]> git.proxmox.com Git - qemu.git/blame - exec.c
Fix userspace breakpoint invalidation
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
fd052bf6 43#include <signal.h>
53a5960a 44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 74#elif defined(TARGET_X86_64)
00f82b8a 75#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 76#elif defined(TARGET_I386)
00f82b8a 77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 78#else
108c49b8
FB
79#define TARGET_PHYS_ADDR_SPACE_BITS 32
80#endif
81
bdaf78e0 82static TranslationBlock *tbs;
26a5f13b 83int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
110uint8_t *code_gen_ptr;
111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
1ccde1cb 114uint8_t *phys_ram_dirty;
74576198 115static int in_migration;
94a6b54f
PB
116
117typedef struct RAMBlock {
118 uint8_t *host;
c227f099
AL
119 ram_addr_t offset;
120 ram_addr_t length;
94a6b54f
PB
121 struct RAMBlock *next;
122} RAMBlock;
123
124static RAMBlock *ram_blocks;
125/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 126 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 127 of this variable will break. */
c227f099 128ram_addr_t last_ram_offset;
e2eef170 129#endif
9fa3e853 130
6a00d601
FB
131CPUState *first_cpu;
132/* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
5fafdf24 134CPUState *cpu_single_env;
2e70f6ef 135/* 0 = Do not count executed instructions.
bf20dc07 136 1 = Precise instruction counting.
2e70f6ef
PB
137 2 = Adaptive rate instruction counting. */
138int use_icount = 0;
139/* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141int64_t qemu_icount;
6a00d601 142
54936004 143typedef struct PageDesc {
92e873b9 144 /* list of TBs intersecting this ram page */
fd6ce8f6 145 TranslationBlock *first_tb;
9fa3e853
FB
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150#if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152#endif
54936004
FB
153} PageDesc;
154
92e873b9 155typedef struct PhysPageDesc {
0f459d16 156 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
92e873b9
FB
159} PhysPageDesc;
160
54936004 161#define L2_BITS 10
bedb69ea
JM
162#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163/* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168#else
03875444 169#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 170#endif
54936004
FB
171
172#define L1_SIZE (1 << L1_BITS)
173#define L2_SIZE (1 << L2_BITS)
174
83fb7adf
FB
175unsigned long qemu_real_host_page_size;
176unsigned long qemu_host_page_bits;
177unsigned long qemu_host_page_size;
178unsigned long qemu_host_page_mask;
54936004 179
92e873b9 180/* XXX: for system emulation, it could just be an array */
54936004 181static PageDesc *l1_map[L1_SIZE];
bdaf78e0 182static PhysPageDesc **l1_phys_map;
54936004 183
e2eef170
PB
184#if !defined(CONFIG_USER_ONLY)
185static void io_mem_init(void);
186
33417e70 187/* io memory support */
33417e70
FB
188CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 190void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 191static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
192static int io_mem_watch;
193#endif
33417e70 194
34865134 195/* log support */
1e8b27ca
JR
196#ifdef WIN32
197static const char *logfilename = "qemu.log";
198#else
d9b630fd 199static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 200#endif
34865134
FB
201FILE *logfile;
202int loglevel;
e735b91c 203static int log_append = 0;
34865134 204
e3db7226
FB
205/* statistics */
206static int tlb_flush_count;
207static int tb_flush_count;
208static int tb_phys_invalidate_count;
209
db7b5426 210#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
c227f099
AL
211typedef struct subpage_t {
212 target_phys_addr_t base;
d60efc6b
BS
213 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
214 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
3ee89922 215 void *opaque[TARGET_PAGE_SIZE][2][4];
c227f099
AL
216 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
217} subpage_t;
db7b5426 218
7cb69cae
FB
219#ifdef _WIN32
220static void map_exec(void *addr, long size)
221{
222 DWORD old_protect;
223 VirtualProtect(addr, size,
224 PAGE_EXECUTE_READWRITE, &old_protect);
225
226}
227#else
228static void map_exec(void *addr, long size)
229{
4369415f 230 unsigned long start, end, page_size;
7cb69cae 231
4369415f 232 page_size = getpagesize();
7cb69cae 233 start = (unsigned long)addr;
4369415f 234 start &= ~(page_size - 1);
7cb69cae
FB
235
236 end = (unsigned long)addr + size;
4369415f
FB
237 end += page_size - 1;
238 end &= ~(page_size - 1);
7cb69cae
FB
239
240 mprotect((void *)start, end - start,
241 PROT_READ | PROT_WRITE | PROT_EXEC);
242}
243#endif
244
b346ff46 245static void page_init(void)
54936004 246{
83fb7adf 247 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 248 TARGET_PAGE_SIZE */
c2b48b69
AL
249#ifdef _WIN32
250 {
251 SYSTEM_INFO system_info;
252
253 GetSystemInfo(&system_info);
254 qemu_real_host_page_size = system_info.dwPageSize;
255 }
256#else
257 qemu_real_host_page_size = getpagesize();
258#endif
83fb7adf
FB
259 if (qemu_host_page_size == 0)
260 qemu_host_page_size = qemu_real_host_page_size;
261 if (qemu_host_page_size < TARGET_PAGE_SIZE)
262 qemu_host_page_size = TARGET_PAGE_SIZE;
263 qemu_host_page_bits = 0;
264 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
265 qemu_host_page_bits++;
266 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
267 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
268 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
269
270#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
271 {
272 long long startaddr, endaddr;
273 FILE *f;
274 int n;
275
c8a706fe 276 mmap_lock();
0776590d 277 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
278 f = fopen("/proc/self/maps", "r");
279 if (f) {
280 do {
281 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
282 if (n == 2) {
e0b8d65a
BS
283 startaddr = MIN(startaddr,
284 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
285 endaddr = MIN(endaddr,
286 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 287 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
288 TARGET_PAGE_ALIGN(endaddr),
289 PAGE_RESERVED);
290 }
291 } while (!feof(f));
292 fclose(f);
293 }
c8a706fe 294 mmap_unlock();
50a9569b
AZ
295 }
296#endif
54936004
FB
297}
298
434929bf 299static inline PageDesc **page_l1_map(target_ulong index)
54936004 300{
17e2377a
PB
301#if TARGET_LONG_BITS > 32
302 /* Host memory outside guest VM. For 32-bit targets we have already
303 excluded high addresses. */
d8173e0f 304 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
305 return NULL;
306#endif
434929bf
AL
307 return &l1_map[index >> L2_BITS];
308}
309
310static inline PageDesc *page_find_alloc(target_ulong index)
311{
312 PageDesc **lp, *p;
313 lp = page_l1_map(index);
314 if (!lp)
315 return NULL;
316
54936004
FB
317 p = *lp;
318 if (!p) {
319 /* allocate if not found */
17e2377a 320#if defined(CONFIG_USER_ONLY)
17e2377a
PB
321 size_t len = sizeof(PageDesc) * L2_SIZE;
322 /* Don't use qemu_malloc because it may recurse. */
660f11be 323 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 324 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 325 *lp = p;
fb1c2cd7
AJ
326 if (h2g_valid(p)) {
327 unsigned long addr = h2g(p);
17e2377a
PB
328 page_set_flags(addr & TARGET_PAGE_MASK,
329 TARGET_PAGE_ALIGN(addr + len),
330 PAGE_RESERVED);
331 }
332#else
333 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
334 *lp = p;
335#endif
54936004
FB
336 }
337 return p + (index & (L2_SIZE - 1));
338}
339
00f82b8a 340static inline PageDesc *page_find(target_ulong index)
54936004 341{
434929bf
AL
342 PageDesc **lp, *p;
343 lp = page_l1_map(index);
344 if (!lp)
345 return NULL;
54936004 346
434929bf 347 p = *lp;
660f11be
BS
348 if (!p) {
349 return NULL;
350 }
fd6ce8f6
FB
351 return p + (index & (L2_SIZE - 1));
352}
353
c227f099 354static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 355{
108c49b8 356 void **lp, **p;
e3f4e2a4 357 PhysPageDesc *pd;
92e873b9 358
108c49b8
FB
359 p = (void **)l1_phys_map;
360#if TARGET_PHYS_ADDR_SPACE_BITS > 32
361
362#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
363#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
364#endif
365 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
366 p = *lp;
367 if (!p) {
368 /* allocate if not found */
108c49b8
FB
369 if (!alloc)
370 return NULL;
371 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
372 memset(p, 0, sizeof(void *) * L1_SIZE);
373 *lp = p;
374 }
375#endif
376 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
377 pd = *lp;
378 if (!pd) {
379 int i;
108c49b8
FB
380 /* allocate if not found */
381 if (!alloc)
382 return NULL;
e3f4e2a4
PB
383 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
384 *lp = pd;
67c4d23c 385 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 386 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
387 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
388 }
92e873b9 389 }
e3f4e2a4 390 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
391}
392
c227f099 393static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 394{
108c49b8 395 return phys_page_find_alloc(index, 0);
92e873b9
FB
396}
397
9fa3e853 398#if !defined(CONFIG_USER_ONLY)
c227f099
AL
399static void tlb_protect_code(ram_addr_t ram_addr);
400static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 401 target_ulong vaddr);
c8a706fe
PB
402#define mmap_lock() do { } while(0)
403#define mmap_unlock() do { } while(0)
9fa3e853 404#endif
fd6ce8f6 405
4369415f
FB
406#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
407
408#if defined(CONFIG_USER_ONLY)
ccbb4d44 409/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
410 user mode. It will change when a dedicated libc will be used */
411#define USE_STATIC_CODE_GEN_BUFFER
412#endif
413
414#ifdef USE_STATIC_CODE_GEN_BUFFER
415static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
416#endif
417
8fcd3692 418static void code_gen_alloc(unsigned long tb_size)
26a5f13b 419{
4369415f
FB
420#ifdef USE_STATIC_CODE_GEN_BUFFER
421 code_gen_buffer = static_code_gen_buffer;
422 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
423 map_exec(code_gen_buffer, code_gen_buffer_size);
424#else
26a5f13b
FB
425 code_gen_buffer_size = tb_size;
426 if (code_gen_buffer_size == 0) {
4369415f
FB
427#if defined(CONFIG_USER_ONLY)
428 /* in user mode, phys_ram_size is not meaningful */
429 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
430#else
ccbb4d44 431 /* XXX: needs adjustments */
94a6b54f 432 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 433#endif
26a5f13b
FB
434 }
435 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
436 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
437 /* The code gen buffer location may have constraints depending on
438 the host cpu and OS */
439#if defined(__linux__)
440 {
441 int flags;
141ac468
BS
442 void *start = NULL;
443
26a5f13b
FB
444 flags = MAP_PRIVATE | MAP_ANONYMOUS;
445#if defined(__x86_64__)
446 flags |= MAP_32BIT;
447 /* Cannot map more than that */
448 if (code_gen_buffer_size > (800 * 1024 * 1024))
449 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
450#elif defined(__sparc_v9__)
451 // Map the buffer below 2G, so we can use direct calls and branches
452 flags |= MAP_FIXED;
453 start = (void *) 0x60000000UL;
454 if (code_gen_buffer_size > (512 * 1024 * 1024))
455 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 456#elif defined(__arm__)
63d41246 457 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
458 flags |= MAP_FIXED;
459 start = (void *) 0x01000000UL;
460 if (code_gen_buffer_size > 16 * 1024 * 1024)
461 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 462#endif
141ac468
BS
463 code_gen_buffer = mmap(start, code_gen_buffer_size,
464 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
465 flags, -1, 0);
466 if (code_gen_buffer == MAP_FAILED) {
467 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
468 exit(1);
469 }
470 }
a167ba50 471#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
472 {
473 int flags;
474 void *addr = NULL;
475 flags = MAP_PRIVATE | MAP_ANONYMOUS;
476#if defined(__x86_64__)
477 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
478 * 0x40000000 is free */
479 flags |= MAP_FIXED;
480 addr = (void *)0x40000000;
481 /* Cannot map more than that */
482 if (code_gen_buffer_size > (800 * 1024 * 1024))
483 code_gen_buffer_size = (800 * 1024 * 1024);
484#endif
485 code_gen_buffer = mmap(addr, code_gen_buffer_size,
486 PROT_WRITE | PROT_READ | PROT_EXEC,
487 flags, -1, 0);
488 if (code_gen_buffer == MAP_FAILED) {
489 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
490 exit(1);
491 }
492 }
26a5f13b
FB
493#else
494 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
495 map_exec(code_gen_buffer, code_gen_buffer_size);
496#endif
4369415f 497#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
498 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
499 code_gen_buffer_max_size = code_gen_buffer_size -
500 code_gen_max_block_size();
501 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
502 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
503}
504
505/* Must be called before using the QEMU cpus. 'tb_size' is the size
506 (in bytes) allocated to the translation buffer. Zero means default
507 size. */
508void cpu_exec_init_all(unsigned long tb_size)
509{
26a5f13b
FB
510 cpu_gen_init();
511 code_gen_alloc(tb_size);
512 code_gen_ptr = code_gen_buffer;
4369415f 513 page_init();
e2eef170 514#if !defined(CONFIG_USER_ONLY)
26a5f13b 515 io_mem_init();
e2eef170 516#endif
26a5f13b
FB
517}
518
9656f324
PB
519#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
520
d4bfa4d7 521static void cpu_common_pre_save(void *opaque)
9656f324 522{
d4bfa4d7 523 CPUState *env = opaque;
9656f324 524
4c0960c0 525 cpu_synchronize_state(env);
9656f324
PB
526}
527
e7f4eff7 528static int cpu_common_pre_load(void *opaque)
9656f324
PB
529{
530 CPUState *env = opaque;
531
4c0960c0 532 cpu_synchronize_state(env);
e7f4eff7
JQ
533 return 0;
534}
535
e59fb374 536static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
537{
538 CPUState *env = opaque;
9656f324 539
3098dba0
AJ
540 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
541 version_id is increased. */
542 env->interrupt_request &= ~0x01;
9656f324
PB
543 tlb_flush(env, 1);
544
545 return 0;
546}
e7f4eff7
JQ
547
548static const VMStateDescription vmstate_cpu_common = {
549 .name = "cpu_common",
550 .version_id = 1,
551 .minimum_version_id = 1,
552 .minimum_version_id_old = 1,
553 .pre_save = cpu_common_pre_save,
554 .pre_load = cpu_common_pre_load,
555 .post_load = cpu_common_post_load,
556 .fields = (VMStateField []) {
557 VMSTATE_UINT32(halted, CPUState),
558 VMSTATE_UINT32(interrupt_request, CPUState),
559 VMSTATE_END_OF_LIST()
560 }
561};
9656f324
PB
562#endif
563
950f1472
GC
564CPUState *qemu_get_cpu(int cpu)
565{
566 CPUState *env = first_cpu;
567
568 while (env) {
569 if (env->cpu_index == cpu)
570 break;
571 env = env->next_cpu;
572 }
573
574 return env;
575}
576
6a00d601 577void cpu_exec_init(CPUState *env)
fd6ce8f6 578{
6a00d601
FB
579 CPUState **penv;
580 int cpu_index;
581
c2764719
PB
582#if defined(CONFIG_USER_ONLY)
583 cpu_list_lock();
584#endif
6a00d601
FB
585 env->next_cpu = NULL;
586 penv = &first_cpu;
587 cpu_index = 0;
588 while (*penv != NULL) {
1e9fa730 589 penv = &(*penv)->next_cpu;
6a00d601
FB
590 cpu_index++;
591 }
592 env->cpu_index = cpu_index;
268a362c 593 env->numa_node = 0;
72cf2d4f
BS
594 QTAILQ_INIT(&env->breakpoints);
595 QTAILQ_INIT(&env->watchpoints);
6a00d601 596 *penv = env;
c2764719
PB
597#if defined(CONFIG_USER_ONLY)
598 cpu_list_unlock();
599#endif
b3c7724c 600#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 601 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
602 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
603 cpu_save, cpu_load, env);
604#endif
fd6ce8f6
FB
605}
606
9fa3e853
FB
607static inline void invalidate_page_bitmap(PageDesc *p)
608{
609 if (p->code_bitmap) {
59817ccb 610 qemu_free(p->code_bitmap);
9fa3e853
FB
611 p->code_bitmap = NULL;
612 }
613 p->code_write_count = 0;
614}
615
fd6ce8f6
FB
616/* set to NULL all the 'first_tb' fields in all PageDescs */
617static void page_flush_tb(void)
618{
619 int i, j;
620 PageDesc *p;
621
622 for(i = 0; i < L1_SIZE; i++) {
623 p = l1_map[i];
624 if (p) {
9fa3e853
FB
625 for(j = 0; j < L2_SIZE; j++) {
626 p->first_tb = NULL;
627 invalidate_page_bitmap(p);
628 p++;
629 }
fd6ce8f6
FB
630 }
631 }
632}
633
634/* flush all the translation blocks */
d4e8164f 635/* XXX: tb_flush is currently not thread safe */
6a00d601 636void tb_flush(CPUState *env1)
fd6ce8f6 637{
6a00d601 638 CPUState *env;
0124311e 639#if defined(DEBUG_FLUSH)
ab3d1727
BS
640 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
641 (unsigned long)(code_gen_ptr - code_gen_buffer),
642 nb_tbs, nb_tbs > 0 ?
643 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 644#endif
26a5f13b 645 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
646 cpu_abort(env1, "Internal error: code buffer overflow\n");
647
fd6ce8f6 648 nb_tbs = 0;
3b46e624 649
6a00d601
FB
650 for(env = first_cpu; env != NULL; env = env->next_cpu) {
651 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
652 }
9fa3e853 653
8a8a608f 654 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 655 page_flush_tb();
9fa3e853 656
fd6ce8f6 657 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
658 /* XXX: flush processor icache at this point if cache flush is
659 expensive */
e3db7226 660 tb_flush_count++;
fd6ce8f6
FB
661}
662
663#ifdef DEBUG_TB_CHECK
664
bc98a7ef 665static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
666{
667 TranslationBlock *tb;
668 int i;
669 address &= TARGET_PAGE_MASK;
99773bd4
PB
670 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
671 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
672 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
673 address >= tb->pc + tb->size)) {
0bf9e31a
BS
674 printf("ERROR invalidate: address=" TARGET_FMT_lx
675 " PC=%08lx size=%04x\n",
99773bd4 676 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
677 }
678 }
679 }
680}
681
682/* verify that all the pages have correct rights for code */
683static void tb_page_check(void)
684{
685 TranslationBlock *tb;
686 int i, flags1, flags2;
3b46e624 687
99773bd4
PB
688 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
689 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
690 flags1 = page_get_flags(tb->pc);
691 flags2 = page_get_flags(tb->pc + tb->size - 1);
692 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
693 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 694 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
695 }
696 }
697 }
698}
699
700#endif
701
702/* invalidate one TB */
703static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
704 int next_offset)
705{
706 TranslationBlock *tb1;
707 for(;;) {
708 tb1 = *ptb;
709 if (tb1 == tb) {
710 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
711 break;
712 }
713 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
714 }
715}
716
9fa3e853
FB
717static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
718{
719 TranslationBlock *tb1;
720 unsigned int n1;
721
722 for(;;) {
723 tb1 = *ptb;
724 n1 = (long)tb1 & 3;
725 tb1 = (TranslationBlock *)((long)tb1 & ~3);
726 if (tb1 == tb) {
727 *ptb = tb1->page_next[n1];
728 break;
729 }
730 ptb = &tb1->page_next[n1];
731 }
732}
733
d4e8164f
FB
734static inline void tb_jmp_remove(TranslationBlock *tb, int n)
735{
736 TranslationBlock *tb1, **ptb;
737 unsigned int n1;
738
739 ptb = &tb->jmp_next[n];
740 tb1 = *ptb;
741 if (tb1) {
742 /* find tb(n) in circular list */
743 for(;;) {
744 tb1 = *ptb;
745 n1 = (long)tb1 & 3;
746 tb1 = (TranslationBlock *)((long)tb1 & ~3);
747 if (n1 == n && tb1 == tb)
748 break;
749 if (n1 == 2) {
750 ptb = &tb1->jmp_first;
751 } else {
752 ptb = &tb1->jmp_next[n1];
753 }
754 }
755 /* now we can suppress tb(n) from the list */
756 *ptb = tb->jmp_next[n];
757
758 tb->jmp_next[n] = NULL;
759 }
760}
761
762/* reset the jump entry 'n' of a TB so that it is not chained to
763 another TB */
764static inline void tb_reset_jump(TranslationBlock *tb, int n)
765{
766 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
767}
768
2e70f6ef 769void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 770{
6a00d601 771 CPUState *env;
8a40a180 772 PageDesc *p;
d4e8164f 773 unsigned int h, n1;
c227f099 774 target_phys_addr_t phys_pc;
8a40a180 775 TranslationBlock *tb1, *tb2;
3b46e624 776
8a40a180
FB
777 /* remove the TB from the hash list */
778 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
779 h = tb_phys_hash_func(phys_pc);
5fafdf24 780 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
781 offsetof(TranslationBlock, phys_hash_next));
782
783 /* remove the TB from the page list */
784 if (tb->page_addr[0] != page_addr) {
785 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
788 }
789 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
790 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
791 tb_page_remove(&p->first_tb, tb);
792 invalidate_page_bitmap(p);
793 }
794
36bdbe54 795 tb_invalidated_flag = 1;
59817ccb 796
fd6ce8f6 797 /* remove the TB from the hash list */
8a40a180 798 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 if (env->tb_jmp_cache[h] == tb)
801 env->tb_jmp_cache[h] = NULL;
802 }
d4e8164f
FB
803
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb, 0);
806 tb_jmp_remove(tb, 1);
807
808 /* suppress any remaining jumps to this TB */
809 tb1 = tb->jmp_first;
810 for(;;) {
811 n1 = (long)tb1 & 3;
812 if (n1 == 2)
813 break;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 tb2 = tb1->jmp_next[n1];
816 tb_reset_jump(tb1, n1);
817 tb1->jmp_next[n1] = NULL;
818 tb1 = tb2;
819 }
820 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 821
e3db7226 822 tb_phys_invalidate_count++;
9fa3e853
FB
823}
824
825static inline void set_bits(uint8_t *tab, int start, int len)
826{
827 int end, mask, end1;
828
829 end = start + len;
830 tab += start >> 3;
831 mask = 0xff << (start & 7);
832 if ((start & ~7) == (end & ~7)) {
833 if (start < end) {
834 mask &= ~(0xff << (end & 7));
835 *tab |= mask;
836 }
837 } else {
838 *tab++ |= mask;
839 start = (start + 8) & ~7;
840 end1 = end & ~7;
841 while (start < end1) {
842 *tab++ = 0xff;
843 start += 8;
844 }
845 if (start < end) {
846 mask = ~(0xff << (end & 7));
847 *tab |= mask;
848 }
849 }
850}
851
852static void build_page_bitmap(PageDesc *p)
853{
854 int n, tb_start, tb_end;
855 TranslationBlock *tb;
3b46e624 856
b2a7081a 857 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
858
859 tb = p->first_tb;
860 while (tb != NULL) {
861 n = (long)tb & 3;
862 tb = (TranslationBlock *)((long)tb & ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
864 if (n == 0) {
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start = tb->pc & ~TARGET_PAGE_MASK;
868 tb_end = tb_start + tb->size;
869 if (tb_end > TARGET_PAGE_SIZE)
870 tb_end = TARGET_PAGE_SIZE;
871 } else {
872 tb_start = 0;
873 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
874 }
875 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
876 tb = tb->page_next[n];
877 }
878}
879
2e70f6ef
PB
880TranslationBlock *tb_gen_code(CPUState *env,
881 target_ulong pc, target_ulong cs_base,
882 int flags, int cflags)
d720b93d
FB
883{
884 TranslationBlock *tb;
885 uint8_t *tc_ptr;
886 target_ulong phys_pc, phys_page2, virt_page2;
887 int code_gen_size;
888
c27004ec
FB
889 phys_pc = get_phys_addr_code(env, pc);
890 tb = tb_alloc(pc);
d720b93d
FB
891 if (!tb) {
892 /* flush must be done */
893 tb_flush(env);
894 /* cannot fail at this point */
c27004ec 895 tb = tb_alloc(pc);
2e70f6ef
PB
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag = 1;
d720b93d
FB
898 }
899 tc_ptr = code_gen_ptr;
900 tb->tc_ptr = tc_ptr;
901 tb->cs_base = cs_base;
902 tb->flags = flags;
903 tb->cflags = cflags;
d07bde88 904 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 905 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 906
d720b93d 907 /* check next page if needed */
c27004ec 908 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 909 phys_page2 = -1;
c27004ec 910 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
911 phys_page2 = get_phys_addr_code(env, virt_page2);
912 }
913 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 914 return tb;
d720b93d 915}
3b46e624 916
9fa3e853
FB
917/* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
c227f099 922void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
923 int is_cpu_write_access)
924{
6b917547 925 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 926 CPUState *env = cpu_single_env;
9fa3e853 927 target_ulong tb_start, tb_end;
6b917547
AL
928 PageDesc *p;
929 int n;
930#ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found = is_cpu_write_access;
932 TranslationBlock *current_tb = NULL;
933 int current_tb_modified = 0;
934 target_ulong current_pc = 0;
935 target_ulong current_cs_base = 0;
936 int current_flags = 0;
937#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
938
939 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 940 if (!p)
9fa3e853 941 return;
5fafdf24 942 if (!p->code_bitmap &&
d720b93d
FB
943 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
944 is_cpu_write_access) {
9fa3e853
FB
945 /* build code bitmap */
946 build_page_bitmap(p);
947 }
948
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
951 tb = p->first_tb;
952 while (tb != NULL) {
953 n = (long)tb & 3;
954 tb = (TranslationBlock *)((long)tb & ~3);
955 tb_next = tb->page_next[n];
956 /* NOTE: this is subtle as a TB may span two physical pages */
957 if (n == 0) {
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
961 tb_end = tb_start + tb->size;
962 } else {
963 tb_start = tb->page_addr[1];
964 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
965 }
966 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
967#ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found) {
969 current_tb_not_found = 0;
970 current_tb = NULL;
2e70f6ef 971 if (env->mem_io_pc) {
d720b93d 972 /* now we have a real cpu fault */
2e70f6ef 973 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
974 }
975 }
976 if (current_tb == tb &&
2e70f6ef 977 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
3b46e624 983
d720b93d 984 current_tb_modified = 1;
5fafdf24 985 cpu_restore_state(current_tb, env,
2e70f6ef 986 env->mem_io_pc, NULL);
6b917547
AL
987 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
988 &current_flags);
d720b93d
FB
989 }
990#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
993 saved_tb = NULL;
994 if (env) {
995 saved_tb = env->current_tb;
996 env->current_tb = NULL;
997 }
9fa3e853 998 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
999 if (env) {
1000 env->current_tb = saved_tb;
1001 if (env->interrupt_request && env->current_tb)
1002 cpu_interrupt(env, env->interrupt_request);
1003 }
9fa3e853
FB
1004 }
1005 tb = tb_next;
1006 }
1007#if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1009 if (!p->first_tb) {
1010 invalidate_page_bitmap(p);
d720b93d 1011 if (is_cpu_write_access) {
2e70f6ef 1012 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1013 }
1014 }
1015#endif
1016#ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1020 itself */
ea1c1802 1021 env->current_tb = NULL;
2e70f6ef 1022 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1023 cpu_resume_from_signal(env, NULL);
9fa3e853 1024 }
fd6ce8f6 1025#endif
9fa3e853 1026}
fd6ce8f6 1027
9fa3e853 1028/* len must be <= 8 and start must be a multiple of len */
c227f099 1029static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1030{
1031 PageDesc *p;
1032 int offset, b;
59817ccb 1033#if 0
a4193c8a 1034 if (1) {
93fcfe39
AL
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env->mem_io_vaddr, len,
1037 cpu_single_env->eip,
1038 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1039 }
1040#endif
9fa3e853 1041 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1042 if (!p)
9fa3e853
FB
1043 return;
1044 if (p->code_bitmap) {
1045 offset = start & ~TARGET_PAGE_MASK;
1046 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1047 if (b & ((1 << len) - 1))
1048 goto do_invalidate;
1049 } else {
1050 do_invalidate:
d720b93d 1051 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1052 }
1053}
1054
9fa3e853 1055#if !defined(CONFIG_SOFTMMU)
c227f099 1056static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1057 unsigned long pc, void *puc)
9fa3e853 1058{
6b917547 1059 TranslationBlock *tb;
9fa3e853 1060 PageDesc *p;
6b917547 1061 int n;
d720b93d 1062#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1063 TranslationBlock *current_tb = NULL;
d720b93d 1064 CPUState *env = cpu_single_env;
6b917547
AL
1065 int current_tb_modified = 0;
1066 target_ulong current_pc = 0;
1067 target_ulong current_cs_base = 0;
1068 int current_flags = 0;
d720b93d 1069#endif
9fa3e853
FB
1070
1071 addr &= TARGET_PAGE_MASK;
1072 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1073 if (!p)
9fa3e853
FB
1074 return;
1075 tb = p->first_tb;
d720b93d
FB
1076#ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb && pc != 0) {
1078 current_tb = tb_find_pc(pc);
1079 }
1080#endif
9fa3e853
FB
1081 while (tb != NULL) {
1082 n = (long)tb & 3;
1083 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1084#ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb == tb &&
2e70f6ef 1086 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
3b46e624 1092
d720b93d
FB
1093 current_tb_modified = 1;
1094 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1095 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1096 &current_flags);
d720b93d
FB
1097 }
1098#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1099 tb_phys_invalidate(tb, addr);
1100 tb = tb->page_next[n];
1101 }
fd6ce8f6 1102 p->first_tb = NULL;
d720b93d
FB
1103#ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
ea1c1802 1108 env->current_tb = NULL;
2e70f6ef 1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1110 cpu_resume_from_signal(env, puc);
1111 }
1112#endif
fd6ce8f6 1113}
9fa3e853 1114#endif
fd6ce8f6
FB
1115
1116/* add the tb in the target page and protect it if necessary */
5fafdf24 1117static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1118 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1119{
1120 PageDesc *p;
9fa3e853
FB
1121 TranslationBlock *last_first_tb;
1122
1123 tb->page_addr[n] = page_addr;
3a7d929e 1124 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1125 tb->page_next[n] = p->first_tb;
1126 last_first_tb = p->first_tb;
1127 p->first_tb = (TranslationBlock *)((long)tb | n);
1128 invalidate_page_bitmap(p);
fd6ce8f6 1129
107db443 1130#if defined(TARGET_HAS_SMC) || 1
d720b93d 1131
9fa3e853 1132#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1133 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1134 target_ulong addr;
1135 PageDesc *p2;
9fa3e853
FB
1136 int prot;
1137
fd6ce8f6
FB
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
53a5960a 1140 page_addr &= qemu_host_page_mask;
fd6ce8f6 1141 prot = 0;
53a5960a
PB
1142 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1143 addr += TARGET_PAGE_SIZE) {
1144
1145 p2 = page_find (addr >> TARGET_PAGE_BITS);
1146 if (!p2)
1147 continue;
1148 prot |= p2->flags;
1149 p2->flags &= ~PAGE_WRITE;
1150 page_get_flags(addr);
1151 }
5fafdf24 1152 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1153 (prot & PAGE_BITS) & ~PAGE_WRITE);
1154#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1155 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1156 page_addr);
fd6ce8f6 1157#endif
fd6ce8f6 1158 }
9fa3e853
FB
1159#else
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb) {
6a00d601 1164 tlb_protect_code(page_addr);
9fa3e853
FB
1165 }
1166#endif
d720b93d
FB
1167
1168#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1169}
1170
1171/* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
c27004ec 1173TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1174{
1175 TranslationBlock *tb;
fd6ce8f6 1176
26a5f13b
FB
1177 if (nb_tbs >= code_gen_max_blocks ||
1178 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1179 return NULL;
fd6ce8f6
FB
1180 tb = &tbs[nb_tbs++];
1181 tb->pc = pc;
b448f2f3 1182 tb->cflags = 0;
d4e8164f
FB
1183 return tb;
1184}
1185
2e70f6ef
PB
1186void tb_free(TranslationBlock *tb)
1187{
bf20dc07 1188 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1192 code_gen_ptr = tb->tc_ptr;
1193 nb_tbs--;
1194 }
1195}
1196
9fa3e853
FB
1197/* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
5fafdf24 1199void tb_link_phys(TranslationBlock *tb,
9fa3e853 1200 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1201{
9fa3e853
FB
1202 unsigned int h;
1203 TranslationBlock **ptb;
1204
c8a706fe
PB
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1207 mmap_lock();
9fa3e853
FB
1208 /* add in the physical hash table */
1209 h = tb_phys_hash_func(phys_pc);
1210 ptb = &tb_phys_hash[h];
1211 tb->phys_hash_next = *ptb;
1212 *ptb = tb;
fd6ce8f6
FB
1213
1214 /* add in the page list */
9fa3e853
FB
1215 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1216 if (phys_page2 != -1)
1217 tb_alloc_page(tb, 1, phys_page2);
1218 else
1219 tb->page_addr[1] = -1;
9fa3e853 1220
d4e8164f
FB
1221 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1222 tb->jmp_next[0] = NULL;
1223 tb->jmp_next[1] = NULL;
1224
1225 /* init original jump addresses */
1226 if (tb->tb_next_offset[0] != 0xffff)
1227 tb_reset_jump(tb, 0);
1228 if (tb->tb_next_offset[1] != 0xffff)
1229 tb_reset_jump(tb, 1);
8a40a180
FB
1230
1231#ifdef DEBUG_TB_CHECK
1232 tb_page_check();
1233#endif
c8a706fe 1234 mmap_unlock();
fd6ce8f6
FB
1235}
1236
9fa3e853
FB
1237/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1240{
9fa3e853
FB
1241 int m_min, m_max, m;
1242 unsigned long v;
1243 TranslationBlock *tb;
a513fe19
FB
1244
1245 if (nb_tbs <= 0)
1246 return NULL;
1247 if (tc_ptr < (unsigned long)code_gen_buffer ||
1248 tc_ptr >= (unsigned long)code_gen_ptr)
1249 return NULL;
1250 /* binary search (cf Knuth) */
1251 m_min = 0;
1252 m_max = nb_tbs - 1;
1253 while (m_min <= m_max) {
1254 m = (m_min + m_max) >> 1;
1255 tb = &tbs[m];
1256 v = (unsigned long)tb->tc_ptr;
1257 if (v == tc_ptr)
1258 return tb;
1259 else if (tc_ptr < v) {
1260 m_max = m - 1;
1261 } else {
1262 m_min = m + 1;
1263 }
5fafdf24 1264 }
a513fe19
FB
1265 return &tbs[m_max];
1266}
7501267e 1267
ea041c0e
FB
1268static void tb_reset_jump_recursive(TranslationBlock *tb);
1269
1270static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1271{
1272 TranslationBlock *tb1, *tb_next, **ptb;
1273 unsigned int n1;
1274
1275 tb1 = tb->jmp_next[n];
1276 if (tb1 != NULL) {
1277 /* find head of list */
1278 for(;;) {
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == 2)
1282 break;
1283 tb1 = tb1->jmp_next[n1];
1284 }
1285 /* we are now sure now that tb jumps to tb1 */
1286 tb_next = tb1;
1287
1288 /* remove tb from the jmp_first list */
1289 ptb = &tb_next->jmp_first;
1290 for(;;) {
1291 tb1 = *ptb;
1292 n1 = (long)tb1 & 3;
1293 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1294 if (n1 == n && tb1 == tb)
1295 break;
1296 ptb = &tb1->jmp_next[n1];
1297 }
1298 *ptb = tb->jmp_next[n];
1299 tb->jmp_next[n] = NULL;
3b46e624 1300
ea041c0e
FB
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb, n);
1303
0124311e 1304 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1305 tb_reset_jump_recursive(tb_next);
1306 }
1307}
1308
1309static void tb_reset_jump_recursive(TranslationBlock *tb)
1310{
1311 tb_reset_jump_recursive2(tb, 0);
1312 tb_reset_jump_recursive2(tb, 1);
1313}
1314
1fddef4b 1315#if defined(TARGET_HAS_ICE)
94df27fd
PB
1316#if defined(CONFIG_USER_ONLY)
1317static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1318{
1319 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1320}
1321#else
d720b93d
FB
1322static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1323{
c227f099 1324 target_phys_addr_t addr;
9b3c35e0 1325 target_ulong pd;
c227f099 1326 ram_addr_t ram_addr;
c2f07f81 1327 PhysPageDesc *p;
d720b93d 1328
c2f07f81
PB
1329 addr = cpu_get_phys_page_debug(env, pc);
1330 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1331 if (!p) {
1332 pd = IO_MEM_UNASSIGNED;
1333 } else {
1334 pd = p->phys_offset;
1335 }
1336 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1337 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1338}
c27004ec 1339#endif
94df27fd 1340#endif /* TARGET_HAS_ICE */
d720b93d 1341
6658ffb8 1342/* Add a watchpoint. */
a1d1bb31
AL
1343int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1344 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1345{
b4051334 1346 target_ulong len_mask = ~(len - 1);
c0ce998e 1347 CPUWatchpoint *wp;
6658ffb8 1348
b4051334
AL
1349 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1350 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1351 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1352 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1353 return -EINVAL;
1354 }
a1d1bb31 1355 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1356
1357 wp->vaddr = addr;
b4051334 1358 wp->len_mask = len_mask;
a1d1bb31
AL
1359 wp->flags = flags;
1360
2dc9f411 1361 /* keep all GDB-injected watchpoints in front */
c0ce998e 1362 if (flags & BP_GDB)
72cf2d4f 1363 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1364 else
72cf2d4f 1365 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1366
6658ffb8 1367 tlb_flush_page(env, addr);
a1d1bb31
AL
1368
1369 if (watchpoint)
1370 *watchpoint = wp;
1371 return 0;
6658ffb8
PB
1372}
1373
a1d1bb31
AL
1374/* Remove a specific watchpoint. */
1375int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1376 int flags)
6658ffb8 1377{
b4051334 1378 target_ulong len_mask = ~(len - 1);
a1d1bb31 1379 CPUWatchpoint *wp;
6658ffb8 1380
72cf2d4f 1381 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1382 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1383 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1384 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1385 return 0;
1386 }
1387 }
a1d1bb31 1388 return -ENOENT;
6658ffb8
PB
1389}
1390
a1d1bb31
AL
1391/* Remove a specific watchpoint by reference. */
1392void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1393{
72cf2d4f 1394 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1395
a1d1bb31
AL
1396 tlb_flush_page(env, watchpoint->vaddr);
1397
1398 qemu_free(watchpoint);
1399}
1400
1401/* Remove all matching watchpoints. */
1402void cpu_watchpoint_remove_all(CPUState *env, int mask)
1403{
c0ce998e 1404 CPUWatchpoint *wp, *next;
a1d1bb31 1405
72cf2d4f 1406 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1407 if (wp->flags & mask)
1408 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1409 }
7d03f82f
EI
1410}
1411
a1d1bb31
AL
1412/* Add a breakpoint. */
1413int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1414 CPUBreakpoint **breakpoint)
4c3a88a2 1415{
1fddef4b 1416#if defined(TARGET_HAS_ICE)
c0ce998e 1417 CPUBreakpoint *bp;
3b46e624 1418
a1d1bb31 1419 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1420
a1d1bb31
AL
1421 bp->pc = pc;
1422 bp->flags = flags;
1423
2dc9f411 1424 /* keep all GDB-injected breakpoints in front */
c0ce998e 1425 if (flags & BP_GDB)
72cf2d4f 1426 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1427 else
72cf2d4f 1428 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1429
d720b93d 1430 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1431
1432 if (breakpoint)
1433 *breakpoint = bp;
4c3a88a2
FB
1434 return 0;
1435#else
a1d1bb31 1436 return -ENOSYS;
4c3a88a2
FB
1437#endif
1438}
1439
a1d1bb31
AL
1440/* Remove a specific breakpoint. */
1441int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1442{
7d03f82f 1443#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1444 CPUBreakpoint *bp;
1445
72cf2d4f 1446 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1447 if (bp->pc == pc && bp->flags == flags) {
1448 cpu_breakpoint_remove_by_ref(env, bp);
1449 return 0;
1450 }
7d03f82f 1451 }
a1d1bb31
AL
1452 return -ENOENT;
1453#else
1454 return -ENOSYS;
7d03f82f
EI
1455#endif
1456}
1457
a1d1bb31
AL
1458/* Remove a specific breakpoint by reference. */
1459void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1460{
1fddef4b 1461#if defined(TARGET_HAS_ICE)
72cf2d4f 1462 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1463
a1d1bb31
AL
1464 breakpoint_invalidate(env, breakpoint->pc);
1465
1466 qemu_free(breakpoint);
1467#endif
1468}
1469
1470/* Remove all matching breakpoints. */
1471void cpu_breakpoint_remove_all(CPUState *env, int mask)
1472{
1473#if defined(TARGET_HAS_ICE)
c0ce998e 1474 CPUBreakpoint *bp, *next;
a1d1bb31 1475
72cf2d4f 1476 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1477 if (bp->flags & mask)
1478 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1479 }
4c3a88a2
FB
1480#endif
1481}
1482
c33a346e
FB
1483/* enable or disable single step mode. EXCP_DEBUG is returned by the
1484 CPU loop after each instruction */
1485void cpu_single_step(CPUState *env, int enabled)
1486{
1fddef4b 1487#if defined(TARGET_HAS_ICE)
c33a346e
FB
1488 if (env->singlestep_enabled != enabled) {
1489 env->singlestep_enabled = enabled;
e22a25c9
AL
1490 if (kvm_enabled())
1491 kvm_update_guest_debug(env, 0);
1492 else {
ccbb4d44 1493 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1494 /* XXX: only flush what is necessary */
1495 tb_flush(env);
1496 }
c33a346e
FB
1497 }
1498#endif
1499}
1500
34865134
FB
1501/* enable or disable low levels log */
1502void cpu_set_log(int log_flags)
1503{
1504 loglevel = log_flags;
1505 if (loglevel && !logfile) {
11fcfab4 1506 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1507 if (!logfile) {
1508 perror(logfilename);
1509 _exit(1);
1510 }
9fa3e853
FB
1511#if !defined(CONFIG_SOFTMMU)
1512 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1513 {
b55266b5 1514 static char logfile_buf[4096];
9fa3e853
FB
1515 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1516 }
bf65f53f
FN
1517#elif !defined(_WIN32)
1518 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1519 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1520#endif
e735b91c
PB
1521 log_append = 1;
1522 }
1523 if (!loglevel && logfile) {
1524 fclose(logfile);
1525 logfile = NULL;
34865134
FB
1526 }
1527}
1528
1529void cpu_set_log_filename(const char *filename)
1530{
1531 logfilename = strdup(filename);
e735b91c
PB
1532 if (logfile) {
1533 fclose(logfile);
1534 logfile = NULL;
1535 }
1536 cpu_set_log(loglevel);
34865134 1537}
c33a346e 1538
3098dba0 1539static void cpu_unlink_tb(CPUState *env)
ea041c0e 1540{
3098dba0
AJ
1541 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1542 problem and hope the cpu will stop of its own accord. For userspace
1543 emulation this often isn't actually as bad as it sounds. Often
1544 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1545 TranslationBlock *tb;
c227f099 1546 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1547
cab1b4bd 1548 spin_lock(&interrupt_lock);
3098dba0
AJ
1549 tb = env->current_tb;
1550 /* if the cpu is currently executing code, we must unlink it and
1551 all the potentially executing TB */
f76cfe56 1552 if (tb) {
3098dba0
AJ
1553 env->current_tb = NULL;
1554 tb_reset_jump_recursive(tb);
be214e6c 1555 }
cab1b4bd 1556 spin_unlock(&interrupt_lock);
3098dba0
AJ
1557}
1558
1559/* mask must never be zero, except for A20 change call */
1560void cpu_interrupt(CPUState *env, int mask)
1561{
1562 int old_mask;
be214e6c 1563
2e70f6ef 1564 old_mask = env->interrupt_request;
68a79315 1565 env->interrupt_request |= mask;
3098dba0 1566
8edac960
AL
1567#ifndef CONFIG_USER_ONLY
1568 /*
1569 * If called from iothread context, wake the target cpu in
1570 * case its halted.
1571 */
1572 if (!qemu_cpu_self(env)) {
1573 qemu_cpu_kick(env);
1574 return;
1575 }
1576#endif
1577
2e70f6ef 1578 if (use_icount) {
266910c4 1579 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1580#ifndef CONFIG_USER_ONLY
2e70f6ef 1581 if (!can_do_io(env)
be214e6c 1582 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1583 cpu_abort(env, "Raised interrupt while not in I/O function");
1584 }
1585#endif
1586 } else {
3098dba0 1587 cpu_unlink_tb(env);
ea041c0e
FB
1588 }
1589}
1590
b54ad049
FB
1591void cpu_reset_interrupt(CPUState *env, int mask)
1592{
1593 env->interrupt_request &= ~mask;
1594}
1595
3098dba0
AJ
1596void cpu_exit(CPUState *env)
1597{
1598 env->exit_request = 1;
1599 cpu_unlink_tb(env);
1600}
1601
c7cd6a37 1602const CPULogItem cpu_log_items[] = {
5fafdf24 1603 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1604 "show generated host assembly code for each compiled TB" },
1605 { CPU_LOG_TB_IN_ASM, "in_asm",
1606 "show target assembly code for each compiled TB" },
5fafdf24 1607 { CPU_LOG_TB_OP, "op",
57fec1fe 1608 "show micro ops for each compiled TB" },
f193c797 1609 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1610 "show micro ops "
1611#ifdef TARGET_I386
1612 "before eflags optimization and "
f193c797 1613#endif
e01a1157 1614 "after liveness analysis" },
f193c797
FB
1615 { CPU_LOG_INT, "int",
1616 "show interrupts/exceptions in short format" },
1617 { CPU_LOG_EXEC, "exec",
1618 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1619 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1620 "show CPU state before block translation" },
f193c797
FB
1621#ifdef TARGET_I386
1622 { CPU_LOG_PCALL, "pcall",
1623 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1624 { CPU_LOG_RESET, "cpu_reset",
1625 "show CPU state before CPU resets" },
f193c797 1626#endif
8e3a9fd2 1627#ifdef DEBUG_IOPORT
fd872598
FB
1628 { CPU_LOG_IOPORT, "ioport",
1629 "show all i/o ports accesses" },
8e3a9fd2 1630#endif
f193c797
FB
1631 { 0, NULL, NULL },
1632};
1633
f6f3fbca
MT
1634#ifndef CONFIG_USER_ONLY
1635static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1636 = QLIST_HEAD_INITIALIZER(memory_client_list);
1637
1638static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1639 ram_addr_t size,
1640 ram_addr_t phys_offset)
1641{
1642 CPUPhysMemoryClient *client;
1643 QLIST_FOREACH(client, &memory_client_list, list) {
1644 client->set_memory(client, start_addr, size, phys_offset);
1645 }
1646}
1647
1648static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1649 target_phys_addr_t end)
1650{
1651 CPUPhysMemoryClient *client;
1652 QLIST_FOREACH(client, &memory_client_list, list) {
1653 int r = client->sync_dirty_bitmap(client, start, end);
1654 if (r < 0)
1655 return r;
1656 }
1657 return 0;
1658}
1659
1660static int cpu_notify_migration_log(int enable)
1661{
1662 CPUPhysMemoryClient *client;
1663 QLIST_FOREACH(client, &memory_client_list, list) {
1664 int r = client->migration_log(client, enable);
1665 if (r < 0)
1666 return r;
1667 }
1668 return 0;
1669}
1670
1671static void phys_page_for_each_in_l1_map(PhysPageDesc **phys_map,
1672 CPUPhysMemoryClient *client)
1673{
1674 PhysPageDesc *pd;
1675 int l1, l2;
1676
1677 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1678 pd = phys_map[l1];
1679 if (!pd) {
1680 continue;
1681 }
1682 for (l2 = 0; l2 < L2_SIZE; ++l2) {
1683 if (pd[l2].phys_offset == IO_MEM_UNASSIGNED) {
1684 continue;
1685 }
1686 client->set_memory(client, pd[l2].region_offset,
1687 TARGET_PAGE_SIZE, pd[l2].phys_offset);
1688 }
1689 }
1690}
1691
1692static void phys_page_for_each(CPUPhysMemoryClient *client)
1693{
1694#if TARGET_PHYS_ADDR_SPACE_BITS > 32
1695
1696#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
1697#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
1698#endif
1699 void **phys_map = (void **)l1_phys_map;
1700 int l1;
1701 if (!l1_phys_map) {
1702 return;
1703 }
1704 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1705 if (phys_map[l1]) {
1706 phys_page_for_each_in_l1_map(phys_map[l1], client);
1707 }
1708 }
1709#else
1710 if (!l1_phys_map) {
1711 return;
1712 }
1713 phys_page_for_each_in_l1_map(l1_phys_map, client);
1714#endif
1715}
1716
1717void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1718{
1719 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1720 phys_page_for_each(client);
1721}
1722
1723void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1724{
1725 QLIST_REMOVE(client, list);
1726}
1727#endif
1728
f193c797
FB
1729static int cmp1(const char *s1, int n, const char *s2)
1730{
1731 if (strlen(s2) != n)
1732 return 0;
1733 return memcmp(s1, s2, n) == 0;
1734}
3b46e624 1735
f193c797
FB
1736/* takes a comma separated list of log masks. Return 0 if error. */
1737int cpu_str_to_log_mask(const char *str)
1738{
c7cd6a37 1739 const CPULogItem *item;
f193c797
FB
1740 int mask;
1741 const char *p, *p1;
1742
1743 p = str;
1744 mask = 0;
1745 for(;;) {
1746 p1 = strchr(p, ',');
1747 if (!p1)
1748 p1 = p + strlen(p);
8e3a9fd2
FB
1749 if(cmp1(p,p1-p,"all")) {
1750 for(item = cpu_log_items; item->mask != 0; item++) {
1751 mask |= item->mask;
1752 }
1753 } else {
f193c797
FB
1754 for(item = cpu_log_items; item->mask != 0; item++) {
1755 if (cmp1(p, p1 - p, item->name))
1756 goto found;
1757 }
1758 return 0;
8e3a9fd2 1759 }
f193c797
FB
1760 found:
1761 mask |= item->mask;
1762 if (*p1 != ',')
1763 break;
1764 p = p1 + 1;
1765 }
1766 return mask;
1767}
ea041c0e 1768
7501267e
FB
1769void cpu_abort(CPUState *env, const char *fmt, ...)
1770{
1771 va_list ap;
493ae1f0 1772 va_list ap2;
7501267e
FB
1773
1774 va_start(ap, fmt);
493ae1f0 1775 va_copy(ap2, ap);
7501267e
FB
1776 fprintf(stderr, "qemu: fatal: ");
1777 vfprintf(stderr, fmt, ap);
1778 fprintf(stderr, "\n");
1779#ifdef TARGET_I386
7fe48483
FB
1780 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1781#else
1782 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1783#endif
93fcfe39
AL
1784 if (qemu_log_enabled()) {
1785 qemu_log("qemu: fatal: ");
1786 qemu_log_vprintf(fmt, ap2);
1787 qemu_log("\n");
f9373291 1788#ifdef TARGET_I386
93fcfe39 1789 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1790#else
93fcfe39 1791 log_cpu_state(env, 0);
f9373291 1792#endif
31b1a7b4 1793 qemu_log_flush();
93fcfe39 1794 qemu_log_close();
924edcae 1795 }
493ae1f0 1796 va_end(ap2);
f9373291 1797 va_end(ap);
fd052bf6
RV
1798#if defined(CONFIG_USER_ONLY)
1799 {
1800 struct sigaction act;
1801 sigfillset(&act.sa_mask);
1802 act.sa_handler = SIG_DFL;
1803 sigaction(SIGABRT, &act, NULL);
1804 }
1805#endif
7501267e
FB
1806 abort();
1807}
1808
c5be9f08
TS
1809CPUState *cpu_copy(CPUState *env)
1810{
01ba9816 1811 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1812 CPUState *next_cpu = new_env->next_cpu;
1813 int cpu_index = new_env->cpu_index;
5a38f081
AL
1814#if defined(TARGET_HAS_ICE)
1815 CPUBreakpoint *bp;
1816 CPUWatchpoint *wp;
1817#endif
1818
c5be9f08 1819 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1820
1821 /* Preserve chaining and index. */
c5be9f08
TS
1822 new_env->next_cpu = next_cpu;
1823 new_env->cpu_index = cpu_index;
5a38f081
AL
1824
1825 /* Clone all break/watchpoints.
1826 Note: Once we support ptrace with hw-debug register access, make sure
1827 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1828 QTAILQ_INIT(&env->breakpoints);
1829 QTAILQ_INIT(&env->watchpoints);
5a38f081 1830#if defined(TARGET_HAS_ICE)
72cf2d4f 1831 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1832 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1833 }
72cf2d4f 1834 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1835 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1836 wp->flags, NULL);
1837 }
1838#endif
1839
c5be9f08
TS
1840 return new_env;
1841}
1842
0124311e
FB
1843#if !defined(CONFIG_USER_ONLY)
1844
5c751e99
EI
1845static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1846{
1847 unsigned int i;
1848
1849 /* Discard jump cache entries for any tb which might potentially
1850 overlap the flushed page. */
1851 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1852 memset (&env->tb_jmp_cache[i], 0,
1853 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1854
1855 i = tb_jmp_cache_hash_page(addr);
1856 memset (&env->tb_jmp_cache[i], 0,
1857 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1858}
1859
08738984
IK
1860static CPUTLBEntry s_cputlb_empty_entry = {
1861 .addr_read = -1,
1862 .addr_write = -1,
1863 .addr_code = -1,
1864 .addend = -1,
1865};
1866
ee8b7021
FB
1867/* NOTE: if flush_global is true, also flush global entries (not
1868 implemented yet) */
1869void tlb_flush(CPUState *env, int flush_global)
33417e70 1870{
33417e70 1871 int i;
0124311e 1872
9fa3e853
FB
1873#if defined(DEBUG_TLB)
1874 printf("tlb_flush:\n");
1875#endif
0124311e
FB
1876 /* must reset current TB so that interrupts cannot modify the
1877 links while we are modifying them */
1878 env->current_tb = NULL;
1879
33417e70 1880 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1881 int mmu_idx;
1882 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1883 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1884 }
33417e70 1885 }
9fa3e853 1886
8a40a180 1887 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1888
e3db7226 1889 tlb_flush_count++;
33417e70
FB
1890}
1891
274da6b2 1892static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1893{
5fafdf24 1894 if (addr == (tlb_entry->addr_read &
84b7b8e7 1895 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1896 addr == (tlb_entry->addr_write &
84b7b8e7 1897 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1898 addr == (tlb_entry->addr_code &
84b7b8e7 1899 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1900 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1901 }
61382a50
FB
1902}
1903
2e12669a 1904void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1905{
8a40a180 1906 int i;
cfde4bd9 1907 int mmu_idx;
0124311e 1908
9fa3e853 1909#if defined(DEBUG_TLB)
108c49b8 1910 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1911#endif
0124311e
FB
1912 /* must reset current TB so that interrupts cannot modify the
1913 links while we are modifying them */
1914 env->current_tb = NULL;
61382a50
FB
1915
1916 addr &= TARGET_PAGE_MASK;
1917 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1918 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1919 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1920
5c751e99 1921 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1922}
1923
9fa3e853
FB
1924/* update the TLBs so that writes to code in the virtual page 'addr'
1925 can be detected */
c227f099 1926static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1927{
5fafdf24 1928 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1929 ram_addr + TARGET_PAGE_SIZE,
1930 CODE_DIRTY_FLAG);
9fa3e853
FB
1931}
1932
9fa3e853 1933/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1934 tested for self modifying code */
c227f099 1935static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1936 target_ulong vaddr)
9fa3e853 1937{
3a7d929e 1938 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1939}
1940
5fafdf24 1941static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1942 unsigned long start, unsigned long length)
1943{
1944 unsigned long addr;
84b7b8e7
FB
1945 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1946 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1947 if ((addr - start) < length) {
0f459d16 1948 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1949 }
1950 }
1951}
1952
5579c7f3 1953/* Note: start and end must be within the same ram block. */
c227f099 1954void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1955 int dirty_flags)
1ccde1cb
FB
1956{
1957 CPUState *env;
4f2ac237 1958 unsigned long length, start1;
0a962c02
FB
1959 int i, mask, len;
1960 uint8_t *p;
1ccde1cb
FB
1961
1962 start &= TARGET_PAGE_MASK;
1963 end = TARGET_PAGE_ALIGN(end);
1964
1965 length = end - start;
1966 if (length == 0)
1967 return;
0a962c02 1968 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1969 mask = ~dirty_flags;
1970 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1971 for(i = 0; i < len; i++)
1972 p[i] &= mask;
1973
1ccde1cb
FB
1974 /* we modify the TLB cache so that the dirty bit will be set again
1975 when accessing the range */
5579c7f3
PB
1976 start1 = (unsigned long)qemu_get_ram_ptr(start);
1977 /* Chek that we don't span multiple blocks - this breaks the
1978 address comparisons below. */
1979 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1980 != (end - 1) - start) {
1981 abort();
1982 }
1983
6a00d601 1984 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1985 int mmu_idx;
1986 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1987 for(i = 0; i < CPU_TLB_SIZE; i++)
1988 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1989 start1, length);
1990 }
6a00d601 1991 }
1ccde1cb
FB
1992}
1993
74576198
AL
1994int cpu_physical_memory_set_dirty_tracking(int enable)
1995{
f6f3fbca 1996 int ret = 0;
74576198 1997 in_migration = enable;
f6f3fbca
MT
1998 ret = cpu_notify_migration_log(!!enable);
1999 return ret;
74576198
AL
2000}
2001
2002int cpu_physical_memory_get_dirty_tracking(void)
2003{
2004 return in_migration;
2005}
2006
c227f099
AL
2007int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2008 target_phys_addr_t end_addr)
2bec46dc 2009{
7b8f3b78 2010 int ret;
151f7749 2011
f6f3fbca 2012 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2013 return ret;
2bec46dc
AL
2014}
2015
3a7d929e
FB
2016static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2017{
c227f099 2018 ram_addr_t ram_addr;
5579c7f3 2019 void *p;
3a7d929e 2020
84b7b8e7 2021 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2022 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2023 + tlb_entry->addend);
2024 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2025 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2026 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2027 }
2028 }
2029}
2030
2031/* update the TLB according to the current state of the dirty bits */
2032void cpu_tlb_update_dirty(CPUState *env)
2033{
2034 int i;
cfde4bd9
IY
2035 int mmu_idx;
2036 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2037 for(i = 0; i < CPU_TLB_SIZE; i++)
2038 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2039 }
3a7d929e
FB
2040}
2041
0f459d16 2042static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2043{
0f459d16
PB
2044 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2045 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2046}
2047
0f459d16
PB
2048/* update the TLB corresponding to virtual page vaddr
2049 so that it is no longer dirty */
2050static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2051{
1ccde1cb 2052 int i;
cfde4bd9 2053 int mmu_idx;
1ccde1cb 2054
0f459d16 2055 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2056 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2057 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2058 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2059}
2060
59817ccb
FB
2061/* add a new TLB entry. At most one entry for a given virtual address
2062 is permitted. Return 0 if OK or 2 if the page could not be mapped
2063 (can only happen in non SOFTMMU mode for I/O pages or pages
2064 conflicting with the host address space). */
5fafdf24 2065int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2066 target_phys_addr_t paddr, int prot,
6ebbf390 2067 int mmu_idx, int is_softmmu)
9fa3e853 2068{
92e873b9 2069 PhysPageDesc *p;
4f2ac237 2070 unsigned long pd;
9fa3e853 2071 unsigned int index;
4f2ac237 2072 target_ulong address;
0f459d16 2073 target_ulong code_address;
c227f099 2074 target_phys_addr_t addend;
9fa3e853 2075 int ret;
84b7b8e7 2076 CPUTLBEntry *te;
a1d1bb31 2077 CPUWatchpoint *wp;
c227f099 2078 target_phys_addr_t iotlb;
9fa3e853 2079
92e873b9 2080 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2081 if (!p) {
2082 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2083 } else {
2084 pd = p->phys_offset;
9fa3e853
FB
2085 }
2086#if defined(DEBUG_TLB)
6ebbf390
JM
2087 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2088 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2089#endif
2090
2091 ret = 0;
0f459d16
PB
2092 address = vaddr;
2093 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2094 /* IO memory case (romd handled later) */
2095 address |= TLB_MMIO;
2096 }
5579c7f3 2097 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2098 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2099 /* Normal RAM. */
2100 iotlb = pd & TARGET_PAGE_MASK;
2101 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2102 iotlb |= IO_MEM_NOTDIRTY;
2103 else
2104 iotlb |= IO_MEM_ROM;
2105 } else {
ccbb4d44 2106 /* IO handlers are currently passed a physical address.
0f459d16
PB
2107 It would be nice to pass an offset from the base address
2108 of that region. This would avoid having to special case RAM,
2109 and avoid full address decoding in every device.
2110 We can't use the high bits of pd for this because
2111 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2112 iotlb = (pd & ~TARGET_PAGE_MASK);
2113 if (p) {
8da3ff18
PB
2114 iotlb += p->region_offset;
2115 } else {
2116 iotlb += paddr;
2117 }
0f459d16
PB
2118 }
2119
2120 code_address = address;
2121 /* Make accesses to pages with watchpoints go via the
2122 watchpoint trap routines. */
72cf2d4f 2123 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2124 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2125 iotlb = io_mem_watch + paddr;
2126 /* TODO: The memory case can be optimized by not trapping
2127 reads of pages with a write breakpoint. */
2128 address |= TLB_MMIO;
6658ffb8 2129 }
0f459d16 2130 }
d79acba4 2131
0f459d16
PB
2132 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2133 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2134 te = &env->tlb_table[mmu_idx][index];
2135 te->addend = addend - vaddr;
2136 if (prot & PAGE_READ) {
2137 te->addr_read = address;
2138 } else {
2139 te->addr_read = -1;
2140 }
5c751e99 2141
0f459d16
PB
2142 if (prot & PAGE_EXEC) {
2143 te->addr_code = code_address;
2144 } else {
2145 te->addr_code = -1;
2146 }
2147 if (prot & PAGE_WRITE) {
2148 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2149 (pd & IO_MEM_ROMD)) {
2150 /* Write access calls the I/O callback. */
2151 te->addr_write = address | TLB_MMIO;
2152 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2153 !cpu_physical_memory_is_dirty(pd)) {
2154 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2155 } else {
0f459d16 2156 te->addr_write = address;
9fa3e853 2157 }
0f459d16
PB
2158 } else {
2159 te->addr_write = -1;
9fa3e853 2160 }
9fa3e853
FB
2161 return ret;
2162}
2163
0124311e
FB
2164#else
2165
ee8b7021 2166void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2167{
2168}
2169
2e12669a 2170void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2171{
2172}
2173
5fafdf24 2174int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2175 target_phys_addr_t paddr, int prot,
6ebbf390 2176 int mmu_idx, int is_softmmu)
9fa3e853
FB
2177{
2178 return 0;
2179}
0124311e 2180
edf8e2af
MW
2181/*
2182 * Walks guest process memory "regions" one by one
2183 * and calls callback function 'fn' for each region.
2184 */
2185int walk_memory_regions(void *priv,
2186 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2187{
9fa3e853 2188 unsigned long start, end;
edf8e2af 2189 PageDesc *p = NULL;
9fa3e853 2190 int i, j, prot, prot1;
edf8e2af 2191 int rc = 0;
33417e70 2192
edf8e2af 2193 start = end = -1;
9fa3e853 2194 prot = 0;
edf8e2af
MW
2195
2196 for (i = 0; i <= L1_SIZE; i++) {
2197 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2198 for (j = 0; j < L2_SIZE; j++) {
2199 prot1 = (p == NULL) ? 0 : p[j].flags;
2200 /*
2201 * "region" is one continuous chunk of memory
2202 * that has same protection flags set.
2203 */
9fa3e853
FB
2204 if (prot1 != prot) {
2205 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2206 if (start != -1) {
edf8e2af
MW
2207 rc = (*fn)(priv, start, end, prot);
2208 /* callback can stop iteration by returning != 0 */
2209 if (rc != 0)
2210 return (rc);
9fa3e853
FB
2211 }
2212 if (prot1 != 0)
2213 start = end;
2214 else
2215 start = -1;
2216 prot = prot1;
2217 }
edf8e2af 2218 if (p == NULL)
9fa3e853
FB
2219 break;
2220 }
33417e70 2221 }
edf8e2af
MW
2222 return (rc);
2223}
2224
2225static int dump_region(void *priv, unsigned long start,
2226 unsigned long end, unsigned long prot)
2227{
2228 FILE *f = (FILE *)priv;
2229
2230 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2231 start, end, end - start,
2232 ((prot & PAGE_READ) ? 'r' : '-'),
2233 ((prot & PAGE_WRITE) ? 'w' : '-'),
2234 ((prot & PAGE_EXEC) ? 'x' : '-'));
2235
2236 return (0);
2237}
2238
2239/* dump memory mappings */
2240void page_dump(FILE *f)
2241{
2242 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2243 "start", "end", "size", "prot");
2244 walk_memory_regions(f, dump_region);
33417e70
FB
2245}
2246
53a5960a 2247int page_get_flags(target_ulong address)
33417e70 2248{
9fa3e853
FB
2249 PageDesc *p;
2250
2251 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2252 if (!p)
9fa3e853
FB
2253 return 0;
2254 return p->flags;
2255}
2256
2257/* modify the flags of a page and invalidate the code if
ccbb4d44 2258 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2259 depending on PAGE_WRITE */
53a5960a 2260void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2261{
2262 PageDesc *p;
53a5960a 2263 target_ulong addr;
9fa3e853 2264
c8a706fe 2265 /* mmap_lock should already be held. */
9fa3e853
FB
2266 start = start & TARGET_PAGE_MASK;
2267 end = TARGET_PAGE_ALIGN(end);
2268 if (flags & PAGE_WRITE)
2269 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2270 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2271 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2272 /* We may be called for host regions that are outside guest
2273 address space. */
2274 if (!p)
2275 return;
9fa3e853
FB
2276 /* if the write protection is set, then we invalidate the code
2277 inside */
5fafdf24 2278 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2279 (flags & PAGE_WRITE) &&
2280 p->first_tb) {
d720b93d 2281 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2282 }
2283 p->flags = flags;
2284 }
33417e70
FB
2285}
2286
3d97b40b
TS
2287int page_check_range(target_ulong start, target_ulong len, int flags)
2288{
2289 PageDesc *p;
2290 target_ulong end;
2291 target_ulong addr;
2292
55f280c9
AZ
2293 if (start + len < start)
2294 /* we've wrapped around */
2295 return -1;
2296
3d97b40b
TS
2297 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2298 start = start & TARGET_PAGE_MASK;
2299
3d97b40b
TS
2300 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2301 p = page_find(addr >> TARGET_PAGE_BITS);
2302 if( !p )
2303 return -1;
2304 if( !(p->flags & PAGE_VALID) )
2305 return -1;
2306
dae3270c 2307 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2308 return -1;
dae3270c
FB
2309 if (flags & PAGE_WRITE) {
2310 if (!(p->flags & PAGE_WRITE_ORG))
2311 return -1;
2312 /* unprotect the page if it was put read-only because it
2313 contains translated code */
2314 if (!(p->flags & PAGE_WRITE)) {
2315 if (!page_unprotect(addr, 0, NULL))
2316 return -1;
2317 }
2318 return 0;
2319 }
3d97b40b
TS
2320 }
2321 return 0;
2322}
2323
9fa3e853 2324/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2325 page. Return TRUE if the fault was successfully handled. */
53a5960a 2326int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2327{
2328 unsigned int page_index, prot, pindex;
2329 PageDesc *p, *p1;
53a5960a 2330 target_ulong host_start, host_end, addr;
9fa3e853 2331
c8a706fe
PB
2332 /* Technically this isn't safe inside a signal handler. However we
2333 know this only ever happens in a synchronous SEGV handler, so in
2334 practice it seems to be ok. */
2335 mmap_lock();
2336
83fb7adf 2337 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2338 page_index = host_start >> TARGET_PAGE_BITS;
2339 p1 = page_find(page_index);
c8a706fe
PB
2340 if (!p1) {
2341 mmap_unlock();
9fa3e853 2342 return 0;
c8a706fe 2343 }
83fb7adf 2344 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2345 p = p1;
2346 prot = 0;
2347 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2348 prot |= p->flags;
2349 p++;
2350 }
2351 /* if the page was really writable, then we change its
2352 protection back to writable */
2353 if (prot & PAGE_WRITE_ORG) {
2354 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2355 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2356 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2357 (prot & PAGE_BITS) | PAGE_WRITE);
2358 p1[pindex].flags |= PAGE_WRITE;
2359 /* and since the content will be modified, we must invalidate
2360 the corresponding translated code. */
d720b93d 2361 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2362#ifdef DEBUG_TB_CHECK
2363 tb_invalidate_check(address);
2364#endif
c8a706fe 2365 mmap_unlock();
9fa3e853
FB
2366 return 1;
2367 }
2368 }
c8a706fe 2369 mmap_unlock();
9fa3e853
FB
2370 return 0;
2371}
2372
6a00d601
FB
2373static inline void tlb_set_dirty(CPUState *env,
2374 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2375{
2376}
9fa3e853
FB
2377#endif /* defined(CONFIG_USER_ONLY) */
2378
e2eef170 2379#if !defined(CONFIG_USER_ONLY)
8da3ff18 2380
c227f099
AL
2381static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2382 ram_addr_t memory, ram_addr_t region_offset);
2383static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2384 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2385#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2386 need_subpage) \
2387 do { \
2388 if (addr > start_addr) \
2389 start_addr2 = 0; \
2390 else { \
2391 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2392 if (start_addr2 > 0) \
2393 need_subpage = 1; \
2394 } \
2395 \
49e9fba2 2396 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2397 end_addr2 = TARGET_PAGE_SIZE - 1; \
2398 else { \
2399 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2400 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2401 need_subpage = 1; \
2402 } \
2403 } while (0)
2404
8f2498f9
MT
2405/* register physical memory.
2406 For RAM, 'size' must be a multiple of the target page size.
2407 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2408 io memory page. The address used when calling the IO function is
2409 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2410 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2411 before calculating this offset. This should not be a problem unless
2412 the low bits of start_addr and region_offset differ. */
c227f099
AL
2413void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2414 ram_addr_t size,
2415 ram_addr_t phys_offset,
2416 ram_addr_t region_offset)
33417e70 2417{
c227f099 2418 target_phys_addr_t addr, end_addr;
92e873b9 2419 PhysPageDesc *p;
9d42037b 2420 CPUState *env;
c227f099 2421 ram_addr_t orig_size = size;
db7b5426 2422 void *subpage;
33417e70 2423
f6f3fbca
MT
2424 cpu_notify_set_memory(start_addr, size, phys_offset);
2425
67c4d23c
PB
2426 if (phys_offset == IO_MEM_UNASSIGNED) {
2427 region_offset = start_addr;
2428 }
8da3ff18 2429 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2430 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2431 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2432 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2433 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2434 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2435 ram_addr_t orig_memory = p->phys_offset;
2436 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2437 int need_subpage = 0;
2438
2439 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2440 need_subpage);
4254fab8 2441 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2442 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2443 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2444 &p->phys_offset, orig_memory,
2445 p->region_offset);
db7b5426
BS
2446 } else {
2447 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2448 >> IO_MEM_SHIFT];
2449 }
8da3ff18
PB
2450 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2451 region_offset);
2452 p->region_offset = 0;
db7b5426
BS
2453 } else {
2454 p->phys_offset = phys_offset;
2455 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2456 (phys_offset & IO_MEM_ROMD))
2457 phys_offset += TARGET_PAGE_SIZE;
2458 }
2459 } else {
2460 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2461 p->phys_offset = phys_offset;
8da3ff18 2462 p->region_offset = region_offset;
db7b5426 2463 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2464 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2465 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2466 } else {
c227f099 2467 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2468 int need_subpage = 0;
2469
2470 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2471 end_addr2, need_subpage);
2472
4254fab8 2473 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2474 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2475 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2476 addr & TARGET_PAGE_MASK);
db7b5426 2477 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2478 phys_offset, region_offset);
2479 p->region_offset = 0;
db7b5426
BS
2480 }
2481 }
2482 }
8da3ff18 2483 region_offset += TARGET_PAGE_SIZE;
33417e70 2484 }
3b46e624 2485
9d42037b
FB
2486 /* since each CPU stores ram addresses in its TLB cache, we must
2487 reset the modified entries */
2488 /* XXX: slow ! */
2489 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2490 tlb_flush(env, 1);
2491 }
33417e70
FB
2492}
2493
ba863458 2494/* XXX: temporary until new memory mapping API */
c227f099 2495ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2496{
2497 PhysPageDesc *p;
2498
2499 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2500 if (!p)
2501 return IO_MEM_UNASSIGNED;
2502 return p->phys_offset;
2503}
2504
c227f099 2505void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2506{
2507 if (kvm_enabled())
2508 kvm_coalesce_mmio_region(addr, size);
2509}
2510
c227f099 2511void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2512{
2513 if (kvm_enabled())
2514 kvm_uncoalesce_mmio_region(addr, size);
2515}
2516
62a2744c
SY
2517void qemu_flush_coalesced_mmio_buffer(void)
2518{
2519 if (kvm_enabled())
2520 kvm_flush_coalesced_mmio_buffer();
2521}
2522
c227f099 2523ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2524{
2525 RAMBlock *new_block;
2526
94a6b54f
PB
2527 size = TARGET_PAGE_ALIGN(size);
2528 new_block = qemu_malloc(sizeof(*new_block));
2529
6b02494d
AG
2530#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2531 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2532 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2533 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2534#else
94a6b54f 2535 new_block->host = qemu_vmalloc(size);
6b02494d 2536#endif
ccb167e9
IE
2537#ifdef MADV_MERGEABLE
2538 madvise(new_block->host, size, MADV_MERGEABLE);
2539#endif
94a6b54f
PB
2540 new_block->offset = last_ram_offset;
2541 new_block->length = size;
2542
2543 new_block->next = ram_blocks;
2544 ram_blocks = new_block;
2545
2546 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2547 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2548 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2549 0xff, size >> TARGET_PAGE_BITS);
2550
2551 last_ram_offset += size;
2552
6f0437e8
JK
2553 if (kvm_enabled())
2554 kvm_setup_guest_memory(new_block->host, size);
2555
94a6b54f
PB
2556 return new_block->offset;
2557}
e9a1ab19 2558
c227f099 2559void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2560{
94a6b54f 2561 /* TODO: implement this. */
e9a1ab19
FB
2562}
2563
dc828ca1 2564/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2565 With the exception of the softmmu code in this file, this should
2566 only be used for local memory (e.g. video ram) that the device owns,
2567 and knows it isn't going to access beyond the end of the block.
2568
2569 It should not be used for general purpose DMA.
2570 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2571 */
c227f099 2572void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2573{
94a6b54f
PB
2574 RAMBlock *prev;
2575 RAMBlock **prevp;
2576 RAMBlock *block;
2577
94a6b54f
PB
2578 prev = NULL;
2579 prevp = &ram_blocks;
2580 block = ram_blocks;
2581 while (block && (block->offset > addr
2582 || block->offset + block->length <= addr)) {
2583 if (prev)
2584 prevp = &prev->next;
2585 prev = block;
2586 block = block->next;
2587 }
2588 if (!block) {
2589 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2590 abort();
2591 }
2592 /* Move this entry to to start of the list. */
2593 if (prev) {
2594 prev->next = block->next;
2595 block->next = *prevp;
2596 *prevp = block;
2597 }
2598 return block->host + (addr - block->offset);
dc828ca1
PB
2599}
2600
5579c7f3
PB
2601/* Some of the softmmu routines need to translate from a host pointer
2602 (typically a TLB entry) back to a ram offset. */
c227f099 2603ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2604{
94a6b54f 2605 RAMBlock *prev;
94a6b54f
PB
2606 RAMBlock *block;
2607 uint8_t *host = ptr;
2608
94a6b54f 2609 prev = NULL;
94a6b54f
PB
2610 block = ram_blocks;
2611 while (block && (block->host > host
2612 || block->host + block->length <= host)) {
94a6b54f
PB
2613 prev = block;
2614 block = block->next;
2615 }
2616 if (!block) {
2617 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2618 abort();
2619 }
2620 return block->offset + (host - block->host);
5579c7f3
PB
2621}
2622
c227f099 2623static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2624{
67d3b957 2625#ifdef DEBUG_UNASSIGNED
ab3d1727 2626 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2627#endif
faed1c2a 2628#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2629 do_unassigned_access(addr, 0, 0, 0, 1);
2630#endif
2631 return 0;
2632}
2633
c227f099 2634static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2635{
2636#ifdef DEBUG_UNASSIGNED
2637 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2638#endif
faed1c2a 2639#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2640 do_unassigned_access(addr, 0, 0, 0, 2);
2641#endif
2642 return 0;
2643}
2644
c227f099 2645static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2646{
2647#ifdef DEBUG_UNASSIGNED
2648 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2649#endif
faed1c2a 2650#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2651 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2652#endif
33417e70
FB
2653 return 0;
2654}
2655
c227f099 2656static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2657{
67d3b957 2658#ifdef DEBUG_UNASSIGNED
ab3d1727 2659 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2660#endif
faed1c2a 2661#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2662 do_unassigned_access(addr, 1, 0, 0, 1);
2663#endif
2664}
2665
c227f099 2666static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2667{
2668#ifdef DEBUG_UNASSIGNED
2669 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2670#endif
faed1c2a 2671#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2672 do_unassigned_access(addr, 1, 0, 0, 2);
2673#endif
2674}
2675
c227f099 2676static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2677{
2678#ifdef DEBUG_UNASSIGNED
2679 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2680#endif
faed1c2a 2681#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2682 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2683#endif
33417e70
FB
2684}
2685
d60efc6b 2686static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2687 unassigned_mem_readb,
e18231a3
BS
2688 unassigned_mem_readw,
2689 unassigned_mem_readl,
33417e70
FB
2690};
2691
d60efc6b 2692static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2693 unassigned_mem_writeb,
e18231a3
BS
2694 unassigned_mem_writew,
2695 unassigned_mem_writel,
33417e70
FB
2696};
2697
c227f099 2698static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2699 uint32_t val)
9fa3e853 2700{
3a7d929e 2701 int dirty_flags;
3a7d929e
FB
2702 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2703 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2704#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2705 tb_invalidate_phys_page_fast(ram_addr, 1);
2706 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2707#endif
3a7d929e 2708 }
5579c7f3 2709 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2710 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2711 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2712 /* we remove the notdirty callback only if the code has been
2713 flushed */
2714 if (dirty_flags == 0xff)
2e70f6ef 2715 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2716}
2717
c227f099 2718static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2719 uint32_t val)
9fa3e853 2720{
3a7d929e 2721 int dirty_flags;
3a7d929e
FB
2722 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2723 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2724#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2725 tb_invalidate_phys_page_fast(ram_addr, 2);
2726 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2727#endif
3a7d929e 2728 }
5579c7f3 2729 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2730 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2731 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2732 /* we remove the notdirty callback only if the code has been
2733 flushed */
2734 if (dirty_flags == 0xff)
2e70f6ef 2735 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2736}
2737
c227f099 2738static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2739 uint32_t val)
9fa3e853 2740{
3a7d929e 2741 int dirty_flags;
3a7d929e
FB
2742 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2743 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2744#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2745 tb_invalidate_phys_page_fast(ram_addr, 4);
2746 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2747#endif
3a7d929e 2748 }
5579c7f3 2749 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2750 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2751 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2752 /* we remove the notdirty callback only if the code has been
2753 flushed */
2754 if (dirty_flags == 0xff)
2e70f6ef 2755 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2756}
2757
d60efc6b 2758static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2759 NULL, /* never used */
2760 NULL, /* never used */
2761 NULL, /* never used */
2762};
2763
d60efc6b 2764static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2765 notdirty_mem_writeb,
2766 notdirty_mem_writew,
2767 notdirty_mem_writel,
2768};
2769
0f459d16 2770/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2771static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2772{
2773 CPUState *env = cpu_single_env;
06d55cc1
AL
2774 target_ulong pc, cs_base;
2775 TranslationBlock *tb;
0f459d16 2776 target_ulong vaddr;
a1d1bb31 2777 CPUWatchpoint *wp;
06d55cc1 2778 int cpu_flags;
0f459d16 2779
06d55cc1
AL
2780 if (env->watchpoint_hit) {
2781 /* We re-entered the check after replacing the TB. Now raise
2782 * the debug interrupt so that is will trigger after the
2783 * current instruction. */
2784 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2785 return;
2786 }
2e70f6ef 2787 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2788 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2789 if ((vaddr == (wp->vaddr & len_mask) ||
2790 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2791 wp->flags |= BP_WATCHPOINT_HIT;
2792 if (!env->watchpoint_hit) {
2793 env->watchpoint_hit = wp;
2794 tb = tb_find_pc(env->mem_io_pc);
2795 if (!tb) {
2796 cpu_abort(env, "check_watchpoint: could not find TB for "
2797 "pc=%p", (void *)env->mem_io_pc);
2798 }
2799 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2800 tb_phys_invalidate(tb, -1);
2801 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2802 env->exception_index = EXCP_DEBUG;
2803 } else {
2804 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2805 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2806 }
2807 cpu_resume_from_signal(env, NULL);
06d55cc1 2808 }
6e140f28
AL
2809 } else {
2810 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2811 }
2812 }
2813}
2814
6658ffb8
PB
2815/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2816 so these check for a hit then pass through to the normal out-of-line
2817 phys routines. */
c227f099 2818static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 2819{
b4051334 2820 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2821 return ldub_phys(addr);
2822}
2823
c227f099 2824static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 2825{
b4051334 2826 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2827 return lduw_phys(addr);
2828}
2829
c227f099 2830static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 2831{
b4051334 2832 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2833 return ldl_phys(addr);
2834}
2835
c227f099 2836static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2837 uint32_t val)
2838{
b4051334 2839 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2840 stb_phys(addr, val);
2841}
2842
c227f099 2843static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2844 uint32_t val)
2845{
b4051334 2846 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2847 stw_phys(addr, val);
2848}
2849
c227f099 2850static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2851 uint32_t val)
2852{
b4051334 2853 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2854 stl_phys(addr, val);
2855}
2856
d60efc6b 2857static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2858 watch_mem_readb,
2859 watch_mem_readw,
2860 watch_mem_readl,
2861};
2862
d60efc6b 2863static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2864 watch_mem_writeb,
2865 watch_mem_writew,
2866 watch_mem_writel,
2867};
6658ffb8 2868
c227f099 2869static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2870 unsigned int len)
2871{
db7b5426
BS
2872 uint32_t ret;
2873 unsigned int idx;
2874
8da3ff18 2875 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2876#if defined(DEBUG_SUBPAGE)
2877 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2878 mmio, len, addr, idx);
2879#endif
8da3ff18
PB
2880 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2881 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2882
2883 return ret;
2884}
2885
c227f099 2886static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2887 uint32_t value, unsigned int len)
2888{
db7b5426
BS
2889 unsigned int idx;
2890
8da3ff18 2891 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2892#if defined(DEBUG_SUBPAGE)
2893 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2894 mmio, len, addr, idx, value);
2895#endif
8da3ff18
PB
2896 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2897 addr + mmio->region_offset[idx][1][len],
2898 value);
db7b5426
BS
2899}
2900
c227f099 2901static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2902{
2903#if defined(DEBUG_SUBPAGE)
2904 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2905#endif
2906
2907 return subpage_readlen(opaque, addr, 0);
2908}
2909
c227f099 2910static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2911 uint32_t value)
2912{
2913#if defined(DEBUG_SUBPAGE)
2914 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2915#endif
2916 subpage_writelen(opaque, addr, value, 0);
2917}
2918
c227f099 2919static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2920{
2921#if defined(DEBUG_SUBPAGE)
2922 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2923#endif
2924
2925 return subpage_readlen(opaque, addr, 1);
2926}
2927
c227f099 2928static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2929 uint32_t value)
2930{
2931#if defined(DEBUG_SUBPAGE)
2932 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2933#endif
2934 subpage_writelen(opaque, addr, value, 1);
2935}
2936
c227f099 2937static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2938{
2939#if defined(DEBUG_SUBPAGE)
2940 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2941#endif
2942
2943 return subpage_readlen(opaque, addr, 2);
2944}
2945
2946static void subpage_writel (void *opaque,
c227f099 2947 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
2948{
2949#if defined(DEBUG_SUBPAGE)
2950 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2951#endif
2952 subpage_writelen(opaque, addr, value, 2);
2953}
2954
d60efc6b 2955static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2956 &subpage_readb,
2957 &subpage_readw,
2958 &subpage_readl,
2959};
2960
d60efc6b 2961static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2962 &subpage_writeb,
2963 &subpage_writew,
2964 &subpage_writel,
2965};
2966
c227f099
AL
2967static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2968 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2969{
2970 int idx, eidx;
4254fab8 2971 unsigned int i;
db7b5426
BS
2972
2973 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2974 return -1;
2975 idx = SUBPAGE_IDX(start);
2976 eidx = SUBPAGE_IDX(end);
2977#if defined(DEBUG_SUBPAGE)
0bf9e31a 2978 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2979 mmio, start, end, idx, eidx, memory);
2980#endif
2981 memory >>= IO_MEM_SHIFT;
2982 for (; idx <= eidx; idx++) {
4254fab8 2983 for (i = 0; i < 4; i++) {
3ee89922
BS
2984 if (io_mem_read[memory][i]) {
2985 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2986 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2987 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2988 }
2989 if (io_mem_write[memory][i]) {
2990 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2991 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2992 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2993 }
4254fab8 2994 }
db7b5426
BS
2995 }
2996
2997 return 0;
2998}
2999
c227f099
AL
3000static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3001 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3002{
c227f099 3003 subpage_t *mmio;
db7b5426
BS
3004 int subpage_memory;
3005
c227f099 3006 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3007
3008 mmio->base = base;
1eed09cb 3009 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3010#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3011 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3012 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3013#endif
1eec614b
AL
3014 *phys = subpage_memory | IO_MEM_SUBPAGE;
3015 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3016 region_offset);
db7b5426
BS
3017
3018 return mmio;
3019}
3020
88715657
AL
3021static int get_free_io_mem_idx(void)
3022{
3023 int i;
3024
3025 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3026 if (!io_mem_used[i]) {
3027 io_mem_used[i] = 1;
3028 return i;
3029 }
c6703b47 3030 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3031 return -1;
3032}
3033
33417e70
FB
3034/* mem_read and mem_write are arrays of functions containing the
3035 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3036 2). Functions can be omitted with a NULL function pointer.
3ee89922 3037 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3038 modified. If it is zero, a new io zone is allocated. The return
3039 value can be used with cpu_register_physical_memory(). (-1) is
3040 returned if error. */
1eed09cb 3041static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3042 CPUReadMemoryFunc * const *mem_read,
3043 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3044 void *opaque)
33417e70 3045{
4254fab8 3046 int i, subwidth = 0;
33417e70
FB
3047
3048 if (io_index <= 0) {
88715657
AL
3049 io_index = get_free_io_mem_idx();
3050 if (io_index == -1)
3051 return io_index;
33417e70 3052 } else {
1eed09cb 3053 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3054 if (io_index >= IO_MEM_NB_ENTRIES)
3055 return -1;
3056 }
b5ff1b31 3057
33417e70 3058 for(i = 0;i < 3; i++) {
4254fab8
BS
3059 if (!mem_read[i] || !mem_write[i])
3060 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3061 io_mem_read[io_index][i] = mem_read[i];
3062 io_mem_write[io_index][i] = mem_write[i];
3063 }
a4193c8a 3064 io_mem_opaque[io_index] = opaque;
4254fab8 3065 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3066}
61382a50 3067
d60efc6b
BS
3068int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3069 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3070 void *opaque)
3071{
3072 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3073}
3074
88715657
AL
3075void cpu_unregister_io_memory(int io_table_address)
3076{
3077 int i;
3078 int io_index = io_table_address >> IO_MEM_SHIFT;
3079
3080 for (i=0;i < 3; i++) {
3081 io_mem_read[io_index][i] = unassigned_mem_read[i];
3082 io_mem_write[io_index][i] = unassigned_mem_write[i];
3083 }
3084 io_mem_opaque[io_index] = NULL;
3085 io_mem_used[io_index] = 0;
3086}
3087
e9179ce1
AK
3088static void io_mem_init(void)
3089{
3090 int i;
3091
3092 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3093 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3094 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3095 for (i=0; i<5; i++)
3096 io_mem_used[i] = 1;
3097
3098 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3099 watch_mem_write, NULL);
e9179ce1
AK
3100}
3101
e2eef170
PB
3102#endif /* !defined(CONFIG_USER_ONLY) */
3103
13eb76e0
FB
3104/* physical memory access (slow version, mainly for debug) */
3105#if defined(CONFIG_USER_ONLY)
c227f099 3106void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3107 int len, int is_write)
3108{
3109 int l, flags;
3110 target_ulong page;
53a5960a 3111 void * p;
13eb76e0
FB
3112
3113 while (len > 0) {
3114 page = addr & TARGET_PAGE_MASK;
3115 l = (page + TARGET_PAGE_SIZE) - addr;
3116 if (l > len)
3117 l = len;
3118 flags = page_get_flags(page);
3119 if (!(flags & PAGE_VALID))
3120 return;
3121 if (is_write) {
3122 if (!(flags & PAGE_WRITE))
3123 return;
579a97f7 3124 /* XXX: this code should not depend on lock_user */
72fb7daa 3125 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3126 /* FIXME - should this return an error rather than just fail? */
3127 return;
72fb7daa
AJ
3128 memcpy(p, buf, l);
3129 unlock_user(p, addr, l);
13eb76e0
FB
3130 } else {
3131 if (!(flags & PAGE_READ))
3132 return;
579a97f7 3133 /* XXX: this code should not depend on lock_user */
72fb7daa 3134 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3135 /* FIXME - should this return an error rather than just fail? */
3136 return;
72fb7daa 3137 memcpy(buf, p, l);
5b257578 3138 unlock_user(p, addr, 0);
13eb76e0
FB
3139 }
3140 len -= l;
3141 buf += l;
3142 addr += l;
3143 }
3144}
8df1cd07 3145
13eb76e0 3146#else
c227f099 3147void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3148 int len, int is_write)
3149{
3150 int l, io_index;
3151 uint8_t *ptr;
3152 uint32_t val;
c227f099 3153 target_phys_addr_t page;
2e12669a 3154 unsigned long pd;
92e873b9 3155 PhysPageDesc *p;
3b46e624 3156
13eb76e0
FB
3157 while (len > 0) {
3158 page = addr & TARGET_PAGE_MASK;
3159 l = (page + TARGET_PAGE_SIZE) - addr;
3160 if (l > len)
3161 l = len;
92e873b9 3162 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3163 if (!p) {
3164 pd = IO_MEM_UNASSIGNED;
3165 } else {
3166 pd = p->phys_offset;
3167 }
3b46e624 3168
13eb76e0 3169 if (is_write) {
3a7d929e 3170 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3171 target_phys_addr_t addr1 = addr;
13eb76e0 3172 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3173 if (p)
6c2934db 3174 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3175 /* XXX: could force cpu_single_env to NULL to avoid
3176 potential bugs */
6c2934db 3177 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3178 /* 32 bit write access */
c27004ec 3179 val = ldl_p(buf);
6c2934db 3180 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3181 l = 4;
6c2934db 3182 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3183 /* 16 bit write access */
c27004ec 3184 val = lduw_p(buf);
6c2934db 3185 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3186 l = 2;
3187 } else {
1c213d19 3188 /* 8 bit write access */
c27004ec 3189 val = ldub_p(buf);
6c2934db 3190 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3191 l = 1;
3192 }
3193 } else {
b448f2f3
FB
3194 unsigned long addr1;
3195 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3196 /* RAM case */
5579c7f3 3197 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3198 memcpy(ptr, buf, l);
3a7d929e
FB
3199 if (!cpu_physical_memory_is_dirty(addr1)) {
3200 /* invalidate code */
3201 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3202 /* set dirty bit */
5fafdf24 3203 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3204 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3205 }
13eb76e0
FB
3206 }
3207 } else {
5fafdf24 3208 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3209 !(pd & IO_MEM_ROMD)) {
c227f099 3210 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3211 /* I/O case */
3212 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3213 if (p)
6c2934db
AJ
3214 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3215 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3216 /* 32 bit read access */
6c2934db 3217 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3218 stl_p(buf, val);
13eb76e0 3219 l = 4;
6c2934db 3220 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3221 /* 16 bit read access */
6c2934db 3222 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3223 stw_p(buf, val);
13eb76e0
FB
3224 l = 2;
3225 } else {
1c213d19 3226 /* 8 bit read access */
6c2934db 3227 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3228 stb_p(buf, val);
13eb76e0
FB
3229 l = 1;
3230 }
3231 } else {
3232 /* RAM case */
5579c7f3 3233 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3234 (addr & ~TARGET_PAGE_MASK);
3235 memcpy(buf, ptr, l);
3236 }
3237 }
3238 len -= l;
3239 buf += l;
3240 addr += l;
3241 }
3242}
8df1cd07 3243
d0ecd2aa 3244/* used for ROM loading : can write in RAM and ROM */
c227f099 3245void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3246 const uint8_t *buf, int len)
3247{
3248 int l;
3249 uint8_t *ptr;
c227f099 3250 target_phys_addr_t page;
d0ecd2aa
FB
3251 unsigned long pd;
3252 PhysPageDesc *p;
3b46e624 3253
d0ecd2aa
FB
3254 while (len > 0) {
3255 page = addr & TARGET_PAGE_MASK;
3256 l = (page + TARGET_PAGE_SIZE) - addr;
3257 if (l > len)
3258 l = len;
3259 p = phys_page_find(page >> TARGET_PAGE_BITS);
3260 if (!p) {
3261 pd = IO_MEM_UNASSIGNED;
3262 } else {
3263 pd = p->phys_offset;
3264 }
3b46e624 3265
d0ecd2aa 3266 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3267 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3268 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3269 /* do nothing */
3270 } else {
3271 unsigned long addr1;
3272 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3273 /* ROM/RAM case */
5579c7f3 3274 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3275 memcpy(ptr, buf, l);
3276 }
3277 len -= l;
3278 buf += l;
3279 addr += l;
3280 }
3281}
3282
6d16c2f8
AL
3283typedef struct {
3284 void *buffer;
c227f099
AL
3285 target_phys_addr_t addr;
3286 target_phys_addr_t len;
6d16c2f8
AL
3287} BounceBuffer;
3288
3289static BounceBuffer bounce;
3290
ba223c29
AL
3291typedef struct MapClient {
3292 void *opaque;
3293 void (*callback)(void *opaque);
72cf2d4f 3294 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3295} MapClient;
3296
72cf2d4f
BS
3297static QLIST_HEAD(map_client_list, MapClient) map_client_list
3298 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3299
3300void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3301{
3302 MapClient *client = qemu_malloc(sizeof(*client));
3303
3304 client->opaque = opaque;
3305 client->callback = callback;
72cf2d4f 3306 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3307 return client;
3308}
3309
3310void cpu_unregister_map_client(void *_client)
3311{
3312 MapClient *client = (MapClient *)_client;
3313
72cf2d4f 3314 QLIST_REMOVE(client, link);
34d5e948 3315 qemu_free(client);
ba223c29
AL
3316}
3317
3318static void cpu_notify_map_clients(void)
3319{
3320 MapClient *client;
3321
72cf2d4f
BS
3322 while (!QLIST_EMPTY(&map_client_list)) {
3323 client = QLIST_FIRST(&map_client_list);
ba223c29 3324 client->callback(client->opaque);
34d5e948 3325 cpu_unregister_map_client(client);
ba223c29
AL
3326 }
3327}
3328
6d16c2f8
AL
3329/* Map a physical memory region into a host virtual address.
3330 * May map a subset of the requested range, given by and returned in *plen.
3331 * May return NULL if resources needed to perform the mapping are exhausted.
3332 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3333 * Use cpu_register_map_client() to know when retrying the map operation is
3334 * likely to succeed.
6d16c2f8 3335 */
c227f099
AL
3336void *cpu_physical_memory_map(target_phys_addr_t addr,
3337 target_phys_addr_t *plen,
6d16c2f8
AL
3338 int is_write)
3339{
c227f099
AL
3340 target_phys_addr_t len = *plen;
3341 target_phys_addr_t done = 0;
6d16c2f8
AL
3342 int l;
3343 uint8_t *ret = NULL;
3344 uint8_t *ptr;
c227f099 3345 target_phys_addr_t page;
6d16c2f8
AL
3346 unsigned long pd;
3347 PhysPageDesc *p;
3348 unsigned long addr1;
3349
3350 while (len > 0) {
3351 page = addr & TARGET_PAGE_MASK;
3352 l = (page + TARGET_PAGE_SIZE) - addr;
3353 if (l > len)
3354 l = len;
3355 p = phys_page_find(page >> TARGET_PAGE_BITS);
3356 if (!p) {
3357 pd = IO_MEM_UNASSIGNED;
3358 } else {
3359 pd = p->phys_offset;
3360 }
3361
3362 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3363 if (done || bounce.buffer) {
3364 break;
3365 }
3366 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3367 bounce.addr = addr;
3368 bounce.len = l;
3369 if (!is_write) {
3370 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3371 }
3372 ptr = bounce.buffer;
3373 } else {
3374 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3375 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3376 }
3377 if (!done) {
3378 ret = ptr;
3379 } else if (ret + done != ptr) {
3380 break;
3381 }
3382
3383 len -= l;
3384 addr += l;
3385 done += l;
3386 }
3387 *plen = done;
3388 return ret;
3389}
3390
3391/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3392 * Will also mark the memory as dirty if is_write == 1. access_len gives
3393 * the amount of memory that was actually read or written by the caller.
3394 */
c227f099
AL
3395void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3396 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3397{
3398 if (buffer != bounce.buffer) {
3399 if (is_write) {
c227f099 3400 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3401 while (access_len) {
3402 unsigned l;
3403 l = TARGET_PAGE_SIZE;
3404 if (l > access_len)
3405 l = access_len;
3406 if (!cpu_physical_memory_is_dirty(addr1)) {
3407 /* invalidate code */
3408 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3409 /* set dirty bit */
3410 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3411 (0xff & ~CODE_DIRTY_FLAG);
3412 }
3413 addr1 += l;
3414 access_len -= l;
3415 }
3416 }
3417 return;
3418 }
3419 if (is_write) {
3420 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3421 }
f8a83245 3422 qemu_vfree(bounce.buffer);
6d16c2f8 3423 bounce.buffer = NULL;
ba223c29 3424 cpu_notify_map_clients();
6d16c2f8 3425}
d0ecd2aa 3426
8df1cd07 3427/* warning: addr must be aligned */
c227f099 3428uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3429{
3430 int io_index;
3431 uint8_t *ptr;
3432 uint32_t val;
3433 unsigned long pd;
3434 PhysPageDesc *p;
3435
3436 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3437 if (!p) {
3438 pd = IO_MEM_UNASSIGNED;
3439 } else {
3440 pd = p->phys_offset;
3441 }
3b46e624 3442
5fafdf24 3443 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3444 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3445 /* I/O case */
3446 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3447 if (p)
3448 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3449 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3450 } else {
3451 /* RAM case */
5579c7f3 3452 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3453 (addr & ~TARGET_PAGE_MASK);
3454 val = ldl_p(ptr);
3455 }
3456 return val;
3457}
3458
84b7b8e7 3459/* warning: addr must be aligned */
c227f099 3460uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3461{
3462 int io_index;
3463 uint8_t *ptr;
3464 uint64_t val;
3465 unsigned long pd;
3466 PhysPageDesc *p;
3467
3468 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3469 if (!p) {
3470 pd = IO_MEM_UNASSIGNED;
3471 } else {
3472 pd = p->phys_offset;
3473 }
3b46e624 3474
2a4188a3
FB
3475 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3476 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3477 /* I/O case */
3478 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3479 if (p)
3480 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3481#ifdef TARGET_WORDS_BIGENDIAN
3482 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3483 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3484#else
3485 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3486 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3487#endif
3488 } else {
3489 /* RAM case */
5579c7f3 3490 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3491 (addr & ~TARGET_PAGE_MASK);
3492 val = ldq_p(ptr);
3493 }
3494 return val;
3495}
3496
aab33094 3497/* XXX: optimize */
c227f099 3498uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3499{
3500 uint8_t val;
3501 cpu_physical_memory_read(addr, &val, 1);
3502 return val;
3503}
3504
3505/* XXX: optimize */
c227f099 3506uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3507{
3508 uint16_t val;
3509 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3510 return tswap16(val);
3511}
3512
8df1cd07
FB
3513/* warning: addr must be aligned. The ram page is not masked as dirty
3514 and the code inside is not invalidated. It is useful if the dirty
3515 bits are used to track modified PTEs */
c227f099 3516void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3517{
3518 int io_index;
3519 uint8_t *ptr;
3520 unsigned long pd;
3521 PhysPageDesc *p;
3522
3523 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3524 if (!p) {
3525 pd = IO_MEM_UNASSIGNED;
3526 } else {
3527 pd = p->phys_offset;
3528 }
3b46e624 3529
3a7d929e 3530 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3531 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3532 if (p)
3533 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3534 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3535 } else {
74576198 3536 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3537 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3538 stl_p(ptr, val);
74576198
AL
3539
3540 if (unlikely(in_migration)) {
3541 if (!cpu_physical_memory_is_dirty(addr1)) {
3542 /* invalidate code */
3543 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3544 /* set dirty bit */
3545 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3546 (0xff & ~CODE_DIRTY_FLAG);
3547 }
3548 }
8df1cd07
FB
3549 }
3550}
3551
c227f099 3552void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3553{
3554 int io_index;
3555 uint8_t *ptr;
3556 unsigned long pd;
3557 PhysPageDesc *p;
3558
3559 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3560 if (!p) {
3561 pd = IO_MEM_UNASSIGNED;
3562 } else {
3563 pd = p->phys_offset;
3564 }
3b46e624 3565
bc98a7ef
JM
3566 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3567 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3568 if (p)
3569 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3570#ifdef TARGET_WORDS_BIGENDIAN
3571 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3572 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3573#else
3574 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3575 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3576#endif
3577 } else {
5579c7f3 3578 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3579 (addr & ~TARGET_PAGE_MASK);
3580 stq_p(ptr, val);
3581 }
3582}
3583
8df1cd07 3584/* warning: addr must be aligned */
c227f099 3585void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3586{
3587 int io_index;
3588 uint8_t *ptr;
3589 unsigned long pd;
3590 PhysPageDesc *p;
3591
3592 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3593 if (!p) {
3594 pd = IO_MEM_UNASSIGNED;
3595 } else {
3596 pd = p->phys_offset;
3597 }
3b46e624 3598
3a7d929e 3599 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3600 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3601 if (p)
3602 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3603 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3604 } else {
3605 unsigned long addr1;
3606 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3607 /* RAM case */
5579c7f3 3608 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3609 stl_p(ptr, val);
3a7d929e
FB
3610 if (!cpu_physical_memory_is_dirty(addr1)) {
3611 /* invalidate code */
3612 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3613 /* set dirty bit */
f23db169
FB
3614 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3615 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3616 }
8df1cd07
FB
3617 }
3618}
3619
aab33094 3620/* XXX: optimize */
c227f099 3621void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3622{
3623 uint8_t v = val;
3624 cpu_physical_memory_write(addr, &v, 1);
3625}
3626
3627/* XXX: optimize */
c227f099 3628void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3629{
3630 uint16_t v = tswap16(val);
3631 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3632}
3633
3634/* XXX: optimize */
c227f099 3635void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3636{
3637 val = tswap64(val);
3638 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3639}
3640
13eb76e0
FB
3641#endif
3642
5e2972fd 3643/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3644int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3645 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3646{
3647 int l;
c227f099 3648 target_phys_addr_t phys_addr;
9b3c35e0 3649 target_ulong page;
13eb76e0
FB
3650
3651 while (len > 0) {
3652 page = addr & TARGET_PAGE_MASK;
3653 phys_addr = cpu_get_phys_page_debug(env, page);
3654 /* if no physical page mapped, return an error */
3655 if (phys_addr == -1)
3656 return -1;
3657 l = (page + TARGET_PAGE_SIZE) - addr;
3658 if (l > len)
3659 l = len;
5e2972fd
AL
3660 phys_addr += (addr & ~TARGET_PAGE_MASK);
3661#if !defined(CONFIG_USER_ONLY)
3662 if (is_write)
3663 cpu_physical_memory_write_rom(phys_addr, buf, l);
3664 else
3665#endif
3666 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3667 len -= l;
3668 buf += l;
3669 addr += l;
3670 }
3671 return 0;
3672}
3673
2e70f6ef
PB
3674/* in deterministic execution mode, instructions doing device I/Os
3675 must be at the end of the TB */
3676void cpu_io_recompile(CPUState *env, void *retaddr)
3677{
3678 TranslationBlock *tb;
3679 uint32_t n, cflags;
3680 target_ulong pc, cs_base;
3681 uint64_t flags;
3682
3683 tb = tb_find_pc((unsigned long)retaddr);
3684 if (!tb) {
3685 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3686 retaddr);
3687 }
3688 n = env->icount_decr.u16.low + tb->icount;
3689 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3690 /* Calculate how many instructions had been executed before the fault
bf20dc07 3691 occurred. */
2e70f6ef
PB
3692 n = n - env->icount_decr.u16.low;
3693 /* Generate a new TB ending on the I/O insn. */
3694 n++;
3695 /* On MIPS and SH, delay slot instructions can only be restarted if
3696 they were already the first instruction in the TB. If this is not
bf20dc07 3697 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3698 branch. */
3699#if defined(TARGET_MIPS)
3700 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3701 env->active_tc.PC -= 4;
3702 env->icount_decr.u16.low++;
3703 env->hflags &= ~MIPS_HFLAG_BMASK;
3704 }
3705#elif defined(TARGET_SH4)
3706 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3707 && n > 1) {
3708 env->pc -= 2;
3709 env->icount_decr.u16.low++;
3710 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3711 }
3712#endif
3713 /* This should never happen. */
3714 if (n > CF_COUNT_MASK)
3715 cpu_abort(env, "TB too big during recompile");
3716
3717 cflags = n | CF_LAST_IO;
3718 pc = tb->pc;
3719 cs_base = tb->cs_base;
3720 flags = tb->flags;
3721 tb_phys_invalidate(tb, -1);
3722 /* FIXME: In theory this could raise an exception. In practice
3723 we have already translated the block once so it's probably ok. */
3724 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3725 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3726 the first in the TB) then we end up generating a whole new TB and
3727 repeating the fault, which is horribly inefficient.
3728 Better would be to execute just this insn uncached, or generate a
3729 second new TB. */
3730 cpu_resume_from_signal(env, NULL);
3731}
3732
e3db7226
FB
3733void dump_exec_info(FILE *f,
3734 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3735{
3736 int i, target_code_size, max_target_code_size;
3737 int direct_jmp_count, direct_jmp2_count, cross_page;
3738 TranslationBlock *tb;
3b46e624 3739
e3db7226
FB
3740 target_code_size = 0;
3741 max_target_code_size = 0;
3742 cross_page = 0;
3743 direct_jmp_count = 0;
3744 direct_jmp2_count = 0;
3745 for(i = 0; i < nb_tbs; i++) {
3746 tb = &tbs[i];
3747 target_code_size += tb->size;
3748 if (tb->size > max_target_code_size)
3749 max_target_code_size = tb->size;
3750 if (tb->page_addr[1] != -1)
3751 cross_page++;
3752 if (tb->tb_next_offset[0] != 0xffff) {
3753 direct_jmp_count++;
3754 if (tb->tb_next_offset[1] != 0xffff) {
3755 direct_jmp2_count++;
3756 }
3757 }
3758 }
3759 /* XXX: avoid using doubles ? */
57fec1fe 3760 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3761 cpu_fprintf(f, "gen code size %ld/%ld\n",
3762 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3763 cpu_fprintf(f, "TB count %d/%d\n",
3764 nb_tbs, code_gen_max_blocks);
5fafdf24 3765 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3766 nb_tbs ? target_code_size / nb_tbs : 0,
3767 max_target_code_size);
5fafdf24 3768 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3769 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3770 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3771 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3772 cross_page,
e3db7226
FB
3773 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3774 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3775 direct_jmp_count,
e3db7226
FB
3776 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3777 direct_jmp2_count,
3778 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3779 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3780 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3781 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3782 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3783 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3784}
3785
5fafdf24 3786#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3787
3788#define MMUSUFFIX _cmmu
3789#define GETPC() NULL
3790#define env cpu_single_env
b769d8fe 3791#define SOFTMMU_CODE_ACCESS
61382a50
FB
3792
3793#define SHIFT 0
3794#include "softmmu_template.h"
3795
3796#define SHIFT 1
3797#include "softmmu_template.h"
3798
3799#define SHIFT 2
3800#include "softmmu_template.h"
3801
3802#define SHIFT 3
3803#include "softmmu_template.h"
3804
3805#undef env
3806
3807#endif