking in a special way since cleanup_fb() won't
11634 * get called by the plane helpers.
11635 */
11636 if (old_plane_state->base.fb && !fb)
11637 intel_crtc->atomic.disabled_planes |= 1 << i;
11638
da20eabd
ML
11639 was_visible = old_plane_state->visible;
11640 visible = to_intel_plane_state(plane_state)->visible;
11641
11642 if (!was_crtc_enabled && WARN_ON(was_visible))
11643 was_visible = false;
11644
11645 if (!is_crtc_enabled && WARN_ON(visible))
11646 visible = false;
11647
11648 if (!was_visible && !visible)
11649 return 0;
11650
11651 turn_off = was_visible && (!visible || mode_changed);
11652 turn_on = visible && (!was_visible || mode_changed);
11653
11654 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11655 plane->base.id, fb ? fb->base.id : -1);
11656
11657 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11658 plane->base.id, was_visible, visible,
11659 turn_off, turn_on, mode_changed);
11660
11661 if (intel_wm_need_update(plane, plane_state))
11662 intel_crtc->atomic.update_wm = true;
11663
11664 switch (plane->type) {
11665 case DRM_PLANE_TYPE_PRIMARY:
11666 if (visible)
11667 intel_crtc->atomic.fb_bits |=
11668 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11669
11670 intel_crtc->atomic.wait_for_flips = true;
11671 intel_crtc->atomic.pre_disable_primary = turn_off;
11672 intel_crtc->atomic.post_enable_primary = turn_on;
11673
11674 if (turn_off)
11675 intel_crtc->atomic.disable_fbc = true;
11676
11677 /*
11678 * FBC does not work on some platforms for rotated
11679 * planes, so disable it when rotation is not 0 and
11680 * update it when rotation is set back to 0.
11681 *
11682 * FIXME: This is redundant with the fbc update done in
11683 * the primary plane enable function except that that
11684 * one is done too late. We eventually need to unify
11685 * this.
11686 */
11687
11688 if (visible &&
11689 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11690 dev_priv->fbc.crtc == intel_crtc &&
11691 plane_state->rotation != BIT(DRM_ROTATE_0))
11692 intel_crtc->atomic.disable_fbc = true;
11693
11694 /*
11695 * BDW signals flip done immediately if the plane
11696 * is disabled, even if the plane enable is already
11697 * armed to occur at the next vblank :(
11698 */
11699 if (turn_on && IS_BROADWELL(dev))
11700 intel_crtc->atomic.wait_vblank = true;
11701
11702 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11703 break;
11704 case DRM_PLANE_TYPE_CURSOR:
11705 if (visible)
11706 intel_crtc->atomic.fb_bits |=
11707 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
11708 break;
11709 case DRM_PLANE_TYPE_OVERLAY:
11710 /*
11711 * 'prepare' is never called when plane is being disabled, so
11712 * we need to handle frontbuffer tracking as a special case
11713 */
11714 if (visible)
11715 intel_crtc->atomic.fb_bits |=
11716 INTEL_FRONTBUFFER_SPRITE(intel_crtc->pipe);
11717
d032ffa0 11718 if (turn_off && !mode_changed) {
da20eabd
ML
11719 intel_crtc->atomic.wait_vblank = true;
11720 intel_crtc->atomic.update_sprite_watermarks |=
11721 1 << i;
11722 }
11723 break;
11724 }
11725 return 0;
11726}
11727
6d3a1ce7
ML
11728static bool encoders_cloneable(const struct intel_encoder *a,
11729 const struct intel_encoder *b)
11730{
11731 /* masks could be asymmetric, so check both ways */
11732 return a == b || (a->cloneable & (1 << b->type) &&
11733 b->cloneable & (1 << a->type));
11734}
11735
11736static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11737 struct intel_crtc *crtc,
11738 struct intel_encoder *encoder)
11739{
11740 struct intel_encoder *source_encoder;
11741 struct drm_connector *connector;
11742 struct drm_connector_state *connector_state;
11743 int i;
11744
11745 for_each_connector_in_state(state, connector, connector_state, i) {
11746 if (connector_state->crtc != &crtc->base)
11747 continue;
11748
11749 source_encoder =
11750 to_intel_encoder(connector_state->best_encoder);
11751 if (!encoders_cloneable(encoder, source_encoder))
11752 return false;
11753 }
11754
11755 return true;
11756}
11757
11758static bool check_encoder_cloning(struct drm_atomic_state *state,
11759 struct intel_crtc *crtc)
11760{
11761 struct intel_encoder *encoder;
11762 struct drm_connector *connector;
11763 struct drm_connector_state *connector_state;
11764 int i;
11765
11766 for_each_connector_in_state(state, connector, connector_state, i) {
11767 if (connector_state->crtc != &crtc->base)
11768 continue;
11769
11770 encoder = to_intel_encoder(connector_state->best_encoder);
11771 if (!check_single_encoder_cloning(state, crtc, encoder))
11772 return false;
11773 }
11774
11775 return true;
11776}
11777
d032ffa0
ML
11778static void intel_crtc_check_initial_planes(struct drm_crtc *crtc,
11779 struct drm_crtc_state *crtc_state)
11780{
11781 struct intel_crtc_state *pipe_config =
11782 to_intel_crtc_state(crtc_state);
11783 struct drm_plane *p;
11784 unsigned visible_mask = 0;
11785
11786 drm_for_each_plane_mask(p, crtc->dev, crtc_state->plane_mask) {
11787 struct drm_plane_state *plane_state =
11788 drm_atomic_get_existing_plane_state(crtc_state->state, p);
11789
11790 if (WARN_ON(!plane_state))
11791 continue;
11792
11793 if (!plane_state->fb)
11794 crtc_state->plane_mask &=
11795 ~(1 << drm_plane_index(p));
11796 else if (to_intel_plane_state(plane_state)->visible)
11797 visible_mask |= 1 << drm_plane_index(p);
11798 }
11799
11800 if (!visible_mask)
11801 return;
11802
11803 pipe_config->quirks &= ~PIPE_CONFIG_QUIRK_INITIAL_PLANES;
11804}
11805
6d3a1ce7
ML
11806static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11807 struct drm_crtc_state *crtc_state)
11808{
cf5a15be 11809 struct drm_device *dev = crtc->dev;
ad421372 11810 struct drm_i915_private *dev_priv = dev->dev_private;
6d3a1ce7 11811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
11812 struct intel_crtc_state *pipe_config =
11813 to_intel_crtc_state(crtc_state);
6d3a1ce7 11814 struct drm_atomic_state *state = crtc_state->state;
ad421372 11815 int ret, idx = crtc->base.id;
6d3a1ce7
ML
11816 bool mode_changed = needs_modeset(crtc_state);
11817
11818 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11819 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11820 return -EINVAL;
11821 }
11822
11823 I915_STATE_WARN(crtc->state->active != intel_crtc->active,
11824 "[CRTC:%i] mismatch between state->active(%i) and crtc->active(%i)\n",
11825 idx, crtc->state->active, intel_crtc->active);
11826
d032ffa0
ML
11827 /* plane mask is fixed up after all initial planes are calculated */
11828 if (pipe_config->quirks & PIPE_CONFIG_QUIRK_INITIAL_PLANES)
11829 intel_crtc_check_initial_planes(crtc, crtc_state);
11830
eddfcbcd
ML
11831 if (mode_changed)
11832 intel_crtc->atomic.update_wm = !crtc_state->active;
11833
ad421372
ML
11834 if (mode_changed && crtc_state->enable &&
11835 dev_priv->display.crtc_compute_clock &&
11836 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11837 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11838 pipe_config);
11839 if (ret)
11840 return ret;
11841 }
11842
cf5a15be 11843 return intel_atomic_setup_scalers(dev, intel_crtc, pipe_config);
6d3a1ce7
ML
11844}
11845
65b38e0d 11846static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
11847 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11848 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
11849 .atomic_begin = intel_begin_crtc_commit,
11850 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 11851 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
11852};
11853
9a935856
DV
11854/**
11855 * intel_modeset_update_staged_output_state
11856 *
11857 * Updates the staged output configuration state, e.g. after we've read out the
11858 * current hw state.
11859 */
11860static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 11861{
7668851f 11862 struct intel_crtc *crtc;
9a935856
DV
11863 struct intel_encoder *encoder;
11864 struct intel_connector *connector;
f6e5b160 11865
3a3371ff 11866 for_each_intel_connector(dev, connector) {
9a935856
DV
11867 connector->new_encoder =
11868 to_intel_encoder(connector->base.encoder);
11869 }
f6e5b160 11870
b2784e15 11871 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11872 encoder->new_crtc =
11873 to_intel_crtc(encoder->base.crtc);
11874 }
7668851f 11875
d3fcc808 11876 for_each_intel_crtc(dev, crtc) {
83d65738 11877 crtc->new_enabled = crtc->base.state->enable;
7668851f 11878 }
f6e5b160
CW
11879}
11880
d29b2f9d
ACO
11881/* Transitional helper to copy current connector/encoder state to
11882 * connector->state. This is needed so that code that is partially
11883 * converted to atomic does the right thing.
11884 */
11885static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11886{
11887 struct intel_connector *connector;
11888
11889 for_each_intel_connector(dev, connector) {
11890 if (connector->base.encoder) {
11891 connector->base.state->best_encoder =
11892 connector->base.encoder;
11893 connector->base.state->crtc =
11894 connector->base.encoder->crtc;
11895 } else {
11896 connector->base.state->best_encoder = NULL;
11897 connector->base.state->crtc = NULL;
11898 }
11899 }
11900}
11901
050f7aeb 11902static void
eba905b2 11903connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 11904 struct intel_crtc_state *pipe_config)
050f7aeb
DV
11905{
11906 int bpp = pipe_config->pipe_bpp;
11907
11908 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11909 connector->base.base.id,
c23cc417 11910 connector->base.name);
050f7aeb
DV
11911
11912 /* Don't use an invalid EDID bpc value */
11913 if (connector->base.display_info.bpc &&
11914 connector->base.display_info.bpc * 3 < bpp) {
11915 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11916 bpp, connector->base.display_info.bpc*3);
11917 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11918 }
11919
11920 /* Clamp bpp to 8 on screens without EDID 1.4 */
11921 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11922 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11923 bpp);
11924 pipe_config->pipe_bpp = 24;
11925 }
11926}
11927
4e53c2e0 11928static int
050f7aeb 11929compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 11930 struct intel_crtc_state *pipe_config)
4e53c2e0 11931{
050f7aeb 11932 struct drm_device *dev = crtc->base.dev;
1486017f 11933 struct drm_atomic_state *state;
da3ced29
ACO
11934 struct drm_connector *connector;
11935 struct drm_connector_state *connector_state;
1486017f 11936 int bpp, i;
4e53c2e0 11937
d328c9d7 11938 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
4e53c2e0 11939 bpp = 10*3;
d328c9d7
DV
11940 else if (INTEL_INFO(dev)->gen >= 5)
11941 bpp = 12*3;
11942 else
11943 bpp = 8*3;
11944
4e53c2e0 11945
4e53c2e0
DV
11946 pipe_config->pipe_bpp = bpp;
11947
1486017f
ACO
11948 state = pipe_config->base.state;
11949
4e53c2e0 11950 /* Clamp display bpp to EDID value */
da3ced29
ACO
11951 for_each_connector_in_state(state, connector, connector_state, i) {
11952 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
11953 continue;
11954
da3ced29
ACO
11955 connected_sink_compute_bpp(to_intel_connector(connector),
11956 pipe_config);
4e53c2e0
DV
11957 }
11958
11959 return bpp;
11960}
11961
644db711
DV
11962static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11963{
11964 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11965 "type: 0x%x flags: 0x%x\n",
1342830c 11966 mode->crtc_clock,
644db711
DV
11967 mode->crtc_hdisplay, mode->crtc_hsync_start,
11968 mode->crtc_hsync_end, mode->crtc_htotal,
11969 mode->crtc_vdisplay, mode->crtc_vsync_start,
11970 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11971}
11972
c0b03411 11973static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 11974 struct intel_crtc_state *pipe_config,
c0b03411
DV
11975 const char *context)
11976{
6a60cd87
CK
11977 struct drm_device *dev = crtc->base.dev;
11978 struct drm_plane *plane;
11979 struct intel_plane *intel_plane;
11980 struct intel_plane_state *state;
11981 struct drm_framebuffer *fb;
11982
11983 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11984 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
11985
11986 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11987 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11988 pipe_config->pipe_bpp, pipe_config->dither);
11989 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11990 pipe_config->has_pch_encoder,
11991 pipe_config->fdi_lanes,
11992 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11993 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11994 pipe_config->fdi_m_n.tu);
eb14cb74
VS
11995 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11996 pipe_config->has_dp_encoder,
11997 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11998 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11999 pipe_config->dp_m_n.tu);
b95af8be
VK
12000
12001 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12002 pipe_config->has_dp_encoder,
12003 pipe_config->dp_m2_n2.gmch_m,
12004 pipe_config->dp_m2_n2.gmch_n,
12005 pipe_config->dp_m2_n2.link_m,
12006 pipe_config->dp_m2_n2.link_n,
12007 pipe_config->dp_m2_n2.tu);
12008
55072d19
DV
12009 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12010 pipe_config->has_audio,
12011 pipe_config->has_infoframe);
12012
c0b03411 12013 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12014 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12015 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12016 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12017 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12018 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12019 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12020 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12021 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12022 crtc->num_scalers,
12023 pipe_config->scaler_state.scaler_users,
12024 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12025 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12026 pipe_config->gmch_pfit.control,
12027 pipe_config->gmch_pfit.pgm_ratios,
12028 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12029 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12030 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12031 pipe_config->pch_pfit.size,
12032 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12033 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12034 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12035
415ff0f6
TU
12036 if (IS_BROXTON(dev)) {
12037 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
12038 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12039 "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
12040 pipe_config->ddi_pll_sel,
12041 pipe_config->dpll_hw_state.ebb0,
12042 pipe_config->dpll_hw_state.pll0,
12043 pipe_config->dpll_hw_state.pll1,
12044 pipe_config->dpll_hw_state.pll2,
12045 pipe_config->dpll_hw_state.pll3,
12046 pipe_config->dpll_hw_state.pll6,
12047 pipe_config->dpll_hw_state.pll8,
12048 pipe_config->dpll_hw_state.pcsdw12);
12049 } else if (IS_SKYLAKE(dev)) {
12050 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12051 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12052 pipe_config->ddi_pll_sel,
12053 pipe_config->dpll_hw_state.ctrl1,
12054 pipe_config->dpll_hw_state.cfgcr1,
12055 pipe_config->dpll_hw_state.cfgcr2);
12056 } else if (HAS_DDI(dev)) {
12057 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12058 pipe_config->ddi_pll_sel,
12059 pipe_config->dpll_hw_state.wrpll);
12060 } else {
12061 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12062 "fp0: 0x%x, fp1: 0x%x\n",
12063 pipe_config->dpll_hw_state.dpll,
12064 pipe_config->dpll_hw_state.dpll_md,
12065 pipe_config->dpll_hw_state.fp0,
12066 pipe_config->dpll_hw_state.fp1);
12067 }
12068
6a60cd87
CK
12069 DRM_DEBUG_KMS("planes on this crtc\n");
12070 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12071 intel_plane = to_intel_plane(plane);
12072 if (intel_plane->pipe != crtc->pipe)
12073 continue;
12074
12075 state = to_intel_plane_state(plane->state);
12076 fb = state->base.fb;
12077 if (!fb) {
12078 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12079 "disabled, scaler_id = %d\n",
12080 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12081 plane->base.id, intel_plane->pipe,
12082 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12083 drm_plane_index(plane), state->scaler_id);
12084 continue;
12085 }
12086
12087 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12088 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12089 plane->base.id, intel_plane->pipe,
12090 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12091 drm_plane_index(plane));
12092 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12093 fb->base.id, fb->width, fb->height, fb->pixel_format);
12094 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12095 state->scaler_id,
12096 state->src.x1 >> 16, state->src.y1 >> 16,
12097 drm_rect_width(&state->src) >> 16,
12098 drm_rect_height(&state->src) >> 16,
12099 state->dst.x1, state->dst.y1,
12100 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12101 }
c0b03411
DV
12102}
12103
5448a00d 12104static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12105{
5448a00d
ACO
12106 struct drm_device *dev = state->dev;
12107 struct intel_encoder *encoder;
da3ced29 12108 struct drm_connector *connector;
5448a00d 12109 struct drm_connector_state *connector_state;
00f0b378 12110 unsigned int used_ports = 0;
5448a00d 12111 int i;
00f0b378
VS
12112
12113 /*
12114 * Walk the connector list instead of the encoder
12115 * list to detect the problem on ddi platforms
12116 * where there's just one encoder per digital port.
12117 */
da3ced29 12118 for_each_connector_in_state(state, connector, connector_state, i) {
5448a00d 12119 if (!connector_state->best_encoder)
00f0b378
VS
12120 continue;
12121
5448a00d
ACO
12122 encoder = to_intel_encoder(connector_state->best_encoder);
12123
12124 WARN_ON(!connector_state->crtc);
00f0b378
VS
12125
12126 switch (encoder->type) {
12127 unsigned int port_mask;
12128 case INTEL_OUTPUT_UNKNOWN:
12129 if (WARN_ON(!HAS_DDI(dev)))
12130 break;
12131 case INTEL_OUTPUT_DISPLAYPORT:
12132 case INTEL_OUTPUT_HDMI:
12133 case INTEL_OUTPUT_EDP:
12134 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12135
12136 /* the same port mustn't appear more than once */
12137 if (used_ports & port_mask)
12138 return false;
12139
12140 used_ports |= port_mask;
12141 default:
12142 break;
12143 }
12144 }
12145
12146 return true;
12147}
12148
83a57153
ACO
12149static void
12150clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12151{
12152 struct drm_crtc_state tmp_state;
663a3640 12153 struct intel_crtc_scaler_state scaler_state;
4978cc93
ACO
12154 struct intel_dpll_hw_state dpll_hw_state;
12155 enum intel_dpll_id shared_dpll;
8504c74c 12156 uint32_t ddi_pll_sel;
83a57153 12157
7546a384
ACO
12158 /* FIXME: before the switch to atomic started, a new pipe_config was
12159 * kzalloc'd. Code that depends on any field being zero should be
12160 * fixed, so that the crtc_state can be safely duplicated. For now,
12161 * only fields that are know to not cause problems are preserved. */
12162
83a57153 12163 tmp_state = crtc_state->base;
663a3640 12164 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12165 shared_dpll = crtc_state->shared_dpll;
12166 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12167 ddi_pll_sel = crtc_state->ddi_pll_sel;
4978cc93 12168
83a57153 12169 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12170
83a57153 12171 crtc_state->base = tmp_state;
663a3640 12172 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12173 crtc_state->shared_dpll = shared_dpll;
12174 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12175 crtc_state->ddi_pll_sel = ddi_pll_sel;
83a57153
ACO
12176}
12177
548ee15b 12178static int
b8cecdf5 12179intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12180 struct intel_crtc_state *pipe_config)
ee7b9f93 12181{
b359283a 12182 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12183 struct intel_encoder *encoder;
da3ced29 12184 struct drm_connector *connector;
0b901879 12185 struct drm_connector_state *connector_state;
d328c9d7 12186 int base_bpp, ret = -EINVAL;
0b901879 12187 int i;
e29c22c0 12188 bool retry = true;
ee7b9f93 12189
83a57153 12190 clear_intel_crtc_state(pipe_config);
7758a113 12191
e143a21c
DV
12192 pipe_config->cpu_transcoder =
12193 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12194
2960bc9c
ID
12195 /*
12196 * Sanitize sync polarity flags based on requested ones. If neither
12197 * positive or negative polarity is requested, treat this as meaning
12198 * negative polarity.
12199 */
2d112de7 12200 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12201 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12202 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12203
2d112de7 12204 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12205 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12206 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12207
050f7aeb
DV
12208 /* Compute a starting value for pipe_config->pipe_bpp taking the source
12209 * plane pixel format and any sink constraints into account. Returns the
12210 * source plane bpp so that dithering can be selected on mismatches
12211 * after encoders and crtc also have had their say. */
d328c9d7
DV
12212 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12213 pipe_config);
12214 if (base_bpp < 0)
4e53c2e0
DV
12215 goto fail;
12216
e41a56be
VS
12217 /*
12218 * Determine the real pipe dimensions. Note that stereo modes can
12219 * increase the actual pipe size due to the frame doubling and
12220 * insertion of additional space for blanks between the frame. This
12221 * is stored in the crtc timings. We use the requested mode to do this
12222 * computation to clearly distinguish it from the adjusted mode, which
12223 * can be changed by the connectors in the below retry loop.
12224 */
2d112de7 12225 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12226 &pipe_config->pipe_src_w,
12227 &pipe_config->pipe_src_h);
e41a56be 12228
e29c22c0 12229encoder_retry:
ef1b460d 12230 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12231 pipe_config->port_clock = 0;
ef1b460d 12232 pipe_config->pixel_multiplier = 1;
ff9a6750 12233
135c81b8 12234 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12235 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12236 CRTC_STEREO_DOUBLE);
135c81b8 12237
7758a113
DV
12238 /* Pass our mode to the connectors and the CRTC to give them a chance to
12239 * adjust it according to limitations or connector properties, and also
12240 * a chance to reject the mode entirely.
47f1c6c9 12241 */
da3ced29 12242 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12243 if (connector_state->crtc != crtc)
7758a113 12244 continue;
7ae89233 12245
0b901879
ACO
12246 encoder = to_intel_encoder(connector_state->best_encoder);
12247
efea6e8e
DV
12248 if (!(encoder->compute_config(encoder, pipe_config))) {
12249 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12250 goto fail;
12251 }
ee7b9f93 12252 }
47f1c6c9 12253
ff9a6750
DV
12254 /* Set default port clock if not overwritten by the encoder. Needs to be
12255 * done afterwards in case the encoder adjusts the mode. */
12256 if (!pipe_config->port_clock)
2d112de7 12257 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12258 * pipe_config->pixel_multiplier;
ff9a6750 12259
a43f6e0f 12260 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12261 if (ret < 0) {
7758a113
DV
12262 DRM_DEBUG_KMS("CRTC fixup failed\n");
12263 goto fail;
ee7b9f93 12264 }
e29c22c0
DV
12265
12266 if (ret == RETRY) {
12267 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12268 ret = -EINVAL;
12269 goto fail;
12270 }
12271
12272 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12273 retry = false;
12274 goto encoder_retry;
12275 }
12276
d328c9d7 12277 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
4e53c2e0 12278 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12279 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12280
cdba954e
ACO
12281 /* Check if we need to force a modeset */
12282 if (pipe_config->has_audio !=
85a96e7a 12283 to_intel_crtc_state(crtc->state)->has_audio) {
cdba954e 12284 pipe_config->base.mode_changed = true;
85a96e7a
ML
12285 ret = drm_atomic_add_affected_planes(state, crtc);
12286 }
cdba954e
ACO
12287
12288 /*
12289 * Note we have an issue here with infoframes: current code
12290 * only updates them on the full mode set path per hw
12291 * requirements. So here we should be checking for any
12292 * required changes and forcing a mode set.
12293 */
7758a113 12294fail:
548ee15b 12295 return ret;
ee7b9f93 12296}
47f1c6c9 12297
ea9d758d 12298static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 12299{
ea9d758d 12300 struct drm_encoder *encoder;
f6e5b160 12301 struct drm_device *dev = crtc->dev;
f6e5b160 12302
ea9d758d
DV
12303 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12304 if (encoder->crtc == crtc)
12305 return true;
12306
12307 return false;
12308}
12309
12310static void
0a9ab303 12311intel_modeset_update_state(struct drm_atomic_state *state)
ea9d758d 12312{
0a9ab303 12313 struct drm_device *dev = state->dev;
ea9d758d 12314 struct intel_encoder *intel_encoder;
0a9ab303
ACO
12315 struct drm_crtc *crtc;
12316 struct drm_crtc_state *crtc_state;
ea9d758d
DV
12317 struct drm_connector *connector;
12318
de419ab6 12319 intel_shared_dpll_commit(state);
ba41c0de 12320
b2784e15 12321 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
12322 if (!intel_encoder->base.crtc)
12323 continue;
12324
69024de8
ML
12325 crtc = intel_encoder->base.crtc;
12326 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12327 if (!crtc_state || !needs_modeset(crtc->state))
12328 continue;
ea9d758d 12329
69024de8 12330 intel_encoder->connectors_active = false;
ea9d758d
DV
12331 }
12332
3cb480bc 12333 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
f7217905 12334 intel_modeset_update_staged_output_state(state->dev);
ea9d758d 12335
7668851f 12336 /* Double check state. */
0a9ab303
ACO
12337 for_each_crtc(dev, crtc) {
12338 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
3cb480bc
ML
12339
12340 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
12341
12342 /* Update hwmode for vblank functions */
12343 if (crtc->state->active)
12344 crtc->hwmode = crtc->state->adjusted_mode;
12345 else
12346 crtc->hwmode.crtc_clock = 0;
ea9d758d
DV
12347 }
12348
12349 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12350 if (!connector->encoder || !connector->encoder->crtc)
12351 continue;
12352
69024de8
ML
12353 crtc = connector->encoder->crtc;
12354 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12355 if (!crtc_state || !needs_modeset(crtc->state))
12356 continue;
ea9d758d 12357
53d9f4e9 12358 if (crtc->state->active) {
69024de8
ML
12359 struct drm_property *dpms_property =
12360 dev->mode_config.dpms_property;
68d34720 12361
69024de8
ML
12362 connector->dpms = DRM_MODE_DPMS_ON;
12363 drm_object_property_set_value(&connector->base, dpms_property, DRM_MODE_DPMS_ON);
ea9d758d 12364
69024de8
ML
12365 intel_encoder = to_intel_encoder(connector->encoder);
12366 intel_encoder->connectors_active = true;
12367 } else
12368 connector->dpms = DRM_MODE_DPMS_OFF;
ea9d758d 12369 }
ea9d758d
DV
12370}
12371
3bd26263 12372static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12373{
3bd26263 12374 int diff;
f1f644dc
JB
12375
12376 if (clock1 == clock2)
12377 return true;
12378
12379 if (!clock1 || !clock2)
12380 return false;
12381
12382 diff = abs(clock1 - clock2);
12383
12384 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12385 return true;
12386
12387 return false;
12388}
12389
25c5b266
DV
12390#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12391 list_for_each_entry((intel_crtc), \
12392 &(dev)->mode_config.crtc_list, \
12393 base.head) \
0973f18f 12394 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12395
0e8ffe1b 12396static bool
2fa2fe9a 12397intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
12398 struct intel_crtc_state *current_config,
12399 struct intel_crtc_state *pipe_config)
0e8ffe1b 12400{
66e985c0
DV
12401#define PIPE_CONF_CHECK_X(name) \
12402 if (current_config->name != pipe_config->name) { \
12403 DRM_ERROR("mismatch in " #name " " \
12404 "(expected 0x%08x, found 0x%08x)\n", \
12405 current_config->name, \
12406 pipe_config->name); \
12407 return false; \
12408 }
12409
08a24034
DV
12410#define PIPE_CONF_CHECK_I(name) \
12411 if (current_config->name != pipe_config->name) { \
12412 DRM_ERROR("mismatch in " #name " " \
12413 "(expected %i, found %i)\n", \
12414 current_config->name, \
12415 pipe_config->name); \
12416 return false; \
88adfff1
DV
12417 }
12418
b95af8be
VK
12419/* This is required for BDW+ where there is only one set of registers for
12420 * switching between high and low RR.
12421 * This macro can be used whenever a comparison has to be made between one
12422 * hw state and multiple sw state variables.
12423 */
12424#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12425 if ((current_config->name != pipe_config->name) && \
12426 (current_config->alt_name != pipe_config->name)) { \
12427 DRM_ERROR("mismatch in " #name " " \
12428 "(expected %i or %i, found %i)\n", \
12429 current_config->name, \
12430 current_config->alt_name, \
12431 pipe_config->name); \
12432 return false; \
12433 }
12434
1bd1bd80
DV
12435#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12436 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 12437 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12438 "(expected %i, found %i)\n", \
12439 current_config->name & (mask), \
12440 pipe_config->name & (mask)); \
12441 return false; \
12442 }
12443
5e550656
VS
12444#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12445 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12446 DRM_ERROR("mismatch in " #name " " \
12447 "(expected %i, found %i)\n", \
12448 current_config->name, \
12449 pipe_config->name); \
12450 return false; \
12451 }
12452
bb760063
DV
12453#define PIPE_CONF_QUIRK(quirk) \
12454 ((current_config->quirks | pipe_config->quirks) & (quirk))
12455
eccb140b
DV
12456 PIPE_CONF_CHECK_I(cpu_transcoder);
12457
08a24034
DV
12458 PIPE_CONF_CHECK_I(has_pch_encoder);
12459 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
12460 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12461 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12462 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12463 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12464 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 12465
eb14cb74 12466 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
12467
12468 if (INTEL_INFO(dev)->gen < 8) {
12469 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12470 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12471 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12472 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12473 PIPE_CONF_CHECK_I(dp_m_n.tu);
12474
12475 if (current_config->has_drrs) {
12476 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12477 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12478 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12479 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12480 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12481 }
12482 } else {
12483 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12484 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12485 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12486 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12487 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12488 }
eb14cb74 12489
2d112de7
ACO
12490 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12491 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12492 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12493 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12494 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12495 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12496
2d112de7
ACO
12497 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12498 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12499 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12500 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12501 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12502 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12503
c93f54cf 12504 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12505 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
12506 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12507 IS_VALLEYVIEW(dev))
12508 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12509 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12510
9ed109a7
DV
12511 PIPE_CONF_CHECK_I(has_audio);
12512
2d112de7 12513 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12514 DRM_MODE_FLAG_INTERLACE);
12515
bb760063 12516 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12517 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12518 DRM_MODE_FLAG_PHSYNC);
2d112de7 12519 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12520 DRM_MODE_FLAG_NHSYNC);
2d112de7 12521 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12522 DRM_MODE_FLAG_PVSYNC);
2d112de7 12523 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12524 DRM_MODE_FLAG_NVSYNC);
12525 }
045ac3b5 12526
37327abd
VS
12527 PIPE_CONF_CHECK_I(pipe_src_w);
12528 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 12529
9953599b
DV
12530 /*
12531 * FIXME: BIOS likes to set up a cloned config with lvds+external
12532 * screen. Since we don't yet re-compute the pipe config when moving
12533 * just the lvds port away to another pipe the sw tracking won't match.
12534 *
12535 * Proper atomic modesets with recomputed global state will fix this.
12536 * Until then just don't check gmch state for inherited modes.
12537 */
12538 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12539 PIPE_CONF_CHECK_I(gmch_pfit.control);
12540 /* pfit ratios are autocomputed by the hw on gen4+ */
12541 if (INTEL_INFO(dev)->gen < 4)
12542 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12543 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12544 }
12545
fd4daa9c
CW
12546 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12547 if (current_config->pch_pfit.enabled) {
12548 PIPE_CONF_CHECK_I(pch_pfit.pos);
12549 PIPE_CONF_CHECK_I(pch_pfit.size);
12550 }
2fa2fe9a 12551
a1b2278e
CK
12552 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12553
e59150dc
JB
12554 /* BDW+ don't expose a synchronous way to read the state */
12555 if (IS_HASWELL(dev))
12556 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12557
282740f7
VS
12558 PIPE_CONF_CHECK_I(double_wide);
12559
26804afd
DV
12560 PIPE_CONF_CHECK_X(ddi_pll_sel);
12561
c0d43d62 12562 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 12563 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12564 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12565 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12566 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12567 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
12568 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12569 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12570 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12571
42571aef
VS
12572 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12573 PIPE_CONF_CHECK_I(pipe_bpp);
12574
2d112de7 12575 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12576 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12577
66e985c0 12578#undef PIPE_CONF_CHECK_X
08a24034 12579#undef PIPE_CONF_CHECK_I
b95af8be 12580#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 12581#undef PIPE_CONF_CHECK_FLAGS
5e550656 12582#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12583#undef PIPE_CONF_QUIRK
88adfff1 12584
0e8ffe1b
DV
12585 return true;
12586}
12587
08db6652
DL
12588static void check_wm_state(struct drm_device *dev)
12589{
12590 struct drm_i915_private *dev_priv = dev->dev_private;
12591 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12592 struct intel_crtc *intel_crtc;
12593 int plane;
12594
12595 if (INTEL_INFO(dev)->gen < 9)
12596 return;
12597
12598 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12599 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12600
12601 for_each_intel_crtc(dev, intel_crtc) {
12602 struct skl_ddb_entry *hw_entry, *sw_entry;
12603 const enum pipe pipe = intel_crtc->pipe;
12604
12605 if (!intel_crtc->active)
12606 continue;
12607
12608 /* planes */
dd740780 12609 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
12610 hw_entry = &hw_ddb.plane[pipe][plane];
12611 sw_entry = &sw_ddb->plane[pipe][plane];
12612
12613 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12614 continue;
12615
12616 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12617 "(expected (%u,%u), found (%u,%u))\n",
12618 pipe_name(pipe), plane + 1,
12619 sw_entry->start, sw_entry->end,
12620 hw_entry->start, hw_entry->end);
12621 }
12622
12623 /* cursor */
12624 hw_entry = &hw_ddb.cursor[pipe];
12625 sw_entry = &sw_ddb->cursor[pipe];
12626
12627 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12628 continue;
12629
12630 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12631 "(expected (%u,%u), found (%u,%u))\n",
12632 pipe_name(pipe),
12633 sw_entry->start, sw_entry->end,
12634 hw_entry->start, hw_entry->end);
12635 }
12636}
12637
91d1b4bd
DV
12638static void
12639check_connector_state(struct drm_device *dev)
8af6cf88 12640{
8af6cf88
DV
12641 struct intel_connector *connector;
12642
3a3371ff 12643 for_each_intel_connector(dev, connector) {
8af6cf88
DV
12644 /* This also checks the encoder/connector hw state with the
12645 * ->get_hw_state callbacks. */
12646 intel_connector_check_state(connector);
12647
e2c719b7 12648 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
12649 "connector's staged encoder doesn't match current encoder\n");
12650 }
91d1b4bd
DV
12651}
12652
12653static void
12654check_encoder_state(struct drm_device *dev)
12655{
12656 struct intel_encoder *encoder;
12657 struct intel_connector *connector;
8af6cf88 12658
b2784e15 12659 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
12660 bool enabled = false;
12661 bool active = false;
12662 enum pipe pipe, tracked_pipe;
12663
12664 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12665 encoder->base.base.id,
8e329a03 12666 encoder->base.name);
8af6cf88 12667
e2c719b7 12668 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 12669 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 12670 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
12671 "encoder's active_connectors set, but no crtc\n");
12672
3a3371ff 12673 for_each_intel_connector(dev, connector) {
8af6cf88
DV
12674 if (connector->base.encoder != &encoder->base)
12675 continue;
12676 enabled = true;
12677 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12678 active = true;
12679 }
0e32b39c
DA
12680 /*
12681 * for MST connectors if we unplug the connector is gone
12682 * away but the encoder is still connected to a crtc
12683 * until a modeset happens in response to the hotplug.
12684 */
12685 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12686 continue;
12687
e2c719b7 12688 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12689 "encoder's enabled state mismatch "
12690 "(expected %i, found %i)\n",
12691 !!encoder->base.crtc, enabled);
e2c719b7 12692 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
12693 "active encoder with no crtc\n");
12694
e2c719b7 12695 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
12696 "encoder's computed active state doesn't match tracked active state "
12697 "(expected %i, found %i)\n", active, encoder->connectors_active);
12698
12699 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 12700 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
12701 "encoder's hw state doesn't match sw tracking "
12702 "(expected %i, found %i)\n",
12703 encoder->connectors_active, active);
12704
12705 if (!encoder->base.crtc)
12706 continue;
12707
12708 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 12709 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
12710 "active encoder's pipe doesn't match"
12711 "(expected %i, found %i)\n",
12712 tracked_pipe, pipe);
12713
12714 }
91d1b4bd
DV
12715}
12716
12717static void
12718check_crtc_state(struct drm_device *dev)
12719{
fbee40df 12720 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12721 struct intel_crtc *crtc;
12722 struct intel_encoder *encoder;
5cec258b 12723 struct intel_crtc_state pipe_config;
8af6cf88 12724
d3fcc808 12725 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
12726 bool enabled = false;
12727 bool active = false;
12728
045ac3b5
JB
12729 memset(&pipe_config, 0, sizeof(pipe_config));
12730
8af6cf88
DV
12731 DRM_DEBUG_KMS("[CRTC:%d]\n",
12732 crtc->base.base.id);
12733
83d65738 12734 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
8af6cf88
DV
12735 "active crtc, but not enabled in sw tracking\n");
12736
b2784e15 12737 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
12738 if (encoder->base.crtc != &crtc->base)
12739 continue;
12740 enabled = true;
12741 if (encoder->connectors_active)
12742 active = true;
12743 }
6c49f241 12744
e2c719b7 12745 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
12746 "crtc's computed active state doesn't match tracked active state "
12747 "(expected %i, found %i)\n", active, crtc->active);
83d65738 12748 I915_STATE_WARN(enabled != crtc->base.state->enable,
8af6cf88 12749 "crtc's computed enabled state doesn't match tracked enabled state "
83d65738
MR
12750 "(expected %i, found %i)\n", enabled,
12751 crtc->base.state->enable);
8af6cf88 12752
0e8ffe1b
DV
12753 active = dev_priv->display.get_pipe_config(crtc,
12754 &pipe_config);
d62cf62a 12755
b6b5d049
VS
12756 /* hw state is inconsistent with the pipe quirk */
12757 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12758 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
12759 active = crtc->active;
12760
b2784e15 12761 for_each_intel_encoder(dev, encoder) {
3eaba51c 12762 enum pipe pipe;
6c49f241
DV
12763 if (encoder->base.crtc != &crtc->base)
12764 continue;
1d37b689 12765 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
12766 encoder->get_config(encoder, &pipe_config);
12767 }
12768
e2c719b7 12769 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
12770 "crtc active state doesn't match with hw state "
12771 "(expected %i, found %i)\n", crtc->active, active);
12772
53d9f4e9
ML
12773 I915_STATE_WARN(crtc->active != crtc->base.state->active,
12774 "transitional active state does not match atomic hw state "
12775 "(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
12776
c0b03411 12777 if (active &&
6e3c9717 12778 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 12779 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
12780 intel_dump_pipe_config(crtc, &pipe_config,
12781 "[hw state]");
6e3c9717 12782 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
12783 "[sw state]");
12784 }
8af6cf88
DV
12785 }
12786}
12787
91d1b4bd
DV
12788static void
12789check_shared_dpll_state(struct drm_device *dev)
12790{
fbee40df 12791 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12792 struct intel_crtc *crtc;
12793 struct intel_dpll_hw_state dpll_hw_state;
12794 int i;
5358901f
DV
12795
12796 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12797 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12798 int enabled_crtcs = 0, active_crtcs = 0;
12799 bool active;
12800
12801 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12802
12803 DRM_DEBUG_KMS("%s\n", pll->name);
12804
12805 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12806
e2c719b7 12807 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 12808 "more active pll users than references: %i vs %i\n",
3e369b76 12809 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 12810 I915_STATE_WARN(pll->active && !pll->on,
5358901f 12811 "pll in active use but not on in sw tracking\n");
e2c719b7 12812 I915_STATE_WARN(pll->on && !pll->active,
35c95375 12813 "pll in on but not on in use in sw tracking\n");
e2c719b7 12814 I915_STATE_WARN(pll->on != active,
5358901f
DV
12815 "pll on state mismatch (expected %i, found %i)\n",
12816 pll->on, active);
12817
d3fcc808 12818 for_each_intel_crtc(dev, crtc) {
83d65738 12819 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
12820 enabled_crtcs++;
12821 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12822 active_crtcs++;
12823 }
e2c719b7 12824 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
12825 "pll active crtcs mismatch (expected %i, found %i)\n",
12826 pll->active, active_crtcs);
e2c719b7 12827 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 12828 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 12829 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 12830
e2c719b7 12831 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
12832 sizeof(dpll_hw_state)),
12833 "pll hw state mismatch\n");
5358901f 12834 }
8af6cf88
DV
12835}
12836
91d1b4bd
DV
12837void
12838intel_modeset_check_state(struct drm_device *dev)
12839{
08db6652 12840 check_wm_state(dev);
91d1b4bd
DV
12841 check_connector_state(dev);
12842 check_encoder_state(dev);
12843 check_crtc_state(dev);
12844 check_shared_dpll_state(dev);
12845}
12846
5cec258b 12847void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
12848 int dotclock)
12849{
12850 /*
12851 * FDI already provided one idea for the dotclock.
12852 * Yell if the encoder disagrees.
12853 */
2d112de7 12854 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 12855 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 12856 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
12857}
12858
80715b2f
VS
12859static void update_scanline_offset(struct intel_crtc *crtc)
12860{
12861 struct drm_device *dev = crtc->base.dev;
12862
12863 /*
12864 * The scanline counter increments at the leading edge of hsync.
12865 *
12866 * On most platforms it starts counting from vtotal-1 on the
12867 * first active line. That means the scanline counter value is
12868 * always one less than what we would expect. Ie. just after
12869 * start of vblank, which also occurs at start of hsync (on the
12870 * last active line), the scanline counter will read vblank_start-1.
12871 *
12872 * On gen2 the scanline counter starts counting from 1 instead
12873 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12874 * to keep the value positive), instead of adding one.
12875 *
12876 * On HSW+ the behaviour of the scanline counter depends on the output
12877 * type. For DP ports it behaves like most other platforms, but on HDMI
12878 * there's an extra 1 line difference. So we need to add two instead of
12879 * one to the value.
12880 */
12881 if (IS_GEN2(dev)) {
6e3c9717 12882 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
12883 int vtotal;
12884
12885 vtotal = mode->crtc_vtotal;
12886 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12887 vtotal /= 2;
12888
12889 crtc->scanline_offset = vtotal - 1;
12890 } else if (HAS_DDI(dev) &&
409ee761 12891 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
12892 crtc->scanline_offset = 2;
12893 } else
12894 crtc->scanline_offset = 1;
12895}
12896
ad421372 12897static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 12898{
225da59b 12899 struct drm_device *dev = state->dev;
ed6739ef 12900 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 12901 struct intel_shared_dpll_config *shared_dpll = NULL;
ed6739ef 12902 struct intel_crtc *intel_crtc;
0a9ab303
ACO
12903 struct intel_crtc_state *intel_crtc_state;
12904 struct drm_crtc *crtc;
12905 struct drm_crtc_state *crtc_state;
0a9ab303 12906 int i;
ed6739ef
ACO
12907
12908 if (!dev_priv->display.crtc_compute_clock)
ad421372 12909 return;
ed6739ef 12910
0a9ab303 12911 for_each_crtc_in_state(state, crtc, crtc_state, i) {
ad421372
ML
12912 int dpll;
12913
0a9ab303 12914 intel_crtc = to_intel_crtc(crtc);
4978cc93 12915 intel_crtc_state = to_intel_crtc_state(crtc_state);
ad421372 12916 dpll = intel_crtc_state->shared_dpll;
0a9ab303 12917
ad421372 12918 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
225da59b
ACO
12919 continue;
12920
ad421372 12921 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
0a9ab303 12922
ad421372
ML
12923 if (!shared_dpll)
12924 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 12925
ad421372
ML
12926 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12927 }
ed6739ef
ACO
12928}
12929
99d736a2
ML
12930/*
12931 * This implements the workaround described in the "notes" section of the mode
12932 * set sequence documentation. When going from no pipes or single pipe to
12933 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12934 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12935 */
12936static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12937{
12938 struct drm_crtc_state *crtc_state;
12939 struct intel_crtc *intel_crtc;
12940 struct drm_crtc *crtc;
12941 struct intel_crtc_state *first_crtc_state = NULL;
12942 struct intel_crtc_state *other_crtc_state = NULL;
12943 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12944 int i;
12945
12946 /* look at all crtc's that are going to be enabled in during modeset */
12947 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12948 intel_crtc = to_intel_crtc(crtc);
12949
12950 if (!crtc_state->active || !needs_modeset(crtc_state))
12951 continue;
12952
12953 if (first_crtc_state) {
12954 other_crtc_state = to_intel_crtc_state(crtc_state);
12955 break;
12956 } else {
12957 first_crtc_state = to_intel_crtc_state(crtc_state);
12958 first_pipe = intel_crtc->pipe;
12959 }
12960 }
12961
12962 /* No workaround needed? */
12963 if (!first_crtc_state)
12964 return 0;
12965
12966 /* w/a possibly needed, check how many crtc's are already enabled. */
12967 for_each_intel_crtc(state->dev, intel_crtc) {
12968 struct intel_crtc_state *pipe_config;
12969
12970 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12971 if (IS_ERR(pipe_config))
12972 return PTR_ERR(pipe_config);
12973
12974 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12975
12976 if (!pipe_config->base.active ||
12977 needs_modeset(&pipe_config->base))
12978 continue;
12979
12980 /* 2 or more enabled crtcs means no need for w/a */
12981 if (enabled_pipe != INVALID_PIPE)
12982 return 0;
12983
12984 enabled_pipe = intel_crtc->pipe;
12985 }
12986
12987 if (enabled_pipe != INVALID_PIPE)
12988 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12989 else if (other_crtc_state)
12990 other_crtc_state->hsw_workaround_pipe = first_pipe;
12991
12992 return 0;
12993}
12994
27c329ed
ML
12995static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12996{
12997 struct drm_crtc *crtc;
12998 struct drm_crtc_state *crtc_state;
12999 int ret = 0;
13000
13001 /* add all active pipes to the state */
13002 for_each_crtc(state->dev, crtc) {
13003 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13004 if (IS_ERR(crtc_state))
13005 return PTR_ERR(crtc_state);
13006
13007 if (!crtc_state->active || needs_modeset(crtc_state))
13008 continue;
13009
13010 crtc_state->mode_changed = true;
13011
13012 ret = drm_atomic_add_affected_connectors(state, crtc);
13013 if (ret)
13014 break;
13015
13016 ret = drm_atomic_add_affected_planes(state, crtc);
13017 if (ret)
13018 break;
13019 }
13020
13021 return ret;
13022}
13023
13024
054518dd 13025/* Code that should eventually be part of atomic_check() */
c347a676 13026static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd
ACO
13027{
13028 struct drm_device *dev = state->dev;
27c329ed 13029 struct drm_i915_private *dev_priv = dev->dev_private;
054518dd
ACO
13030 int ret;
13031
b359283a
ML
13032 if (!check_digital_port_conflicts(state)) {
13033 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13034 return -EINVAL;
13035 }
13036
054518dd
ACO
13037 /*
13038 * See if the config requires any additional preparation, e.g.
13039 * to adjust global state with pipes off. We need to do this
13040 * here so we can get the modeset_pipe updated config for the new
13041 * mode set on this crtc. For other crtcs we need to use the
13042 * adjusted_mode bits in the crtc directly.
13043 */
27c329ed
ML
13044 if (dev_priv->display.modeset_calc_cdclk) {
13045 unsigned int cdclk;
b432e5cf 13046
27c329ed
ML
13047 ret = dev_priv->display.modeset_calc_cdclk(state);
13048
13049 cdclk = to_intel_atomic_state(state)->cdclk;
13050 if (!ret && cdclk != dev_priv->cdclk_freq)
13051 ret = intel_modeset_all_pipes(state);
13052
13053 if (ret < 0)
054518dd 13054 return ret;
27c329ed
ML
13055 } else
13056 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
054518dd 13057
ad421372 13058 intel_modeset_clear_plls(state);
054518dd 13059
99d736a2 13060 if (IS_HASWELL(dev))
ad421372 13061 return haswell_mode_set_planes_workaround(state);
99d736a2 13062
ad421372 13063 return 0;
c347a676
ACO
13064}
13065
13066static int
13067intel_modeset_compute_config(struct drm_atomic_state *state)
13068{
13069 struct drm_crtc *crtc;
13070 struct drm_crtc_state *crtc_state;
13071 int ret, i;
61333b60 13072 bool any_ms = false;
c347a676
ACO
13073
13074 ret = drm_atomic_helper_check_modeset(state->dev, state);
054518dd
ACO
13075 if (ret)
13076 return ret;
13077
c347a676 13078 for_each_crtc_in_state(state, crtc, crtc_state, i) {
61333b60
ML
13079 if (!crtc_state->enable) {
13080 if (needs_modeset(crtc_state))
13081 any_ms = true;
c347a676 13082 continue;
61333b60 13083 }
c347a676 13084
d032ffa0
ML
13085 if (to_intel_crtc_state(crtc_state)->quirks &
13086 PIPE_CONFIG_QUIRK_INITIAL_PLANES) {
13087 ret = drm_atomic_add_affected_planes(state, crtc);
13088 if (ret)
13089 return ret;
13090
13091 /*
13092 * We ought to handle i915.fastboot here.
13093 * If no modeset is required and the primary plane has
13094 * a fb, update the members of crtc_state as needed,
13095 * and run the necessary updates during vblank evasion.
13096 */
13097 }
13098
b359283a
ML
13099 if (!needs_modeset(crtc_state)) {
13100 ret = drm_atomic_add_affected_connectors(state, crtc);
13101 if (ret)
13102 return ret;
13103 }
13104
13105 ret = intel_modeset_pipe_config(crtc,
13106 to_intel_crtc_state(crtc_state));
c347a676
ACO
13107 if (ret)
13108 return ret;
13109
61333b60
ML
13110 if (needs_modeset(crtc_state))
13111 any_ms = true;
13112
c347a676
ACO
13113 intel_dump_pipe_config(to_intel_crtc(crtc),
13114 to_intel_crtc_state(crtc_state),
13115 "[modeset]");
13116 }
13117
61333b60
ML
13118 if (any_ms) {
13119 ret = intel_modeset_checks(state);
13120
13121 if (ret)
13122 return ret;
27c329ed
ML
13123 } else
13124 to_intel_atomic_state(state)->cdclk =
13125 to_i915(state->dev)->cdclk_freq;
c347a676
ACO
13126
13127 return drm_atomic_helper_check_planes(state->dev, state);
054518dd
ACO
13128}
13129
c72d969b 13130static int __intel_set_mode(struct drm_atomic_state *state)
a6778b3c 13131{
c72d969b 13132 struct drm_device *dev = state->dev;
fbee40df 13133 struct drm_i915_private *dev_priv = dev->dev_private;
0a9ab303
ACO
13134 struct drm_crtc *crtc;
13135 struct drm_crtc_state *crtc_state;
c0c36b94 13136 int ret = 0;
0a9ab303 13137 int i;
61333b60 13138 bool any_ms = false;
a6778b3c 13139
d4afb8cc
ACO
13140 ret = drm_atomic_helper_prepare_planes(dev, state);
13141 if (ret)
13142 return ret;
13143
1c5e19f8
ML
13144 drm_atomic_helper_swap_state(dev, state);
13145
0a9ab303 13146 for_each_crtc_in_state(state, crtc, crtc_state, i) {
a539205a
ML
13147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13148
61333b60
ML
13149 if (!needs_modeset(crtc->state))
13150 continue;
13151
13152 any_ms = true;
a539205a 13153 intel_pre_plane_update(intel_crtc);
460da916 13154
a539205a
ML
13155 if (crtc_state->active) {
13156 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13157 dev_priv->display.crtc_disable(crtc);
eddfcbcd
ML
13158 intel_crtc->active = false;
13159 intel_disable_shared_dpll(intel_crtc);
a539205a 13160 }
b8cecdf5 13161 }
7758a113 13162
ea9d758d
DV
13163 /* Only after disabling all output pipelines that will be changed can we
13164 * update the the output configuration. */
0a9ab303 13165 intel_modeset_update_state(state);
f6e5b160 13166
a821fc46
ACO
13167 /* The state has been swaped above, so state actually contains the
13168 * old state now. */
61333b60
ML
13169 if (any_ms)
13170 modeset_update_crtc_power_domains(state);
47fab737 13171
a6778b3c 13172 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
0a9ab303 13173 for_each_crtc_in_state(state, crtc, crtc_state, i) {
a539205a
ML
13174 if (needs_modeset(crtc->state) && crtc->state->active) {
13175 update_scanline_offset(to_intel_crtc(crtc));
13176 dev_priv->display.crtc_enable(crtc);
13177 }
80715b2f 13178
a539205a 13179 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
80715b2f 13180 }
a6778b3c 13181
a6778b3c 13182 /* FIXME: add subpixel order */
83a57153 13183
d4afb8cc
ACO
13184 drm_atomic_helper_cleanup_planes(dev, state);
13185
2bfb4627
ACO
13186 drm_atomic_state_free(state);
13187
9eb45f22 13188 return 0;
f6e5b160
CW
13189}
13190
568c634a 13191static int intel_set_mode_checked(struct drm_atomic_state *state)
f30da187 13192{
568c634a 13193 struct drm_device *dev = state->dev;
f30da187
DV
13194 int ret;
13195
568c634a 13196 ret = __intel_set_mode(state);
f30da187 13197 if (ret == 0)
568c634a 13198 intel_modeset_check_state(dev);
f30da187
DV
13199
13200 return ret;
13201}
13202
568c634a 13203static int intel_set_mode(struct drm_atomic_state *state)
7f27126e 13204{
568c634a 13205 int ret;
83a57153 13206
568c634a 13207 ret = intel_modeset_compute_config(state);
83a57153 13208 if (ret)
568c634a 13209 return ret;
7f27126e 13210
568c634a 13211 return intel_set_mode_checked(state);
7f27126e
JB
13212}
13213
c0c36b94
CW
13214void intel_crtc_restore_mode(struct drm_crtc *crtc)
13215{
83a57153
ACO
13216 struct drm_device *dev = crtc->dev;
13217 struct drm_atomic_state *state;
13218 struct intel_encoder *encoder;
13219 struct intel_connector *connector;
13220 struct drm_connector_state *connector_state;
4be07317 13221 struct intel_crtc_state *crtc_state;
2bfb4627 13222 int ret;
83a57153
ACO
13223
13224 state = drm_atomic_state_alloc(dev);
13225 if (!state) {
13226 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
13227 crtc->base.id);
13228 return;
13229 }
13230
13231 state->acquire_ctx = dev->mode_config.acquire_ctx;
13232
13233 /* The force restore path in the HW readout code relies on the staged
13234 * config still keeping the user requested config while the actual
13235 * state has been overwritten by the configuration read from HW. We
13236 * need to copy the staged config to the atomic state, otherwise the
13237 * mode set will just reapply the state the HW is already in. */
13238 for_each_intel_encoder(dev, encoder) {
13239 if (&encoder->new_crtc->base != crtc)
13240 continue;
13241
13242 for_each_intel_connector(dev, connector) {
13243 if (connector->new_encoder != encoder)
13244 continue;
13245
13246 connector_state = drm_atomic_get_connector_state(state, &connector->base);
13247 if (IS_ERR(connector_state)) {
13248 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
13249 connector->base.base.id,
13250 connector->base.name,
13251 PTR_ERR(connector_state));
13252 continue;
13253 }
13254
13255 connector_state->crtc = crtc;
13256 connector_state->best_encoder = &encoder->base;
13257 }
13258 }
13259
4ed9fb37
ACO
13260 crtc_state = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
13261 if (IS_ERR(crtc_state)) {
13262 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
13263 crtc->base.id, PTR_ERR(crtc_state));
13264 drm_atomic_state_free(state);
13265 return;
13266 }
4be07317 13267
4ed9fb37
ACO
13268 crtc_state->base.active = crtc_state->base.enable =
13269 to_intel_crtc(crtc)->new_enabled;
8c7b5ccb 13270
4ed9fb37 13271 drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
4be07317 13272
d3a40d1b
ACO
13273 intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
13274 crtc->primary->fb, crtc->x, crtc->y);
13275
568c634a 13276 ret = intel_set_mode(state);
2bfb4627
ACO
13277 if (ret)
13278 drm_atomic_state_free(state);
c0c36b94
CW
13279}
13280
25c5b266
DV
13281#undef for_each_intel_crtc_masked
13282
b7885264
ACO
13283static bool intel_connector_in_mode_set(struct intel_connector *connector,
13284 struct drm_mode_set *set)
13285{
13286 int ro;
13287
13288 for (ro = 0; ro < set->num_connectors; ro++)
13289 if (set->connectors[ro] == &connector->base)
13290 return true;
13291
13292 return false;
13293}
13294
2e431051 13295static int
9a935856
DV
13296intel_modeset_stage_output_state(struct drm_device *dev,
13297 struct drm_mode_set *set,
944b0c76 13298 struct drm_atomic_state *state)
50f56119 13299{
9a935856 13300 struct intel_connector *connector;
d5432a9d 13301 struct drm_connector *drm_connector;
944b0c76 13302 struct drm_connector_state *connector_state;
d5432a9d
ACO
13303 struct drm_crtc *crtc;
13304 struct drm_crtc_state *crtc_state;
13305 int i, ret;
50f56119 13306
9abdda74 13307 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
13308 * of connectors. For paranoia, double-check this. */
13309 WARN_ON(!set->fb && (set->num_connectors != 0));
13310 WARN_ON(set->fb && (set->num_connectors == 0));
13311
3a3371ff 13312 for_each_intel_connector(dev, connector) {
b7885264
ACO
13313 bool in_mode_set = intel_connector_in_mode_set(connector, set);
13314
d5432a9d
ACO
13315 if (!in_mode_set && connector->base.state->crtc != set->crtc)
13316 continue;
13317
13318 connector_state =
13319 drm_atomic_get_connector_state(state, &connector->base);
13320 if (IS_ERR(connector_state))
13321 return PTR_ERR(connector_state);
13322
b7885264
ACO
13323 if (in_mode_set) {
13324 int pipe = to_intel_crtc(set->crtc)->pipe;
d5432a9d
ACO
13325 connector_state->best_encoder =
13326 &intel_find_encoder(connector, pipe)->base;
50f56119
DV
13327 }
13328
d5432a9d 13329 if (connector->base.state->crtc != set->crtc)
b7885264
ACO
13330 continue;
13331
9a935856
DV
13332 /* If we disable the crtc, disable all its connectors. Also, if
13333 * the connector is on the changing crtc but not on the new
13334 * connector list, disable it. */
b7885264 13335 if (!set->fb || !in_mode_set) {
d5432a9d 13336 connector_state->best_encoder = NULL;
9a935856
DV
13337
13338 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
13339 connector->base.base.id,
c23cc417 13340 connector->base.name);
9a935856 13341 }
50f56119 13342 }
9a935856 13343 /* connector->new_encoder is now updated for all connectors. */
50f56119 13344
d5432a9d
ACO
13345 for_each_connector_in_state(state, drm_connector, connector_state, i) {
13346 connector = to_intel_connector(drm_connector);
13347
13348 if (!connector_state->best_encoder) {
13349 ret = drm_atomic_set_crtc_for_connector(connector_state,
13350 NULL);
13351 if (ret)
13352 return ret;
7668851f 13353
50f56119 13354 continue;
d5432a9d 13355 }
50f56119 13356
d5432a9d
ACO
13357 if (intel_connector_in_mode_set(connector, set)) {
13358 struct drm_crtc *crtc = connector->base.state->crtc;
13359
13360 /* If this connector was in a previous crtc, add it
13361 * to the state. We might need to disable it. */
13362 if (crtc) {
13363 crtc_state =
13364 drm_atomic_get_crtc_state(state, crtc);
13365 if (IS_ERR(crtc_state))
13366 return PTR_ERR(crtc_state);
13367 }
13368
13369 ret = drm_atomic_set_crtc_for_connector(connector_state,
13370 set->crtc);
13371 if (ret)
13372 return ret;
13373 }
50f56119
DV
13374
13375 /* Make sure the new CRTC will work with the encoder */
d5432a9d
ACO
13376 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
13377 connector_state->crtc)) {
5e2b584e 13378 return -EINVAL;
50f56119 13379 }
944b0c76 13380
9a935856
DV
13381 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
13382 connector->base.base.id,
c23cc417 13383 connector->base.name,
d5432a9d 13384 connector_state->crtc->base.id);
944b0c76 13385
d5432a9d
ACO
13386 if (connector_state->best_encoder != &connector->encoder->base)
13387 connector->encoder =
13388 to_intel_encoder(connector_state->best_encoder);
0e32b39c 13389 }
7668851f 13390
d5432a9d 13391 for_each_crtc_in_state(state, crtc, crtc_state, i) {
49d6fa21
ML
13392 bool has_connectors;
13393
d5432a9d
ACO
13394 ret = drm_atomic_add_affected_connectors(state, crtc);
13395 if (ret)
13396 return ret;
4be07317 13397
49d6fa21
ML
13398 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
13399 if (has_connectors != crtc_state->enable)
13400 crtc_state->enable =
13401 crtc_state->active = has_connectors;
7668851f
VS
13402 }
13403
8c7b5ccb
ACO
13404 ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
13405 set->fb, set->x, set->y);
13406 if (ret)
13407 return ret;
13408
13409 crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
13410 if (IS_ERR(crtc_state))
13411 return PTR_ERR(crtc_state);
13412
ce52299c
MR
13413 ret = drm_atomic_set_mode_for_crtc(crtc_state, set->mode);
13414 if (ret)
13415 return ret;
8c7b5ccb
ACO
13416
13417 if (set->num_connectors)
13418 crtc_state->active = true;
13419
2e431051
DV
13420 return 0;
13421}
13422
13423static int intel_crtc_set_config(struct drm_mode_set *set)
13424{
13425 struct drm_device *dev;
83a57153 13426 struct drm_atomic_state *state = NULL;
2e431051 13427 int ret;
2e431051 13428
8d3e375e
DV
13429 BUG_ON(!set);
13430 BUG_ON(!set->crtc);
13431 BUG_ON(!set->crtc->helper_private);
2e431051 13432
7e53f3a4
DV
13433 /* Enforce sane interface api - has been abused by the fb helper. */
13434 BUG_ON(!set->mode && set->fb);
13435 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 13436
2e431051
DV
13437 if (set->fb) {
13438 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
13439 set->crtc->base.id, set->fb->base.id,
13440 (int)set->num_connectors, set->x, set->y);
13441 } else {
13442 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
13443 }
13444
13445 dev = set->crtc->dev;
13446
83a57153 13447 state = drm_atomic_state_alloc(dev);
7cbf41d6
ACO
13448 if (!state)
13449 return -ENOMEM;
83a57153
ACO
13450
13451 state->acquire_ctx = dev->mode_config.acquire_ctx;
13452
462a425a 13453 ret = intel_modeset_stage_output_state(dev, set, state);
2e431051 13454 if (ret)
7cbf41d6 13455 goto out;
2e431051 13456
568c634a
ACO
13457 ret = intel_modeset_compute_config(state);
13458 if (ret)
7cbf41d6 13459 goto out;
50f52756 13460
1f9954d0
JB
13461 intel_update_pipe_size(to_intel_crtc(set->crtc));
13462
568c634a 13463 ret = intel_set_mode_checked(state);
2d05eae1 13464 if (ret) {
bf67dfeb
DV
13465 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
13466 set->crtc->base.id, ret);
2d05eae1 13467 }
50f56119 13468
7cbf41d6 13469out:
2bfb4627
ACO
13470 if (ret)
13471 drm_atomic_state_free(state);
50f56119
DV
13472 return ret;
13473}
f6e5b160
CW
13474
13475static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 13476 .gamma_set = intel_crtc_gamma_set,
50f56119 13477 .set_config = intel_crtc_set_config,
f6e5b160
CW
13478 .destroy = intel_crtc_destroy,
13479 .page_flip = intel_crtc_page_flip,
1356837e
MR
13480 .atomic_duplicate_state = intel_crtc_duplicate_state,
13481 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
13482};
13483
5358901f
DV
13484static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13485 struct intel_shared_dpll *pll,
13486 struct intel_dpll_hw_state *hw_state)
ee7b9f93 13487{
5358901f 13488 uint32_t val;
ee7b9f93 13489
f458ebbc 13490 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
13491 return false;
13492
5358901f 13493 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
13494 hw_state->dpll = val;
13495 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13496 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
13497
13498 return val & DPLL_VCO_ENABLE;
13499}
13500
15bdd4cf
DV
13501static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13502 struct intel_shared_dpll *pll)
13503{
3e369b76
ACO
13504 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13505 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
13506}
13507
e7b903d2
DV
13508static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13509 struct intel_shared_dpll *pll)
13510{
e7b903d2 13511 /* PCH refclock must be enabled first */
89eff4be 13512 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 13513
3e369b76 13514 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
13515
13516 /* Wait for the clocks to stabilize. */
13517 POSTING_READ(PCH_DPLL(pll->id));
13518 udelay(150);
13519
13520 /* The pixel multiplier can only be updated once the
13521 * DPLL is enabled and the clocks are stable.
13522 *
13523 * So write it again.
13524 */
3e369b76 13525 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 13526 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13527 udelay(200);
13528}
13529
13530static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13531 struct intel_shared_dpll *pll)
13532{
13533 struct drm_device *dev = dev_priv->dev;
13534 struct intel_crtc *crtc;
e7b903d2
DV
13535
13536 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 13537 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
13538 if (intel_crtc_to_shared_dpll(crtc) == pll)
13539 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
13540 }
13541
15bdd4cf
DV
13542 I915_WRITE(PCH_DPLL(pll->id), 0);
13543 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13544 udelay(200);
13545}
13546
46edb027
DV
13547static char *ibx_pch_dpll_names[] = {
13548 "PCH DPLL A",
13549 "PCH DPLL B",
13550};
13551
7c74ade1 13552static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 13553{
e7b903d2 13554 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
13555 int i;
13556
7c74ade1 13557 dev_priv->num_shared_dpll = 2;
ee7b9f93 13558
e72f9fbf 13559 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
13560 dev_priv->shared_dplls[i].id = i;
13561 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 13562 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
13563 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13564 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
13565 dev_priv->shared_dplls[i].get_hw_state =
13566 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
13567 }
13568}
13569
7c74ade1
DV
13570static void intel_shared_dpll_init(struct drm_device *dev)
13571{
e7b903d2 13572 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 13573
b6283055
VS
13574 intel_update_cdclk(dev);
13575
9cd86933
DV
13576 if (HAS_DDI(dev))
13577 intel_ddi_pll_init(dev);
13578 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
13579 ibx_pch_dpll_init(dev);
13580 else
13581 dev_priv->num_shared_dpll = 0;
13582
13583 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
13584}
13585
6beb8c23
MR
13586/**
13587 * intel_prepare_plane_fb - Prepare fb for usage on plane
13588 * @plane: drm plane to prepare for
13589 * @fb: framebuffer to prepare for presentation
13590 *
13591 * Prepares a framebuffer for usage on a display plane. Generally this
13592 * involves pinning the underlying object and updating the frontbuffer tracking
13593 * bits. Some older platforms need special physical address handling for
13594 * cursor planes.
13595 *
13596 * Returns 0 on success, negative error code on failure.
13597 */
13598int
13599intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee
TU
13600 struct drm_framebuffer *fb,
13601 const struct drm_plane_state *new_state)
465c120c
MR
13602{
13603 struct drm_device *dev = plane->dev;
6beb8c23
MR
13604 struct intel_plane *intel_plane = to_intel_plane(plane);
13605 enum pipe pipe = intel_plane->pipe;
13606 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13607 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13608 unsigned frontbuffer_bits = 0;
13609 int ret = 0;
465c120c 13610
ea2c67bb 13611 if (!obj)
465c120c
MR
13612 return 0;
13613
6beb8c23
MR
13614 switch (plane->type) {
13615 case DRM_PLANE_TYPE_PRIMARY:
13616 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13617 break;
13618 case DRM_PLANE_TYPE_CURSOR:
13619 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13620 break;
13621 case DRM_PLANE_TYPE_OVERLAY:
13622 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13623 break;
13624 }
465c120c 13625
6beb8c23 13626 mutex_lock(&dev->struct_mutex);
465c120c 13627
6beb8c23
MR
13628 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13629 INTEL_INFO(dev)->cursor_needs_physical) {
13630 int align = IS_I830(dev) ? 16 * 1024 : 256;
13631 ret = i915_gem_object_attach_phys(obj, align);
13632 if (ret)
13633 DRM_DEBUG_KMS("failed to attach phys object\n");
13634 } else {
91af127f 13635 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
6beb8c23 13636 }
465c120c 13637
6beb8c23
MR
13638 if (ret == 0)
13639 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 13640
4c34574f 13641 mutex_unlock(&dev->struct_mutex);
465c120c 13642
6beb8c23
MR
13643 return ret;
13644}
13645
38f3ce3a
MR
13646/**
13647 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13648 * @plane: drm plane to clean up for
13649 * @fb: old framebuffer that was on plane
13650 *
13651 * Cleans up a framebuffer that has just been removed from a plane.
13652 */
13653void
13654intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee
TU
13655 struct drm_framebuffer *fb,
13656 const struct drm_plane_state *old_state)
38f3ce3a
MR
13657{
13658 struct drm_device *dev = plane->dev;
13659 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13660
13661 if (WARN_ON(!obj))
13662 return;
13663
13664 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13665 !INTEL_INFO(dev)->cursor_needs_physical) {
13666 mutex_lock(&dev->struct_mutex);
82bc3b2d 13667 intel_unpin_fb_obj(fb, old_state);
38f3ce3a
MR
13668 mutex_unlock(&dev->struct_mutex);
13669 }
465c120c
MR
13670}
13671
6156a456
CK
13672int
13673skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13674{
13675 int max_scale;
13676 struct drm_device *dev;
13677 struct drm_i915_private *dev_priv;
13678 int crtc_clock, cdclk;
13679
13680 if (!intel_crtc || !crtc_state)
13681 return DRM_PLANE_HELPER_NO_SCALING;
13682
13683 dev = intel_crtc->base.dev;
13684 dev_priv = dev->dev_private;
13685 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 13686 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456
CK
13687
13688 if (!crtc_clock || !cdclk)
13689 return DRM_PLANE_HELPER_NO_SCALING;
13690
13691 /*
13692 * skl max scale is lower of:
13693 * close to 3 but not 3, -1 is for that purpose
13694 * or
13695 * cdclk/crtc_clock
13696 */
13697 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13698
13699 return max_scale;
13700}
13701
465c120c 13702static int
3c692a41 13703intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 13704 struct intel_crtc_state *crtc_state,
3c692a41
GP
13705 struct intel_plane_state *state)
13706{
2b875c22
MR
13707 struct drm_crtc *crtc = state->base.crtc;
13708 struct drm_framebuffer *fb = state->base.fb;
6156a456 13709 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
13710 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13711 bool can_position = false;
465c120c 13712
061e4b8d
ML
13713 /* use scaler when colorkey is not required */
13714 if (INTEL_INFO(plane->dev)->gen >= 9 &&
818ed961 13715 state->ckey.flags == I915_SET_COLORKEY_NONE) {
061e4b8d
ML
13716 min_scale = 1;
13717 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
d8106366 13718 can_position = true;
6156a456 13719 }
d8106366 13720
061e4b8d
ML
13721 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13722 &state->dst, &state->clip,
da20eabd
ML
13723 min_scale, max_scale,
13724 can_position, true,
13725 &state->visible);
14af293f
GP
13726}
13727
13728static void
13729intel_commit_primary_plane(struct drm_plane *plane,
13730 struct intel_plane_state *state)
13731{
2b875c22
MR
13732 struct drm_crtc *crtc = state->base.crtc;
13733 struct drm_framebuffer *fb = state->base.fb;
13734 struct drm_device *dev = plane->dev;
14af293f 13735 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 13736 struct intel_crtc *intel_crtc;
14af293f
GP
13737 struct drm_rect *src = &state->src;
13738
ea2c67bb
MR
13739 crtc = crtc ? crtc : plane->crtc;
13740 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
13741
13742 plane->fb = fb;
9dc806fc
MR
13743 crtc->x = src->x1 >> 16;
13744 crtc->y = src->y1 >> 16;
ccc759dc 13745
a539205a 13746 if (!crtc->state->active)
302d19ac 13747 return;
465c120c 13748
302d19ac
ML
13749 if (state->visible)
13750 /* FIXME: kill this fastboot hack */
13751 intel_update_pipe_size(intel_crtc);
13752
13753 dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
465c120c
MR
13754}
13755
a8ad0d8e
ML
13756static void
13757intel_disable_primary_plane(struct drm_plane *plane,
7fabf5ef 13758 struct drm_crtc *crtc)
a8ad0d8e
ML
13759{
13760 struct drm_device *dev = plane->dev;
13761 struct drm_i915_private *dev_priv = dev->dev_private;
13762
a8ad0d8e
ML
13763 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13764}
13765
32b7eeec 13766static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 13767{
32b7eeec 13768 struct drm_device *dev = crtc->dev;
140fd38d 13769 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 13770 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3c692a41 13771
a539205a
ML
13772 if (!needs_modeset(crtc->state))
13773 intel_pre_plane_update(intel_crtc);
3c692a41 13774
32b7eeec
MR
13775 if (intel_crtc->atomic.update_wm)
13776 intel_update_watermarks(crtc);
3c692a41 13777
32b7eeec 13778 intel_runtime_pm_get(dev_priv);
3c692a41 13779
c34c9ee4 13780 /* Perform vblank evasion around commit operation */
a539205a 13781 if (crtc->state->active)
c34c9ee4
MR
13782 intel_crtc->atomic.evade =
13783 intel_pipe_update_start(intel_crtc,
13784 &intel_crtc->atomic.start_vbl_count);
0583236e
ML
13785
13786 if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13787 skl_detach_scalers(intel_crtc);
32b7eeec
MR
13788}
13789
13790static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13791{
13792 struct drm_device *dev = crtc->dev;
13793 struct drm_i915_private *dev_priv = dev->dev_private;
13794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
32b7eeec 13795
c34c9ee4
MR
13796 if (intel_crtc->atomic.evade)
13797 intel_pipe_update_end(intel_crtc,
13798 intel_crtc->atomic.start_vbl_count);
3c692a41 13799
140fd38d 13800 intel_runtime_pm_put(dev_priv);
3c692a41 13801
ac21b225 13802 intel_post_plane_update(intel_crtc);
3c692a41
GP
13803}
13804
cf4c7c12 13805/**
4a3b8769
MR
13806 * intel_plane_destroy - destroy a plane
13807 * @plane: plane to destroy
cf4c7c12 13808 *
4a3b8769
MR
13809 * Common destruction function for all types of planes (primary, cursor,
13810 * sprite).
cf4c7c12 13811 */
4a3b8769 13812void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13813{
13814 struct intel_plane *intel_plane = to_intel_plane(plane);
13815 drm_plane_cleanup(plane);
13816 kfree(intel_plane);
13817}
13818
65a3fea0 13819const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13820 .update_plane = drm_atomic_helper_update_plane,
13821 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13822 .destroy = intel_plane_destroy,
c196e1d6 13823 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13824 .atomic_get_property = intel_plane_atomic_get_property,
13825 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13826 .atomic_duplicate_state = intel_plane_duplicate_state,
13827 .atomic_destroy_state = intel_plane_destroy_state,
13828
465c120c
MR
13829};
13830
13831static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13832 int pipe)
13833{
13834 struct intel_plane *primary;
8e7d688b 13835 struct intel_plane_state *state;
465c120c
MR
13836 const uint32_t *intel_primary_formats;
13837 int num_formats;
13838
13839 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13840 if (primary == NULL)
13841 return NULL;
13842
8e7d688b
MR
13843 state = intel_create_plane_state(&primary->base);
13844 if (!state) {
ea2c67bb
MR
13845 kfree(primary);
13846 return NULL;
13847 }
8e7d688b 13848 primary->base.state = &state->base;
ea2c67bb 13849
465c120c
MR
13850 primary->can_scale = false;
13851 primary->max_downscale = 1;
6156a456
CK
13852 if (INTEL_INFO(dev)->gen >= 9) {
13853 primary->can_scale = true;
af99ceda 13854 state->scaler_id = -1;
6156a456 13855 }
465c120c
MR
13856 primary->pipe = pipe;
13857 primary->plane = pipe;
c59cb179
MR
13858 primary->check_plane = intel_check_primary_plane;
13859 primary->commit_plane = intel_commit_primary_plane;
a8ad0d8e 13860 primary->disable_plane = intel_disable_primary_plane;
465c120c
MR
13861 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13862 primary->plane = !pipe;
13863
6c0fd451
DL
13864 if (INTEL_INFO(dev)->gen >= 9) {
13865 intel_primary_formats = skl_primary_formats;
13866 num_formats = ARRAY_SIZE(skl_primary_formats);
13867 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
13868 intel_primary_formats = i965_primary_formats;
13869 num_formats = ARRAY_SIZE(i965_primary_formats);
6c0fd451
DL
13870 } else {
13871 intel_primary_formats = i8xx_primary_formats;
13872 num_formats = ARRAY_SIZE(i8xx_primary_formats);
465c120c
MR
13873 }
13874
13875 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 13876 &intel_plane_funcs,
465c120c
MR
13877 intel_primary_formats, num_formats,
13878 DRM_PLANE_TYPE_PRIMARY);
48404c1e 13879
3b7a5119
SJ
13880 if (INTEL_INFO(dev)->gen >= 4)
13881 intel_create_rotation_property(dev, primary);
48404c1e 13882
ea2c67bb
MR
13883 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13884
465c120c
MR
13885 return &primary->base;
13886}
13887
3b7a5119
SJ
13888void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13889{
13890 if (!dev->mode_config.rotation_property) {
13891 unsigned long flags = BIT(DRM_ROTATE_0) |
13892 BIT(DRM_ROTATE_180);
13893
13894 if (INTEL_INFO(dev)->gen >= 9)
13895 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13896
13897 dev->mode_config.rotation_property =
13898 drm_mode_create_rotation_property(dev, flags);
13899 }
13900 if (dev->mode_config.rotation_property)
13901 drm_object_attach_property(&plane->base.base,
13902 dev->mode_config.rotation_property,
13903 plane->base.state->rotation);
13904}
13905
3d7d6510 13906static int
852e787c 13907intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 13908 struct intel_crtc_state *crtc_state,
852e787c 13909 struct intel_plane_state *state)
3d7d6510 13910{
061e4b8d 13911 struct drm_crtc *crtc = crtc_state->base.crtc;
2b875c22 13912 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 13913 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
757f9a3e
GP
13914 unsigned stride;
13915 int ret;
3d7d6510 13916
061e4b8d
ML
13917 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13918 &state->dst, &state->clip,
3d7d6510
MR
13919 DRM_PLANE_HELPER_NO_SCALING,
13920 DRM_PLANE_HELPER_NO_SCALING,
852e787c 13921 true, true, &state->visible);
757f9a3e
GP
13922 if (ret)
13923 return ret;
13924
757f9a3e
GP
13925 /* if we want to turn off the cursor ignore width and height */
13926 if (!obj)
da20eabd 13927 return 0;
757f9a3e 13928
757f9a3e 13929 /* Check for which cursor types we support */
061e4b8d 13930 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
13931 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13932 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
13933 return -EINVAL;
13934 }
13935
ea2c67bb
MR
13936 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13937 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
13938 DRM_DEBUG_KMS("buffer is too small\n");
13939 return -ENOMEM;
13940 }
13941
3a656b54 13942 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 13943 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 13944 return -EINVAL;
32b7eeec
MR
13945 }
13946
da20eabd 13947 return 0;
852e787c 13948}
3d7d6510 13949
a8ad0d8e
ML
13950static void
13951intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 13952 struct drm_crtc *crtc)
a8ad0d8e 13953{
a8ad0d8e
ML
13954 intel_crtc_update_cursor(crtc, false);
13955}
13956
f4a2cf29 13957static void
852e787c
GP
13958intel_commit_cursor_plane(struct drm_plane *plane,
13959 struct intel_plane_state *state)
13960{
2b875c22 13961 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
13962 struct drm_device *dev = plane->dev;
13963 struct intel_crtc *intel_crtc;
2b875c22 13964 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 13965 uint32_t addr;
852e787c 13966
ea2c67bb
MR
13967 crtc = crtc ? crtc : plane->crtc;
13968 intel_crtc = to_intel_crtc(crtc);
13969
2b875c22 13970 plane->fb = state->base.fb;
ea2c67bb
MR
13971 crtc->cursor_x = state->base.crtc_x;
13972 crtc->cursor_y = state->base.crtc_y;
13973
a912f12f
GP
13974 if (intel_crtc->cursor_bo == obj)
13975 goto update;
4ed91096 13976
f4a2cf29 13977 if (!obj)
a912f12f 13978 addr = 0;
f4a2cf29 13979 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 13980 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 13981 else
a912f12f 13982 addr = obj->phys_handle->busaddr;
852e787c 13983
a912f12f
GP
13984 intel_crtc->cursor_addr = addr;
13985 intel_crtc->cursor_bo = obj;
852e787c 13986
302d19ac 13987update:
a539205a 13988 if (crtc->state->active)
a912f12f 13989 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
13990}
13991
3d7d6510
MR
13992static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13993 int pipe)
13994{
13995 struct intel_plane *cursor;
8e7d688b 13996 struct intel_plane_state *state;
3d7d6510
MR
13997
13998 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13999 if (cursor == NULL)
14000 return NULL;
14001
8e7d688b
MR
14002 state = intel_create_plane_state(&cursor->base);
14003 if (!state) {
ea2c67bb
MR
14004 kfree(cursor);
14005 return NULL;
14006 }
8e7d688b 14007 cursor->base.state = &state->base;
ea2c67bb 14008
3d7d6510
MR
14009 cursor->can_scale = false;
14010 cursor->max_downscale = 1;
14011 cursor->pipe = pipe;
14012 cursor->plane = pipe;
c59cb179
MR
14013 cursor->check_plane = intel_check_cursor_plane;
14014 cursor->commit_plane = intel_commit_cursor_plane;
a8ad0d8e 14015 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510
MR
14016
14017 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 14018 &intel_plane_funcs,
3d7d6510
MR
14019 intel_cursor_formats,
14020 ARRAY_SIZE(intel_cursor_formats),
14021 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
14022
14023 if (INTEL_INFO(dev)->gen >= 4) {
14024 if (!dev->mode_config.rotation_property)
14025 dev->mode_config.rotation_property =
14026 drm_mode_create_rotation_property(dev,
14027 BIT(DRM_ROTATE_0) |
14028 BIT(DRM_ROTATE_180));
14029 if (dev->mode_config.rotation_property)
14030 drm_object_attach_property(&cursor->base.base,
14031 dev->mode_config.rotation_property,
8e7d688b 14032 state->base.rotation);
4398ad45
VS
14033 }
14034
af99ceda
CK
14035 if (INTEL_INFO(dev)->gen >=9)
14036 state->scaler_id = -1;
14037
ea2c67bb
MR
14038 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14039
3d7d6510
MR
14040 return &cursor->base;
14041}
14042
549e2bfb
CK
14043static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14044 struct intel_crtc_state *crtc_state)
14045{
14046 int i;
14047 struct intel_scaler *intel_scaler;
14048 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14049
14050 for (i = 0; i < intel_crtc->num_scalers; i++) {
14051 intel_scaler = &scaler_state->scalers[i];
14052 intel_scaler->in_use = 0;
549e2bfb
CK
14053 intel_scaler->mode = PS_SCALER_MODE_DYN;
14054 }
14055
14056 scaler_state->scaler_id = -1;
14057}
14058
b358d0a6 14059static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 14060{
fbee40df 14061 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 14062 struct intel_crtc *intel_crtc;
f5de6e07 14063 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
14064 struct drm_plane *primary = NULL;
14065 struct drm_plane *cursor = NULL;
465c120c 14066 int i, ret;
79e53945 14067
955382f3 14068 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
14069 if (intel_crtc == NULL)
14070 return;
14071
f5de6e07
ACO
14072 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14073 if (!crtc_state)
14074 goto fail;
550acefd
ACO
14075 intel_crtc->config = crtc_state;
14076 intel_crtc->base.state = &crtc_state->base;
07878248 14077 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 14078
549e2bfb
CK
14079 /* initialize shared scalers */
14080 if (INTEL_INFO(dev)->gen >= 9) {
14081 if (pipe == PIPE_C)
14082 intel_crtc->num_scalers = 1;
14083 else
14084 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14085
14086 skl_init_scalers(dev, intel_crtc, crtc_state);
14087 }
14088
465c120c 14089 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
14090 if (!primary)
14091 goto fail;
14092
14093 cursor = intel_cursor_plane_create(dev, pipe);
14094 if (!cursor)
14095 goto fail;
14096
465c120c 14097 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
14098 cursor, &intel_crtc_funcs);
14099 if (ret)
14100 goto fail;
79e53945
JB
14101
14102 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
14103 for (i = 0; i < 256; i++) {
14104 intel_crtc->lut_r[i] = i;
14105 intel_crtc->lut_g[i] = i;
14106 intel_crtc->lut_b[i] = i;
14107 }
14108
1f1c2e24
VS
14109 /*
14110 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 14111 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 14112 */
80824003
JB
14113 intel_crtc->pipe = pipe;
14114 intel_crtc->plane = pipe;
3a77c4c4 14115 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 14116 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 14117 intel_crtc->plane = !pipe;
80824003
JB
14118 }
14119
4b0e333e
CW
14120 intel_crtc->cursor_base = ~0;
14121 intel_crtc->cursor_cntl = ~0;
dc41c154 14122 intel_crtc->cursor_size = ~0;
8d7849db 14123
22fd0fab
JB
14124 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14125 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14126 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14127 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14128
79e53945 14129 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
14130
14131 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
14132 return;
14133
14134fail:
14135 if (primary)
14136 drm_plane_cleanup(primary);
14137 if (cursor)
14138 drm_plane_cleanup(cursor);
f5de6e07 14139 kfree(crtc_state);
3d7d6510 14140 kfree(intel_crtc);
79e53945
JB
14141}
14142
752aa88a
JB
14143enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14144{
14145 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 14146 struct drm_device *dev = connector->base.dev;
752aa88a 14147
51fd371b 14148 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 14149
d3babd3f 14150 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
14151 return INVALID_PIPE;
14152
14153 return to_intel_crtc(encoder->crtc)->pipe;
14154}
14155
08d7b3d1 14156int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 14157 struct drm_file *file)
08d7b3d1 14158{
08d7b3d1 14159 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 14160 struct drm_crtc *drmmode_crtc;
c05422d5 14161 struct intel_crtc *crtc;
08d7b3d1 14162
7707e653 14163 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 14164
7707e653 14165 if (!drmmode_crtc) {
08d7b3d1 14166 DRM_ERROR("no such CRTC id\n");
3f2c2057 14167 return -ENOENT;
08d7b3d1
CW
14168 }
14169
7707e653 14170 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 14171 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 14172
c05422d5 14173 return 0;
08d7b3d1
CW
14174}
14175
66a9278e 14176static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 14177{
66a9278e
DV
14178 struct drm_device *dev = encoder->base.dev;
14179 struct intel_encoder *source_encoder;
79e53945 14180 int index_mask = 0;
79e53945
JB
14181 int entry = 0;
14182
b2784e15 14183 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 14184 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
14185 index_mask |= (1 << entry);
14186
79e53945
JB
14187 entry++;
14188 }
4ef69c7a 14189
79e53945
JB
14190 return index_mask;
14191}
14192
4d302442
CW
14193static bool has_edp_a(struct drm_device *dev)
14194{
14195 struct drm_i915_private *dev_priv = dev->dev_private;
14196
14197 if (!IS_MOBILE(dev))
14198 return false;
14199
14200 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14201 return false;
14202
e3589908 14203 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
14204 return false;
14205
14206 return true;
14207}
14208
84b4e042
JB
14209static bool intel_crt_present(struct drm_device *dev)
14210{
14211 struct drm_i915_private *dev_priv = dev->dev_private;
14212
884497ed
DL
14213 if (INTEL_INFO(dev)->gen >= 9)
14214 return false;
14215
cf404ce4 14216 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
14217 return false;
14218
14219 if (IS_CHERRYVIEW(dev))
14220 return false;
14221
14222 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14223 return false;
14224
14225 return true;
14226}
14227
79e53945
JB
14228static void intel_setup_outputs(struct drm_device *dev)
14229{
725e30ad 14230 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 14231 struct intel_encoder *encoder;
cb0953d7 14232 bool dpd_is_edp = false;
79e53945 14233
c9093354 14234 intel_lvds_init(dev);
79e53945 14235
84b4e042 14236 if (intel_crt_present(dev))
79935fca 14237 intel_crt_init(dev);
cb0953d7 14238
c776eb2e
VK
14239 if (IS_BROXTON(dev)) {
14240 /*
14241 * FIXME: Broxton doesn't support port detection via the
14242 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14243 * detect the ports.
14244 */
14245 intel_ddi_init(dev, PORT_A);
14246 intel_ddi_init(dev, PORT_B);
14247 intel_ddi_init(dev, PORT_C);
14248 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
14249 int found;
14250
de31facd
JB
14251 /*
14252 * Haswell uses DDI functions to detect digital outputs.
14253 * On SKL pre-D0 the strap isn't connected, so we assume
14254 * it's there.
14255 */
0e72a5b5 14256 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
de31facd
JB
14257 /* WaIgnoreDDIAStrap: skl */
14258 if (found ||
14259 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
0e72a5b5
ED
14260 intel_ddi_init(dev, PORT_A);
14261
14262 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14263 * register */
14264 found = I915_READ(SFUSE_STRAP);
14265
14266 if (found & SFUSE_STRAP_DDIB_DETECTED)
14267 intel_ddi_init(dev, PORT_B);
14268 if (found & SFUSE_STRAP_DDIC_DETECTED)
14269 intel_ddi_init(dev, PORT_C);
14270 if (found & SFUSE_STRAP_DDID_DETECTED)
14271 intel_ddi_init(dev, PORT_D);
14272 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14273 int found;
5d8a7752 14274 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14275
14276 if (has_edp_a(dev))
14277 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14278
dc0fa718 14279 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14280 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 14281 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 14282 if (!found)
e2debe91 14283 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14284 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14285 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14286 }
14287
dc0fa718 14288 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14289 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14290
dc0fa718 14291 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14292 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14293
5eb08b69 14294 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14295 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14296
270b3042 14297 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14298 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 14299 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
14300 /*
14301 * The DP_DETECTED bit is the latched state of the DDC
14302 * SDA pin at boot. However since eDP doesn't require DDC
14303 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14304 * eDP ports may have been muxed to an alternate function.
14305 * Thus we can't rely on the DP_DETECTED bit alone to detect
14306 * eDP ports. Consult the VBT as well as DP_DETECTED to
14307 * detect eDP ports.
14308 */
d2182a66
VS
14309 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14310 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
14311 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14312 PORT_B);
e17ac6db
VS
14313 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14314 intel_dp_is_edp(dev, PORT_B))
14315 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 14316
d2182a66
VS
14317 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14318 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
14319 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14320 PORT_C);
e17ac6db
VS
14321 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14322 intel_dp_is_edp(dev, PORT_C))
14323 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 14324
9418c1f1 14325 if (IS_CHERRYVIEW(dev)) {
e17ac6db 14326 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
14327 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14328 PORT_D);
e17ac6db
VS
14329 /* eDP not supported on port D, so don't check VBT */
14330 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14331 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
14332 }
14333
3cfca973 14334 intel_dsi_init(dev);
103a196f 14335 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 14336 bool found = false;
7d57382e 14337
e2debe91 14338 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14339 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 14340 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
14341 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14342 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14343 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14344 }
27185ae1 14345
e7281eab 14346 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 14347 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14348 }
13520b05
KH
14349
14350 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14351
e2debe91 14352 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14353 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 14354 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 14355 }
27185ae1 14356
e2debe91 14357 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14358
b01f2c3a
JB
14359 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14360 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14361 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14362 }
e7281eab 14363 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 14364 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14365 }
27185ae1 14366
b01f2c3a 14367 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 14368 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14369 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14370 } else if (IS_GEN2(dev))
79e53945
JB
14371 intel_dvo_init(dev);
14372
103a196f 14373 if (SUPPORTS_TV(dev))
79e53945
JB
14374 intel_tv_init(dev);
14375
0bc12bcb 14376 intel_psr_init(dev);
7c8f8a70 14377
b2784e15 14378 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14379 encoder->base.possible_crtcs = encoder->crtc_mask;
14380 encoder->base.possible_clones =
66a9278e 14381 intel_encoder_clones(encoder);
79e53945 14382 }
47356eb6 14383
dde86e2d 14384 intel_init_pch_refclk(dev);
270b3042
DV
14385
14386 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14387}
14388
14389static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14390{
60a5ca01 14391 struct drm_device *dev = fb->dev;
79e53945 14392 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14393
ef2d633e 14394 drm_framebuffer_cleanup(fb);
60a5ca01 14395 mutex_lock(&dev->struct_mutex);
ef2d633e 14396 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14397 drm_gem_object_unreference(&intel_fb->obj->base);
14398 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14399 kfree(intel_fb);
14400}
14401
14402static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14403 struct drm_file *file,
79e53945
JB
14404 unsigned int *handle)
14405{
14406 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14407 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14408
05394f39 14409 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14410}
14411
14412static const struct drm_framebuffer_funcs intel_fb_funcs = {
14413 .destroy = intel_user_framebuffer_destroy,
14414 .create_handle = intel_user_framebuffer_create_handle,
14415};
14416
b321803d
DL
14417static
14418u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14419 uint32_t pixel_format)
14420{
14421 u32 gen = INTEL_INFO(dev)->gen;
14422
14423 if (gen >= 9) {
14424 /* "The stride in bytes must not exceed the of the size of 8K
14425 * pixels and 32K bytes."
14426 */
14427 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14428 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14429 return 32*1024;
14430 } else if (gen >= 4) {
14431 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14432 return 16*1024;
14433 else
14434 return 32*1024;
14435 } else if (gen >= 3) {
14436 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14437 return 8*1024;
14438 else
14439 return 16*1024;
14440 } else {
14441 /* XXX DSPC is limited to 4k tiled */
14442 return 8*1024;
14443 }
14444}
14445
b5ea642a
DV
14446static int intel_framebuffer_init(struct drm_device *dev,
14447 struct intel_framebuffer *intel_fb,
14448 struct drm_mode_fb_cmd2 *mode_cmd,
14449 struct drm_i915_gem_object *obj)
79e53945 14450{
6761dd31 14451 unsigned int aligned_height;
79e53945 14452 int ret;
b321803d 14453 u32 pitch_limit, stride_alignment;
79e53945 14454
dd4916c5
DV
14455 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14456
2a80eada
DV
14457 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14458 /* Enforce that fb modifier and tiling mode match, but only for
14459 * X-tiled. This is needed for FBC. */
14460 if (!!(obj->tiling_mode == I915_TILING_X) !=
14461 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14462 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14463 return -EINVAL;
14464 }
14465 } else {
14466 if (obj->tiling_mode == I915_TILING_X)
14467 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14468 else if (obj->tiling_mode == I915_TILING_Y) {
14469 DRM_DEBUG("No Y tiling for legacy addfb\n");
14470 return -EINVAL;
14471 }
14472 }
14473
9a8f0a12
TU
14474 /* Passed in modifier sanity checking. */
14475 switch (mode_cmd->modifier[0]) {
14476 case I915_FORMAT_MOD_Y_TILED:
14477 case I915_FORMAT_MOD_Yf_TILED:
14478 if (INTEL_INFO(dev)->gen < 9) {
14479 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14480 mode_cmd->modifier[0]);
14481 return -EINVAL;
14482 }
14483 case DRM_FORMAT_MOD_NONE:
14484 case I915_FORMAT_MOD_X_TILED:
14485 break;
14486 default:
c0f40428
JB
14487 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14488 mode_cmd->modifier[0]);
57cd6508 14489 return -EINVAL;
c16ed4be 14490 }
57cd6508 14491
b321803d
DL
14492 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14493 mode_cmd->pixel_format);
14494 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14495 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14496 mode_cmd->pitches[0], stride_alignment);
57cd6508 14497 return -EINVAL;
c16ed4be 14498 }
57cd6508 14499
b321803d
DL
14500 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14501 mode_cmd->pixel_format);
a35cdaa0 14502 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
14503 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14504 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 14505 "tiled" : "linear",
a35cdaa0 14506 mode_cmd->pitches[0], pitch_limit);
5d7bd705 14507 return -EINVAL;
c16ed4be 14508 }
5d7bd705 14509
2a80eada 14510 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
14511 mode_cmd->pitches[0] != obj->stride) {
14512 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14513 mode_cmd->pitches[0], obj->stride);
5d7bd705 14514 return -EINVAL;
c16ed4be 14515 }
5d7bd705 14516
57779d06 14517 /* Reject formats not supported by any plane early. */
308e5bcb 14518 switch (mode_cmd->pixel_format) {
57779d06 14519 case DRM_FORMAT_C8:
04b3924d
VS
14520 case DRM_FORMAT_RGB565:
14521 case DRM_FORMAT_XRGB8888:
14522 case DRM_FORMAT_ARGB8888:
57779d06
VS
14523 break;
14524 case DRM_FORMAT_XRGB1555:
c16ed4be 14525 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
14526 DRM_DEBUG("unsupported pixel format: %s\n",
14527 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14528 return -EINVAL;
c16ed4be 14529 }
57779d06 14530 break;
57779d06 14531 case DRM_FORMAT_ABGR8888:
6c0fd451
DL
14532 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14533 DRM_DEBUG("unsupported pixel format: %s\n",
14534 drm_get_format_name(mode_cmd->pixel_format));
14535 return -EINVAL;
14536 }
14537 break;
14538 case DRM_FORMAT_XBGR8888:
04b3924d 14539 case DRM_FORMAT_XRGB2101010:
57779d06 14540 case DRM_FORMAT_XBGR2101010:
c16ed4be 14541 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
14542 DRM_DEBUG("unsupported pixel format: %s\n",
14543 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14544 return -EINVAL;
c16ed4be 14545 }
b5626747 14546 break;
7531208b
DL
14547 case DRM_FORMAT_ABGR2101010:
14548 if (!IS_VALLEYVIEW(dev)) {
14549 DRM_DEBUG("unsupported pixel format: %s\n",
14550 drm_get_format_name(mode_cmd->pixel_format));
14551 return -EINVAL;
14552 }
14553 break;
04b3924d
VS
14554 case DRM_FORMAT_YUYV:
14555 case DRM_FORMAT_UYVY:
14556 case DRM_FORMAT_YVYU:
14557 case DRM_FORMAT_VYUY:
c16ed4be 14558 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14559 DRM_DEBUG("unsupported pixel format: %s\n",
14560 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14561 return -EINVAL;
c16ed4be 14562 }
57cd6508
CW
14563 break;
14564 default:
4ee62c76
VS
14565 DRM_DEBUG("unsupported pixel format: %s\n",
14566 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14567 return -EINVAL;
14568 }
14569
90f9a336
VS
14570 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14571 if (mode_cmd->offsets[0] != 0)
14572 return -EINVAL;
14573
ec2c981e 14574 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14575 mode_cmd->pixel_format,
14576 mode_cmd->modifier[0]);
53155c0a
DV
14577 /* FIXME drm helper for size checks (especially planar formats)? */
14578 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14579 return -EINVAL;
14580
c7d73f6a
DV
14581 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14582 intel_fb->obj = obj;
80075d49 14583 intel_fb->obj->framebuffer_references++;
c7d73f6a 14584
79e53945
JB
14585 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14586 if (ret) {
14587 DRM_ERROR("framebuffer init failed %d\n", ret);
14588 return ret;
14589 }
14590
79e53945
JB
14591 return 0;
14592}
14593
79e53945
JB
14594static struct drm_framebuffer *
14595intel_user_framebuffer_create(struct drm_device *dev,
14596 struct drm_file *filp,
308e5bcb 14597 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 14598{
05394f39 14599 struct drm_i915_gem_object *obj;
79e53945 14600
308e5bcb
JB
14601 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14602 mode_cmd->handles[0]));
c8725226 14603 if (&obj->base == NULL)
cce13ff7 14604 return ERR_PTR(-ENOENT);
79e53945 14605
d2dff872 14606 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
14607}
14608
4520f53a 14609#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 14610static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14611{
14612}
14613#endif
14614
79e53945 14615static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14616 .fb_create = intel_user_framebuffer_create,
0632fef6 14617 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14618 .atomic_check = intel_atomic_check,
14619 .atomic_commit = intel_atomic_commit,
de419ab6
ML
14620 .atomic_state_alloc = intel_atomic_state_alloc,
14621 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
14622};
14623
e70236a8
JB
14624/* Set up chip specific display functions */
14625static void intel_init_display(struct drm_device *dev)
14626{
14627 struct drm_i915_private *dev_priv = dev->dev_private;
14628
ee9300bb
DV
14629 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14630 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14631 else if (IS_CHERRYVIEW(dev))
14632 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14633 else if (IS_VALLEYVIEW(dev))
14634 dev_priv->display.find_dpll = vlv_find_best_dpll;
14635 else if (IS_PINEVIEW(dev))
14636 dev_priv->display.find_dpll = pnv_find_best_dpll;
14637 else
14638 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14639
bc8d7dff
DL
14640 if (INTEL_INFO(dev)->gen >= 9) {
14641 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14642 dev_priv->display.get_initial_plane_config =
14643 skylake_get_initial_plane_config;
bc8d7dff
DL
14644 dev_priv->display.crtc_compute_clock =
14645 haswell_crtc_compute_clock;
14646 dev_priv->display.crtc_enable = haswell_crtc_enable;
14647 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff
DL
14648 dev_priv->display.update_primary_plane =
14649 skylake_update_primary_plane;
14650 } else if (HAS_DDI(dev)) {
0e8ffe1b 14651 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14652 dev_priv->display.get_initial_plane_config =
14653 ironlake_get_initial_plane_config;
797d0259
ACO
14654 dev_priv->display.crtc_compute_clock =
14655 haswell_crtc_compute_clock;
4f771f10
PZ
14656 dev_priv->display.crtc_enable = haswell_crtc_enable;
14657 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff
DL
14658 dev_priv->display.update_primary_plane =
14659 ironlake_update_primary_plane;
09b4ddf9 14660 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14661 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14662 dev_priv->display.get_initial_plane_config =
14663 ironlake_get_initial_plane_config;
3fb37703
ACO
14664 dev_priv->display.crtc_compute_clock =
14665 ironlake_crtc_compute_clock;
76e5a89c
DV
14666 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14667 dev_priv->display.crtc_disable = ironlake_crtc_disable;
262ca2b0
MR
14668 dev_priv->display.update_primary_plane =
14669 ironlake_update_primary_plane;
89b667f8
JB
14670 } else if (IS_VALLEYVIEW(dev)) {
14671 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14672 dev_priv->display.get_initial_plane_config =
14673 i9xx_get_initial_plane_config;
d6dfee7a 14674 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14675 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14676 dev_priv->display.crtc_disable = i9xx_crtc_disable;
262ca2b0
MR
14677 dev_priv->display.update_primary_plane =
14678 i9xx_update_primary_plane;
f564048e 14679 } else {
0e8ffe1b 14680 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14681 dev_priv->display.get_initial_plane_config =
14682 i9xx_get_initial_plane_config;
d6dfee7a 14683 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14684 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14685 dev_priv->display.crtc_disable = i9xx_crtc_disable;
262ca2b0
MR
14686 dev_priv->display.update_primary_plane =
14687 i9xx_update_primary_plane;
f564048e 14688 }
e70236a8 14689
e70236a8 14690 /* Returns the core display clock speed */
1652d19e
VS
14691 if (IS_SKYLAKE(dev))
14692 dev_priv->display.get_display_clock_speed =
14693 skylake_get_display_clock_speed;
14694 else if (IS_BROADWELL(dev))
14695 dev_priv->display.get_display_clock_speed =
14696 broadwell_get_display_clock_speed;
14697 else if (IS_HASWELL(dev))
14698 dev_priv->display.get_display_clock_speed =
14699 haswell_get_display_clock_speed;
14700 else if (IS_VALLEYVIEW(dev))
25eb05fc
JB
14701 dev_priv->display.get_display_clock_speed =
14702 valleyview_get_display_clock_speed;
b37a6434
VS
14703 else if (IS_GEN5(dev))
14704 dev_priv->display.get_display_clock_speed =
14705 ilk_get_display_clock_speed;
a7c66cd8 14706 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
34edce2f 14707 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
e70236a8
JB
14708 dev_priv->display.get_display_clock_speed =
14709 i945_get_display_clock_speed;
34edce2f
VS
14710 else if (IS_GM45(dev))
14711 dev_priv->display.get_display_clock_speed =
14712 gm45_get_display_clock_speed;
14713 else if (IS_CRESTLINE(dev))
14714 dev_priv->display.get_display_clock_speed =
14715 i965gm_get_display_clock_speed;
14716 else if (IS_PINEVIEW(dev))
14717 dev_priv->display.get_display_clock_speed =
14718 pnv_get_display_clock_speed;
14719 else if (IS_G33(dev) || IS_G4X(dev))
14720 dev_priv->display.get_display_clock_speed =
14721 g33_get_display_clock_speed;
e70236a8
JB
14722 else if (IS_I915G(dev))
14723 dev_priv->display.get_display_clock_speed =
14724 i915_get_display_clock_speed;
257a7ffc 14725 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14726 dev_priv->display.get_display_clock_speed =
14727 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
14728 else if (IS_PINEVIEW(dev))
14729 dev_priv->display.get_display_clock_speed =
14730 pnv_get_display_clock_speed;
e70236a8
JB
14731 else if (IS_I915GM(dev))
14732 dev_priv->display.get_display_clock_speed =
14733 i915gm_get_display_clock_speed;
14734 else if (IS_I865G(dev))
14735 dev_priv->display.get_display_clock_speed =
14736 i865_get_display_clock_speed;
f0f8a9ce 14737 else if (IS_I85X(dev))
e70236a8 14738 dev_priv->display.get_display_clock_speed =
1b1d2716 14739 i85x_get_display_clock_speed;
623e01e5
VS
14740 else { /* 830 */
14741 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
14742 dev_priv->display.get_display_clock_speed =
14743 i830_get_display_clock_speed;
623e01e5 14744 }
e70236a8 14745
7c10a2b5 14746 if (IS_GEN5(dev)) {
3bb11b53 14747 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14748 } else if (IS_GEN6(dev)) {
14749 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14750 } else if (IS_IVYBRIDGE(dev)) {
14751 /* FIXME: detect B0+ stepping and use auto training */
14752 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14753 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14754 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
27c329ed
ML
14755 if (IS_BROADWELL(dev)) {
14756 dev_priv->display.modeset_commit_cdclk =
14757 broadwell_modeset_commit_cdclk;
14758 dev_priv->display.modeset_calc_cdclk =
14759 broadwell_modeset_calc_cdclk;
14760 }
30a970c6 14761 } else if (IS_VALLEYVIEW(dev)) {
27c329ed
ML
14762 dev_priv->display.modeset_commit_cdclk =
14763 valleyview_modeset_commit_cdclk;
14764 dev_priv->display.modeset_calc_cdclk =
14765 valleyview_modeset_calc_cdclk;
f8437dd1 14766 } else if (IS_BROXTON(dev)) {
27c329ed
ML
14767 dev_priv->display.modeset_commit_cdclk =
14768 broxton_modeset_commit_cdclk;
14769 dev_priv->display.modeset_calc_cdclk =
14770 broxton_modeset_calc_cdclk;
e70236a8 14771 }
8c9f3aaf 14772
8c9f3aaf
JB
14773 switch (INTEL_INFO(dev)->gen) {
14774 case 2:
14775 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14776 break;
14777
14778 case 3:
14779 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14780 break;
14781
14782 case 4:
14783 case 5:
14784 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14785 break;
14786
14787 case 6:
14788 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14789 break;
7c9017e5 14790 case 7:
4e0bbc31 14791 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14792 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14793 break;
830c81db 14794 case 9:
ba343e02
TU
14795 /* Drop through - unsupported since execlist only. */
14796 default:
14797 /* Default just returns -ENODEV to indicate unsupported */
14798 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14799 }
7bd688cd
JN
14800
14801 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
14802
14803 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14804}
14805
b690e96c
JB
14806/*
14807 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14808 * resume, or other times. This quirk makes sure that's the case for
14809 * affected systems.
14810 */
0206e353 14811static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
14812{
14813 struct drm_i915_private *dev_priv = dev->dev_private;
14814
14815 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 14816 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
14817}
14818
b6b5d049
VS
14819static void quirk_pipeb_force(struct drm_device *dev)
14820{
14821 struct drm_i915_private *dev_priv = dev->dev_private;
14822
14823 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14824 DRM_INFO("applying pipe b force quirk\n");
14825}
14826
435793df
KP
14827/*
14828 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14829 */
14830static void quirk_ssc_force_disable(struct drm_device *dev)
14831{
14832 struct drm_i915_private *dev_priv = dev->dev_private;
14833 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 14834 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
14835}
14836
4dca20ef 14837/*
5a15ab5b
CE
14838 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14839 * brightness value
4dca20ef
CE
14840 */
14841static void quirk_invert_brightness(struct drm_device *dev)
14842{
14843 struct drm_i915_private *dev_priv = dev->dev_private;
14844 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 14845 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
14846}
14847
9c72cc6f
SD
14848/* Some VBT's incorrectly indicate no backlight is present */
14849static void quirk_backlight_present(struct drm_device *dev)
14850{
14851 struct drm_i915_private *dev_priv = dev->dev_private;
14852 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14853 DRM_INFO("applying backlight present quirk\n");
14854}
14855
b690e96c
JB
14856struct intel_quirk {
14857 int device;
14858 int subsystem_vendor;
14859 int subsystem_device;
14860 void (*hook)(struct drm_device *dev);
14861};
14862
5f85f176
EE
14863/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14864struct intel_dmi_quirk {
14865 void (*hook)(struct drm_device *dev);
14866 const struct dmi_system_id (*dmi_id_list)[];
14867};
14868
14869static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14870{
14871 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14872 return 1;
14873}
14874
14875static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14876 {
14877 .dmi_id_list = &(const struct dmi_system_id[]) {
14878 {
14879 .callback = intel_dmi_reverse_brightness,
14880 .ident = "NCR Corporation",
14881 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14882 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14883 },
14884 },
14885 { } /* terminating entry */
14886 },
14887 .hook = quirk_invert_brightness,
14888 },
14889};
14890
c43b5634 14891static struct intel_quirk intel_quirks[] = {
b690e96c
JB
14892 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14893 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14894
b690e96c
JB
14895 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14896 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14897
5f080c0f
VS
14898 /* 830 needs to leave pipe A & dpll A up */
14899 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14900
b6b5d049
VS
14901 /* 830 needs to leave pipe B & dpll B up */
14902 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14903
435793df
KP
14904 /* Lenovo U160 cannot use SSC on LVDS */
14905 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
14906
14907 /* Sony Vaio Y cannot use SSC on LVDS */
14908 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 14909
be505f64
AH
14910 /* Acer Aspire 5734Z must invert backlight brightness */
14911 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14912
14913 /* Acer/eMachines G725 */
14914 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14915
14916 /* Acer/eMachines e725 */
14917 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14918
14919 /* Acer/Packard Bell NCL20 */
14920 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14921
14922 /* Acer Aspire 4736Z */
14923 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
14924
14925 /* Acer Aspire 5336 */
14926 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
14927
14928 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14929 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 14930
dfb3d47b
SD
14931 /* Acer C720 Chromebook (Core i3 4005U) */
14932 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14933
b2a9601c 14934 /* Apple Macbook 2,1 (Core 2 T7400) */
14935 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14936
d4967d8c
SD
14937 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14938 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
14939
14940 /* HP Chromebook 14 (Celeron 2955U) */
14941 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
14942
14943 /* Dell Chromebook 11 */
14944 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
14945};
14946
14947static void intel_init_quirks(struct drm_device *dev)
14948{
14949 struct pci_dev *d = dev->pdev;
14950 int i;
14951
14952 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14953 struct intel_quirk *q = &intel_quirks[i];
14954
14955 if (d->device == q->device &&
14956 (d->subsystem_vendor == q->subsystem_vendor ||
14957 q->subsystem_vendor == PCI_ANY_ID) &&
14958 (d->subsystem_device == q->subsystem_device ||
14959 q->subsystem_device == PCI_ANY_ID))
14960 q->hook(dev);
14961 }
5f85f176
EE
14962 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14963 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14964 intel_dmi_quirks[i].hook(dev);
14965 }
b690e96c
JB
14966}
14967
9cce37f4
JB
14968/* Disable the VGA plane that we never use */
14969static void i915_disable_vga(struct drm_device *dev)
14970{
14971 struct drm_i915_private *dev_priv = dev->dev_private;
14972 u8 sr1;
766aa1c4 14973 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 14974
2b37c616 14975 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 14976 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 14977 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
14978 sr1 = inb(VGA_SR_DATA);
14979 outb(sr1 | 1<<5, VGA_SR_DATA);
14980 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14981 udelay(300);
14982
01f5a626 14983 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
14984 POSTING_READ(vga_reg);
14985}
14986
f817586c
DV
14987void intel_modeset_init_hw(struct drm_device *dev)
14988{
b6283055 14989 intel_update_cdclk(dev);
a8f78b58 14990 intel_prepare_ddi(dev);
f817586c 14991 intel_init_clock_gating(dev);
8090c6b9 14992 intel_enable_gt_powersave(dev);
f817586c
DV
14993}
14994
79e53945
JB
14995void intel_modeset_init(struct drm_device *dev)
14996{
652c393a 14997 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 14998 int sprite, ret;
8cc87b75 14999 enum pipe pipe;
46f297fb 15000 struct intel_crtc *crtc;
79e53945
JB
15001
15002 drm_mode_config_init(dev);
15003
15004 dev->mode_config.min_width = 0;
15005 dev->mode_config.min_height = 0;
15006
019d96cb
DA
15007 dev->mode_config.preferred_depth = 24;
15008 dev->mode_config.prefer_shadow = 1;
15009
25bab385
TU
15010 dev->mode_config.allow_fb_modifiers = true;
15011
e6ecefaa 15012 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 15013
b690e96c
JB
15014 intel_init_quirks(dev);
15015
1fa61106
ED
15016 intel_init_pm(dev);
15017
e3c74757
BW
15018 if (INTEL_INFO(dev)->num_pipes == 0)
15019 return;
15020
e70236a8 15021 intel_init_display(dev);
7c10a2b5 15022 intel_init_audio(dev);
e70236a8 15023
a6c45cf0
CW
15024 if (IS_GEN2(dev)) {
15025 dev->mode_config.max_width = 2048;
15026 dev->mode_config.max_height = 2048;
15027 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
15028 dev->mode_config.max_width = 4096;
15029 dev->mode_config.max_height = 4096;
79e53945 15030 } else {
a6c45cf0
CW
15031 dev->mode_config.max_width = 8192;
15032 dev->mode_config.max_height = 8192;
79e53945 15033 }
068be561 15034
dc41c154
VS
15035 if (IS_845G(dev) || IS_I865G(dev)) {
15036 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15037 dev->mode_config.cursor_height = 1023;
15038 } else if (IS_GEN2(dev)) {
068be561
DL
15039 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15040 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15041 } else {
15042 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15043 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15044 }
15045
5d4545ae 15046 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 15047
28c97730 15048 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
15049 INTEL_INFO(dev)->num_pipes,
15050 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 15051
055e393f 15052 for_each_pipe(dev_priv, pipe) {
8cc87b75 15053 intel_crtc_init(dev, pipe);
3bdcfc0c 15054 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 15055 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 15056 if (ret)
06da8da2 15057 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 15058 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 15059 }
79e53945
JB
15060 }
15061
f42bb70d
JB
15062 intel_init_dpio(dev);
15063
e72f9fbf 15064 intel_shared_dpll_init(dev);
ee7b9f93 15065
9cce37f4
JB
15066 /* Just disable it once at startup */
15067 i915_disable_vga(dev);
79e53945 15068 intel_setup_outputs(dev);
11be49eb
CW
15069
15070 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 15071 intel_fbc_disable(dev);
fa9fa083 15072
6e9f798d 15073 drm_modeset_lock_all(dev);
fa9fa083 15074 intel_modeset_setup_hw_state(dev, false);
6e9f798d 15075 drm_modeset_unlock_all(dev);
46f297fb 15076
d3fcc808 15077 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
15078 if (!crtc->active)
15079 continue;
15080
46f297fb 15081 /*
46f297fb
JB
15082 * Note that reserving the BIOS fb up front prevents us
15083 * from stuffing other stolen allocations like the ring
15084 * on top. This prevents some ugliness at boot time, and
15085 * can even allow for smooth boot transitions if the BIOS
15086 * fb is large enough for the active pipe configuration.
15087 */
5724dbd1
DL
15088 if (dev_priv->display.get_initial_plane_config) {
15089 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
15090 &crtc->plane_config);
15091 /*
15092 * If the fb is shared between multiple heads, we'll
15093 * just get the first one.
15094 */
f6936e29 15095 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
46f297fb 15096 }
46f297fb 15097 }
2c7111db
CW
15098}
15099
7fad798e
DV
15100static void intel_enable_pipe_a(struct drm_device *dev)
15101{
15102 struct intel_connector *connector;
15103 struct drm_connector *crt = NULL;
15104 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 15105 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
15106
15107 /* We can't just switch on the pipe A, we need to set things up with a
15108 * proper mode and output configuration. As a gross hack, enable pipe A
15109 * by enabling the load detect pipe once. */
3a3371ff 15110 for_each_intel_connector(dev, connector) {
7fad798e
DV
15111 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15112 crt = &connector->base;
15113 break;
15114 }
15115 }
15116
15117 if (!crt)
15118 return;
15119
208bf9fd 15120 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 15121 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
15122}
15123
fa555837
DV
15124static bool
15125intel_check_plane_mapping(struct intel_crtc *crtc)
15126{
7eb552ae
BW
15127 struct drm_device *dev = crtc->base.dev;
15128 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
15129 u32 reg, val;
15130
7eb552ae 15131 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
15132 return true;
15133
15134 reg = DSPCNTR(!crtc->plane);
15135 val = I915_READ(reg);
15136
15137 if ((val & DISPLAY_PLANE_ENABLE) &&
15138 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15139 return false;
15140
15141 return true;
15142}
15143
24929352
DV
15144static void intel_sanitize_crtc(struct intel_crtc *crtc)
15145{
15146 struct drm_device *dev = crtc->base.dev;
15147 struct drm_i915_private *dev_priv = dev->dev_private;
b17d48e2 15148 struct intel_encoder *encoder;
fa555837 15149 u32 reg;
b17d48e2 15150 bool enable;
24929352 15151
24929352 15152 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 15153 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
15154 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15155
d3eaf884 15156 /* restore vblank interrupts to correct state */
9625604c 15157 drm_crtc_vblank_reset(&crtc->base);
d297e103
VS
15158 if (crtc->active) {
15159 update_scanline_offset(crtc);
9625604c
DV
15160 drm_crtc_vblank_on(&crtc->base);
15161 }
d3eaf884 15162
24929352 15163 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
15164 * disable the crtc (and hence change the state) if it is wrong. Note
15165 * that gen4+ has a fixed plane -> pipe mapping. */
15166 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
15167 bool plane;
15168
24929352
DV
15169 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15170 crtc->base.base.id);
15171
15172 /* Pipe has the wrong plane attached and the plane is active.
15173 * Temporarily change the plane mapping and disable everything
15174 * ... */
15175 plane = crtc->plane;
b70709a6 15176 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 15177 crtc->plane = !plane;
b17d48e2 15178 intel_crtc_disable_noatomic(&crtc->base);
24929352 15179 crtc->plane = plane;
24929352 15180 }
24929352 15181
7fad798e
DV
15182 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15183 crtc->pipe == PIPE_A && !crtc->active) {
15184 /* BIOS forgot to enable pipe A, this mostly happens after
15185 * resume. Force-enable the pipe to fix this, the update_dpms
15186 * call below we restore the pipe to the right state, but leave
15187 * the required bits on. */
15188 intel_enable_pipe_a(dev);
15189 }
15190
24929352
DV
15191 /* Adjust the state of the output pipe according to whether we
15192 * have active connectors/encoders. */
b17d48e2
ML
15193 enable = false;
15194 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15195 enable |= encoder->connectors_active;
24929352 15196
b17d48e2
ML
15197 if (!enable)
15198 intel_crtc_disable_noatomic(&crtc->base);
24929352 15199
53d9f4e9 15200 if (crtc->active != crtc->base.state->active) {
24929352
DV
15201
15202 /* This can happen either due to bugs in the get_hw_state
b17d48e2
ML
15203 * functions or because of calls to intel_crtc_disable_noatomic,
15204 * or because the pipe is force-enabled due to the
24929352
DV
15205 * pipe A quirk. */
15206 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15207 crtc->base.base.id,
83d65738 15208 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
15209 crtc->active ? "enabled" : "disabled");
15210
83d65738 15211 crtc->base.state->enable = crtc->active;
49d6fa21 15212 crtc->base.state->active = crtc->active;
24929352
DV
15213 crtc->base.enabled = crtc->active;
15214
15215 /* Because we only establish the connector -> encoder ->
15216 * crtc links if something is active, this means the
15217 * crtc is now deactivated. Break the links. connector
15218 * -> encoder links are only establish when things are
15219 * actually up, hence no need to break them. */
15220 WARN_ON(crtc->active);
15221
15222 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15223 WARN_ON(encoder->connectors_active);
15224 encoder->base.crtc = NULL;
15225 }
15226 }
c5ab3bc0 15227
a3ed6aad 15228 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15229 /*
15230 * We start out with underrun reporting disabled to avoid races.
15231 * For correct bookkeeping mark this on active crtcs.
15232 *
c5ab3bc0
DV
15233 * Also on gmch platforms we dont have any hardware bits to
15234 * disable the underrun reporting. Which means we need to start
15235 * out with underrun reporting disabled also on inactive pipes,
15236 * since otherwise we'll complain about the garbage we read when
15237 * e.g. coming up after runtime pm.
15238 *
4cc31489
DV
15239 * No protection against concurrent access is required - at
15240 * worst a fifo underrun happens which also sets this to false.
15241 */
15242 crtc->cpu_fifo_underrun_disabled = true;
15243 crtc->pch_fifo_underrun_disabled = true;
15244 }
24929352
DV
15245}
15246
15247static void intel_sanitize_encoder(struct intel_encoder *encoder)
15248{
15249 struct intel_connector *connector;
15250 struct drm_device *dev = encoder->base.dev;
15251
15252 /* We need to check both for a crtc link (meaning that the
15253 * encoder is active and trying to read from a pipe) and the
15254 * pipe itself being active. */
15255 bool has_active_crtc = encoder->base.crtc &&
15256 to_intel_crtc(encoder->base.crtc)->active;
15257
15258 if (encoder->connectors_active && !has_active_crtc) {
15259 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15260 encoder->base.base.id,
8e329a03 15261 encoder->base.name);
24929352
DV
15262
15263 /* Connector is active, but has no active pipe. This is
15264 * fallout from our resume register restoring. Disable
15265 * the encoder manually again. */
15266 if (encoder->base.crtc) {
15267 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15268 encoder->base.base.id,
8e329a03 15269 encoder->base.name);
24929352 15270 encoder->disable(encoder);
a62d1497
VS
15271 if (encoder->post_disable)
15272 encoder->post_disable(encoder);
24929352 15273 }
7f1950fb
EE
15274 encoder->base.crtc = NULL;
15275 encoder->connectors_active = false;
24929352
DV
15276
15277 /* Inconsistent output/port/pipe state happens presumably due to
15278 * a bug in one of the get_hw_state functions. Or someplace else
15279 * in our code, like the register restore mess on resume. Clamp
15280 * things to off as a safer default. */
3a3371ff 15281 for_each_intel_connector(dev, connector) {
24929352
DV
15282 if (connector->encoder != encoder)
15283 continue;
7f1950fb
EE
15284 connector->base.dpms = DRM_MODE_DPMS_OFF;
15285 connector->base.encoder = NULL;
24929352
DV
15286 }
15287 }
15288 /* Enabled encoders without active connectors will be fixed in
15289 * the crtc fixup. */
15290}
15291
04098753 15292void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15293{
15294 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 15295 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15296
04098753
ID
15297 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15298 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15299 i915_disable_vga(dev);
15300 }
15301}
15302
15303void i915_redisable_vga(struct drm_device *dev)
15304{
15305 struct drm_i915_private *dev_priv = dev->dev_private;
15306
8dc8a27c
PZ
15307 /* This function can be called both from intel_modeset_setup_hw_state or
15308 * at a very early point in our resume sequence, where the power well
15309 * structures are not yet restored. Since this function is at a very
15310 * paranoid "someone might have enabled VGA while we were not looking"
15311 * level, just check if the power well is enabled instead of trying to
15312 * follow the "don't touch the power well if we don't need it" policy
15313 * the rest of the driver uses. */
f458ebbc 15314 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15315 return;
15316
04098753 15317 i915_redisable_vga_power_on(dev);
0fde901f
KM
15318}
15319
98ec7739
VS
15320static bool primary_get_hw_state(struct intel_crtc *crtc)
15321{
15322 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15323
d032ffa0
ML
15324 return !!(I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE);
15325}
15326
15327static void readout_plane_state(struct intel_crtc *crtc,
15328 struct intel_crtc_state *crtc_state)
15329{
15330 struct intel_plane *p;
15331 struct drm_plane_state *drm_plane_state;
15332 bool active = crtc_state->base.active;
15333
15334 if (active) {
15335 crtc_state->quirks |= PIPE_CONFIG_QUIRK_INITIAL_PLANES;
15336
15337 /* apply to previous sw state too */
15338 to_intel_crtc_state(crtc->base.state)->quirks |=
15339 PIPE_CONFIG_QUIRK_INITIAL_PLANES;
15340 }
98ec7739 15341
d032ffa0
ML
15342 for_each_intel_plane(crtc->base.dev, p) {
15343 bool visible = active;
15344
15345 if (crtc->pipe != p->pipe)
15346 continue;
15347
15348 drm_plane_state = p->base.state;
15349 if (active && p->base.type == DRM_PLANE_TYPE_PRIMARY) {
15350 visible = primary_get_hw_state(crtc);
15351 to_intel_plane_state(drm_plane_state)->visible = visible;
15352 } else {
15353 /*
15354 * unknown state, assume it's off to force a transition
15355 * to on when calculating state changes.
15356 */
15357 to_intel_plane_state(drm_plane_state)->visible = false;
15358 }
15359
15360 if (visible) {
15361 crtc_state->base.plane_mask |=
15362 1 << drm_plane_index(&p->base);
15363 } else if (crtc_state->base.state) {
15364 /* Make this unconditional for atomic hw readout. */
15365 crtc_state->base.plane_mask &=
15366 ~(1 << drm_plane_index(&p->base));
15367 }
15368 }
98ec7739
VS
15369}
15370
30e984df 15371static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
15372{
15373 struct drm_i915_private *dev_priv = dev->dev_private;
15374 enum pipe pipe;
24929352
DV
15375 struct intel_crtc *crtc;
15376 struct intel_encoder *encoder;
15377 struct intel_connector *connector;
5358901f 15378 int i;
24929352 15379
d3fcc808 15380 for_each_intel_crtc(dev, crtc) {
6e3c9717 15381 memset(crtc->config, 0, sizeof(*crtc->config));
f7217905 15382 crtc->config->base.crtc = &crtc->base;
3b117c8f 15383
6e3c9717 15384 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 15385
0e8ffe1b 15386 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 15387 crtc->config);
24929352 15388
83d65738 15389 crtc->base.state->enable = crtc->active;
49d6fa21 15390 crtc->base.state->active = crtc->active;
24929352 15391 crtc->base.enabled = crtc->active;
b8b7fade 15392 crtc->base.hwmode = crtc->config->base.adjusted_mode;
b70709a6 15393
d032ffa0 15394 readout_plane_state(crtc, to_intel_crtc_state(crtc->base.state));
24929352
DV
15395
15396 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15397 crtc->base.base.id,
15398 crtc->active ? "enabled" : "disabled");
15399 }
15400
5358901f
DV
15401 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15402 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15403
3e369b76
ACO
15404 pll->on = pll->get_hw_state(dev_priv, pll,
15405 &pll->config.hw_state);
5358901f 15406 pll->active = 0;
3e369b76 15407 pll->config.crtc_mask = 0;
d3fcc808 15408 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 15409 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 15410 pll->active++;
3e369b76 15411 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 15412 }
5358901f 15413 }
5358901f 15414
1e6f2ddc 15415 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 15416 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 15417
3e369b76 15418 if (pll->config.crtc_mask)
bd2bb1b9 15419 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
15420 }
15421
b2784e15 15422 for_each_intel_encoder(dev, encoder) {
24929352
DV
15423 pipe = 0;
15424
15425 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
15426 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15427 encoder->base.crtc = &crtc->base;
6e3c9717 15428 encoder->get_config(encoder, crtc->config);
24929352
DV
15429 } else {
15430 encoder->base.crtc = NULL;
15431 }
15432
15433 encoder->connectors_active = false;
6f2bcceb 15434 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 15435 encoder->base.base.id,
8e329a03 15436 encoder->base.name,
24929352 15437 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 15438 pipe_name(pipe));
24929352
DV
15439 }
15440
3a3371ff 15441 for_each_intel_connector(dev, connector) {
24929352
DV
15442 if (connector->get_hw_state(connector)) {
15443 connector->base.dpms = DRM_MODE_DPMS_ON;
15444 connector->encoder->connectors_active = true;
15445 connector->base.encoder = &connector->encoder->base;
15446 } else {
15447 connector->base.dpms = DRM_MODE_DPMS_OFF;
15448 connector->base.encoder = NULL;
15449 }
15450 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15451 connector->base.base.id,
c23cc417 15452 connector->base.name,
24929352
DV
15453 connector->base.encoder ? "enabled" : "disabled");
15454 }
30e984df
DV
15455}
15456
15457/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15458 * and i915 state tracking structures. */
15459void intel_modeset_setup_hw_state(struct drm_device *dev,
15460 bool force_restore)
15461{
15462 struct drm_i915_private *dev_priv = dev->dev_private;
15463 enum pipe pipe;
30e984df
DV
15464 struct intel_crtc *crtc;
15465 struct intel_encoder *encoder;
35c95375 15466 int i;
30e984df
DV
15467
15468 intel_modeset_readout_hw_state(dev);
24929352 15469
babea61d
JB
15470 /*
15471 * Now that we have the config, copy it to each CRTC struct
15472 * Note that this could go away if we move to using crtc_config
15473 * checking everywhere.
15474 */
d3fcc808 15475 for_each_intel_crtc(dev, crtc) {
d330a953 15476 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
15477 intel_mode_from_pipe_config(&crtc->base.mode,
15478 crtc->config);
babea61d
JB
15479 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15480 crtc->base.base.id);
15481 drm_mode_debug_printmodeline(&crtc->base.mode);
15482 }
15483 }
15484
24929352 15485 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 15486 for_each_intel_encoder(dev, encoder) {
24929352
DV
15487 intel_sanitize_encoder(encoder);
15488 }
15489
055e393f 15490 for_each_pipe(dev_priv, pipe) {
24929352
DV
15491 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15492 intel_sanitize_crtc(crtc);
6e3c9717
ACO
15493 intel_dump_pipe_config(crtc, crtc->config,
15494 "[setup_hw_state]");
24929352 15495 }
9a935856 15496
d29b2f9d
ACO
15497 intel_modeset_update_connector_atomic_state(dev);
15498
35c95375
DV
15499 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15500 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15501
15502 if (!pll->on || pll->active)
15503 continue;
15504
15505 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15506
15507 pll->disable(dev_priv, pll);
15508 pll->on = false;
15509 }
15510
3078999f
PB
15511 if (IS_GEN9(dev))
15512 skl_wm_get_hw_state(dev);
15513 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
15514 ilk_wm_get_hw_state(dev);
15515
45e2b5f6 15516 if (force_restore) {
7d0bc1ea
VS
15517 i915_redisable_vga(dev);
15518
f30da187
DV
15519 /*
15520 * We need to use raw interfaces for restoring state to avoid
15521 * checking (bogus) intermediate states.
15522 */
055e393f 15523 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
15524 struct drm_crtc *crtc =
15525 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 15526
83a57153 15527 intel_crtc_restore_mode(crtc);
45e2b5f6
DV
15528 }
15529 } else {
15530 intel_modeset_update_staged_output_state(dev);
15531 }
8af6cf88
DV
15532
15533 intel_modeset_check_state(dev);
2c7111db
CW
15534}
15535
15536void intel_modeset_gem_init(struct drm_device *dev)
15537{
92122789 15538 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 15539 struct drm_crtc *c;
2ff8fde1 15540 struct drm_i915_gem_object *obj;
e0d6149b 15541 int ret;
484b41dd 15542
ae48434c
ID
15543 mutex_lock(&dev->struct_mutex);
15544 intel_init_gt_powersave(dev);
15545 mutex_unlock(&dev->struct_mutex);
15546
92122789
JB
15547 /*
15548 * There may be no VBT; and if the BIOS enabled SSC we can
15549 * just keep using it to avoid unnecessary flicker. Whereas if the
15550 * BIOS isn't using it, don't assume it will work even if the VBT
15551 * indicates as much.
15552 */
15553 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15554 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15555 DREF_SSC1_ENABLE);
15556
1833b134 15557 intel_modeset_init_hw(dev);
02e792fb
DV
15558
15559 intel_setup_overlay(dev);
484b41dd
JB
15560
15561 /*
15562 * Make sure any fbs we allocated at startup are properly
15563 * pinned & fenced. When we do the allocation it's too early
15564 * for this.
15565 */
70e1e0ec 15566 for_each_crtc(dev, c) {
2ff8fde1
MR
15567 obj = intel_fb_obj(c->primary->fb);
15568 if (obj == NULL)
484b41dd
JB
15569 continue;
15570
e0d6149b
TU
15571 mutex_lock(&dev->struct_mutex);
15572 ret = intel_pin_and_fence_fb_obj(c->primary,
15573 c->primary->fb,
15574 c->primary->state,
91af127f 15575 NULL, NULL);
e0d6149b
TU
15576 mutex_unlock(&dev->struct_mutex);
15577 if (ret) {
484b41dd
JB
15578 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15579 to_intel_crtc(c)->pipe);
66e514c1
DA
15580 drm_framebuffer_unreference(c->primary->fb);
15581 c->primary->fb = NULL;
36750f28 15582 c->primary->crtc = c->primary->state->crtc = NULL;
afd65eb4 15583 update_state_fb(c->primary);
36750f28 15584 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
15585 }
15586 }
0962c3c9
VS
15587
15588 intel_backlight_register(dev);
79e53945
JB
15589}
15590
4932e2c3
ID
15591void intel_connector_unregister(struct intel_connector *intel_connector)
15592{
15593 struct drm_connector *connector = &intel_connector->base;
15594
15595 intel_panel_destroy_backlight(connector);
34ea3d38 15596 drm_connector_unregister(connector);
4932e2c3
ID
15597}
15598
79e53945
JB
15599void intel_modeset_cleanup(struct drm_device *dev)
15600{
652c393a 15601 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 15602 struct drm_connector *connector;
652c393a 15603
2eb5252e
ID
15604 intel_disable_gt_powersave(dev);
15605
0962c3c9
VS
15606 intel_backlight_unregister(dev);
15607
fd0c0642
DV
15608 /*
15609 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15610 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
15611 * experience fancy races otherwise.
15612 */
2aeb7d3a 15613 intel_irq_uninstall(dev_priv);
eb21b92b 15614
fd0c0642
DV
15615 /*
15616 * Due to the hpd irq storm handling the hotplug work can re-arm the
15617 * poll handlers. Hence disable polling after hpd handling is shut down.
15618 */
f87ea761 15619 drm_kms_helper_poll_fini(dev);
fd0c0642 15620
652c393a
JB
15621 mutex_lock(&dev->struct_mutex);
15622
723bfd70
JB
15623 intel_unregister_dsm_handler();
15624
7ff0ebcc 15625 intel_fbc_disable(dev);
e70236a8 15626
69341a5e
KH
15627 mutex_unlock(&dev->struct_mutex);
15628
1630fe75
CW
15629 /* flush any delayed tasks or pending work */
15630 flush_scheduled_work();
15631
db31af1d
JN
15632 /* destroy the backlight and sysfs files before encoders/connectors */
15633 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
15634 struct intel_connector *intel_connector;
15635
15636 intel_connector = to_intel_connector(connector);
15637 intel_connector->unregister(intel_connector);
db31af1d 15638 }
d9255d57 15639
79e53945 15640 drm_mode_config_cleanup(dev);
4d7bb011
DV
15641
15642 intel_cleanup_overlay(dev);
ae48434c
ID
15643
15644 mutex_lock(&dev->struct_mutex);
15645 intel_cleanup_gt_powersave(dev);
15646 mutex_unlock(&dev->struct_mutex);
79e53945
JB
15647}
15648
f1c79df3
ZW
15649/*
15650 * Return which encoder is currently attached for connector.
15651 */
df0e9248 15652struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 15653{
df0e9248
CW
15654 return &intel_attached_encoder(connector)->base;
15655}
f1c79df3 15656
df0e9248
CW
15657void intel_connector_attach_encoder(struct intel_connector *connector,
15658 struct intel_encoder *encoder)
15659{
15660 connector->encoder = encoder;
15661 drm_mode_connector_attach_encoder(&connector->base,
15662 &encoder->base);
79e53945 15663}
28d52043
DA
15664
15665/*
15666 * set vga decode state - true == enable VGA decode
15667 */
15668int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15669{
15670 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 15671 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
15672 u16 gmch_ctrl;
15673
75fa041d
CW
15674 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15675 DRM_ERROR("failed to read control word\n");
15676 return -EIO;
15677 }
15678
c0cc8a55
CW
15679 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15680 return 0;
15681
28d52043
DA
15682 if (state)
15683 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15684 else
15685 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
15686
15687 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15688 DRM_ERROR("failed to write control word\n");
15689 return -EIO;
15690 }
15691
28d52043
DA
15692 return 0;
15693}
c4a1d9e4 15694
c4a1d9e4 15695struct intel_display_error_state {
ff57f1b0
PZ
15696
15697 u32 power_well_driver;
15698
63b66e5b
CW
15699 int num_transcoders;
15700
c4a1d9e4
CW
15701 struct intel_cursor_error_state {
15702 u32 control;
15703 u32 position;
15704 u32 base;
15705 u32 size;
52331309 15706 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
15707
15708 struct intel_pipe_error_state {
ddf9c536 15709 bool power_domain_on;
c4a1d9e4 15710 u32 source;
f301b1e1 15711 u32 stat;
52331309 15712 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
15713
15714 struct intel_plane_error_state {
15715 u32 control;
15716 u32 stride;
15717 u32 size;
15718 u32 pos;
15719 u32 addr;
15720 u32 surface;
15721 u32 tile_offset;
52331309 15722 } plane[I915_MAX_PIPES];
63b66e5b
CW
15723
15724 struct intel_transcoder_error_state {
ddf9c536 15725 bool power_domain_on;
63b66e5b
CW
15726 enum transcoder cpu_transcoder;
15727
15728 u32 conf;
15729
15730 u32 htotal;
15731 u32 hblank;
15732 u32 hsync;
15733 u32 vtotal;
15734 u32 vblank;
15735 u32 vsync;
15736 } transcoder[4];
c4a1d9e4
CW
15737};
15738
15739struct intel_display_error_state *
15740intel_display_capture_error_state(struct drm_device *dev)
15741{
fbee40df 15742 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 15743 struct intel_display_error_state *error;
63b66e5b
CW
15744 int transcoders[] = {
15745 TRANSCODER_A,
15746 TRANSCODER_B,
15747 TRANSCODER_C,
15748 TRANSCODER_EDP,
15749 };
c4a1d9e4
CW
15750 int i;
15751
63b66e5b
CW
15752 if (INTEL_INFO(dev)->num_pipes == 0)
15753 return NULL;
15754
9d1cb914 15755 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
15756 if (error == NULL)
15757 return NULL;
15758
190be112 15759 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
15760 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15761
055e393f 15762 for_each_pipe(dev_priv, i) {
ddf9c536 15763 error->pipe[i].power_domain_on =
f458ebbc
DV
15764 __intel_display_power_is_enabled(dev_priv,
15765 POWER_DOMAIN_PIPE(i));
ddf9c536 15766 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
15767 continue;
15768
5efb3e28
VS
15769 error->cursor[i].control = I915_READ(CURCNTR(i));
15770 error->cursor[i].position = I915_READ(CURPOS(i));
15771 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
15772
15773 error->plane[i].control = I915_READ(DSPCNTR(i));
15774 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 15775 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 15776 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
15777 error->plane[i].pos = I915_READ(DSPPOS(i));
15778 }
ca291363
PZ
15779 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15780 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
15781 if (INTEL_INFO(dev)->gen >= 4) {
15782 error->plane[i].surface = I915_READ(DSPSURF(i));
15783 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15784 }
15785
c4a1d9e4 15786 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 15787
3abfce77 15788 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 15789 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
15790 }
15791
15792 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15793 if (HAS_DDI(dev_priv->dev))
15794 error->num_transcoders++; /* Account for eDP. */
15795
15796 for (i = 0; i < error->num_transcoders; i++) {
15797 enum transcoder cpu_transcoder = transcoders[i];
15798
ddf9c536 15799 error->transcoder[i].power_domain_on =
f458ebbc 15800 __intel_display_power_is_enabled(dev_priv,
38cc1daf 15801 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 15802 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
15803 continue;
15804
63b66e5b
CW
15805 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15806
15807 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15808 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15809 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15810 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15811 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15812 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15813 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
15814 }
15815
15816 return error;
15817}
15818
edc3d884
MK
15819#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15820
c4a1d9e4 15821void
edc3d884 15822intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
15823 struct drm_device *dev,
15824 struct intel_display_error_state *error)
15825{
055e393f 15826 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
15827 int i;
15828
63b66e5b
CW
15829 if (!error)
15830 return;
15831
edc3d884 15832 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 15833 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 15834 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 15835 error->power_well_driver);
055e393f 15836 for_each_pipe(dev_priv, i) {
edc3d884 15837 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
15838 err_printf(m, " Power: %s\n",
15839 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 15840 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 15841 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
15842
15843 err_printf(m, "Plane [%d]:\n", i);
15844 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15845 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 15846 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
15847 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15848 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 15849 }
4b71a570 15850 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 15851 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 15852 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
15853 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15854 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
15855 }
15856
edc3d884
MK
15857 err_printf(m, "Cursor [%d]:\n", i);
15858 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15859 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15860 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 15861 }
63b66e5b
CW
15862
15863 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 15864 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 15865 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
15866 err_printf(m, " Power: %s\n",
15867 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
15868 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15869 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15870 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15871 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15872 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15873 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15874 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15875 }
c4a1d9e4 15876}
e2fcdaa9
VS
15877
15878void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15879{
15880 struct intel_crtc *crtc;
15881
15882 for_each_intel_crtc(dev, crtc) {
15883 struct intel_unpin_work *work;
e2fcdaa9 15884
5e2d7afc 15885 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
15886
15887 work = crtc->unpin_work;
15888
15889 if (work && work->event &&
15890 work->event->base.file_priv == file) {
15891 kfree(work->event);
15892 work->event = NULL;
15893 }
15894
5e2d7afc 15895 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
15896 }
15897}