]> git.proxmox.com Git - qemu.git/blame - exec.c
sun4u: give ISA bus to ISA methods
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
67d95c15
AK
60#define WANT_EXEC_OBSOLETE
61#include "exec-obsolete.h"
62
fd6ce8f6 63//#define DEBUG_TB_INVALIDATE
66e85a21 64//#define DEBUG_FLUSH
9fa3e853 65//#define DEBUG_TLB
67d3b957 66//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
67
68/* make various TB consistency checks */
5fafdf24
TS
69//#define DEBUG_TB_CHECK
70//#define DEBUG_TLB_CHECK
fd6ce8f6 71
1196be37 72//#define DEBUG_IOPORT
db7b5426 73//#define DEBUG_SUBPAGE
1196be37 74
99773bd4
PB
75#if !defined(CONFIG_USER_ONLY)
76/* TB consistency checks only implemented for usermode emulation. */
77#undef DEBUG_TB_CHECK
78#endif
79
9fa3e853
FB
80#define SMC_BITMAP_USE_THRESHOLD 10
81
bdaf78e0 82static TranslationBlock *tbs;
24ab68ac 83static int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
24ab68ac 110static uint8_t *code_gen_ptr;
fd6ce8f6 111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
74576198 114static int in_migration;
94a6b54f 115
85d59fef 116RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
117
118static MemoryRegion *system_memory;
309cb471 119static MemoryRegion *system_io;
62152b8a 120
e2eef170 121#endif
9fa3e853 122
6a00d601
FB
123CPUState *first_cpu;
124/* current CPU in the current thread. It is only valid inside
125 cpu_exec() */
b3c4bbe5 126DEFINE_TLS(CPUState *,cpu_single_env);
2e70f6ef 127/* 0 = Do not count executed instructions.
bf20dc07 128 1 = Precise instruction counting.
2e70f6ef
PB
129 2 = Adaptive rate instruction counting. */
130int use_icount = 0;
6a00d601 131
54936004 132typedef struct PageDesc {
92e873b9 133 /* list of TBs intersecting this ram page */
fd6ce8f6 134 TranslationBlock *first_tb;
9fa3e853
FB
135 /* in order to optimize self modifying code, we count the number
136 of lookups we do to a given page to use a bitmap */
137 unsigned int code_write_count;
138 uint8_t *code_bitmap;
139#if defined(CONFIG_USER_ONLY)
140 unsigned long flags;
141#endif
54936004
FB
142} PageDesc;
143
41c1b1c9 144/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
145 while in user mode we want it to be based on virtual addresses. */
146#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
147#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
148# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
149#else
5cd2c5b6 150# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 151#endif
bedb69ea 152#else
5cd2c5b6 153# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 154#endif
54936004 155
5cd2c5b6
RH
156/* Size of the L2 (and L3, etc) page tables. */
157#define L2_BITS 10
54936004
FB
158#define L2_SIZE (1 << L2_BITS)
159
5cd2c5b6
RH
160/* The bits remaining after N lower levels of page tables. */
161#define P_L1_BITS_REM \
162 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
163#define V_L1_BITS_REM \
164 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
165
166/* Size of the L1 page table. Avoid silly small sizes. */
167#if P_L1_BITS_REM < 4
168#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
169#else
170#define P_L1_BITS P_L1_BITS_REM
171#endif
172
173#if V_L1_BITS_REM < 4
174#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
175#else
176#define V_L1_BITS V_L1_BITS_REM
177#endif
178
179#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
180#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
181
182#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
183#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
184
83fb7adf 185unsigned long qemu_real_host_page_size;
83fb7adf
FB
186unsigned long qemu_host_page_size;
187unsigned long qemu_host_page_mask;
54936004 188
5cd2c5b6
RH
189/* This is a multi-level map on the virtual address space.
190 The bottom level has pointers to PageDesc. */
191static void *l1_map[V_L1_SIZE];
54936004 192
e2eef170 193#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
194typedef struct PhysPageDesc {
195 /* offset in host memory of the page + io_index in the low bits */
196 ram_addr_t phys_offset;
197 ram_addr_t region_offset;
198} PhysPageDesc;
199
5cd2c5b6
RH
200/* This is a multi-level map on the physical address space.
201 The bottom level has pointers to PhysPageDesc. */
202static void *l1_phys_map[P_L1_SIZE];
6d9a1304 203
e2eef170 204static void io_mem_init(void);
62152b8a 205static void memory_map_init(void);
e2eef170 206
33417e70 207/* io memory support */
33417e70
FB
208CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
209CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 210void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 211static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
212static int io_mem_watch;
213#endif
33417e70 214
34865134 215/* log support */
1e8b27ca
JR
216#ifdef WIN32
217static const char *logfilename = "qemu.log";
218#else
d9b630fd 219static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 220#endif
34865134
FB
221FILE *logfile;
222int loglevel;
e735b91c 223static int log_append = 0;
34865134 224
e3db7226 225/* statistics */
b3755a91 226#if !defined(CONFIG_USER_ONLY)
e3db7226 227static int tlb_flush_count;
b3755a91 228#endif
e3db7226
FB
229static int tb_flush_count;
230static int tb_phys_invalidate_count;
231
7cb69cae
FB
232#ifdef _WIN32
233static void map_exec(void *addr, long size)
234{
235 DWORD old_protect;
236 VirtualProtect(addr, size,
237 PAGE_EXECUTE_READWRITE, &old_protect);
238
239}
240#else
241static void map_exec(void *addr, long size)
242{
4369415f 243 unsigned long start, end, page_size;
7cb69cae 244
4369415f 245 page_size = getpagesize();
7cb69cae 246 start = (unsigned long)addr;
4369415f 247 start &= ~(page_size - 1);
7cb69cae
FB
248
249 end = (unsigned long)addr + size;
4369415f
FB
250 end += page_size - 1;
251 end &= ~(page_size - 1);
7cb69cae
FB
252
253 mprotect((void *)start, end - start,
254 PROT_READ | PROT_WRITE | PROT_EXEC);
255}
256#endif
257
b346ff46 258static void page_init(void)
54936004 259{
83fb7adf 260 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 261 TARGET_PAGE_SIZE */
c2b48b69
AL
262#ifdef _WIN32
263 {
264 SYSTEM_INFO system_info;
265
266 GetSystemInfo(&system_info);
267 qemu_real_host_page_size = system_info.dwPageSize;
268 }
269#else
270 qemu_real_host_page_size = getpagesize();
271#endif
83fb7adf
FB
272 if (qemu_host_page_size == 0)
273 qemu_host_page_size = qemu_real_host_page_size;
274 if (qemu_host_page_size < TARGET_PAGE_SIZE)
275 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 276 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 277
2e9a5713 278#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 279 {
f01576f1
JL
280#ifdef HAVE_KINFO_GETVMMAP
281 struct kinfo_vmentry *freep;
282 int i, cnt;
283
284 freep = kinfo_getvmmap(getpid(), &cnt);
285 if (freep) {
286 mmap_lock();
287 for (i = 0; i < cnt; i++) {
288 unsigned long startaddr, endaddr;
289
290 startaddr = freep[i].kve_start;
291 endaddr = freep[i].kve_end;
292 if (h2g_valid(startaddr)) {
293 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
294
295 if (h2g_valid(endaddr)) {
296 endaddr = h2g(endaddr);
fd436907 297 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
298 } else {
299#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
300 endaddr = ~0ul;
fd436907 301 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
302#endif
303 }
304 }
305 }
306 free(freep);
307 mmap_unlock();
308 }
309#else
50a9569b 310 FILE *f;
50a9569b 311
0776590d 312 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 313
fd436907 314 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 315 if (f) {
5cd2c5b6
RH
316 mmap_lock();
317
50a9569b 318 do {
5cd2c5b6
RH
319 unsigned long startaddr, endaddr;
320 int n;
321
322 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
323
324 if (n == 2 && h2g_valid(startaddr)) {
325 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
326
327 if (h2g_valid(endaddr)) {
328 endaddr = h2g(endaddr);
329 } else {
330 endaddr = ~0ul;
331 }
332 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
333 }
334 } while (!feof(f));
5cd2c5b6 335
50a9569b 336 fclose(f);
5cd2c5b6 337 mmap_unlock();
50a9569b 338 }
f01576f1 339#endif
50a9569b
AZ
340 }
341#endif
54936004
FB
342}
343
41c1b1c9 344static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 345{
41c1b1c9
PB
346 PageDesc *pd;
347 void **lp;
348 int i;
349
5cd2c5b6 350#if defined(CONFIG_USER_ONLY)
7267c094 351 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
352# define ALLOC(P, SIZE) \
353 do { \
354 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
355 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
356 } while (0)
357#else
358# define ALLOC(P, SIZE) \
7267c094 359 do { P = g_malloc0(SIZE); } while (0)
17e2377a 360#endif
434929bf 361
5cd2c5b6
RH
362 /* Level 1. Always allocated. */
363 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
364
365 /* Level 2..N-1. */
366 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
367 void **p = *lp;
368
369 if (p == NULL) {
370 if (!alloc) {
371 return NULL;
372 }
373 ALLOC(p, sizeof(void *) * L2_SIZE);
374 *lp = p;
17e2377a 375 }
5cd2c5b6
RH
376
377 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
378 }
379
380 pd = *lp;
381 if (pd == NULL) {
382 if (!alloc) {
383 return NULL;
384 }
385 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
386 *lp = pd;
54936004 387 }
5cd2c5b6
RH
388
389#undef ALLOC
5cd2c5b6
RH
390
391 return pd + (index & (L2_SIZE - 1));
54936004
FB
392}
393
41c1b1c9 394static inline PageDesc *page_find(tb_page_addr_t index)
54936004 395{
5cd2c5b6 396 return page_find_alloc(index, 0);
fd6ce8f6
FB
397}
398
6d9a1304 399#if !defined(CONFIG_USER_ONLY)
c227f099 400static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 401{
e3f4e2a4 402 PhysPageDesc *pd;
5cd2c5b6
RH
403 void **lp;
404 int i;
92e873b9 405
5cd2c5b6
RH
406 /* Level 1. Always allocated. */
407 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 408
5cd2c5b6
RH
409 /* Level 2..N-1. */
410 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
411 void **p = *lp;
412 if (p == NULL) {
413 if (!alloc) {
414 return NULL;
415 }
7267c094 416 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
5cd2c5b6
RH
417 }
418 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 419 }
5cd2c5b6 420
e3f4e2a4 421 pd = *lp;
5cd2c5b6 422 if (pd == NULL) {
e3f4e2a4 423 int i;
5ab97b7f 424 int first_index = index & ~(L2_SIZE - 1);
5cd2c5b6
RH
425
426 if (!alloc) {
108c49b8 427 return NULL;
5cd2c5b6
RH
428 }
429
7267c094 430 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
5cd2c5b6 431
67c4d23c 432 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6 433 pd[i].phys_offset = IO_MEM_UNASSIGNED;
5ab97b7f 434 pd[i].region_offset = (first_index + i) << TARGET_PAGE_BITS;
67c4d23c 435 }
92e873b9 436 }
5cd2c5b6
RH
437
438 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
439}
440
c227f099 441static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 442{
108c49b8 443 return phys_page_find_alloc(index, 0);
92e873b9
FB
444}
445
c227f099
AL
446static void tlb_protect_code(ram_addr_t ram_addr);
447static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 448 target_ulong vaddr);
c8a706fe
PB
449#define mmap_lock() do { } while(0)
450#define mmap_unlock() do { } while(0)
9fa3e853 451#endif
fd6ce8f6 452
4369415f
FB
453#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
454
455#if defined(CONFIG_USER_ONLY)
ccbb4d44 456/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
457 user mode. It will change when a dedicated libc will be used */
458#define USE_STATIC_CODE_GEN_BUFFER
459#endif
460
461#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
462static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
463 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
464#endif
465
8fcd3692 466static void code_gen_alloc(unsigned long tb_size)
26a5f13b 467{
4369415f
FB
468#ifdef USE_STATIC_CODE_GEN_BUFFER
469 code_gen_buffer = static_code_gen_buffer;
470 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
471 map_exec(code_gen_buffer, code_gen_buffer_size);
472#else
26a5f13b
FB
473 code_gen_buffer_size = tb_size;
474 if (code_gen_buffer_size == 0) {
4369415f 475#if defined(CONFIG_USER_ONLY)
4369415f
FB
476 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
477#else
ccbb4d44 478 /* XXX: needs adjustments */
94a6b54f 479 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 480#endif
26a5f13b
FB
481 }
482 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
483 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
484 /* The code gen buffer location may have constraints depending on
485 the host cpu and OS */
486#if defined(__linux__)
487 {
488 int flags;
141ac468
BS
489 void *start = NULL;
490
26a5f13b
FB
491 flags = MAP_PRIVATE | MAP_ANONYMOUS;
492#if defined(__x86_64__)
493 flags |= MAP_32BIT;
494 /* Cannot map more than that */
495 if (code_gen_buffer_size > (800 * 1024 * 1024))
496 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
497#elif defined(__sparc_v9__)
498 // Map the buffer below 2G, so we can use direct calls and branches
499 flags |= MAP_FIXED;
500 start = (void *) 0x60000000UL;
501 if (code_gen_buffer_size > (512 * 1024 * 1024))
502 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 503#elif defined(__arm__)
222f23f5 504 /* Keep the buffer no bigger than 16GB to branch between blocks */
1cb0661e
AZ
505 if (code_gen_buffer_size > 16 * 1024 * 1024)
506 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
507#elif defined(__s390x__)
508 /* Map the buffer so that we can use direct calls and branches. */
509 /* We have a +- 4GB range on the branches; leave some slop. */
510 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
511 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
512 }
513 start = (void *)0x90000000UL;
26a5f13b 514#endif
141ac468
BS
515 code_gen_buffer = mmap(start, code_gen_buffer_size,
516 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
517 flags, -1, 0);
518 if (code_gen_buffer == MAP_FAILED) {
519 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
520 exit(1);
521 }
522 }
cbb608a5 523#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
524 || defined(__DragonFly__) || defined(__OpenBSD__) \
525 || defined(__NetBSD__)
06e67a82
AL
526 {
527 int flags;
528 void *addr = NULL;
529 flags = MAP_PRIVATE | MAP_ANONYMOUS;
530#if defined(__x86_64__)
531 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
532 * 0x40000000 is free */
533 flags |= MAP_FIXED;
534 addr = (void *)0x40000000;
535 /* Cannot map more than that */
536 if (code_gen_buffer_size > (800 * 1024 * 1024))
537 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
538#elif defined(__sparc_v9__)
539 // Map the buffer below 2G, so we can use direct calls and branches
540 flags |= MAP_FIXED;
541 addr = (void *) 0x60000000UL;
542 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
543 code_gen_buffer_size = (512 * 1024 * 1024);
544 }
06e67a82
AL
545#endif
546 code_gen_buffer = mmap(addr, code_gen_buffer_size,
547 PROT_WRITE | PROT_READ | PROT_EXEC,
548 flags, -1, 0);
549 if (code_gen_buffer == MAP_FAILED) {
550 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
551 exit(1);
552 }
553 }
26a5f13b 554#else
7267c094 555 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
556 map_exec(code_gen_buffer, code_gen_buffer_size);
557#endif
4369415f 558#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 559 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
560 code_gen_buffer_max_size = code_gen_buffer_size -
561 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 562 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 563 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
564}
565
566/* Must be called before using the QEMU cpus. 'tb_size' is the size
567 (in bytes) allocated to the translation buffer. Zero means default
568 size. */
d5ab9713 569void tcg_exec_init(unsigned long tb_size)
26a5f13b 570{
26a5f13b
FB
571 cpu_gen_init();
572 code_gen_alloc(tb_size);
573 code_gen_ptr = code_gen_buffer;
4369415f 574 page_init();
9002ec79
RH
575#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
576 /* There's no guest base to take into account, so go ahead and
577 initialize the prologue now. */
578 tcg_prologue_init(&tcg_ctx);
579#endif
26a5f13b
FB
580}
581
d5ab9713
JK
582bool tcg_enabled(void)
583{
584 return code_gen_buffer != NULL;
585}
586
587void cpu_exec_init_all(void)
588{
589#if !defined(CONFIG_USER_ONLY)
590 memory_map_init();
591 io_mem_init();
592#endif
593}
594
9656f324
PB
595#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
596
e59fb374 597static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
598{
599 CPUState *env = opaque;
9656f324 600
3098dba0
AJ
601 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
602 version_id is increased. */
603 env->interrupt_request &= ~0x01;
9656f324
PB
604 tlb_flush(env, 1);
605
606 return 0;
607}
e7f4eff7
JQ
608
609static const VMStateDescription vmstate_cpu_common = {
610 .name = "cpu_common",
611 .version_id = 1,
612 .minimum_version_id = 1,
613 .minimum_version_id_old = 1,
e7f4eff7
JQ
614 .post_load = cpu_common_post_load,
615 .fields = (VMStateField []) {
616 VMSTATE_UINT32(halted, CPUState),
617 VMSTATE_UINT32(interrupt_request, CPUState),
618 VMSTATE_END_OF_LIST()
619 }
620};
9656f324
PB
621#endif
622
950f1472
GC
623CPUState *qemu_get_cpu(int cpu)
624{
625 CPUState *env = first_cpu;
626
627 while (env) {
628 if (env->cpu_index == cpu)
629 break;
630 env = env->next_cpu;
631 }
632
633 return env;
634}
635
6a00d601 636void cpu_exec_init(CPUState *env)
fd6ce8f6 637{
6a00d601
FB
638 CPUState **penv;
639 int cpu_index;
640
c2764719
PB
641#if defined(CONFIG_USER_ONLY)
642 cpu_list_lock();
643#endif
6a00d601
FB
644 env->next_cpu = NULL;
645 penv = &first_cpu;
646 cpu_index = 0;
647 while (*penv != NULL) {
1e9fa730 648 penv = &(*penv)->next_cpu;
6a00d601
FB
649 cpu_index++;
650 }
651 env->cpu_index = cpu_index;
268a362c 652 env->numa_node = 0;
72cf2d4f
BS
653 QTAILQ_INIT(&env->breakpoints);
654 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
655#ifndef CONFIG_USER_ONLY
656 env->thread_id = qemu_get_thread_id();
657#endif
6a00d601 658 *penv = env;
c2764719
PB
659#if defined(CONFIG_USER_ONLY)
660 cpu_list_unlock();
661#endif
b3c7724c 662#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
663 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
664 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
665 cpu_save, cpu_load, env);
666#endif
fd6ce8f6
FB
667}
668
d1a1eb74
TG
669/* Allocate a new translation block. Flush the translation buffer if
670 too many translation blocks or too much generated code. */
671static TranslationBlock *tb_alloc(target_ulong pc)
672{
673 TranslationBlock *tb;
674
675 if (nb_tbs >= code_gen_max_blocks ||
676 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
677 return NULL;
678 tb = &tbs[nb_tbs++];
679 tb->pc = pc;
680 tb->cflags = 0;
681 return tb;
682}
683
684void tb_free(TranslationBlock *tb)
685{
686 /* In practice this is mostly used for single use temporary TB
687 Ignore the hard cases and just back up if this TB happens to
688 be the last one generated. */
689 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
690 code_gen_ptr = tb->tc_ptr;
691 nb_tbs--;
692 }
693}
694
9fa3e853
FB
695static inline void invalidate_page_bitmap(PageDesc *p)
696{
697 if (p->code_bitmap) {
7267c094 698 g_free(p->code_bitmap);
9fa3e853
FB
699 p->code_bitmap = NULL;
700 }
701 p->code_write_count = 0;
702}
703
5cd2c5b6
RH
704/* Set to NULL all the 'first_tb' fields in all PageDescs. */
705
706static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 707{
5cd2c5b6 708 int i;
fd6ce8f6 709
5cd2c5b6
RH
710 if (*lp == NULL) {
711 return;
712 }
713 if (level == 0) {
714 PageDesc *pd = *lp;
7296abac 715 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
716 pd[i].first_tb = NULL;
717 invalidate_page_bitmap(pd + i);
fd6ce8f6 718 }
5cd2c5b6
RH
719 } else {
720 void **pp = *lp;
7296abac 721 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
722 page_flush_tb_1 (level - 1, pp + i);
723 }
724 }
725}
726
727static void page_flush_tb(void)
728{
729 int i;
730 for (i = 0; i < V_L1_SIZE; i++) {
731 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
732 }
733}
734
735/* flush all the translation blocks */
d4e8164f 736/* XXX: tb_flush is currently not thread safe */
6a00d601 737void tb_flush(CPUState *env1)
fd6ce8f6 738{
6a00d601 739 CPUState *env;
0124311e 740#if defined(DEBUG_FLUSH)
ab3d1727
BS
741 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
742 (unsigned long)(code_gen_ptr - code_gen_buffer),
743 nb_tbs, nb_tbs > 0 ?
744 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 745#endif
26a5f13b 746 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
747 cpu_abort(env1, "Internal error: code buffer overflow\n");
748
fd6ce8f6 749 nb_tbs = 0;
3b46e624 750
6a00d601
FB
751 for(env = first_cpu; env != NULL; env = env->next_cpu) {
752 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
753 }
9fa3e853 754
8a8a608f 755 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 756 page_flush_tb();
9fa3e853 757
fd6ce8f6 758 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
759 /* XXX: flush processor icache at this point if cache flush is
760 expensive */
e3db7226 761 tb_flush_count++;
fd6ce8f6
FB
762}
763
764#ifdef DEBUG_TB_CHECK
765
bc98a7ef 766static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
767{
768 TranslationBlock *tb;
769 int i;
770 address &= TARGET_PAGE_MASK;
99773bd4
PB
771 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
772 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
773 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
774 address >= tb->pc + tb->size)) {
0bf9e31a
BS
775 printf("ERROR invalidate: address=" TARGET_FMT_lx
776 " PC=%08lx size=%04x\n",
99773bd4 777 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
778 }
779 }
780 }
781}
782
783/* verify that all the pages have correct rights for code */
784static void tb_page_check(void)
785{
786 TranslationBlock *tb;
787 int i, flags1, flags2;
3b46e624 788
99773bd4
PB
789 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
790 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
791 flags1 = page_get_flags(tb->pc);
792 flags2 = page_get_flags(tb->pc + tb->size - 1);
793 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
794 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 795 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
796 }
797 }
798 }
799}
800
801#endif
802
803/* invalidate one TB */
804static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
805 int next_offset)
806{
807 TranslationBlock *tb1;
808 for(;;) {
809 tb1 = *ptb;
810 if (tb1 == tb) {
811 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
812 break;
813 }
814 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
815 }
816}
817
9fa3e853
FB
818static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
819{
820 TranslationBlock *tb1;
821 unsigned int n1;
822
823 for(;;) {
824 tb1 = *ptb;
825 n1 = (long)tb1 & 3;
826 tb1 = (TranslationBlock *)((long)tb1 & ~3);
827 if (tb1 == tb) {
828 *ptb = tb1->page_next[n1];
829 break;
830 }
831 ptb = &tb1->page_next[n1];
832 }
833}
834
d4e8164f
FB
835static inline void tb_jmp_remove(TranslationBlock *tb, int n)
836{
837 TranslationBlock *tb1, **ptb;
838 unsigned int n1;
839
840 ptb = &tb->jmp_next[n];
841 tb1 = *ptb;
842 if (tb1) {
843 /* find tb(n) in circular list */
844 for(;;) {
845 tb1 = *ptb;
846 n1 = (long)tb1 & 3;
847 tb1 = (TranslationBlock *)((long)tb1 & ~3);
848 if (n1 == n && tb1 == tb)
849 break;
850 if (n1 == 2) {
851 ptb = &tb1->jmp_first;
852 } else {
853 ptb = &tb1->jmp_next[n1];
854 }
855 }
856 /* now we can suppress tb(n) from the list */
857 *ptb = tb->jmp_next[n];
858
859 tb->jmp_next[n] = NULL;
860 }
861}
862
863/* reset the jump entry 'n' of a TB so that it is not chained to
864 another TB */
865static inline void tb_reset_jump(TranslationBlock *tb, int n)
866{
867 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
868}
869
41c1b1c9 870void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 871{
6a00d601 872 CPUState *env;
8a40a180 873 PageDesc *p;
d4e8164f 874 unsigned int h, n1;
41c1b1c9 875 tb_page_addr_t phys_pc;
8a40a180 876 TranslationBlock *tb1, *tb2;
3b46e624 877
8a40a180
FB
878 /* remove the TB from the hash list */
879 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
880 h = tb_phys_hash_func(phys_pc);
5fafdf24 881 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
882 offsetof(TranslationBlock, phys_hash_next));
883
884 /* remove the TB from the page list */
885 if (tb->page_addr[0] != page_addr) {
886 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
887 tb_page_remove(&p->first_tb, tb);
888 invalidate_page_bitmap(p);
889 }
890 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
891 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
892 tb_page_remove(&p->first_tb, tb);
893 invalidate_page_bitmap(p);
894 }
895
36bdbe54 896 tb_invalidated_flag = 1;
59817ccb 897
fd6ce8f6 898 /* remove the TB from the hash list */
8a40a180 899 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
900 for(env = first_cpu; env != NULL; env = env->next_cpu) {
901 if (env->tb_jmp_cache[h] == tb)
902 env->tb_jmp_cache[h] = NULL;
903 }
d4e8164f
FB
904
905 /* suppress this TB from the two jump lists */
906 tb_jmp_remove(tb, 0);
907 tb_jmp_remove(tb, 1);
908
909 /* suppress any remaining jumps to this TB */
910 tb1 = tb->jmp_first;
911 for(;;) {
912 n1 = (long)tb1 & 3;
913 if (n1 == 2)
914 break;
915 tb1 = (TranslationBlock *)((long)tb1 & ~3);
916 tb2 = tb1->jmp_next[n1];
917 tb_reset_jump(tb1, n1);
918 tb1->jmp_next[n1] = NULL;
919 tb1 = tb2;
920 }
921 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 922
e3db7226 923 tb_phys_invalidate_count++;
9fa3e853
FB
924}
925
926static inline void set_bits(uint8_t *tab, int start, int len)
927{
928 int end, mask, end1;
929
930 end = start + len;
931 tab += start >> 3;
932 mask = 0xff << (start & 7);
933 if ((start & ~7) == (end & ~7)) {
934 if (start < end) {
935 mask &= ~(0xff << (end & 7));
936 *tab |= mask;
937 }
938 } else {
939 *tab++ |= mask;
940 start = (start + 8) & ~7;
941 end1 = end & ~7;
942 while (start < end1) {
943 *tab++ = 0xff;
944 start += 8;
945 }
946 if (start < end) {
947 mask = ~(0xff << (end & 7));
948 *tab |= mask;
949 }
950 }
951}
952
953static void build_page_bitmap(PageDesc *p)
954{
955 int n, tb_start, tb_end;
956 TranslationBlock *tb;
3b46e624 957
7267c094 958 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
959
960 tb = p->first_tb;
961 while (tb != NULL) {
962 n = (long)tb & 3;
963 tb = (TranslationBlock *)((long)tb & ~3);
964 /* NOTE: this is subtle as a TB may span two physical pages */
965 if (n == 0) {
966 /* NOTE: tb_end may be after the end of the page, but
967 it is not a problem */
968 tb_start = tb->pc & ~TARGET_PAGE_MASK;
969 tb_end = tb_start + tb->size;
970 if (tb_end > TARGET_PAGE_SIZE)
971 tb_end = TARGET_PAGE_SIZE;
972 } else {
973 tb_start = 0;
974 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
975 }
976 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
977 tb = tb->page_next[n];
978 }
979}
980
2e70f6ef
PB
981TranslationBlock *tb_gen_code(CPUState *env,
982 target_ulong pc, target_ulong cs_base,
983 int flags, int cflags)
d720b93d
FB
984{
985 TranslationBlock *tb;
986 uint8_t *tc_ptr;
41c1b1c9
PB
987 tb_page_addr_t phys_pc, phys_page2;
988 target_ulong virt_page2;
d720b93d
FB
989 int code_gen_size;
990
41c1b1c9 991 phys_pc = get_page_addr_code(env, pc);
c27004ec 992 tb = tb_alloc(pc);
d720b93d
FB
993 if (!tb) {
994 /* flush must be done */
995 tb_flush(env);
996 /* cannot fail at this point */
c27004ec 997 tb = tb_alloc(pc);
2e70f6ef
PB
998 /* Don't forget to invalidate previous TB info. */
999 tb_invalidated_flag = 1;
d720b93d
FB
1000 }
1001 tc_ptr = code_gen_ptr;
1002 tb->tc_ptr = tc_ptr;
1003 tb->cs_base = cs_base;
1004 tb->flags = flags;
1005 tb->cflags = cflags;
d07bde88 1006 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 1007 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1008
d720b93d 1009 /* check next page if needed */
c27004ec 1010 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1011 phys_page2 = -1;
c27004ec 1012 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1013 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1014 }
41c1b1c9 1015 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1016 return tb;
d720b93d 1017}
3b46e624 1018
9fa3e853
FB
1019/* invalidate all TBs which intersect with the target physical page
1020 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1021 the same physical page. 'is_cpu_write_access' should be true if called
1022 from a real cpu write access: the virtual CPU will exit the current
1023 TB if code is modified inside this TB. */
41c1b1c9 1024void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1025 int is_cpu_write_access)
1026{
6b917547 1027 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1028 CPUState *env = cpu_single_env;
41c1b1c9 1029 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1030 PageDesc *p;
1031 int n;
1032#ifdef TARGET_HAS_PRECISE_SMC
1033 int current_tb_not_found = is_cpu_write_access;
1034 TranslationBlock *current_tb = NULL;
1035 int current_tb_modified = 0;
1036 target_ulong current_pc = 0;
1037 target_ulong current_cs_base = 0;
1038 int current_flags = 0;
1039#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1040
1041 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1042 if (!p)
9fa3e853 1043 return;
5fafdf24 1044 if (!p->code_bitmap &&
d720b93d
FB
1045 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1046 is_cpu_write_access) {
9fa3e853
FB
1047 /* build code bitmap */
1048 build_page_bitmap(p);
1049 }
1050
1051 /* we remove all the TBs in the range [start, end[ */
1052 /* XXX: see if in some cases it could be faster to invalidate all the code */
1053 tb = p->first_tb;
1054 while (tb != NULL) {
1055 n = (long)tb & 3;
1056 tb = (TranslationBlock *)((long)tb & ~3);
1057 tb_next = tb->page_next[n];
1058 /* NOTE: this is subtle as a TB may span two physical pages */
1059 if (n == 0) {
1060 /* NOTE: tb_end may be after the end of the page, but
1061 it is not a problem */
1062 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1063 tb_end = tb_start + tb->size;
1064 } else {
1065 tb_start = tb->page_addr[1];
1066 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1067 }
1068 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1069#ifdef TARGET_HAS_PRECISE_SMC
1070 if (current_tb_not_found) {
1071 current_tb_not_found = 0;
1072 current_tb = NULL;
2e70f6ef 1073 if (env->mem_io_pc) {
d720b93d 1074 /* now we have a real cpu fault */
2e70f6ef 1075 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1076 }
1077 }
1078 if (current_tb == tb &&
2e70f6ef 1079 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1080 /* If we are modifying the current TB, we must stop
1081 its execution. We could be more precise by checking
1082 that the modification is after the current PC, but it
1083 would require a specialized function to partially
1084 restore the CPU state */
3b46e624 1085
d720b93d 1086 current_tb_modified = 1;
618ba8e6 1087 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1088 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1089 &current_flags);
d720b93d
FB
1090 }
1091#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1092 /* we need to do that to handle the case where a signal
1093 occurs while doing tb_phys_invalidate() */
1094 saved_tb = NULL;
1095 if (env) {
1096 saved_tb = env->current_tb;
1097 env->current_tb = NULL;
1098 }
9fa3e853 1099 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1100 if (env) {
1101 env->current_tb = saved_tb;
1102 if (env->interrupt_request && env->current_tb)
1103 cpu_interrupt(env, env->interrupt_request);
1104 }
9fa3e853
FB
1105 }
1106 tb = tb_next;
1107 }
1108#if !defined(CONFIG_USER_ONLY)
1109 /* if no code remaining, no need to continue to use slow writes */
1110 if (!p->first_tb) {
1111 invalidate_page_bitmap(p);
d720b93d 1112 if (is_cpu_write_access) {
2e70f6ef 1113 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1114 }
1115 }
1116#endif
1117#ifdef TARGET_HAS_PRECISE_SMC
1118 if (current_tb_modified) {
1119 /* we generate a block containing just the instruction
1120 modifying the memory. It will ensure that it cannot modify
1121 itself */
ea1c1802 1122 env->current_tb = NULL;
2e70f6ef 1123 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1124 cpu_resume_from_signal(env, NULL);
9fa3e853 1125 }
fd6ce8f6 1126#endif
9fa3e853 1127}
fd6ce8f6 1128
9fa3e853 1129/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1130static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1131{
1132 PageDesc *p;
1133 int offset, b;
59817ccb 1134#if 0
a4193c8a 1135 if (1) {
93fcfe39
AL
1136 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1137 cpu_single_env->mem_io_vaddr, len,
1138 cpu_single_env->eip,
1139 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1140 }
1141#endif
9fa3e853 1142 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1143 if (!p)
9fa3e853
FB
1144 return;
1145 if (p->code_bitmap) {
1146 offset = start & ~TARGET_PAGE_MASK;
1147 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1148 if (b & ((1 << len) - 1))
1149 goto do_invalidate;
1150 } else {
1151 do_invalidate:
d720b93d 1152 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1153 }
1154}
1155
9fa3e853 1156#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1157static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1158 unsigned long pc, void *puc)
9fa3e853 1159{
6b917547 1160 TranslationBlock *tb;
9fa3e853 1161 PageDesc *p;
6b917547 1162 int n;
d720b93d 1163#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1164 TranslationBlock *current_tb = NULL;
d720b93d 1165 CPUState *env = cpu_single_env;
6b917547
AL
1166 int current_tb_modified = 0;
1167 target_ulong current_pc = 0;
1168 target_ulong current_cs_base = 0;
1169 int current_flags = 0;
d720b93d 1170#endif
9fa3e853
FB
1171
1172 addr &= TARGET_PAGE_MASK;
1173 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1174 if (!p)
9fa3e853
FB
1175 return;
1176 tb = p->first_tb;
d720b93d
FB
1177#ifdef TARGET_HAS_PRECISE_SMC
1178 if (tb && pc != 0) {
1179 current_tb = tb_find_pc(pc);
1180 }
1181#endif
9fa3e853
FB
1182 while (tb != NULL) {
1183 n = (long)tb & 3;
1184 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1185#ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb == tb &&
2e70f6ef 1187 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1188 /* If we are modifying the current TB, we must stop
1189 its execution. We could be more precise by checking
1190 that the modification is after the current PC, but it
1191 would require a specialized function to partially
1192 restore the CPU state */
3b46e624 1193
d720b93d 1194 current_tb_modified = 1;
618ba8e6 1195 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1196 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1197 &current_flags);
d720b93d
FB
1198 }
1199#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1200 tb_phys_invalidate(tb, addr);
1201 tb = tb->page_next[n];
1202 }
fd6ce8f6 1203 p->first_tb = NULL;
d720b93d
FB
1204#ifdef TARGET_HAS_PRECISE_SMC
1205 if (current_tb_modified) {
1206 /* we generate a block containing just the instruction
1207 modifying the memory. It will ensure that it cannot modify
1208 itself */
ea1c1802 1209 env->current_tb = NULL;
2e70f6ef 1210 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1211 cpu_resume_from_signal(env, puc);
1212 }
1213#endif
fd6ce8f6 1214}
9fa3e853 1215#endif
fd6ce8f6
FB
1216
1217/* add the tb in the target page and protect it if necessary */
5fafdf24 1218static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1219 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1220{
1221 PageDesc *p;
4429ab44
JQ
1222#ifndef CONFIG_USER_ONLY
1223 bool page_already_protected;
1224#endif
9fa3e853
FB
1225
1226 tb->page_addr[n] = page_addr;
5cd2c5b6 1227 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1228 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1229#ifndef CONFIG_USER_ONLY
1230 page_already_protected = p->first_tb != NULL;
1231#endif
9fa3e853
FB
1232 p->first_tb = (TranslationBlock *)((long)tb | n);
1233 invalidate_page_bitmap(p);
fd6ce8f6 1234
107db443 1235#if defined(TARGET_HAS_SMC) || 1
d720b93d 1236
9fa3e853 1237#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1238 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1239 target_ulong addr;
1240 PageDesc *p2;
9fa3e853
FB
1241 int prot;
1242
fd6ce8f6
FB
1243 /* force the host page as non writable (writes will have a
1244 page fault + mprotect overhead) */
53a5960a 1245 page_addr &= qemu_host_page_mask;
fd6ce8f6 1246 prot = 0;
53a5960a
PB
1247 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1248 addr += TARGET_PAGE_SIZE) {
1249
1250 p2 = page_find (addr >> TARGET_PAGE_BITS);
1251 if (!p2)
1252 continue;
1253 prot |= p2->flags;
1254 p2->flags &= ~PAGE_WRITE;
53a5960a 1255 }
5fafdf24 1256 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1257 (prot & PAGE_BITS) & ~PAGE_WRITE);
1258#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1259 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1260 page_addr);
fd6ce8f6 1261#endif
fd6ce8f6 1262 }
9fa3e853
FB
1263#else
1264 /* if some code is already present, then the pages are already
1265 protected. So we handle the case where only the first TB is
1266 allocated in a physical page */
4429ab44 1267 if (!page_already_protected) {
6a00d601 1268 tlb_protect_code(page_addr);
9fa3e853
FB
1269 }
1270#endif
d720b93d
FB
1271
1272#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1273}
1274
9fa3e853
FB
1275/* add a new TB and link it to the physical page tables. phys_page2 is
1276 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1277void tb_link_page(TranslationBlock *tb,
1278 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1279{
9fa3e853
FB
1280 unsigned int h;
1281 TranslationBlock **ptb;
1282
c8a706fe
PB
1283 /* Grab the mmap lock to stop another thread invalidating this TB
1284 before we are done. */
1285 mmap_lock();
9fa3e853
FB
1286 /* add in the physical hash table */
1287 h = tb_phys_hash_func(phys_pc);
1288 ptb = &tb_phys_hash[h];
1289 tb->phys_hash_next = *ptb;
1290 *ptb = tb;
fd6ce8f6
FB
1291
1292 /* add in the page list */
9fa3e853
FB
1293 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1294 if (phys_page2 != -1)
1295 tb_alloc_page(tb, 1, phys_page2);
1296 else
1297 tb->page_addr[1] = -1;
9fa3e853 1298
d4e8164f
FB
1299 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1300 tb->jmp_next[0] = NULL;
1301 tb->jmp_next[1] = NULL;
1302
1303 /* init original jump addresses */
1304 if (tb->tb_next_offset[0] != 0xffff)
1305 tb_reset_jump(tb, 0);
1306 if (tb->tb_next_offset[1] != 0xffff)
1307 tb_reset_jump(tb, 1);
8a40a180
FB
1308
1309#ifdef DEBUG_TB_CHECK
1310 tb_page_check();
1311#endif
c8a706fe 1312 mmap_unlock();
fd6ce8f6
FB
1313}
1314
9fa3e853
FB
1315/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1316 tb[1].tc_ptr. Return NULL if not found */
1317TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1318{
9fa3e853
FB
1319 int m_min, m_max, m;
1320 unsigned long v;
1321 TranslationBlock *tb;
a513fe19
FB
1322
1323 if (nb_tbs <= 0)
1324 return NULL;
1325 if (tc_ptr < (unsigned long)code_gen_buffer ||
1326 tc_ptr >= (unsigned long)code_gen_ptr)
1327 return NULL;
1328 /* binary search (cf Knuth) */
1329 m_min = 0;
1330 m_max = nb_tbs - 1;
1331 while (m_min <= m_max) {
1332 m = (m_min + m_max) >> 1;
1333 tb = &tbs[m];
1334 v = (unsigned long)tb->tc_ptr;
1335 if (v == tc_ptr)
1336 return tb;
1337 else if (tc_ptr < v) {
1338 m_max = m - 1;
1339 } else {
1340 m_min = m + 1;
1341 }
5fafdf24 1342 }
a513fe19
FB
1343 return &tbs[m_max];
1344}
7501267e 1345
ea041c0e
FB
1346static void tb_reset_jump_recursive(TranslationBlock *tb);
1347
1348static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1349{
1350 TranslationBlock *tb1, *tb_next, **ptb;
1351 unsigned int n1;
1352
1353 tb1 = tb->jmp_next[n];
1354 if (tb1 != NULL) {
1355 /* find head of list */
1356 for(;;) {
1357 n1 = (long)tb1 & 3;
1358 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1359 if (n1 == 2)
1360 break;
1361 tb1 = tb1->jmp_next[n1];
1362 }
1363 /* we are now sure now that tb jumps to tb1 */
1364 tb_next = tb1;
1365
1366 /* remove tb from the jmp_first list */
1367 ptb = &tb_next->jmp_first;
1368 for(;;) {
1369 tb1 = *ptb;
1370 n1 = (long)tb1 & 3;
1371 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1372 if (n1 == n && tb1 == tb)
1373 break;
1374 ptb = &tb1->jmp_next[n1];
1375 }
1376 *ptb = tb->jmp_next[n];
1377 tb->jmp_next[n] = NULL;
3b46e624 1378
ea041c0e
FB
1379 /* suppress the jump to next tb in generated code */
1380 tb_reset_jump(tb, n);
1381
0124311e 1382 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1383 tb_reset_jump_recursive(tb_next);
1384 }
1385}
1386
1387static void tb_reset_jump_recursive(TranslationBlock *tb)
1388{
1389 tb_reset_jump_recursive2(tb, 0);
1390 tb_reset_jump_recursive2(tb, 1);
1391}
1392
1fddef4b 1393#if defined(TARGET_HAS_ICE)
94df27fd
PB
1394#if defined(CONFIG_USER_ONLY)
1395static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1396{
1397 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1398}
1399#else
d720b93d
FB
1400static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1401{
c227f099 1402 target_phys_addr_t addr;
9b3c35e0 1403 target_ulong pd;
c227f099 1404 ram_addr_t ram_addr;
c2f07f81 1405 PhysPageDesc *p;
d720b93d 1406
c2f07f81
PB
1407 addr = cpu_get_phys_page_debug(env, pc);
1408 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1409 if (!p) {
1410 pd = IO_MEM_UNASSIGNED;
1411 } else {
1412 pd = p->phys_offset;
1413 }
1414 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1415 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1416}
c27004ec 1417#endif
94df27fd 1418#endif /* TARGET_HAS_ICE */
d720b93d 1419
c527ee8f
PB
1420#if defined(CONFIG_USER_ONLY)
1421void cpu_watchpoint_remove_all(CPUState *env, int mask)
1422
1423{
1424}
1425
1426int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1427 int flags, CPUWatchpoint **watchpoint)
1428{
1429 return -ENOSYS;
1430}
1431#else
6658ffb8 1432/* Add a watchpoint. */
a1d1bb31
AL
1433int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1434 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1435{
b4051334 1436 target_ulong len_mask = ~(len - 1);
c0ce998e 1437 CPUWatchpoint *wp;
6658ffb8 1438
b4051334
AL
1439 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1440 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1443 return -EINVAL;
1444 }
7267c094 1445 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1446
1447 wp->vaddr = addr;
b4051334 1448 wp->len_mask = len_mask;
a1d1bb31
AL
1449 wp->flags = flags;
1450
2dc9f411 1451 /* keep all GDB-injected watchpoints in front */
c0ce998e 1452 if (flags & BP_GDB)
72cf2d4f 1453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1454 else
72cf2d4f 1455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1456
6658ffb8 1457 tlb_flush_page(env, addr);
a1d1bb31
AL
1458
1459 if (watchpoint)
1460 *watchpoint = wp;
1461 return 0;
6658ffb8
PB
1462}
1463
a1d1bb31
AL
1464/* Remove a specific watchpoint. */
1465int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1466 int flags)
6658ffb8 1467{
b4051334 1468 target_ulong len_mask = ~(len - 1);
a1d1bb31 1469 CPUWatchpoint *wp;
6658ffb8 1470
72cf2d4f 1471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1472 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1474 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1475 return 0;
1476 }
1477 }
a1d1bb31 1478 return -ENOENT;
6658ffb8
PB
1479}
1480
a1d1bb31
AL
1481/* Remove a specific watchpoint by reference. */
1482void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1483{
72cf2d4f 1484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1485
a1d1bb31
AL
1486 tlb_flush_page(env, watchpoint->vaddr);
1487
7267c094 1488 g_free(watchpoint);
a1d1bb31
AL
1489}
1490
1491/* Remove all matching watchpoints. */
1492void cpu_watchpoint_remove_all(CPUState *env, int mask)
1493{
c0ce998e 1494 CPUWatchpoint *wp, *next;
a1d1bb31 1495
72cf2d4f 1496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1497 if (wp->flags & mask)
1498 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1499 }
7d03f82f 1500}
c527ee8f 1501#endif
7d03f82f 1502
a1d1bb31
AL
1503/* Add a breakpoint. */
1504int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1505 CPUBreakpoint **breakpoint)
4c3a88a2 1506{
1fddef4b 1507#if defined(TARGET_HAS_ICE)
c0ce998e 1508 CPUBreakpoint *bp;
3b46e624 1509
7267c094 1510 bp = g_malloc(sizeof(*bp));
4c3a88a2 1511
a1d1bb31
AL
1512 bp->pc = pc;
1513 bp->flags = flags;
1514
2dc9f411 1515 /* keep all GDB-injected breakpoints in front */
c0ce998e 1516 if (flags & BP_GDB)
72cf2d4f 1517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1518 else
72cf2d4f 1519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1520
d720b93d 1521 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1522
1523 if (breakpoint)
1524 *breakpoint = bp;
4c3a88a2
FB
1525 return 0;
1526#else
a1d1bb31 1527 return -ENOSYS;
4c3a88a2
FB
1528#endif
1529}
1530
a1d1bb31
AL
1531/* Remove a specific breakpoint. */
1532int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1533{
7d03f82f 1534#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1535 CPUBreakpoint *bp;
1536
72cf2d4f 1537 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1538 if (bp->pc == pc && bp->flags == flags) {
1539 cpu_breakpoint_remove_by_ref(env, bp);
1540 return 0;
1541 }
7d03f82f 1542 }
a1d1bb31
AL
1543 return -ENOENT;
1544#else
1545 return -ENOSYS;
7d03f82f
EI
1546#endif
1547}
1548
a1d1bb31
AL
1549/* Remove a specific breakpoint by reference. */
1550void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1551{
1fddef4b 1552#if defined(TARGET_HAS_ICE)
72cf2d4f 1553 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1554
a1d1bb31
AL
1555 breakpoint_invalidate(env, breakpoint->pc);
1556
7267c094 1557 g_free(breakpoint);
a1d1bb31
AL
1558#endif
1559}
1560
1561/* Remove all matching breakpoints. */
1562void cpu_breakpoint_remove_all(CPUState *env, int mask)
1563{
1564#if defined(TARGET_HAS_ICE)
c0ce998e 1565 CPUBreakpoint *bp, *next;
a1d1bb31 1566
72cf2d4f 1567 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1568 if (bp->flags & mask)
1569 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1570 }
4c3a88a2
FB
1571#endif
1572}
1573
c33a346e
FB
1574/* enable or disable single step mode. EXCP_DEBUG is returned by the
1575 CPU loop after each instruction */
1576void cpu_single_step(CPUState *env, int enabled)
1577{
1fddef4b 1578#if defined(TARGET_HAS_ICE)
c33a346e
FB
1579 if (env->singlestep_enabled != enabled) {
1580 env->singlestep_enabled = enabled;
e22a25c9
AL
1581 if (kvm_enabled())
1582 kvm_update_guest_debug(env, 0);
1583 else {
ccbb4d44 1584 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1585 /* XXX: only flush what is necessary */
1586 tb_flush(env);
1587 }
c33a346e
FB
1588 }
1589#endif
1590}
1591
34865134
FB
1592/* enable or disable low levels log */
1593void cpu_set_log(int log_flags)
1594{
1595 loglevel = log_flags;
1596 if (loglevel && !logfile) {
11fcfab4 1597 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1598 if (!logfile) {
1599 perror(logfilename);
1600 _exit(1);
1601 }
9fa3e853
FB
1602#if !defined(CONFIG_SOFTMMU)
1603 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1604 {
b55266b5 1605 static char logfile_buf[4096];
9fa3e853
FB
1606 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1607 }
daf767b1
SW
1608#elif defined(_WIN32)
1609 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1610 setvbuf(logfile, NULL, _IONBF, 0);
1611#else
34865134 1612 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1613#endif
e735b91c
PB
1614 log_append = 1;
1615 }
1616 if (!loglevel && logfile) {
1617 fclose(logfile);
1618 logfile = NULL;
34865134
FB
1619 }
1620}
1621
1622void cpu_set_log_filename(const char *filename)
1623{
1624 logfilename = strdup(filename);
e735b91c
PB
1625 if (logfile) {
1626 fclose(logfile);
1627 logfile = NULL;
1628 }
1629 cpu_set_log(loglevel);
34865134 1630}
c33a346e 1631
3098dba0 1632static void cpu_unlink_tb(CPUState *env)
ea041c0e 1633{
3098dba0
AJ
1634 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1635 problem and hope the cpu will stop of its own accord. For userspace
1636 emulation this often isn't actually as bad as it sounds. Often
1637 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1638 TranslationBlock *tb;
c227f099 1639 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1640
cab1b4bd 1641 spin_lock(&interrupt_lock);
3098dba0
AJ
1642 tb = env->current_tb;
1643 /* if the cpu is currently executing code, we must unlink it and
1644 all the potentially executing TB */
f76cfe56 1645 if (tb) {
3098dba0
AJ
1646 env->current_tb = NULL;
1647 tb_reset_jump_recursive(tb);
be214e6c 1648 }
cab1b4bd 1649 spin_unlock(&interrupt_lock);
3098dba0
AJ
1650}
1651
97ffbd8d 1652#ifndef CONFIG_USER_ONLY
3098dba0 1653/* mask must never be zero, except for A20 change call */
ec6959d0 1654static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1655{
1656 int old_mask;
be214e6c 1657
2e70f6ef 1658 old_mask = env->interrupt_request;
68a79315 1659 env->interrupt_request |= mask;
3098dba0 1660
8edac960
AL
1661 /*
1662 * If called from iothread context, wake the target cpu in
1663 * case its halted.
1664 */
b7680cb6 1665 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1666 qemu_cpu_kick(env);
1667 return;
1668 }
8edac960 1669
2e70f6ef 1670 if (use_icount) {
266910c4 1671 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1672 if (!can_do_io(env)
be214e6c 1673 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1674 cpu_abort(env, "Raised interrupt while not in I/O function");
1675 }
2e70f6ef 1676 } else {
3098dba0 1677 cpu_unlink_tb(env);
ea041c0e
FB
1678 }
1679}
1680
ec6959d0
JK
1681CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1682
97ffbd8d
JK
1683#else /* CONFIG_USER_ONLY */
1684
1685void cpu_interrupt(CPUState *env, int mask)
1686{
1687 env->interrupt_request |= mask;
1688 cpu_unlink_tb(env);
1689}
1690#endif /* CONFIG_USER_ONLY */
1691
b54ad049
FB
1692void cpu_reset_interrupt(CPUState *env, int mask)
1693{
1694 env->interrupt_request &= ~mask;
1695}
1696
3098dba0
AJ
1697void cpu_exit(CPUState *env)
1698{
1699 env->exit_request = 1;
1700 cpu_unlink_tb(env);
1701}
1702
c7cd6a37 1703const CPULogItem cpu_log_items[] = {
5fafdf24 1704 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1705 "show generated host assembly code for each compiled TB" },
1706 { CPU_LOG_TB_IN_ASM, "in_asm",
1707 "show target assembly code for each compiled TB" },
5fafdf24 1708 { CPU_LOG_TB_OP, "op",
57fec1fe 1709 "show micro ops for each compiled TB" },
f193c797 1710 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1711 "show micro ops "
1712#ifdef TARGET_I386
1713 "before eflags optimization and "
f193c797 1714#endif
e01a1157 1715 "after liveness analysis" },
f193c797
FB
1716 { CPU_LOG_INT, "int",
1717 "show interrupts/exceptions in short format" },
1718 { CPU_LOG_EXEC, "exec",
1719 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1720 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1721 "show CPU state before block translation" },
f193c797
FB
1722#ifdef TARGET_I386
1723 { CPU_LOG_PCALL, "pcall",
1724 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1725 { CPU_LOG_RESET, "cpu_reset",
1726 "show CPU state before CPU resets" },
f193c797 1727#endif
8e3a9fd2 1728#ifdef DEBUG_IOPORT
fd872598
FB
1729 { CPU_LOG_IOPORT, "ioport",
1730 "show all i/o ports accesses" },
8e3a9fd2 1731#endif
f193c797
FB
1732 { 0, NULL, NULL },
1733};
1734
f6f3fbca
MT
1735#ifndef CONFIG_USER_ONLY
1736static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1737 = QLIST_HEAD_INITIALIZER(memory_client_list);
1738
1739static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26 1740 ram_addr_t size,
0fd542fb
MT
1741 ram_addr_t phys_offset,
1742 bool log_dirty)
f6f3fbca
MT
1743{
1744 CPUPhysMemoryClient *client;
1745 QLIST_FOREACH(client, &memory_client_list, list) {
0fd542fb 1746 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
f6f3fbca
MT
1747 }
1748}
1749
1750static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1751 target_phys_addr_t end)
f6f3fbca
MT
1752{
1753 CPUPhysMemoryClient *client;
1754 QLIST_FOREACH(client, &memory_client_list, list) {
1755 int r = client->sync_dirty_bitmap(client, start, end);
1756 if (r < 0)
1757 return r;
1758 }
1759 return 0;
1760}
1761
1762static int cpu_notify_migration_log(int enable)
1763{
1764 CPUPhysMemoryClient *client;
1765 QLIST_FOREACH(client, &memory_client_list, list) {
1766 int r = client->migration_log(client, enable);
1767 if (r < 0)
1768 return r;
1769 }
1770 return 0;
1771}
1772
2173a75f
AW
1773struct last_map {
1774 target_phys_addr_t start_addr;
1775 ram_addr_t size;
1776 ram_addr_t phys_offset;
1777};
1778
8d4c78e7
AW
1779/* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1780 * address. Each intermediate table provides the next L2_BITs of guest
1781 * physical address space. The number of levels vary based on host and
1782 * guest configuration, making it efficient to build the final guest
1783 * physical address by seeding the L1 offset and shifting and adding in
1784 * each L2 offset as we recurse through them. */
2173a75f
AW
1785static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
1786 void **lp, target_phys_addr_t addr,
1787 struct last_map *map)
f6f3fbca 1788{
5cd2c5b6 1789 int i;
f6f3fbca 1790
5cd2c5b6
RH
1791 if (*lp == NULL) {
1792 return;
1793 }
1794 if (level == 0) {
1795 PhysPageDesc *pd = *lp;
8d4c78e7 1796 addr <<= L2_BITS + TARGET_PAGE_BITS;
7296abac 1797 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1798 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
2173a75f
AW
1799 target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
1800
1801 if (map->size &&
1802 start_addr == map->start_addr + map->size &&
1803 pd[i].phys_offset == map->phys_offset + map->size) {
1804
1805 map->size += TARGET_PAGE_SIZE;
1806 continue;
1807 } else if (map->size) {
1808 client->set_memory(client, map->start_addr,
1809 map->size, map->phys_offset, false);
1810 }
1811
1812 map->start_addr = start_addr;
1813 map->size = TARGET_PAGE_SIZE;
1814 map->phys_offset = pd[i].phys_offset;
f6f3fbca 1815 }
5cd2c5b6
RH
1816 }
1817 } else {
1818 void **pp = *lp;
7296abac 1819 for (i = 0; i < L2_SIZE; ++i) {
8d4c78e7 1820 phys_page_for_each_1(client, level - 1, pp + i,
2173a75f 1821 (addr << L2_BITS) | i, map);
f6f3fbca
MT
1822 }
1823 }
1824}
1825
1826static void phys_page_for_each(CPUPhysMemoryClient *client)
1827{
5cd2c5b6 1828 int i;
2173a75f
AW
1829 struct last_map map = { };
1830
5cd2c5b6
RH
1831 for (i = 0; i < P_L1_SIZE; ++i) {
1832 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
2173a75f
AW
1833 l1_phys_map + i, i, &map);
1834 }
1835 if (map.size) {
1836 client->set_memory(client, map.start_addr, map.size, map.phys_offset,
1837 false);
f6f3fbca 1838 }
f6f3fbca
MT
1839}
1840
1841void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1842{
1843 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1844 phys_page_for_each(client);
1845}
1846
1847void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1848{
1849 QLIST_REMOVE(client, list);
1850}
1851#endif
1852
f193c797
FB
1853static int cmp1(const char *s1, int n, const char *s2)
1854{
1855 if (strlen(s2) != n)
1856 return 0;
1857 return memcmp(s1, s2, n) == 0;
1858}
3b46e624 1859
f193c797
FB
1860/* takes a comma separated list of log masks. Return 0 if error. */
1861int cpu_str_to_log_mask(const char *str)
1862{
c7cd6a37 1863 const CPULogItem *item;
f193c797
FB
1864 int mask;
1865 const char *p, *p1;
1866
1867 p = str;
1868 mask = 0;
1869 for(;;) {
1870 p1 = strchr(p, ',');
1871 if (!p1)
1872 p1 = p + strlen(p);
9742bf26
YT
1873 if(cmp1(p,p1-p,"all")) {
1874 for(item = cpu_log_items; item->mask != 0; item++) {
1875 mask |= item->mask;
1876 }
1877 } else {
1878 for(item = cpu_log_items; item->mask != 0; item++) {
1879 if (cmp1(p, p1 - p, item->name))
1880 goto found;
1881 }
1882 return 0;
f193c797 1883 }
f193c797
FB
1884 found:
1885 mask |= item->mask;
1886 if (*p1 != ',')
1887 break;
1888 p = p1 + 1;
1889 }
1890 return mask;
1891}
ea041c0e 1892
7501267e
FB
1893void cpu_abort(CPUState *env, const char *fmt, ...)
1894{
1895 va_list ap;
493ae1f0 1896 va_list ap2;
7501267e
FB
1897
1898 va_start(ap, fmt);
493ae1f0 1899 va_copy(ap2, ap);
7501267e
FB
1900 fprintf(stderr, "qemu: fatal: ");
1901 vfprintf(stderr, fmt, ap);
1902 fprintf(stderr, "\n");
1903#ifdef TARGET_I386
7fe48483
FB
1904 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1905#else
1906 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1907#endif
93fcfe39
AL
1908 if (qemu_log_enabled()) {
1909 qemu_log("qemu: fatal: ");
1910 qemu_log_vprintf(fmt, ap2);
1911 qemu_log("\n");
f9373291 1912#ifdef TARGET_I386
93fcfe39 1913 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1914#else
93fcfe39 1915 log_cpu_state(env, 0);
f9373291 1916#endif
31b1a7b4 1917 qemu_log_flush();
93fcfe39 1918 qemu_log_close();
924edcae 1919 }
493ae1f0 1920 va_end(ap2);
f9373291 1921 va_end(ap);
fd052bf6
RV
1922#if defined(CONFIG_USER_ONLY)
1923 {
1924 struct sigaction act;
1925 sigfillset(&act.sa_mask);
1926 act.sa_handler = SIG_DFL;
1927 sigaction(SIGABRT, &act, NULL);
1928 }
1929#endif
7501267e
FB
1930 abort();
1931}
1932
c5be9f08
TS
1933CPUState *cpu_copy(CPUState *env)
1934{
01ba9816 1935 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1936 CPUState *next_cpu = new_env->next_cpu;
1937 int cpu_index = new_env->cpu_index;
5a38f081
AL
1938#if defined(TARGET_HAS_ICE)
1939 CPUBreakpoint *bp;
1940 CPUWatchpoint *wp;
1941#endif
1942
c5be9f08 1943 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1944
1945 /* Preserve chaining and index. */
c5be9f08
TS
1946 new_env->next_cpu = next_cpu;
1947 new_env->cpu_index = cpu_index;
5a38f081
AL
1948
1949 /* Clone all break/watchpoints.
1950 Note: Once we support ptrace with hw-debug register access, make sure
1951 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1952 QTAILQ_INIT(&env->breakpoints);
1953 QTAILQ_INIT(&env->watchpoints);
5a38f081 1954#if defined(TARGET_HAS_ICE)
72cf2d4f 1955 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1956 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1957 }
72cf2d4f 1958 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1959 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1960 wp->flags, NULL);
1961 }
1962#endif
1963
c5be9f08
TS
1964 return new_env;
1965}
1966
0124311e
FB
1967#if !defined(CONFIG_USER_ONLY)
1968
5c751e99
EI
1969static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1970{
1971 unsigned int i;
1972
1973 /* Discard jump cache entries for any tb which might potentially
1974 overlap the flushed page. */
1975 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1976 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1977 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1978
1979 i = tb_jmp_cache_hash_page(addr);
1980 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1981 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1982}
1983
08738984
IK
1984static CPUTLBEntry s_cputlb_empty_entry = {
1985 .addr_read = -1,
1986 .addr_write = -1,
1987 .addr_code = -1,
1988 .addend = -1,
1989};
1990
ee8b7021
FB
1991/* NOTE: if flush_global is true, also flush global entries (not
1992 implemented yet) */
1993void tlb_flush(CPUState *env, int flush_global)
33417e70 1994{
33417e70 1995 int i;
0124311e 1996
9fa3e853
FB
1997#if defined(DEBUG_TLB)
1998 printf("tlb_flush:\n");
1999#endif
0124311e
FB
2000 /* must reset current TB so that interrupts cannot modify the
2001 links while we are modifying them */
2002 env->current_tb = NULL;
2003
33417e70 2004 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
2005 int mmu_idx;
2006 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 2007 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 2008 }
33417e70 2009 }
9fa3e853 2010
8a40a180 2011 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 2012
d4c430a8
PB
2013 env->tlb_flush_addr = -1;
2014 env->tlb_flush_mask = 0;
e3db7226 2015 tlb_flush_count++;
33417e70
FB
2016}
2017
274da6b2 2018static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 2019{
5fafdf24 2020 if (addr == (tlb_entry->addr_read &
84b7b8e7 2021 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2022 addr == (tlb_entry->addr_write &
84b7b8e7 2023 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2024 addr == (tlb_entry->addr_code &
84b7b8e7 2025 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 2026 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 2027 }
61382a50
FB
2028}
2029
2e12669a 2030void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 2031{
8a40a180 2032 int i;
cfde4bd9 2033 int mmu_idx;
0124311e 2034
9fa3e853 2035#if defined(DEBUG_TLB)
108c49b8 2036 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 2037#endif
d4c430a8
PB
2038 /* Check if we need to flush due to large pages. */
2039 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2040#if defined(DEBUG_TLB)
2041 printf("tlb_flush_page: forced full flush ("
2042 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2043 env->tlb_flush_addr, env->tlb_flush_mask);
2044#endif
2045 tlb_flush(env, 1);
2046 return;
2047 }
0124311e
FB
2048 /* must reset current TB so that interrupts cannot modify the
2049 links while we are modifying them */
2050 env->current_tb = NULL;
61382a50
FB
2051
2052 addr &= TARGET_PAGE_MASK;
2053 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2054 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2055 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2056
5c751e99 2057 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2058}
2059
9fa3e853
FB
2060/* update the TLBs so that writes to code in the virtual page 'addr'
2061 can be detected */
c227f099 2062static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2063{
5fafdf24 2064 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2065 ram_addr + TARGET_PAGE_SIZE,
2066 CODE_DIRTY_FLAG);
9fa3e853
FB
2067}
2068
9fa3e853 2069/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2070 tested for self modifying code */
c227f099 2071static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2072 target_ulong vaddr)
9fa3e853 2073{
f7c11b53 2074 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2075}
2076
5fafdf24 2077static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2078 unsigned long start, unsigned long length)
2079{
2080 unsigned long addr;
84b7b8e7
FB
2081 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2082 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2083 if ((addr - start) < length) {
0f459d16 2084 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2085 }
2086 }
2087}
2088
5579c7f3 2089/* Note: start and end must be within the same ram block. */
c227f099 2090void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2091 int dirty_flags)
1ccde1cb
FB
2092{
2093 CPUState *env;
4f2ac237 2094 unsigned long length, start1;
f7c11b53 2095 int i;
1ccde1cb
FB
2096
2097 start &= TARGET_PAGE_MASK;
2098 end = TARGET_PAGE_ALIGN(end);
2099
2100 length = end - start;
2101 if (length == 0)
2102 return;
f7c11b53 2103 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2104
1ccde1cb
FB
2105 /* we modify the TLB cache so that the dirty bit will be set again
2106 when accessing the range */
b2e0a138 2107 start1 = (unsigned long)qemu_safe_ram_ptr(start);
a57d23e4 2108 /* Check that we don't span multiple blocks - this breaks the
5579c7f3 2109 address comparisons below. */
b2e0a138 2110 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2111 != (end - 1) - start) {
2112 abort();
2113 }
2114
6a00d601 2115 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2116 int mmu_idx;
2117 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2118 for(i = 0; i < CPU_TLB_SIZE; i++)
2119 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2120 start1, length);
2121 }
6a00d601 2122 }
1ccde1cb
FB
2123}
2124
74576198
AL
2125int cpu_physical_memory_set_dirty_tracking(int enable)
2126{
f6f3fbca 2127 int ret = 0;
74576198 2128 in_migration = enable;
f6f3fbca
MT
2129 ret = cpu_notify_migration_log(!!enable);
2130 return ret;
74576198
AL
2131}
2132
2133int cpu_physical_memory_get_dirty_tracking(void)
2134{
2135 return in_migration;
2136}
2137
c227f099
AL
2138int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2139 target_phys_addr_t end_addr)
2bec46dc 2140{
7b8f3b78 2141 int ret;
151f7749 2142
f6f3fbca 2143 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2144 return ret;
2bec46dc
AL
2145}
2146
e5896b12
AP
2147int cpu_physical_log_start(target_phys_addr_t start_addr,
2148 ram_addr_t size)
2149{
2150 CPUPhysMemoryClient *client;
2151 QLIST_FOREACH(client, &memory_client_list, list) {
2152 if (client->log_start) {
2153 int r = client->log_start(client, start_addr, size);
2154 if (r < 0) {
2155 return r;
2156 }
2157 }
2158 }
2159 return 0;
2160}
2161
2162int cpu_physical_log_stop(target_phys_addr_t start_addr,
2163 ram_addr_t size)
2164{
2165 CPUPhysMemoryClient *client;
2166 QLIST_FOREACH(client, &memory_client_list, list) {
2167 if (client->log_stop) {
2168 int r = client->log_stop(client, start_addr, size);
2169 if (r < 0) {
2170 return r;
2171 }
2172 }
2173 }
2174 return 0;
2175}
2176
3a7d929e
FB
2177static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2178{
c227f099 2179 ram_addr_t ram_addr;
5579c7f3 2180 void *p;
3a7d929e 2181
84b7b8e7 2182 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2183 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2184 + tlb_entry->addend);
e890261f 2185 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2186 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2187 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2188 }
2189 }
2190}
2191
2192/* update the TLB according to the current state of the dirty bits */
2193void cpu_tlb_update_dirty(CPUState *env)
2194{
2195 int i;
cfde4bd9
IY
2196 int mmu_idx;
2197 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2198 for(i = 0; i < CPU_TLB_SIZE; i++)
2199 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2200 }
3a7d929e
FB
2201}
2202
0f459d16 2203static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2204{
0f459d16
PB
2205 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2206 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2207}
2208
0f459d16
PB
2209/* update the TLB corresponding to virtual page vaddr
2210 so that it is no longer dirty */
2211static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2212{
1ccde1cb 2213 int i;
cfde4bd9 2214 int mmu_idx;
1ccde1cb 2215
0f459d16 2216 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2217 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2218 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2219 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2220}
2221
d4c430a8
PB
2222/* Our TLB does not support large pages, so remember the area covered by
2223 large pages and trigger a full TLB flush if these are invalidated. */
2224static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2225 target_ulong size)
2226{
2227 target_ulong mask = ~(size - 1);
2228
2229 if (env->tlb_flush_addr == (target_ulong)-1) {
2230 env->tlb_flush_addr = vaddr & mask;
2231 env->tlb_flush_mask = mask;
2232 return;
2233 }
2234 /* Extend the existing region to include the new page.
2235 This is a compromise between unnecessary flushes and the cost
2236 of maintaining a full variable size TLB. */
2237 mask &= env->tlb_flush_mask;
2238 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2239 mask <<= 1;
2240 }
2241 env->tlb_flush_addr &= mask;
2242 env->tlb_flush_mask = mask;
2243}
2244
2245/* Add a new TLB entry. At most one entry for a given virtual address
2246 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2247 supplied size is only used by tlb_flush_page. */
2248void tlb_set_page(CPUState *env, target_ulong vaddr,
2249 target_phys_addr_t paddr, int prot,
2250 int mmu_idx, target_ulong size)
9fa3e853 2251{
92e873b9 2252 PhysPageDesc *p;
4f2ac237 2253 unsigned long pd;
9fa3e853 2254 unsigned int index;
4f2ac237 2255 target_ulong address;
0f459d16 2256 target_ulong code_address;
355b1943 2257 unsigned long addend;
84b7b8e7 2258 CPUTLBEntry *te;
a1d1bb31 2259 CPUWatchpoint *wp;
c227f099 2260 target_phys_addr_t iotlb;
9fa3e853 2261
d4c430a8
PB
2262 assert(size >= TARGET_PAGE_SIZE);
2263 if (size != TARGET_PAGE_SIZE) {
2264 tlb_add_large_page(env, vaddr, size);
2265 }
92e873b9 2266 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2267 if (!p) {
2268 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2269 } else {
2270 pd = p->phys_offset;
9fa3e853
FB
2271 }
2272#if defined(DEBUG_TLB)
7fd3f494
SW
2273 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2274 " prot=%x idx=%d pd=0x%08lx\n",
2275 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2276#endif
2277
0f459d16
PB
2278 address = vaddr;
2279 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2280 /* IO memory case (romd handled later) */
2281 address |= TLB_MMIO;
2282 }
5579c7f3 2283 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2284 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2285 /* Normal RAM. */
2286 iotlb = pd & TARGET_PAGE_MASK;
2287 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2288 iotlb |= IO_MEM_NOTDIRTY;
2289 else
2290 iotlb |= IO_MEM_ROM;
2291 } else {
ccbb4d44 2292 /* IO handlers are currently passed a physical address.
0f459d16
PB
2293 It would be nice to pass an offset from the base address
2294 of that region. This would avoid having to special case RAM,
2295 and avoid full address decoding in every device.
2296 We can't use the high bits of pd for this because
2297 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2298 iotlb = (pd & ~TARGET_PAGE_MASK);
2299 if (p) {
8da3ff18
PB
2300 iotlb += p->region_offset;
2301 } else {
2302 iotlb += paddr;
2303 }
0f459d16
PB
2304 }
2305
2306 code_address = address;
2307 /* Make accesses to pages with watchpoints go via the
2308 watchpoint trap routines. */
72cf2d4f 2309 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2310 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2311 /* Avoid trapping reads of pages with a write breakpoint. */
2312 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2313 iotlb = io_mem_watch + paddr;
2314 address |= TLB_MMIO;
2315 break;
2316 }
6658ffb8 2317 }
0f459d16 2318 }
d79acba4 2319
0f459d16
PB
2320 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2321 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2322 te = &env->tlb_table[mmu_idx][index];
2323 te->addend = addend - vaddr;
2324 if (prot & PAGE_READ) {
2325 te->addr_read = address;
2326 } else {
2327 te->addr_read = -1;
2328 }
5c751e99 2329
0f459d16
PB
2330 if (prot & PAGE_EXEC) {
2331 te->addr_code = code_address;
2332 } else {
2333 te->addr_code = -1;
2334 }
2335 if (prot & PAGE_WRITE) {
2336 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2337 (pd & IO_MEM_ROMD)) {
2338 /* Write access calls the I/O callback. */
2339 te->addr_write = address | TLB_MMIO;
2340 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2341 !cpu_physical_memory_is_dirty(pd)) {
2342 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2343 } else {
0f459d16 2344 te->addr_write = address;
9fa3e853 2345 }
0f459d16
PB
2346 } else {
2347 te->addr_write = -1;
9fa3e853 2348 }
9fa3e853
FB
2349}
2350
0124311e
FB
2351#else
2352
ee8b7021 2353void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2354{
2355}
2356
2e12669a 2357void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2358{
2359}
2360
edf8e2af
MW
2361/*
2362 * Walks guest process memory "regions" one by one
2363 * and calls callback function 'fn' for each region.
2364 */
5cd2c5b6
RH
2365
2366struct walk_memory_regions_data
2367{
2368 walk_memory_regions_fn fn;
2369 void *priv;
2370 unsigned long start;
2371 int prot;
2372};
2373
2374static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2375 abi_ulong end, int new_prot)
5cd2c5b6
RH
2376{
2377 if (data->start != -1ul) {
2378 int rc = data->fn(data->priv, data->start, end, data->prot);
2379 if (rc != 0) {
2380 return rc;
2381 }
2382 }
2383
2384 data->start = (new_prot ? end : -1ul);
2385 data->prot = new_prot;
2386
2387 return 0;
2388}
2389
2390static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2391 abi_ulong base, int level, void **lp)
5cd2c5b6 2392{
b480d9b7 2393 abi_ulong pa;
5cd2c5b6
RH
2394 int i, rc;
2395
2396 if (*lp == NULL) {
2397 return walk_memory_regions_end(data, base, 0);
2398 }
2399
2400 if (level == 0) {
2401 PageDesc *pd = *lp;
7296abac 2402 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2403 int prot = pd[i].flags;
2404
2405 pa = base | (i << TARGET_PAGE_BITS);
2406 if (prot != data->prot) {
2407 rc = walk_memory_regions_end(data, pa, prot);
2408 if (rc != 0) {
2409 return rc;
9fa3e853 2410 }
9fa3e853 2411 }
5cd2c5b6
RH
2412 }
2413 } else {
2414 void **pp = *lp;
7296abac 2415 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2416 pa = base | ((abi_ulong)i <<
2417 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2418 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2419 if (rc != 0) {
2420 return rc;
2421 }
2422 }
2423 }
2424
2425 return 0;
2426}
2427
2428int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2429{
2430 struct walk_memory_regions_data data;
2431 unsigned long i;
2432
2433 data.fn = fn;
2434 data.priv = priv;
2435 data.start = -1ul;
2436 data.prot = 0;
2437
2438 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2439 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2440 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2441 if (rc != 0) {
2442 return rc;
9fa3e853 2443 }
33417e70 2444 }
5cd2c5b6
RH
2445
2446 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2447}
2448
b480d9b7
PB
2449static int dump_region(void *priv, abi_ulong start,
2450 abi_ulong end, unsigned long prot)
edf8e2af
MW
2451{
2452 FILE *f = (FILE *)priv;
2453
b480d9b7
PB
2454 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2455 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2456 start, end, end - start,
2457 ((prot & PAGE_READ) ? 'r' : '-'),
2458 ((prot & PAGE_WRITE) ? 'w' : '-'),
2459 ((prot & PAGE_EXEC) ? 'x' : '-'));
2460
2461 return (0);
2462}
2463
2464/* dump memory mappings */
2465void page_dump(FILE *f)
2466{
2467 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2468 "start", "end", "size", "prot");
2469 walk_memory_regions(f, dump_region);
33417e70
FB
2470}
2471
53a5960a 2472int page_get_flags(target_ulong address)
33417e70 2473{
9fa3e853
FB
2474 PageDesc *p;
2475
2476 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2477 if (!p)
9fa3e853
FB
2478 return 0;
2479 return p->flags;
2480}
2481
376a7909
RH
2482/* Modify the flags of a page and invalidate the code if necessary.
2483 The flag PAGE_WRITE_ORG is positioned automatically depending
2484 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2485void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2486{
376a7909
RH
2487 target_ulong addr, len;
2488
2489 /* This function should never be called with addresses outside the
2490 guest address space. If this assert fires, it probably indicates
2491 a missing call to h2g_valid. */
b480d9b7
PB
2492#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2493 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2494#endif
2495 assert(start < end);
9fa3e853
FB
2496
2497 start = start & TARGET_PAGE_MASK;
2498 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2499
2500 if (flags & PAGE_WRITE) {
9fa3e853 2501 flags |= PAGE_WRITE_ORG;
376a7909
RH
2502 }
2503
2504 for (addr = start, len = end - start;
2505 len != 0;
2506 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2507 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2508
2509 /* If the write protection bit is set, then we invalidate
2510 the code inside. */
5fafdf24 2511 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2512 (flags & PAGE_WRITE) &&
2513 p->first_tb) {
d720b93d 2514 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2515 }
2516 p->flags = flags;
2517 }
33417e70
FB
2518}
2519
3d97b40b
TS
2520int page_check_range(target_ulong start, target_ulong len, int flags)
2521{
2522 PageDesc *p;
2523 target_ulong end;
2524 target_ulong addr;
2525
376a7909
RH
2526 /* This function should never be called with addresses outside the
2527 guest address space. If this assert fires, it probably indicates
2528 a missing call to h2g_valid. */
338e9e6c
BS
2529#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2530 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2531#endif
2532
3e0650a9
RH
2533 if (len == 0) {
2534 return 0;
2535 }
376a7909
RH
2536 if (start + len - 1 < start) {
2537 /* We've wrapped around. */
55f280c9 2538 return -1;
376a7909 2539 }
55f280c9 2540
3d97b40b
TS
2541 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2542 start = start & TARGET_PAGE_MASK;
2543
376a7909
RH
2544 for (addr = start, len = end - start;
2545 len != 0;
2546 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2547 p = page_find(addr >> TARGET_PAGE_BITS);
2548 if( !p )
2549 return -1;
2550 if( !(p->flags & PAGE_VALID) )
2551 return -1;
2552
dae3270c 2553 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2554 return -1;
dae3270c
FB
2555 if (flags & PAGE_WRITE) {
2556 if (!(p->flags & PAGE_WRITE_ORG))
2557 return -1;
2558 /* unprotect the page if it was put read-only because it
2559 contains translated code */
2560 if (!(p->flags & PAGE_WRITE)) {
2561 if (!page_unprotect(addr, 0, NULL))
2562 return -1;
2563 }
2564 return 0;
2565 }
3d97b40b
TS
2566 }
2567 return 0;
2568}
2569
9fa3e853 2570/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2571 page. Return TRUE if the fault was successfully handled. */
53a5960a 2572int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2573{
45d679d6
AJ
2574 unsigned int prot;
2575 PageDesc *p;
53a5960a 2576 target_ulong host_start, host_end, addr;
9fa3e853 2577
c8a706fe
PB
2578 /* Technically this isn't safe inside a signal handler. However we
2579 know this only ever happens in a synchronous SEGV handler, so in
2580 practice it seems to be ok. */
2581 mmap_lock();
2582
45d679d6
AJ
2583 p = page_find(address >> TARGET_PAGE_BITS);
2584 if (!p) {
c8a706fe 2585 mmap_unlock();
9fa3e853 2586 return 0;
c8a706fe 2587 }
45d679d6 2588
9fa3e853
FB
2589 /* if the page was really writable, then we change its
2590 protection back to writable */
45d679d6
AJ
2591 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2592 host_start = address & qemu_host_page_mask;
2593 host_end = host_start + qemu_host_page_size;
2594
2595 prot = 0;
2596 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2597 p = page_find(addr >> TARGET_PAGE_BITS);
2598 p->flags |= PAGE_WRITE;
2599 prot |= p->flags;
2600
9fa3e853
FB
2601 /* and since the content will be modified, we must invalidate
2602 the corresponding translated code. */
45d679d6 2603 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2604#ifdef DEBUG_TB_CHECK
45d679d6 2605 tb_invalidate_check(addr);
9fa3e853 2606#endif
9fa3e853 2607 }
45d679d6
AJ
2608 mprotect((void *)g2h(host_start), qemu_host_page_size,
2609 prot & PAGE_BITS);
2610
2611 mmap_unlock();
2612 return 1;
9fa3e853 2613 }
c8a706fe 2614 mmap_unlock();
9fa3e853
FB
2615 return 0;
2616}
2617
6a00d601
FB
2618static inline void tlb_set_dirty(CPUState *env,
2619 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2620{
2621}
9fa3e853
FB
2622#endif /* defined(CONFIG_USER_ONLY) */
2623
e2eef170 2624#if !defined(CONFIG_USER_ONLY)
8da3ff18 2625
c04b2b78
PB
2626#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2627typedef struct subpage_t {
2628 target_phys_addr_t base;
f6405247
RH
2629 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2630 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2631} subpage_t;
2632
c227f099
AL
2633static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2634 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2635static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2636 ram_addr_t orig_memory,
2637 ram_addr_t region_offset);
db7b5426
BS
2638#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2639 need_subpage) \
2640 do { \
2641 if (addr > start_addr) \
2642 start_addr2 = 0; \
2643 else { \
2644 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2645 if (start_addr2 > 0) \
2646 need_subpage = 1; \
2647 } \
2648 \
49e9fba2 2649 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2650 end_addr2 = TARGET_PAGE_SIZE - 1; \
2651 else { \
2652 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2653 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2654 need_subpage = 1; \
2655 } \
2656 } while (0)
2657
8f2498f9
MT
2658/* register physical memory.
2659 For RAM, 'size' must be a multiple of the target page size.
2660 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2661 io memory page. The address used when calling the IO function is
2662 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2663 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2664 before calculating this offset. This should not be a problem unless
2665 the low bits of start_addr and region_offset differ. */
0fd542fb 2666void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
c227f099
AL
2667 ram_addr_t size,
2668 ram_addr_t phys_offset,
0fd542fb
MT
2669 ram_addr_t region_offset,
2670 bool log_dirty)
33417e70 2671{
c227f099 2672 target_phys_addr_t addr, end_addr;
92e873b9 2673 PhysPageDesc *p;
9d42037b 2674 CPUState *env;
c227f099 2675 ram_addr_t orig_size = size;
f6405247 2676 subpage_t *subpage;
33417e70 2677
3b8e6a2d 2678 assert(size);
0fd542fb 2679 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
f6f3fbca 2680
67c4d23c
PB
2681 if (phys_offset == IO_MEM_UNASSIGNED) {
2682 region_offset = start_addr;
2683 }
8da3ff18 2684 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2685 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2686 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2687
2688 addr = start_addr;
2689 do {
db7b5426
BS
2690 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2691 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2692 ram_addr_t orig_memory = p->phys_offset;
2693 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2694 int need_subpage = 0;
2695
2696 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2697 need_subpage);
f6405247 2698 if (need_subpage) {
db7b5426
BS
2699 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2700 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2701 &p->phys_offset, orig_memory,
2702 p->region_offset);
db7b5426
BS
2703 } else {
2704 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2705 >> IO_MEM_SHIFT];
2706 }
8da3ff18
PB
2707 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2708 region_offset);
2709 p->region_offset = 0;
db7b5426
BS
2710 } else {
2711 p->phys_offset = phys_offset;
2712 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2713 (phys_offset & IO_MEM_ROMD))
2714 phys_offset += TARGET_PAGE_SIZE;
2715 }
2716 } else {
2717 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2718 p->phys_offset = phys_offset;
8da3ff18 2719 p->region_offset = region_offset;
db7b5426 2720 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2721 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2722 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2723 } else {
c227f099 2724 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2725 int need_subpage = 0;
2726
2727 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2728 end_addr2, need_subpage);
2729
f6405247 2730 if (need_subpage) {
db7b5426 2731 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2732 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2733 addr & TARGET_PAGE_MASK);
db7b5426 2734 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2735 phys_offset, region_offset);
2736 p->region_offset = 0;
db7b5426
BS
2737 }
2738 }
2739 }
8da3ff18 2740 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2741 addr += TARGET_PAGE_SIZE;
2742 } while (addr != end_addr);
3b46e624 2743
9d42037b
FB
2744 /* since each CPU stores ram addresses in its TLB cache, we must
2745 reset the modified entries */
2746 /* XXX: slow ! */
2747 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2748 tlb_flush(env, 1);
2749 }
33417e70
FB
2750}
2751
ba863458 2752/* XXX: temporary until new memory mapping API */
c227f099 2753ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2754{
2755 PhysPageDesc *p;
2756
2757 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2758 if (!p)
2759 return IO_MEM_UNASSIGNED;
2760 return p->phys_offset;
2761}
2762
c227f099 2763void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2764{
2765 if (kvm_enabled())
2766 kvm_coalesce_mmio_region(addr, size);
2767}
2768
c227f099 2769void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2770{
2771 if (kvm_enabled())
2772 kvm_uncoalesce_mmio_region(addr, size);
2773}
2774
62a2744c
SY
2775void qemu_flush_coalesced_mmio_buffer(void)
2776{
2777 if (kvm_enabled())
2778 kvm_flush_coalesced_mmio_buffer();
2779}
2780
c902760f
MT
2781#if defined(__linux__) && !defined(TARGET_S390X)
2782
2783#include <sys/vfs.h>
2784
2785#define HUGETLBFS_MAGIC 0x958458f6
2786
2787static long gethugepagesize(const char *path)
2788{
2789 struct statfs fs;
2790 int ret;
2791
2792 do {
9742bf26 2793 ret = statfs(path, &fs);
c902760f
MT
2794 } while (ret != 0 && errno == EINTR);
2795
2796 if (ret != 0) {
9742bf26
YT
2797 perror(path);
2798 return 0;
c902760f
MT
2799 }
2800
2801 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2802 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2803
2804 return fs.f_bsize;
2805}
2806
04b16653
AW
2807static void *file_ram_alloc(RAMBlock *block,
2808 ram_addr_t memory,
2809 const char *path)
c902760f
MT
2810{
2811 char *filename;
2812 void *area;
2813 int fd;
2814#ifdef MAP_POPULATE
2815 int flags;
2816#endif
2817 unsigned long hpagesize;
2818
2819 hpagesize = gethugepagesize(path);
2820 if (!hpagesize) {
9742bf26 2821 return NULL;
c902760f
MT
2822 }
2823
2824 if (memory < hpagesize) {
2825 return NULL;
2826 }
2827
2828 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2829 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2830 return NULL;
2831 }
2832
2833 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2834 return NULL;
c902760f
MT
2835 }
2836
2837 fd = mkstemp(filename);
2838 if (fd < 0) {
9742bf26
YT
2839 perror("unable to create backing store for hugepages");
2840 free(filename);
2841 return NULL;
c902760f
MT
2842 }
2843 unlink(filename);
2844 free(filename);
2845
2846 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2847
2848 /*
2849 * ftruncate is not supported by hugetlbfs in older
2850 * hosts, so don't bother bailing out on errors.
2851 * If anything goes wrong with it under other filesystems,
2852 * mmap will fail.
2853 */
2854 if (ftruncate(fd, memory))
9742bf26 2855 perror("ftruncate");
c902760f
MT
2856
2857#ifdef MAP_POPULATE
2858 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2859 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2860 * to sidestep this quirk.
2861 */
2862 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2863 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2864#else
2865 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2866#endif
2867 if (area == MAP_FAILED) {
9742bf26
YT
2868 perror("file_ram_alloc: can't mmap RAM pages");
2869 close(fd);
2870 return (NULL);
c902760f 2871 }
04b16653 2872 block->fd = fd;
c902760f
MT
2873 return area;
2874}
2875#endif
2876
d17b5288 2877static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2878{
2879 RAMBlock *block, *next_block;
3e837b2c 2880 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2881
2882 if (QLIST_EMPTY(&ram_list.blocks))
2883 return 0;
2884
2885 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2886 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2887
2888 end = block->offset + block->length;
2889
2890 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2891 if (next_block->offset >= end) {
2892 next = MIN(next, next_block->offset);
2893 }
2894 }
2895 if (next - end >= size && next - end < mingap) {
3e837b2c 2896 offset = end;
04b16653
AW
2897 mingap = next - end;
2898 }
2899 }
3e837b2c
AW
2900
2901 if (offset == RAM_ADDR_MAX) {
2902 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2903 (uint64_t)size);
2904 abort();
2905 }
2906
04b16653
AW
2907 return offset;
2908}
2909
2910static ram_addr_t last_ram_offset(void)
d17b5288
AW
2911{
2912 RAMBlock *block;
2913 ram_addr_t last = 0;
2914
2915 QLIST_FOREACH(block, &ram_list.blocks, next)
2916 last = MAX(last, block->offset + block->length);
2917
2918 return last;
2919}
2920
84b89d78 2921ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
fce537d4
AK
2922 ram_addr_t size, void *host,
2923 MemoryRegion *mr)
84b89d78
CM
2924{
2925 RAMBlock *new_block, *block;
2926
2927 size = TARGET_PAGE_ALIGN(size);
7267c094 2928 new_block = g_malloc0(sizeof(*new_block));
84b89d78
CM
2929
2930 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2931 char *id = dev->parent_bus->info->get_dev_path(dev);
2932 if (id) {
2933 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2934 g_free(id);
84b89d78
CM
2935 }
2936 }
2937 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2938
2939 QLIST_FOREACH(block, &ram_list.blocks, next) {
2940 if (!strcmp(block->idstr, new_block->idstr)) {
2941 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2942 new_block->idstr);
2943 abort();
2944 }
2945 }
2946
432d268c 2947 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2948 if (host) {
2949 new_block->host = host;
cd19cfa2 2950 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2951 } else {
2952 if (mem_path) {
c902760f 2953#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2954 new_block->host = file_ram_alloc(new_block, size, mem_path);
2955 if (!new_block->host) {
2956 new_block->host = qemu_vmalloc(size);
e78815a5 2957 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2958 }
c902760f 2959#else
6977dfe6
YT
2960 fprintf(stderr, "-mem-path option unsupported\n");
2961 exit(1);
c902760f 2962#endif
6977dfe6 2963 } else {
6b02494d 2964#if defined(TARGET_S390X) && defined(CONFIG_KVM)
ff83678a
CB
2965 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2966 an system defined value, which is at least 256GB. Larger systems
2967 have larger values. We put the guest between the end of data
2968 segment (system break) and this value. We use 32GB as a base to
2969 have enough room for the system break to grow. */
2970 new_block->host = mmap((void*)0x800000000, size,
6977dfe6 2971 PROT_EXEC|PROT_READ|PROT_WRITE,
ff83678a 2972 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
fb8b2735
AG
2973 if (new_block->host == MAP_FAILED) {
2974 fprintf(stderr, "Allocating RAM failed\n");
2975 abort();
2976 }
6b02494d 2977#else
868bb33f 2978 if (xen_enabled()) {
fce537d4 2979 xen_ram_alloc(new_block->offset, size, mr);
432d268c
JN
2980 } else {
2981 new_block->host = qemu_vmalloc(size);
2982 }
6b02494d 2983#endif
e78815a5 2984 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2985 }
c902760f 2986 }
94a6b54f
PB
2987 new_block->length = size;
2988
f471a17e 2989 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2990
7267c094 2991 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2992 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2993 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2994 0xff, size >> TARGET_PAGE_BITS);
2995
6f0437e8
JK
2996 if (kvm_enabled())
2997 kvm_setup_guest_memory(new_block->host, size);
2998
94a6b54f
PB
2999 return new_block->offset;
3000}
e9a1ab19 3001
fce537d4
AK
3002ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size,
3003 MemoryRegion *mr)
6977dfe6 3004{
fce537d4 3005 return qemu_ram_alloc_from_ptr(dev, name, size, NULL, mr);
6977dfe6
YT
3006}
3007
1f2e98b6
AW
3008void qemu_ram_free_from_ptr(ram_addr_t addr)
3009{
3010 RAMBlock *block;
3011
3012 QLIST_FOREACH(block, &ram_list.blocks, next) {
3013 if (addr == block->offset) {
3014 QLIST_REMOVE(block, next);
7267c094 3015 g_free(block);
1f2e98b6
AW
3016 return;
3017 }
3018 }
3019}
3020
c227f099 3021void qemu_ram_free(ram_addr_t addr)
e9a1ab19 3022{
04b16653
AW
3023 RAMBlock *block;
3024
3025 QLIST_FOREACH(block, &ram_list.blocks, next) {
3026 if (addr == block->offset) {
3027 QLIST_REMOVE(block, next);
cd19cfa2
HY
3028 if (block->flags & RAM_PREALLOC_MASK) {
3029 ;
3030 } else if (mem_path) {
04b16653
AW
3031#if defined (__linux__) && !defined(TARGET_S390X)
3032 if (block->fd) {
3033 munmap(block->host, block->length);
3034 close(block->fd);
3035 } else {
3036 qemu_vfree(block->host);
3037 }
fd28aa13
JK
3038#else
3039 abort();
04b16653
AW
3040#endif
3041 } else {
3042#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3043 munmap(block->host, block->length);
3044#else
868bb33f 3045 if (xen_enabled()) {
e41d7c69 3046 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
3047 } else {
3048 qemu_vfree(block->host);
3049 }
04b16653
AW
3050#endif
3051 }
7267c094 3052 g_free(block);
04b16653
AW
3053 return;
3054 }
3055 }
3056
e9a1ab19
FB
3057}
3058
cd19cfa2
HY
3059#ifndef _WIN32
3060void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3061{
3062 RAMBlock *block;
3063 ram_addr_t offset;
3064 int flags;
3065 void *area, *vaddr;
3066
3067 QLIST_FOREACH(block, &ram_list.blocks, next) {
3068 offset = addr - block->offset;
3069 if (offset < block->length) {
3070 vaddr = block->host + offset;
3071 if (block->flags & RAM_PREALLOC_MASK) {
3072 ;
3073 } else {
3074 flags = MAP_FIXED;
3075 munmap(vaddr, length);
3076 if (mem_path) {
3077#if defined(__linux__) && !defined(TARGET_S390X)
3078 if (block->fd) {
3079#ifdef MAP_POPULATE
3080 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3081 MAP_PRIVATE;
3082#else
3083 flags |= MAP_PRIVATE;
3084#endif
3085 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3086 flags, block->fd, offset);
3087 } else {
3088 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3089 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3090 flags, -1, 0);
3091 }
fd28aa13
JK
3092#else
3093 abort();
cd19cfa2
HY
3094#endif
3095 } else {
3096#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3097 flags |= MAP_SHARED | MAP_ANONYMOUS;
3098 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3099 flags, -1, 0);
3100#else
3101 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3102 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3103 flags, -1, 0);
3104#endif
3105 }
3106 if (area != vaddr) {
f15fbc4b
AP
3107 fprintf(stderr, "Could not remap addr: "
3108 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
3109 length, addr);
3110 exit(1);
3111 }
3112 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3113 }
3114 return;
3115 }
3116 }
3117}
3118#endif /* !_WIN32 */
3119
dc828ca1 3120/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3121 With the exception of the softmmu code in this file, this should
3122 only be used for local memory (e.g. video ram) that the device owns,
3123 and knows it isn't going to access beyond the end of the block.
3124
3125 It should not be used for general purpose DMA.
3126 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3127 */
c227f099 3128void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3129{
94a6b54f
PB
3130 RAMBlock *block;
3131
f471a17e
AW
3132 QLIST_FOREACH(block, &ram_list.blocks, next) {
3133 if (addr - block->offset < block->length) {
7d82af38
VP
3134 /* Move this entry to to start of the list. */
3135 if (block != QLIST_FIRST(&ram_list.blocks)) {
3136 QLIST_REMOVE(block, next);
3137 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3138 }
868bb33f 3139 if (xen_enabled()) {
432d268c
JN
3140 /* We need to check if the requested address is in the RAM
3141 * because we don't want to map the entire memory in QEMU.
712c2b41 3142 * In that case just map until the end of the page.
432d268c
JN
3143 */
3144 if (block->offset == 0) {
e41d7c69 3145 return xen_map_cache(addr, 0, 0);
432d268c 3146 } else if (block->host == NULL) {
e41d7c69
JK
3147 block->host =
3148 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3149 }
3150 }
f471a17e
AW
3151 return block->host + (addr - block->offset);
3152 }
94a6b54f 3153 }
f471a17e
AW
3154
3155 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3156 abort();
3157
3158 return NULL;
dc828ca1
PB
3159}
3160
b2e0a138
MT
3161/* Return a host pointer to ram allocated with qemu_ram_alloc.
3162 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3163 */
3164void *qemu_safe_ram_ptr(ram_addr_t addr)
3165{
3166 RAMBlock *block;
3167
3168 QLIST_FOREACH(block, &ram_list.blocks, next) {
3169 if (addr - block->offset < block->length) {
868bb33f 3170 if (xen_enabled()) {
432d268c
JN
3171 /* We need to check if the requested address is in the RAM
3172 * because we don't want to map the entire memory in QEMU.
712c2b41 3173 * In that case just map until the end of the page.
432d268c
JN
3174 */
3175 if (block->offset == 0) {
e41d7c69 3176 return xen_map_cache(addr, 0, 0);
432d268c 3177 } else if (block->host == NULL) {
e41d7c69
JK
3178 block->host =
3179 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3180 }
3181 }
b2e0a138
MT
3182 return block->host + (addr - block->offset);
3183 }
3184 }
3185
3186 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3187 abort();
3188
3189 return NULL;
3190}
3191
38bee5dc
SS
3192/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3193 * but takes a size argument */
8ab934f9 3194void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 3195{
8ab934f9
SS
3196 if (*size == 0) {
3197 return NULL;
3198 }
868bb33f 3199 if (xen_enabled()) {
e41d7c69 3200 return xen_map_cache(addr, *size, 1);
868bb33f 3201 } else {
38bee5dc
SS
3202 RAMBlock *block;
3203
3204 QLIST_FOREACH(block, &ram_list.blocks, next) {
3205 if (addr - block->offset < block->length) {
3206 if (addr - block->offset + *size > block->length)
3207 *size = block->length - addr + block->offset;
3208 return block->host + (addr - block->offset);
3209 }
3210 }
3211
3212 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3213 abort();
38bee5dc
SS
3214 }
3215}
3216
050a0ddf
AP
3217void qemu_put_ram_ptr(void *addr)
3218{
3219 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
3220}
3221
e890261f 3222int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3223{
94a6b54f
PB
3224 RAMBlock *block;
3225 uint8_t *host = ptr;
3226
868bb33f 3227 if (xen_enabled()) {
e41d7c69 3228 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
3229 return 0;
3230 }
3231
f471a17e 3232 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
3233 /* This case append when the block is not mapped. */
3234 if (block->host == NULL) {
3235 continue;
3236 }
f471a17e 3237 if (host - block->host < block->length) {
e890261f
MT
3238 *ram_addr = block->offset + (host - block->host);
3239 return 0;
f471a17e 3240 }
94a6b54f 3241 }
432d268c 3242
e890261f
MT
3243 return -1;
3244}
f471a17e 3245
e890261f
MT
3246/* Some of the softmmu routines need to translate from a host pointer
3247 (typically a TLB entry) back to a ram offset. */
3248ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3249{
3250 ram_addr_t ram_addr;
f471a17e 3251
e890261f
MT
3252 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3253 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3254 abort();
3255 }
3256 return ram_addr;
5579c7f3
PB
3257}
3258
c227f099 3259static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 3260{
67d3b957 3261#ifdef DEBUG_UNASSIGNED
ab3d1727 3262 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 3263#endif
5b450407 3264#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3265 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
e18231a3
BS
3266#endif
3267 return 0;
3268}
3269
c227f099 3270static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3271{
3272#ifdef DEBUG_UNASSIGNED
3273 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3274#endif
5b450407 3275#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3276 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
e18231a3
BS
3277#endif
3278 return 0;
3279}
3280
c227f099 3281static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3282{
3283#ifdef DEBUG_UNASSIGNED
3284 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3285#endif
5b450407 3286#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3287 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
67d3b957 3288#endif
33417e70
FB
3289 return 0;
3290}
3291
c227f099 3292static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3293{
67d3b957 3294#ifdef DEBUG_UNASSIGNED
ab3d1727 3295 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3296#endif
5b450407 3297#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3298 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
e18231a3
BS
3299#endif
3300}
3301
c227f099 3302static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3303{
3304#ifdef DEBUG_UNASSIGNED
3305 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3306#endif
5b450407 3307#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3308 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
e18231a3
BS
3309#endif
3310}
3311
c227f099 3312static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3313{
3314#ifdef DEBUG_UNASSIGNED
3315 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3316#endif
5b450407 3317#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3318 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
b4f0a316 3319#endif
33417e70
FB
3320}
3321
d60efc6b 3322static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3323 unassigned_mem_readb,
e18231a3
BS
3324 unassigned_mem_readw,
3325 unassigned_mem_readl,
33417e70
FB
3326};
3327
d60efc6b 3328static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3329 unassigned_mem_writeb,
e18231a3
BS
3330 unassigned_mem_writew,
3331 unassigned_mem_writel,
33417e70
FB
3332};
3333
c227f099 3334static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3335 uint32_t val)
9fa3e853 3336{
3a7d929e 3337 int dirty_flags;
f7c11b53 3338 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3339 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3340#if !defined(CONFIG_USER_ONLY)
3a7d929e 3341 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3342 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3343#endif
3a7d929e 3344 }
5579c7f3 3345 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3346 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3347 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3348 /* we remove the notdirty callback only if the code has been
3349 flushed */
3350 if (dirty_flags == 0xff)
2e70f6ef 3351 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3352}
3353
c227f099 3354static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3355 uint32_t val)
9fa3e853 3356{
3a7d929e 3357 int dirty_flags;
f7c11b53 3358 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3359 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3360#if !defined(CONFIG_USER_ONLY)
3a7d929e 3361 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3362 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3363#endif
3a7d929e 3364 }
5579c7f3 3365 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3366 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3367 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3368 /* we remove the notdirty callback only if the code has been
3369 flushed */
3370 if (dirty_flags == 0xff)
2e70f6ef 3371 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3372}
3373
c227f099 3374static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3375 uint32_t val)
9fa3e853 3376{
3a7d929e 3377 int dirty_flags;
f7c11b53 3378 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3379 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3380#if !defined(CONFIG_USER_ONLY)
3a7d929e 3381 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3382 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3383#endif
3a7d929e 3384 }
5579c7f3 3385 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3386 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3387 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3388 /* we remove the notdirty callback only if the code has been
3389 flushed */
3390 if (dirty_flags == 0xff)
2e70f6ef 3391 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3392}
3393
d60efc6b 3394static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3395 NULL, /* never used */
3396 NULL, /* never used */
3397 NULL, /* never used */
3398};
3399
d60efc6b 3400static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3401 notdirty_mem_writeb,
3402 notdirty_mem_writew,
3403 notdirty_mem_writel,
3404};
3405
0f459d16 3406/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3407static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3408{
3409 CPUState *env = cpu_single_env;
06d55cc1
AL
3410 target_ulong pc, cs_base;
3411 TranslationBlock *tb;
0f459d16 3412 target_ulong vaddr;
a1d1bb31 3413 CPUWatchpoint *wp;
06d55cc1 3414 int cpu_flags;
0f459d16 3415
06d55cc1
AL
3416 if (env->watchpoint_hit) {
3417 /* We re-entered the check after replacing the TB. Now raise
3418 * the debug interrupt so that is will trigger after the
3419 * current instruction. */
3420 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3421 return;
3422 }
2e70f6ef 3423 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3424 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3425 if ((vaddr == (wp->vaddr & len_mask) ||
3426 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3427 wp->flags |= BP_WATCHPOINT_HIT;
3428 if (!env->watchpoint_hit) {
3429 env->watchpoint_hit = wp;
3430 tb = tb_find_pc(env->mem_io_pc);
3431 if (!tb) {
3432 cpu_abort(env, "check_watchpoint: could not find TB for "
3433 "pc=%p", (void *)env->mem_io_pc);
3434 }
618ba8e6 3435 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3436 tb_phys_invalidate(tb, -1);
3437 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3438 env->exception_index = EXCP_DEBUG;
3439 } else {
3440 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3441 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3442 }
3443 cpu_resume_from_signal(env, NULL);
06d55cc1 3444 }
6e140f28
AL
3445 } else {
3446 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3447 }
3448 }
3449}
3450
6658ffb8
PB
3451/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3452 so these check for a hit then pass through to the normal out-of-line
3453 phys routines. */
c227f099 3454static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3455{
b4051334 3456 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3457 return ldub_phys(addr);
3458}
3459
c227f099 3460static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3461{
b4051334 3462 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3463 return lduw_phys(addr);
3464}
3465
c227f099 3466static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3467{
b4051334 3468 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3469 return ldl_phys(addr);
3470}
3471
c227f099 3472static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3473 uint32_t val)
3474{
b4051334 3475 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3476 stb_phys(addr, val);
3477}
3478
c227f099 3479static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3480 uint32_t val)
3481{
b4051334 3482 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3483 stw_phys(addr, val);
3484}
3485
c227f099 3486static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3487 uint32_t val)
3488{
b4051334 3489 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3490 stl_phys(addr, val);
3491}
3492
d60efc6b 3493static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3494 watch_mem_readb,
3495 watch_mem_readw,
3496 watch_mem_readl,
3497};
3498
d60efc6b 3499static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3500 watch_mem_writeb,
3501 watch_mem_writew,
3502 watch_mem_writel,
3503};
6658ffb8 3504
f6405247
RH
3505static inline uint32_t subpage_readlen (subpage_t *mmio,
3506 target_phys_addr_t addr,
3507 unsigned int len)
db7b5426 3508{
f6405247 3509 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3510#if defined(DEBUG_SUBPAGE)
3511 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3512 mmio, len, addr, idx);
3513#endif
db7b5426 3514
f6405247
RH
3515 addr += mmio->region_offset[idx];
3516 idx = mmio->sub_io_index[idx];
3517 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3518}
3519
c227f099 3520static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3521 uint32_t value, unsigned int len)
db7b5426 3522{
f6405247 3523 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3524#if defined(DEBUG_SUBPAGE)
f6405247
RH
3525 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3526 __func__, mmio, len, addr, idx, value);
db7b5426 3527#endif
f6405247
RH
3528
3529 addr += mmio->region_offset[idx];
3530 idx = mmio->sub_io_index[idx];
3531 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3532}
3533
c227f099 3534static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3535{
db7b5426
BS
3536 return subpage_readlen(opaque, addr, 0);
3537}
3538
c227f099 3539static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3540 uint32_t value)
3541{
db7b5426
BS
3542 subpage_writelen(opaque, addr, value, 0);
3543}
3544
c227f099 3545static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3546{
db7b5426
BS
3547 return subpage_readlen(opaque, addr, 1);
3548}
3549
c227f099 3550static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3551 uint32_t value)
3552{
db7b5426
BS
3553 subpage_writelen(opaque, addr, value, 1);
3554}
3555
c227f099 3556static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3557{
db7b5426
BS
3558 return subpage_readlen(opaque, addr, 2);
3559}
3560
f6405247
RH
3561static void subpage_writel (void *opaque, target_phys_addr_t addr,
3562 uint32_t value)
db7b5426 3563{
db7b5426
BS
3564 subpage_writelen(opaque, addr, value, 2);
3565}
3566
d60efc6b 3567static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3568 &subpage_readb,
3569 &subpage_readw,
3570 &subpage_readl,
3571};
3572
d60efc6b 3573static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3574 &subpage_writeb,
3575 &subpage_writew,
3576 &subpage_writel,
3577};
3578
56384e8b
AF
3579static uint32_t subpage_ram_readb(void *opaque, target_phys_addr_t addr)
3580{
3581 ram_addr_t raddr = addr;
3582 void *ptr = qemu_get_ram_ptr(raddr);
3583 return ldub_p(ptr);
3584}
3585
3586static void subpage_ram_writeb(void *opaque, target_phys_addr_t addr,
3587 uint32_t value)
3588{
3589 ram_addr_t raddr = addr;
3590 void *ptr = qemu_get_ram_ptr(raddr);
3591 stb_p(ptr, value);
3592}
3593
3594static uint32_t subpage_ram_readw(void *opaque, target_phys_addr_t addr)
3595{
3596 ram_addr_t raddr = addr;
3597 void *ptr = qemu_get_ram_ptr(raddr);
3598 return lduw_p(ptr);
3599}
3600
3601static void subpage_ram_writew(void *opaque, target_phys_addr_t addr,
3602 uint32_t value)
3603{
3604 ram_addr_t raddr = addr;
3605 void *ptr = qemu_get_ram_ptr(raddr);
3606 stw_p(ptr, value);
3607}
3608
3609static uint32_t subpage_ram_readl(void *opaque, target_phys_addr_t addr)
3610{
3611 ram_addr_t raddr = addr;
3612 void *ptr = qemu_get_ram_ptr(raddr);
3613 return ldl_p(ptr);
3614}
3615
3616static void subpage_ram_writel(void *opaque, target_phys_addr_t addr,
3617 uint32_t value)
3618{
3619 ram_addr_t raddr = addr;
3620 void *ptr = qemu_get_ram_ptr(raddr);
3621 stl_p(ptr, value);
3622}
3623
3624static CPUReadMemoryFunc * const subpage_ram_read[] = {
3625 &subpage_ram_readb,
3626 &subpage_ram_readw,
3627 &subpage_ram_readl,
3628};
3629
3630static CPUWriteMemoryFunc * const subpage_ram_write[] = {
3631 &subpage_ram_writeb,
3632 &subpage_ram_writew,
3633 &subpage_ram_writel,
3634};
3635
c227f099
AL
3636static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3637 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3638{
3639 int idx, eidx;
3640
3641 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3642 return -1;
3643 idx = SUBPAGE_IDX(start);
3644 eidx = SUBPAGE_IDX(end);
3645#if defined(DEBUG_SUBPAGE)
0bf9e31a 3646 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3647 mmio, start, end, idx, eidx, memory);
3648#endif
56384e8b
AF
3649 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
3650 memory = IO_MEM_SUBPAGE_RAM;
3651 }
f6405247 3652 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3653 for (; idx <= eidx; idx++) {
f6405247
RH
3654 mmio->sub_io_index[idx] = memory;
3655 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3656 }
3657
3658 return 0;
3659}
3660
f6405247
RH
3661static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3662 ram_addr_t orig_memory,
3663 ram_addr_t region_offset)
db7b5426 3664{
c227f099 3665 subpage_t *mmio;
db7b5426
BS
3666 int subpage_memory;
3667
7267c094 3668 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3669
3670 mmio->base = base;
2507c12a
AG
3671 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3672 DEVICE_NATIVE_ENDIAN);
db7b5426 3673#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3674 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3675 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3676#endif
1eec614b 3677 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3678 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3679
3680 return mmio;
3681}
3682
88715657
AL
3683static int get_free_io_mem_idx(void)
3684{
3685 int i;
3686
3687 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3688 if (!io_mem_used[i]) {
3689 io_mem_used[i] = 1;
3690 return i;
3691 }
c6703b47 3692 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3693 return -1;
3694}
3695
dd310534
AG
3696/*
3697 * Usually, devices operate in little endian mode. There are devices out
3698 * there that operate in big endian too. Each device gets byte swapped
3699 * mmio if plugged onto a CPU that does the other endianness.
3700 *
3701 * CPU Device swap?
3702 *
3703 * little little no
3704 * little big yes
3705 * big little yes
3706 * big big no
3707 */
3708
3709typedef struct SwapEndianContainer {
3710 CPUReadMemoryFunc *read[3];
3711 CPUWriteMemoryFunc *write[3];
3712 void *opaque;
3713} SwapEndianContainer;
3714
3715static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3716{
3717 uint32_t val;
3718 SwapEndianContainer *c = opaque;
3719 val = c->read[0](c->opaque, addr);
3720 return val;
3721}
3722
3723static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3724{
3725 uint32_t val;
3726 SwapEndianContainer *c = opaque;
3727 val = bswap16(c->read[1](c->opaque, addr));
3728 return val;
3729}
3730
3731static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3732{
3733 uint32_t val;
3734 SwapEndianContainer *c = opaque;
3735 val = bswap32(c->read[2](c->opaque, addr));
3736 return val;
3737}
3738
3739static CPUReadMemoryFunc * const swapendian_readfn[3]={
3740 swapendian_mem_readb,
3741 swapendian_mem_readw,
3742 swapendian_mem_readl
3743};
3744
3745static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3746 uint32_t val)
3747{
3748 SwapEndianContainer *c = opaque;
3749 c->write[0](c->opaque, addr, val);
3750}
3751
3752static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3753 uint32_t val)
3754{
3755 SwapEndianContainer *c = opaque;
3756 c->write[1](c->opaque, addr, bswap16(val));
3757}
3758
3759static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3760 uint32_t val)
3761{
3762 SwapEndianContainer *c = opaque;
3763 c->write[2](c->opaque, addr, bswap32(val));
3764}
3765
3766static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3767 swapendian_mem_writeb,
3768 swapendian_mem_writew,
3769 swapendian_mem_writel
3770};
3771
3772static void swapendian_init(int io_index)
3773{
7267c094 3774 SwapEndianContainer *c = g_malloc(sizeof(SwapEndianContainer));
dd310534
AG
3775 int i;
3776
3777 /* Swap mmio for big endian targets */
3778 c->opaque = io_mem_opaque[io_index];
3779 for (i = 0; i < 3; i++) {
3780 c->read[i] = io_mem_read[io_index][i];
3781 c->write[i] = io_mem_write[io_index][i];
3782
3783 io_mem_read[io_index][i] = swapendian_readfn[i];
3784 io_mem_write[io_index][i] = swapendian_writefn[i];
3785 }
3786 io_mem_opaque[io_index] = c;
3787}
3788
3789static void swapendian_del(int io_index)
3790{
3791 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
7267c094 3792 g_free(io_mem_opaque[io_index]);
dd310534
AG
3793 }
3794}
3795
33417e70
FB
3796/* mem_read and mem_write are arrays of functions containing the
3797 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3798 2). Functions can be omitted with a NULL function pointer.
3ee89922 3799 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3800 modified. If it is zero, a new io zone is allocated. The return
3801 value can be used with cpu_register_physical_memory(). (-1) is
3802 returned if error. */
1eed09cb 3803static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3804 CPUReadMemoryFunc * const *mem_read,
3805 CPUWriteMemoryFunc * const *mem_write,
dd310534 3806 void *opaque, enum device_endian endian)
33417e70 3807{
3cab721d
RH
3808 int i;
3809
33417e70 3810 if (io_index <= 0) {
88715657
AL
3811 io_index = get_free_io_mem_idx();
3812 if (io_index == -1)
3813 return io_index;
33417e70 3814 } else {
1eed09cb 3815 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3816 if (io_index >= IO_MEM_NB_ENTRIES)
3817 return -1;
3818 }
b5ff1b31 3819
3cab721d
RH
3820 for (i = 0; i < 3; ++i) {
3821 io_mem_read[io_index][i]
3822 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3823 }
3824 for (i = 0; i < 3; ++i) {
3825 io_mem_write[io_index][i]
3826 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3827 }
a4193c8a 3828 io_mem_opaque[io_index] = opaque;
f6405247 3829
dd310534
AG
3830 switch (endian) {
3831 case DEVICE_BIG_ENDIAN:
3832#ifndef TARGET_WORDS_BIGENDIAN
3833 swapendian_init(io_index);
3834#endif
3835 break;
3836 case DEVICE_LITTLE_ENDIAN:
3837#ifdef TARGET_WORDS_BIGENDIAN
3838 swapendian_init(io_index);
3839#endif
3840 break;
3841 case DEVICE_NATIVE_ENDIAN:
3842 default:
3843 break;
3844 }
3845
f6405247 3846 return (io_index << IO_MEM_SHIFT);
33417e70 3847}
61382a50 3848
d60efc6b
BS
3849int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3850 CPUWriteMemoryFunc * const *mem_write,
dd310534 3851 void *opaque, enum device_endian endian)
1eed09cb 3852{
2507c12a 3853 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
1eed09cb
AK
3854}
3855
88715657
AL
3856void cpu_unregister_io_memory(int io_table_address)
3857{
3858 int i;
3859 int io_index = io_table_address >> IO_MEM_SHIFT;
3860
dd310534
AG
3861 swapendian_del(io_index);
3862
88715657
AL
3863 for (i=0;i < 3; i++) {
3864 io_mem_read[io_index][i] = unassigned_mem_read[i];
3865 io_mem_write[io_index][i] = unassigned_mem_write[i];
3866 }
3867 io_mem_opaque[io_index] = NULL;
3868 io_mem_used[io_index] = 0;
3869}
3870
e9179ce1
AK
3871static void io_mem_init(void)
3872{
3873 int i;
3874
2507c12a
AG
3875 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3876 unassigned_mem_write, NULL,
3877 DEVICE_NATIVE_ENDIAN);
3878 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3879 unassigned_mem_write, NULL,
3880 DEVICE_NATIVE_ENDIAN);
3881 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3882 notdirty_mem_write, NULL,
3883 DEVICE_NATIVE_ENDIAN);
56384e8b
AF
3884 cpu_register_io_memory_fixed(IO_MEM_SUBPAGE_RAM, subpage_ram_read,
3885 subpage_ram_write, NULL,
3886 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3887 for (i=0; i<5; i++)
3888 io_mem_used[i] = 1;
3889
3890 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2507c12a
AG
3891 watch_mem_write, NULL,
3892 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3893}
3894
62152b8a
AK
3895static void memory_map_init(void)
3896{
7267c094 3897 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3898 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3899 set_system_memory_map(system_memory);
309cb471 3900
7267c094 3901 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3902 memory_region_init(system_io, "io", 65536);
3903 set_system_io_map(system_io);
62152b8a
AK
3904}
3905
3906MemoryRegion *get_system_memory(void)
3907{
3908 return system_memory;
3909}
3910
309cb471
AK
3911MemoryRegion *get_system_io(void)
3912{
3913 return system_io;
3914}
3915
e2eef170
PB
3916#endif /* !defined(CONFIG_USER_ONLY) */
3917
13eb76e0
FB
3918/* physical memory access (slow version, mainly for debug) */
3919#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3920int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3921 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3922{
3923 int l, flags;
3924 target_ulong page;
53a5960a 3925 void * p;
13eb76e0
FB
3926
3927 while (len > 0) {
3928 page = addr & TARGET_PAGE_MASK;
3929 l = (page + TARGET_PAGE_SIZE) - addr;
3930 if (l > len)
3931 l = len;
3932 flags = page_get_flags(page);
3933 if (!(flags & PAGE_VALID))
a68fe89c 3934 return -1;
13eb76e0
FB
3935 if (is_write) {
3936 if (!(flags & PAGE_WRITE))
a68fe89c 3937 return -1;
579a97f7 3938 /* XXX: this code should not depend on lock_user */
72fb7daa 3939 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3940 return -1;
72fb7daa
AJ
3941 memcpy(p, buf, l);
3942 unlock_user(p, addr, l);
13eb76e0
FB
3943 } else {
3944 if (!(flags & PAGE_READ))
a68fe89c 3945 return -1;
579a97f7 3946 /* XXX: this code should not depend on lock_user */
72fb7daa 3947 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3948 return -1;
72fb7daa 3949 memcpy(buf, p, l);
5b257578 3950 unlock_user(p, addr, 0);
13eb76e0
FB
3951 }
3952 len -= l;
3953 buf += l;
3954 addr += l;
3955 }
a68fe89c 3956 return 0;
13eb76e0 3957}
8df1cd07 3958
13eb76e0 3959#else
c227f099 3960void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3961 int len, int is_write)
3962{
3963 int l, io_index;
3964 uint8_t *ptr;
3965 uint32_t val;
c227f099 3966 target_phys_addr_t page;
8ca5692d 3967 ram_addr_t pd;
92e873b9 3968 PhysPageDesc *p;
3b46e624 3969
13eb76e0
FB
3970 while (len > 0) {
3971 page = addr & TARGET_PAGE_MASK;
3972 l = (page + TARGET_PAGE_SIZE) - addr;
3973 if (l > len)
3974 l = len;
92e873b9 3975 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3976 if (!p) {
3977 pd = IO_MEM_UNASSIGNED;
3978 } else {
3979 pd = p->phys_offset;
3980 }
3b46e624 3981
13eb76e0 3982 if (is_write) {
3a7d929e 3983 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3984 target_phys_addr_t addr1 = addr;
13eb76e0 3985 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3986 if (p)
6c2934db 3987 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3988 /* XXX: could force cpu_single_env to NULL to avoid
3989 potential bugs */
6c2934db 3990 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3991 /* 32 bit write access */
c27004ec 3992 val = ldl_p(buf);
6c2934db 3993 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3994 l = 4;
6c2934db 3995 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3996 /* 16 bit write access */
c27004ec 3997 val = lduw_p(buf);
6c2934db 3998 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3999 l = 2;
4000 } else {
1c213d19 4001 /* 8 bit write access */
c27004ec 4002 val = ldub_p(buf);
6c2934db 4003 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
4004 l = 1;
4005 }
4006 } else {
8ca5692d 4007 ram_addr_t addr1;
b448f2f3 4008 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 4009 /* RAM case */
5579c7f3 4010 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 4011 memcpy(ptr, buf, l);
3a7d929e
FB
4012 if (!cpu_physical_memory_is_dirty(addr1)) {
4013 /* invalidate code */
4014 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4015 /* set dirty bit */
f7c11b53
YT
4016 cpu_physical_memory_set_dirty_flags(
4017 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4018 }
050a0ddf 4019 qemu_put_ram_ptr(ptr);
13eb76e0
FB
4020 }
4021 } else {
5fafdf24 4022 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4023 !(pd & IO_MEM_ROMD)) {
c227f099 4024 target_phys_addr_t addr1 = addr;
13eb76e0
FB
4025 /* I/O case */
4026 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 4027 if (p)
6c2934db
AJ
4028 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4029 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 4030 /* 32 bit read access */
6c2934db 4031 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 4032 stl_p(buf, val);
13eb76e0 4033 l = 4;
6c2934db 4034 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 4035 /* 16 bit read access */
6c2934db 4036 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 4037 stw_p(buf, val);
13eb76e0
FB
4038 l = 2;
4039 } else {
1c213d19 4040 /* 8 bit read access */
6c2934db 4041 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 4042 stb_p(buf, val);
13eb76e0
FB
4043 l = 1;
4044 }
4045 } else {
4046 /* RAM case */
050a0ddf
AP
4047 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
4048 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
4049 qemu_put_ram_ptr(ptr);
13eb76e0
FB
4050 }
4051 }
4052 len -= l;
4053 buf += l;
4054 addr += l;
4055 }
4056}
8df1cd07 4057
d0ecd2aa 4058/* used for ROM loading : can write in RAM and ROM */
c227f099 4059void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
4060 const uint8_t *buf, int len)
4061{
4062 int l;
4063 uint8_t *ptr;
c227f099 4064 target_phys_addr_t page;
d0ecd2aa
FB
4065 unsigned long pd;
4066 PhysPageDesc *p;
3b46e624 4067
d0ecd2aa
FB
4068 while (len > 0) {
4069 page = addr & TARGET_PAGE_MASK;
4070 l = (page + TARGET_PAGE_SIZE) - addr;
4071 if (l > len)
4072 l = len;
4073 p = phys_page_find(page >> TARGET_PAGE_BITS);
4074 if (!p) {
4075 pd = IO_MEM_UNASSIGNED;
4076 } else {
4077 pd = p->phys_offset;
4078 }
3b46e624 4079
d0ecd2aa 4080 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
4081 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
4082 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
4083 /* do nothing */
4084 } else {
4085 unsigned long addr1;
4086 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4087 /* ROM/RAM case */
5579c7f3 4088 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 4089 memcpy(ptr, buf, l);
050a0ddf 4090 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
4091 }
4092 len -= l;
4093 buf += l;
4094 addr += l;
4095 }
4096}
4097
6d16c2f8
AL
4098typedef struct {
4099 void *buffer;
c227f099
AL
4100 target_phys_addr_t addr;
4101 target_phys_addr_t len;
6d16c2f8
AL
4102} BounceBuffer;
4103
4104static BounceBuffer bounce;
4105
ba223c29
AL
4106typedef struct MapClient {
4107 void *opaque;
4108 void (*callback)(void *opaque);
72cf2d4f 4109 QLIST_ENTRY(MapClient) link;
ba223c29
AL
4110} MapClient;
4111
72cf2d4f
BS
4112static QLIST_HEAD(map_client_list, MapClient) map_client_list
4113 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
4114
4115void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
4116{
7267c094 4117 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
4118
4119 client->opaque = opaque;
4120 client->callback = callback;
72cf2d4f 4121 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
4122 return client;
4123}
4124
4125void cpu_unregister_map_client(void *_client)
4126{
4127 MapClient *client = (MapClient *)_client;
4128
72cf2d4f 4129 QLIST_REMOVE(client, link);
7267c094 4130 g_free(client);
ba223c29
AL
4131}
4132
4133static void cpu_notify_map_clients(void)
4134{
4135 MapClient *client;
4136
72cf2d4f
BS
4137 while (!QLIST_EMPTY(&map_client_list)) {
4138 client = QLIST_FIRST(&map_client_list);
ba223c29 4139 client->callback(client->opaque);
34d5e948 4140 cpu_unregister_map_client(client);
ba223c29
AL
4141 }
4142}
4143
6d16c2f8
AL
4144/* Map a physical memory region into a host virtual address.
4145 * May map a subset of the requested range, given by and returned in *plen.
4146 * May return NULL if resources needed to perform the mapping are exhausted.
4147 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
4148 * Use cpu_register_map_client() to know when retrying the map operation is
4149 * likely to succeed.
6d16c2f8 4150 */
c227f099
AL
4151void *cpu_physical_memory_map(target_phys_addr_t addr,
4152 target_phys_addr_t *plen,
6d16c2f8
AL
4153 int is_write)
4154{
c227f099 4155 target_phys_addr_t len = *plen;
38bee5dc 4156 target_phys_addr_t todo = 0;
6d16c2f8 4157 int l;
c227f099 4158 target_phys_addr_t page;
6d16c2f8
AL
4159 unsigned long pd;
4160 PhysPageDesc *p;
f15fbc4b 4161 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
4162 ram_addr_t rlen;
4163 void *ret;
6d16c2f8
AL
4164
4165 while (len > 0) {
4166 page = addr & TARGET_PAGE_MASK;
4167 l = (page + TARGET_PAGE_SIZE) - addr;
4168 if (l > len)
4169 l = len;
4170 p = phys_page_find(page >> TARGET_PAGE_BITS);
4171 if (!p) {
4172 pd = IO_MEM_UNASSIGNED;
4173 } else {
4174 pd = p->phys_offset;
4175 }
4176
4177 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
38bee5dc 4178 if (todo || bounce.buffer) {
6d16c2f8
AL
4179 break;
4180 }
4181 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4182 bounce.addr = addr;
4183 bounce.len = l;
4184 if (!is_write) {
54f7b4a3 4185 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 4186 }
38bee5dc
SS
4187
4188 *plen = l;
4189 return bounce.buffer;
6d16c2f8 4190 }
8ab934f9
SS
4191 if (!todo) {
4192 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4193 }
6d16c2f8
AL
4194
4195 len -= l;
4196 addr += l;
38bee5dc 4197 todo += l;
6d16c2f8 4198 }
8ab934f9
SS
4199 rlen = todo;
4200 ret = qemu_ram_ptr_length(raddr, &rlen);
4201 *plen = rlen;
4202 return ret;
6d16c2f8
AL
4203}
4204
4205/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4206 * Will also mark the memory as dirty if is_write == 1. access_len gives
4207 * the amount of memory that was actually read or written by the caller.
4208 */
c227f099
AL
4209void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4210 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
4211{
4212 if (buffer != bounce.buffer) {
4213 if (is_write) {
e890261f 4214 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
4215 while (access_len) {
4216 unsigned l;
4217 l = TARGET_PAGE_SIZE;
4218 if (l > access_len)
4219 l = access_len;
4220 if (!cpu_physical_memory_is_dirty(addr1)) {
4221 /* invalidate code */
4222 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4223 /* set dirty bit */
f7c11b53
YT
4224 cpu_physical_memory_set_dirty_flags(
4225 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
4226 }
4227 addr1 += l;
4228 access_len -= l;
4229 }
4230 }
868bb33f 4231 if (xen_enabled()) {
e41d7c69 4232 xen_invalidate_map_cache_entry(buffer);
050a0ddf 4233 }
6d16c2f8
AL
4234 return;
4235 }
4236 if (is_write) {
4237 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4238 }
f8a83245 4239 qemu_vfree(bounce.buffer);
6d16c2f8 4240 bounce.buffer = NULL;
ba223c29 4241 cpu_notify_map_clients();
6d16c2f8 4242}
d0ecd2aa 4243
8df1cd07 4244/* warning: addr must be aligned */
1e78bcc1
AG
4245static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4246 enum device_endian endian)
8df1cd07
FB
4247{
4248 int io_index;
4249 uint8_t *ptr;
4250 uint32_t val;
4251 unsigned long pd;
4252 PhysPageDesc *p;
4253
4254 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4255 if (!p) {
4256 pd = IO_MEM_UNASSIGNED;
4257 } else {
4258 pd = p->phys_offset;
4259 }
3b46e624 4260
5fafdf24 4261 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4262 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
4263 /* I/O case */
4264 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4265 if (p)
4266 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07 4267 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4268#if defined(TARGET_WORDS_BIGENDIAN)
4269 if (endian == DEVICE_LITTLE_ENDIAN) {
4270 val = bswap32(val);
4271 }
4272#else
4273 if (endian == DEVICE_BIG_ENDIAN) {
4274 val = bswap32(val);
4275 }
4276#endif
8df1cd07
FB
4277 } else {
4278 /* RAM case */
5579c7f3 4279 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07 4280 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4281 switch (endian) {
4282 case DEVICE_LITTLE_ENDIAN:
4283 val = ldl_le_p(ptr);
4284 break;
4285 case DEVICE_BIG_ENDIAN:
4286 val = ldl_be_p(ptr);
4287 break;
4288 default:
4289 val = ldl_p(ptr);
4290 break;
4291 }
8df1cd07
FB
4292 }
4293 return val;
4294}
4295
1e78bcc1
AG
4296uint32_t ldl_phys(target_phys_addr_t addr)
4297{
4298 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4299}
4300
4301uint32_t ldl_le_phys(target_phys_addr_t addr)
4302{
4303 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4304}
4305
4306uint32_t ldl_be_phys(target_phys_addr_t addr)
4307{
4308 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4309}
4310
84b7b8e7 4311/* warning: addr must be aligned */
1e78bcc1
AG
4312static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4313 enum device_endian endian)
84b7b8e7
FB
4314{
4315 int io_index;
4316 uint8_t *ptr;
4317 uint64_t val;
4318 unsigned long pd;
4319 PhysPageDesc *p;
4320
4321 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4322 if (!p) {
4323 pd = IO_MEM_UNASSIGNED;
4324 } else {
4325 pd = p->phys_offset;
4326 }
3b46e624 4327
2a4188a3
FB
4328 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4329 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
4330 /* I/O case */
4331 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4332 if (p)
4333 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4334
4335 /* XXX This is broken when device endian != cpu endian.
4336 Fix and add "endian" variable check */
84b7b8e7
FB
4337#ifdef TARGET_WORDS_BIGENDIAN
4338 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4339 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4340#else
4341 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4342 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4343#endif
4344 } else {
4345 /* RAM case */
5579c7f3 4346 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7 4347 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4348 switch (endian) {
4349 case DEVICE_LITTLE_ENDIAN:
4350 val = ldq_le_p(ptr);
4351 break;
4352 case DEVICE_BIG_ENDIAN:
4353 val = ldq_be_p(ptr);
4354 break;
4355 default:
4356 val = ldq_p(ptr);
4357 break;
4358 }
84b7b8e7
FB
4359 }
4360 return val;
4361}
4362
1e78bcc1
AG
4363uint64_t ldq_phys(target_phys_addr_t addr)
4364{
4365 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4366}
4367
4368uint64_t ldq_le_phys(target_phys_addr_t addr)
4369{
4370 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4371}
4372
4373uint64_t ldq_be_phys(target_phys_addr_t addr)
4374{
4375 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4376}
4377
aab33094 4378/* XXX: optimize */
c227f099 4379uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4380{
4381 uint8_t val;
4382 cpu_physical_memory_read(addr, &val, 1);
4383 return val;
4384}
4385
733f0b02 4386/* warning: addr must be aligned */
1e78bcc1
AG
4387static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4388 enum device_endian endian)
aab33094 4389{
733f0b02
MT
4390 int io_index;
4391 uint8_t *ptr;
4392 uint64_t val;
4393 unsigned long pd;
4394 PhysPageDesc *p;
4395
4396 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4397 if (!p) {
4398 pd = IO_MEM_UNASSIGNED;
4399 } else {
4400 pd = p->phys_offset;
4401 }
4402
4403 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4404 !(pd & IO_MEM_ROMD)) {
4405 /* I/O case */
4406 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4407 if (p)
4408 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4409 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4410#if defined(TARGET_WORDS_BIGENDIAN)
4411 if (endian == DEVICE_LITTLE_ENDIAN) {
4412 val = bswap16(val);
4413 }
4414#else
4415 if (endian == DEVICE_BIG_ENDIAN) {
4416 val = bswap16(val);
4417 }
4418#endif
733f0b02
MT
4419 } else {
4420 /* RAM case */
4421 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4422 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4423 switch (endian) {
4424 case DEVICE_LITTLE_ENDIAN:
4425 val = lduw_le_p(ptr);
4426 break;
4427 case DEVICE_BIG_ENDIAN:
4428 val = lduw_be_p(ptr);
4429 break;
4430 default:
4431 val = lduw_p(ptr);
4432 break;
4433 }
733f0b02
MT
4434 }
4435 return val;
aab33094
FB
4436}
4437
1e78bcc1
AG
4438uint32_t lduw_phys(target_phys_addr_t addr)
4439{
4440 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4441}
4442
4443uint32_t lduw_le_phys(target_phys_addr_t addr)
4444{
4445 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4446}
4447
4448uint32_t lduw_be_phys(target_phys_addr_t addr)
4449{
4450 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4451}
4452
8df1cd07
FB
4453/* warning: addr must be aligned. The ram page is not masked as dirty
4454 and the code inside is not invalidated. It is useful if the dirty
4455 bits are used to track modified PTEs */
c227f099 4456void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4457{
4458 int io_index;
4459 uint8_t *ptr;
4460 unsigned long pd;
4461 PhysPageDesc *p;
4462
4463 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4464 if (!p) {
4465 pd = IO_MEM_UNASSIGNED;
4466 } else {
4467 pd = p->phys_offset;
4468 }
3b46e624 4469
3a7d929e 4470 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4471 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4472 if (p)
4473 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4474 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4475 } else {
74576198 4476 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4477 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4478 stl_p(ptr, val);
74576198
AL
4479
4480 if (unlikely(in_migration)) {
4481 if (!cpu_physical_memory_is_dirty(addr1)) {
4482 /* invalidate code */
4483 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4484 /* set dirty bit */
f7c11b53
YT
4485 cpu_physical_memory_set_dirty_flags(
4486 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4487 }
4488 }
8df1cd07
FB
4489 }
4490}
4491
c227f099 4492void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4493{
4494 int io_index;
4495 uint8_t *ptr;
4496 unsigned long pd;
4497 PhysPageDesc *p;
4498
4499 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4500 if (!p) {
4501 pd = IO_MEM_UNASSIGNED;
4502 } else {
4503 pd = p->phys_offset;
4504 }
3b46e624 4505
bc98a7ef
JM
4506 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4507 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4508 if (p)
4509 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
4510#ifdef TARGET_WORDS_BIGENDIAN
4511 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4512 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4513#else
4514 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4515 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4516#endif
4517 } else {
5579c7f3 4518 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4519 (addr & ~TARGET_PAGE_MASK);
4520 stq_p(ptr, val);
4521 }
4522}
4523
8df1cd07 4524/* warning: addr must be aligned */
1e78bcc1
AG
4525static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4526 enum device_endian endian)
8df1cd07
FB
4527{
4528 int io_index;
4529 uint8_t *ptr;
4530 unsigned long pd;
4531 PhysPageDesc *p;
4532
4533 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4534 if (!p) {
4535 pd = IO_MEM_UNASSIGNED;
4536 } else {
4537 pd = p->phys_offset;
4538 }
3b46e624 4539
3a7d929e 4540 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4541 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4542 if (p)
4543 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4544#if defined(TARGET_WORDS_BIGENDIAN)
4545 if (endian == DEVICE_LITTLE_ENDIAN) {
4546 val = bswap32(val);
4547 }
4548#else
4549 if (endian == DEVICE_BIG_ENDIAN) {
4550 val = bswap32(val);
4551 }
4552#endif
8df1cd07
FB
4553 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4554 } else {
4555 unsigned long addr1;
4556 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4557 /* RAM case */
5579c7f3 4558 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4559 switch (endian) {
4560 case DEVICE_LITTLE_ENDIAN:
4561 stl_le_p(ptr, val);
4562 break;
4563 case DEVICE_BIG_ENDIAN:
4564 stl_be_p(ptr, val);
4565 break;
4566 default:
4567 stl_p(ptr, val);
4568 break;
4569 }
3a7d929e
FB
4570 if (!cpu_physical_memory_is_dirty(addr1)) {
4571 /* invalidate code */
4572 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4573 /* set dirty bit */
f7c11b53
YT
4574 cpu_physical_memory_set_dirty_flags(addr1,
4575 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4576 }
8df1cd07
FB
4577 }
4578}
4579
1e78bcc1
AG
4580void stl_phys(target_phys_addr_t addr, uint32_t val)
4581{
4582 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4583}
4584
4585void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4586{
4587 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4588}
4589
4590void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4591{
4592 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4593}
4594
aab33094 4595/* XXX: optimize */
c227f099 4596void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4597{
4598 uint8_t v = val;
4599 cpu_physical_memory_write(addr, &v, 1);
4600}
4601
733f0b02 4602/* warning: addr must be aligned */
1e78bcc1
AG
4603static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4604 enum device_endian endian)
aab33094 4605{
733f0b02
MT
4606 int io_index;
4607 uint8_t *ptr;
4608 unsigned long pd;
4609 PhysPageDesc *p;
4610
4611 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4612 if (!p) {
4613 pd = IO_MEM_UNASSIGNED;
4614 } else {
4615 pd = p->phys_offset;
4616 }
4617
4618 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4619 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4620 if (p)
4621 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4622#if defined(TARGET_WORDS_BIGENDIAN)
4623 if (endian == DEVICE_LITTLE_ENDIAN) {
4624 val = bswap16(val);
4625 }
4626#else
4627 if (endian == DEVICE_BIG_ENDIAN) {
4628 val = bswap16(val);
4629 }
4630#endif
733f0b02
MT
4631 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4632 } else {
4633 unsigned long addr1;
4634 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4635 /* RAM case */
4636 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4637 switch (endian) {
4638 case DEVICE_LITTLE_ENDIAN:
4639 stw_le_p(ptr, val);
4640 break;
4641 case DEVICE_BIG_ENDIAN:
4642 stw_be_p(ptr, val);
4643 break;
4644 default:
4645 stw_p(ptr, val);
4646 break;
4647 }
733f0b02
MT
4648 if (!cpu_physical_memory_is_dirty(addr1)) {
4649 /* invalidate code */
4650 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4651 /* set dirty bit */
4652 cpu_physical_memory_set_dirty_flags(addr1,
4653 (0xff & ~CODE_DIRTY_FLAG));
4654 }
4655 }
aab33094
FB
4656}
4657
1e78bcc1
AG
4658void stw_phys(target_phys_addr_t addr, uint32_t val)
4659{
4660 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4661}
4662
4663void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4664{
4665 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4666}
4667
4668void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4669{
4670 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4671}
4672
aab33094 4673/* XXX: optimize */
c227f099 4674void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4675{
4676 val = tswap64(val);
71d2b725 4677 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4678}
4679
1e78bcc1
AG
4680void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4681{
4682 val = cpu_to_le64(val);
4683 cpu_physical_memory_write(addr, &val, 8);
4684}
4685
4686void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4687{
4688 val = cpu_to_be64(val);
4689 cpu_physical_memory_write(addr, &val, 8);
4690}
4691
5e2972fd 4692/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4693int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4694 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4695{
4696 int l;
c227f099 4697 target_phys_addr_t phys_addr;
9b3c35e0 4698 target_ulong page;
13eb76e0
FB
4699
4700 while (len > 0) {
4701 page = addr & TARGET_PAGE_MASK;
4702 phys_addr = cpu_get_phys_page_debug(env, page);
4703 /* if no physical page mapped, return an error */
4704 if (phys_addr == -1)
4705 return -1;
4706 l = (page + TARGET_PAGE_SIZE) - addr;
4707 if (l > len)
4708 l = len;
5e2972fd 4709 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4710 if (is_write)
4711 cpu_physical_memory_write_rom(phys_addr, buf, l);
4712 else
5e2972fd 4713 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4714 len -= l;
4715 buf += l;
4716 addr += l;
4717 }
4718 return 0;
4719}
a68fe89c 4720#endif
13eb76e0 4721
2e70f6ef
PB
4722/* in deterministic execution mode, instructions doing device I/Os
4723 must be at the end of the TB */
4724void cpu_io_recompile(CPUState *env, void *retaddr)
4725{
4726 TranslationBlock *tb;
4727 uint32_t n, cflags;
4728 target_ulong pc, cs_base;
4729 uint64_t flags;
4730
4731 tb = tb_find_pc((unsigned long)retaddr);
4732 if (!tb) {
4733 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4734 retaddr);
4735 }
4736 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4737 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4738 /* Calculate how many instructions had been executed before the fault
bf20dc07 4739 occurred. */
2e70f6ef
PB
4740 n = n - env->icount_decr.u16.low;
4741 /* Generate a new TB ending on the I/O insn. */
4742 n++;
4743 /* On MIPS and SH, delay slot instructions can only be restarted if
4744 they were already the first instruction in the TB. If this is not
bf20dc07 4745 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4746 branch. */
4747#if defined(TARGET_MIPS)
4748 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4749 env->active_tc.PC -= 4;
4750 env->icount_decr.u16.low++;
4751 env->hflags &= ~MIPS_HFLAG_BMASK;
4752 }
4753#elif defined(TARGET_SH4)
4754 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4755 && n > 1) {
4756 env->pc -= 2;
4757 env->icount_decr.u16.low++;
4758 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4759 }
4760#endif
4761 /* This should never happen. */
4762 if (n > CF_COUNT_MASK)
4763 cpu_abort(env, "TB too big during recompile");
4764
4765 cflags = n | CF_LAST_IO;
4766 pc = tb->pc;
4767 cs_base = tb->cs_base;
4768 flags = tb->flags;
4769 tb_phys_invalidate(tb, -1);
4770 /* FIXME: In theory this could raise an exception. In practice
4771 we have already translated the block once so it's probably ok. */
4772 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4773 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4774 the first in the TB) then we end up generating a whole new TB and
4775 repeating the fault, which is horribly inefficient.
4776 Better would be to execute just this insn uncached, or generate a
4777 second new TB. */
4778 cpu_resume_from_signal(env, NULL);
4779}
4780
b3755a91
PB
4781#if !defined(CONFIG_USER_ONLY)
4782
055403b2 4783void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4784{
4785 int i, target_code_size, max_target_code_size;
4786 int direct_jmp_count, direct_jmp2_count, cross_page;
4787 TranslationBlock *tb;
3b46e624 4788
e3db7226
FB
4789 target_code_size = 0;
4790 max_target_code_size = 0;
4791 cross_page = 0;
4792 direct_jmp_count = 0;
4793 direct_jmp2_count = 0;
4794 for(i = 0; i < nb_tbs; i++) {
4795 tb = &tbs[i];
4796 target_code_size += tb->size;
4797 if (tb->size > max_target_code_size)
4798 max_target_code_size = tb->size;
4799 if (tb->page_addr[1] != -1)
4800 cross_page++;
4801 if (tb->tb_next_offset[0] != 0xffff) {
4802 direct_jmp_count++;
4803 if (tb->tb_next_offset[1] != 0xffff) {
4804 direct_jmp2_count++;
4805 }
4806 }
4807 }
4808 /* XXX: avoid using doubles ? */
57fec1fe 4809 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4810 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4811 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4812 cpu_fprintf(f, "TB count %d/%d\n",
4813 nb_tbs, code_gen_max_blocks);
5fafdf24 4814 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4815 nb_tbs ? target_code_size / nb_tbs : 0,
4816 max_target_code_size);
055403b2 4817 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4818 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4819 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4820 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4821 cross_page,
e3db7226
FB
4822 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4823 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4824 direct_jmp_count,
e3db7226
FB
4825 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4826 direct_jmp2_count,
4827 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4828 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4829 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4830 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4831 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4832 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4833}
4834
61382a50 4835#define MMUSUFFIX _cmmu
3917149d 4836#undef GETPC
61382a50
FB
4837#define GETPC() NULL
4838#define env cpu_single_env
b769d8fe 4839#define SOFTMMU_CODE_ACCESS
61382a50
FB
4840
4841#define SHIFT 0
4842#include "softmmu_template.h"
4843
4844#define SHIFT 1
4845#include "softmmu_template.h"
4846
4847#define SHIFT 2
4848#include "softmmu_template.h"
4849
4850#define SHIFT 3
4851#include "softmmu_template.h"
4852
4853#undef env
4854
4855#endif