]> git.proxmox.com Git - qemu.git/blame - exec.c
m68k-semi.c: Use correct check for failure of do_brk()
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181
FB
28#include "cpu.h"
29#include "exec-all.h"
b67d9a52 30#include "tcg.h"
b3c7724c 31#include "hw/hw.h"
cc9e98cb 32#include "hw/qdev.h"
74576198 33#include "osdep.h"
7ba1e619 34#include "kvm.h"
432d268c 35#include "hw/xen.h"
29e922b6 36#include "qemu-timer.h"
53a5960a
PB
37#if defined(CONFIG_USER_ONLY)
38#include <qemu.h>
f01576f1
JL
39#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40#include <sys/param.h>
41#if __FreeBSD_version >= 700104
42#define HAVE_KINFO_GETVMMAP
43#define sigqueue sigqueue_freebsd /* avoid redefinition */
44#include <sys/time.h>
45#include <sys/proc.h>
46#include <machine/profile.h>
47#define _KERNEL
48#include <sys/user.h>
49#undef _KERNEL
50#undef sigqueue
51#include <libutil.h>
52#endif
53#endif
432d268c
JN
54#else /* !CONFIG_USER_ONLY */
55#include "xen-mapcache.h"
53a5960a 56#endif
54936004 57
fd6ce8f6 58//#define DEBUG_TB_INVALIDATE
66e85a21 59//#define DEBUG_FLUSH
9fa3e853 60//#define DEBUG_TLB
67d3b957 61//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
62
63/* make various TB consistency checks */
5fafdf24
TS
64//#define DEBUG_TB_CHECK
65//#define DEBUG_TLB_CHECK
fd6ce8f6 66
1196be37 67//#define DEBUG_IOPORT
db7b5426 68//#define DEBUG_SUBPAGE
1196be37 69
99773bd4
PB
70#if !defined(CONFIG_USER_ONLY)
71/* TB consistency checks only implemented for usermode emulation. */
72#undef DEBUG_TB_CHECK
73#endif
74
9fa3e853
FB
75#define SMC_BITMAP_USE_THRESHOLD 10
76
bdaf78e0 77static TranslationBlock *tbs;
24ab68ac 78static int code_gen_max_blocks;
9fa3e853 79TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 80static int nb_tbs;
eb51d102 81/* any access to the tbs or the page table must use this lock */
c227f099 82spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 83
141ac468
BS
84#if defined(__arm__) || defined(__sparc_v9__)
85/* The prologue must be reachable with a direct jump. ARM and Sparc64
86 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
87 section close to code segment. */
88#define code_gen_section \
89 __attribute__((__section__(".gen_code"))) \
90 __attribute__((aligned (32)))
f8e2af11
SW
91#elif defined(_WIN32)
92/* Maximum alignment for Win32 is 16. */
93#define code_gen_section \
94 __attribute__((aligned (16)))
d03d860b
BS
95#else
96#define code_gen_section \
97 __attribute__((aligned (32)))
98#endif
99
100uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
101static uint8_t *code_gen_buffer;
102static unsigned long code_gen_buffer_size;
26a5f13b 103/* threshold to flush the translated code buffer */
bdaf78e0 104static unsigned long code_gen_buffer_max_size;
24ab68ac 105static uint8_t *code_gen_ptr;
fd6ce8f6 106
e2eef170 107#if !defined(CONFIG_USER_ONLY)
9fa3e853 108int phys_ram_fd;
74576198 109static int in_migration;
94a6b54f 110
f471a17e 111RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
e2eef170 112#endif
9fa3e853 113
6a00d601
FB
114CPUState *first_cpu;
115/* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
5fafdf24 117CPUState *cpu_single_env;
2e70f6ef 118/* 0 = Do not count executed instructions.
bf20dc07 119 1 = Precise instruction counting.
2e70f6ef
PB
120 2 = Adaptive rate instruction counting. */
121int use_icount = 0;
122/* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
124int64_t qemu_icount;
6a00d601 125
54936004 126typedef struct PageDesc {
92e873b9 127 /* list of TBs intersecting this ram page */
fd6ce8f6 128 TranslationBlock *first_tb;
9fa3e853
FB
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count;
132 uint8_t *code_bitmap;
133#if defined(CONFIG_USER_ONLY)
134 unsigned long flags;
135#endif
54936004
FB
136} PageDesc;
137
41c1b1c9 138/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
139 while in user mode we want it to be based on virtual addresses. */
140#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
141#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
142# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
143#else
5cd2c5b6 144# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 145#endif
bedb69ea 146#else
5cd2c5b6 147# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 148#endif
54936004 149
5cd2c5b6
RH
150/* Size of the L2 (and L3, etc) page tables. */
151#define L2_BITS 10
54936004
FB
152#define L2_SIZE (1 << L2_BITS)
153
5cd2c5b6
RH
154/* The bits remaining after N lower levels of page tables. */
155#define P_L1_BITS_REM \
156 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157#define V_L1_BITS_REM \
158 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
159
160/* Size of the L1 page table. Avoid silly small sizes. */
161#if P_L1_BITS_REM < 4
162#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
163#else
164#define P_L1_BITS P_L1_BITS_REM
165#endif
166
167#if V_L1_BITS_REM < 4
168#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
169#else
170#define V_L1_BITS V_L1_BITS_REM
171#endif
172
173#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
174#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
175
176#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
177#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
83fb7adf
FB
179unsigned long qemu_real_host_page_size;
180unsigned long qemu_host_page_bits;
181unsigned long qemu_host_page_size;
182unsigned long qemu_host_page_mask;
54936004 183
5cd2c5b6
RH
184/* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186static void *l1_map[V_L1_SIZE];
54936004 187
e2eef170 188#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
189typedef struct PhysPageDesc {
190 /* offset in host memory of the page + io_index in the low bits */
191 ram_addr_t phys_offset;
192 ram_addr_t region_offset;
193} PhysPageDesc;
194
5cd2c5b6
RH
195/* This is a multi-level map on the physical address space.
196 The bottom level has pointers to PhysPageDesc. */
197static void *l1_phys_map[P_L1_SIZE];
6d9a1304 198
e2eef170
PB
199static void io_mem_init(void);
200
33417e70 201/* io memory support */
33417e70
FB
202CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
203CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 204void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 205static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
206static int io_mem_watch;
207#endif
33417e70 208
34865134 209/* log support */
1e8b27ca
JR
210#ifdef WIN32
211static const char *logfilename = "qemu.log";
212#else
d9b630fd 213static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 214#endif
34865134
FB
215FILE *logfile;
216int loglevel;
e735b91c 217static int log_append = 0;
34865134 218
e3db7226 219/* statistics */
b3755a91 220#if !defined(CONFIG_USER_ONLY)
e3db7226 221static int tlb_flush_count;
b3755a91 222#endif
e3db7226
FB
223static int tb_flush_count;
224static int tb_phys_invalidate_count;
225
7cb69cae
FB
226#ifdef _WIN32
227static void map_exec(void *addr, long size)
228{
229 DWORD old_protect;
230 VirtualProtect(addr, size,
231 PAGE_EXECUTE_READWRITE, &old_protect);
232
233}
234#else
235static void map_exec(void *addr, long size)
236{
4369415f 237 unsigned long start, end, page_size;
7cb69cae 238
4369415f 239 page_size = getpagesize();
7cb69cae 240 start = (unsigned long)addr;
4369415f 241 start &= ~(page_size - 1);
7cb69cae
FB
242
243 end = (unsigned long)addr + size;
4369415f
FB
244 end += page_size - 1;
245 end &= ~(page_size - 1);
7cb69cae
FB
246
247 mprotect((void *)start, end - start,
248 PROT_READ | PROT_WRITE | PROT_EXEC);
249}
250#endif
251
b346ff46 252static void page_init(void)
54936004 253{
83fb7adf 254 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 255 TARGET_PAGE_SIZE */
c2b48b69
AL
256#ifdef _WIN32
257 {
258 SYSTEM_INFO system_info;
259
260 GetSystemInfo(&system_info);
261 qemu_real_host_page_size = system_info.dwPageSize;
262 }
263#else
264 qemu_real_host_page_size = getpagesize();
265#endif
83fb7adf
FB
266 if (qemu_host_page_size == 0)
267 qemu_host_page_size = qemu_real_host_page_size;
268 if (qemu_host_page_size < TARGET_PAGE_SIZE)
269 qemu_host_page_size = TARGET_PAGE_SIZE;
270 qemu_host_page_bits = 0;
271 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
272 qemu_host_page_bits++;
273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 274
2e9a5713 275#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 276 {
f01576f1
JL
277#ifdef HAVE_KINFO_GETVMMAP
278 struct kinfo_vmentry *freep;
279 int i, cnt;
280
281 freep = kinfo_getvmmap(getpid(), &cnt);
282 if (freep) {
283 mmap_lock();
284 for (i = 0; i < cnt; i++) {
285 unsigned long startaddr, endaddr;
286
287 startaddr = freep[i].kve_start;
288 endaddr = freep[i].kve_end;
289 if (h2g_valid(startaddr)) {
290 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
291
292 if (h2g_valid(endaddr)) {
293 endaddr = h2g(endaddr);
fd436907 294 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
295 } else {
296#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
297 endaddr = ~0ul;
fd436907 298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
299#endif
300 }
301 }
302 }
303 free(freep);
304 mmap_unlock();
305 }
306#else
50a9569b 307 FILE *f;
50a9569b 308
0776590d 309 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 310
fd436907 311 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 312 if (f) {
5cd2c5b6
RH
313 mmap_lock();
314
50a9569b 315 do {
5cd2c5b6
RH
316 unsigned long startaddr, endaddr;
317 int n;
318
319 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
320
321 if (n == 2 && h2g_valid(startaddr)) {
322 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
323
324 if (h2g_valid(endaddr)) {
325 endaddr = h2g(endaddr);
326 } else {
327 endaddr = ~0ul;
328 }
329 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
330 }
331 } while (!feof(f));
5cd2c5b6 332
50a9569b 333 fclose(f);
5cd2c5b6 334 mmap_unlock();
50a9569b 335 }
f01576f1 336#endif
50a9569b
AZ
337 }
338#endif
54936004
FB
339}
340
41c1b1c9 341static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 342{
41c1b1c9
PB
343 PageDesc *pd;
344 void **lp;
345 int i;
346
5cd2c5b6 347#if defined(CONFIG_USER_ONLY)
2e9a5713 348 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
349# define ALLOC(P, SIZE) \
350 do { \
351 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
352 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
353 } while (0)
354#else
355# define ALLOC(P, SIZE) \
356 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 357#endif
434929bf 358
5cd2c5b6
RH
359 /* Level 1. Always allocated. */
360 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
361
362 /* Level 2..N-1. */
363 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
364 void **p = *lp;
365
366 if (p == NULL) {
367 if (!alloc) {
368 return NULL;
369 }
370 ALLOC(p, sizeof(void *) * L2_SIZE);
371 *lp = p;
17e2377a 372 }
5cd2c5b6
RH
373
374 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 }
376
377 pd = *lp;
378 if (pd == NULL) {
379 if (!alloc) {
380 return NULL;
381 }
382 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
383 *lp = pd;
54936004 384 }
5cd2c5b6
RH
385
386#undef ALLOC
5cd2c5b6
RH
387
388 return pd + (index & (L2_SIZE - 1));
54936004
FB
389}
390
41c1b1c9 391static inline PageDesc *page_find(tb_page_addr_t index)
54936004 392{
5cd2c5b6 393 return page_find_alloc(index, 0);
fd6ce8f6
FB
394}
395
6d9a1304 396#if !defined(CONFIG_USER_ONLY)
c227f099 397static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 398{
e3f4e2a4 399 PhysPageDesc *pd;
5cd2c5b6
RH
400 void **lp;
401 int i;
92e873b9 402
5cd2c5b6
RH
403 /* Level 1. Always allocated. */
404 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 405
5cd2c5b6
RH
406 /* Level 2..N-1. */
407 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
408 void **p = *lp;
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
412 }
413 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
414 }
415 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 416 }
5cd2c5b6 417
e3f4e2a4 418 pd = *lp;
5cd2c5b6 419 if (pd == NULL) {
e3f4e2a4 420 int i;
5cd2c5b6
RH
421
422 if (!alloc) {
108c49b8 423 return NULL;
5cd2c5b6
RH
424 }
425
426 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
427
67c4d23c 428 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
429 pd[i].phys_offset = IO_MEM_UNASSIGNED;
430 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 431 }
92e873b9 432 }
5cd2c5b6
RH
433
434 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
435}
436
c227f099 437static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 438{
108c49b8 439 return phys_page_find_alloc(index, 0);
92e873b9
FB
440}
441
c227f099
AL
442static void tlb_protect_code(ram_addr_t ram_addr);
443static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 444 target_ulong vaddr);
c8a706fe
PB
445#define mmap_lock() do { } while(0)
446#define mmap_unlock() do { } while(0)
9fa3e853 447#endif
fd6ce8f6 448
4369415f
FB
449#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
450
451#if defined(CONFIG_USER_ONLY)
ccbb4d44 452/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
453 user mode. It will change when a dedicated libc will be used */
454#define USE_STATIC_CODE_GEN_BUFFER
455#endif
456
457#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
458static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
459 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
460#endif
461
8fcd3692 462static void code_gen_alloc(unsigned long tb_size)
26a5f13b 463{
4369415f
FB
464#ifdef USE_STATIC_CODE_GEN_BUFFER
465 code_gen_buffer = static_code_gen_buffer;
466 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
467 map_exec(code_gen_buffer, code_gen_buffer_size);
468#else
26a5f13b
FB
469 code_gen_buffer_size = tb_size;
470 if (code_gen_buffer_size == 0) {
4369415f
FB
471#if defined(CONFIG_USER_ONLY)
472 /* in user mode, phys_ram_size is not meaningful */
473 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
474#else
ccbb4d44 475 /* XXX: needs adjustments */
94a6b54f 476 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 477#endif
26a5f13b
FB
478 }
479 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
480 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
481 /* The code gen buffer location may have constraints depending on
482 the host cpu and OS */
483#if defined(__linux__)
484 {
485 int flags;
141ac468
BS
486 void *start = NULL;
487
26a5f13b
FB
488 flags = MAP_PRIVATE | MAP_ANONYMOUS;
489#if defined(__x86_64__)
490 flags |= MAP_32BIT;
491 /* Cannot map more than that */
492 if (code_gen_buffer_size > (800 * 1024 * 1024))
493 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
494#elif defined(__sparc_v9__)
495 // Map the buffer below 2G, so we can use direct calls and branches
496 flags |= MAP_FIXED;
497 start = (void *) 0x60000000UL;
498 if (code_gen_buffer_size > (512 * 1024 * 1024))
499 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 500#elif defined(__arm__)
63d41246 501 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
502 flags |= MAP_FIXED;
503 start = (void *) 0x01000000UL;
504 if (code_gen_buffer_size > 16 * 1024 * 1024)
505 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
506#elif defined(__s390x__)
507 /* Map the buffer so that we can use direct calls and branches. */
508 /* We have a +- 4GB range on the branches; leave some slop. */
509 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
510 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
511 }
512 start = (void *)0x90000000UL;
26a5f13b 513#endif
141ac468
BS
514 code_gen_buffer = mmap(start, code_gen_buffer_size,
515 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
516 flags, -1, 0);
517 if (code_gen_buffer == MAP_FAILED) {
518 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
519 exit(1);
520 }
521 }
cbb608a5
B
522#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
523 || defined(__DragonFly__) || defined(__OpenBSD__)
06e67a82
AL
524 {
525 int flags;
526 void *addr = NULL;
527 flags = MAP_PRIVATE | MAP_ANONYMOUS;
528#if defined(__x86_64__)
529 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
530 * 0x40000000 is free */
531 flags |= MAP_FIXED;
532 addr = (void *)0x40000000;
533 /* Cannot map more than that */
534 if (code_gen_buffer_size > (800 * 1024 * 1024))
535 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
536#elif defined(__sparc_v9__)
537 // Map the buffer below 2G, so we can use direct calls and branches
538 flags |= MAP_FIXED;
539 addr = (void *) 0x60000000UL;
540 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
541 code_gen_buffer_size = (512 * 1024 * 1024);
542 }
06e67a82
AL
543#endif
544 code_gen_buffer = mmap(addr, code_gen_buffer_size,
545 PROT_WRITE | PROT_READ | PROT_EXEC,
546 flags, -1, 0);
547 if (code_gen_buffer == MAP_FAILED) {
548 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
549 exit(1);
550 }
551 }
26a5f13b
FB
552#else
553 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
554 map_exec(code_gen_buffer, code_gen_buffer_size);
555#endif
4369415f 556#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
557 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
558 code_gen_buffer_max_size = code_gen_buffer_size -
239fda31 559 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
26a5f13b
FB
560 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
561 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
562}
563
564/* Must be called before using the QEMU cpus. 'tb_size' is the size
565 (in bytes) allocated to the translation buffer. Zero means default
566 size. */
567void cpu_exec_init_all(unsigned long tb_size)
568{
26a5f13b
FB
569 cpu_gen_init();
570 code_gen_alloc(tb_size);
571 code_gen_ptr = code_gen_buffer;
4369415f 572 page_init();
e2eef170 573#if !defined(CONFIG_USER_ONLY)
26a5f13b 574 io_mem_init();
e2eef170 575#endif
9002ec79
RH
576#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
577 /* There's no guest base to take into account, so go ahead and
578 initialize the prologue now. */
579 tcg_prologue_init(&tcg_ctx);
580#endif
26a5f13b
FB
581}
582
9656f324
PB
583#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
584
e59fb374 585static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
586{
587 CPUState *env = opaque;
9656f324 588
3098dba0
AJ
589 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
590 version_id is increased. */
591 env->interrupt_request &= ~0x01;
9656f324
PB
592 tlb_flush(env, 1);
593
594 return 0;
595}
e7f4eff7
JQ
596
597static const VMStateDescription vmstate_cpu_common = {
598 .name = "cpu_common",
599 .version_id = 1,
600 .minimum_version_id = 1,
601 .minimum_version_id_old = 1,
e7f4eff7
JQ
602 .post_load = cpu_common_post_load,
603 .fields = (VMStateField []) {
604 VMSTATE_UINT32(halted, CPUState),
605 VMSTATE_UINT32(interrupt_request, CPUState),
606 VMSTATE_END_OF_LIST()
607 }
608};
9656f324
PB
609#endif
610
950f1472
GC
611CPUState *qemu_get_cpu(int cpu)
612{
613 CPUState *env = first_cpu;
614
615 while (env) {
616 if (env->cpu_index == cpu)
617 break;
618 env = env->next_cpu;
619 }
620
621 return env;
622}
623
6a00d601 624void cpu_exec_init(CPUState *env)
fd6ce8f6 625{
6a00d601
FB
626 CPUState **penv;
627 int cpu_index;
628
c2764719
PB
629#if defined(CONFIG_USER_ONLY)
630 cpu_list_lock();
631#endif
6a00d601
FB
632 env->next_cpu = NULL;
633 penv = &first_cpu;
634 cpu_index = 0;
635 while (*penv != NULL) {
1e9fa730 636 penv = &(*penv)->next_cpu;
6a00d601
FB
637 cpu_index++;
638 }
639 env->cpu_index = cpu_index;
268a362c 640 env->numa_node = 0;
72cf2d4f
BS
641 QTAILQ_INIT(&env->breakpoints);
642 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
643#ifndef CONFIG_USER_ONLY
644 env->thread_id = qemu_get_thread_id();
645#endif
6a00d601 646 *penv = env;
c2764719
PB
647#if defined(CONFIG_USER_ONLY)
648 cpu_list_unlock();
649#endif
b3c7724c 650#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
651 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
652 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
653 cpu_save, cpu_load, env);
654#endif
fd6ce8f6
FB
655}
656
d1a1eb74
TG
657/* Allocate a new translation block. Flush the translation buffer if
658 too many translation blocks or too much generated code. */
659static TranslationBlock *tb_alloc(target_ulong pc)
660{
661 TranslationBlock *tb;
662
663 if (nb_tbs >= code_gen_max_blocks ||
664 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
665 return NULL;
666 tb = &tbs[nb_tbs++];
667 tb->pc = pc;
668 tb->cflags = 0;
669 return tb;
670}
671
672void tb_free(TranslationBlock *tb)
673{
674 /* In practice this is mostly used for single use temporary TB
675 Ignore the hard cases and just back up if this TB happens to
676 be the last one generated. */
677 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
678 code_gen_ptr = tb->tc_ptr;
679 nb_tbs--;
680 }
681}
682
9fa3e853
FB
683static inline void invalidate_page_bitmap(PageDesc *p)
684{
685 if (p->code_bitmap) {
59817ccb 686 qemu_free(p->code_bitmap);
9fa3e853
FB
687 p->code_bitmap = NULL;
688 }
689 p->code_write_count = 0;
690}
691
5cd2c5b6
RH
692/* Set to NULL all the 'first_tb' fields in all PageDescs. */
693
694static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 695{
5cd2c5b6 696 int i;
fd6ce8f6 697
5cd2c5b6
RH
698 if (*lp == NULL) {
699 return;
700 }
701 if (level == 0) {
702 PageDesc *pd = *lp;
7296abac 703 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
704 pd[i].first_tb = NULL;
705 invalidate_page_bitmap(pd + i);
fd6ce8f6 706 }
5cd2c5b6
RH
707 } else {
708 void **pp = *lp;
7296abac 709 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
710 page_flush_tb_1 (level - 1, pp + i);
711 }
712 }
713}
714
715static void page_flush_tb(void)
716{
717 int i;
718 for (i = 0; i < V_L1_SIZE; i++) {
719 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
720 }
721}
722
723/* flush all the translation blocks */
d4e8164f 724/* XXX: tb_flush is currently not thread safe */
6a00d601 725void tb_flush(CPUState *env1)
fd6ce8f6 726{
6a00d601 727 CPUState *env;
0124311e 728#if defined(DEBUG_FLUSH)
ab3d1727
BS
729 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
730 (unsigned long)(code_gen_ptr - code_gen_buffer),
731 nb_tbs, nb_tbs > 0 ?
732 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 733#endif
26a5f13b 734 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
735 cpu_abort(env1, "Internal error: code buffer overflow\n");
736
fd6ce8f6 737 nb_tbs = 0;
3b46e624 738
6a00d601
FB
739 for(env = first_cpu; env != NULL; env = env->next_cpu) {
740 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
741 }
9fa3e853 742
8a8a608f 743 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 744 page_flush_tb();
9fa3e853 745
fd6ce8f6 746 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
747 /* XXX: flush processor icache at this point if cache flush is
748 expensive */
e3db7226 749 tb_flush_count++;
fd6ce8f6
FB
750}
751
752#ifdef DEBUG_TB_CHECK
753
bc98a7ef 754static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
755{
756 TranslationBlock *tb;
757 int i;
758 address &= TARGET_PAGE_MASK;
99773bd4
PB
759 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
760 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
761 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
762 address >= tb->pc + tb->size)) {
0bf9e31a
BS
763 printf("ERROR invalidate: address=" TARGET_FMT_lx
764 " PC=%08lx size=%04x\n",
99773bd4 765 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
766 }
767 }
768 }
769}
770
771/* verify that all the pages have correct rights for code */
772static void tb_page_check(void)
773{
774 TranslationBlock *tb;
775 int i, flags1, flags2;
3b46e624 776
99773bd4
PB
777 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
778 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
779 flags1 = page_get_flags(tb->pc);
780 flags2 = page_get_flags(tb->pc + tb->size - 1);
781 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
782 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 783 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
784 }
785 }
786 }
787}
788
789#endif
790
791/* invalidate one TB */
792static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
793 int next_offset)
794{
795 TranslationBlock *tb1;
796 for(;;) {
797 tb1 = *ptb;
798 if (tb1 == tb) {
799 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
800 break;
801 }
802 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
803 }
804}
805
9fa3e853
FB
806static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
807{
808 TranslationBlock *tb1;
809 unsigned int n1;
810
811 for(;;) {
812 tb1 = *ptb;
813 n1 = (long)tb1 & 3;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 if (tb1 == tb) {
816 *ptb = tb1->page_next[n1];
817 break;
818 }
819 ptb = &tb1->page_next[n1];
820 }
821}
822
d4e8164f
FB
823static inline void tb_jmp_remove(TranslationBlock *tb, int n)
824{
825 TranslationBlock *tb1, **ptb;
826 unsigned int n1;
827
828 ptb = &tb->jmp_next[n];
829 tb1 = *ptb;
830 if (tb1) {
831 /* find tb(n) in circular list */
832 for(;;) {
833 tb1 = *ptb;
834 n1 = (long)tb1 & 3;
835 tb1 = (TranslationBlock *)((long)tb1 & ~3);
836 if (n1 == n && tb1 == tb)
837 break;
838 if (n1 == 2) {
839 ptb = &tb1->jmp_first;
840 } else {
841 ptb = &tb1->jmp_next[n1];
842 }
843 }
844 /* now we can suppress tb(n) from the list */
845 *ptb = tb->jmp_next[n];
846
847 tb->jmp_next[n] = NULL;
848 }
849}
850
851/* reset the jump entry 'n' of a TB so that it is not chained to
852 another TB */
853static inline void tb_reset_jump(TranslationBlock *tb, int n)
854{
855 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
856}
857
41c1b1c9 858void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 859{
6a00d601 860 CPUState *env;
8a40a180 861 PageDesc *p;
d4e8164f 862 unsigned int h, n1;
41c1b1c9 863 tb_page_addr_t phys_pc;
8a40a180 864 TranslationBlock *tb1, *tb2;
3b46e624 865
8a40a180
FB
866 /* remove the TB from the hash list */
867 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
868 h = tb_phys_hash_func(phys_pc);
5fafdf24 869 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
870 offsetof(TranslationBlock, phys_hash_next));
871
872 /* remove the TB from the page list */
873 if (tb->page_addr[0] != page_addr) {
874 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
875 tb_page_remove(&p->first_tb, tb);
876 invalidate_page_bitmap(p);
877 }
878 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
879 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
880 tb_page_remove(&p->first_tb, tb);
881 invalidate_page_bitmap(p);
882 }
883
36bdbe54 884 tb_invalidated_flag = 1;
59817ccb 885
fd6ce8f6 886 /* remove the TB from the hash list */
8a40a180 887 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
888 for(env = first_cpu; env != NULL; env = env->next_cpu) {
889 if (env->tb_jmp_cache[h] == tb)
890 env->tb_jmp_cache[h] = NULL;
891 }
d4e8164f
FB
892
893 /* suppress this TB from the two jump lists */
894 tb_jmp_remove(tb, 0);
895 tb_jmp_remove(tb, 1);
896
897 /* suppress any remaining jumps to this TB */
898 tb1 = tb->jmp_first;
899 for(;;) {
900 n1 = (long)tb1 & 3;
901 if (n1 == 2)
902 break;
903 tb1 = (TranslationBlock *)((long)tb1 & ~3);
904 tb2 = tb1->jmp_next[n1];
905 tb_reset_jump(tb1, n1);
906 tb1->jmp_next[n1] = NULL;
907 tb1 = tb2;
908 }
909 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 910
e3db7226 911 tb_phys_invalidate_count++;
9fa3e853
FB
912}
913
914static inline void set_bits(uint8_t *tab, int start, int len)
915{
916 int end, mask, end1;
917
918 end = start + len;
919 tab += start >> 3;
920 mask = 0xff << (start & 7);
921 if ((start & ~7) == (end & ~7)) {
922 if (start < end) {
923 mask &= ~(0xff << (end & 7));
924 *tab |= mask;
925 }
926 } else {
927 *tab++ |= mask;
928 start = (start + 8) & ~7;
929 end1 = end & ~7;
930 while (start < end1) {
931 *tab++ = 0xff;
932 start += 8;
933 }
934 if (start < end) {
935 mask = ~(0xff << (end & 7));
936 *tab |= mask;
937 }
938 }
939}
940
941static void build_page_bitmap(PageDesc *p)
942{
943 int n, tb_start, tb_end;
944 TranslationBlock *tb;
3b46e624 945
b2a7081a 946 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
947
948 tb = p->first_tb;
949 while (tb != NULL) {
950 n = (long)tb & 3;
951 tb = (TranslationBlock *)((long)tb & ~3);
952 /* NOTE: this is subtle as a TB may span two physical pages */
953 if (n == 0) {
954 /* NOTE: tb_end may be after the end of the page, but
955 it is not a problem */
956 tb_start = tb->pc & ~TARGET_PAGE_MASK;
957 tb_end = tb_start + tb->size;
958 if (tb_end > TARGET_PAGE_SIZE)
959 tb_end = TARGET_PAGE_SIZE;
960 } else {
961 tb_start = 0;
962 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
963 }
964 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
965 tb = tb->page_next[n];
966 }
967}
968
2e70f6ef
PB
969TranslationBlock *tb_gen_code(CPUState *env,
970 target_ulong pc, target_ulong cs_base,
971 int flags, int cflags)
d720b93d
FB
972{
973 TranslationBlock *tb;
974 uint8_t *tc_ptr;
41c1b1c9
PB
975 tb_page_addr_t phys_pc, phys_page2;
976 target_ulong virt_page2;
d720b93d
FB
977 int code_gen_size;
978
41c1b1c9 979 phys_pc = get_page_addr_code(env, pc);
c27004ec 980 tb = tb_alloc(pc);
d720b93d
FB
981 if (!tb) {
982 /* flush must be done */
983 tb_flush(env);
984 /* cannot fail at this point */
c27004ec 985 tb = tb_alloc(pc);
2e70f6ef
PB
986 /* Don't forget to invalidate previous TB info. */
987 tb_invalidated_flag = 1;
d720b93d
FB
988 }
989 tc_ptr = code_gen_ptr;
990 tb->tc_ptr = tc_ptr;
991 tb->cs_base = cs_base;
992 tb->flags = flags;
993 tb->cflags = cflags;
d07bde88 994 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 995 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 996
d720b93d 997 /* check next page if needed */
c27004ec 998 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 999 phys_page2 = -1;
c27004ec 1000 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1001 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1002 }
41c1b1c9 1003 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1004 return tb;
d720b93d 1005}
3b46e624 1006
9fa3e853
FB
1007/* invalidate all TBs which intersect with the target physical page
1008 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1009 the same physical page. 'is_cpu_write_access' should be true if called
1010 from a real cpu write access: the virtual CPU will exit the current
1011 TB if code is modified inside this TB. */
41c1b1c9 1012void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1013 int is_cpu_write_access)
1014{
6b917547 1015 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1016 CPUState *env = cpu_single_env;
41c1b1c9 1017 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1018 PageDesc *p;
1019 int n;
1020#ifdef TARGET_HAS_PRECISE_SMC
1021 int current_tb_not_found = is_cpu_write_access;
1022 TranslationBlock *current_tb = NULL;
1023 int current_tb_modified = 0;
1024 target_ulong current_pc = 0;
1025 target_ulong current_cs_base = 0;
1026 int current_flags = 0;
1027#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1028
1029 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1030 if (!p)
9fa3e853 1031 return;
5fafdf24 1032 if (!p->code_bitmap &&
d720b93d
FB
1033 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1034 is_cpu_write_access) {
9fa3e853
FB
1035 /* build code bitmap */
1036 build_page_bitmap(p);
1037 }
1038
1039 /* we remove all the TBs in the range [start, end[ */
1040 /* XXX: see if in some cases it could be faster to invalidate all the code */
1041 tb = p->first_tb;
1042 while (tb != NULL) {
1043 n = (long)tb & 3;
1044 tb = (TranslationBlock *)((long)tb & ~3);
1045 tb_next = tb->page_next[n];
1046 /* NOTE: this is subtle as a TB may span two physical pages */
1047 if (n == 0) {
1048 /* NOTE: tb_end may be after the end of the page, but
1049 it is not a problem */
1050 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1051 tb_end = tb_start + tb->size;
1052 } else {
1053 tb_start = tb->page_addr[1];
1054 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1055 }
1056 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1057#ifdef TARGET_HAS_PRECISE_SMC
1058 if (current_tb_not_found) {
1059 current_tb_not_found = 0;
1060 current_tb = NULL;
2e70f6ef 1061 if (env->mem_io_pc) {
d720b93d 1062 /* now we have a real cpu fault */
2e70f6ef 1063 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1064 }
1065 }
1066 if (current_tb == tb &&
2e70f6ef 1067 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1068 /* If we are modifying the current TB, we must stop
1069 its execution. We could be more precise by checking
1070 that the modification is after the current PC, but it
1071 would require a specialized function to partially
1072 restore the CPU state */
3b46e624 1073
d720b93d 1074 current_tb_modified = 1;
618ba8e6 1075 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1076 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1077 &current_flags);
d720b93d
FB
1078 }
1079#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1080 /* we need to do that to handle the case where a signal
1081 occurs while doing tb_phys_invalidate() */
1082 saved_tb = NULL;
1083 if (env) {
1084 saved_tb = env->current_tb;
1085 env->current_tb = NULL;
1086 }
9fa3e853 1087 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1088 if (env) {
1089 env->current_tb = saved_tb;
1090 if (env->interrupt_request && env->current_tb)
1091 cpu_interrupt(env, env->interrupt_request);
1092 }
9fa3e853
FB
1093 }
1094 tb = tb_next;
1095 }
1096#if !defined(CONFIG_USER_ONLY)
1097 /* if no code remaining, no need to continue to use slow writes */
1098 if (!p->first_tb) {
1099 invalidate_page_bitmap(p);
d720b93d 1100 if (is_cpu_write_access) {
2e70f6ef 1101 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1102 }
1103 }
1104#endif
1105#ifdef TARGET_HAS_PRECISE_SMC
1106 if (current_tb_modified) {
1107 /* we generate a block containing just the instruction
1108 modifying the memory. It will ensure that it cannot modify
1109 itself */
ea1c1802 1110 env->current_tb = NULL;
2e70f6ef 1111 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1112 cpu_resume_from_signal(env, NULL);
9fa3e853 1113 }
fd6ce8f6 1114#endif
9fa3e853 1115}
fd6ce8f6 1116
9fa3e853 1117/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1118static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1119{
1120 PageDesc *p;
1121 int offset, b;
59817ccb 1122#if 0
a4193c8a 1123 if (1) {
93fcfe39
AL
1124 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1125 cpu_single_env->mem_io_vaddr, len,
1126 cpu_single_env->eip,
1127 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1128 }
1129#endif
9fa3e853 1130 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1131 if (!p)
9fa3e853
FB
1132 return;
1133 if (p->code_bitmap) {
1134 offset = start & ~TARGET_PAGE_MASK;
1135 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1136 if (b & ((1 << len) - 1))
1137 goto do_invalidate;
1138 } else {
1139 do_invalidate:
d720b93d 1140 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1141 }
1142}
1143
9fa3e853 1144#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1145static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1146 unsigned long pc, void *puc)
9fa3e853 1147{
6b917547 1148 TranslationBlock *tb;
9fa3e853 1149 PageDesc *p;
6b917547 1150 int n;
d720b93d 1151#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1152 TranslationBlock *current_tb = NULL;
d720b93d 1153 CPUState *env = cpu_single_env;
6b917547
AL
1154 int current_tb_modified = 0;
1155 target_ulong current_pc = 0;
1156 target_ulong current_cs_base = 0;
1157 int current_flags = 0;
d720b93d 1158#endif
9fa3e853
FB
1159
1160 addr &= TARGET_PAGE_MASK;
1161 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1162 if (!p)
9fa3e853
FB
1163 return;
1164 tb = p->first_tb;
d720b93d
FB
1165#ifdef TARGET_HAS_PRECISE_SMC
1166 if (tb && pc != 0) {
1167 current_tb = tb_find_pc(pc);
1168 }
1169#endif
9fa3e853
FB
1170 while (tb != NULL) {
1171 n = (long)tb & 3;
1172 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1173#ifdef TARGET_HAS_PRECISE_SMC
1174 if (current_tb == tb &&
2e70f6ef 1175 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1176 /* If we are modifying the current TB, we must stop
1177 its execution. We could be more precise by checking
1178 that the modification is after the current PC, but it
1179 would require a specialized function to partially
1180 restore the CPU state */
3b46e624 1181
d720b93d 1182 current_tb_modified = 1;
618ba8e6 1183 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1184 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1185 &current_flags);
d720b93d
FB
1186 }
1187#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1188 tb_phys_invalidate(tb, addr);
1189 tb = tb->page_next[n];
1190 }
fd6ce8f6 1191 p->first_tb = NULL;
d720b93d
FB
1192#ifdef TARGET_HAS_PRECISE_SMC
1193 if (current_tb_modified) {
1194 /* we generate a block containing just the instruction
1195 modifying the memory. It will ensure that it cannot modify
1196 itself */
ea1c1802 1197 env->current_tb = NULL;
2e70f6ef 1198 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1199 cpu_resume_from_signal(env, puc);
1200 }
1201#endif
fd6ce8f6 1202}
9fa3e853 1203#endif
fd6ce8f6
FB
1204
1205/* add the tb in the target page and protect it if necessary */
5fafdf24 1206static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1207 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1208{
1209 PageDesc *p;
9fa3e853
FB
1210 TranslationBlock *last_first_tb;
1211
1212 tb->page_addr[n] = page_addr;
5cd2c5b6 1213 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1214 tb->page_next[n] = p->first_tb;
1215 last_first_tb = p->first_tb;
1216 p->first_tb = (TranslationBlock *)((long)tb | n);
1217 invalidate_page_bitmap(p);
fd6ce8f6 1218
107db443 1219#if defined(TARGET_HAS_SMC) || 1
d720b93d 1220
9fa3e853 1221#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1222 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1223 target_ulong addr;
1224 PageDesc *p2;
9fa3e853
FB
1225 int prot;
1226
fd6ce8f6
FB
1227 /* force the host page as non writable (writes will have a
1228 page fault + mprotect overhead) */
53a5960a 1229 page_addr &= qemu_host_page_mask;
fd6ce8f6 1230 prot = 0;
53a5960a
PB
1231 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1232 addr += TARGET_PAGE_SIZE) {
1233
1234 p2 = page_find (addr >> TARGET_PAGE_BITS);
1235 if (!p2)
1236 continue;
1237 prot |= p2->flags;
1238 p2->flags &= ~PAGE_WRITE;
53a5960a 1239 }
5fafdf24 1240 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1241 (prot & PAGE_BITS) & ~PAGE_WRITE);
1242#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1243 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1244 page_addr);
fd6ce8f6 1245#endif
fd6ce8f6 1246 }
9fa3e853
FB
1247#else
1248 /* if some code is already present, then the pages are already
1249 protected. So we handle the case where only the first TB is
1250 allocated in a physical page */
1251 if (!last_first_tb) {
6a00d601 1252 tlb_protect_code(page_addr);
9fa3e853
FB
1253 }
1254#endif
d720b93d
FB
1255
1256#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1257}
1258
9fa3e853
FB
1259/* add a new TB and link it to the physical page tables. phys_page2 is
1260 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1261void tb_link_page(TranslationBlock *tb,
1262 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1263{
9fa3e853
FB
1264 unsigned int h;
1265 TranslationBlock **ptb;
1266
c8a706fe
PB
1267 /* Grab the mmap lock to stop another thread invalidating this TB
1268 before we are done. */
1269 mmap_lock();
9fa3e853
FB
1270 /* add in the physical hash table */
1271 h = tb_phys_hash_func(phys_pc);
1272 ptb = &tb_phys_hash[h];
1273 tb->phys_hash_next = *ptb;
1274 *ptb = tb;
fd6ce8f6
FB
1275
1276 /* add in the page list */
9fa3e853
FB
1277 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1278 if (phys_page2 != -1)
1279 tb_alloc_page(tb, 1, phys_page2);
1280 else
1281 tb->page_addr[1] = -1;
9fa3e853 1282
d4e8164f
FB
1283 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1284 tb->jmp_next[0] = NULL;
1285 tb->jmp_next[1] = NULL;
1286
1287 /* init original jump addresses */
1288 if (tb->tb_next_offset[0] != 0xffff)
1289 tb_reset_jump(tb, 0);
1290 if (tb->tb_next_offset[1] != 0xffff)
1291 tb_reset_jump(tb, 1);
8a40a180
FB
1292
1293#ifdef DEBUG_TB_CHECK
1294 tb_page_check();
1295#endif
c8a706fe 1296 mmap_unlock();
fd6ce8f6
FB
1297}
1298
9fa3e853
FB
1299/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1300 tb[1].tc_ptr. Return NULL if not found */
1301TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1302{
9fa3e853
FB
1303 int m_min, m_max, m;
1304 unsigned long v;
1305 TranslationBlock *tb;
a513fe19
FB
1306
1307 if (nb_tbs <= 0)
1308 return NULL;
1309 if (tc_ptr < (unsigned long)code_gen_buffer ||
1310 tc_ptr >= (unsigned long)code_gen_ptr)
1311 return NULL;
1312 /* binary search (cf Knuth) */
1313 m_min = 0;
1314 m_max = nb_tbs - 1;
1315 while (m_min <= m_max) {
1316 m = (m_min + m_max) >> 1;
1317 tb = &tbs[m];
1318 v = (unsigned long)tb->tc_ptr;
1319 if (v == tc_ptr)
1320 return tb;
1321 else if (tc_ptr < v) {
1322 m_max = m - 1;
1323 } else {
1324 m_min = m + 1;
1325 }
5fafdf24 1326 }
a513fe19
FB
1327 return &tbs[m_max];
1328}
7501267e 1329
ea041c0e
FB
1330static void tb_reset_jump_recursive(TranslationBlock *tb);
1331
1332static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1333{
1334 TranslationBlock *tb1, *tb_next, **ptb;
1335 unsigned int n1;
1336
1337 tb1 = tb->jmp_next[n];
1338 if (tb1 != NULL) {
1339 /* find head of list */
1340 for(;;) {
1341 n1 = (long)tb1 & 3;
1342 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1343 if (n1 == 2)
1344 break;
1345 tb1 = tb1->jmp_next[n1];
1346 }
1347 /* we are now sure now that tb jumps to tb1 */
1348 tb_next = tb1;
1349
1350 /* remove tb from the jmp_first list */
1351 ptb = &tb_next->jmp_first;
1352 for(;;) {
1353 tb1 = *ptb;
1354 n1 = (long)tb1 & 3;
1355 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1356 if (n1 == n && tb1 == tb)
1357 break;
1358 ptb = &tb1->jmp_next[n1];
1359 }
1360 *ptb = tb->jmp_next[n];
1361 tb->jmp_next[n] = NULL;
3b46e624 1362
ea041c0e
FB
1363 /* suppress the jump to next tb in generated code */
1364 tb_reset_jump(tb, n);
1365
0124311e 1366 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1367 tb_reset_jump_recursive(tb_next);
1368 }
1369}
1370
1371static void tb_reset_jump_recursive(TranslationBlock *tb)
1372{
1373 tb_reset_jump_recursive2(tb, 0);
1374 tb_reset_jump_recursive2(tb, 1);
1375}
1376
1fddef4b 1377#if defined(TARGET_HAS_ICE)
94df27fd
PB
1378#if defined(CONFIG_USER_ONLY)
1379static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1380{
1381 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1382}
1383#else
d720b93d
FB
1384static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1385{
c227f099 1386 target_phys_addr_t addr;
9b3c35e0 1387 target_ulong pd;
c227f099 1388 ram_addr_t ram_addr;
c2f07f81 1389 PhysPageDesc *p;
d720b93d 1390
c2f07f81
PB
1391 addr = cpu_get_phys_page_debug(env, pc);
1392 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1393 if (!p) {
1394 pd = IO_MEM_UNASSIGNED;
1395 } else {
1396 pd = p->phys_offset;
1397 }
1398 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1399 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1400}
c27004ec 1401#endif
94df27fd 1402#endif /* TARGET_HAS_ICE */
d720b93d 1403
c527ee8f
PB
1404#if defined(CONFIG_USER_ONLY)
1405void cpu_watchpoint_remove_all(CPUState *env, int mask)
1406
1407{
1408}
1409
1410int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1411 int flags, CPUWatchpoint **watchpoint)
1412{
1413 return -ENOSYS;
1414}
1415#else
6658ffb8 1416/* Add a watchpoint. */
a1d1bb31
AL
1417int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1418 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1419{
b4051334 1420 target_ulong len_mask = ~(len - 1);
c0ce998e 1421 CPUWatchpoint *wp;
6658ffb8 1422
b4051334
AL
1423 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1424 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1425 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1426 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1427 return -EINVAL;
1428 }
a1d1bb31 1429 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1430
1431 wp->vaddr = addr;
b4051334 1432 wp->len_mask = len_mask;
a1d1bb31
AL
1433 wp->flags = flags;
1434
2dc9f411 1435 /* keep all GDB-injected watchpoints in front */
c0ce998e 1436 if (flags & BP_GDB)
72cf2d4f 1437 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1438 else
72cf2d4f 1439 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1440
6658ffb8 1441 tlb_flush_page(env, addr);
a1d1bb31
AL
1442
1443 if (watchpoint)
1444 *watchpoint = wp;
1445 return 0;
6658ffb8
PB
1446}
1447
a1d1bb31
AL
1448/* Remove a specific watchpoint. */
1449int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1450 int flags)
6658ffb8 1451{
b4051334 1452 target_ulong len_mask = ~(len - 1);
a1d1bb31 1453 CPUWatchpoint *wp;
6658ffb8 1454
72cf2d4f 1455 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1456 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1457 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1458 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1459 return 0;
1460 }
1461 }
a1d1bb31 1462 return -ENOENT;
6658ffb8
PB
1463}
1464
a1d1bb31
AL
1465/* Remove a specific watchpoint by reference. */
1466void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1467{
72cf2d4f 1468 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1469
a1d1bb31
AL
1470 tlb_flush_page(env, watchpoint->vaddr);
1471
1472 qemu_free(watchpoint);
1473}
1474
1475/* Remove all matching watchpoints. */
1476void cpu_watchpoint_remove_all(CPUState *env, int mask)
1477{
c0ce998e 1478 CPUWatchpoint *wp, *next;
a1d1bb31 1479
72cf2d4f 1480 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1481 if (wp->flags & mask)
1482 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1483 }
7d03f82f 1484}
c527ee8f 1485#endif
7d03f82f 1486
a1d1bb31
AL
1487/* Add a breakpoint. */
1488int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1489 CPUBreakpoint **breakpoint)
4c3a88a2 1490{
1fddef4b 1491#if defined(TARGET_HAS_ICE)
c0ce998e 1492 CPUBreakpoint *bp;
3b46e624 1493
a1d1bb31 1494 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1495
a1d1bb31
AL
1496 bp->pc = pc;
1497 bp->flags = flags;
1498
2dc9f411 1499 /* keep all GDB-injected breakpoints in front */
c0ce998e 1500 if (flags & BP_GDB)
72cf2d4f 1501 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1502 else
72cf2d4f 1503 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1504
d720b93d 1505 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1506
1507 if (breakpoint)
1508 *breakpoint = bp;
4c3a88a2
FB
1509 return 0;
1510#else
a1d1bb31 1511 return -ENOSYS;
4c3a88a2
FB
1512#endif
1513}
1514
a1d1bb31
AL
1515/* Remove a specific breakpoint. */
1516int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1517{
7d03f82f 1518#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1519 CPUBreakpoint *bp;
1520
72cf2d4f 1521 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1522 if (bp->pc == pc && bp->flags == flags) {
1523 cpu_breakpoint_remove_by_ref(env, bp);
1524 return 0;
1525 }
7d03f82f 1526 }
a1d1bb31
AL
1527 return -ENOENT;
1528#else
1529 return -ENOSYS;
7d03f82f
EI
1530#endif
1531}
1532
a1d1bb31
AL
1533/* Remove a specific breakpoint by reference. */
1534void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1535{
1fddef4b 1536#if defined(TARGET_HAS_ICE)
72cf2d4f 1537 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1538
a1d1bb31
AL
1539 breakpoint_invalidate(env, breakpoint->pc);
1540
1541 qemu_free(breakpoint);
1542#endif
1543}
1544
1545/* Remove all matching breakpoints. */
1546void cpu_breakpoint_remove_all(CPUState *env, int mask)
1547{
1548#if defined(TARGET_HAS_ICE)
c0ce998e 1549 CPUBreakpoint *bp, *next;
a1d1bb31 1550
72cf2d4f 1551 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1552 if (bp->flags & mask)
1553 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1554 }
4c3a88a2
FB
1555#endif
1556}
1557
c33a346e
FB
1558/* enable or disable single step mode. EXCP_DEBUG is returned by the
1559 CPU loop after each instruction */
1560void cpu_single_step(CPUState *env, int enabled)
1561{
1fddef4b 1562#if defined(TARGET_HAS_ICE)
c33a346e
FB
1563 if (env->singlestep_enabled != enabled) {
1564 env->singlestep_enabled = enabled;
e22a25c9
AL
1565 if (kvm_enabled())
1566 kvm_update_guest_debug(env, 0);
1567 else {
ccbb4d44 1568 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1569 /* XXX: only flush what is necessary */
1570 tb_flush(env);
1571 }
c33a346e
FB
1572 }
1573#endif
1574}
1575
34865134
FB
1576/* enable or disable low levels log */
1577void cpu_set_log(int log_flags)
1578{
1579 loglevel = log_flags;
1580 if (loglevel && !logfile) {
11fcfab4 1581 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1582 if (!logfile) {
1583 perror(logfilename);
1584 _exit(1);
1585 }
9fa3e853
FB
1586#if !defined(CONFIG_SOFTMMU)
1587 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1588 {
b55266b5 1589 static char logfile_buf[4096];
9fa3e853
FB
1590 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1591 }
bf65f53f
FN
1592#elif !defined(_WIN32)
1593 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1594 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1595#endif
e735b91c
PB
1596 log_append = 1;
1597 }
1598 if (!loglevel && logfile) {
1599 fclose(logfile);
1600 logfile = NULL;
34865134
FB
1601 }
1602}
1603
1604void cpu_set_log_filename(const char *filename)
1605{
1606 logfilename = strdup(filename);
e735b91c
PB
1607 if (logfile) {
1608 fclose(logfile);
1609 logfile = NULL;
1610 }
1611 cpu_set_log(loglevel);
34865134 1612}
c33a346e 1613
3098dba0 1614static void cpu_unlink_tb(CPUState *env)
ea041c0e 1615{
3098dba0
AJ
1616 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1617 problem and hope the cpu will stop of its own accord. For userspace
1618 emulation this often isn't actually as bad as it sounds. Often
1619 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1620 TranslationBlock *tb;
c227f099 1621 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1622
cab1b4bd 1623 spin_lock(&interrupt_lock);
3098dba0
AJ
1624 tb = env->current_tb;
1625 /* if the cpu is currently executing code, we must unlink it and
1626 all the potentially executing TB */
f76cfe56 1627 if (tb) {
3098dba0
AJ
1628 env->current_tb = NULL;
1629 tb_reset_jump_recursive(tb);
be214e6c 1630 }
cab1b4bd 1631 spin_unlock(&interrupt_lock);
3098dba0
AJ
1632}
1633
97ffbd8d 1634#ifndef CONFIG_USER_ONLY
3098dba0 1635/* mask must never be zero, except for A20 change call */
ec6959d0 1636static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1637{
1638 int old_mask;
be214e6c 1639
2e70f6ef 1640 old_mask = env->interrupt_request;
68a79315 1641 env->interrupt_request |= mask;
3098dba0 1642
8edac960
AL
1643 /*
1644 * If called from iothread context, wake the target cpu in
1645 * case its halted.
1646 */
b7680cb6 1647 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1648 qemu_cpu_kick(env);
1649 return;
1650 }
8edac960 1651
2e70f6ef 1652 if (use_icount) {
266910c4 1653 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1654 if (!can_do_io(env)
be214e6c 1655 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1656 cpu_abort(env, "Raised interrupt while not in I/O function");
1657 }
2e70f6ef 1658 } else {
3098dba0 1659 cpu_unlink_tb(env);
ea041c0e
FB
1660 }
1661}
1662
ec6959d0
JK
1663CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1664
97ffbd8d
JK
1665#else /* CONFIG_USER_ONLY */
1666
1667void cpu_interrupt(CPUState *env, int mask)
1668{
1669 env->interrupt_request |= mask;
1670 cpu_unlink_tb(env);
1671}
1672#endif /* CONFIG_USER_ONLY */
1673
b54ad049
FB
1674void cpu_reset_interrupt(CPUState *env, int mask)
1675{
1676 env->interrupt_request &= ~mask;
1677}
1678
3098dba0
AJ
1679void cpu_exit(CPUState *env)
1680{
1681 env->exit_request = 1;
1682 cpu_unlink_tb(env);
1683}
1684
c7cd6a37 1685const CPULogItem cpu_log_items[] = {
5fafdf24 1686 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1687 "show generated host assembly code for each compiled TB" },
1688 { CPU_LOG_TB_IN_ASM, "in_asm",
1689 "show target assembly code for each compiled TB" },
5fafdf24 1690 { CPU_LOG_TB_OP, "op",
57fec1fe 1691 "show micro ops for each compiled TB" },
f193c797 1692 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1693 "show micro ops "
1694#ifdef TARGET_I386
1695 "before eflags optimization and "
f193c797 1696#endif
e01a1157 1697 "after liveness analysis" },
f193c797
FB
1698 { CPU_LOG_INT, "int",
1699 "show interrupts/exceptions in short format" },
1700 { CPU_LOG_EXEC, "exec",
1701 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1702 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1703 "show CPU state before block translation" },
f193c797
FB
1704#ifdef TARGET_I386
1705 { CPU_LOG_PCALL, "pcall",
1706 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1707 { CPU_LOG_RESET, "cpu_reset",
1708 "show CPU state before CPU resets" },
f193c797 1709#endif
8e3a9fd2 1710#ifdef DEBUG_IOPORT
fd872598
FB
1711 { CPU_LOG_IOPORT, "ioport",
1712 "show all i/o ports accesses" },
8e3a9fd2 1713#endif
f193c797
FB
1714 { 0, NULL, NULL },
1715};
1716
f6f3fbca
MT
1717#ifndef CONFIG_USER_ONLY
1718static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1719 = QLIST_HEAD_INITIALIZER(memory_client_list);
1720
1721static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26 1722 ram_addr_t size,
0fd542fb
MT
1723 ram_addr_t phys_offset,
1724 bool log_dirty)
f6f3fbca
MT
1725{
1726 CPUPhysMemoryClient *client;
1727 QLIST_FOREACH(client, &memory_client_list, list) {
0fd542fb 1728 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
f6f3fbca
MT
1729 }
1730}
1731
1732static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1733 target_phys_addr_t end)
f6f3fbca
MT
1734{
1735 CPUPhysMemoryClient *client;
1736 QLIST_FOREACH(client, &memory_client_list, list) {
1737 int r = client->sync_dirty_bitmap(client, start, end);
1738 if (r < 0)
1739 return r;
1740 }
1741 return 0;
1742}
1743
1744static int cpu_notify_migration_log(int enable)
1745{
1746 CPUPhysMemoryClient *client;
1747 QLIST_FOREACH(client, &memory_client_list, list) {
1748 int r = client->migration_log(client, enable);
1749 if (r < 0)
1750 return r;
1751 }
1752 return 0;
1753}
1754
8d4c78e7
AW
1755/* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1756 * address. Each intermediate table provides the next L2_BITs of guest
1757 * physical address space. The number of levels vary based on host and
1758 * guest configuration, making it efficient to build the final guest
1759 * physical address by seeding the L1 offset and shifting and adding in
1760 * each L2 offset as we recurse through them. */
5cd2c5b6 1761static void phys_page_for_each_1(CPUPhysMemoryClient *client,
8d4c78e7 1762 int level, void **lp, target_phys_addr_t addr)
f6f3fbca 1763{
5cd2c5b6 1764 int i;
f6f3fbca 1765
5cd2c5b6
RH
1766 if (*lp == NULL) {
1767 return;
1768 }
1769 if (level == 0) {
1770 PhysPageDesc *pd = *lp;
8d4c78e7 1771 addr <<= L2_BITS + TARGET_PAGE_BITS;
7296abac 1772 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1773 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
8d4c78e7 1774 client->set_memory(client, addr | i << TARGET_PAGE_BITS,
0fd542fb 1775 TARGET_PAGE_SIZE, pd[i].phys_offset, false);
f6f3fbca 1776 }
5cd2c5b6
RH
1777 }
1778 } else {
1779 void **pp = *lp;
7296abac 1780 for (i = 0; i < L2_SIZE; ++i) {
8d4c78e7
AW
1781 phys_page_for_each_1(client, level - 1, pp + i,
1782 (addr << L2_BITS) | i);
f6f3fbca
MT
1783 }
1784 }
1785}
1786
1787static void phys_page_for_each(CPUPhysMemoryClient *client)
1788{
5cd2c5b6
RH
1789 int i;
1790 for (i = 0; i < P_L1_SIZE; ++i) {
1791 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
8d4c78e7 1792 l1_phys_map + i, i);
f6f3fbca 1793 }
f6f3fbca
MT
1794}
1795
1796void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1797{
1798 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1799 phys_page_for_each(client);
1800}
1801
1802void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1803{
1804 QLIST_REMOVE(client, list);
1805}
1806#endif
1807
f193c797
FB
1808static int cmp1(const char *s1, int n, const char *s2)
1809{
1810 if (strlen(s2) != n)
1811 return 0;
1812 return memcmp(s1, s2, n) == 0;
1813}
3b46e624 1814
f193c797
FB
1815/* takes a comma separated list of log masks. Return 0 if error. */
1816int cpu_str_to_log_mask(const char *str)
1817{
c7cd6a37 1818 const CPULogItem *item;
f193c797
FB
1819 int mask;
1820 const char *p, *p1;
1821
1822 p = str;
1823 mask = 0;
1824 for(;;) {
1825 p1 = strchr(p, ',');
1826 if (!p1)
1827 p1 = p + strlen(p);
9742bf26
YT
1828 if(cmp1(p,p1-p,"all")) {
1829 for(item = cpu_log_items; item->mask != 0; item++) {
1830 mask |= item->mask;
1831 }
1832 } else {
1833 for(item = cpu_log_items; item->mask != 0; item++) {
1834 if (cmp1(p, p1 - p, item->name))
1835 goto found;
1836 }
1837 return 0;
f193c797 1838 }
f193c797
FB
1839 found:
1840 mask |= item->mask;
1841 if (*p1 != ',')
1842 break;
1843 p = p1 + 1;
1844 }
1845 return mask;
1846}
ea041c0e 1847
7501267e
FB
1848void cpu_abort(CPUState *env, const char *fmt, ...)
1849{
1850 va_list ap;
493ae1f0 1851 va_list ap2;
7501267e
FB
1852
1853 va_start(ap, fmt);
493ae1f0 1854 va_copy(ap2, ap);
7501267e
FB
1855 fprintf(stderr, "qemu: fatal: ");
1856 vfprintf(stderr, fmt, ap);
1857 fprintf(stderr, "\n");
1858#ifdef TARGET_I386
7fe48483
FB
1859 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1860#else
1861 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1862#endif
93fcfe39
AL
1863 if (qemu_log_enabled()) {
1864 qemu_log("qemu: fatal: ");
1865 qemu_log_vprintf(fmt, ap2);
1866 qemu_log("\n");
f9373291 1867#ifdef TARGET_I386
93fcfe39 1868 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1869#else
93fcfe39 1870 log_cpu_state(env, 0);
f9373291 1871#endif
31b1a7b4 1872 qemu_log_flush();
93fcfe39 1873 qemu_log_close();
924edcae 1874 }
493ae1f0 1875 va_end(ap2);
f9373291 1876 va_end(ap);
fd052bf6
RV
1877#if defined(CONFIG_USER_ONLY)
1878 {
1879 struct sigaction act;
1880 sigfillset(&act.sa_mask);
1881 act.sa_handler = SIG_DFL;
1882 sigaction(SIGABRT, &act, NULL);
1883 }
1884#endif
7501267e
FB
1885 abort();
1886}
1887
c5be9f08
TS
1888CPUState *cpu_copy(CPUState *env)
1889{
01ba9816 1890 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1891 CPUState *next_cpu = new_env->next_cpu;
1892 int cpu_index = new_env->cpu_index;
5a38f081
AL
1893#if defined(TARGET_HAS_ICE)
1894 CPUBreakpoint *bp;
1895 CPUWatchpoint *wp;
1896#endif
1897
c5be9f08 1898 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1899
1900 /* Preserve chaining and index. */
c5be9f08
TS
1901 new_env->next_cpu = next_cpu;
1902 new_env->cpu_index = cpu_index;
5a38f081
AL
1903
1904 /* Clone all break/watchpoints.
1905 Note: Once we support ptrace with hw-debug register access, make sure
1906 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1907 QTAILQ_INIT(&env->breakpoints);
1908 QTAILQ_INIT(&env->watchpoints);
5a38f081 1909#if defined(TARGET_HAS_ICE)
72cf2d4f 1910 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1911 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1912 }
72cf2d4f 1913 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1914 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1915 wp->flags, NULL);
1916 }
1917#endif
1918
c5be9f08
TS
1919 return new_env;
1920}
1921
0124311e
FB
1922#if !defined(CONFIG_USER_ONLY)
1923
5c751e99
EI
1924static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1925{
1926 unsigned int i;
1927
1928 /* Discard jump cache entries for any tb which might potentially
1929 overlap the flushed page. */
1930 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1931 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1932 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1933
1934 i = tb_jmp_cache_hash_page(addr);
1935 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1936 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1937}
1938
08738984
IK
1939static CPUTLBEntry s_cputlb_empty_entry = {
1940 .addr_read = -1,
1941 .addr_write = -1,
1942 .addr_code = -1,
1943 .addend = -1,
1944};
1945
ee8b7021
FB
1946/* NOTE: if flush_global is true, also flush global entries (not
1947 implemented yet) */
1948void tlb_flush(CPUState *env, int flush_global)
33417e70 1949{
33417e70 1950 int i;
0124311e 1951
9fa3e853
FB
1952#if defined(DEBUG_TLB)
1953 printf("tlb_flush:\n");
1954#endif
0124311e
FB
1955 /* must reset current TB so that interrupts cannot modify the
1956 links while we are modifying them */
1957 env->current_tb = NULL;
1958
33417e70 1959 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1960 int mmu_idx;
1961 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1962 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1963 }
33417e70 1964 }
9fa3e853 1965
8a40a180 1966 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1967
d4c430a8
PB
1968 env->tlb_flush_addr = -1;
1969 env->tlb_flush_mask = 0;
e3db7226 1970 tlb_flush_count++;
33417e70
FB
1971}
1972
274da6b2 1973static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1974{
5fafdf24 1975 if (addr == (tlb_entry->addr_read &
84b7b8e7 1976 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1977 addr == (tlb_entry->addr_write &
84b7b8e7 1978 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1979 addr == (tlb_entry->addr_code &
84b7b8e7 1980 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1981 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1982 }
61382a50
FB
1983}
1984
2e12669a 1985void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1986{
8a40a180 1987 int i;
cfde4bd9 1988 int mmu_idx;
0124311e 1989
9fa3e853 1990#if defined(DEBUG_TLB)
108c49b8 1991 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1992#endif
d4c430a8
PB
1993 /* Check if we need to flush due to large pages. */
1994 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1995#if defined(DEBUG_TLB)
1996 printf("tlb_flush_page: forced full flush ("
1997 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1998 env->tlb_flush_addr, env->tlb_flush_mask);
1999#endif
2000 tlb_flush(env, 1);
2001 return;
2002 }
0124311e
FB
2003 /* must reset current TB so that interrupts cannot modify the
2004 links while we are modifying them */
2005 env->current_tb = NULL;
61382a50
FB
2006
2007 addr &= TARGET_PAGE_MASK;
2008 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2009 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2010 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2011
5c751e99 2012 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2013}
2014
9fa3e853
FB
2015/* update the TLBs so that writes to code in the virtual page 'addr'
2016 can be detected */
c227f099 2017static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2018{
5fafdf24 2019 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2020 ram_addr + TARGET_PAGE_SIZE,
2021 CODE_DIRTY_FLAG);
9fa3e853
FB
2022}
2023
9fa3e853 2024/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2025 tested for self modifying code */
c227f099 2026static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2027 target_ulong vaddr)
9fa3e853 2028{
f7c11b53 2029 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2030}
2031
5fafdf24 2032static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2033 unsigned long start, unsigned long length)
2034{
2035 unsigned long addr;
84b7b8e7
FB
2036 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2037 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2038 if ((addr - start) < length) {
0f459d16 2039 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2040 }
2041 }
2042}
2043
5579c7f3 2044/* Note: start and end must be within the same ram block. */
c227f099 2045void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2046 int dirty_flags)
1ccde1cb
FB
2047{
2048 CPUState *env;
4f2ac237 2049 unsigned long length, start1;
f7c11b53 2050 int i;
1ccde1cb
FB
2051
2052 start &= TARGET_PAGE_MASK;
2053 end = TARGET_PAGE_ALIGN(end);
2054
2055 length = end - start;
2056 if (length == 0)
2057 return;
f7c11b53 2058 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2059
1ccde1cb
FB
2060 /* we modify the TLB cache so that the dirty bit will be set again
2061 when accessing the range */
b2e0a138 2062 start1 = (unsigned long)qemu_safe_ram_ptr(start);
a57d23e4 2063 /* Check that we don't span multiple blocks - this breaks the
5579c7f3 2064 address comparisons below. */
b2e0a138 2065 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2066 != (end - 1) - start) {
2067 abort();
2068 }
2069
6a00d601 2070 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2071 int mmu_idx;
2072 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2073 for(i = 0; i < CPU_TLB_SIZE; i++)
2074 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2075 start1, length);
2076 }
6a00d601 2077 }
1ccde1cb
FB
2078}
2079
74576198
AL
2080int cpu_physical_memory_set_dirty_tracking(int enable)
2081{
f6f3fbca 2082 int ret = 0;
74576198 2083 in_migration = enable;
f6f3fbca
MT
2084 ret = cpu_notify_migration_log(!!enable);
2085 return ret;
74576198
AL
2086}
2087
2088int cpu_physical_memory_get_dirty_tracking(void)
2089{
2090 return in_migration;
2091}
2092
c227f099
AL
2093int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2094 target_phys_addr_t end_addr)
2bec46dc 2095{
7b8f3b78 2096 int ret;
151f7749 2097
f6f3fbca 2098 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2099 return ret;
2bec46dc
AL
2100}
2101
e5896b12
AP
2102int cpu_physical_log_start(target_phys_addr_t start_addr,
2103 ram_addr_t size)
2104{
2105 CPUPhysMemoryClient *client;
2106 QLIST_FOREACH(client, &memory_client_list, list) {
2107 if (client->log_start) {
2108 int r = client->log_start(client, start_addr, size);
2109 if (r < 0) {
2110 return r;
2111 }
2112 }
2113 }
2114 return 0;
2115}
2116
2117int cpu_physical_log_stop(target_phys_addr_t start_addr,
2118 ram_addr_t size)
2119{
2120 CPUPhysMemoryClient *client;
2121 QLIST_FOREACH(client, &memory_client_list, list) {
2122 if (client->log_stop) {
2123 int r = client->log_stop(client, start_addr, size);
2124 if (r < 0) {
2125 return r;
2126 }
2127 }
2128 }
2129 return 0;
2130}
2131
3a7d929e
FB
2132static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2133{
c227f099 2134 ram_addr_t ram_addr;
5579c7f3 2135 void *p;
3a7d929e 2136
84b7b8e7 2137 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2138 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2139 + tlb_entry->addend);
e890261f 2140 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2141 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2142 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2143 }
2144 }
2145}
2146
2147/* update the TLB according to the current state of the dirty bits */
2148void cpu_tlb_update_dirty(CPUState *env)
2149{
2150 int i;
cfde4bd9
IY
2151 int mmu_idx;
2152 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2153 for(i = 0; i < CPU_TLB_SIZE; i++)
2154 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2155 }
3a7d929e
FB
2156}
2157
0f459d16 2158static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2159{
0f459d16
PB
2160 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2161 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2162}
2163
0f459d16
PB
2164/* update the TLB corresponding to virtual page vaddr
2165 so that it is no longer dirty */
2166static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2167{
1ccde1cb 2168 int i;
cfde4bd9 2169 int mmu_idx;
1ccde1cb 2170
0f459d16 2171 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2172 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2173 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2174 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2175}
2176
d4c430a8
PB
2177/* Our TLB does not support large pages, so remember the area covered by
2178 large pages and trigger a full TLB flush if these are invalidated. */
2179static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2180 target_ulong size)
2181{
2182 target_ulong mask = ~(size - 1);
2183
2184 if (env->tlb_flush_addr == (target_ulong)-1) {
2185 env->tlb_flush_addr = vaddr & mask;
2186 env->tlb_flush_mask = mask;
2187 return;
2188 }
2189 /* Extend the existing region to include the new page.
2190 This is a compromise between unnecessary flushes and the cost
2191 of maintaining a full variable size TLB. */
2192 mask &= env->tlb_flush_mask;
2193 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2194 mask <<= 1;
2195 }
2196 env->tlb_flush_addr &= mask;
2197 env->tlb_flush_mask = mask;
2198}
2199
2200/* Add a new TLB entry. At most one entry for a given virtual address
2201 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2202 supplied size is only used by tlb_flush_page. */
2203void tlb_set_page(CPUState *env, target_ulong vaddr,
2204 target_phys_addr_t paddr, int prot,
2205 int mmu_idx, target_ulong size)
9fa3e853 2206{
92e873b9 2207 PhysPageDesc *p;
4f2ac237 2208 unsigned long pd;
9fa3e853 2209 unsigned int index;
4f2ac237 2210 target_ulong address;
0f459d16 2211 target_ulong code_address;
355b1943 2212 unsigned long addend;
84b7b8e7 2213 CPUTLBEntry *te;
a1d1bb31 2214 CPUWatchpoint *wp;
c227f099 2215 target_phys_addr_t iotlb;
9fa3e853 2216
d4c430a8
PB
2217 assert(size >= TARGET_PAGE_SIZE);
2218 if (size != TARGET_PAGE_SIZE) {
2219 tlb_add_large_page(env, vaddr, size);
2220 }
92e873b9 2221 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2222 if (!p) {
2223 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2224 } else {
2225 pd = p->phys_offset;
9fa3e853
FB
2226 }
2227#if defined(DEBUG_TLB)
7fd3f494
SW
2228 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2229 " prot=%x idx=%d pd=0x%08lx\n",
2230 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2231#endif
2232
0f459d16
PB
2233 address = vaddr;
2234 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2235 /* IO memory case (romd handled later) */
2236 address |= TLB_MMIO;
2237 }
5579c7f3 2238 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2239 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2240 /* Normal RAM. */
2241 iotlb = pd & TARGET_PAGE_MASK;
2242 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2243 iotlb |= IO_MEM_NOTDIRTY;
2244 else
2245 iotlb |= IO_MEM_ROM;
2246 } else {
ccbb4d44 2247 /* IO handlers are currently passed a physical address.
0f459d16
PB
2248 It would be nice to pass an offset from the base address
2249 of that region. This would avoid having to special case RAM,
2250 and avoid full address decoding in every device.
2251 We can't use the high bits of pd for this because
2252 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2253 iotlb = (pd & ~TARGET_PAGE_MASK);
2254 if (p) {
8da3ff18
PB
2255 iotlb += p->region_offset;
2256 } else {
2257 iotlb += paddr;
2258 }
0f459d16
PB
2259 }
2260
2261 code_address = address;
2262 /* Make accesses to pages with watchpoints go via the
2263 watchpoint trap routines. */
72cf2d4f 2264 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2265 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2266 /* Avoid trapping reads of pages with a write breakpoint. */
2267 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2268 iotlb = io_mem_watch + paddr;
2269 address |= TLB_MMIO;
2270 break;
2271 }
6658ffb8 2272 }
0f459d16 2273 }
d79acba4 2274
0f459d16
PB
2275 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2276 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2277 te = &env->tlb_table[mmu_idx][index];
2278 te->addend = addend - vaddr;
2279 if (prot & PAGE_READ) {
2280 te->addr_read = address;
2281 } else {
2282 te->addr_read = -1;
2283 }
5c751e99 2284
0f459d16
PB
2285 if (prot & PAGE_EXEC) {
2286 te->addr_code = code_address;
2287 } else {
2288 te->addr_code = -1;
2289 }
2290 if (prot & PAGE_WRITE) {
2291 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2292 (pd & IO_MEM_ROMD)) {
2293 /* Write access calls the I/O callback. */
2294 te->addr_write = address | TLB_MMIO;
2295 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2296 !cpu_physical_memory_is_dirty(pd)) {
2297 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2298 } else {
0f459d16 2299 te->addr_write = address;
9fa3e853 2300 }
0f459d16
PB
2301 } else {
2302 te->addr_write = -1;
9fa3e853 2303 }
9fa3e853
FB
2304}
2305
0124311e
FB
2306#else
2307
ee8b7021 2308void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2309{
2310}
2311
2e12669a 2312void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2313{
2314}
2315
edf8e2af
MW
2316/*
2317 * Walks guest process memory "regions" one by one
2318 * and calls callback function 'fn' for each region.
2319 */
5cd2c5b6
RH
2320
2321struct walk_memory_regions_data
2322{
2323 walk_memory_regions_fn fn;
2324 void *priv;
2325 unsigned long start;
2326 int prot;
2327};
2328
2329static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2330 abi_ulong end, int new_prot)
5cd2c5b6
RH
2331{
2332 if (data->start != -1ul) {
2333 int rc = data->fn(data->priv, data->start, end, data->prot);
2334 if (rc != 0) {
2335 return rc;
2336 }
2337 }
2338
2339 data->start = (new_prot ? end : -1ul);
2340 data->prot = new_prot;
2341
2342 return 0;
2343}
2344
2345static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2346 abi_ulong base, int level, void **lp)
5cd2c5b6 2347{
b480d9b7 2348 abi_ulong pa;
5cd2c5b6
RH
2349 int i, rc;
2350
2351 if (*lp == NULL) {
2352 return walk_memory_regions_end(data, base, 0);
2353 }
2354
2355 if (level == 0) {
2356 PageDesc *pd = *lp;
7296abac 2357 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2358 int prot = pd[i].flags;
2359
2360 pa = base | (i << TARGET_PAGE_BITS);
2361 if (prot != data->prot) {
2362 rc = walk_memory_regions_end(data, pa, prot);
2363 if (rc != 0) {
2364 return rc;
9fa3e853 2365 }
9fa3e853 2366 }
5cd2c5b6
RH
2367 }
2368 } else {
2369 void **pp = *lp;
7296abac 2370 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2371 pa = base | ((abi_ulong)i <<
2372 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2373 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2374 if (rc != 0) {
2375 return rc;
2376 }
2377 }
2378 }
2379
2380 return 0;
2381}
2382
2383int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2384{
2385 struct walk_memory_regions_data data;
2386 unsigned long i;
2387
2388 data.fn = fn;
2389 data.priv = priv;
2390 data.start = -1ul;
2391 data.prot = 0;
2392
2393 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2394 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2395 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2396 if (rc != 0) {
2397 return rc;
9fa3e853 2398 }
33417e70 2399 }
5cd2c5b6
RH
2400
2401 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2402}
2403
b480d9b7
PB
2404static int dump_region(void *priv, abi_ulong start,
2405 abi_ulong end, unsigned long prot)
edf8e2af
MW
2406{
2407 FILE *f = (FILE *)priv;
2408
b480d9b7
PB
2409 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2410 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2411 start, end, end - start,
2412 ((prot & PAGE_READ) ? 'r' : '-'),
2413 ((prot & PAGE_WRITE) ? 'w' : '-'),
2414 ((prot & PAGE_EXEC) ? 'x' : '-'));
2415
2416 return (0);
2417}
2418
2419/* dump memory mappings */
2420void page_dump(FILE *f)
2421{
2422 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2423 "start", "end", "size", "prot");
2424 walk_memory_regions(f, dump_region);
33417e70
FB
2425}
2426
53a5960a 2427int page_get_flags(target_ulong address)
33417e70 2428{
9fa3e853
FB
2429 PageDesc *p;
2430
2431 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2432 if (!p)
9fa3e853
FB
2433 return 0;
2434 return p->flags;
2435}
2436
376a7909
RH
2437/* Modify the flags of a page and invalidate the code if necessary.
2438 The flag PAGE_WRITE_ORG is positioned automatically depending
2439 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2440void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2441{
376a7909
RH
2442 target_ulong addr, len;
2443
2444 /* This function should never be called with addresses outside the
2445 guest address space. If this assert fires, it probably indicates
2446 a missing call to h2g_valid. */
b480d9b7
PB
2447#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2448 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2449#endif
2450 assert(start < end);
9fa3e853
FB
2451
2452 start = start & TARGET_PAGE_MASK;
2453 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2454
2455 if (flags & PAGE_WRITE) {
9fa3e853 2456 flags |= PAGE_WRITE_ORG;
376a7909
RH
2457 }
2458
2459 for (addr = start, len = end - start;
2460 len != 0;
2461 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2462 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2463
2464 /* If the write protection bit is set, then we invalidate
2465 the code inside. */
5fafdf24 2466 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2467 (flags & PAGE_WRITE) &&
2468 p->first_tb) {
d720b93d 2469 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2470 }
2471 p->flags = flags;
2472 }
33417e70
FB
2473}
2474
3d97b40b
TS
2475int page_check_range(target_ulong start, target_ulong len, int flags)
2476{
2477 PageDesc *p;
2478 target_ulong end;
2479 target_ulong addr;
2480
376a7909
RH
2481 /* This function should never be called with addresses outside the
2482 guest address space. If this assert fires, it probably indicates
2483 a missing call to h2g_valid. */
338e9e6c
BS
2484#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2485 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2486#endif
2487
3e0650a9
RH
2488 if (len == 0) {
2489 return 0;
2490 }
376a7909
RH
2491 if (start + len - 1 < start) {
2492 /* We've wrapped around. */
55f280c9 2493 return -1;
376a7909 2494 }
55f280c9 2495
3d97b40b
TS
2496 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2497 start = start & TARGET_PAGE_MASK;
2498
376a7909
RH
2499 for (addr = start, len = end - start;
2500 len != 0;
2501 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2502 p = page_find(addr >> TARGET_PAGE_BITS);
2503 if( !p )
2504 return -1;
2505 if( !(p->flags & PAGE_VALID) )
2506 return -1;
2507
dae3270c 2508 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2509 return -1;
dae3270c
FB
2510 if (flags & PAGE_WRITE) {
2511 if (!(p->flags & PAGE_WRITE_ORG))
2512 return -1;
2513 /* unprotect the page if it was put read-only because it
2514 contains translated code */
2515 if (!(p->flags & PAGE_WRITE)) {
2516 if (!page_unprotect(addr, 0, NULL))
2517 return -1;
2518 }
2519 return 0;
2520 }
3d97b40b
TS
2521 }
2522 return 0;
2523}
2524
9fa3e853 2525/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2526 page. Return TRUE if the fault was successfully handled. */
53a5960a 2527int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2528{
45d679d6
AJ
2529 unsigned int prot;
2530 PageDesc *p;
53a5960a 2531 target_ulong host_start, host_end, addr;
9fa3e853 2532
c8a706fe
PB
2533 /* Technically this isn't safe inside a signal handler. However we
2534 know this only ever happens in a synchronous SEGV handler, so in
2535 practice it seems to be ok. */
2536 mmap_lock();
2537
45d679d6
AJ
2538 p = page_find(address >> TARGET_PAGE_BITS);
2539 if (!p) {
c8a706fe 2540 mmap_unlock();
9fa3e853 2541 return 0;
c8a706fe 2542 }
45d679d6 2543
9fa3e853
FB
2544 /* if the page was really writable, then we change its
2545 protection back to writable */
45d679d6
AJ
2546 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2547 host_start = address & qemu_host_page_mask;
2548 host_end = host_start + qemu_host_page_size;
2549
2550 prot = 0;
2551 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2552 p = page_find(addr >> TARGET_PAGE_BITS);
2553 p->flags |= PAGE_WRITE;
2554 prot |= p->flags;
2555
9fa3e853
FB
2556 /* and since the content will be modified, we must invalidate
2557 the corresponding translated code. */
45d679d6 2558 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2559#ifdef DEBUG_TB_CHECK
45d679d6 2560 tb_invalidate_check(addr);
9fa3e853 2561#endif
9fa3e853 2562 }
45d679d6
AJ
2563 mprotect((void *)g2h(host_start), qemu_host_page_size,
2564 prot & PAGE_BITS);
2565
2566 mmap_unlock();
2567 return 1;
9fa3e853 2568 }
c8a706fe 2569 mmap_unlock();
9fa3e853
FB
2570 return 0;
2571}
2572
6a00d601
FB
2573static inline void tlb_set_dirty(CPUState *env,
2574 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2575{
2576}
9fa3e853
FB
2577#endif /* defined(CONFIG_USER_ONLY) */
2578
e2eef170 2579#if !defined(CONFIG_USER_ONLY)
8da3ff18 2580
c04b2b78
PB
2581#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2582typedef struct subpage_t {
2583 target_phys_addr_t base;
f6405247
RH
2584 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2585 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2586} subpage_t;
2587
c227f099
AL
2588static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2589 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2590static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2591 ram_addr_t orig_memory,
2592 ram_addr_t region_offset);
db7b5426
BS
2593#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2594 need_subpage) \
2595 do { \
2596 if (addr > start_addr) \
2597 start_addr2 = 0; \
2598 else { \
2599 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2600 if (start_addr2 > 0) \
2601 need_subpage = 1; \
2602 } \
2603 \
49e9fba2 2604 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2605 end_addr2 = TARGET_PAGE_SIZE - 1; \
2606 else { \
2607 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2608 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2609 need_subpage = 1; \
2610 } \
2611 } while (0)
2612
8f2498f9
MT
2613/* register physical memory.
2614 For RAM, 'size' must be a multiple of the target page size.
2615 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2616 io memory page. The address used when calling the IO function is
2617 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2618 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2619 before calculating this offset. This should not be a problem unless
2620 the low bits of start_addr and region_offset differ. */
0fd542fb 2621void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
c227f099
AL
2622 ram_addr_t size,
2623 ram_addr_t phys_offset,
0fd542fb
MT
2624 ram_addr_t region_offset,
2625 bool log_dirty)
33417e70 2626{
c227f099 2627 target_phys_addr_t addr, end_addr;
92e873b9 2628 PhysPageDesc *p;
9d42037b 2629 CPUState *env;
c227f099 2630 ram_addr_t orig_size = size;
f6405247 2631 subpage_t *subpage;
33417e70 2632
3b8e6a2d 2633 assert(size);
0fd542fb 2634 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
f6f3fbca 2635
67c4d23c
PB
2636 if (phys_offset == IO_MEM_UNASSIGNED) {
2637 region_offset = start_addr;
2638 }
8da3ff18 2639 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2640 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2641 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2642
2643 addr = start_addr;
2644 do {
db7b5426
BS
2645 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2646 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2647 ram_addr_t orig_memory = p->phys_offset;
2648 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2649 int need_subpage = 0;
2650
2651 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2652 need_subpage);
f6405247 2653 if (need_subpage) {
db7b5426
BS
2654 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2655 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2656 &p->phys_offset, orig_memory,
2657 p->region_offset);
db7b5426
BS
2658 } else {
2659 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2660 >> IO_MEM_SHIFT];
2661 }
8da3ff18
PB
2662 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2663 region_offset);
2664 p->region_offset = 0;
db7b5426
BS
2665 } else {
2666 p->phys_offset = phys_offset;
2667 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2668 (phys_offset & IO_MEM_ROMD))
2669 phys_offset += TARGET_PAGE_SIZE;
2670 }
2671 } else {
2672 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2673 p->phys_offset = phys_offset;
8da3ff18 2674 p->region_offset = region_offset;
db7b5426 2675 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2676 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2677 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2678 } else {
c227f099 2679 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2680 int need_subpage = 0;
2681
2682 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2683 end_addr2, need_subpage);
2684
f6405247 2685 if (need_subpage) {
db7b5426 2686 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2687 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2688 addr & TARGET_PAGE_MASK);
db7b5426 2689 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2690 phys_offset, region_offset);
2691 p->region_offset = 0;
db7b5426
BS
2692 }
2693 }
2694 }
8da3ff18 2695 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2696 addr += TARGET_PAGE_SIZE;
2697 } while (addr != end_addr);
3b46e624 2698
9d42037b
FB
2699 /* since each CPU stores ram addresses in its TLB cache, we must
2700 reset the modified entries */
2701 /* XXX: slow ! */
2702 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2703 tlb_flush(env, 1);
2704 }
33417e70
FB
2705}
2706
ba863458 2707/* XXX: temporary until new memory mapping API */
c227f099 2708ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2709{
2710 PhysPageDesc *p;
2711
2712 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2713 if (!p)
2714 return IO_MEM_UNASSIGNED;
2715 return p->phys_offset;
2716}
2717
c227f099 2718void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2719{
2720 if (kvm_enabled())
2721 kvm_coalesce_mmio_region(addr, size);
2722}
2723
c227f099 2724void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2725{
2726 if (kvm_enabled())
2727 kvm_uncoalesce_mmio_region(addr, size);
2728}
2729
62a2744c
SY
2730void qemu_flush_coalesced_mmio_buffer(void)
2731{
2732 if (kvm_enabled())
2733 kvm_flush_coalesced_mmio_buffer();
2734}
2735
c902760f
MT
2736#if defined(__linux__) && !defined(TARGET_S390X)
2737
2738#include <sys/vfs.h>
2739
2740#define HUGETLBFS_MAGIC 0x958458f6
2741
2742static long gethugepagesize(const char *path)
2743{
2744 struct statfs fs;
2745 int ret;
2746
2747 do {
9742bf26 2748 ret = statfs(path, &fs);
c902760f
MT
2749 } while (ret != 0 && errno == EINTR);
2750
2751 if (ret != 0) {
9742bf26
YT
2752 perror(path);
2753 return 0;
c902760f
MT
2754 }
2755
2756 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2757 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2758
2759 return fs.f_bsize;
2760}
2761
04b16653
AW
2762static void *file_ram_alloc(RAMBlock *block,
2763 ram_addr_t memory,
2764 const char *path)
c902760f
MT
2765{
2766 char *filename;
2767 void *area;
2768 int fd;
2769#ifdef MAP_POPULATE
2770 int flags;
2771#endif
2772 unsigned long hpagesize;
2773
2774 hpagesize = gethugepagesize(path);
2775 if (!hpagesize) {
9742bf26 2776 return NULL;
c902760f
MT
2777 }
2778
2779 if (memory < hpagesize) {
2780 return NULL;
2781 }
2782
2783 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2784 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2785 return NULL;
2786 }
2787
2788 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2789 return NULL;
c902760f
MT
2790 }
2791
2792 fd = mkstemp(filename);
2793 if (fd < 0) {
9742bf26
YT
2794 perror("unable to create backing store for hugepages");
2795 free(filename);
2796 return NULL;
c902760f
MT
2797 }
2798 unlink(filename);
2799 free(filename);
2800
2801 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2802
2803 /*
2804 * ftruncate is not supported by hugetlbfs in older
2805 * hosts, so don't bother bailing out on errors.
2806 * If anything goes wrong with it under other filesystems,
2807 * mmap will fail.
2808 */
2809 if (ftruncate(fd, memory))
9742bf26 2810 perror("ftruncate");
c902760f
MT
2811
2812#ifdef MAP_POPULATE
2813 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2814 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2815 * to sidestep this quirk.
2816 */
2817 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2818 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2819#else
2820 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2821#endif
2822 if (area == MAP_FAILED) {
9742bf26
YT
2823 perror("file_ram_alloc: can't mmap RAM pages");
2824 close(fd);
2825 return (NULL);
c902760f 2826 }
04b16653 2827 block->fd = fd;
c902760f
MT
2828 return area;
2829}
2830#endif
2831
d17b5288 2832static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2833{
2834 RAMBlock *block, *next_block;
09d7ae90 2835 ram_addr_t offset = 0, mingap = ULONG_MAX;
04b16653
AW
2836
2837 if (QLIST_EMPTY(&ram_list.blocks))
2838 return 0;
2839
2840 QLIST_FOREACH(block, &ram_list.blocks, next) {
2841 ram_addr_t end, next = ULONG_MAX;
2842
2843 end = block->offset + block->length;
2844
2845 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2846 if (next_block->offset >= end) {
2847 next = MIN(next, next_block->offset);
2848 }
2849 }
2850 if (next - end >= size && next - end < mingap) {
2851 offset = end;
2852 mingap = next - end;
2853 }
2854 }
2855 return offset;
2856}
2857
2858static ram_addr_t last_ram_offset(void)
d17b5288
AW
2859{
2860 RAMBlock *block;
2861 ram_addr_t last = 0;
2862
2863 QLIST_FOREACH(block, &ram_list.blocks, next)
2864 last = MAX(last, block->offset + block->length);
2865
2866 return last;
2867}
2868
84b89d78 2869ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
6977dfe6 2870 ram_addr_t size, void *host)
84b89d78
CM
2871{
2872 RAMBlock *new_block, *block;
2873
2874 size = TARGET_PAGE_ALIGN(size);
2875 new_block = qemu_mallocz(sizeof(*new_block));
2876
2877 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2878 char *id = dev->parent_bus->info->get_dev_path(dev);
2879 if (id) {
2880 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2881 qemu_free(id);
2882 }
2883 }
2884 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2885
2886 QLIST_FOREACH(block, &ram_list.blocks, next) {
2887 if (!strcmp(block->idstr, new_block->idstr)) {
2888 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2889 new_block->idstr);
2890 abort();
2891 }
2892 }
2893
432d268c 2894 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2895 if (host) {
2896 new_block->host = host;
cd19cfa2 2897 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2898 } else {
2899 if (mem_path) {
c902760f 2900#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2901 new_block->host = file_ram_alloc(new_block, size, mem_path);
2902 if (!new_block->host) {
2903 new_block->host = qemu_vmalloc(size);
e78815a5 2904 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2905 }
c902760f 2906#else
6977dfe6
YT
2907 fprintf(stderr, "-mem-path option unsupported\n");
2908 exit(1);
c902760f 2909#endif
6977dfe6 2910 } else {
6b02494d 2911#if defined(TARGET_S390X) && defined(CONFIG_KVM)
ff83678a
CB
2912 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2913 an system defined value, which is at least 256GB. Larger systems
2914 have larger values. We put the guest between the end of data
2915 segment (system break) and this value. We use 32GB as a base to
2916 have enough room for the system break to grow. */
2917 new_block->host = mmap((void*)0x800000000, size,
6977dfe6 2918 PROT_EXEC|PROT_READ|PROT_WRITE,
ff83678a 2919 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
fb8b2735
AG
2920 if (new_block->host == MAP_FAILED) {
2921 fprintf(stderr, "Allocating RAM failed\n");
2922 abort();
2923 }
6b02494d 2924#else
432d268c
JN
2925 if (xen_mapcache_enabled()) {
2926 xen_ram_alloc(new_block->offset, size);
2927 } else {
2928 new_block->host = qemu_vmalloc(size);
2929 }
6b02494d 2930#endif
e78815a5 2931 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2932 }
c902760f 2933 }
94a6b54f
PB
2934 new_block->length = size;
2935
f471a17e 2936 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2937
f471a17e 2938 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
04b16653 2939 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2940 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2941 0xff, size >> TARGET_PAGE_BITS);
2942
6f0437e8
JK
2943 if (kvm_enabled())
2944 kvm_setup_guest_memory(new_block->host, size);
2945
94a6b54f
PB
2946 return new_block->offset;
2947}
e9a1ab19 2948
6977dfe6
YT
2949ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2950{
2951 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2952}
2953
1f2e98b6
AW
2954void qemu_ram_free_from_ptr(ram_addr_t addr)
2955{
2956 RAMBlock *block;
2957
2958 QLIST_FOREACH(block, &ram_list.blocks, next) {
2959 if (addr == block->offset) {
2960 QLIST_REMOVE(block, next);
2961 qemu_free(block);
2962 return;
2963 }
2964 }
2965}
2966
c227f099 2967void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2968{
04b16653
AW
2969 RAMBlock *block;
2970
2971 QLIST_FOREACH(block, &ram_list.blocks, next) {
2972 if (addr == block->offset) {
2973 QLIST_REMOVE(block, next);
cd19cfa2
HY
2974 if (block->flags & RAM_PREALLOC_MASK) {
2975 ;
2976 } else if (mem_path) {
04b16653
AW
2977#if defined (__linux__) && !defined(TARGET_S390X)
2978 if (block->fd) {
2979 munmap(block->host, block->length);
2980 close(block->fd);
2981 } else {
2982 qemu_vfree(block->host);
2983 }
fd28aa13
JK
2984#else
2985 abort();
04b16653
AW
2986#endif
2987 } else {
2988#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2989 munmap(block->host, block->length);
2990#else
432d268c
JN
2991 if (xen_mapcache_enabled()) {
2992 qemu_invalidate_entry(block->host);
2993 } else {
2994 qemu_vfree(block->host);
2995 }
04b16653
AW
2996#endif
2997 }
2998 qemu_free(block);
2999 return;
3000 }
3001 }
3002
e9a1ab19
FB
3003}
3004
cd19cfa2
HY
3005#ifndef _WIN32
3006void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3007{
3008 RAMBlock *block;
3009 ram_addr_t offset;
3010 int flags;
3011 void *area, *vaddr;
3012
3013 QLIST_FOREACH(block, &ram_list.blocks, next) {
3014 offset = addr - block->offset;
3015 if (offset < block->length) {
3016 vaddr = block->host + offset;
3017 if (block->flags & RAM_PREALLOC_MASK) {
3018 ;
3019 } else {
3020 flags = MAP_FIXED;
3021 munmap(vaddr, length);
3022 if (mem_path) {
3023#if defined(__linux__) && !defined(TARGET_S390X)
3024 if (block->fd) {
3025#ifdef MAP_POPULATE
3026 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3027 MAP_PRIVATE;
3028#else
3029 flags |= MAP_PRIVATE;
3030#endif
3031 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3032 flags, block->fd, offset);
3033 } else {
3034 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3035 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3036 flags, -1, 0);
3037 }
fd28aa13
JK
3038#else
3039 abort();
cd19cfa2
HY
3040#endif
3041 } else {
3042#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3043 flags |= MAP_SHARED | MAP_ANONYMOUS;
3044 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3045 flags, -1, 0);
3046#else
3047 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3048 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3049 flags, -1, 0);
3050#endif
3051 }
3052 if (area != vaddr) {
3053 fprintf(stderr, "Could not remap addr: %lx@%lx\n",
3054 length, addr);
3055 exit(1);
3056 }
3057 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3058 }
3059 return;
3060 }
3061 }
3062}
3063#endif /* !_WIN32 */
3064
dc828ca1 3065/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3066 With the exception of the softmmu code in this file, this should
3067 only be used for local memory (e.g. video ram) that the device owns,
3068 and knows it isn't going to access beyond the end of the block.
3069
3070 It should not be used for general purpose DMA.
3071 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3072 */
c227f099 3073void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3074{
94a6b54f
PB
3075 RAMBlock *block;
3076
f471a17e
AW
3077 QLIST_FOREACH(block, &ram_list.blocks, next) {
3078 if (addr - block->offset < block->length) {
7d82af38
VP
3079 /* Move this entry to to start of the list. */
3080 if (block != QLIST_FIRST(&ram_list.blocks)) {
3081 QLIST_REMOVE(block, next);
3082 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3083 }
432d268c
JN
3084 if (xen_mapcache_enabled()) {
3085 /* We need to check if the requested address is in the RAM
3086 * because we don't want to map the entire memory in QEMU.
3087 */
3088 if (block->offset == 0) {
3089 return qemu_map_cache(addr, 0, 1);
3090 } else if (block->host == NULL) {
3091 block->host = xen_map_block(block->offset, block->length);
3092 }
3093 }
f471a17e
AW
3094 return block->host + (addr - block->offset);
3095 }
94a6b54f 3096 }
f471a17e
AW
3097
3098 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3099 abort();
3100
3101 return NULL;
dc828ca1
PB
3102}
3103
b2e0a138
MT
3104/* Return a host pointer to ram allocated with qemu_ram_alloc.
3105 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3106 */
3107void *qemu_safe_ram_ptr(ram_addr_t addr)
3108{
3109 RAMBlock *block;
3110
3111 QLIST_FOREACH(block, &ram_list.blocks, next) {
3112 if (addr - block->offset < block->length) {
432d268c
JN
3113 if (xen_mapcache_enabled()) {
3114 /* We need to check if the requested address is in the RAM
3115 * because we don't want to map the entire memory in QEMU.
3116 */
3117 if (block->offset == 0) {
3118 return qemu_map_cache(addr, 0, 1);
3119 } else if (block->host == NULL) {
3120 block->host = xen_map_block(block->offset, block->length);
3121 }
3122 }
b2e0a138
MT
3123 return block->host + (addr - block->offset);
3124 }
3125 }
3126
3127 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3128 abort();
3129
3130 return NULL;
3131}
3132
050a0ddf
AP
3133void qemu_put_ram_ptr(void *addr)
3134{
3135 trace_qemu_put_ram_ptr(addr);
3136
3137 if (xen_mapcache_enabled()) {
3138 RAMBlock *block;
3139
3140 QLIST_FOREACH(block, &ram_list.blocks, next) {
3141 if (addr == block->host) {
3142 break;
3143 }
3144 }
3145 if (block && block->host) {
3146 xen_unmap_block(block->host, block->length);
3147 block->host = NULL;
3148 } else {
3149 qemu_map_cache_unlock(addr);
3150 }
3151 }
3152}
3153
e890261f 3154int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3155{
94a6b54f
PB
3156 RAMBlock *block;
3157 uint8_t *host = ptr;
3158
f471a17e 3159 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
3160 /* This case append when the block is not mapped. */
3161 if (block->host == NULL) {
3162 continue;
3163 }
f471a17e 3164 if (host - block->host < block->length) {
e890261f
MT
3165 *ram_addr = block->offset + (host - block->host);
3166 return 0;
f471a17e 3167 }
94a6b54f 3168 }
432d268c
JN
3169
3170 if (xen_mapcache_enabled()) {
3171 *ram_addr = qemu_ram_addr_from_mapcache(ptr);
3172 return 0;
3173 }
3174
e890261f
MT
3175 return -1;
3176}
f471a17e 3177
e890261f
MT
3178/* Some of the softmmu routines need to translate from a host pointer
3179 (typically a TLB entry) back to a ram offset. */
3180ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3181{
3182 ram_addr_t ram_addr;
f471a17e 3183
e890261f
MT
3184 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3185 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3186 abort();
3187 }
3188 return ram_addr;
5579c7f3
PB
3189}
3190
c227f099 3191static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 3192{
67d3b957 3193#ifdef DEBUG_UNASSIGNED
ab3d1727 3194 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 3195#endif
5b450407 3196#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3197 do_unassigned_access(addr, 0, 0, 0, 1);
3198#endif
3199 return 0;
3200}
3201
c227f099 3202static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3203{
3204#ifdef DEBUG_UNASSIGNED
3205 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3206#endif
5b450407 3207#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3208 do_unassigned_access(addr, 0, 0, 0, 2);
3209#endif
3210 return 0;
3211}
3212
c227f099 3213static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3214{
3215#ifdef DEBUG_UNASSIGNED
3216 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3217#endif
5b450407 3218#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3219 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 3220#endif
33417e70
FB
3221 return 0;
3222}
3223
c227f099 3224static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3225{
67d3b957 3226#ifdef DEBUG_UNASSIGNED
ab3d1727 3227 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3228#endif
5b450407 3229#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3230 do_unassigned_access(addr, 1, 0, 0, 1);
3231#endif
3232}
3233
c227f099 3234static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3235{
3236#ifdef DEBUG_UNASSIGNED
3237 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3238#endif
5b450407 3239#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3240 do_unassigned_access(addr, 1, 0, 0, 2);
3241#endif
3242}
3243
c227f099 3244static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3245{
3246#ifdef DEBUG_UNASSIGNED
3247 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3248#endif
5b450407 3249#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3250 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 3251#endif
33417e70
FB
3252}
3253
d60efc6b 3254static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3255 unassigned_mem_readb,
e18231a3
BS
3256 unassigned_mem_readw,
3257 unassigned_mem_readl,
33417e70
FB
3258};
3259
d60efc6b 3260static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3261 unassigned_mem_writeb,
e18231a3
BS
3262 unassigned_mem_writew,
3263 unassigned_mem_writel,
33417e70
FB
3264};
3265
c227f099 3266static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3267 uint32_t val)
9fa3e853 3268{
3a7d929e 3269 int dirty_flags;
f7c11b53 3270 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3271 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3272#if !defined(CONFIG_USER_ONLY)
3a7d929e 3273 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3274 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3275#endif
3a7d929e 3276 }
5579c7f3 3277 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3278 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3279 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3280 /* we remove the notdirty callback only if the code has been
3281 flushed */
3282 if (dirty_flags == 0xff)
2e70f6ef 3283 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3284}
3285
c227f099 3286static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3287 uint32_t val)
9fa3e853 3288{
3a7d929e 3289 int dirty_flags;
f7c11b53 3290 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3291 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3292#if !defined(CONFIG_USER_ONLY)
3a7d929e 3293 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3294 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3295#endif
3a7d929e 3296 }
5579c7f3 3297 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3298 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3299 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3300 /* we remove the notdirty callback only if the code has been
3301 flushed */
3302 if (dirty_flags == 0xff)
2e70f6ef 3303 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3304}
3305
c227f099 3306static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3307 uint32_t val)
9fa3e853 3308{
3a7d929e 3309 int dirty_flags;
f7c11b53 3310 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3311 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3312#if !defined(CONFIG_USER_ONLY)
3a7d929e 3313 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3314 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3315#endif
3a7d929e 3316 }
5579c7f3 3317 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3318 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3319 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3320 /* we remove the notdirty callback only if the code has been
3321 flushed */
3322 if (dirty_flags == 0xff)
2e70f6ef 3323 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3324}
3325
d60efc6b 3326static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3327 NULL, /* never used */
3328 NULL, /* never used */
3329 NULL, /* never used */
3330};
3331
d60efc6b 3332static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3333 notdirty_mem_writeb,
3334 notdirty_mem_writew,
3335 notdirty_mem_writel,
3336};
3337
0f459d16 3338/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3339static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3340{
3341 CPUState *env = cpu_single_env;
06d55cc1
AL
3342 target_ulong pc, cs_base;
3343 TranslationBlock *tb;
0f459d16 3344 target_ulong vaddr;
a1d1bb31 3345 CPUWatchpoint *wp;
06d55cc1 3346 int cpu_flags;
0f459d16 3347
06d55cc1
AL
3348 if (env->watchpoint_hit) {
3349 /* We re-entered the check after replacing the TB. Now raise
3350 * the debug interrupt so that is will trigger after the
3351 * current instruction. */
3352 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3353 return;
3354 }
2e70f6ef 3355 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3356 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3357 if ((vaddr == (wp->vaddr & len_mask) ||
3358 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3359 wp->flags |= BP_WATCHPOINT_HIT;
3360 if (!env->watchpoint_hit) {
3361 env->watchpoint_hit = wp;
3362 tb = tb_find_pc(env->mem_io_pc);
3363 if (!tb) {
3364 cpu_abort(env, "check_watchpoint: could not find TB for "
3365 "pc=%p", (void *)env->mem_io_pc);
3366 }
618ba8e6 3367 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3368 tb_phys_invalidate(tb, -1);
3369 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3370 env->exception_index = EXCP_DEBUG;
3371 } else {
3372 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3373 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3374 }
3375 cpu_resume_from_signal(env, NULL);
06d55cc1 3376 }
6e140f28
AL
3377 } else {
3378 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3379 }
3380 }
3381}
3382
6658ffb8
PB
3383/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3384 so these check for a hit then pass through to the normal out-of-line
3385 phys routines. */
c227f099 3386static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3387{
b4051334 3388 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3389 return ldub_phys(addr);
3390}
3391
c227f099 3392static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3393{
b4051334 3394 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3395 return lduw_phys(addr);
3396}
3397
c227f099 3398static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3399{
b4051334 3400 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3401 return ldl_phys(addr);
3402}
3403
c227f099 3404static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3405 uint32_t val)
3406{
b4051334 3407 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3408 stb_phys(addr, val);
3409}
3410
c227f099 3411static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3412 uint32_t val)
3413{
b4051334 3414 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3415 stw_phys(addr, val);
3416}
3417
c227f099 3418static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3419 uint32_t val)
3420{
b4051334 3421 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3422 stl_phys(addr, val);
3423}
3424
d60efc6b 3425static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3426 watch_mem_readb,
3427 watch_mem_readw,
3428 watch_mem_readl,
3429};
3430
d60efc6b 3431static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3432 watch_mem_writeb,
3433 watch_mem_writew,
3434 watch_mem_writel,
3435};
6658ffb8 3436
f6405247
RH
3437static inline uint32_t subpage_readlen (subpage_t *mmio,
3438 target_phys_addr_t addr,
3439 unsigned int len)
db7b5426 3440{
f6405247 3441 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3442#if defined(DEBUG_SUBPAGE)
3443 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3444 mmio, len, addr, idx);
3445#endif
db7b5426 3446
f6405247
RH
3447 addr += mmio->region_offset[idx];
3448 idx = mmio->sub_io_index[idx];
3449 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3450}
3451
c227f099 3452static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3453 uint32_t value, unsigned int len)
db7b5426 3454{
f6405247 3455 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3456#if defined(DEBUG_SUBPAGE)
f6405247
RH
3457 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3458 __func__, mmio, len, addr, idx, value);
db7b5426 3459#endif
f6405247
RH
3460
3461 addr += mmio->region_offset[idx];
3462 idx = mmio->sub_io_index[idx];
3463 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3464}
3465
c227f099 3466static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3467{
db7b5426
BS
3468 return subpage_readlen(opaque, addr, 0);
3469}
3470
c227f099 3471static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3472 uint32_t value)
3473{
db7b5426
BS
3474 subpage_writelen(opaque, addr, value, 0);
3475}
3476
c227f099 3477static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3478{
db7b5426
BS
3479 return subpage_readlen(opaque, addr, 1);
3480}
3481
c227f099 3482static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3483 uint32_t value)
3484{
db7b5426
BS
3485 subpage_writelen(opaque, addr, value, 1);
3486}
3487
c227f099 3488static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3489{
db7b5426
BS
3490 return subpage_readlen(opaque, addr, 2);
3491}
3492
f6405247
RH
3493static void subpage_writel (void *opaque, target_phys_addr_t addr,
3494 uint32_t value)
db7b5426 3495{
db7b5426
BS
3496 subpage_writelen(opaque, addr, value, 2);
3497}
3498
d60efc6b 3499static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3500 &subpage_readb,
3501 &subpage_readw,
3502 &subpage_readl,
3503};
3504
d60efc6b 3505static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3506 &subpage_writeb,
3507 &subpage_writew,
3508 &subpage_writel,
3509};
3510
c227f099
AL
3511static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3512 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3513{
3514 int idx, eidx;
3515
3516 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3517 return -1;
3518 idx = SUBPAGE_IDX(start);
3519 eidx = SUBPAGE_IDX(end);
3520#if defined(DEBUG_SUBPAGE)
0bf9e31a 3521 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3522 mmio, start, end, idx, eidx, memory);
3523#endif
95c318f5
GN
3524 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3525 memory = IO_MEM_UNASSIGNED;
f6405247 3526 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3527 for (; idx <= eidx; idx++) {
f6405247
RH
3528 mmio->sub_io_index[idx] = memory;
3529 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3530 }
3531
3532 return 0;
3533}
3534
f6405247
RH
3535static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3536 ram_addr_t orig_memory,
3537 ram_addr_t region_offset)
db7b5426 3538{
c227f099 3539 subpage_t *mmio;
db7b5426
BS
3540 int subpage_memory;
3541
c227f099 3542 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3543
3544 mmio->base = base;
2507c12a
AG
3545 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3546 DEVICE_NATIVE_ENDIAN);
db7b5426 3547#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3548 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3549 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3550#endif
1eec614b 3551 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3552 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3553
3554 return mmio;
3555}
3556
88715657
AL
3557static int get_free_io_mem_idx(void)
3558{
3559 int i;
3560
3561 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3562 if (!io_mem_used[i]) {
3563 io_mem_used[i] = 1;
3564 return i;
3565 }
c6703b47 3566 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3567 return -1;
3568}
3569
dd310534
AG
3570/*
3571 * Usually, devices operate in little endian mode. There are devices out
3572 * there that operate in big endian too. Each device gets byte swapped
3573 * mmio if plugged onto a CPU that does the other endianness.
3574 *
3575 * CPU Device swap?
3576 *
3577 * little little no
3578 * little big yes
3579 * big little yes
3580 * big big no
3581 */
3582
3583typedef struct SwapEndianContainer {
3584 CPUReadMemoryFunc *read[3];
3585 CPUWriteMemoryFunc *write[3];
3586 void *opaque;
3587} SwapEndianContainer;
3588
3589static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3590{
3591 uint32_t val;
3592 SwapEndianContainer *c = opaque;
3593 val = c->read[0](c->opaque, addr);
3594 return val;
3595}
3596
3597static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3598{
3599 uint32_t val;
3600 SwapEndianContainer *c = opaque;
3601 val = bswap16(c->read[1](c->opaque, addr));
3602 return val;
3603}
3604
3605static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3606{
3607 uint32_t val;
3608 SwapEndianContainer *c = opaque;
3609 val = bswap32(c->read[2](c->opaque, addr));
3610 return val;
3611}
3612
3613static CPUReadMemoryFunc * const swapendian_readfn[3]={
3614 swapendian_mem_readb,
3615 swapendian_mem_readw,
3616 swapendian_mem_readl
3617};
3618
3619static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3620 uint32_t val)
3621{
3622 SwapEndianContainer *c = opaque;
3623 c->write[0](c->opaque, addr, val);
3624}
3625
3626static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3627 uint32_t val)
3628{
3629 SwapEndianContainer *c = opaque;
3630 c->write[1](c->opaque, addr, bswap16(val));
3631}
3632
3633static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3634 uint32_t val)
3635{
3636 SwapEndianContainer *c = opaque;
3637 c->write[2](c->opaque, addr, bswap32(val));
3638}
3639
3640static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3641 swapendian_mem_writeb,
3642 swapendian_mem_writew,
3643 swapendian_mem_writel
3644};
3645
3646static void swapendian_init(int io_index)
3647{
3648 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3649 int i;
3650
3651 /* Swap mmio for big endian targets */
3652 c->opaque = io_mem_opaque[io_index];
3653 for (i = 0; i < 3; i++) {
3654 c->read[i] = io_mem_read[io_index][i];
3655 c->write[i] = io_mem_write[io_index][i];
3656
3657 io_mem_read[io_index][i] = swapendian_readfn[i];
3658 io_mem_write[io_index][i] = swapendian_writefn[i];
3659 }
3660 io_mem_opaque[io_index] = c;
3661}
3662
3663static void swapendian_del(int io_index)
3664{
3665 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3666 qemu_free(io_mem_opaque[io_index]);
3667 }
3668}
3669
33417e70
FB
3670/* mem_read and mem_write are arrays of functions containing the
3671 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3672 2). Functions can be omitted with a NULL function pointer.
3ee89922 3673 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3674 modified. If it is zero, a new io zone is allocated. The return
3675 value can be used with cpu_register_physical_memory(). (-1) is
3676 returned if error. */
1eed09cb 3677static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3678 CPUReadMemoryFunc * const *mem_read,
3679 CPUWriteMemoryFunc * const *mem_write,
dd310534 3680 void *opaque, enum device_endian endian)
33417e70 3681{
3cab721d
RH
3682 int i;
3683
33417e70 3684 if (io_index <= 0) {
88715657
AL
3685 io_index = get_free_io_mem_idx();
3686 if (io_index == -1)
3687 return io_index;
33417e70 3688 } else {
1eed09cb 3689 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3690 if (io_index >= IO_MEM_NB_ENTRIES)
3691 return -1;
3692 }
b5ff1b31 3693
3cab721d
RH
3694 for (i = 0; i < 3; ++i) {
3695 io_mem_read[io_index][i]
3696 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3697 }
3698 for (i = 0; i < 3; ++i) {
3699 io_mem_write[io_index][i]
3700 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3701 }
a4193c8a 3702 io_mem_opaque[io_index] = opaque;
f6405247 3703
dd310534
AG
3704 switch (endian) {
3705 case DEVICE_BIG_ENDIAN:
3706#ifndef TARGET_WORDS_BIGENDIAN
3707 swapendian_init(io_index);
3708#endif
3709 break;
3710 case DEVICE_LITTLE_ENDIAN:
3711#ifdef TARGET_WORDS_BIGENDIAN
3712 swapendian_init(io_index);
3713#endif
3714 break;
3715 case DEVICE_NATIVE_ENDIAN:
3716 default:
3717 break;
3718 }
3719
f6405247 3720 return (io_index << IO_MEM_SHIFT);
33417e70 3721}
61382a50 3722
d60efc6b
BS
3723int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3724 CPUWriteMemoryFunc * const *mem_write,
dd310534 3725 void *opaque, enum device_endian endian)
1eed09cb 3726{
2507c12a 3727 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
1eed09cb
AK
3728}
3729
88715657
AL
3730void cpu_unregister_io_memory(int io_table_address)
3731{
3732 int i;
3733 int io_index = io_table_address >> IO_MEM_SHIFT;
3734
dd310534
AG
3735 swapendian_del(io_index);
3736
88715657
AL
3737 for (i=0;i < 3; i++) {
3738 io_mem_read[io_index][i] = unassigned_mem_read[i];
3739 io_mem_write[io_index][i] = unassigned_mem_write[i];
3740 }
3741 io_mem_opaque[io_index] = NULL;
3742 io_mem_used[io_index] = 0;
3743}
3744
e9179ce1
AK
3745static void io_mem_init(void)
3746{
3747 int i;
3748
2507c12a
AG
3749 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3750 unassigned_mem_write, NULL,
3751 DEVICE_NATIVE_ENDIAN);
3752 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3753 unassigned_mem_write, NULL,
3754 DEVICE_NATIVE_ENDIAN);
3755 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3756 notdirty_mem_write, NULL,
3757 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3758 for (i=0; i<5; i++)
3759 io_mem_used[i] = 1;
3760
3761 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2507c12a
AG
3762 watch_mem_write, NULL,
3763 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3764}
3765
e2eef170
PB
3766#endif /* !defined(CONFIG_USER_ONLY) */
3767
13eb76e0
FB
3768/* physical memory access (slow version, mainly for debug) */
3769#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3770int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3771 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3772{
3773 int l, flags;
3774 target_ulong page;
53a5960a 3775 void * p;
13eb76e0
FB
3776
3777 while (len > 0) {
3778 page = addr & TARGET_PAGE_MASK;
3779 l = (page + TARGET_PAGE_SIZE) - addr;
3780 if (l > len)
3781 l = len;
3782 flags = page_get_flags(page);
3783 if (!(flags & PAGE_VALID))
a68fe89c 3784 return -1;
13eb76e0
FB
3785 if (is_write) {
3786 if (!(flags & PAGE_WRITE))
a68fe89c 3787 return -1;
579a97f7 3788 /* XXX: this code should not depend on lock_user */
72fb7daa 3789 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3790 return -1;
72fb7daa
AJ
3791 memcpy(p, buf, l);
3792 unlock_user(p, addr, l);
13eb76e0
FB
3793 } else {
3794 if (!(flags & PAGE_READ))
a68fe89c 3795 return -1;
579a97f7 3796 /* XXX: this code should not depend on lock_user */
72fb7daa 3797 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3798 return -1;
72fb7daa 3799 memcpy(buf, p, l);
5b257578 3800 unlock_user(p, addr, 0);
13eb76e0
FB
3801 }
3802 len -= l;
3803 buf += l;
3804 addr += l;
3805 }
a68fe89c 3806 return 0;
13eb76e0 3807}
8df1cd07 3808
13eb76e0 3809#else
c227f099 3810void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3811 int len, int is_write)
3812{
3813 int l, io_index;
3814 uint8_t *ptr;
3815 uint32_t val;
c227f099 3816 target_phys_addr_t page;
2e12669a 3817 unsigned long pd;
92e873b9 3818 PhysPageDesc *p;
3b46e624 3819
13eb76e0
FB
3820 while (len > 0) {
3821 page = addr & TARGET_PAGE_MASK;
3822 l = (page + TARGET_PAGE_SIZE) - addr;
3823 if (l > len)
3824 l = len;
92e873b9 3825 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3826 if (!p) {
3827 pd = IO_MEM_UNASSIGNED;
3828 } else {
3829 pd = p->phys_offset;
3830 }
3b46e624 3831
13eb76e0 3832 if (is_write) {
3a7d929e 3833 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3834 target_phys_addr_t addr1 = addr;
13eb76e0 3835 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3836 if (p)
6c2934db 3837 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3838 /* XXX: could force cpu_single_env to NULL to avoid
3839 potential bugs */
6c2934db 3840 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3841 /* 32 bit write access */
c27004ec 3842 val = ldl_p(buf);
6c2934db 3843 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3844 l = 4;
6c2934db 3845 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3846 /* 16 bit write access */
c27004ec 3847 val = lduw_p(buf);
6c2934db 3848 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3849 l = 2;
3850 } else {
1c213d19 3851 /* 8 bit write access */
c27004ec 3852 val = ldub_p(buf);
6c2934db 3853 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3854 l = 1;
3855 }
3856 } else {
b448f2f3
FB
3857 unsigned long addr1;
3858 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3859 /* RAM case */
5579c7f3 3860 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3861 memcpy(ptr, buf, l);
3a7d929e
FB
3862 if (!cpu_physical_memory_is_dirty(addr1)) {
3863 /* invalidate code */
3864 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3865 /* set dirty bit */
f7c11b53
YT
3866 cpu_physical_memory_set_dirty_flags(
3867 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3868 }
050a0ddf 3869 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3870 }
3871 } else {
5fafdf24 3872 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3873 !(pd & IO_MEM_ROMD)) {
c227f099 3874 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3875 /* I/O case */
3876 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3877 if (p)
6c2934db
AJ
3878 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3879 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3880 /* 32 bit read access */
6c2934db 3881 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3882 stl_p(buf, val);
13eb76e0 3883 l = 4;
6c2934db 3884 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3885 /* 16 bit read access */
6c2934db 3886 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3887 stw_p(buf, val);
13eb76e0
FB
3888 l = 2;
3889 } else {
1c213d19 3890 /* 8 bit read access */
6c2934db 3891 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3892 stb_p(buf, val);
13eb76e0
FB
3893 l = 1;
3894 }
3895 } else {
3896 /* RAM case */
050a0ddf
AP
3897 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3898 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3899 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3900 }
3901 }
3902 len -= l;
3903 buf += l;
3904 addr += l;
3905 }
3906}
8df1cd07 3907
d0ecd2aa 3908/* used for ROM loading : can write in RAM and ROM */
c227f099 3909void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3910 const uint8_t *buf, int len)
3911{
3912 int l;
3913 uint8_t *ptr;
c227f099 3914 target_phys_addr_t page;
d0ecd2aa
FB
3915 unsigned long pd;
3916 PhysPageDesc *p;
3b46e624 3917
d0ecd2aa
FB
3918 while (len > 0) {
3919 page = addr & TARGET_PAGE_MASK;
3920 l = (page + TARGET_PAGE_SIZE) - addr;
3921 if (l > len)
3922 l = len;
3923 p = phys_page_find(page >> TARGET_PAGE_BITS);
3924 if (!p) {
3925 pd = IO_MEM_UNASSIGNED;
3926 } else {
3927 pd = p->phys_offset;
3928 }
3b46e624 3929
d0ecd2aa 3930 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3931 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3932 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3933 /* do nothing */
3934 } else {
3935 unsigned long addr1;
3936 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3937 /* ROM/RAM case */
5579c7f3 3938 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 3939 memcpy(ptr, buf, l);
050a0ddf 3940 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
3941 }
3942 len -= l;
3943 buf += l;
3944 addr += l;
3945 }
3946}
3947
6d16c2f8
AL
3948typedef struct {
3949 void *buffer;
c227f099
AL
3950 target_phys_addr_t addr;
3951 target_phys_addr_t len;
6d16c2f8
AL
3952} BounceBuffer;
3953
3954static BounceBuffer bounce;
3955
ba223c29
AL
3956typedef struct MapClient {
3957 void *opaque;
3958 void (*callback)(void *opaque);
72cf2d4f 3959 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3960} MapClient;
3961
72cf2d4f
BS
3962static QLIST_HEAD(map_client_list, MapClient) map_client_list
3963 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3964
3965void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3966{
3967 MapClient *client = qemu_malloc(sizeof(*client));
3968
3969 client->opaque = opaque;
3970 client->callback = callback;
72cf2d4f 3971 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3972 return client;
3973}
3974
3975void cpu_unregister_map_client(void *_client)
3976{
3977 MapClient *client = (MapClient *)_client;
3978
72cf2d4f 3979 QLIST_REMOVE(client, link);
34d5e948 3980 qemu_free(client);
ba223c29
AL
3981}
3982
3983static void cpu_notify_map_clients(void)
3984{
3985 MapClient *client;
3986
72cf2d4f
BS
3987 while (!QLIST_EMPTY(&map_client_list)) {
3988 client = QLIST_FIRST(&map_client_list);
ba223c29 3989 client->callback(client->opaque);
34d5e948 3990 cpu_unregister_map_client(client);
ba223c29
AL
3991 }
3992}
3993
6d16c2f8
AL
3994/* Map a physical memory region into a host virtual address.
3995 * May map a subset of the requested range, given by and returned in *plen.
3996 * May return NULL if resources needed to perform the mapping are exhausted.
3997 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3998 * Use cpu_register_map_client() to know when retrying the map operation is
3999 * likely to succeed.
6d16c2f8 4000 */
c227f099
AL
4001void *cpu_physical_memory_map(target_phys_addr_t addr,
4002 target_phys_addr_t *plen,
6d16c2f8
AL
4003 int is_write)
4004{
c227f099
AL
4005 target_phys_addr_t len = *plen;
4006 target_phys_addr_t done = 0;
6d16c2f8
AL
4007 int l;
4008 uint8_t *ret = NULL;
4009 uint8_t *ptr;
c227f099 4010 target_phys_addr_t page;
6d16c2f8
AL
4011 unsigned long pd;
4012 PhysPageDesc *p;
4013 unsigned long addr1;
4014
4015 while (len > 0) {
4016 page = addr & TARGET_PAGE_MASK;
4017 l = (page + TARGET_PAGE_SIZE) - addr;
4018 if (l > len)
4019 l = len;
4020 p = phys_page_find(page >> TARGET_PAGE_BITS);
4021 if (!p) {
4022 pd = IO_MEM_UNASSIGNED;
4023 } else {
4024 pd = p->phys_offset;
4025 }
4026
4027 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4028 if (done || bounce.buffer) {
4029 break;
4030 }
4031 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4032 bounce.addr = addr;
4033 bounce.len = l;
4034 if (!is_write) {
54f7b4a3 4035 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8
AL
4036 }
4037 ptr = bounce.buffer;
4038 } else {
4039 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4040 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
4041 }
4042 if (!done) {
4043 ret = ptr;
4044 } else if (ret + done != ptr) {
4045 break;
4046 }
4047
4048 len -= l;
4049 addr += l;
4050 done += l;
4051 }
4052 *plen = done;
4053 return ret;
4054}
4055
4056/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4057 * Will also mark the memory as dirty if is_write == 1. access_len gives
4058 * the amount of memory that was actually read or written by the caller.
4059 */
c227f099
AL
4060void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4061 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
4062{
4063 if (buffer != bounce.buffer) {
4064 if (is_write) {
e890261f 4065 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
4066 while (access_len) {
4067 unsigned l;
4068 l = TARGET_PAGE_SIZE;
4069 if (l > access_len)
4070 l = access_len;
4071 if (!cpu_physical_memory_is_dirty(addr1)) {
4072 /* invalidate code */
4073 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4074 /* set dirty bit */
f7c11b53
YT
4075 cpu_physical_memory_set_dirty_flags(
4076 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
4077 }
4078 addr1 += l;
4079 access_len -= l;
4080 }
4081 }
050a0ddf
AP
4082 if (xen_mapcache_enabled()) {
4083 uint8_t *buffer1 = buffer;
4084 uint8_t *end_buffer = buffer + len;
4085
4086 while (buffer1 < end_buffer) {
4087 qemu_put_ram_ptr(buffer1);
4088 buffer1 += TARGET_PAGE_SIZE;
4089 }
4090 }
6d16c2f8
AL
4091 return;
4092 }
4093 if (is_write) {
4094 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4095 }
f8a83245 4096 qemu_vfree(bounce.buffer);
6d16c2f8 4097 bounce.buffer = NULL;
ba223c29 4098 cpu_notify_map_clients();
6d16c2f8 4099}
d0ecd2aa 4100
8df1cd07 4101/* warning: addr must be aligned */
c227f099 4102uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
4103{
4104 int io_index;
4105 uint8_t *ptr;
4106 uint32_t val;
4107 unsigned long pd;
4108 PhysPageDesc *p;
4109
4110 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4111 if (!p) {
4112 pd = IO_MEM_UNASSIGNED;
4113 } else {
4114 pd = p->phys_offset;
4115 }
3b46e624 4116
5fafdf24 4117 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4118 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
4119 /* I/O case */
4120 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4121 if (p)
4122 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4123 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4124 } else {
4125 /* RAM case */
5579c7f3 4126 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
4127 (addr & ~TARGET_PAGE_MASK);
4128 val = ldl_p(ptr);
4129 }
4130 return val;
4131}
4132
84b7b8e7 4133/* warning: addr must be aligned */
c227f099 4134uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
4135{
4136 int io_index;
4137 uint8_t *ptr;
4138 uint64_t val;
4139 unsigned long pd;
4140 PhysPageDesc *p;
4141
4142 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4143 if (!p) {
4144 pd = IO_MEM_UNASSIGNED;
4145 } else {
4146 pd = p->phys_offset;
4147 }
3b46e624 4148
2a4188a3
FB
4149 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4150 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
4151 /* I/O case */
4152 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4153 if (p)
4154 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
4155#ifdef TARGET_WORDS_BIGENDIAN
4156 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4157 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4158#else
4159 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4160 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4161#endif
4162 } else {
4163 /* RAM case */
5579c7f3 4164 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
4165 (addr & ~TARGET_PAGE_MASK);
4166 val = ldq_p(ptr);
4167 }
4168 return val;
4169}
4170
aab33094 4171/* XXX: optimize */
c227f099 4172uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4173{
4174 uint8_t val;
4175 cpu_physical_memory_read(addr, &val, 1);
4176 return val;
4177}
4178
733f0b02 4179/* warning: addr must be aligned */
c227f099 4180uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 4181{
733f0b02
MT
4182 int io_index;
4183 uint8_t *ptr;
4184 uint64_t val;
4185 unsigned long pd;
4186 PhysPageDesc *p;
4187
4188 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4189 if (!p) {
4190 pd = IO_MEM_UNASSIGNED;
4191 } else {
4192 pd = p->phys_offset;
4193 }
4194
4195 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4196 !(pd & IO_MEM_ROMD)) {
4197 /* I/O case */
4198 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4199 if (p)
4200 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4201 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4202 } else {
4203 /* RAM case */
4204 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4205 (addr & ~TARGET_PAGE_MASK);
4206 val = lduw_p(ptr);
4207 }
4208 return val;
aab33094
FB
4209}
4210
8df1cd07
FB
4211/* warning: addr must be aligned. The ram page is not masked as dirty
4212 and the code inside is not invalidated. It is useful if the dirty
4213 bits are used to track modified PTEs */
c227f099 4214void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4215{
4216 int io_index;
4217 uint8_t *ptr;
4218 unsigned long pd;
4219 PhysPageDesc *p;
4220
4221 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4222 if (!p) {
4223 pd = IO_MEM_UNASSIGNED;
4224 } else {
4225 pd = p->phys_offset;
4226 }
3b46e624 4227
3a7d929e 4228 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4229 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4230 if (p)
4231 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4232 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4233 } else {
74576198 4234 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4235 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4236 stl_p(ptr, val);
74576198
AL
4237
4238 if (unlikely(in_migration)) {
4239 if (!cpu_physical_memory_is_dirty(addr1)) {
4240 /* invalidate code */
4241 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4242 /* set dirty bit */
f7c11b53
YT
4243 cpu_physical_memory_set_dirty_flags(
4244 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4245 }
4246 }
8df1cd07
FB
4247 }
4248}
4249
c227f099 4250void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4251{
4252 int io_index;
4253 uint8_t *ptr;
4254 unsigned long pd;
4255 PhysPageDesc *p;
4256
4257 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4258 if (!p) {
4259 pd = IO_MEM_UNASSIGNED;
4260 } else {
4261 pd = p->phys_offset;
4262 }
3b46e624 4263
bc98a7ef
JM
4264 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4265 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4266 if (p)
4267 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
4268#ifdef TARGET_WORDS_BIGENDIAN
4269 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4270 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4271#else
4272 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4273 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4274#endif
4275 } else {
5579c7f3 4276 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4277 (addr & ~TARGET_PAGE_MASK);
4278 stq_p(ptr, val);
4279 }
4280}
4281
8df1cd07 4282/* warning: addr must be aligned */
c227f099 4283void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4284{
4285 int io_index;
4286 uint8_t *ptr;
4287 unsigned long pd;
4288 PhysPageDesc *p;
4289
4290 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4291 if (!p) {
4292 pd = IO_MEM_UNASSIGNED;
4293 } else {
4294 pd = p->phys_offset;
4295 }
3b46e624 4296
3a7d929e 4297 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4298 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4299 if (p)
4300 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4301 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4302 } else {
4303 unsigned long addr1;
4304 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4305 /* RAM case */
5579c7f3 4306 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4307 stl_p(ptr, val);
3a7d929e
FB
4308 if (!cpu_physical_memory_is_dirty(addr1)) {
4309 /* invalidate code */
4310 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4311 /* set dirty bit */
f7c11b53
YT
4312 cpu_physical_memory_set_dirty_flags(addr1,
4313 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4314 }
8df1cd07
FB
4315 }
4316}
4317
aab33094 4318/* XXX: optimize */
c227f099 4319void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4320{
4321 uint8_t v = val;
4322 cpu_physical_memory_write(addr, &v, 1);
4323}
4324
733f0b02 4325/* warning: addr must be aligned */
c227f099 4326void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 4327{
733f0b02
MT
4328 int io_index;
4329 uint8_t *ptr;
4330 unsigned long pd;
4331 PhysPageDesc *p;
4332
4333 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4334 if (!p) {
4335 pd = IO_MEM_UNASSIGNED;
4336 } else {
4337 pd = p->phys_offset;
4338 }
4339
4340 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4341 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4342 if (p)
4343 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4344 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4345 } else {
4346 unsigned long addr1;
4347 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4348 /* RAM case */
4349 ptr = qemu_get_ram_ptr(addr1);
4350 stw_p(ptr, val);
4351 if (!cpu_physical_memory_is_dirty(addr1)) {
4352 /* invalidate code */
4353 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4354 /* set dirty bit */
4355 cpu_physical_memory_set_dirty_flags(addr1,
4356 (0xff & ~CODE_DIRTY_FLAG));
4357 }
4358 }
aab33094
FB
4359}
4360
4361/* XXX: optimize */
c227f099 4362void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4363{
4364 val = tswap64(val);
71d2b725 4365 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4366}
4367
5e2972fd 4368/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4369int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4370 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4371{
4372 int l;
c227f099 4373 target_phys_addr_t phys_addr;
9b3c35e0 4374 target_ulong page;
13eb76e0
FB
4375
4376 while (len > 0) {
4377 page = addr & TARGET_PAGE_MASK;
4378 phys_addr = cpu_get_phys_page_debug(env, page);
4379 /* if no physical page mapped, return an error */
4380 if (phys_addr == -1)
4381 return -1;
4382 l = (page + TARGET_PAGE_SIZE) - addr;
4383 if (l > len)
4384 l = len;
5e2972fd 4385 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4386 if (is_write)
4387 cpu_physical_memory_write_rom(phys_addr, buf, l);
4388 else
5e2972fd 4389 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4390 len -= l;
4391 buf += l;
4392 addr += l;
4393 }
4394 return 0;
4395}
a68fe89c 4396#endif
13eb76e0 4397
2e70f6ef
PB
4398/* in deterministic execution mode, instructions doing device I/Os
4399 must be at the end of the TB */
4400void cpu_io_recompile(CPUState *env, void *retaddr)
4401{
4402 TranslationBlock *tb;
4403 uint32_t n, cflags;
4404 target_ulong pc, cs_base;
4405 uint64_t flags;
4406
4407 tb = tb_find_pc((unsigned long)retaddr);
4408 if (!tb) {
4409 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4410 retaddr);
4411 }
4412 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4413 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4414 /* Calculate how many instructions had been executed before the fault
bf20dc07 4415 occurred. */
2e70f6ef
PB
4416 n = n - env->icount_decr.u16.low;
4417 /* Generate a new TB ending on the I/O insn. */
4418 n++;
4419 /* On MIPS and SH, delay slot instructions can only be restarted if
4420 they were already the first instruction in the TB. If this is not
bf20dc07 4421 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4422 branch. */
4423#if defined(TARGET_MIPS)
4424 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4425 env->active_tc.PC -= 4;
4426 env->icount_decr.u16.low++;
4427 env->hflags &= ~MIPS_HFLAG_BMASK;
4428 }
4429#elif defined(TARGET_SH4)
4430 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4431 && n > 1) {
4432 env->pc -= 2;
4433 env->icount_decr.u16.low++;
4434 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4435 }
4436#endif
4437 /* This should never happen. */
4438 if (n > CF_COUNT_MASK)
4439 cpu_abort(env, "TB too big during recompile");
4440
4441 cflags = n | CF_LAST_IO;
4442 pc = tb->pc;
4443 cs_base = tb->cs_base;
4444 flags = tb->flags;
4445 tb_phys_invalidate(tb, -1);
4446 /* FIXME: In theory this could raise an exception. In practice
4447 we have already translated the block once so it's probably ok. */
4448 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4449 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4450 the first in the TB) then we end up generating a whole new TB and
4451 repeating the fault, which is horribly inefficient.
4452 Better would be to execute just this insn uncached, or generate a
4453 second new TB. */
4454 cpu_resume_from_signal(env, NULL);
4455}
4456
b3755a91
PB
4457#if !defined(CONFIG_USER_ONLY)
4458
055403b2 4459void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4460{
4461 int i, target_code_size, max_target_code_size;
4462 int direct_jmp_count, direct_jmp2_count, cross_page;
4463 TranslationBlock *tb;
3b46e624 4464
e3db7226
FB
4465 target_code_size = 0;
4466 max_target_code_size = 0;
4467 cross_page = 0;
4468 direct_jmp_count = 0;
4469 direct_jmp2_count = 0;
4470 for(i = 0; i < nb_tbs; i++) {
4471 tb = &tbs[i];
4472 target_code_size += tb->size;
4473 if (tb->size > max_target_code_size)
4474 max_target_code_size = tb->size;
4475 if (tb->page_addr[1] != -1)
4476 cross_page++;
4477 if (tb->tb_next_offset[0] != 0xffff) {
4478 direct_jmp_count++;
4479 if (tb->tb_next_offset[1] != 0xffff) {
4480 direct_jmp2_count++;
4481 }
4482 }
4483 }
4484 /* XXX: avoid using doubles ? */
57fec1fe 4485 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4486 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4487 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4488 cpu_fprintf(f, "TB count %d/%d\n",
4489 nb_tbs, code_gen_max_blocks);
5fafdf24 4490 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4491 nb_tbs ? target_code_size / nb_tbs : 0,
4492 max_target_code_size);
055403b2 4493 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4494 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4495 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4496 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4497 cross_page,
e3db7226
FB
4498 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4499 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4500 direct_jmp_count,
e3db7226
FB
4501 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4502 direct_jmp2_count,
4503 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4504 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4505 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4506 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4507 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4508 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4509}
4510
61382a50
FB
4511#define MMUSUFFIX _cmmu
4512#define GETPC() NULL
4513#define env cpu_single_env
b769d8fe 4514#define SOFTMMU_CODE_ACCESS
61382a50
FB
4515
4516#define SHIFT 0
4517#include "softmmu_template.h"
4518
4519#define SHIFT 1
4520#include "softmmu_template.h"
4521
4522#define SHIFT 2
4523#include "softmmu_template.h"
4524
4525#define SHIFT 3
4526#include "softmmu_template.h"
4527
4528#undef env
4529
4530#endif