]> git.proxmox.com Git - qemu.git/blame - exec.c
net: Fix VM start with '-net none'
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
29e922b6 41#include "qemu-timer.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
fd052bf6 44#include <signal.h>
f01576f1
JL
45#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46#include <sys/param.h>
47#if __FreeBSD_version >= 700104
48#define HAVE_KINFO_GETVMMAP
49#define sigqueue sigqueue_freebsd /* avoid redefinition */
50#include <sys/time.h>
51#include <sys/proc.h>
52#include <machine/profile.h>
53#define _KERNEL
54#include <sys/user.h>
55#undef _KERNEL
56#undef sigqueue
57#include <libutil.h>
58#endif
59#endif
53a5960a 60#endif
54936004 61
fd6ce8f6 62//#define DEBUG_TB_INVALIDATE
66e85a21 63//#define DEBUG_FLUSH
9fa3e853 64//#define DEBUG_TLB
67d3b957 65//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
66
67/* make various TB consistency checks */
5fafdf24
TS
68//#define DEBUG_TB_CHECK
69//#define DEBUG_TLB_CHECK
fd6ce8f6 70
1196be37 71//#define DEBUG_IOPORT
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
99773bd4
PB
74#if !defined(CONFIG_USER_ONLY)
75/* TB consistency checks only implemented for usermode emulation. */
76#undef DEBUG_TB_CHECK
77#endif
78
9fa3e853
FB
79#define SMC_BITMAP_USE_THRESHOLD 10
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
74576198 113static int in_migration;
94a6b54f 114
f471a17e 115RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
e2eef170 116#endif
9fa3e853 117
6a00d601
FB
118CPUState *first_cpu;
119/* current CPU in the current thread. It is only valid inside
120 cpu_exec() */
5fafdf24 121CPUState *cpu_single_env;
2e70f6ef 122/* 0 = Do not count executed instructions.
bf20dc07 123 1 = Precise instruction counting.
2e70f6ef
PB
124 2 = Adaptive rate instruction counting. */
125int use_icount = 0;
126/* Current instruction counter. While executing translated code this may
127 include some instructions that have not yet been executed. */
128int64_t qemu_icount;
6a00d601 129
54936004 130typedef struct PageDesc {
92e873b9 131 /* list of TBs intersecting this ram page */
fd6ce8f6 132 TranslationBlock *first_tb;
9fa3e853
FB
133 /* in order to optimize self modifying code, we count the number
134 of lookups we do to a given page to use a bitmap */
135 unsigned int code_write_count;
136 uint8_t *code_bitmap;
137#if defined(CONFIG_USER_ONLY)
138 unsigned long flags;
139#endif
54936004
FB
140} PageDesc;
141
41c1b1c9 142/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
143 while in user mode we want it to be based on virtual addresses. */
144#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
145#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
146# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
147#else
5cd2c5b6 148# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 149#endif
bedb69ea 150#else
5cd2c5b6 151# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 152#endif
54936004 153
5cd2c5b6
RH
154/* Size of the L2 (and L3, etc) page tables. */
155#define L2_BITS 10
54936004
FB
156#define L2_SIZE (1 << L2_BITS)
157
5cd2c5b6
RH
158/* The bits remaining after N lower levels of page tables. */
159#define P_L1_BITS_REM \
160 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
161#define V_L1_BITS_REM \
162 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
163
164/* Size of the L1 page table. Avoid silly small sizes. */
165#if P_L1_BITS_REM < 4
166#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
167#else
168#define P_L1_BITS P_L1_BITS_REM
169#endif
170
171#if V_L1_BITS_REM < 4
172#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
173#else
174#define V_L1_BITS V_L1_BITS_REM
175#endif
176
177#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
178#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
179
180#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
181#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
182
83fb7adf
FB
183unsigned long qemu_real_host_page_size;
184unsigned long qemu_host_page_bits;
185unsigned long qemu_host_page_size;
186unsigned long qemu_host_page_mask;
54936004 187
5cd2c5b6
RH
188/* This is a multi-level map on the virtual address space.
189 The bottom level has pointers to PageDesc. */
190static void *l1_map[V_L1_SIZE];
54936004 191
e2eef170 192#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
193typedef struct PhysPageDesc {
194 /* offset in host memory of the page + io_index in the low bits */
195 ram_addr_t phys_offset;
196 ram_addr_t region_offset;
197} PhysPageDesc;
198
5cd2c5b6
RH
199/* This is a multi-level map on the physical address space.
200 The bottom level has pointers to PhysPageDesc. */
201static void *l1_phys_map[P_L1_SIZE];
6d9a1304 202
e2eef170
PB
203static void io_mem_init(void);
204
33417e70 205/* io memory support */
33417e70
FB
206CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
207CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 208void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 209static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
210static int io_mem_watch;
211#endif
33417e70 212
34865134 213/* log support */
1e8b27ca
JR
214#ifdef WIN32
215static const char *logfilename = "qemu.log";
216#else
d9b630fd 217static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 218#endif
34865134
FB
219FILE *logfile;
220int loglevel;
e735b91c 221static int log_append = 0;
34865134 222
e3db7226 223/* statistics */
b3755a91 224#if !defined(CONFIG_USER_ONLY)
e3db7226 225static int tlb_flush_count;
b3755a91 226#endif
e3db7226
FB
227static int tb_flush_count;
228static int tb_phys_invalidate_count;
229
7cb69cae
FB
230#ifdef _WIN32
231static void map_exec(void *addr, long size)
232{
233 DWORD old_protect;
234 VirtualProtect(addr, size,
235 PAGE_EXECUTE_READWRITE, &old_protect);
236
237}
238#else
239static void map_exec(void *addr, long size)
240{
4369415f 241 unsigned long start, end, page_size;
7cb69cae 242
4369415f 243 page_size = getpagesize();
7cb69cae 244 start = (unsigned long)addr;
4369415f 245 start &= ~(page_size - 1);
7cb69cae
FB
246
247 end = (unsigned long)addr + size;
4369415f
FB
248 end += page_size - 1;
249 end &= ~(page_size - 1);
7cb69cae
FB
250
251 mprotect((void *)start, end - start,
252 PROT_READ | PROT_WRITE | PROT_EXEC);
253}
254#endif
255
b346ff46 256static void page_init(void)
54936004 257{
83fb7adf 258 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 259 TARGET_PAGE_SIZE */
c2b48b69
AL
260#ifdef _WIN32
261 {
262 SYSTEM_INFO system_info;
263
264 GetSystemInfo(&system_info);
265 qemu_real_host_page_size = system_info.dwPageSize;
266 }
267#else
268 qemu_real_host_page_size = getpagesize();
269#endif
83fb7adf
FB
270 if (qemu_host_page_size == 0)
271 qemu_host_page_size = qemu_real_host_page_size;
272 if (qemu_host_page_size < TARGET_PAGE_SIZE)
273 qemu_host_page_size = TARGET_PAGE_SIZE;
274 qemu_host_page_bits = 0;
275 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
276 qemu_host_page_bits++;
277 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 278
2e9a5713 279#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 280 {
f01576f1
JL
281#ifdef HAVE_KINFO_GETVMMAP
282 struct kinfo_vmentry *freep;
283 int i, cnt;
284
285 freep = kinfo_getvmmap(getpid(), &cnt);
286 if (freep) {
287 mmap_lock();
288 for (i = 0; i < cnt; i++) {
289 unsigned long startaddr, endaddr;
290
291 startaddr = freep[i].kve_start;
292 endaddr = freep[i].kve_end;
293 if (h2g_valid(startaddr)) {
294 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
295
296 if (h2g_valid(endaddr)) {
297 endaddr = h2g(endaddr);
fd436907 298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
299 } else {
300#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
301 endaddr = ~0ul;
fd436907 302 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
303#endif
304 }
305 }
306 }
307 free(freep);
308 mmap_unlock();
309 }
310#else
50a9569b 311 FILE *f;
50a9569b 312
0776590d 313 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 314
fd436907 315 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 316 if (f) {
5cd2c5b6
RH
317 mmap_lock();
318
50a9569b 319 do {
5cd2c5b6
RH
320 unsigned long startaddr, endaddr;
321 int n;
322
323 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
324
325 if (n == 2 && h2g_valid(startaddr)) {
326 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
327
328 if (h2g_valid(endaddr)) {
329 endaddr = h2g(endaddr);
330 } else {
331 endaddr = ~0ul;
332 }
333 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
334 }
335 } while (!feof(f));
5cd2c5b6 336
50a9569b 337 fclose(f);
5cd2c5b6 338 mmap_unlock();
50a9569b 339 }
f01576f1 340#endif
50a9569b
AZ
341 }
342#endif
54936004
FB
343}
344
41c1b1c9 345static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 346{
41c1b1c9
PB
347 PageDesc *pd;
348 void **lp;
349 int i;
350
5cd2c5b6 351#if defined(CONFIG_USER_ONLY)
2e9a5713 352 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
353# define ALLOC(P, SIZE) \
354 do { \
355 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
356 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
357 } while (0)
358#else
359# define ALLOC(P, SIZE) \
360 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 361#endif
434929bf 362
5cd2c5b6
RH
363 /* Level 1. Always allocated. */
364 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
365
366 /* Level 2..N-1. */
367 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
368 void **p = *lp;
369
370 if (p == NULL) {
371 if (!alloc) {
372 return NULL;
373 }
374 ALLOC(p, sizeof(void *) * L2_SIZE);
375 *lp = p;
17e2377a 376 }
5cd2c5b6
RH
377
378 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
379 }
380
381 pd = *lp;
382 if (pd == NULL) {
383 if (!alloc) {
384 return NULL;
385 }
386 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
387 *lp = pd;
54936004 388 }
5cd2c5b6
RH
389
390#undef ALLOC
5cd2c5b6
RH
391
392 return pd + (index & (L2_SIZE - 1));
54936004
FB
393}
394
41c1b1c9 395static inline PageDesc *page_find(tb_page_addr_t index)
54936004 396{
5cd2c5b6 397 return page_find_alloc(index, 0);
fd6ce8f6
FB
398}
399
6d9a1304 400#if !defined(CONFIG_USER_ONLY)
c227f099 401static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 402{
e3f4e2a4 403 PhysPageDesc *pd;
5cd2c5b6
RH
404 void **lp;
405 int i;
92e873b9 406
5cd2c5b6
RH
407 /* Level 1. Always allocated. */
408 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 409
5cd2c5b6
RH
410 /* Level 2..N-1. */
411 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
412 void **p = *lp;
413 if (p == NULL) {
414 if (!alloc) {
415 return NULL;
416 }
417 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
418 }
419 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 420 }
5cd2c5b6 421
e3f4e2a4 422 pd = *lp;
5cd2c5b6 423 if (pd == NULL) {
e3f4e2a4 424 int i;
5cd2c5b6
RH
425
426 if (!alloc) {
108c49b8 427 return NULL;
5cd2c5b6
RH
428 }
429
430 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
431
67c4d23c 432 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
433 pd[i].phys_offset = IO_MEM_UNASSIGNED;
434 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 435 }
92e873b9 436 }
5cd2c5b6
RH
437
438 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
439}
440
c227f099 441static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 442{
108c49b8 443 return phys_page_find_alloc(index, 0);
92e873b9
FB
444}
445
c227f099
AL
446static void tlb_protect_code(ram_addr_t ram_addr);
447static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 448 target_ulong vaddr);
c8a706fe
PB
449#define mmap_lock() do { } while(0)
450#define mmap_unlock() do { } while(0)
9fa3e853 451#endif
fd6ce8f6 452
4369415f
FB
453#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
454
455#if defined(CONFIG_USER_ONLY)
ccbb4d44 456/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
457 user mode. It will change when a dedicated libc will be used */
458#define USE_STATIC_CODE_GEN_BUFFER
459#endif
460
461#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
462static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
463 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
464#endif
465
8fcd3692 466static void code_gen_alloc(unsigned long tb_size)
26a5f13b 467{
4369415f
FB
468#ifdef USE_STATIC_CODE_GEN_BUFFER
469 code_gen_buffer = static_code_gen_buffer;
470 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
471 map_exec(code_gen_buffer, code_gen_buffer_size);
472#else
26a5f13b
FB
473 code_gen_buffer_size = tb_size;
474 if (code_gen_buffer_size == 0) {
4369415f
FB
475#if defined(CONFIG_USER_ONLY)
476 /* in user mode, phys_ram_size is not meaningful */
477 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
478#else
ccbb4d44 479 /* XXX: needs adjustments */
94a6b54f 480 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 481#endif
26a5f13b
FB
482 }
483 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
484 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
485 /* The code gen buffer location may have constraints depending on
486 the host cpu and OS */
487#if defined(__linux__)
488 {
489 int flags;
141ac468
BS
490 void *start = NULL;
491
26a5f13b
FB
492 flags = MAP_PRIVATE | MAP_ANONYMOUS;
493#if defined(__x86_64__)
494 flags |= MAP_32BIT;
495 /* Cannot map more than that */
496 if (code_gen_buffer_size > (800 * 1024 * 1024))
497 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
498#elif defined(__sparc_v9__)
499 // Map the buffer below 2G, so we can use direct calls and branches
500 flags |= MAP_FIXED;
501 start = (void *) 0x60000000UL;
502 if (code_gen_buffer_size > (512 * 1024 * 1024))
503 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 504#elif defined(__arm__)
63d41246 505 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
506 flags |= MAP_FIXED;
507 start = (void *) 0x01000000UL;
508 if (code_gen_buffer_size > 16 * 1024 * 1024)
509 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
510#elif defined(__s390x__)
511 /* Map the buffer so that we can use direct calls and branches. */
512 /* We have a +- 4GB range on the branches; leave some slop. */
513 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
514 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
515 }
516 start = (void *)0x90000000UL;
26a5f13b 517#endif
141ac468
BS
518 code_gen_buffer = mmap(start, code_gen_buffer_size,
519 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
520 flags, -1, 0);
521 if (code_gen_buffer == MAP_FAILED) {
522 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
523 exit(1);
524 }
525 }
a167ba50 526#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
527 {
528 int flags;
529 void *addr = NULL;
530 flags = MAP_PRIVATE | MAP_ANONYMOUS;
531#if defined(__x86_64__)
532 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
533 * 0x40000000 is free */
534 flags |= MAP_FIXED;
535 addr = (void *)0x40000000;
536 /* Cannot map more than that */
537 if (code_gen_buffer_size > (800 * 1024 * 1024))
538 code_gen_buffer_size = (800 * 1024 * 1024);
539#endif
540 code_gen_buffer = mmap(addr, code_gen_buffer_size,
541 PROT_WRITE | PROT_READ | PROT_EXEC,
542 flags, -1, 0);
543 if (code_gen_buffer == MAP_FAILED) {
544 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
545 exit(1);
546 }
547 }
26a5f13b
FB
548#else
549 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
550 map_exec(code_gen_buffer, code_gen_buffer_size);
551#endif
4369415f 552#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
553 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
554 code_gen_buffer_max_size = code_gen_buffer_size -
239fda31 555 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
26a5f13b
FB
556 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
557 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
558}
559
560/* Must be called before using the QEMU cpus. 'tb_size' is the size
561 (in bytes) allocated to the translation buffer. Zero means default
562 size. */
563void cpu_exec_init_all(unsigned long tb_size)
564{
26a5f13b
FB
565 cpu_gen_init();
566 code_gen_alloc(tb_size);
567 code_gen_ptr = code_gen_buffer;
4369415f 568 page_init();
e2eef170 569#if !defined(CONFIG_USER_ONLY)
26a5f13b 570 io_mem_init();
e2eef170 571#endif
9002ec79
RH
572#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
573 /* There's no guest base to take into account, so go ahead and
574 initialize the prologue now. */
575 tcg_prologue_init(&tcg_ctx);
576#endif
26a5f13b
FB
577}
578
9656f324
PB
579#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
580
e59fb374 581static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
582{
583 CPUState *env = opaque;
9656f324 584
3098dba0
AJ
585 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
586 version_id is increased. */
587 env->interrupt_request &= ~0x01;
9656f324
PB
588 tlb_flush(env, 1);
589
590 return 0;
591}
e7f4eff7
JQ
592
593static const VMStateDescription vmstate_cpu_common = {
594 .name = "cpu_common",
595 .version_id = 1,
596 .minimum_version_id = 1,
597 .minimum_version_id_old = 1,
e7f4eff7
JQ
598 .post_load = cpu_common_post_load,
599 .fields = (VMStateField []) {
600 VMSTATE_UINT32(halted, CPUState),
601 VMSTATE_UINT32(interrupt_request, CPUState),
602 VMSTATE_END_OF_LIST()
603 }
604};
9656f324
PB
605#endif
606
950f1472
GC
607CPUState *qemu_get_cpu(int cpu)
608{
609 CPUState *env = first_cpu;
610
611 while (env) {
612 if (env->cpu_index == cpu)
613 break;
614 env = env->next_cpu;
615 }
616
617 return env;
618}
619
6a00d601 620void cpu_exec_init(CPUState *env)
fd6ce8f6 621{
6a00d601
FB
622 CPUState **penv;
623 int cpu_index;
624
c2764719
PB
625#if defined(CONFIG_USER_ONLY)
626 cpu_list_lock();
627#endif
6a00d601
FB
628 env->next_cpu = NULL;
629 penv = &first_cpu;
630 cpu_index = 0;
631 while (*penv != NULL) {
1e9fa730 632 penv = &(*penv)->next_cpu;
6a00d601
FB
633 cpu_index++;
634 }
635 env->cpu_index = cpu_index;
268a362c 636 env->numa_node = 0;
72cf2d4f
BS
637 QTAILQ_INIT(&env->breakpoints);
638 QTAILQ_INIT(&env->watchpoints);
6a00d601 639 *penv = env;
c2764719
PB
640#if defined(CONFIG_USER_ONLY)
641 cpu_list_unlock();
642#endif
b3c7724c 643#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 644 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
645 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
646 cpu_save, cpu_load, env);
647#endif
fd6ce8f6
FB
648}
649
9fa3e853
FB
650static inline void invalidate_page_bitmap(PageDesc *p)
651{
652 if (p->code_bitmap) {
59817ccb 653 qemu_free(p->code_bitmap);
9fa3e853
FB
654 p->code_bitmap = NULL;
655 }
656 p->code_write_count = 0;
657}
658
5cd2c5b6
RH
659/* Set to NULL all the 'first_tb' fields in all PageDescs. */
660
661static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 662{
5cd2c5b6 663 int i;
fd6ce8f6 664
5cd2c5b6
RH
665 if (*lp == NULL) {
666 return;
667 }
668 if (level == 0) {
669 PageDesc *pd = *lp;
7296abac 670 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
671 pd[i].first_tb = NULL;
672 invalidate_page_bitmap(pd + i);
fd6ce8f6 673 }
5cd2c5b6
RH
674 } else {
675 void **pp = *lp;
7296abac 676 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
677 page_flush_tb_1 (level - 1, pp + i);
678 }
679 }
680}
681
682static void page_flush_tb(void)
683{
684 int i;
685 for (i = 0; i < V_L1_SIZE; i++) {
686 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
687 }
688}
689
690/* flush all the translation blocks */
d4e8164f 691/* XXX: tb_flush is currently not thread safe */
6a00d601 692void tb_flush(CPUState *env1)
fd6ce8f6 693{
6a00d601 694 CPUState *env;
0124311e 695#if defined(DEBUG_FLUSH)
ab3d1727
BS
696 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
697 (unsigned long)(code_gen_ptr - code_gen_buffer),
698 nb_tbs, nb_tbs > 0 ?
699 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 700#endif
26a5f13b 701 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
702 cpu_abort(env1, "Internal error: code buffer overflow\n");
703
fd6ce8f6 704 nb_tbs = 0;
3b46e624 705
6a00d601
FB
706 for(env = first_cpu; env != NULL; env = env->next_cpu) {
707 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
708 }
9fa3e853 709
8a8a608f 710 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 711 page_flush_tb();
9fa3e853 712
fd6ce8f6 713 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
714 /* XXX: flush processor icache at this point if cache flush is
715 expensive */
e3db7226 716 tb_flush_count++;
fd6ce8f6
FB
717}
718
719#ifdef DEBUG_TB_CHECK
720
bc98a7ef 721static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
722{
723 TranslationBlock *tb;
724 int i;
725 address &= TARGET_PAGE_MASK;
99773bd4
PB
726 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
727 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
728 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
729 address >= tb->pc + tb->size)) {
0bf9e31a
BS
730 printf("ERROR invalidate: address=" TARGET_FMT_lx
731 " PC=%08lx size=%04x\n",
99773bd4 732 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
733 }
734 }
735 }
736}
737
738/* verify that all the pages have correct rights for code */
739static void tb_page_check(void)
740{
741 TranslationBlock *tb;
742 int i, flags1, flags2;
3b46e624 743
99773bd4
PB
744 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
745 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
746 flags1 = page_get_flags(tb->pc);
747 flags2 = page_get_flags(tb->pc + tb->size - 1);
748 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
749 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 750 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
751 }
752 }
753 }
754}
755
756#endif
757
758/* invalidate one TB */
759static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
760 int next_offset)
761{
762 TranslationBlock *tb1;
763 for(;;) {
764 tb1 = *ptb;
765 if (tb1 == tb) {
766 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
767 break;
768 }
769 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
770 }
771}
772
9fa3e853
FB
773static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
774{
775 TranslationBlock *tb1;
776 unsigned int n1;
777
778 for(;;) {
779 tb1 = *ptb;
780 n1 = (long)tb1 & 3;
781 tb1 = (TranslationBlock *)((long)tb1 & ~3);
782 if (tb1 == tb) {
783 *ptb = tb1->page_next[n1];
784 break;
785 }
786 ptb = &tb1->page_next[n1];
787 }
788}
789
d4e8164f
FB
790static inline void tb_jmp_remove(TranslationBlock *tb, int n)
791{
792 TranslationBlock *tb1, **ptb;
793 unsigned int n1;
794
795 ptb = &tb->jmp_next[n];
796 tb1 = *ptb;
797 if (tb1) {
798 /* find tb(n) in circular list */
799 for(;;) {
800 tb1 = *ptb;
801 n1 = (long)tb1 & 3;
802 tb1 = (TranslationBlock *)((long)tb1 & ~3);
803 if (n1 == n && tb1 == tb)
804 break;
805 if (n1 == 2) {
806 ptb = &tb1->jmp_first;
807 } else {
808 ptb = &tb1->jmp_next[n1];
809 }
810 }
811 /* now we can suppress tb(n) from the list */
812 *ptb = tb->jmp_next[n];
813
814 tb->jmp_next[n] = NULL;
815 }
816}
817
818/* reset the jump entry 'n' of a TB so that it is not chained to
819 another TB */
820static inline void tb_reset_jump(TranslationBlock *tb, int n)
821{
822 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
823}
824
41c1b1c9 825void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 826{
6a00d601 827 CPUState *env;
8a40a180 828 PageDesc *p;
d4e8164f 829 unsigned int h, n1;
41c1b1c9 830 tb_page_addr_t phys_pc;
8a40a180 831 TranslationBlock *tb1, *tb2;
3b46e624 832
8a40a180
FB
833 /* remove the TB from the hash list */
834 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
835 h = tb_phys_hash_func(phys_pc);
5fafdf24 836 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
837 offsetof(TranslationBlock, phys_hash_next));
838
839 /* remove the TB from the page list */
840 if (tb->page_addr[0] != page_addr) {
841 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
842 tb_page_remove(&p->first_tb, tb);
843 invalidate_page_bitmap(p);
844 }
845 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
846 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
847 tb_page_remove(&p->first_tb, tb);
848 invalidate_page_bitmap(p);
849 }
850
36bdbe54 851 tb_invalidated_flag = 1;
59817ccb 852
fd6ce8f6 853 /* remove the TB from the hash list */
8a40a180 854 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
855 for(env = first_cpu; env != NULL; env = env->next_cpu) {
856 if (env->tb_jmp_cache[h] == tb)
857 env->tb_jmp_cache[h] = NULL;
858 }
d4e8164f
FB
859
860 /* suppress this TB from the two jump lists */
861 tb_jmp_remove(tb, 0);
862 tb_jmp_remove(tb, 1);
863
864 /* suppress any remaining jumps to this TB */
865 tb1 = tb->jmp_first;
866 for(;;) {
867 n1 = (long)tb1 & 3;
868 if (n1 == 2)
869 break;
870 tb1 = (TranslationBlock *)((long)tb1 & ~3);
871 tb2 = tb1->jmp_next[n1];
872 tb_reset_jump(tb1, n1);
873 tb1->jmp_next[n1] = NULL;
874 tb1 = tb2;
875 }
876 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 877
e3db7226 878 tb_phys_invalidate_count++;
9fa3e853
FB
879}
880
881static inline void set_bits(uint8_t *tab, int start, int len)
882{
883 int end, mask, end1;
884
885 end = start + len;
886 tab += start >> 3;
887 mask = 0xff << (start & 7);
888 if ((start & ~7) == (end & ~7)) {
889 if (start < end) {
890 mask &= ~(0xff << (end & 7));
891 *tab |= mask;
892 }
893 } else {
894 *tab++ |= mask;
895 start = (start + 8) & ~7;
896 end1 = end & ~7;
897 while (start < end1) {
898 *tab++ = 0xff;
899 start += 8;
900 }
901 if (start < end) {
902 mask = ~(0xff << (end & 7));
903 *tab |= mask;
904 }
905 }
906}
907
908static void build_page_bitmap(PageDesc *p)
909{
910 int n, tb_start, tb_end;
911 TranslationBlock *tb;
3b46e624 912
b2a7081a 913 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
914
915 tb = p->first_tb;
916 while (tb != NULL) {
917 n = (long)tb & 3;
918 tb = (TranslationBlock *)((long)tb & ~3);
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->pc & ~TARGET_PAGE_MASK;
924 tb_end = tb_start + tb->size;
925 if (tb_end > TARGET_PAGE_SIZE)
926 tb_end = TARGET_PAGE_SIZE;
927 } else {
928 tb_start = 0;
929 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
930 }
931 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
932 tb = tb->page_next[n];
933 }
934}
935
2e70f6ef
PB
936TranslationBlock *tb_gen_code(CPUState *env,
937 target_ulong pc, target_ulong cs_base,
938 int flags, int cflags)
d720b93d
FB
939{
940 TranslationBlock *tb;
941 uint8_t *tc_ptr;
41c1b1c9
PB
942 tb_page_addr_t phys_pc, phys_page2;
943 target_ulong virt_page2;
d720b93d
FB
944 int code_gen_size;
945
41c1b1c9 946 phys_pc = get_page_addr_code(env, pc);
c27004ec 947 tb = tb_alloc(pc);
d720b93d
FB
948 if (!tb) {
949 /* flush must be done */
950 tb_flush(env);
951 /* cannot fail at this point */
c27004ec 952 tb = tb_alloc(pc);
2e70f6ef
PB
953 /* Don't forget to invalidate previous TB info. */
954 tb_invalidated_flag = 1;
d720b93d
FB
955 }
956 tc_ptr = code_gen_ptr;
957 tb->tc_ptr = tc_ptr;
958 tb->cs_base = cs_base;
959 tb->flags = flags;
960 tb->cflags = cflags;
d07bde88 961 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 962 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 963
d720b93d 964 /* check next page if needed */
c27004ec 965 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 966 phys_page2 = -1;
c27004ec 967 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 968 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 969 }
41c1b1c9 970 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 971 return tb;
d720b93d 972}
3b46e624 973
9fa3e853
FB
974/* invalidate all TBs which intersect with the target physical page
975 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
976 the same physical page. 'is_cpu_write_access' should be true if called
977 from a real cpu write access: the virtual CPU will exit the current
978 TB if code is modified inside this TB. */
41c1b1c9 979void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
980 int is_cpu_write_access)
981{
6b917547 982 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 983 CPUState *env = cpu_single_env;
41c1b1c9 984 tb_page_addr_t tb_start, tb_end;
6b917547
AL
985 PageDesc *p;
986 int n;
987#ifdef TARGET_HAS_PRECISE_SMC
988 int current_tb_not_found = is_cpu_write_access;
989 TranslationBlock *current_tb = NULL;
990 int current_tb_modified = 0;
991 target_ulong current_pc = 0;
992 target_ulong current_cs_base = 0;
993 int current_flags = 0;
994#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
995
996 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 997 if (!p)
9fa3e853 998 return;
5fafdf24 999 if (!p->code_bitmap &&
d720b93d
FB
1000 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1001 is_cpu_write_access) {
9fa3e853
FB
1002 /* build code bitmap */
1003 build_page_bitmap(p);
1004 }
1005
1006 /* we remove all the TBs in the range [start, end[ */
1007 /* XXX: see if in some cases it could be faster to invalidate all the code */
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (long)tb & 3;
1011 tb = (TranslationBlock *)((long)tb & ~3);
1012 tb_next = tb->page_next[n];
1013 /* NOTE: this is subtle as a TB may span two physical pages */
1014 if (n == 0) {
1015 /* NOTE: tb_end may be after the end of the page, but
1016 it is not a problem */
1017 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1018 tb_end = tb_start + tb->size;
1019 } else {
1020 tb_start = tb->page_addr[1];
1021 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1022 }
1023 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1024#ifdef TARGET_HAS_PRECISE_SMC
1025 if (current_tb_not_found) {
1026 current_tb_not_found = 0;
1027 current_tb = NULL;
2e70f6ef 1028 if (env->mem_io_pc) {
d720b93d 1029 /* now we have a real cpu fault */
2e70f6ef 1030 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1031 }
1032 }
1033 if (current_tb == tb &&
2e70f6ef 1034 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1035 /* If we are modifying the current TB, we must stop
1036 its execution. We could be more precise by checking
1037 that the modification is after the current PC, but it
1038 would require a specialized function to partially
1039 restore the CPU state */
3b46e624 1040
d720b93d 1041 current_tb_modified = 1;
5fafdf24 1042 cpu_restore_state(current_tb, env,
2e70f6ef 1043 env->mem_io_pc, NULL);
6b917547
AL
1044 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1045 &current_flags);
d720b93d
FB
1046 }
1047#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1048 /* we need to do that to handle the case where a signal
1049 occurs while doing tb_phys_invalidate() */
1050 saved_tb = NULL;
1051 if (env) {
1052 saved_tb = env->current_tb;
1053 env->current_tb = NULL;
1054 }
9fa3e853 1055 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1056 if (env) {
1057 env->current_tb = saved_tb;
1058 if (env->interrupt_request && env->current_tb)
1059 cpu_interrupt(env, env->interrupt_request);
1060 }
9fa3e853
FB
1061 }
1062 tb = tb_next;
1063 }
1064#if !defined(CONFIG_USER_ONLY)
1065 /* if no code remaining, no need to continue to use slow writes */
1066 if (!p->first_tb) {
1067 invalidate_page_bitmap(p);
d720b93d 1068 if (is_cpu_write_access) {
2e70f6ef 1069 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1070 }
1071 }
1072#endif
1073#ifdef TARGET_HAS_PRECISE_SMC
1074 if (current_tb_modified) {
1075 /* we generate a block containing just the instruction
1076 modifying the memory. It will ensure that it cannot modify
1077 itself */
ea1c1802 1078 env->current_tb = NULL;
2e70f6ef 1079 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1080 cpu_resume_from_signal(env, NULL);
9fa3e853 1081 }
fd6ce8f6 1082#endif
9fa3e853 1083}
fd6ce8f6 1084
9fa3e853 1085/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1086static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1087{
1088 PageDesc *p;
1089 int offset, b;
59817ccb 1090#if 0
a4193c8a 1091 if (1) {
93fcfe39
AL
1092 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1093 cpu_single_env->mem_io_vaddr, len,
1094 cpu_single_env->eip,
1095 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1096 }
1097#endif
9fa3e853 1098 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1099 if (!p)
9fa3e853
FB
1100 return;
1101 if (p->code_bitmap) {
1102 offset = start & ~TARGET_PAGE_MASK;
1103 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1104 if (b & ((1 << len) - 1))
1105 goto do_invalidate;
1106 } else {
1107 do_invalidate:
d720b93d 1108 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1109 }
1110}
1111
9fa3e853 1112#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1113static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1114 unsigned long pc, void *puc)
9fa3e853 1115{
6b917547 1116 TranslationBlock *tb;
9fa3e853 1117 PageDesc *p;
6b917547 1118 int n;
d720b93d 1119#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1120 TranslationBlock *current_tb = NULL;
d720b93d 1121 CPUState *env = cpu_single_env;
6b917547
AL
1122 int current_tb_modified = 0;
1123 target_ulong current_pc = 0;
1124 target_ulong current_cs_base = 0;
1125 int current_flags = 0;
d720b93d 1126#endif
9fa3e853
FB
1127
1128 addr &= TARGET_PAGE_MASK;
1129 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1130 if (!p)
9fa3e853
FB
1131 return;
1132 tb = p->first_tb;
d720b93d
FB
1133#ifdef TARGET_HAS_PRECISE_SMC
1134 if (tb && pc != 0) {
1135 current_tb = tb_find_pc(pc);
1136 }
1137#endif
9fa3e853
FB
1138 while (tb != NULL) {
1139 n = (long)tb & 3;
1140 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1141#ifdef TARGET_HAS_PRECISE_SMC
1142 if (current_tb == tb &&
2e70f6ef 1143 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1144 /* If we are modifying the current TB, we must stop
1145 its execution. We could be more precise by checking
1146 that the modification is after the current PC, but it
1147 would require a specialized function to partially
1148 restore the CPU state */
3b46e624 1149
d720b93d
FB
1150 current_tb_modified = 1;
1151 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1152 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1153 &current_flags);
d720b93d
FB
1154 }
1155#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1156 tb_phys_invalidate(tb, addr);
1157 tb = tb->page_next[n];
1158 }
fd6ce8f6 1159 p->first_tb = NULL;
d720b93d
FB
1160#ifdef TARGET_HAS_PRECISE_SMC
1161 if (current_tb_modified) {
1162 /* we generate a block containing just the instruction
1163 modifying the memory. It will ensure that it cannot modify
1164 itself */
ea1c1802 1165 env->current_tb = NULL;
2e70f6ef 1166 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1167 cpu_resume_from_signal(env, puc);
1168 }
1169#endif
fd6ce8f6 1170}
9fa3e853 1171#endif
fd6ce8f6
FB
1172
1173/* add the tb in the target page and protect it if necessary */
5fafdf24 1174static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1175 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1176{
1177 PageDesc *p;
9fa3e853
FB
1178 TranslationBlock *last_first_tb;
1179
1180 tb->page_addr[n] = page_addr;
5cd2c5b6 1181 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1182 tb->page_next[n] = p->first_tb;
1183 last_first_tb = p->first_tb;
1184 p->first_tb = (TranslationBlock *)((long)tb | n);
1185 invalidate_page_bitmap(p);
fd6ce8f6 1186
107db443 1187#if defined(TARGET_HAS_SMC) || 1
d720b93d 1188
9fa3e853 1189#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1190 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1191 target_ulong addr;
1192 PageDesc *p2;
9fa3e853
FB
1193 int prot;
1194
fd6ce8f6
FB
1195 /* force the host page as non writable (writes will have a
1196 page fault + mprotect overhead) */
53a5960a 1197 page_addr &= qemu_host_page_mask;
fd6ce8f6 1198 prot = 0;
53a5960a
PB
1199 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1200 addr += TARGET_PAGE_SIZE) {
1201
1202 p2 = page_find (addr >> TARGET_PAGE_BITS);
1203 if (!p2)
1204 continue;
1205 prot |= p2->flags;
1206 p2->flags &= ~PAGE_WRITE;
53a5960a 1207 }
5fafdf24 1208 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1209 (prot & PAGE_BITS) & ~PAGE_WRITE);
1210#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1211 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1212 page_addr);
fd6ce8f6 1213#endif
fd6ce8f6 1214 }
9fa3e853
FB
1215#else
1216 /* if some code is already present, then the pages are already
1217 protected. So we handle the case where only the first TB is
1218 allocated in a physical page */
1219 if (!last_first_tb) {
6a00d601 1220 tlb_protect_code(page_addr);
9fa3e853
FB
1221 }
1222#endif
d720b93d
FB
1223
1224#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1225}
1226
1227/* Allocate a new translation block. Flush the translation buffer if
1228 too many translation blocks or too much generated code. */
c27004ec 1229TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1230{
1231 TranslationBlock *tb;
fd6ce8f6 1232
26a5f13b
FB
1233 if (nb_tbs >= code_gen_max_blocks ||
1234 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1235 return NULL;
fd6ce8f6
FB
1236 tb = &tbs[nb_tbs++];
1237 tb->pc = pc;
b448f2f3 1238 tb->cflags = 0;
d4e8164f
FB
1239 return tb;
1240}
1241
2e70f6ef
PB
1242void tb_free(TranslationBlock *tb)
1243{
bf20dc07 1244 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1245 Ignore the hard cases and just back up if this TB happens to
1246 be the last one generated. */
1247 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1248 code_gen_ptr = tb->tc_ptr;
1249 nb_tbs--;
1250 }
1251}
1252
9fa3e853
FB
1253/* add a new TB and link it to the physical page tables. phys_page2 is
1254 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1255void tb_link_page(TranslationBlock *tb,
1256 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1257{
9fa3e853
FB
1258 unsigned int h;
1259 TranslationBlock **ptb;
1260
c8a706fe
PB
1261 /* Grab the mmap lock to stop another thread invalidating this TB
1262 before we are done. */
1263 mmap_lock();
9fa3e853
FB
1264 /* add in the physical hash table */
1265 h = tb_phys_hash_func(phys_pc);
1266 ptb = &tb_phys_hash[h];
1267 tb->phys_hash_next = *ptb;
1268 *ptb = tb;
fd6ce8f6
FB
1269
1270 /* add in the page list */
9fa3e853
FB
1271 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1272 if (phys_page2 != -1)
1273 tb_alloc_page(tb, 1, phys_page2);
1274 else
1275 tb->page_addr[1] = -1;
9fa3e853 1276
d4e8164f
FB
1277 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1278 tb->jmp_next[0] = NULL;
1279 tb->jmp_next[1] = NULL;
1280
1281 /* init original jump addresses */
1282 if (tb->tb_next_offset[0] != 0xffff)
1283 tb_reset_jump(tb, 0);
1284 if (tb->tb_next_offset[1] != 0xffff)
1285 tb_reset_jump(tb, 1);
8a40a180
FB
1286
1287#ifdef DEBUG_TB_CHECK
1288 tb_page_check();
1289#endif
c8a706fe 1290 mmap_unlock();
fd6ce8f6
FB
1291}
1292
9fa3e853
FB
1293/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1294 tb[1].tc_ptr. Return NULL if not found */
1295TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1296{
9fa3e853
FB
1297 int m_min, m_max, m;
1298 unsigned long v;
1299 TranslationBlock *tb;
a513fe19
FB
1300
1301 if (nb_tbs <= 0)
1302 return NULL;
1303 if (tc_ptr < (unsigned long)code_gen_buffer ||
1304 tc_ptr >= (unsigned long)code_gen_ptr)
1305 return NULL;
1306 /* binary search (cf Knuth) */
1307 m_min = 0;
1308 m_max = nb_tbs - 1;
1309 while (m_min <= m_max) {
1310 m = (m_min + m_max) >> 1;
1311 tb = &tbs[m];
1312 v = (unsigned long)tb->tc_ptr;
1313 if (v == tc_ptr)
1314 return tb;
1315 else if (tc_ptr < v) {
1316 m_max = m - 1;
1317 } else {
1318 m_min = m + 1;
1319 }
5fafdf24 1320 }
a513fe19
FB
1321 return &tbs[m_max];
1322}
7501267e 1323
ea041c0e
FB
1324static void tb_reset_jump_recursive(TranslationBlock *tb);
1325
1326static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1327{
1328 TranslationBlock *tb1, *tb_next, **ptb;
1329 unsigned int n1;
1330
1331 tb1 = tb->jmp_next[n];
1332 if (tb1 != NULL) {
1333 /* find head of list */
1334 for(;;) {
1335 n1 = (long)tb1 & 3;
1336 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1337 if (n1 == 2)
1338 break;
1339 tb1 = tb1->jmp_next[n1];
1340 }
1341 /* we are now sure now that tb jumps to tb1 */
1342 tb_next = tb1;
1343
1344 /* remove tb from the jmp_first list */
1345 ptb = &tb_next->jmp_first;
1346 for(;;) {
1347 tb1 = *ptb;
1348 n1 = (long)tb1 & 3;
1349 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1350 if (n1 == n && tb1 == tb)
1351 break;
1352 ptb = &tb1->jmp_next[n1];
1353 }
1354 *ptb = tb->jmp_next[n];
1355 tb->jmp_next[n] = NULL;
3b46e624 1356
ea041c0e
FB
1357 /* suppress the jump to next tb in generated code */
1358 tb_reset_jump(tb, n);
1359
0124311e 1360 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1361 tb_reset_jump_recursive(tb_next);
1362 }
1363}
1364
1365static void tb_reset_jump_recursive(TranslationBlock *tb)
1366{
1367 tb_reset_jump_recursive2(tb, 0);
1368 tb_reset_jump_recursive2(tb, 1);
1369}
1370
1fddef4b 1371#if defined(TARGET_HAS_ICE)
94df27fd
PB
1372#if defined(CONFIG_USER_ONLY)
1373static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1374{
1375 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1376}
1377#else
d720b93d
FB
1378static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1379{
c227f099 1380 target_phys_addr_t addr;
9b3c35e0 1381 target_ulong pd;
c227f099 1382 ram_addr_t ram_addr;
c2f07f81 1383 PhysPageDesc *p;
d720b93d 1384
c2f07f81
PB
1385 addr = cpu_get_phys_page_debug(env, pc);
1386 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1387 if (!p) {
1388 pd = IO_MEM_UNASSIGNED;
1389 } else {
1390 pd = p->phys_offset;
1391 }
1392 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1393 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1394}
c27004ec 1395#endif
94df27fd 1396#endif /* TARGET_HAS_ICE */
d720b93d 1397
c527ee8f
PB
1398#if defined(CONFIG_USER_ONLY)
1399void cpu_watchpoint_remove_all(CPUState *env, int mask)
1400
1401{
1402}
1403
1404int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1405 int flags, CPUWatchpoint **watchpoint)
1406{
1407 return -ENOSYS;
1408}
1409#else
6658ffb8 1410/* Add a watchpoint. */
a1d1bb31
AL
1411int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1412 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1413{
b4051334 1414 target_ulong len_mask = ~(len - 1);
c0ce998e 1415 CPUWatchpoint *wp;
6658ffb8 1416
b4051334
AL
1417 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1418 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1419 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1420 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1421 return -EINVAL;
1422 }
a1d1bb31 1423 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1424
1425 wp->vaddr = addr;
b4051334 1426 wp->len_mask = len_mask;
a1d1bb31
AL
1427 wp->flags = flags;
1428
2dc9f411 1429 /* keep all GDB-injected watchpoints in front */
c0ce998e 1430 if (flags & BP_GDB)
72cf2d4f 1431 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1432 else
72cf2d4f 1433 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1434
6658ffb8 1435 tlb_flush_page(env, addr);
a1d1bb31
AL
1436
1437 if (watchpoint)
1438 *watchpoint = wp;
1439 return 0;
6658ffb8
PB
1440}
1441
a1d1bb31
AL
1442/* Remove a specific watchpoint. */
1443int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1444 int flags)
6658ffb8 1445{
b4051334 1446 target_ulong len_mask = ~(len - 1);
a1d1bb31 1447 CPUWatchpoint *wp;
6658ffb8 1448
72cf2d4f 1449 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1450 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1451 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1452 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1453 return 0;
1454 }
1455 }
a1d1bb31 1456 return -ENOENT;
6658ffb8
PB
1457}
1458
a1d1bb31
AL
1459/* Remove a specific watchpoint by reference. */
1460void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1461{
72cf2d4f 1462 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1463
a1d1bb31
AL
1464 tlb_flush_page(env, watchpoint->vaddr);
1465
1466 qemu_free(watchpoint);
1467}
1468
1469/* Remove all matching watchpoints. */
1470void cpu_watchpoint_remove_all(CPUState *env, int mask)
1471{
c0ce998e 1472 CPUWatchpoint *wp, *next;
a1d1bb31 1473
72cf2d4f 1474 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1475 if (wp->flags & mask)
1476 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1477 }
7d03f82f 1478}
c527ee8f 1479#endif
7d03f82f 1480
a1d1bb31
AL
1481/* Add a breakpoint. */
1482int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1483 CPUBreakpoint **breakpoint)
4c3a88a2 1484{
1fddef4b 1485#if defined(TARGET_HAS_ICE)
c0ce998e 1486 CPUBreakpoint *bp;
3b46e624 1487
a1d1bb31 1488 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1489
a1d1bb31
AL
1490 bp->pc = pc;
1491 bp->flags = flags;
1492
2dc9f411 1493 /* keep all GDB-injected breakpoints in front */
c0ce998e 1494 if (flags & BP_GDB)
72cf2d4f 1495 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1496 else
72cf2d4f 1497 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1498
d720b93d 1499 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1500
1501 if (breakpoint)
1502 *breakpoint = bp;
4c3a88a2
FB
1503 return 0;
1504#else
a1d1bb31 1505 return -ENOSYS;
4c3a88a2
FB
1506#endif
1507}
1508
a1d1bb31
AL
1509/* Remove a specific breakpoint. */
1510int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1511{
7d03f82f 1512#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1513 CPUBreakpoint *bp;
1514
72cf2d4f 1515 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1516 if (bp->pc == pc && bp->flags == flags) {
1517 cpu_breakpoint_remove_by_ref(env, bp);
1518 return 0;
1519 }
7d03f82f 1520 }
a1d1bb31
AL
1521 return -ENOENT;
1522#else
1523 return -ENOSYS;
7d03f82f
EI
1524#endif
1525}
1526
a1d1bb31
AL
1527/* Remove a specific breakpoint by reference. */
1528void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1529{
1fddef4b 1530#if defined(TARGET_HAS_ICE)
72cf2d4f 1531 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1532
a1d1bb31
AL
1533 breakpoint_invalidate(env, breakpoint->pc);
1534
1535 qemu_free(breakpoint);
1536#endif
1537}
1538
1539/* Remove all matching breakpoints. */
1540void cpu_breakpoint_remove_all(CPUState *env, int mask)
1541{
1542#if defined(TARGET_HAS_ICE)
c0ce998e 1543 CPUBreakpoint *bp, *next;
a1d1bb31 1544
72cf2d4f 1545 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1546 if (bp->flags & mask)
1547 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1548 }
4c3a88a2
FB
1549#endif
1550}
1551
c33a346e
FB
1552/* enable or disable single step mode. EXCP_DEBUG is returned by the
1553 CPU loop after each instruction */
1554void cpu_single_step(CPUState *env, int enabled)
1555{
1fddef4b 1556#if defined(TARGET_HAS_ICE)
c33a346e
FB
1557 if (env->singlestep_enabled != enabled) {
1558 env->singlestep_enabled = enabled;
e22a25c9
AL
1559 if (kvm_enabled())
1560 kvm_update_guest_debug(env, 0);
1561 else {
ccbb4d44 1562 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1563 /* XXX: only flush what is necessary */
1564 tb_flush(env);
1565 }
c33a346e
FB
1566 }
1567#endif
1568}
1569
34865134
FB
1570/* enable or disable low levels log */
1571void cpu_set_log(int log_flags)
1572{
1573 loglevel = log_flags;
1574 if (loglevel && !logfile) {
11fcfab4 1575 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1576 if (!logfile) {
1577 perror(logfilename);
1578 _exit(1);
1579 }
9fa3e853
FB
1580#if !defined(CONFIG_SOFTMMU)
1581 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1582 {
b55266b5 1583 static char logfile_buf[4096];
9fa3e853
FB
1584 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1585 }
bf65f53f
FN
1586#elif !defined(_WIN32)
1587 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1588 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1589#endif
e735b91c
PB
1590 log_append = 1;
1591 }
1592 if (!loglevel && logfile) {
1593 fclose(logfile);
1594 logfile = NULL;
34865134
FB
1595 }
1596}
1597
1598void cpu_set_log_filename(const char *filename)
1599{
1600 logfilename = strdup(filename);
e735b91c
PB
1601 if (logfile) {
1602 fclose(logfile);
1603 logfile = NULL;
1604 }
1605 cpu_set_log(loglevel);
34865134 1606}
c33a346e 1607
3098dba0 1608static void cpu_unlink_tb(CPUState *env)
ea041c0e 1609{
3098dba0
AJ
1610 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1611 problem and hope the cpu will stop of its own accord. For userspace
1612 emulation this often isn't actually as bad as it sounds. Often
1613 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1614 TranslationBlock *tb;
c227f099 1615 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1616
cab1b4bd 1617 spin_lock(&interrupt_lock);
3098dba0
AJ
1618 tb = env->current_tb;
1619 /* if the cpu is currently executing code, we must unlink it and
1620 all the potentially executing TB */
f76cfe56 1621 if (tb) {
3098dba0
AJ
1622 env->current_tb = NULL;
1623 tb_reset_jump_recursive(tb);
be214e6c 1624 }
cab1b4bd 1625 spin_unlock(&interrupt_lock);
3098dba0
AJ
1626}
1627
1628/* mask must never be zero, except for A20 change call */
1629void cpu_interrupt(CPUState *env, int mask)
1630{
1631 int old_mask;
be214e6c 1632
2e70f6ef 1633 old_mask = env->interrupt_request;
68a79315 1634 env->interrupt_request |= mask;
3098dba0 1635
8edac960
AL
1636#ifndef CONFIG_USER_ONLY
1637 /*
1638 * If called from iothread context, wake the target cpu in
1639 * case its halted.
1640 */
1641 if (!qemu_cpu_self(env)) {
1642 qemu_cpu_kick(env);
1643 return;
1644 }
1645#endif
1646
2e70f6ef 1647 if (use_icount) {
266910c4 1648 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1649#ifndef CONFIG_USER_ONLY
2e70f6ef 1650 if (!can_do_io(env)
be214e6c 1651 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1652 cpu_abort(env, "Raised interrupt while not in I/O function");
1653 }
1654#endif
1655 } else {
3098dba0 1656 cpu_unlink_tb(env);
ea041c0e
FB
1657 }
1658}
1659
b54ad049
FB
1660void cpu_reset_interrupt(CPUState *env, int mask)
1661{
1662 env->interrupt_request &= ~mask;
1663}
1664
3098dba0
AJ
1665void cpu_exit(CPUState *env)
1666{
1667 env->exit_request = 1;
1668 cpu_unlink_tb(env);
1669}
1670
c7cd6a37 1671const CPULogItem cpu_log_items[] = {
5fafdf24 1672 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1673 "show generated host assembly code for each compiled TB" },
1674 { CPU_LOG_TB_IN_ASM, "in_asm",
1675 "show target assembly code for each compiled TB" },
5fafdf24 1676 { CPU_LOG_TB_OP, "op",
57fec1fe 1677 "show micro ops for each compiled TB" },
f193c797 1678 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1679 "show micro ops "
1680#ifdef TARGET_I386
1681 "before eflags optimization and "
f193c797 1682#endif
e01a1157 1683 "after liveness analysis" },
f193c797
FB
1684 { CPU_LOG_INT, "int",
1685 "show interrupts/exceptions in short format" },
1686 { CPU_LOG_EXEC, "exec",
1687 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1688 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1689 "show CPU state before block translation" },
f193c797
FB
1690#ifdef TARGET_I386
1691 { CPU_LOG_PCALL, "pcall",
1692 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1693 { CPU_LOG_RESET, "cpu_reset",
1694 "show CPU state before CPU resets" },
f193c797 1695#endif
8e3a9fd2 1696#ifdef DEBUG_IOPORT
fd872598
FB
1697 { CPU_LOG_IOPORT, "ioport",
1698 "show all i/o ports accesses" },
8e3a9fd2 1699#endif
f193c797
FB
1700 { 0, NULL, NULL },
1701};
1702
f6f3fbca
MT
1703#ifndef CONFIG_USER_ONLY
1704static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1705 = QLIST_HEAD_INITIALIZER(memory_client_list);
1706
1707static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1708 ram_addr_t size,
1709 ram_addr_t phys_offset)
1710{
1711 CPUPhysMemoryClient *client;
1712 QLIST_FOREACH(client, &memory_client_list, list) {
1713 client->set_memory(client, start_addr, size, phys_offset);
1714 }
1715}
1716
1717static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1718 target_phys_addr_t end)
1719{
1720 CPUPhysMemoryClient *client;
1721 QLIST_FOREACH(client, &memory_client_list, list) {
1722 int r = client->sync_dirty_bitmap(client, start, end);
1723 if (r < 0)
1724 return r;
1725 }
1726 return 0;
1727}
1728
1729static int cpu_notify_migration_log(int enable)
1730{
1731 CPUPhysMemoryClient *client;
1732 QLIST_FOREACH(client, &memory_client_list, list) {
1733 int r = client->migration_log(client, enable);
1734 if (r < 0)
1735 return r;
1736 }
1737 return 0;
1738}
1739
5cd2c5b6
RH
1740static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1741 int level, void **lp)
f6f3fbca 1742{
5cd2c5b6 1743 int i;
f6f3fbca 1744
5cd2c5b6
RH
1745 if (*lp == NULL) {
1746 return;
1747 }
1748 if (level == 0) {
1749 PhysPageDesc *pd = *lp;
7296abac 1750 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1751 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1752 client->set_memory(client, pd[i].region_offset,
1753 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1754 }
5cd2c5b6
RH
1755 }
1756 } else {
1757 void **pp = *lp;
7296abac 1758 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1759 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1760 }
1761 }
1762}
1763
1764static void phys_page_for_each(CPUPhysMemoryClient *client)
1765{
5cd2c5b6
RH
1766 int i;
1767 for (i = 0; i < P_L1_SIZE; ++i) {
1768 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1769 l1_phys_map + 1);
f6f3fbca 1770 }
f6f3fbca
MT
1771}
1772
1773void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1774{
1775 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1776 phys_page_for_each(client);
1777}
1778
1779void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1780{
1781 QLIST_REMOVE(client, list);
1782}
1783#endif
1784
f193c797
FB
1785static int cmp1(const char *s1, int n, const char *s2)
1786{
1787 if (strlen(s2) != n)
1788 return 0;
1789 return memcmp(s1, s2, n) == 0;
1790}
3b46e624 1791
f193c797
FB
1792/* takes a comma separated list of log masks. Return 0 if error. */
1793int cpu_str_to_log_mask(const char *str)
1794{
c7cd6a37 1795 const CPULogItem *item;
f193c797
FB
1796 int mask;
1797 const char *p, *p1;
1798
1799 p = str;
1800 mask = 0;
1801 for(;;) {
1802 p1 = strchr(p, ',');
1803 if (!p1)
1804 p1 = p + strlen(p);
8e3a9fd2
FB
1805 if(cmp1(p,p1-p,"all")) {
1806 for(item = cpu_log_items; item->mask != 0; item++) {
1807 mask |= item->mask;
1808 }
1809 } else {
f193c797
FB
1810 for(item = cpu_log_items; item->mask != 0; item++) {
1811 if (cmp1(p, p1 - p, item->name))
1812 goto found;
1813 }
1814 return 0;
8e3a9fd2 1815 }
f193c797
FB
1816 found:
1817 mask |= item->mask;
1818 if (*p1 != ',')
1819 break;
1820 p = p1 + 1;
1821 }
1822 return mask;
1823}
ea041c0e 1824
7501267e
FB
1825void cpu_abort(CPUState *env, const char *fmt, ...)
1826{
1827 va_list ap;
493ae1f0 1828 va_list ap2;
7501267e
FB
1829
1830 va_start(ap, fmt);
493ae1f0 1831 va_copy(ap2, ap);
7501267e
FB
1832 fprintf(stderr, "qemu: fatal: ");
1833 vfprintf(stderr, fmt, ap);
1834 fprintf(stderr, "\n");
1835#ifdef TARGET_I386
7fe48483
FB
1836 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1837#else
1838 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1839#endif
93fcfe39
AL
1840 if (qemu_log_enabled()) {
1841 qemu_log("qemu: fatal: ");
1842 qemu_log_vprintf(fmt, ap2);
1843 qemu_log("\n");
f9373291 1844#ifdef TARGET_I386
93fcfe39 1845 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1846#else
93fcfe39 1847 log_cpu_state(env, 0);
f9373291 1848#endif
31b1a7b4 1849 qemu_log_flush();
93fcfe39 1850 qemu_log_close();
924edcae 1851 }
493ae1f0 1852 va_end(ap2);
f9373291 1853 va_end(ap);
fd052bf6
RV
1854#if defined(CONFIG_USER_ONLY)
1855 {
1856 struct sigaction act;
1857 sigfillset(&act.sa_mask);
1858 act.sa_handler = SIG_DFL;
1859 sigaction(SIGABRT, &act, NULL);
1860 }
1861#endif
7501267e
FB
1862 abort();
1863}
1864
c5be9f08
TS
1865CPUState *cpu_copy(CPUState *env)
1866{
01ba9816 1867 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1868 CPUState *next_cpu = new_env->next_cpu;
1869 int cpu_index = new_env->cpu_index;
5a38f081
AL
1870#if defined(TARGET_HAS_ICE)
1871 CPUBreakpoint *bp;
1872 CPUWatchpoint *wp;
1873#endif
1874
c5be9f08 1875 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1876
1877 /* Preserve chaining and index. */
c5be9f08
TS
1878 new_env->next_cpu = next_cpu;
1879 new_env->cpu_index = cpu_index;
5a38f081
AL
1880
1881 /* Clone all break/watchpoints.
1882 Note: Once we support ptrace with hw-debug register access, make sure
1883 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1884 QTAILQ_INIT(&env->breakpoints);
1885 QTAILQ_INIT(&env->watchpoints);
5a38f081 1886#if defined(TARGET_HAS_ICE)
72cf2d4f 1887 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1888 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1889 }
72cf2d4f 1890 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1891 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1892 wp->flags, NULL);
1893 }
1894#endif
1895
c5be9f08
TS
1896 return new_env;
1897}
1898
0124311e
FB
1899#if !defined(CONFIG_USER_ONLY)
1900
5c751e99
EI
1901static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1902{
1903 unsigned int i;
1904
1905 /* Discard jump cache entries for any tb which might potentially
1906 overlap the flushed page. */
1907 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1908 memset (&env->tb_jmp_cache[i], 0,
1909 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1910
1911 i = tb_jmp_cache_hash_page(addr);
1912 memset (&env->tb_jmp_cache[i], 0,
1913 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1914}
1915
08738984
IK
1916static CPUTLBEntry s_cputlb_empty_entry = {
1917 .addr_read = -1,
1918 .addr_write = -1,
1919 .addr_code = -1,
1920 .addend = -1,
1921};
1922
ee8b7021
FB
1923/* NOTE: if flush_global is true, also flush global entries (not
1924 implemented yet) */
1925void tlb_flush(CPUState *env, int flush_global)
33417e70 1926{
33417e70 1927 int i;
0124311e 1928
9fa3e853
FB
1929#if defined(DEBUG_TLB)
1930 printf("tlb_flush:\n");
1931#endif
0124311e
FB
1932 /* must reset current TB so that interrupts cannot modify the
1933 links while we are modifying them */
1934 env->current_tb = NULL;
1935
33417e70 1936 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1937 int mmu_idx;
1938 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1939 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1940 }
33417e70 1941 }
9fa3e853 1942
8a40a180 1943 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1944
d4c430a8
PB
1945 env->tlb_flush_addr = -1;
1946 env->tlb_flush_mask = 0;
e3db7226 1947 tlb_flush_count++;
33417e70
FB
1948}
1949
274da6b2 1950static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1951{
5fafdf24 1952 if (addr == (tlb_entry->addr_read &
84b7b8e7 1953 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1954 addr == (tlb_entry->addr_write &
84b7b8e7 1955 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1956 addr == (tlb_entry->addr_code &
84b7b8e7 1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1958 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1959 }
61382a50
FB
1960}
1961
2e12669a 1962void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1963{
8a40a180 1964 int i;
cfde4bd9 1965 int mmu_idx;
0124311e 1966
9fa3e853 1967#if defined(DEBUG_TLB)
108c49b8 1968 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1969#endif
d4c430a8
PB
1970 /* Check if we need to flush due to large pages. */
1971 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1972#if defined(DEBUG_TLB)
1973 printf("tlb_flush_page: forced full flush ("
1974 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1975 env->tlb_flush_addr, env->tlb_flush_mask);
1976#endif
1977 tlb_flush(env, 1);
1978 return;
1979 }
0124311e
FB
1980 /* must reset current TB so that interrupts cannot modify the
1981 links while we are modifying them */
1982 env->current_tb = NULL;
61382a50
FB
1983
1984 addr &= TARGET_PAGE_MASK;
1985 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1986 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1987 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1988
5c751e99 1989 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1990}
1991
9fa3e853
FB
1992/* update the TLBs so that writes to code in the virtual page 'addr'
1993 can be detected */
c227f099 1994static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1995{
5fafdf24 1996 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1997 ram_addr + TARGET_PAGE_SIZE,
1998 CODE_DIRTY_FLAG);
9fa3e853
FB
1999}
2000
9fa3e853 2001/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2002 tested for self modifying code */
c227f099 2003static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2004 target_ulong vaddr)
9fa3e853 2005{
f7c11b53 2006 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2007}
2008
5fafdf24 2009static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2010 unsigned long start, unsigned long length)
2011{
2012 unsigned long addr;
84b7b8e7
FB
2013 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2014 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2015 if ((addr - start) < length) {
0f459d16 2016 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2017 }
2018 }
2019}
2020
5579c7f3 2021/* Note: start and end must be within the same ram block. */
c227f099 2022void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2023 int dirty_flags)
1ccde1cb
FB
2024{
2025 CPUState *env;
4f2ac237 2026 unsigned long length, start1;
f7c11b53 2027 int i;
1ccde1cb
FB
2028
2029 start &= TARGET_PAGE_MASK;
2030 end = TARGET_PAGE_ALIGN(end);
2031
2032 length = end - start;
2033 if (length == 0)
2034 return;
f7c11b53 2035 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2036
1ccde1cb
FB
2037 /* we modify the TLB cache so that the dirty bit will be set again
2038 when accessing the range */
5579c7f3
PB
2039 start1 = (unsigned long)qemu_get_ram_ptr(start);
2040 /* Chek that we don't span multiple blocks - this breaks the
2041 address comparisons below. */
2042 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2043 != (end - 1) - start) {
2044 abort();
2045 }
2046
6a00d601 2047 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2048 int mmu_idx;
2049 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2050 for(i = 0; i < CPU_TLB_SIZE; i++)
2051 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2052 start1, length);
2053 }
6a00d601 2054 }
1ccde1cb
FB
2055}
2056
74576198
AL
2057int cpu_physical_memory_set_dirty_tracking(int enable)
2058{
f6f3fbca 2059 int ret = 0;
74576198 2060 in_migration = enable;
f6f3fbca
MT
2061 ret = cpu_notify_migration_log(!!enable);
2062 return ret;
74576198
AL
2063}
2064
2065int cpu_physical_memory_get_dirty_tracking(void)
2066{
2067 return in_migration;
2068}
2069
c227f099
AL
2070int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2071 target_phys_addr_t end_addr)
2bec46dc 2072{
7b8f3b78 2073 int ret;
151f7749 2074
f6f3fbca 2075 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2076 return ret;
2bec46dc
AL
2077}
2078
3a7d929e
FB
2079static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2080{
c227f099 2081 ram_addr_t ram_addr;
5579c7f3 2082 void *p;
3a7d929e 2083
84b7b8e7 2084 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2085 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2086 + tlb_entry->addend);
2087 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2088 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2089 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2090 }
2091 }
2092}
2093
2094/* update the TLB according to the current state of the dirty bits */
2095void cpu_tlb_update_dirty(CPUState *env)
2096{
2097 int i;
cfde4bd9
IY
2098 int mmu_idx;
2099 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2100 for(i = 0; i < CPU_TLB_SIZE; i++)
2101 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2102 }
3a7d929e
FB
2103}
2104
0f459d16 2105static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2106{
0f459d16
PB
2107 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2108 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2109}
2110
0f459d16
PB
2111/* update the TLB corresponding to virtual page vaddr
2112 so that it is no longer dirty */
2113static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2114{
1ccde1cb 2115 int i;
cfde4bd9 2116 int mmu_idx;
1ccde1cb 2117
0f459d16 2118 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2119 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2120 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2121 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2122}
2123
d4c430a8
PB
2124/* Our TLB does not support large pages, so remember the area covered by
2125 large pages and trigger a full TLB flush if these are invalidated. */
2126static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2127 target_ulong size)
2128{
2129 target_ulong mask = ~(size - 1);
2130
2131 if (env->tlb_flush_addr == (target_ulong)-1) {
2132 env->tlb_flush_addr = vaddr & mask;
2133 env->tlb_flush_mask = mask;
2134 return;
2135 }
2136 /* Extend the existing region to include the new page.
2137 This is a compromise between unnecessary flushes and the cost
2138 of maintaining a full variable size TLB. */
2139 mask &= env->tlb_flush_mask;
2140 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2141 mask <<= 1;
2142 }
2143 env->tlb_flush_addr &= mask;
2144 env->tlb_flush_mask = mask;
2145}
2146
2147/* Add a new TLB entry. At most one entry for a given virtual address
2148 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2149 supplied size is only used by tlb_flush_page. */
2150void tlb_set_page(CPUState *env, target_ulong vaddr,
2151 target_phys_addr_t paddr, int prot,
2152 int mmu_idx, target_ulong size)
9fa3e853 2153{
92e873b9 2154 PhysPageDesc *p;
4f2ac237 2155 unsigned long pd;
9fa3e853 2156 unsigned int index;
4f2ac237 2157 target_ulong address;
0f459d16 2158 target_ulong code_address;
355b1943 2159 unsigned long addend;
84b7b8e7 2160 CPUTLBEntry *te;
a1d1bb31 2161 CPUWatchpoint *wp;
c227f099 2162 target_phys_addr_t iotlb;
9fa3e853 2163
d4c430a8
PB
2164 assert(size >= TARGET_PAGE_SIZE);
2165 if (size != TARGET_PAGE_SIZE) {
2166 tlb_add_large_page(env, vaddr, size);
2167 }
92e873b9 2168 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2169 if (!p) {
2170 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2171 } else {
2172 pd = p->phys_offset;
9fa3e853
FB
2173 }
2174#if defined(DEBUG_TLB)
6ebbf390
JM
2175 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2176 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2177#endif
2178
0f459d16
PB
2179 address = vaddr;
2180 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2181 /* IO memory case (romd handled later) */
2182 address |= TLB_MMIO;
2183 }
5579c7f3 2184 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2185 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2186 /* Normal RAM. */
2187 iotlb = pd & TARGET_PAGE_MASK;
2188 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2189 iotlb |= IO_MEM_NOTDIRTY;
2190 else
2191 iotlb |= IO_MEM_ROM;
2192 } else {
ccbb4d44 2193 /* IO handlers are currently passed a physical address.
0f459d16
PB
2194 It would be nice to pass an offset from the base address
2195 of that region. This would avoid having to special case RAM,
2196 and avoid full address decoding in every device.
2197 We can't use the high bits of pd for this because
2198 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2199 iotlb = (pd & ~TARGET_PAGE_MASK);
2200 if (p) {
8da3ff18
PB
2201 iotlb += p->region_offset;
2202 } else {
2203 iotlb += paddr;
2204 }
0f459d16
PB
2205 }
2206
2207 code_address = address;
2208 /* Make accesses to pages with watchpoints go via the
2209 watchpoint trap routines. */
72cf2d4f 2210 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2211 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2212 /* Avoid trapping reads of pages with a write breakpoint. */
2213 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2214 iotlb = io_mem_watch + paddr;
2215 address |= TLB_MMIO;
2216 break;
2217 }
6658ffb8 2218 }
0f459d16 2219 }
d79acba4 2220
0f459d16
PB
2221 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2222 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2223 te = &env->tlb_table[mmu_idx][index];
2224 te->addend = addend - vaddr;
2225 if (prot & PAGE_READ) {
2226 te->addr_read = address;
2227 } else {
2228 te->addr_read = -1;
2229 }
5c751e99 2230
0f459d16
PB
2231 if (prot & PAGE_EXEC) {
2232 te->addr_code = code_address;
2233 } else {
2234 te->addr_code = -1;
2235 }
2236 if (prot & PAGE_WRITE) {
2237 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2238 (pd & IO_MEM_ROMD)) {
2239 /* Write access calls the I/O callback. */
2240 te->addr_write = address | TLB_MMIO;
2241 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2242 !cpu_physical_memory_is_dirty(pd)) {
2243 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2244 } else {
0f459d16 2245 te->addr_write = address;
9fa3e853 2246 }
0f459d16
PB
2247 } else {
2248 te->addr_write = -1;
9fa3e853 2249 }
9fa3e853
FB
2250}
2251
0124311e
FB
2252#else
2253
ee8b7021 2254void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2255{
2256}
2257
2e12669a 2258void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2259{
2260}
2261
edf8e2af
MW
2262/*
2263 * Walks guest process memory "regions" one by one
2264 * and calls callback function 'fn' for each region.
2265 */
5cd2c5b6
RH
2266
2267struct walk_memory_regions_data
2268{
2269 walk_memory_regions_fn fn;
2270 void *priv;
2271 unsigned long start;
2272 int prot;
2273};
2274
2275static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2276 abi_ulong end, int new_prot)
5cd2c5b6
RH
2277{
2278 if (data->start != -1ul) {
2279 int rc = data->fn(data->priv, data->start, end, data->prot);
2280 if (rc != 0) {
2281 return rc;
2282 }
2283 }
2284
2285 data->start = (new_prot ? end : -1ul);
2286 data->prot = new_prot;
2287
2288 return 0;
2289}
2290
2291static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2292 abi_ulong base, int level, void **lp)
5cd2c5b6 2293{
b480d9b7 2294 abi_ulong pa;
5cd2c5b6
RH
2295 int i, rc;
2296
2297 if (*lp == NULL) {
2298 return walk_memory_regions_end(data, base, 0);
2299 }
2300
2301 if (level == 0) {
2302 PageDesc *pd = *lp;
7296abac 2303 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2304 int prot = pd[i].flags;
2305
2306 pa = base | (i << TARGET_PAGE_BITS);
2307 if (prot != data->prot) {
2308 rc = walk_memory_regions_end(data, pa, prot);
2309 if (rc != 0) {
2310 return rc;
9fa3e853 2311 }
9fa3e853 2312 }
5cd2c5b6
RH
2313 }
2314 } else {
2315 void **pp = *lp;
7296abac 2316 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2317 pa = base | ((abi_ulong)i <<
2318 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2319 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2320 if (rc != 0) {
2321 return rc;
2322 }
2323 }
2324 }
2325
2326 return 0;
2327}
2328
2329int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2330{
2331 struct walk_memory_regions_data data;
2332 unsigned long i;
2333
2334 data.fn = fn;
2335 data.priv = priv;
2336 data.start = -1ul;
2337 data.prot = 0;
2338
2339 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2340 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2341 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2342 if (rc != 0) {
2343 return rc;
9fa3e853 2344 }
33417e70 2345 }
5cd2c5b6
RH
2346
2347 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2348}
2349
b480d9b7
PB
2350static int dump_region(void *priv, abi_ulong start,
2351 abi_ulong end, unsigned long prot)
edf8e2af
MW
2352{
2353 FILE *f = (FILE *)priv;
2354
b480d9b7
PB
2355 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2356 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2357 start, end, end - start,
2358 ((prot & PAGE_READ) ? 'r' : '-'),
2359 ((prot & PAGE_WRITE) ? 'w' : '-'),
2360 ((prot & PAGE_EXEC) ? 'x' : '-'));
2361
2362 return (0);
2363}
2364
2365/* dump memory mappings */
2366void page_dump(FILE *f)
2367{
2368 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2369 "start", "end", "size", "prot");
2370 walk_memory_regions(f, dump_region);
33417e70
FB
2371}
2372
53a5960a 2373int page_get_flags(target_ulong address)
33417e70 2374{
9fa3e853
FB
2375 PageDesc *p;
2376
2377 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2378 if (!p)
9fa3e853
FB
2379 return 0;
2380 return p->flags;
2381}
2382
376a7909
RH
2383/* Modify the flags of a page and invalidate the code if necessary.
2384 The flag PAGE_WRITE_ORG is positioned automatically depending
2385 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2386void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2387{
376a7909
RH
2388 target_ulong addr, len;
2389
2390 /* This function should never be called with addresses outside the
2391 guest address space. If this assert fires, it probably indicates
2392 a missing call to h2g_valid. */
b480d9b7
PB
2393#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2394 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2395#endif
2396 assert(start < end);
9fa3e853
FB
2397
2398 start = start & TARGET_PAGE_MASK;
2399 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2400
2401 if (flags & PAGE_WRITE) {
9fa3e853 2402 flags |= PAGE_WRITE_ORG;
376a7909
RH
2403 }
2404
2405 for (addr = start, len = end - start;
2406 len != 0;
2407 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2408 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2409
2410 /* If the write protection bit is set, then we invalidate
2411 the code inside. */
5fafdf24 2412 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2413 (flags & PAGE_WRITE) &&
2414 p->first_tb) {
d720b93d 2415 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2416 }
2417 p->flags = flags;
2418 }
33417e70
FB
2419}
2420
3d97b40b
TS
2421int page_check_range(target_ulong start, target_ulong len, int flags)
2422{
2423 PageDesc *p;
2424 target_ulong end;
2425 target_ulong addr;
2426
376a7909
RH
2427 /* This function should never be called with addresses outside the
2428 guest address space. If this assert fires, it probably indicates
2429 a missing call to h2g_valid. */
338e9e6c
BS
2430#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2431 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2432#endif
2433
3e0650a9
RH
2434 if (len == 0) {
2435 return 0;
2436 }
376a7909
RH
2437 if (start + len - 1 < start) {
2438 /* We've wrapped around. */
55f280c9 2439 return -1;
376a7909 2440 }
55f280c9 2441
3d97b40b
TS
2442 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2443 start = start & TARGET_PAGE_MASK;
2444
376a7909
RH
2445 for (addr = start, len = end - start;
2446 len != 0;
2447 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2448 p = page_find(addr >> TARGET_PAGE_BITS);
2449 if( !p )
2450 return -1;
2451 if( !(p->flags & PAGE_VALID) )
2452 return -1;
2453
dae3270c 2454 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2455 return -1;
dae3270c
FB
2456 if (flags & PAGE_WRITE) {
2457 if (!(p->flags & PAGE_WRITE_ORG))
2458 return -1;
2459 /* unprotect the page if it was put read-only because it
2460 contains translated code */
2461 if (!(p->flags & PAGE_WRITE)) {
2462 if (!page_unprotect(addr, 0, NULL))
2463 return -1;
2464 }
2465 return 0;
2466 }
3d97b40b
TS
2467 }
2468 return 0;
2469}
2470
9fa3e853 2471/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2472 page. Return TRUE if the fault was successfully handled. */
53a5960a 2473int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2474{
45d679d6
AJ
2475 unsigned int prot;
2476 PageDesc *p;
53a5960a 2477 target_ulong host_start, host_end, addr;
9fa3e853 2478
c8a706fe
PB
2479 /* Technically this isn't safe inside a signal handler. However we
2480 know this only ever happens in a synchronous SEGV handler, so in
2481 practice it seems to be ok. */
2482 mmap_lock();
2483
45d679d6
AJ
2484 p = page_find(address >> TARGET_PAGE_BITS);
2485 if (!p) {
c8a706fe 2486 mmap_unlock();
9fa3e853 2487 return 0;
c8a706fe 2488 }
45d679d6 2489
9fa3e853
FB
2490 /* if the page was really writable, then we change its
2491 protection back to writable */
45d679d6
AJ
2492 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2493 host_start = address & qemu_host_page_mask;
2494 host_end = host_start + qemu_host_page_size;
2495
2496 prot = 0;
2497 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2498 p = page_find(addr >> TARGET_PAGE_BITS);
2499 p->flags |= PAGE_WRITE;
2500 prot |= p->flags;
2501
9fa3e853
FB
2502 /* and since the content will be modified, we must invalidate
2503 the corresponding translated code. */
45d679d6 2504 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2505#ifdef DEBUG_TB_CHECK
45d679d6 2506 tb_invalidate_check(addr);
9fa3e853 2507#endif
9fa3e853 2508 }
45d679d6
AJ
2509 mprotect((void *)g2h(host_start), qemu_host_page_size,
2510 prot & PAGE_BITS);
2511
2512 mmap_unlock();
2513 return 1;
9fa3e853 2514 }
c8a706fe 2515 mmap_unlock();
9fa3e853
FB
2516 return 0;
2517}
2518
6a00d601
FB
2519static inline void tlb_set_dirty(CPUState *env,
2520 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2521{
2522}
9fa3e853
FB
2523#endif /* defined(CONFIG_USER_ONLY) */
2524
e2eef170 2525#if !defined(CONFIG_USER_ONLY)
8da3ff18 2526
c04b2b78
PB
2527#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2528typedef struct subpage_t {
2529 target_phys_addr_t base;
f6405247
RH
2530 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2531 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2532} subpage_t;
2533
c227f099
AL
2534static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2535 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2536static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2537 ram_addr_t orig_memory,
2538 ram_addr_t region_offset);
db7b5426
BS
2539#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2540 need_subpage) \
2541 do { \
2542 if (addr > start_addr) \
2543 start_addr2 = 0; \
2544 else { \
2545 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2546 if (start_addr2 > 0) \
2547 need_subpage = 1; \
2548 } \
2549 \
49e9fba2 2550 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2551 end_addr2 = TARGET_PAGE_SIZE - 1; \
2552 else { \
2553 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2554 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2555 need_subpage = 1; \
2556 } \
2557 } while (0)
2558
8f2498f9
MT
2559/* register physical memory.
2560 For RAM, 'size' must be a multiple of the target page size.
2561 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2562 io memory page. The address used when calling the IO function is
2563 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2564 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2565 before calculating this offset. This should not be a problem unless
2566 the low bits of start_addr and region_offset differ. */
c227f099
AL
2567void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2568 ram_addr_t size,
2569 ram_addr_t phys_offset,
2570 ram_addr_t region_offset)
33417e70 2571{
c227f099 2572 target_phys_addr_t addr, end_addr;
92e873b9 2573 PhysPageDesc *p;
9d42037b 2574 CPUState *env;
c227f099 2575 ram_addr_t orig_size = size;
f6405247 2576 subpage_t *subpage;
33417e70 2577
f6f3fbca
MT
2578 cpu_notify_set_memory(start_addr, size, phys_offset);
2579
67c4d23c
PB
2580 if (phys_offset == IO_MEM_UNASSIGNED) {
2581 region_offset = start_addr;
2582 }
8da3ff18 2583 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2584 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2585 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2586 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2587 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2588 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2589 ram_addr_t orig_memory = p->phys_offset;
2590 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2591 int need_subpage = 0;
2592
2593 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2594 need_subpage);
f6405247 2595 if (need_subpage) {
db7b5426
BS
2596 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2597 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2598 &p->phys_offset, orig_memory,
2599 p->region_offset);
db7b5426
BS
2600 } else {
2601 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2602 >> IO_MEM_SHIFT];
2603 }
8da3ff18
PB
2604 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2605 region_offset);
2606 p->region_offset = 0;
db7b5426
BS
2607 } else {
2608 p->phys_offset = phys_offset;
2609 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2610 (phys_offset & IO_MEM_ROMD))
2611 phys_offset += TARGET_PAGE_SIZE;
2612 }
2613 } else {
2614 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2615 p->phys_offset = phys_offset;
8da3ff18 2616 p->region_offset = region_offset;
db7b5426 2617 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2618 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2619 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2620 } else {
c227f099 2621 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2622 int need_subpage = 0;
2623
2624 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2625 end_addr2, need_subpage);
2626
f6405247 2627 if (need_subpage) {
db7b5426 2628 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2629 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2630 addr & TARGET_PAGE_MASK);
db7b5426 2631 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2632 phys_offset, region_offset);
2633 p->region_offset = 0;
db7b5426
BS
2634 }
2635 }
2636 }
8da3ff18 2637 region_offset += TARGET_PAGE_SIZE;
33417e70 2638 }
3b46e624 2639
9d42037b
FB
2640 /* since each CPU stores ram addresses in its TLB cache, we must
2641 reset the modified entries */
2642 /* XXX: slow ! */
2643 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2644 tlb_flush(env, 1);
2645 }
33417e70
FB
2646}
2647
ba863458 2648/* XXX: temporary until new memory mapping API */
c227f099 2649ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2650{
2651 PhysPageDesc *p;
2652
2653 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2654 if (!p)
2655 return IO_MEM_UNASSIGNED;
2656 return p->phys_offset;
2657}
2658
c227f099 2659void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2660{
2661 if (kvm_enabled())
2662 kvm_coalesce_mmio_region(addr, size);
2663}
2664
c227f099 2665void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2666{
2667 if (kvm_enabled())
2668 kvm_uncoalesce_mmio_region(addr, size);
2669}
2670
62a2744c
SY
2671void qemu_flush_coalesced_mmio_buffer(void)
2672{
2673 if (kvm_enabled())
2674 kvm_flush_coalesced_mmio_buffer();
2675}
2676
c902760f
MT
2677#if defined(__linux__) && !defined(TARGET_S390X)
2678
2679#include <sys/vfs.h>
2680
2681#define HUGETLBFS_MAGIC 0x958458f6
2682
2683static long gethugepagesize(const char *path)
2684{
2685 struct statfs fs;
2686 int ret;
2687
2688 do {
2689 ret = statfs(path, &fs);
2690 } while (ret != 0 && errno == EINTR);
2691
2692 if (ret != 0) {
6adc0549 2693 perror(path);
c902760f
MT
2694 return 0;
2695 }
2696
2697 if (fs.f_type != HUGETLBFS_MAGIC)
2698 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2699
2700 return fs.f_bsize;
2701}
2702
2703static void *file_ram_alloc(ram_addr_t memory, const char *path)
2704{
2705 char *filename;
2706 void *area;
2707 int fd;
2708#ifdef MAP_POPULATE
2709 int flags;
2710#endif
2711 unsigned long hpagesize;
2712
2713 hpagesize = gethugepagesize(path);
2714 if (!hpagesize) {
2715 return NULL;
2716 }
2717
2718 if (memory < hpagesize) {
2719 return NULL;
2720 }
2721
2722 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2723 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2724 return NULL;
2725 }
2726
2727 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2728 return NULL;
2729 }
2730
2731 fd = mkstemp(filename);
2732 if (fd < 0) {
6adc0549 2733 perror("unable to create backing store for hugepages");
c902760f
MT
2734 free(filename);
2735 return NULL;
2736 }
2737 unlink(filename);
2738 free(filename);
2739
2740 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2741
2742 /*
2743 * ftruncate is not supported by hugetlbfs in older
2744 * hosts, so don't bother bailing out on errors.
2745 * If anything goes wrong with it under other filesystems,
2746 * mmap will fail.
2747 */
2748 if (ftruncate(fd, memory))
2749 perror("ftruncate");
2750
2751#ifdef MAP_POPULATE
2752 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2753 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2754 * to sidestep this quirk.
2755 */
2756 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2757 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2758#else
2759 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2760#endif
2761 if (area == MAP_FAILED) {
2762 perror("file_ram_alloc: can't mmap RAM pages");
2763 close(fd);
2764 return (NULL);
2765 }
2766 return area;
2767}
2768#endif
2769
c227f099 2770ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2771{
2772 RAMBlock *new_block;
2773
94a6b54f
PB
2774 size = TARGET_PAGE_ALIGN(size);
2775 new_block = qemu_malloc(sizeof(*new_block));
2776
c902760f
MT
2777 if (mem_path) {
2778#if defined (__linux__) && !defined(TARGET_S390X)
2779 new_block->host = file_ram_alloc(size, mem_path);
618a568d
MT
2780 if (!new_block->host) {
2781 new_block->host = qemu_vmalloc(size);
2782#ifdef MADV_MERGEABLE
2783 madvise(new_block->host, size, MADV_MERGEABLE);
2784#endif
2785 }
c902760f
MT
2786#else
2787 fprintf(stderr, "-mem-path option unsupported\n");
2788 exit(1);
2789#endif
2790 } else {
6b02494d 2791#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2792 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2793 new_block->host = mmap((void*)0x1000000, size,
2794 PROT_EXEC|PROT_READ|PROT_WRITE,
2795 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2796#else
c902760f 2797 new_block->host = qemu_vmalloc(size);
6b02494d 2798#endif
ccb167e9 2799#ifdef MADV_MERGEABLE
c902760f 2800 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2801#endif
c902760f 2802 }
f471a17e 2803 new_block->offset = ram_list.last_offset;
94a6b54f
PB
2804 new_block->length = size;
2805
f471a17e 2806 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2807
f471a17e
AW
2808 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2809 (ram_list.last_offset + size) >> TARGET_PAGE_BITS);
2810 memset(ram_list.phys_dirty + (ram_list.last_offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2811 0xff, size >> TARGET_PAGE_BITS);
2812
f471a17e 2813 ram_list.last_offset += size;
94a6b54f 2814
6f0437e8
JK
2815 if (kvm_enabled())
2816 kvm_setup_guest_memory(new_block->host, size);
2817
94a6b54f
PB
2818 return new_block->offset;
2819}
e9a1ab19 2820
c227f099 2821void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2822{
94a6b54f 2823 /* TODO: implement this. */
e9a1ab19
FB
2824}
2825
dc828ca1 2826/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2827 With the exception of the softmmu code in this file, this should
2828 only be used for local memory (e.g. video ram) that the device owns,
2829 and knows it isn't going to access beyond the end of the block.
2830
2831 It should not be used for general purpose DMA.
2832 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2833 */
c227f099 2834void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2835{
94a6b54f
PB
2836 RAMBlock *block;
2837
f471a17e
AW
2838 QLIST_FOREACH(block, &ram_list.blocks, next) {
2839 if (addr - block->offset < block->length) {
2840 QLIST_REMOVE(block, next);
2841 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2842 return block->host + (addr - block->offset);
2843 }
94a6b54f 2844 }
f471a17e
AW
2845
2846 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2847 abort();
2848
2849 return NULL;
dc828ca1
PB
2850}
2851
5579c7f3
PB
2852/* Some of the softmmu routines need to translate from a host pointer
2853 (typically a TLB entry) back to a ram offset. */
c227f099 2854ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2855{
94a6b54f
PB
2856 RAMBlock *block;
2857 uint8_t *host = ptr;
2858
f471a17e
AW
2859 QLIST_FOREACH(block, &ram_list.blocks, next) {
2860 if (host - block->host < block->length) {
2861 return block->offset + (host - block->host);
2862 }
94a6b54f 2863 }
f471a17e
AW
2864
2865 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2866 abort();
2867
2868 return 0;
5579c7f3
PB
2869}
2870
c227f099 2871static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2872{
67d3b957 2873#ifdef DEBUG_UNASSIGNED
ab3d1727 2874 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2875#endif
faed1c2a 2876#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2877 do_unassigned_access(addr, 0, 0, 0, 1);
2878#endif
2879 return 0;
2880}
2881
c227f099 2882static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2883{
2884#ifdef DEBUG_UNASSIGNED
2885 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2886#endif
faed1c2a 2887#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2888 do_unassigned_access(addr, 0, 0, 0, 2);
2889#endif
2890 return 0;
2891}
2892
c227f099 2893static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2894{
2895#ifdef DEBUG_UNASSIGNED
2896 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2897#endif
faed1c2a 2898#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2899 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2900#endif
33417e70
FB
2901 return 0;
2902}
2903
c227f099 2904static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2905{
67d3b957 2906#ifdef DEBUG_UNASSIGNED
ab3d1727 2907 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2908#endif
faed1c2a 2909#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2910 do_unassigned_access(addr, 1, 0, 0, 1);
2911#endif
2912}
2913
c227f099 2914static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2915{
2916#ifdef DEBUG_UNASSIGNED
2917 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2918#endif
faed1c2a 2919#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2920 do_unassigned_access(addr, 1, 0, 0, 2);
2921#endif
2922}
2923
c227f099 2924static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2925{
2926#ifdef DEBUG_UNASSIGNED
2927 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2928#endif
faed1c2a 2929#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2930 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2931#endif
33417e70
FB
2932}
2933
d60efc6b 2934static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2935 unassigned_mem_readb,
e18231a3
BS
2936 unassigned_mem_readw,
2937 unassigned_mem_readl,
33417e70
FB
2938};
2939
d60efc6b 2940static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2941 unassigned_mem_writeb,
e18231a3
BS
2942 unassigned_mem_writew,
2943 unassigned_mem_writel,
33417e70
FB
2944};
2945
c227f099 2946static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2947 uint32_t val)
9fa3e853 2948{
3a7d929e 2949 int dirty_flags;
f7c11b53 2950 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2951 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2952#if !defined(CONFIG_USER_ONLY)
3a7d929e 2953 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 2954 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2955#endif
3a7d929e 2956 }
5579c7f3 2957 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2958 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2959 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2960 /* we remove the notdirty callback only if the code has been
2961 flushed */
2962 if (dirty_flags == 0xff)
2e70f6ef 2963 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2964}
2965
c227f099 2966static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2967 uint32_t val)
9fa3e853 2968{
3a7d929e 2969 int dirty_flags;
f7c11b53 2970 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2971 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2972#if !defined(CONFIG_USER_ONLY)
3a7d929e 2973 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 2974 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2975#endif
3a7d929e 2976 }
5579c7f3 2977 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2978 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2979 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2980 /* we remove the notdirty callback only if the code has been
2981 flushed */
2982 if (dirty_flags == 0xff)
2e70f6ef 2983 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2984}
2985
c227f099 2986static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2987 uint32_t val)
9fa3e853 2988{
3a7d929e 2989 int dirty_flags;
f7c11b53 2990 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2991 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2992#if !defined(CONFIG_USER_ONLY)
3a7d929e 2993 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 2994 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2995#endif
3a7d929e 2996 }
5579c7f3 2997 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2998 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2999 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3000 /* we remove the notdirty callback only if the code has been
3001 flushed */
3002 if (dirty_flags == 0xff)
2e70f6ef 3003 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3004}
3005
d60efc6b 3006static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3007 NULL, /* never used */
3008 NULL, /* never used */
3009 NULL, /* never used */
3010};
3011
d60efc6b 3012static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3013 notdirty_mem_writeb,
3014 notdirty_mem_writew,
3015 notdirty_mem_writel,
3016};
3017
0f459d16 3018/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3019static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3020{
3021 CPUState *env = cpu_single_env;
06d55cc1
AL
3022 target_ulong pc, cs_base;
3023 TranslationBlock *tb;
0f459d16 3024 target_ulong vaddr;
a1d1bb31 3025 CPUWatchpoint *wp;
06d55cc1 3026 int cpu_flags;
0f459d16 3027
06d55cc1
AL
3028 if (env->watchpoint_hit) {
3029 /* We re-entered the check after replacing the TB. Now raise
3030 * the debug interrupt so that is will trigger after the
3031 * current instruction. */
3032 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3033 return;
3034 }
2e70f6ef 3035 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3036 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3037 if ((vaddr == (wp->vaddr & len_mask) ||
3038 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3039 wp->flags |= BP_WATCHPOINT_HIT;
3040 if (!env->watchpoint_hit) {
3041 env->watchpoint_hit = wp;
3042 tb = tb_find_pc(env->mem_io_pc);
3043 if (!tb) {
3044 cpu_abort(env, "check_watchpoint: could not find TB for "
3045 "pc=%p", (void *)env->mem_io_pc);
3046 }
3047 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3048 tb_phys_invalidate(tb, -1);
3049 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3050 env->exception_index = EXCP_DEBUG;
3051 } else {
3052 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3053 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3054 }
3055 cpu_resume_from_signal(env, NULL);
06d55cc1 3056 }
6e140f28
AL
3057 } else {
3058 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3059 }
3060 }
3061}
3062
6658ffb8
PB
3063/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3064 so these check for a hit then pass through to the normal out-of-line
3065 phys routines. */
c227f099 3066static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3067{
b4051334 3068 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3069 return ldub_phys(addr);
3070}
3071
c227f099 3072static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3073{
b4051334 3074 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3075 return lduw_phys(addr);
3076}
3077
c227f099 3078static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3079{
b4051334 3080 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3081 return ldl_phys(addr);
3082}
3083
c227f099 3084static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3085 uint32_t val)
3086{
b4051334 3087 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3088 stb_phys(addr, val);
3089}
3090
c227f099 3091static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3092 uint32_t val)
3093{
b4051334 3094 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3095 stw_phys(addr, val);
3096}
3097
c227f099 3098static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3099 uint32_t val)
3100{
b4051334 3101 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3102 stl_phys(addr, val);
3103}
3104
d60efc6b 3105static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3106 watch_mem_readb,
3107 watch_mem_readw,
3108 watch_mem_readl,
3109};
3110
d60efc6b 3111static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3112 watch_mem_writeb,
3113 watch_mem_writew,
3114 watch_mem_writel,
3115};
6658ffb8 3116
f6405247
RH
3117static inline uint32_t subpage_readlen (subpage_t *mmio,
3118 target_phys_addr_t addr,
3119 unsigned int len)
db7b5426 3120{
f6405247 3121 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3122#if defined(DEBUG_SUBPAGE)
3123 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3124 mmio, len, addr, idx);
3125#endif
db7b5426 3126
f6405247
RH
3127 addr += mmio->region_offset[idx];
3128 idx = mmio->sub_io_index[idx];
3129 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3130}
3131
c227f099 3132static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3133 uint32_t value, unsigned int len)
db7b5426 3134{
f6405247 3135 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3136#if defined(DEBUG_SUBPAGE)
f6405247
RH
3137 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3138 __func__, mmio, len, addr, idx, value);
db7b5426 3139#endif
f6405247
RH
3140
3141 addr += mmio->region_offset[idx];
3142 idx = mmio->sub_io_index[idx];
3143 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3144}
3145
c227f099 3146static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3147{
db7b5426
BS
3148 return subpage_readlen(opaque, addr, 0);
3149}
3150
c227f099 3151static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3152 uint32_t value)
3153{
db7b5426
BS
3154 subpage_writelen(opaque, addr, value, 0);
3155}
3156
c227f099 3157static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3158{
db7b5426
BS
3159 return subpage_readlen(opaque, addr, 1);
3160}
3161
c227f099 3162static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3163 uint32_t value)
3164{
db7b5426
BS
3165 subpage_writelen(opaque, addr, value, 1);
3166}
3167
c227f099 3168static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3169{
db7b5426
BS
3170 return subpage_readlen(opaque, addr, 2);
3171}
3172
f6405247
RH
3173static void subpage_writel (void *opaque, target_phys_addr_t addr,
3174 uint32_t value)
db7b5426 3175{
db7b5426
BS
3176 subpage_writelen(opaque, addr, value, 2);
3177}
3178
d60efc6b 3179static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3180 &subpage_readb,
3181 &subpage_readw,
3182 &subpage_readl,
3183};
3184
d60efc6b 3185static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3186 &subpage_writeb,
3187 &subpage_writew,
3188 &subpage_writel,
3189};
3190
c227f099
AL
3191static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3192 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3193{
3194 int idx, eidx;
3195
3196 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3197 return -1;
3198 idx = SUBPAGE_IDX(start);
3199 eidx = SUBPAGE_IDX(end);
3200#if defined(DEBUG_SUBPAGE)
0bf9e31a 3201 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3202 mmio, start, end, idx, eidx, memory);
3203#endif
f6405247 3204 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3205 for (; idx <= eidx; idx++) {
f6405247
RH
3206 mmio->sub_io_index[idx] = memory;
3207 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3208 }
3209
3210 return 0;
3211}
3212
f6405247
RH
3213static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3214 ram_addr_t orig_memory,
3215 ram_addr_t region_offset)
db7b5426 3216{
c227f099 3217 subpage_t *mmio;
db7b5426
BS
3218 int subpage_memory;
3219
c227f099 3220 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3221
3222 mmio->base = base;
1eed09cb 3223 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3224#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3225 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3226 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3227#endif
1eec614b 3228 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3229 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3230
3231 return mmio;
3232}
3233
88715657
AL
3234static int get_free_io_mem_idx(void)
3235{
3236 int i;
3237
3238 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3239 if (!io_mem_used[i]) {
3240 io_mem_used[i] = 1;
3241 return i;
3242 }
c6703b47 3243 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3244 return -1;
3245}
3246
33417e70
FB
3247/* mem_read and mem_write are arrays of functions containing the
3248 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3249 2). Functions can be omitted with a NULL function pointer.
3ee89922 3250 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3251 modified. If it is zero, a new io zone is allocated. The return
3252 value can be used with cpu_register_physical_memory(). (-1) is
3253 returned if error. */
1eed09cb 3254static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3255 CPUReadMemoryFunc * const *mem_read,
3256 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3257 void *opaque)
33417e70 3258{
3cab721d
RH
3259 int i;
3260
33417e70 3261 if (io_index <= 0) {
88715657
AL
3262 io_index = get_free_io_mem_idx();
3263 if (io_index == -1)
3264 return io_index;
33417e70 3265 } else {
1eed09cb 3266 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3267 if (io_index >= IO_MEM_NB_ENTRIES)
3268 return -1;
3269 }
b5ff1b31 3270
3cab721d
RH
3271 for (i = 0; i < 3; ++i) {
3272 io_mem_read[io_index][i]
3273 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3274 }
3275 for (i = 0; i < 3; ++i) {
3276 io_mem_write[io_index][i]
3277 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3278 }
a4193c8a 3279 io_mem_opaque[io_index] = opaque;
f6405247
RH
3280
3281 return (io_index << IO_MEM_SHIFT);
33417e70 3282}
61382a50 3283
d60efc6b
BS
3284int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3285 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3286 void *opaque)
3287{
3288 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3289}
3290
88715657
AL
3291void cpu_unregister_io_memory(int io_table_address)
3292{
3293 int i;
3294 int io_index = io_table_address >> IO_MEM_SHIFT;
3295
3296 for (i=0;i < 3; i++) {
3297 io_mem_read[io_index][i] = unassigned_mem_read[i];
3298 io_mem_write[io_index][i] = unassigned_mem_write[i];
3299 }
3300 io_mem_opaque[io_index] = NULL;
3301 io_mem_used[io_index] = 0;
3302}
3303
e9179ce1
AK
3304static void io_mem_init(void)
3305{
3306 int i;
3307
3308 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3309 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3310 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3311 for (i=0; i<5; i++)
3312 io_mem_used[i] = 1;
3313
3314 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3315 watch_mem_write, NULL);
e9179ce1
AK
3316}
3317
e2eef170
PB
3318#endif /* !defined(CONFIG_USER_ONLY) */
3319
13eb76e0
FB
3320/* physical memory access (slow version, mainly for debug) */
3321#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3322int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3323 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3324{
3325 int l, flags;
3326 target_ulong page;
53a5960a 3327 void * p;
13eb76e0
FB
3328
3329 while (len > 0) {
3330 page = addr & TARGET_PAGE_MASK;
3331 l = (page + TARGET_PAGE_SIZE) - addr;
3332 if (l > len)
3333 l = len;
3334 flags = page_get_flags(page);
3335 if (!(flags & PAGE_VALID))
a68fe89c 3336 return -1;
13eb76e0
FB
3337 if (is_write) {
3338 if (!(flags & PAGE_WRITE))
a68fe89c 3339 return -1;
579a97f7 3340 /* XXX: this code should not depend on lock_user */
72fb7daa 3341 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3342 return -1;
72fb7daa
AJ
3343 memcpy(p, buf, l);
3344 unlock_user(p, addr, l);
13eb76e0
FB
3345 } else {
3346 if (!(flags & PAGE_READ))
a68fe89c 3347 return -1;
579a97f7 3348 /* XXX: this code should not depend on lock_user */
72fb7daa 3349 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3350 return -1;
72fb7daa 3351 memcpy(buf, p, l);
5b257578 3352 unlock_user(p, addr, 0);
13eb76e0
FB
3353 }
3354 len -= l;
3355 buf += l;
3356 addr += l;
3357 }
a68fe89c 3358 return 0;
13eb76e0 3359}
8df1cd07 3360
13eb76e0 3361#else
c227f099 3362void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3363 int len, int is_write)
3364{
3365 int l, io_index;
3366 uint8_t *ptr;
3367 uint32_t val;
c227f099 3368 target_phys_addr_t page;
2e12669a 3369 unsigned long pd;
92e873b9 3370 PhysPageDesc *p;
3b46e624 3371
13eb76e0
FB
3372 while (len > 0) {
3373 page = addr & TARGET_PAGE_MASK;
3374 l = (page + TARGET_PAGE_SIZE) - addr;
3375 if (l > len)
3376 l = len;
92e873b9 3377 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3378 if (!p) {
3379 pd = IO_MEM_UNASSIGNED;
3380 } else {
3381 pd = p->phys_offset;
3382 }
3b46e624 3383
13eb76e0 3384 if (is_write) {
3a7d929e 3385 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3386 target_phys_addr_t addr1 = addr;
13eb76e0 3387 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3388 if (p)
6c2934db 3389 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3390 /* XXX: could force cpu_single_env to NULL to avoid
3391 potential bugs */
6c2934db 3392 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3393 /* 32 bit write access */
c27004ec 3394 val = ldl_p(buf);
6c2934db 3395 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3396 l = 4;
6c2934db 3397 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3398 /* 16 bit write access */
c27004ec 3399 val = lduw_p(buf);
6c2934db 3400 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3401 l = 2;
3402 } else {
1c213d19 3403 /* 8 bit write access */
c27004ec 3404 val = ldub_p(buf);
6c2934db 3405 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3406 l = 1;
3407 }
3408 } else {
b448f2f3
FB
3409 unsigned long addr1;
3410 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3411 /* RAM case */
5579c7f3 3412 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3413 memcpy(ptr, buf, l);
3a7d929e
FB
3414 if (!cpu_physical_memory_is_dirty(addr1)) {
3415 /* invalidate code */
3416 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3417 /* set dirty bit */
f7c11b53
YT
3418 cpu_physical_memory_set_dirty_flags(
3419 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3420 }
13eb76e0
FB
3421 }
3422 } else {
5fafdf24 3423 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3424 !(pd & IO_MEM_ROMD)) {
c227f099 3425 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3426 /* I/O case */
3427 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3428 if (p)
6c2934db
AJ
3429 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3430 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3431 /* 32 bit read access */
6c2934db 3432 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3433 stl_p(buf, val);
13eb76e0 3434 l = 4;
6c2934db 3435 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3436 /* 16 bit read access */
6c2934db 3437 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3438 stw_p(buf, val);
13eb76e0
FB
3439 l = 2;
3440 } else {
1c213d19 3441 /* 8 bit read access */
6c2934db 3442 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3443 stb_p(buf, val);
13eb76e0
FB
3444 l = 1;
3445 }
3446 } else {
3447 /* RAM case */
5579c7f3 3448 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3449 (addr & ~TARGET_PAGE_MASK);
3450 memcpy(buf, ptr, l);
3451 }
3452 }
3453 len -= l;
3454 buf += l;
3455 addr += l;
3456 }
3457}
8df1cd07 3458
d0ecd2aa 3459/* used for ROM loading : can write in RAM and ROM */
c227f099 3460void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3461 const uint8_t *buf, int len)
3462{
3463 int l;
3464 uint8_t *ptr;
c227f099 3465 target_phys_addr_t page;
d0ecd2aa
FB
3466 unsigned long pd;
3467 PhysPageDesc *p;
3b46e624 3468
d0ecd2aa
FB
3469 while (len > 0) {
3470 page = addr & TARGET_PAGE_MASK;
3471 l = (page + TARGET_PAGE_SIZE) - addr;
3472 if (l > len)
3473 l = len;
3474 p = phys_page_find(page >> TARGET_PAGE_BITS);
3475 if (!p) {
3476 pd = IO_MEM_UNASSIGNED;
3477 } else {
3478 pd = p->phys_offset;
3479 }
3b46e624 3480
d0ecd2aa 3481 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3482 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3483 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3484 /* do nothing */
3485 } else {
3486 unsigned long addr1;
3487 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3488 /* ROM/RAM case */
5579c7f3 3489 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3490 memcpy(ptr, buf, l);
3491 }
3492 len -= l;
3493 buf += l;
3494 addr += l;
3495 }
3496}
3497
6d16c2f8
AL
3498typedef struct {
3499 void *buffer;
c227f099
AL
3500 target_phys_addr_t addr;
3501 target_phys_addr_t len;
6d16c2f8
AL
3502} BounceBuffer;
3503
3504static BounceBuffer bounce;
3505
ba223c29
AL
3506typedef struct MapClient {
3507 void *opaque;
3508 void (*callback)(void *opaque);
72cf2d4f 3509 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3510} MapClient;
3511
72cf2d4f
BS
3512static QLIST_HEAD(map_client_list, MapClient) map_client_list
3513 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3514
3515void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3516{
3517 MapClient *client = qemu_malloc(sizeof(*client));
3518
3519 client->opaque = opaque;
3520 client->callback = callback;
72cf2d4f 3521 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3522 return client;
3523}
3524
3525void cpu_unregister_map_client(void *_client)
3526{
3527 MapClient *client = (MapClient *)_client;
3528
72cf2d4f 3529 QLIST_REMOVE(client, link);
34d5e948 3530 qemu_free(client);
ba223c29
AL
3531}
3532
3533static void cpu_notify_map_clients(void)
3534{
3535 MapClient *client;
3536
72cf2d4f
BS
3537 while (!QLIST_EMPTY(&map_client_list)) {
3538 client = QLIST_FIRST(&map_client_list);
ba223c29 3539 client->callback(client->opaque);
34d5e948 3540 cpu_unregister_map_client(client);
ba223c29
AL
3541 }
3542}
3543
6d16c2f8
AL
3544/* Map a physical memory region into a host virtual address.
3545 * May map a subset of the requested range, given by and returned in *plen.
3546 * May return NULL if resources needed to perform the mapping are exhausted.
3547 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3548 * Use cpu_register_map_client() to know when retrying the map operation is
3549 * likely to succeed.
6d16c2f8 3550 */
c227f099
AL
3551void *cpu_physical_memory_map(target_phys_addr_t addr,
3552 target_phys_addr_t *plen,
6d16c2f8
AL
3553 int is_write)
3554{
c227f099
AL
3555 target_phys_addr_t len = *plen;
3556 target_phys_addr_t done = 0;
6d16c2f8
AL
3557 int l;
3558 uint8_t *ret = NULL;
3559 uint8_t *ptr;
c227f099 3560 target_phys_addr_t page;
6d16c2f8
AL
3561 unsigned long pd;
3562 PhysPageDesc *p;
3563 unsigned long addr1;
3564
3565 while (len > 0) {
3566 page = addr & TARGET_PAGE_MASK;
3567 l = (page + TARGET_PAGE_SIZE) - addr;
3568 if (l > len)
3569 l = len;
3570 p = phys_page_find(page >> TARGET_PAGE_BITS);
3571 if (!p) {
3572 pd = IO_MEM_UNASSIGNED;
3573 } else {
3574 pd = p->phys_offset;
3575 }
3576
3577 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3578 if (done || bounce.buffer) {
3579 break;
3580 }
3581 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3582 bounce.addr = addr;
3583 bounce.len = l;
3584 if (!is_write) {
3585 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3586 }
3587 ptr = bounce.buffer;
3588 } else {
3589 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3590 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3591 }
3592 if (!done) {
3593 ret = ptr;
3594 } else if (ret + done != ptr) {
3595 break;
3596 }
3597
3598 len -= l;
3599 addr += l;
3600 done += l;
3601 }
3602 *plen = done;
3603 return ret;
3604}
3605
3606/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3607 * Will also mark the memory as dirty if is_write == 1. access_len gives
3608 * the amount of memory that was actually read or written by the caller.
3609 */
c227f099
AL
3610void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3611 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3612{
3613 if (buffer != bounce.buffer) {
3614 if (is_write) {
c227f099 3615 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3616 while (access_len) {
3617 unsigned l;
3618 l = TARGET_PAGE_SIZE;
3619 if (l > access_len)
3620 l = access_len;
3621 if (!cpu_physical_memory_is_dirty(addr1)) {
3622 /* invalidate code */
3623 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3624 /* set dirty bit */
f7c11b53
YT
3625 cpu_physical_memory_set_dirty_flags(
3626 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3627 }
3628 addr1 += l;
3629 access_len -= l;
3630 }
3631 }
3632 return;
3633 }
3634 if (is_write) {
3635 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3636 }
f8a83245 3637 qemu_vfree(bounce.buffer);
6d16c2f8 3638 bounce.buffer = NULL;
ba223c29 3639 cpu_notify_map_clients();
6d16c2f8 3640}
d0ecd2aa 3641
8df1cd07 3642/* warning: addr must be aligned */
c227f099 3643uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3644{
3645 int io_index;
3646 uint8_t *ptr;
3647 uint32_t val;
3648 unsigned long pd;
3649 PhysPageDesc *p;
3650
3651 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3652 if (!p) {
3653 pd = IO_MEM_UNASSIGNED;
3654 } else {
3655 pd = p->phys_offset;
3656 }
3b46e624 3657
5fafdf24 3658 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3659 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3660 /* I/O case */
3661 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3662 if (p)
3663 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3664 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3665 } else {
3666 /* RAM case */
5579c7f3 3667 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3668 (addr & ~TARGET_PAGE_MASK);
3669 val = ldl_p(ptr);
3670 }
3671 return val;
3672}
3673
84b7b8e7 3674/* warning: addr must be aligned */
c227f099 3675uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3676{
3677 int io_index;
3678 uint8_t *ptr;
3679 uint64_t val;
3680 unsigned long pd;
3681 PhysPageDesc *p;
3682
3683 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3684 if (!p) {
3685 pd = IO_MEM_UNASSIGNED;
3686 } else {
3687 pd = p->phys_offset;
3688 }
3b46e624 3689
2a4188a3
FB
3690 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3691 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3692 /* I/O case */
3693 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3694 if (p)
3695 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3696#ifdef TARGET_WORDS_BIGENDIAN
3697 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3698 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3699#else
3700 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3701 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3702#endif
3703 } else {
3704 /* RAM case */
5579c7f3 3705 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3706 (addr & ~TARGET_PAGE_MASK);
3707 val = ldq_p(ptr);
3708 }
3709 return val;
3710}
3711
aab33094 3712/* XXX: optimize */
c227f099 3713uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3714{
3715 uint8_t val;
3716 cpu_physical_memory_read(addr, &val, 1);
3717 return val;
3718}
3719
733f0b02 3720/* warning: addr must be aligned */
c227f099 3721uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 3722{
733f0b02
MT
3723 int io_index;
3724 uint8_t *ptr;
3725 uint64_t val;
3726 unsigned long pd;
3727 PhysPageDesc *p;
3728
3729 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3730 if (!p) {
3731 pd = IO_MEM_UNASSIGNED;
3732 } else {
3733 pd = p->phys_offset;
3734 }
3735
3736 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3737 !(pd & IO_MEM_ROMD)) {
3738 /* I/O case */
3739 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3740 if (p)
3741 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3742 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3743 } else {
3744 /* RAM case */
3745 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3746 (addr & ~TARGET_PAGE_MASK);
3747 val = lduw_p(ptr);
3748 }
3749 return val;
aab33094
FB
3750}
3751
8df1cd07
FB
3752/* warning: addr must be aligned. The ram page is not masked as dirty
3753 and the code inside is not invalidated. It is useful if the dirty
3754 bits are used to track modified PTEs */
c227f099 3755void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3756{
3757 int io_index;
3758 uint8_t *ptr;
3759 unsigned long pd;
3760 PhysPageDesc *p;
3761
3762 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3763 if (!p) {
3764 pd = IO_MEM_UNASSIGNED;
3765 } else {
3766 pd = p->phys_offset;
3767 }
3b46e624 3768
3a7d929e 3769 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3770 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3771 if (p)
3772 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3773 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3774 } else {
74576198 3775 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3776 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3777 stl_p(ptr, val);
74576198
AL
3778
3779 if (unlikely(in_migration)) {
3780 if (!cpu_physical_memory_is_dirty(addr1)) {
3781 /* invalidate code */
3782 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3783 /* set dirty bit */
f7c11b53
YT
3784 cpu_physical_memory_set_dirty_flags(
3785 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3786 }
3787 }
8df1cd07
FB
3788 }
3789}
3790
c227f099 3791void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3792{
3793 int io_index;
3794 uint8_t *ptr;
3795 unsigned long pd;
3796 PhysPageDesc *p;
3797
3798 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3799 if (!p) {
3800 pd = IO_MEM_UNASSIGNED;
3801 } else {
3802 pd = p->phys_offset;
3803 }
3b46e624 3804
bc98a7ef
JM
3805 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3806 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3807 if (p)
3808 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3809#ifdef TARGET_WORDS_BIGENDIAN
3810 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3811 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3812#else
3813 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3814 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3815#endif
3816 } else {
5579c7f3 3817 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3818 (addr & ~TARGET_PAGE_MASK);
3819 stq_p(ptr, val);
3820 }
3821}
3822
8df1cd07 3823/* warning: addr must be aligned */
c227f099 3824void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3825{
3826 int io_index;
3827 uint8_t *ptr;
3828 unsigned long pd;
3829 PhysPageDesc *p;
3830
3831 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3832 if (!p) {
3833 pd = IO_MEM_UNASSIGNED;
3834 } else {
3835 pd = p->phys_offset;
3836 }
3b46e624 3837
3a7d929e 3838 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3839 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3840 if (p)
3841 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3842 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3843 } else {
3844 unsigned long addr1;
3845 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3846 /* RAM case */
5579c7f3 3847 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3848 stl_p(ptr, val);
3a7d929e
FB
3849 if (!cpu_physical_memory_is_dirty(addr1)) {
3850 /* invalidate code */
3851 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3852 /* set dirty bit */
f7c11b53
YT
3853 cpu_physical_memory_set_dirty_flags(addr1,
3854 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3855 }
8df1cd07
FB
3856 }
3857}
3858
aab33094 3859/* XXX: optimize */
c227f099 3860void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3861{
3862 uint8_t v = val;
3863 cpu_physical_memory_write(addr, &v, 1);
3864}
3865
733f0b02 3866/* warning: addr must be aligned */
c227f099 3867void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 3868{
733f0b02
MT
3869 int io_index;
3870 uint8_t *ptr;
3871 unsigned long pd;
3872 PhysPageDesc *p;
3873
3874 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3875 if (!p) {
3876 pd = IO_MEM_UNASSIGNED;
3877 } else {
3878 pd = p->phys_offset;
3879 }
3880
3881 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3882 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3883 if (p)
3884 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3885 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3886 } else {
3887 unsigned long addr1;
3888 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3889 /* RAM case */
3890 ptr = qemu_get_ram_ptr(addr1);
3891 stw_p(ptr, val);
3892 if (!cpu_physical_memory_is_dirty(addr1)) {
3893 /* invalidate code */
3894 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
3895 /* set dirty bit */
3896 cpu_physical_memory_set_dirty_flags(addr1,
3897 (0xff & ~CODE_DIRTY_FLAG));
3898 }
3899 }
aab33094
FB
3900}
3901
3902/* XXX: optimize */
c227f099 3903void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3904{
3905 val = tswap64(val);
3906 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3907}
3908
5e2972fd 3909/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3910int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3911 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3912{
3913 int l;
c227f099 3914 target_phys_addr_t phys_addr;
9b3c35e0 3915 target_ulong page;
13eb76e0
FB
3916
3917 while (len > 0) {
3918 page = addr & TARGET_PAGE_MASK;
3919 phys_addr = cpu_get_phys_page_debug(env, page);
3920 /* if no physical page mapped, return an error */
3921 if (phys_addr == -1)
3922 return -1;
3923 l = (page + TARGET_PAGE_SIZE) - addr;
3924 if (l > len)
3925 l = len;
5e2972fd 3926 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3927 if (is_write)
3928 cpu_physical_memory_write_rom(phys_addr, buf, l);
3929 else
5e2972fd 3930 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3931 len -= l;
3932 buf += l;
3933 addr += l;
3934 }
3935 return 0;
3936}
a68fe89c 3937#endif
13eb76e0 3938
2e70f6ef
PB
3939/* in deterministic execution mode, instructions doing device I/Os
3940 must be at the end of the TB */
3941void cpu_io_recompile(CPUState *env, void *retaddr)
3942{
3943 TranslationBlock *tb;
3944 uint32_t n, cflags;
3945 target_ulong pc, cs_base;
3946 uint64_t flags;
3947
3948 tb = tb_find_pc((unsigned long)retaddr);
3949 if (!tb) {
3950 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3951 retaddr);
3952 }
3953 n = env->icount_decr.u16.low + tb->icount;
3954 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3955 /* Calculate how many instructions had been executed before the fault
bf20dc07 3956 occurred. */
2e70f6ef
PB
3957 n = n - env->icount_decr.u16.low;
3958 /* Generate a new TB ending on the I/O insn. */
3959 n++;
3960 /* On MIPS and SH, delay slot instructions can only be restarted if
3961 they were already the first instruction in the TB. If this is not
bf20dc07 3962 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3963 branch. */
3964#if defined(TARGET_MIPS)
3965 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3966 env->active_tc.PC -= 4;
3967 env->icount_decr.u16.low++;
3968 env->hflags &= ~MIPS_HFLAG_BMASK;
3969 }
3970#elif defined(TARGET_SH4)
3971 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3972 && n > 1) {
3973 env->pc -= 2;
3974 env->icount_decr.u16.low++;
3975 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3976 }
3977#endif
3978 /* This should never happen. */
3979 if (n > CF_COUNT_MASK)
3980 cpu_abort(env, "TB too big during recompile");
3981
3982 cflags = n | CF_LAST_IO;
3983 pc = tb->pc;
3984 cs_base = tb->cs_base;
3985 flags = tb->flags;
3986 tb_phys_invalidate(tb, -1);
3987 /* FIXME: In theory this could raise an exception. In practice
3988 we have already translated the block once so it's probably ok. */
3989 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3990 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3991 the first in the TB) then we end up generating a whole new TB and
3992 repeating the fault, which is horribly inefficient.
3993 Better would be to execute just this insn uncached, or generate a
3994 second new TB. */
3995 cpu_resume_from_signal(env, NULL);
3996}
3997
b3755a91
PB
3998#if !defined(CONFIG_USER_ONLY)
3999
e3db7226
FB
4000void dump_exec_info(FILE *f,
4001 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4002{
4003 int i, target_code_size, max_target_code_size;
4004 int direct_jmp_count, direct_jmp2_count, cross_page;
4005 TranslationBlock *tb;
3b46e624 4006
e3db7226
FB
4007 target_code_size = 0;
4008 max_target_code_size = 0;
4009 cross_page = 0;
4010 direct_jmp_count = 0;
4011 direct_jmp2_count = 0;
4012 for(i = 0; i < nb_tbs; i++) {
4013 tb = &tbs[i];
4014 target_code_size += tb->size;
4015 if (tb->size > max_target_code_size)
4016 max_target_code_size = tb->size;
4017 if (tb->page_addr[1] != -1)
4018 cross_page++;
4019 if (tb->tb_next_offset[0] != 0xffff) {
4020 direct_jmp_count++;
4021 if (tb->tb_next_offset[1] != 0xffff) {
4022 direct_jmp2_count++;
4023 }
4024 }
4025 }
4026 /* XXX: avoid using doubles ? */
57fec1fe 4027 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
4028 cpu_fprintf(f, "gen code size %ld/%ld\n",
4029 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4030 cpu_fprintf(f, "TB count %d/%d\n",
4031 nb_tbs, code_gen_max_blocks);
5fafdf24 4032 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4033 nb_tbs ? target_code_size / nb_tbs : 0,
4034 max_target_code_size);
5fafdf24 4035 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4036 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4037 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4038 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4039 cross_page,
e3db7226
FB
4040 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4041 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4042 direct_jmp_count,
e3db7226
FB
4043 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4044 direct_jmp2_count,
4045 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4046 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4047 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4048 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4049 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4050 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4051}
4052
61382a50
FB
4053#define MMUSUFFIX _cmmu
4054#define GETPC() NULL
4055#define env cpu_single_env
b769d8fe 4056#define SOFTMMU_CODE_ACCESS
61382a50
FB
4057
4058#define SHIFT 0
4059#include "softmmu_template.h"
4060
4061#define SHIFT 1
4062#include "softmmu_template.h"
4063
4064#define SHIFT 2
4065#include "softmmu_template.h"
4066
4067#define SHIFT 3
4068#include "softmmu_template.h"
4069
4070#undef env
4071
4072#endif