]> git.proxmox.com Git - qemu.git/blame - exec.c
target-sparc: Pass float64 parameters instead of dt0/1 temporaries.
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
fd6ce8f6 60//#define DEBUG_TB_INVALIDATE
66e85a21 61//#define DEBUG_FLUSH
9fa3e853 62//#define DEBUG_TLB
67d3b957 63//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
64
65/* make various TB consistency checks */
5fafdf24
TS
66//#define DEBUG_TB_CHECK
67//#define DEBUG_TLB_CHECK
fd6ce8f6 68
1196be37 69//#define DEBUG_IOPORT
db7b5426 70//#define DEBUG_SUBPAGE
1196be37 71
99773bd4
PB
72#if !defined(CONFIG_USER_ONLY)
73/* TB consistency checks only implemented for usermode emulation. */
74#undef DEBUG_TB_CHECK
75#endif
76
9fa3e853
FB
77#define SMC_BITMAP_USE_THRESHOLD 10
78
bdaf78e0 79static TranslationBlock *tbs;
24ab68ac 80static int code_gen_max_blocks;
9fa3e853 81TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 82static int nb_tbs;
eb51d102 83/* any access to the tbs or the page table must use this lock */
c227f099 84spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 85
141ac468
BS
86#if defined(__arm__) || defined(__sparc_v9__)
87/* The prologue must be reachable with a direct jump. ARM and Sparc64
88 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
89 section close to code segment. */
90#define code_gen_section \
91 __attribute__((__section__(".gen_code"))) \
92 __attribute__((aligned (32)))
f8e2af11
SW
93#elif defined(_WIN32)
94/* Maximum alignment for Win32 is 16. */
95#define code_gen_section \
96 __attribute__((aligned (16)))
d03d860b
BS
97#else
98#define code_gen_section \
99 __attribute__((aligned (32)))
100#endif
101
102uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
103static uint8_t *code_gen_buffer;
104static unsigned long code_gen_buffer_size;
26a5f13b 105/* threshold to flush the translated code buffer */
bdaf78e0 106static unsigned long code_gen_buffer_max_size;
24ab68ac 107static uint8_t *code_gen_ptr;
fd6ce8f6 108
e2eef170 109#if !defined(CONFIG_USER_ONLY)
9fa3e853 110int phys_ram_fd;
74576198 111static int in_migration;
94a6b54f 112
85d59fef 113RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
114
115static MemoryRegion *system_memory;
309cb471 116static MemoryRegion *system_io;
62152b8a 117
e2eef170 118#endif
9fa3e853 119
6a00d601
FB
120CPUState *first_cpu;
121/* current CPU in the current thread. It is only valid inside
122 cpu_exec() */
5fafdf24 123CPUState *cpu_single_env;
2e70f6ef 124/* 0 = Do not count executed instructions.
bf20dc07 125 1 = Precise instruction counting.
2e70f6ef
PB
126 2 = Adaptive rate instruction counting. */
127int use_icount = 0;
6a00d601 128
54936004 129typedef struct PageDesc {
92e873b9 130 /* list of TBs intersecting this ram page */
fd6ce8f6 131 TranslationBlock *first_tb;
9fa3e853
FB
132 /* in order to optimize self modifying code, we count the number
133 of lookups we do to a given page to use a bitmap */
134 unsigned int code_write_count;
135 uint8_t *code_bitmap;
136#if defined(CONFIG_USER_ONLY)
137 unsigned long flags;
138#endif
54936004
FB
139} PageDesc;
140
41c1b1c9 141/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
142 while in user mode we want it to be based on virtual addresses. */
143#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
144#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
145# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
146#else
5cd2c5b6 147# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 148#endif
bedb69ea 149#else
5cd2c5b6 150# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 151#endif
54936004 152
5cd2c5b6
RH
153/* Size of the L2 (and L3, etc) page tables. */
154#define L2_BITS 10
54936004
FB
155#define L2_SIZE (1 << L2_BITS)
156
5cd2c5b6
RH
157/* The bits remaining after N lower levels of page tables. */
158#define P_L1_BITS_REM \
159 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
160#define V_L1_BITS_REM \
161 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
162
163/* Size of the L1 page table. Avoid silly small sizes. */
164#if P_L1_BITS_REM < 4
165#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
166#else
167#define P_L1_BITS P_L1_BITS_REM
168#endif
169
170#if V_L1_BITS_REM < 4
171#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172#else
173#define V_L1_BITS V_L1_BITS_REM
174#endif
175
176#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
177#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
178
179#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
180#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
181
83fb7adf 182unsigned long qemu_real_host_page_size;
83fb7adf
FB
183unsigned long qemu_host_page_size;
184unsigned long qemu_host_page_mask;
54936004 185
5cd2c5b6
RH
186/* This is a multi-level map on the virtual address space.
187 The bottom level has pointers to PageDesc. */
188static void *l1_map[V_L1_SIZE];
54936004 189
e2eef170 190#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
191typedef struct PhysPageDesc {
192 /* offset in host memory of the page + io_index in the low bits */
193 ram_addr_t phys_offset;
194 ram_addr_t region_offset;
195} PhysPageDesc;
196
5cd2c5b6
RH
197/* This is a multi-level map on the physical address space.
198 The bottom level has pointers to PhysPageDesc. */
199static void *l1_phys_map[P_L1_SIZE];
6d9a1304 200
e2eef170 201static void io_mem_init(void);
62152b8a 202static void memory_map_init(void);
e2eef170 203
33417e70 204/* io memory support */
33417e70
FB
205CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
206CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 207void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 208static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
209static int io_mem_watch;
210#endif
33417e70 211
34865134 212/* log support */
1e8b27ca
JR
213#ifdef WIN32
214static const char *logfilename = "qemu.log";
215#else
d9b630fd 216static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 217#endif
34865134
FB
218FILE *logfile;
219int loglevel;
e735b91c 220static int log_append = 0;
34865134 221
e3db7226 222/* statistics */
b3755a91 223#if !defined(CONFIG_USER_ONLY)
e3db7226 224static int tlb_flush_count;
b3755a91 225#endif
e3db7226
FB
226static int tb_flush_count;
227static int tb_phys_invalidate_count;
228
7cb69cae
FB
229#ifdef _WIN32
230static void map_exec(void *addr, long size)
231{
232 DWORD old_protect;
233 VirtualProtect(addr, size,
234 PAGE_EXECUTE_READWRITE, &old_protect);
235
236}
237#else
238static void map_exec(void *addr, long size)
239{
4369415f 240 unsigned long start, end, page_size;
7cb69cae 241
4369415f 242 page_size = getpagesize();
7cb69cae 243 start = (unsigned long)addr;
4369415f 244 start &= ~(page_size - 1);
7cb69cae
FB
245
246 end = (unsigned long)addr + size;
4369415f
FB
247 end += page_size - 1;
248 end &= ~(page_size - 1);
7cb69cae
FB
249
250 mprotect((void *)start, end - start,
251 PROT_READ | PROT_WRITE | PROT_EXEC);
252}
253#endif
254
b346ff46 255static void page_init(void)
54936004 256{
83fb7adf 257 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 258 TARGET_PAGE_SIZE */
c2b48b69
AL
259#ifdef _WIN32
260 {
261 SYSTEM_INFO system_info;
262
263 GetSystemInfo(&system_info);
264 qemu_real_host_page_size = system_info.dwPageSize;
265 }
266#else
267 qemu_real_host_page_size = getpagesize();
268#endif
83fb7adf
FB
269 if (qemu_host_page_size == 0)
270 qemu_host_page_size = qemu_real_host_page_size;
271 if (qemu_host_page_size < TARGET_PAGE_SIZE)
272 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 274
2e9a5713 275#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 276 {
f01576f1
JL
277#ifdef HAVE_KINFO_GETVMMAP
278 struct kinfo_vmentry *freep;
279 int i, cnt;
280
281 freep = kinfo_getvmmap(getpid(), &cnt);
282 if (freep) {
283 mmap_lock();
284 for (i = 0; i < cnt; i++) {
285 unsigned long startaddr, endaddr;
286
287 startaddr = freep[i].kve_start;
288 endaddr = freep[i].kve_end;
289 if (h2g_valid(startaddr)) {
290 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
291
292 if (h2g_valid(endaddr)) {
293 endaddr = h2g(endaddr);
fd436907 294 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
295 } else {
296#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
297 endaddr = ~0ul;
fd436907 298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
299#endif
300 }
301 }
302 }
303 free(freep);
304 mmap_unlock();
305 }
306#else
50a9569b 307 FILE *f;
50a9569b 308
0776590d 309 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 310
fd436907 311 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 312 if (f) {
5cd2c5b6
RH
313 mmap_lock();
314
50a9569b 315 do {
5cd2c5b6
RH
316 unsigned long startaddr, endaddr;
317 int n;
318
319 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
320
321 if (n == 2 && h2g_valid(startaddr)) {
322 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
323
324 if (h2g_valid(endaddr)) {
325 endaddr = h2g(endaddr);
326 } else {
327 endaddr = ~0ul;
328 }
329 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
330 }
331 } while (!feof(f));
5cd2c5b6 332
50a9569b 333 fclose(f);
5cd2c5b6 334 mmap_unlock();
50a9569b 335 }
f01576f1 336#endif
50a9569b
AZ
337 }
338#endif
54936004
FB
339}
340
41c1b1c9 341static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 342{
41c1b1c9
PB
343 PageDesc *pd;
344 void **lp;
345 int i;
346
5cd2c5b6 347#if defined(CONFIG_USER_ONLY)
7267c094 348 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
349# define ALLOC(P, SIZE) \
350 do { \
351 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
352 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
353 } while (0)
354#else
355# define ALLOC(P, SIZE) \
7267c094 356 do { P = g_malloc0(SIZE); } while (0)
17e2377a 357#endif
434929bf 358
5cd2c5b6
RH
359 /* Level 1. Always allocated. */
360 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
361
362 /* Level 2..N-1. */
363 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
364 void **p = *lp;
365
366 if (p == NULL) {
367 if (!alloc) {
368 return NULL;
369 }
370 ALLOC(p, sizeof(void *) * L2_SIZE);
371 *lp = p;
17e2377a 372 }
5cd2c5b6
RH
373
374 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 }
376
377 pd = *lp;
378 if (pd == NULL) {
379 if (!alloc) {
380 return NULL;
381 }
382 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
383 *lp = pd;
54936004 384 }
5cd2c5b6
RH
385
386#undef ALLOC
5cd2c5b6
RH
387
388 return pd + (index & (L2_SIZE - 1));
54936004
FB
389}
390
41c1b1c9 391static inline PageDesc *page_find(tb_page_addr_t index)
54936004 392{
5cd2c5b6 393 return page_find_alloc(index, 0);
fd6ce8f6
FB
394}
395
6d9a1304 396#if !defined(CONFIG_USER_ONLY)
c227f099 397static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 398{
e3f4e2a4 399 PhysPageDesc *pd;
5cd2c5b6
RH
400 void **lp;
401 int i;
92e873b9 402
5cd2c5b6
RH
403 /* Level 1. Always allocated. */
404 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 405
5cd2c5b6
RH
406 /* Level 2..N-1. */
407 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
408 void **p = *lp;
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
412 }
7267c094 413 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
5cd2c5b6
RH
414 }
415 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 416 }
5cd2c5b6 417
e3f4e2a4 418 pd = *lp;
5cd2c5b6 419 if (pd == NULL) {
e3f4e2a4 420 int i;
5cd2c5b6
RH
421
422 if (!alloc) {
108c49b8 423 return NULL;
5cd2c5b6
RH
424 }
425
7267c094 426 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
5cd2c5b6 427
67c4d23c 428 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
429 pd[i].phys_offset = IO_MEM_UNASSIGNED;
430 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 431 }
92e873b9 432 }
5cd2c5b6
RH
433
434 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
435}
436
c227f099 437static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 438{
108c49b8 439 return phys_page_find_alloc(index, 0);
92e873b9
FB
440}
441
c227f099
AL
442static void tlb_protect_code(ram_addr_t ram_addr);
443static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 444 target_ulong vaddr);
c8a706fe
PB
445#define mmap_lock() do { } while(0)
446#define mmap_unlock() do { } while(0)
9fa3e853 447#endif
fd6ce8f6 448
4369415f
FB
449#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
450
451#if defined(CONFIG_USER_ONLY)
ccbb4d44 452/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
453 user mode. It will change when a dedicated libc will be used */
454#define USE_STATIC_CODE_GEN_BUFFER
455#endif
456
457#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
458static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
459 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
460#endif
461
8fcd3692 462static void code_gen_alloc(unsigned long tb_size)
26a5f13b 463{
4369415f
FB
464#ifdef USE_STATIC_CODE_GEN_BUFFER
465 code_gen_buffer = static_code_gen_buffer;
466 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
467 map_exec(code_gen_buffer, code_gen_buffer_size);
468#else
26a5f13b
FB
469 code_gen_buffer_size = tb_size;
470 if (code_gen_buffer_size == 0) {
4369415f
FB
471#if defined(CONFIG_USER_ONLY)
472 /* in user mode, phys_ram_size is not meaningful */
473 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
474#else
ccbb4d44 475 /* XXX: needs adjustments */
94a6b54f 476 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 477#endif
26a5f13b
FB
478 }
479 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
480 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
481 /* The code gen buffer location may have constraints depending on
482 the host cpu and OS */
483#if defined(__linux__)
484 {
485 int flags;
141ac468
BS
486 void *start = NULL;
487
26a5f13b
FB
488 flags = MAP_PRIVATE | MAP_ANONYMOUS;
489#if defined(__x86_64__)
490 flags |= MAP_32BIT;
491 /* Cannot map more than that */
492 if (code_gen_buffer_size > (800 * 1024 * 1024))
493 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
494#elif defined(__sparc_v9__)
495 // Map the buffer below 2G, so we can use direct calls and branches
496 flags |= MAP_FIXED;
497 start = (void *) 0x60000000UL;
498 if (code_gen_buffer_size > (512 * 1024 * 1024))
499 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 500#elif defined(__arm__)
63d41246 501 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
502 flags |= MAP_FIXED;
503 start = (void *) 0x01000000UL;
504 if (code_gen_buffer_size > 16 * 1024 * 1024)
505 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
506#elif defined(__s390x__)
507 /* Map the buffer so that we can use direct calls and branches. */
508 /* We have a +- 4GB range on the branches; leave some slop. */
509 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
510 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
511 }
512 start = (void *)0x90000000UL;
26a5f13b 513#endif
141ac468
BS
514 code_gen_buffer = mmap(start, code_gen_buffer_size,
515 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
516 flags, -1, 0);
517 if (code_gen_buffer == MAP_FAILED) {
518 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
519 exit(1);
520 }
521 }
cbb608a5 522#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
523 || defined(__DragonFly__) || defined(__OpenBSD__) \
524 || defined(__NetBSD__)
06e67a82
AL
525 {
526 int flags;
527 void *addr = NULL;
528 flags = MAP_PRIVATE | MAP_ANONYMOUS;
529#if defined(__x86_64__)
530 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
531 * 0x40000000 is free */
532 flags |= MAP_FIXED;
533 addr = (void *)0x40000000;
534 /* Cannot map more than that */
535 if (code_gen_buffer_size > (800 * 1024 * 1024))
536 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
537#elif defined(__sparc_v9__)
538 // Map the buffer below 2G, so we can use direct calls and branches
539 flags |= MAP_FIXED;
540 addr = (void *) 0x60000000UL;
541 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
542 code_gen_buffer_size = (512 * 1024 * 1024);
543 }
06e67a82
AL
544#endif
545 code_gen_buffer = mmap(addr, code_gen_buffer_size,
546 PROT_WRITE | PROT_READ | PROT_EXEC,
547 flags, -1, 0);
548 if (code_gen_buffer == MAP_FAILED) {
549 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
550 exit(1);
551 }
552 }
26a5f13b 553#else
7267c094 554 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
555 map_exec(code_gen_buffer, code_gen_buffer_size);
556#endif
4369415f 557#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 558 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
559 code_gen_buffer_max_size = code_gen_buffer_size -
560 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 561 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 562 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
563}
564
565/* Must be called before using the QEMU cpus. 'tb_size' is the size
566 (in bytes) allocated to the translation buffer. Zero means default
567 size. */
d5ab9713 568void tcg_exec_init(unsigned long tb_size)
26a5f13b 569{
26a5f13b
FB
570 cpu_gen_init();
571 code_gen_alloc(tb_size);
572 code_gen_ptr = code_gen_buffer;
4369415f 573 page_init();
9002ec79
RH
574#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx);
578#endif
26a5f13b
FB
579}
580
d5ab9713
JK
581bool tcg_enabled(void)
582{
583 return code_gen_buffer != NULL;
584}
585
586void cpu_exec_init_all(void)
587{
588#if !defined(CONFIG_USER_ONLY)
589 memory_map_init();
590 io_mem_init();
591#endif
592}
593
9656f324
PB
594#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
595
e59fb374 596static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
597{
598 CPUState *env = opaque;
9656f324 599
3098dba0
AJ
600 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
601 version_id is increased. */
602 env->interrupt_request &= ~0x01;
9656f324
PB
603 tlb_flush(env, 1);
604
605 return 0;
606}
e7f4eff7
JQ
607
608static const VMStateDescription vmstate_cpu_common = {
609 .name = "cpu_common",
610 .version_id = 1,
611 .minimum_version_id = 1,
612 .minimum_version_id_old = 1,
e7f4eff7
JQ
613 .post_load = cpu_common_post_load,
614 .fields = (VMStateField []) {
615 VMSTATE_UINT32(halted, CPUState),
616 VMSTATE_UINT32(interrupt_request, CPUState),
617 VMSTATE_END_OF_LIST()
618 }
619};
9656f324
PB
620#endif
621
950f1472
GC
622CPUState *qemu_get_cpu(int cpu)
623{
624 CPUState *env = first_cpu;
625
626 while (env) {
627 if (env->cpu_index == cpu)
628 break;
629 env = env->next_cpu;
630 }
631
632 return env;
633}
634
6a00d601 635void cpu_exec_init(CPUState *env)
fd6ce8f6 636{
6a00d601
FB
637 CPUState **penv;
638 int cpu_index;
639
c2764719
PB
640#if defined(CONFIG_USER_ONLY)
641 cpu_list_lock();
642#endif
6a00d601
FB
643 env->next_cpu = NULL;
644 penv = &first_cpu;
645 cpu_index = 0;
646 while (*penv != NULL) {
1e9fa730 647 penv = &(*penv)->next_cpu;
6a00d601
FB
648 cpu_index++;
649 }
650 env->cpu_index = cpu_index;
268a362c 651 env->numa_node = 0;
72cf2d4f
BS
652 QTAILQ_INIT(&env->breakpoints);
653 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
654#ifndef CONFIG_USER_ONLY
655 env->thread_id = qemu_get_thread_id();
656#endif
6a00d601 657 *penv = env;
c2764719
PB
658#if defined(CONFIG_USER_ONLY)
659 cpu_list_unlock();
660#endif
b3c7724c 661#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
662 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
663 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
664 cpu_save, cpu_load, env);
665#endif
fd6ce8f6
FB
666}
667
d1a1eb74
TG
668/* Allocate a new translation block. Flush the translation buffer if
669 too many translation blocks or too much generated code. */
670static TranslationBlock *tb_alloc(target_ulong pc)
671{
672 TranslationBlock *tb;
673
674 if (nb_tbs >= code_gen_max_blocks ||
675 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
676 return NULL;
677 tb = &tbs[nb_tbs++];
678 tb->pc = pc;
679 tb->cflags = 0;
680 return tb;
681}
682
683void tb_free(TranslationBlock *tb)
684{
685 /* In practice this is mostly used for single use temporary TB
686 Ignore the hard cases and just back up if this TB happens to
687 be the last one generated. */
688 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
689 code_gen_ptr = tb->tc_ptr;
690 nb_tbs--;
691 }
692}
693
9fa3e853
FB
694static inline void invalidate_page_bitmap(PageDesc *p)
695{
696 if (p->code_bitmap) {
7267c094 697 g_free(p->code_bitmap);
9fa3e853
FB
698 p->code_bitmap = NULL;
699 }
700 p->code_write_count = 0;
701}
702
5cd2c5b6
RH
703/* Set to NULL all the 'first_tb' fields in all PageDescs. */
704
705static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 706{
5cd2c5b6 707 int i;
fd6ce8f6 708
5cd2c5b6
RH
709 if (*lp == NULL) {
710 return;
711 }
712 if (level == 0) {
713 PageDesc *pd = *lp;
7296abac 714 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
715 pd[i].first_tb = NULL;
716 invalidate_page_bitmap(pd + i);
fd6ce8f6 717 }
5cd2c5b6
RH
718 } else {
719 void **pp = *lp;
7296abac 720 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
721 page_flush_tb_1 (level - 1, pp + i);
722 }
723 }
724}
725
726static void page_flush_tb(void)
727{
728 int i;
729 for (i = 0; i < V_L1_SIZE; i++) {
730 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
731 }
732}
733
734/* flush all the translation blocks */
d4e8164f 735/* XXX: tb_flush is currently not thread safe */
6a00d601 736void tb_flush(CPUState *env1)
fd6ce8f6 737{
6a00d601 738 CPUState *env;
0124311e 739#if defined(DEBUG_FLUSH)
ab3d1727
BS
740 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
741 (unsigned long)(code_gen_ptr - code_gen_buffer),
742 nb_tbs, nb_tbs > 0 ?
743 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 744#endif
26a5f13b 745 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
746 cpu_abort(env1, "Internal error: code buffer overflow\n");
747
fd6ce8f6 748 nb_tbs = 0;
3b46e624 749
6a00d601
FB
750 for(env = first_cpu; env != NULL; env = env->next_cpu) {
751 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
752 }
9fa3e853 753
8a8a608f 754 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 755 page_flush_tb();
9fa3e853 756
fd6ce8f6 757 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
758 /* XXX: flush processor icache at this point if cache flush is
759 expensive */
e3db7226 760 tb_flush_count++;
fd6ce8f6
FB
761}
762
763#ifdef DEBUG_TB_CHECK
764
bc98a7ef 765static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
766{
767 TranslationBlock *tb;
768 int i;
769 address &= TARGET_PAGE_MASK;
99773bd4
PB
770 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
771 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
772 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
773 address >= tb->pc + tb->size)) {
0bf9e31a
BS
774 printf("ERROR invalidate: address=" TARGET_FMT_lx
775 " PC=%08lx size=%04x\n",
99773bd4 776 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
777 }
778 }
779 }
780}
781
782/* verify that all the pages have correct rights for code */
783static void tb_page_check(void)
784{
785 TranslationBlock *tb;
786 int i, flags1, flags2;
3b46e624 787
99773bd4
PB
788 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
789 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
790 flags1 = page_get_flags(tb->pc);
791 flags2 = page_get_flags(tb->pc + tb->size - 1);
792 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
793 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 794 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
795 }
796 }
797 }
798}
799
800#endif
801
802/* invalidate one TB */
803static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
804 int next_offset)
805{
806 TranslationBlock *tb1;
807 for(;;) {
808 tb1 = *ptb;
809 if (tb1 == tb) {
810 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
811 break;
812 }
813 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
814 }
815}
816
9fa3e853
FB
817static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
818{
819 TranslationBlock *tb1;
820 unsigned int n1;
821
822 for(;;) {
823 tb1 = *ptb;
824 n1 = (long)tb1 & 3;
825 tb1 = (TranslationBlock *)((long)tb1 & ~3);
826 if (tb1 == tb) {
827 *ptb = tb1->page_next[n1];
828 break;
829 }
830 ptb = &tb1->page_next[n1];
831 }
832}
833
d4e8164f
FB
834static inline void tb_jmp_remove(TranslationBlock *tb, int n)
835{
836 TranslationBlock *tb1, **ptb;
837 unsigned int n1;
838
839 ptb = &tb->jmp_next[n];
840 tb1 = *ptb;
841 if (tb1) {
842 /* find tb(n) in circular list */
843 for(;;) {
844 tb1 = *ptb;
845 n1 = (long)tb1 & 3;
846 tb1 = (TranslationBlock *)((long)tb1 & ~3);
847 if (n1 == n && tb1 == tb)
848 break;
849 if (n1 == 2) {
850 ptb = &tb1->jmp_first;
851 } else {
852 ptb = &tb1->jmp_next[n1];
853 }
854 }
855 /* now we can suppress tb(n) from the list */
856 *ptb = tb->jmp_next[n];
857
858 tb->jmp_next[n] = NULL;
859 }
860}
861
862/* reset the jump entry 'n' of a TB so that it is not chained to
863 another TB */
864static inline void tb_reset_jump(TranslationBlock *tb, int n)
865{
866 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
867}
868
41c1b1c9 869void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 870{
6a00d601 871 CPUState *env;
8a40a180 872 PageDesc *p;
d4e8164f 873 unsigned int h, n1;
41c1b1c9 874 tb_page_addr_t phys_pc;
8a40a180 875 TranslationBlock *tb1, *tb2;
3b46e624 876
8a40a180
FB
877 /* remove the TB from the hash list */
878 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
879 h = tb_phys_hash_func(phys_pc);
5fafdf24 880 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
881 offsetof(TranslationBlock, phys_hash_next));
882
883 /* remove the TB from the page list */
884 if (tb->page_addr[0] != page_addr) {
885 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
886 tb_page_remove(&p->first_tb, tb);
887 invalidate_page_bitmap(p);
888 }
889 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
890 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
891 tb_page_remove(&p->first_tb, tb);
892 invalidate_page_bitmap(p);
893 }
894
36bdbe54 895 tb_invalidated_flag = 1;
59817ccb 896
fd6ce8f6 897 /* remove the TB from the hash list */
8a40a180 898 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
899 for(env = first_cpu; env != NULL; env = env->next_cpu) {
900 if (env->tb_jmp_cache[h] == tb)
901 env->tb_jmp_cache[h] = NULL;
902 }
d4e8164f
FB
903
904 /* suppress this TB from the two jump lists */
905 tb_jmp_remove(tb, 0);
906 tb_jmp_remove(tb, 1);
907
908 /* suppress any remaining jumps to this TB */
909 tb1 = tb->jmp_first;
910 for(;;) {
911 n1 = (long)tb1 & 3;
912 if (n1 == 2)
913 break;
914 tb1 = (TranslationBlock *)((long)tb1 & ~3);
915 tb2 = tb1->jmp_next[n1];
916 tb_reset_jump(tb1, n1);
917 tb1->jmp_next[n1] = NULL;
918 tb1 = tb2;
919 }
920 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 921
e3db7226 922 tb_phys_invalidate_count++;
9fa3e853
FB
923}
924
925static inline void set_bits(uint8_t *tab, int start, int len)
926{
927 int end, mask, end1;
928
929 end = start + len;
930 tab += start >> 3;
931 mask = 0xff << (start & 7);
932 if ((start & ~7) == (end & ~7)) {
933 if (start < end) {
934 mask &= ~(0xff << (end & 7));
935 *tab |= mask;
936 }
937 } else {
938 *tab++ |= mask;
939 start = (start + 8) & ~7;
940 end1 = end & ~7;
941 while (start < end1) {
942 *tab++ = 0xff;
943 start += 8;
944 }
945 if (start < end) {
946 mask = ~(0xff << (end & 7));
947 *tab |= mask;
948 }
949 }
950}
951
952static void build_page_bitmap(PageDesc *p)
953{
954 int n, tb_start, tb_end;
955 TranslationBlock *tb;
3b46e624 956
7267c094 957 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
958
959 tb = p->first_tb;
960 while (tb != NULL) {
961 n = (long)tb & 3;
962 tb = (TranslationBlock *)((long)tb & ~3);
963 /* NOTE: this is subtle as a TB may span two physical pages */
964 if (n == 0) {
965 /* NOTE: tb_end may be after the end of the page, but
966 it is not a problem */
967 tb_start = tb->pc & ~TARGET_PAGE_MASK;
968 tb_end = tb_start + tb->size;
969 if (tb_end > TARGET_PAGE_SIZE)
970 tb_end = TARGET_PAGE_SIZE;
971 } else {
972 tb_start = 0;
973 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
974 }
975 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
976 tb = tb->page_next[n];
977 }
978}
979
2e70f6ef
PB
980TranslationBlock *tb_gen_code(CPUState *env,
981 target_ulong pc, target_ulong cs_base,
982 int flags, int cflags)
d720b93d
FB
983{
984 TranslationBlock *tb;
985 uint8_t *tc_ptr;
41c1b1c9
PB
986 tb_page_addr_t phys_pc, phys_page2;
987 target_ulong virt_page2;
d720b93d
FB
988 int code_gen_size;
989
41c1b1c9 990 phys_pc = get_page_addr_code(env, pc);
c27004ec 991 tb = tb_alloc(pc);
d720b93d
FB
992 if (!tb) {
993 /* flush must be done */
994 tb_flush(env);
995 /* cannot fail at this point */
c27004ec 996 tb = tb_alloc(pc);
2e70f6ef
PB
997 /* Don't forget to invalidate previous TB info. */
998 tb_invalidated_flag = 1;
d720b93d
FB
999 }
1000 tc_ptr = code_gen_ptr;
1001 tb->tc_ptr = tc_ptr;
1002 tb->cs_base = cs_base;
1003 tb->flags = flags;
1004 tb->cflags = cflags;
d07bde88 1005 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 1006 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1007
d720b93d 1008 /* check next page if needed */
c27004ec 1009 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1010 phys_page2 = -1;
c27004ec 1011 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1012 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1013 }
41c1b1c9 1014 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1015 return tb;
d720b93d 1016}
3b46e624 1017
9fa3e853
FB
1018/* invalidate all TBs which intersect with the target physical page
1019 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1020 the same physical page. 'is_cpu_write_access' should be true if called
1021 from a real cpu write access: the virtual CPU will exit the current
1022 TB if code is modified inside this TB. */
41c1b1c9 1023void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1024 int is_cpu_write_access)
1025{
6b917547 1026 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1027 CPUState *env = cpu_single_env;
41c1b1c9 1028 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1029 PageDesc *p;
1030 int n;
1031#ifdef TARGET_HAS_PRECISE_SMC
1032 int current_tb_not_found = is_cpu_write_access;
1033 TranslationBlock *current_tb = NULL;
1034 int current_tb_modified = 0;
1035 target_ulong current_pc = 0;
1036 target_ulong current_cs_base = 0;
1037 int current_flags = 0;
1038#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1039
1040 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1041 if (!p)
9fa3e853 1042 return;
5fafdf24 1043 if (!p->code_bitmap &&
d720b93d
FB
1044 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1045 is_cpu_write_access) {
9fa3e853
FB
1046 /* build code bitmap */
1047 build_page_bitmap(p);
1048 }
1049
1050 /* we remove all the TBs in the range [start, end[ */
1051 /* XXX: see if in some cases it could be faster to invalidate all the code */
1052 tb = p->first_tb;
1053 while (tb != NULL) {
1054 n = (long)tb & 3;
1055 tb = (TranslationBlock *)((long)tb & ~3);
1056 tb_next = tb->page_next[n];
1057 /* NOTE: this is subtle as a TB may span two physical pages */
1058 if (n == 0) {
1059 /* NOTE: tb_end may be after the end of the page, but
1060 it is not a problem */
1061 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1062 tb_end = tb_start + tb->size;
1063 } else {
1064 tb_start = tb->page_addr[1];
1065 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1066 }
1067 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1068#ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb_not_found) {
1070 current_tb_not_found = 0;
1071 current_tb = NULL;
2e70f6ef 1072 if (env->mem_io_pc) {
d720b93d 1073 /* now we have a real cpu fault */
2e70f6ef 1074 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1075 }
1076 }
1077 if (current_tb == tb &&
2e70f6ef 1078 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1079 /* If we are modifying the current TB, we must stop
1080 its execution. We could be more precise by checking
1081 that the modification is after the current PC, but it
1082 would require a specialized function to partially
1083 restore the CPU state */
3b46e624 1084
d720b93d 1085 current_tb_modified = 1;
618ba8e6 1086 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1087 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1088 &current_flags);
d720b93d
FB
1089 }
1090#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1091 /* we need to do that to handle the case where a signal
1092 occurs while doing tb_phys_invalidate() */
1093 saved_tb = NULL;
1094 if (env) {
1095 saved_tb = env->current_tb;
1096 env->current_tb = NULL;
1097 }
9fa3e853 1098 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1099 if (env) {
1100 env->current_tb = saved_tb;
1101 if (env->interrupt_request && env->current_tb)
1102 cpu_interrupt(env, env->interrupt_request);
1103 }
9fa3e853
FB
1104 }
1105 tb = tb_next;
1106 }
1107#if !defined(CONFIG_USER_ONLY)
1108 /* if no code remaining, no need to continue to use slow writes */
1109 if (!p->first_tb) {
1110 invalidate_page_bitmap(p);
d720b93d 1111 if (is_cpu_write_access) {
2e70f6ef 1112 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1113 }
1114 }
1115#endif
1116#ifdef TARGET_HAS_PRECISE_SMC
1117 if (current_tb_modified) {
1118 /* we generate a block containing just the instruction
1119 modifying the memory. It will ensure that it cannot modify
1120 itself */
ea1c1802 1121 env->current_tb = NULL;
2e70f6ef 1122 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1123 cpu_resume_from_signal(env, NULL);
9fa3e853 1124 }
fd6ce8f6 1125#endif
9fa3e853 1126}
fd6ce8f6 1127
9fa3e853 1128/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1129static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1130{
1131 PageDesc *p;
1132 int offset, b;
59817ccb 1133#if 0
a4193c8a 1134 if (1) {
93fcfe39
AL
1135 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1136 cpu_single_env->mem_io_vaddr, len,
1137 cpu_single_env->eip,
1138 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1139 }
1140#endif
9fa3e853 1141 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1142 if (!p)
9fa3e853
FB
1143 return;
1144 if (p->code_bitmap) {
1145 offset = start & ~TARGET_PAGE_MASK;
1146 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1147 if (b & ((1 << len) - 1))
1148 goto do_invalidate;
1149 } else {
1150 do_invalidate:
d720b93d 1151 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1152 }
1153}
1154
9fa3e853 1155#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1156static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1157 unsigned long pc, void *puc)
9fa3e853 1158{
6b917547 1159 TranslationBlock *tb;
9fa3e853 1160 PageDesc *p;
6b917547 1161 int n;
d720b93d 1162#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1163 TranslationBlock *current_tb = NULL;
d720b93d 1164 CPUState *env = cpu_single_env;
6b917547
AL
1165 int current_tb_modified = 0;
1166 target_ulong current_pc = 0;
1167 target_ulong current_cs_base = 0;
1168 int current_flags = 0;
d720b93d 1169#endif
9fa3e853
FB
1170
1171 addr &= TARGET_PAGE_MASK;
1172 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1173 if (!p)
9fa3e853
FB
1174 return;
1175 tb = p->first_tb;
d720b93d
FB
1176#ifdef TARGET_HAS_PRECISE_SMC
1177 if (tb && pc != 0) {
1178 current_tb = tb_find_pc(pc);
1179 }
1180#endif
9fa3e853
FB
1181 while (tb != NULL) {
1182 n = (long)tb & 3;
1183 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1184#ifdef TARGET_HAS_PRECISE_SMC
1185 if (current_tb == tb &&
2e70f6ef 1186 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1187 /* If we are modifying the current TB, we must stop
1188 its execution. We could be more precise by checking
1189 that the modification is after the current PC, but it
1190 would require a specialized function to partially
1191 restore the CPU state */
3b46e624 1192
d720b93d 1193 current_tb_modified = 1;
618ba8e6 1194 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1195 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1196 &current_flags);
d720b93d
FB
1197 }
1198#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1199 tb_phys_invalidate(tb, addr);
1200 tb = tb->page_next[n];
1201 }
fd6ce8f6 1202 p->first_tb = NULL;
d720b93d
FB
1203#ifdef TARGET_HAS_PRECISE_SMC
1204 if (current_tb_modified) {
1205 /* we generate a block containing just the instruction
1206 modifying the memory. It will ensure that it cannot modify
1207 itself */
ea1c1802 1208 env->current_tb = NULL;
2e70f6ef 1209 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1210 cpu_resume_from_signal(env, puc);
1211 }
1212#endif
fd6ce8f6 1213}
9fa3e853 1214#endif
fd6ce8f6
FB
1215
1216/* add the tb in the target page and protect it if necessary */
5fafdf24 1217static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1218 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1219{
1220 PageDesc *p;
4429ab44
JQ
1221#ifndef CONFIG_USER_ONLY
1222 bool page_already_protected;
1223#endif
9fa3e853
FB
1224
1225 tb->page_addr[n] = page_addr;
5cd2c5b6 1226 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1227 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1228#ifndef CONFIG_USER_ONLY
1229 page_already_protected = p->first_tb != NULL;
1230#endif
9fa3e853
FB
1231 p->first_tb = (TranslationBlock *)((long)tb | n);
1232 invalidate_page_bitmap(p);
fd6ce8f6 1233
107db443 1234#if defined(TARGET_HAS_SMC) || 1
d720b93d 1235
9fa3e853 1236#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1237 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1238 target_ulong addr;
1239 PageDesc *p2;
9fa3e853
FB
1240 int prot;
1241
fd6ce8f6
FB
1242 /* force the host page as non writable (writes will have a
1243 page fault + mprotect overhead) */
53a5960a 1244 page_addr &= qemu_host_page_mask;
fd6ce8f6 1245 prot = 0;
53a5960a
PB
1246 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1247 addr += TARGET_PAGE_SIZE) {
1248
1249 p2 = page_find (addr >> TARGET_PAGE_BITS);
1250 if (!p2)
1251 continue;
1252 prot |= p2->flags;
1253 p2->flags &= ~PAGE_WRITE;
53a5960a 1254 }
5fafdf24 1255 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1256 (prot & PAGE_BITS) & ~PAGE_WRITE);
1257#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1258 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1259 page_addr);
fd6ce8f6 1260#endif
fd6ce8f6 1261 }
9fa3e853
FB
1262#else
1263 /* if some code is already present, then the pages are already
1264 protected. So we handle the case where only the first TB is
1265 allocated in a physical page */
4429ab44 1266 if (!page_already_protected) {
6a00d601 1267 tlb_protect_code(page_addr);
9fa3e853
FB
1268 }
1269#endif
d720b93d
FB
1270
1271#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1272}
1273
9fa3e853
FB
1274/* add a new TB and link it to the physical page tables. phys_page2 is
1275 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1276void tb_link_page(TranslationBlock *tb,
1277 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1278{
9fa3e853
FB
1279 unsigned int h;
1280 TranslationBlock **ptb;
1281
c8a706fe
PB
1282 /* Grab the mmap lock to stop another thread invalidating this TB
1283 before we are done. */
1284 mmap_lock();
9fa3e853
FB
1285 /* add in the physical hash table */
1286 h = tb_phys_hash_func(phys_pc);
1287 ptb = &tb_phys_hash[h];
1288 tb->phys_hash_next = *ptb;
1289 *ptb = tb;
fd6ce8f6
FB
1290
1291 /* add in the page list */
9fa3e853
FB
1292 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1293 if (phys_page2 != -1)
1294 tb_alloc_page(tb, 1, phys_page2);
1295 else
1296 tb->page_addr[1] = -1;
9fa3e853 1297
d4e8164f
FB
1298 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1299 tb->jmp_next[0] = NULL;
1300 tb->jmp_next[1] = NULL;
1301
1302 /* init original jump addresses */
1303 if (tb->tb_next_offset[0] != 0xffff)
1304 tb_reset_jump(tb, 0);
1305 if (tb->tb_next_offset[1] != 0xffff)
1306 tb_reset_jump(tb, 1);
8a40a180
FB
1307
1308#ifdef DEBUG_TB_CHECK
1309 tb_page_check();
1310#endif
c8a706fe 1311 mmap_unlock();
fd6ce8f6
FB
1312}
1313
9fa3e853
FB
1314/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1315 tb[1].tc_ptr. Return NULL if not found */
1316TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1317{
9fa3e853
FB
1318 int m_min, m_max, m;
1319 unsigned long v;
1320 TranslationBlock *tb;
a513fe19
FB
1321
1322 if (nb_tbs <= 0)
1323 return NULL;
1324 if (tc_ptr < (unsigned long)code_gen_buffer ||
1325 tc_ptr >= (unsigned long)code_gen_ptr)
1326 return NULL;
1327 /* binary search (cf Knuth) */
1328 m_min = 0;
1329 m_max = nb_tbs - 1;
1330 while (m_min <= m_max) {
1331 m = (m_min + m_max) >> 1;
1332 tb = &tbs[m];
1333 v = (unsigned long)tb->tc_ptr;
1334 if (v == tc_ptr)
1335 return tb;
1336 else if (tc_ptr < v) {
1337 m_max = m - 1;
1338 } else {
1339 m_min = m + 1;
1340 }
5fafdf24 1341 }
a513fe19
FB
1342 return &tbs[m_max];
1343}
7501267e 1344
ea041c0e
FB
1345static void tb_reset_jump_recursive(TranslationBlock *tb);
1346
1347static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1348{
1349 TranslationBlock *tb1, *tb_next, **ptb;
1350 unsigned int n1;
1351
1352 tb1 = tb->jmp_next[n];
1353 if (tb1 != NULL) {
1354 /* find head of list */
1355 for(;;) {
1356 n1 = (long)tb1 & 3;
1357 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1358 if (n1 == 2)
1359 break;
1360 tb1 = tb1->jmp_next[n1];
1361 }
1362 /* we are now sure now that tb jumps to tb1 */
1363 tb_next = tb1;
1364
1365 /* remove tb from the jmp_first list */
1366 ptb = &tb_next->jmp_first;
1367 for(;;) {
1368 tb1 = *ptb;
1369 n1 = (long)tb1 & 3;
1370 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1371 if (n1 == n && tb1 == tb)
1372 break;
1373 ptb = &tb1->jmp_next[n1];
1374 }
1375 *ptb = tb->jmp_next[n];
1376 tb->jmp_next[n] = NULL;
3b46e624 1377
ea041c0e
FB
1378 /* suppress the jump to next tb in generated code */
1379 tb_reset_jump(tb, n);
1380
0124311e 1381 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1382 tb_reset_jump_recursive(tb_next);
1383 }
1384}
1385
1386static void tb_reset_jump_recursive(TranslationBlock *tb)
1387{
1388 tb_reset_jump_recursive2(tb, 0);
1389 tb_reset_jump_recursive2(tb, 1);
1390}
1391
1fddef4b 1392#if defined(TARGET_HAS_ICE)
94df27fd
PB
1393#if defined(CONFIG_USER_ONLY)
1394static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1395{
1396 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1397}
1398#else
d720b93d
FB
1399static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1400{
c227f099 1401 target_phys_addr_t addr;
9b3c35e0 1402 target_ulong pd;
c227f099 1403 ram_addr_t ram_addr;
c2f07f81 1404 PhysPageDesc *p;
d720b93d 1405
c2f07f81
PB
1406 addr = cpu_get_phys_page_debug(env, pc);
1407 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1408 if (!p) {
1409 pd = IO_MEM_UNASSIGNED;
1410 } else {
1411 pd = p->phys_offset;
1412 }
1413 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1414 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1415}
c27004ec 1416#endif
94df27fd 1417#endif /* TARGET_HAS_ICE */
d720b93d 1418
c527ee8f
PB
1419#if defined(CONFIG_USER_ONLY)
1420void cpu_watchpoint_remove_all(CPUState *env, int mask)
1421
1422{
1423}
1424
1425int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1426 int flags, CPUWatchpoint **watchpoint)
1427{
1428 return -ENOSYS;
1429}
1430#else
6658ffb8 1431/* Add a watchpoint. */
a1d1bb31
AL
1432int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1433 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1434{
b4051334 1435 target_ulong len_mask = ~(len - 1);
c0ce998e 1436 CPUWatchpoint *wp;
6658ffb8 1437
b4051334
AL
1438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1439 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1440 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1441 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1442 return -EINVAL;
1443 }
7267c094 1444 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1445
1446 wp->vaddr = addr;
b4051334 1447 wp->len_mask = len_mask;
a1d1bb31
AL
1448 wp->flags = flags;
1449
2dc9f411 1450 /* keep all GDB-injected watchpoints in front */
c0ce998e 1451 if (flags & BP_GDB)
72cf2d4f 1452 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1453 else
72cf2d4f 1454 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1455
6658ffb8 1456 tlb_flush_page(env, addr);
a1d1bb31
AL
1457
1458 if (watchpoint)
1459 *watchpoint = wp;
1460 return 0;
6658ffb8
PB
1461}
1462
a1d1bb31
AL
1463/* Remove a specific watchpoint. */
1464int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1465 int flags)
6658ffb8 1466{
b4051334 1467 target_ulong len_mask = ~(len - 1);
a1d1bb31 1468 CPUWatchpoint *wp;
6658ffb8 1469
72cf2d4f 1470 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1471 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1472 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1473 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1474 return 0;
1475 }
1476 }
a1d1bb31 1477 return -ENOENT;
6658ffb8
PB
1478}
1479
a1d1bb31
AL
1480/* Remove a specific watchpoint by reference. */
1481void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1482{
72cf2d4f 1483 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1484
a1d1bb31
AL
1485 tlb_flush_page(env, watchpoint->vaddr);
1486
7267c094 1487 g_free(watchpoint);
a1d1bb31
AL
1488}
1489
1490/* Remove all matching watchpoints. */
1491void cpu_watchpoint_remove_all(CPUState *env, int mask)
1492{
c0ce998e 1493 CPUWatchpoint *wp, *next;
a1d1bb31 1494
72cf2d4f 1495 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1496 if (wp->flags & mask)
1497 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1498 }
7d03f82f 1499}
c527ee8f 1500#endif
7d03f82f 1501
a1d1bb31
AL
1502/* Add a breakpoint. */
1503int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1504 CPUBreakpoint **breakpoint)
4c3a88a2 1505{
1fddef4b 1506#if defined(TARGET_HAS_ICE)
c0ce998e 1507 CPUBreakpoint *bp;
3b46e624 1508
7267c094 1509 bp = g_malloc(sizeof(*bp));
4c3a88a2 1510
a1d1bb31
AL
1511 bp->pc = pc;
1512 bp->flags = flags;
1513
2dc9f411 1514 /* keep all GDB-injected breakpoints in front */
c0ce998e 1515 if (flags & BP_GDB)
72cf2d4f 1516 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1517 else
72cf2d4f 1518 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1519
d720b93d 1520 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1521
1522 if (breakpoint)
1523 *breakpoint = bp;
4c3a88a2
FB
1524 return 0;
1525#else
a1d1bb31 1526 return -ENOSYS;
4c3a88a2
FB
1527#endif
1528}
1529
a1d1bb31
AL
1530/* Remove a specific breakpoint. */
1531int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1532{
7d03f82f 1533#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1534 CPUBreakpoint *bp;
1535
72cf2d4f 1536 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1537 if (bp->pc == pc && bp->flags == flags) {
1538 cpu_breakpoint_remove_by_ref(env, bp);
1539 return 0;
1540 }
7d03f82f 1541 }
a1d1bb31
AL
1542 return -ENOENT;
1543#else
1544 return -ENOSYS;
7d03f82f
EI
1545#endif
1546}
1547
a1d1bb31
AL
1548/* Remove a specific breakpoint by reference. */
1549void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1550{
1fddef4b 1551#if defined(TARGET_HAS_ICE)
72cf2d4f 1552 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1553
a1d1bb31
AL
1554 breakpoint_invalidate(env, breakpoint->pc);
1555
7267c094 1556 g_free(breakpoint);
a1d1bb31
AL
1557#endif
1558}
1559
1560/* Remove all matching breakpoints. */
1561void cpu_breakpoint_remove_all(CPUState *env, int mask)
1562{
1563#if defined(TARGET_HAS_ICE)
c0ce998e 1564 CPUBreakpoint *bp, *next;
a1d1bb31 1565
72cf2d4f 1566 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1567 if (bp->flags & mask)
1568 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1569 }
4c3a88a2
FB
1570#endif
1571}
1572
c33a346e
FB
1573/* enable or disable single step mode. EXCP_DEBUG is returned by the
1574 CPU loop after each instruction */
1575void cpu_single_step(CPUState *env, int enabled)
1576{
1fddef4b 1577#if defined(TARGET_HAS_ICE)
c33a346e
FB
1578 if (env->singlestep_enabled != enabled) {
1579 env->singlestep_enabled = enabled;
e22a25c9
AL
1580 if (kvm_enabled())
1581 kvm_update_guest_debug(env, 0);
1582 else {
ccbb4d44 1583 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1584 /* XXX: only flush what is necessary */
1585 tb_flush(env);
1586 }
c33a346e
FB
1587 }
1588#endif
1589}
1590
34865134
FB
1591/* enable or disable low levels log */
1592void cpu_set_log(int log_flags)
1593{
1594 loglevel = log_flags;
1595 if (loglevel && !logfile) {
11fcfab4 1596 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1597 if (!logfile) {
1598 perror(logfilename);
1599 _exit(1);
1600 }
9fa3e853
FB
1601#if !defined(CONFIG_SOFTMMU)
1602 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1603 {
b55266b5 1604 static char logfile_buf[4096];
9fa3e853
FB
1605 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1606 }
bf65f53f
FN
1607#elif !defined(_WIN32)
1608 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1609 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1610#endif
e735b91c
PB
1611 log_append = 1;
1612 }
1613 if (!loglevel && logfile) {
1614 fclose(logfile);
1615 logfile = NULL;
34865134
FB
1616 }
1617}
1618
1619void cpu_set_log_filename(const char *filename)
1620{
1621 logfilename = strdup(filename);
e735b91c
PB
1622 if (logfile) {
1623 fclose(logfile);
1624 logfile = NULL;
1625 }
1626 cpu_set_log(loglevel);
34865134 1627}
c33a346e 1628
3098dba0 1629static void cpu_unlink_tb(CPUState *env)
ea041c0e 1630{
3098dba0
AJ
1631 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1632 problem and hope the cpu will stop of its own accord. For userspace
1633 emulation this often isn't actually as bad as it sounds. Often
1634 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1635 TranslationBlock *tb;
c227f099 1636 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1637
cab1b4bd 1638 spin_lock(&interrupt_lock);
3098dba0
AJ
1639 tb = env->current_tb;
1640 /* if the cpu is currently executing code, we must unlink it and
1641 all the potentially executing TB */
f76cfe56 1642 if (tb) {
3098dba0
AJ
1643 env->current_tb = NULL;
1644 tb_reset_jump_recursive(tb);
be214e6c 1645 }
cab1b4bd 1646 spin_unlock(&interrupt_lock);
3098dba0
AJ
1647}
1648
97ffbd8d 1649#ifndef CONFIG_USER_ONLY
3098dba0 1650/* mask must never be zero, except for A20 change call */
ec6959d0 1651static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1652{
1653 int old_mask;
be214e6c 1654
2e70f6ef 1655 old_mask = env->interrupt_request;
68a79315 1656 env->interrupt_request |= mask;
3098dba0 1657
8edac960
AL
1658 /*
1659 * If called from iothread context, wake the target cpu in
1660 * case its halted.
1661 */
b7680cb6 1662 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1663 qemu_cpu_kick(env);
1664 return;
1665 }
8edac960 1666
2e70f6ef 1667 if (use_icount) {
266910c4 1668 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1669 if (!can_do_io(env)
be214e6c 1670 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1671 cpu_abort(env, "Raised interrupt while not in I/O function");
1672 }
2e70f6ef 1673 } else {
3098dba0 1674 cpu_unlink_tb(env);
ea041c0e
FB
1675 }
1676}
1677
ec6959d0
JK
1678CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1679
97ffbd8d
JK
1680#else /* CONFIG_USER_ONLY */
1681
1682void cpu_interrupt(CPUState *env, int mask)
1683{
1684 env->interrupt_request |= mask;
1685 cpu_unlink_tb(env);
1686}
1687#endif /* CONFIG_USER_ONLY */
1688
b54ad049
FB
1689void cpu_reset_interrupt(CPUState *env, int mask)
1690{
1691 env->interrupt_request &= ~mask;
1692}
1693
3098dba0
AJ
1694void cpu_exit(CPUState *env)
1695{
1696 env->exit_request = 1;
1697 cpu_unlink_tb(env);
1698}
1699
c7cd6a37 1700const CPULogItem cpu_log_items[] = {
5fafdf24 1701 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1702 "show generated host assembly code for each compiled TB" },
1703 { CPU_LOG_TB_IN_ASM, "in_asm",
1704 "show target assembly code for each compiled TB" },
5fafdf24 1705 { CPU_LOG_TB_OP, "op",
57fec1fe 1706 "show micro ops for each compiled TB" },
f193c797 1707 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1708 "show micro ops "
1709#ifdef TARGET_I386
1710 "before eflags optimization and "
f193c797 1711#endif
e01a1157 1712 "after liveness analysis" },
f193c797
FB
1713 { CPU_LOG_INT, "int",
1714 "show interrupts/exceptions in short format" },
1715 { CPU_LOG_EXEC, "exec",
1716 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1717 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1718 "show CPU state before block translation" },
f193c797
FB
1719#ifdef TARGET_I386
1720 { CPU_LOG_PCALL, "pcall",
1721 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1722 { CPU_LOG_RESET, "cpu_reset",
1723 "show CPU state before CPU resets" },
f193c797 1724#endif
8e3a9fd2 1725#ifdef DEBUG_IOPORT
fd872598
FB
1726 { CPU_LOG_IOPORT, "ioport",
1727 "show all i/o ports accesses" },
8e3a9fd2 1728#endif
f193c797
FB
1729 { 0, NULL, NULL },
1730};
1731
f6f3fbca
MT
1732#ifndef CONFIG_USER_ONLY
1733static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1734 = QLIST_HEAD_INITIALIZER(memory_client_list);
1735
1736static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26 1737 ram_addr_t size,
0fd542fb
MT
1738 ram_addr_t phys_offset,
1739 bool log_dirty)
f6f3fbca
MT
1740{
1741 CPUPhysMemoryClient *client;
1742 QLIST_FOREACH(client, &memory_client_list, list) {
0fd542fb 1743 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
f6f3fbca
MT
1744 }
1745}
1746
1747static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1748 target_phys_addr_t end)
f6f3fbca
MT
1749{
1750 CPUPhysMemoryClient *client;
1751 QLIST_FOREACH(client, &memory_client_list, list) {
1752 int r = client->sync_dirty_bitmap(client, start, end);
1753 if (r < 0)
1754 return r;
1755 }
1756 return 0;
1757}
1758
1759static int cpu_notify_migration_log(int enable)
1760{
1761 CPUPhysMemoryClient *client;
1762 QLIST_FOREACH(client, &memory_client_list, list) {
1763 int r = client->migration_log(client, enable);
1764 if (r < 0)
1765 return r;
1766 }
1767 return 0;
1768}
1769
2173a75f
AW
1770struct last_map {
1771 target_phys_addr_t start_addr;
1772 ram_addr_t size;
1773 ram_addr_t phys_offset;
1774};
1775
8d4c78e7
AW
1776/* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1777 * address. Each intermediate table provides the next L2_BITs of guest
1778 * physical address space. The number of levels vary based on host and
1779 * guest configuration, making it efficient to build the final guest
1780 * physical address by seeding the L1 offset and shifting and adding in
1781 * each L2 offset as we recurse through them. */
2173a75f
AW
1782static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
1783 void **lp, target_phys_addr_t addr,
1784 struct last_map *map)
f6f3fbca 1785{
5cd2c5b6 1786 int i;
f6f3fbca 1787
5cd2c5b6
RH
1788 if (*lp == NULL) {
1789 return;
1790 }
1791 if (level == 0) {
1792 PhysPageDesc *pd = *lp;
8d4c78e7 1793 addr <<= L2_BITS + TARGET_PAGE_BITS;
7296abac 1794 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1795 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
2173a75f
AW
1796 target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
1797
1798 if (map->size &&
1799 start_addr == map->start_addr + map->size &&
1800 pd[i].phys_offset == map->phys_offset + map->size) {
1801
1802 map->size += TARGET_PAGE_SIZE;
1803 continue;
1804 } else if (map->size) {
1805 client->set_memory(client, map->start_addr,
1806 map->size, map->phys_offset, false);
1807 }
1808
1809 map->start_addr = start_addr;
1810 map->size = TARGET_PAGE_SIZE;
1811 map->phys_offset = pd[i].phys_offset;
f6f3fbca 1812 }
5cd2c5b6
RH
1813 }
1814 } else {
1815 void **pp = *lp;
7296abac 1816 for (i = 0; i < L2_SIZE; ++i) {
8d4c78e7 1817 phys_page_for_each_1(client, level - 1, pp + i,
2173a75f 1818 (addr << L2_BITS) | i, map);
f6f3fbca
MT
1819 }
1820 }
1821}
1822
1823static void phys_page_for_each(CPUPhysMemoryClient *client)
1824{
5cd2c5b6 1825 int i;
2173a75f
AW
1826 struct last_map map = { };
1827
5cd2c5b6
RH
1828 for (i = 0; i < P_L1_SIZE; ++i) {
1829 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
2173a75f
AW
1830 l1_phys_map + i, i, &map);
1831 }
1832 if (map.size) {
1833 client->set_memory(client, map.start_addr, map.size, map.phys_offset,
1834 false);
f6f3fbca 1835 }
f6f3fbca
MT
1836}
1837
1838void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1839{
1840 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1841 phys_page_for_each(client);
1842}
1843
1844void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1845{
1846 QLIST_REMOVE(client, list);
1847}
1848#endif
1849
f193c797
FB
1850static int cmp1(const char *s1, int n, const char *s2)
1851{
1852 if (strlen(s2) != n)
1853 return 0;
1854 return memcmp(s1, s2, n) == 0;
1855}
3b46e624 1856
f193c797
FB
1857/* takes a comma separated list of log masks. Return 0 if error. */
1858int cpu_str_to_log_mask(const char *str)
1859{
c7cd6a37 1860 const CPULogItem *item;
f193c797
FB
1861 int mask;
1862 const char *p, *p1;
1863
1864 p = str;
1865 mask = 0;
1866 for(;;) {
1867 p1 = strchr(p, ',');
1868 if (!p1)
1869 p1 = p + strlen(p);
9742bf26
YT
1870 if(cmp1(p,p1-p,"all")) {
1871 for(item = cpu_log_items; item->mask != 0; item++) {
1872 mask |= item->mask;
1873 }
1874 } else {
1875 for(item = cpu_log_items; item->mask != 0; item++) {
1876 if (cmp1(p, p1 - p, item->name))
1877 goto found;
1878 }
1879 return 0;
f193c797 1880 }
f193c797
FB
1881 found:
1882 mask |= item->mask;
1883 if (*p1 != ',')
1884 break;
1885 p = p1 + 1;
1886 }
1887 return mask;
1888}
ea041c0e 1889
7501267e
FB
1890void cpu_abort(CPUState *env, const char *fmt, ...)
1891{
1892 va_list ap;
493ae1f0 1893 va_list ap2;
7501267e
FB
1894
1895 va_start(ap, fmt);
493ae1f0 1896 va_copy(ap2, ap);
7501267e
FB
1897 fprintf(stderr, "qemu: fatal: ");
1898 vfprintf(stderr, fmt, ap);
1899 fprintf(stderr, "\n");
1900#ifdef TARGET_I386
7fe48483
FB
1901 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1902#else
1903 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1904#endif
93fcfe39
AL
1905 if (qemu_log_enabled()) {
1906 qemu_log("qemu: fatal: ");
1907 qemu_log_vprintf(fmt, ap2);
1908 qemu_log("\n");
f9373291 1909#ifdef TARGET_I386
93fcfe39 1910 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1911#else
93fcfe39 1912 log_cpu_state(env, 0);
f9373291 1913#endif
31b1a7b4 1914 qemu_log_flush();
93fcfe39 1915 qemu_log_close();
924edcae 1916 }
493ae1f0 1917 va_end(ap2);
f9373291 1918 va_end(ap);
fd052bf6
RV
1919#if defined(CONFIG_USER_ONLY)
1920 {
1921 struct sigaction act;
1922 sigfillset(&act.sa_mask);
1923 act.sa_handler = SIG_DFL;
1924 sigaction(SIGABRT, &act, NULL);
1925 }
1926#endif
7501267e
FB
1927 abort();
1928}
1929
c5be9f08
TS
1930CPUState *cpu_copy(CPUState *env)
1931{
01ba9816 1932 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1933 CPUState *next_cpu = new_env->next_cpu;
1934 int cpu_index = new_env->cpu_index;
5a38f081
AL
1935#if defined(TARGET_HAS_ICE)
1936 CPUBreakpoint *bp;
1937 CPUWatchpoint *wp;
1938#endif
1939
c5be9f08 1940 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1941
1942 /* Preserve chaining and index. */
c5be9f08
TS
1943 new_env->next_cpu = next_cpu;
1944 new_env->cpu_index = cpu_index;
5a38f081
AL
1945
1946 /* Clone all break/watchpoints.
1947 Note: Once we support ptrace with hw-debug register access, make sure
1948 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1949 QTAILQ_INIT(&env->breakpoints);
1950 QTAILQ_INIT(&env->watchpoints);
5a38f081 1951#if defined(TARGET_HAS_ICE)
72cf2d4f 1952 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1953 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1954 }
72cf2d4f 1955 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1956 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1957 wp->flags, NULL);
1958 }
1959#endif
1960
c5be9f08
TS
1961 return new_env;
1962}
1963
0124311e
FB
1964#if !defined(CONFIG_USER_ONLY)
1965
5c751e99
EI
1966static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1967{
1968 unsigned int i;
1969
1970 /* Discard jump cache entries for any tb which might potentially
1971 overlap the flushed page. */
1972 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1973 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1974 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1975
1976 i = tb_jmp_cache_hash_page(addr);
1977 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1978 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1979}
1980
08738984
IK
1981static CPUTLBEntry s_cputlb_empty_entry = {
1982 .addr_read = -1,
1983 .addr_write = -1,
1984 .addr_code = -1,
1985 .addend = -1,
1986};
1987
ee8b7021
FB
1988/* NOTE: if flush_global is true, also flush global entries (not
1989 implemented yet) */
1990void tlb_flush(CPUState *env, int flush_global)
33417e70 1991{
33417e70 1992 int i;
0124311e 1993
9fa3e853
FB
1994#if defined(DEBUG_TLB)
1995 printf("tlb_flush:\n");
1996#endif
0124311e
FB
1997 /* must reset current TB so that interrupts cannot modify the
1998 links while we are modifying them */
1999 env->current_tb = NULL;
2000
33417e70 2001 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
2002 int mmu_idx;
2003 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 2004 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 2005 }
33417e70 2006 }
9fa3e853 2007
8a40a180 2008 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 2009
d4c430a8
PB
2010 env->tlb_flush_addr = -1;
2011 env->tlb_flush_mask = 0;
e3db7226 2012 tlb_flush_count++;
33417e70
FB
2013}
2014
274da6b2 2015static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 2016{
5fafdf24 2017 if (addr == (tlb_entry->addr_read &
84b7b8e7 2018 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2019 addr == (tlb_entry->addr_write &
84b7b8e7 2020 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2021 addr == (tlb_entry->addr_code &
84b7b8e7 2022 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 2023 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 2024 }
61382a50
FB
2025}
2026
2e12669a 2027void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 2028{
8a40a180 2029 int i;
cfde4bd9 2030 int mmu_idx;
0124311e 2031
9fa3e853 2032#if defined(DEBUG_TLB)
108c49b8 2033 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 2034#endif
d4c430a8
PB
2035 /* Check if we need to flush due to large pages. */
2036 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2037#if defined(DEBUG_TLB)
2038 printf("tlb_flush_page: forced full flush ("
2039 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2040 env->tlb_flush_addr, env->tlb_flush_mask);
2041#endif
2042 tlb_flush(env, 1);
2043 return;
2044 }
0124311e
FB
2045 /* must reset current TB so that interrupts cannot modify the
2046 links while we are modifying them */
2047 env->current_tb = NULL;
61382a50
FB
2048
2049 addr &= TARGET_PAGE_MASK;
2050 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2051 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2052 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2053
5c751e99 2054 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2055}
2056
9fa3e853
FB
2057/* update the TLBs so that writes to code in the virtual page 'addr'
2058 can be detected */
c227f099 2059static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2060{
5fafdf24 2061 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2062 ram_addr + TARGET_PAGE_SIZE,
2063 CODE_DIRTY_FLAG);
9fa3e853
FB
2064}
2065
9fa3e853 2066/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2067 tested for self modifying code */
c227f099 2068static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2069 target_ulong vaddr)
9fa3e853 2070{
f7c11b53 2071 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2072}
2073
5fafdf24 2074static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2075 unsigned long start, unsigned long length)
2076{
2077 unsigned long addr;
84b7b8e7
FB
2078 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2079 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2080 if ((addr - start) < length) {
0f459d16 2081 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2082 }
2083 }
2084}
2085
5579c7f3 2086/* Note: start and end must be within the same ram block. */
c227f099 2087void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2088 int dirty_flags)
1ccde1cb
FB
2089{
2090 CPUState *env;
4f2ac237 2091 unsigned long length, start1;
f7c11b53 2092 int i;
1ccde1cb
FB
2093
2094 start &= TARGET_PAGE_MASK;
2095 end = TARGET_PAGE_ALIGN(end);
2096
2097 length = end - start;
2098 if (length == 0)
2099 return;
f7c11b53 2100 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2101
1ccde1cb
FB
2102 /* we modify the TLB cache so that the dirty bit will be set again
2103 when accessing the range */
b2e0a138 2104 start1 = (unsigned long)qemu_safe_ram_ptr(start);
a57d23e4 2105 /* Check that we don't span multiple blocks - this breaks the
5579c7f3 2106 address comparisons below. */
b2e0a138 2107 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2108 != (end - 1) - start) {
2109 abort();
2110 }
2111
6a00d601 2112 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2113 int mmu_idx;
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2115 for(i = 0; i < CPU_TLB_SIZE; i++)
2116 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2117 start1, length);
2118 }
6a00d601 2119 }
1ccde1cb
FB
2120}
2121
74576198
AL
2122int cpu_physical_memory_set_dirty_tracking(int enable)
2123{
f6f3fbca 2124 int ret = 0;
74576198 2125 in_migration = enable;
f6f3fbca
MT
2126 ret = cpu_notify_migration_log(!!enable);
2127 return ret;
74576198
AL
2128}
2129
2130int cpu_physical_memory_get_dirty_tracking(void)
2131{
2132 return in_migration;
2133}
2134
c227f099
AL
2135int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2136 target_phys_addr_t end_addr)
2bec46dc 2137{
7b8f3b78 2138 int ret;
151f7749 2139
f6f3fbca 2140 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2141 return ret;
2bec46dc
AL
2142}
2143
e5896b12
AP
2144int cpu_physical_log_start(target_phys_addr_t start_addr,
2145 ram_addr_t size)
2146{
2147 CPUPhysMemoryClient *client;
2148 QLIST_FOREACH(client, &memory_client_list, list) {
2149 if (client->log_start) {
2150 int r = client->log_start(client, start_addr, size);
2151 if (r < 0) {
2152 return r;
2153 }
2154 }
2155 }
2156 return 0;
2157}
2158
2159int cpu_physical_log_stop(target_phys_addr_t start_addr,
2160 ram_addr_t size)
2161{
2162 CPUPhysMemoryClient *client;
2163 QLIST_FOREACH(client, &memory_client_list, list) {
2164 if (client->log_stop) {
2165 int r = client->log_stop(client, start_addr, size);
2166 if (r < 0) {
2167 return r;
2168 }
2169 }
2170 }
2171 return 0;
2172}
2173
3a7d929e
FB
2174static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2175{
c227f099 2176 ram_addr_t ram_addr;
5579c7f3 2177 void *p;
3a7d929e 2178
84b7b8e7 2179 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2180 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2181 + tlb_entry->addend);
e890261f 2182 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2183 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2184 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2185 }
2186 }
2187}
2188
2189/* update the TLB according to the current state of the dirty bits */
2190void cpu_tlb_update_dirty(CPUState *env)
2191{
2192 int i;
cfde4bd9
IY
2193 int mmu_idx;
2194 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2195 for(i = 0; i < CPU_TLB_SIZE; i++)
2196 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2197 }
3a7d929e
FB
2198}
2199
0f459d16 2200static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2201{
0f459d16
PB
2202 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2203 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2204}
2205
0f459d16
PB
2206/* update the TLB corresponding to virtual page vaddr
2207 so that it is no longer dirty */
2208static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2209{
1ccde1cb 2210 int i;
cfde4bd9 2211 int mmu_idx;
1ccde1cb 2212
0f459d16 2213 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2214 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2215 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2216 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2217}
2218
d4c430a8
PB
2219/* Our TLB does not support large pages, so remember the area covered by
2220 large pages and trigger a full TLB flush if these are invalidated. */
2221static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2222 target_ulong size)
2223{
2224 target_ulong mask = ~(size - 1);
2225
2226 if (env->tlb_flush_addr == (target_ulong)-1) {
2227 env->tlb_flush_addr = vaddr & mask;
2228 env->tlb_flush_mask = mask;
2229 return;
2230 }
2231 /* Extend the existing region to include the new page.
2232 This is a compromise between unnecessary flushes and the cost
2233 of maintaining a full variable size TLB. */
2234 mask &= env->tlb_flush_mask;
2235 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2236 mask <<= 1;
2237 }
2238 env->tlb_flush_addr &= mask;
2239 env->tlb_flush_mask = mask;
2240}
2241
2242/* Add a new TLB entry. At most one entry for a given virtual address
2243 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2244 supplied size is only used by tlb_flush_page. */
2245void tlb_set_page(CPUState *env, target_ulong vaddr,
2246 target_phys_addr_t paddr, int prot,
2247 int mmu_idx, target_ulong size)
9fa3e853 2248{
92e873b9 2249 PhysPageDesc *p;
4f2ac237 2250 unsigned long pd;
9fa3e853 2251 unsigned int index;
4f2ac237 2252 target_ulong address;
0f459d16 2253 target_ulong code_address;
355b1943 2254 unsigned long addend;
84b7b8e7 2255 CPUTLBEntry *te;
a1d1bb31 2256 CPUWatchpoint *wp;
c227f099 2257 target_phys_addr_t iotlb;
9fa3e853 2258
d4c430a8
PB
2259 assert(size >= TARGET_PAGE_SIZE);
2260 if (size != TARGET_PAGE_SIZE) {
2261 tlb_add_large_page(env, vaddr, size);
2262 }
92e873b9 2263 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2264 if (!p) {
2265 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2266 } else {
2267 pd = p->phys_offset;
9fa3e853
FB
2268 }
2269#if defined(DEBUG_TLB)
7fd3f494
SW
2270 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2271 " prot=%x idx=%d pd=0x%08lx\n",
2272 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2273#endif
2274
0f459d16
PB
2275 address = vaddr;
2276 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2277 /* IO memory case (romd handled later) */
2278 address |= TLB_MMIO;
2279 }
5579c7f3 2280 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2281 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2282 /* Normal RAM. */
2283 iotlb = pd & TARGET_PAGE_MASK;
2284 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2285 iotlb |= IO_MEM_NOTDIRTY;
2286 else
2287 iotlb |= IO_MEM_ROM;
2288 } else {
ccbb4d44 2289 /* IO handlers are currently passed a physical address.
0f459d16
PB
2290 It would be nice to pass an offset from the base address
2291 of that region. This would avoid having to special case RAM,
2292 and avoid full address decoding in every device.
2293 We can't use the high bits of pd for this because
2294 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2295 iotlb = (pd & ~TARGET_PAGE_MASK);
2296 if (p) {
8da3ff18
PB
2297 iotlb += p->region_offset;
2298 } else {
2299 iotlb += paddr;
2300 }
0f459d16
PB
2301 }
2302
2303 code_address = address;
2304 /* Make accesses to pages with watchpoints go via the
2305 watchpoint trap routines. */
72cf2d4f 2306 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2307 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2308 /* Avoid trapping reads of pages with a write breakpoint. */
2309 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2310 iotlb = io_mem_watch + paddr;
2311 address |= TLB_MMIO;
2312 break;
2313 }
6658ffb8 2314 }
0f459d16 2315 }
d79acba4 2316
0f459d16
PB
2317 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2318 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2319 te = &env->tlb_table[mmu_idx][index];
2320 te->addend = addend - vaddr;
2321 if (prot & PAGE_READ) {
2322 te->addr_read = address;
2323 } else {
2324 te->addr_read = -1;
2325 }
5c751e99 2326
0f459d16
PB
2327 if (prot & PAGE_EXEC) {
2328 te->addr_code = code_address;
2329 } else {
2330 te->addr_code = -1;
2331 }
2332 if (prot & PAGE_WRITE) {
2333 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2334 (pd & IO_MEM_ROMD)) {
2335 /* Write access calls the I/O callback. */
2336 te->addr_write = address | TLB_MMIO;
2337 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2338 !cpu_physical_memory_is_dirty(pd)) {
2339 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2340 } else {
0f459d16 2341 te->addr_write = address;
9fa3e853 2342 }
0f459d16
PB
2343 } else {
2344 te->addr_write = -1;
9fa3e853 2345 }
9fa3e853
FB
2346}
2347
0124311e
FB
2348#else
2349
ee8b7021 2350void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2351{
2352}
2353
2e12669a 2354void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2355{
2356}
2357
edf8e2af
MW
2358/*
2359 * Walks guest process memory "regions" one by one
2360 * and calls callback function 'fn' for each region.
2361 */
5cd2c5b6
RH
2362
2363struct walk_memory_regions_data
2364{
2365 walk_memory_regions_fn fn;
2366 void *priv;
2367 unsigned long start;
2368 int prot;
2369};
2370
2371static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2372 abi_ulong end, int new_prot)
5cd2c5b6
RH
2373{
2374 if (data->start != -1ul) {
2375 int rc = data->fn(data->priv, data->start, end, data->prot);
2376 if (rc != 0) {
2377 return rc;
2378 }
2379 }
2380
2381 data->start = (new_prot ? end : -1ul);
2382 data->prot = new_prot;
2383
2384 return 0;
2385}
2386
2387static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2388 abi_ulong base, int level, void **lp)
5cd2c5b6 2389{
b480d9b7 2390 abi_ulong pa;
5cd2c5b6
RH
2391 int i, rc;
2392
2393 if (*lp == NULL) {
2394 return walk_memory_regions_end(data, base, 0);
2395 }
2396
2397 if (level == 0) {
2398 PageDesc *pd = *lp;
7296abac 2399 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2400 int prot = pd[i].flags;
2401
2402 pa = base | (i << TARGET_PAGE_BITS);
2403 if (prot != data->prot) {
2404 rc = walk_memory_regions_end(data, pa, prot);
2405 if (rc != 0) {
2406 return rc;
9fa3e853 2407 }
9fa3e853 2408 }
5cd2c5b6
RH
2409 }
2410 } else {
2411 void **pp = *lp;
7296abac 2412 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2413 pa = base | ((abi_ulong)i <<
2414 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2415 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2416 if (rc != 0) {
2417 return rc;
2418 }
2419 }
2420 }
2421
2422 return 0;
2423}
2424
2425int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2426{
2427 struct walk_memory_regions_data data;
2428 unsigned long i;
2429
2430 data.fn = fn;
2431 data.priv = priv;
2432 data.start = -1ul;
2433 data.prot = 0;
2434
2435 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2436 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2437 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2438 if (rc != 0) {
2439 return rc;
9fa3e853 2440 }
33417e70 2441 }
5cd2c5b6
RH
2442
2443 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2444}
2445
b480d9b7
PB
2446static int dump_region(void *priv, abi_ulong start,
2447 abi_ulong end, unsigned long prot)
edf8e2af
MW
2448{
2449 FILE *f = (FILE *)priv;
2450
b480d9b7
PB
2451 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2452 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2453 start, end, end - start,
2454 ((prot & PAGE_READ) ? 'r' : '-'),
2455 ((prot & PAGE_WRITE) ? 'w' : '-'),
2456 ((prot & PAGE_EXEC) ? 'x' : '-'));
2457
2458 return (0);
2459}
2460
2461/* dump memory mappings */
2462void page_dump(FILE *f)
2463{
2464 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2465 "start", "end", "size", "prot");
2466 walk_memory_regions(f, dump_region);
33417e70
FB
2467}
2468
53a5960a 2469int page_get_flags(target_ulong address)
33417e70 2470{
9fa3e853
FB
2471 PageDesc *p;
2472
2473 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2474 if (!p)
9fa3e853
FB
2475 return 0;
2476 return p->flags;
2477}
2478
376a7909
RH
2479/* Modify the flags of a page and invalidate the code if necessary.
2480 The flag PAGE_WRITE_ORG is positioned automatically depending
2481 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2482void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2483{
376a7909
RH
2484 target_ulong addr, len;
2485
2486 /* This function should never be called with addresses outside the
2487 guest address space. If this assert fires, it probably indicates
2488 a missing call to h2g_valid. */
b480d9b7
PB
2489#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2490 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2491#endif
2492 assert(start < end);
9fa3e853
FB
2493
2494 start = start & TARGET_PAGE_MASK;
2495 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2496
2497 if (flags & PAGE_WRITE) {
9fa3e853 2498 flags |= PAGE_WRITE_ORG;
376a7909
RH
2499 }
2500
2501 for (addr = start, len = end - start;
2502 len != 0;
2503 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2504 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2505
2506 /* If the write protection bit is set, then we invalidate
2507 the code inside. */
5fafdf24 2508 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2509 (flags & PAGE_WRITE) &&
2510 p->first_tb) {
d720b93d 2511 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2512 }
2513 p->flags = flags;
2514 }
33417e70
FB
2515}
2516
3d97b40b
TS
2517int page_check_range(target_ulong start, target_ulong len, int flags)
2518{
2519 PageDesc *p;
2520 target_ulong end;
2521 target_ulong addr;
2522
376a7909
RH
2523 /* This function should never be called with addresses outside the
2524 guest address space. If this assert fires, it probably indicates
2525 a missing call to h2g_valid. */
338e9e6c
BS
2526#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2527 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2528#endif
2529
3e0650a9
RH
2530 if (len == 0) {
2531 return 0;
2532 }
376a7909
RH
2533 if (start + len - 1 < start) {
2534 /* We've wrapped around. */
55f280c9 2535 return -1;
376a7909 2536 }
55f280c9 2537
3d97b40b
TS
2538 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2539 start = start & TARGET_PAGE_MASK;
2540
376a7909
RH
2541 for (addr = start, len = end - start;
2542 len != 0;
2543 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2544 p = page_find(addr >> TARGET_PAGE_BITS);
2545 if( !p )
2546 return -1;
2547 if( !(p->flags & PAGE_VALID) )
2548 return -1;
2549
dae3270c 2550 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2551 return -1;
dae3270c
FB
2552 if (flags & PAGE_WRITE) {
2553 if (!(p->flags & PAGE_WRITE_ORG))
2554 return -1;
2555 /* unprotect the page if it was put read-only because it
2556 contains translated code */
2557 if (!(p->flags & PAGE_WRITE)) {
2558 if (!page_unprotect(addr, 0, NULL))
2559 return -1;
2560 }
2561 return 0;
2562 }
3d97b40b
TS
2563 }
2564 return 0;
2565}
2566
9fa3e853 2567/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2568 page. Return TRUE if the fault was successfully handled. */
53a5960a 2569int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2570{
45d679d6
AJ
2571 unsigned int prot;
2572 PageDesc *p;
53a5960a 2573 target_ulong host_start, host_end, addr;
9fa3e853 2574
c8a706fe
PB
2575 /* Technically this isn't safe inside a signal handler. However we
2576 know this only ever happens in a synchronous SEGV handler, so in
2577 practice it seems to be ok. */
2578 mmap_lock();
2579
45d679d6
AJ
2580 p = page_find(address >> TARGET_PAGE_BITS);
2581 if (!p) {
c8a706fe 2582 mmap_unlock();
9fa3e853 2583 return 0;
c8a706fe 2584 }
45d679d6 2585
9fa3e853
FB
2586 /* if the page was really writable, then we change its
2587 protection back to writable */
45d679d6
AJ
2588 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2589 host_start = address & qemu_host_page_mask;
2590 host_end = host_start + qemu_host_page_size;
2591
2592 prot = 0;
2593 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2594 p = page_find(addr >> TARGET_PAGE_BITS);
2595 p->flags |= PAGE_WRITE;
2596 prot |= p->flags;
2597
9fa3e853
FB
2598 /* and since the content will be modified, we must invalidate
2599 the corresponding translated code. */
45d679d6 2600 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2601#ifdef DEBUG_TB_CHECK
45d679d6 2602 tb_invalidate_check(addr);
9fa3e853 2603#endif
9fa3e853 2604 }
45d679d6
AJ
2605 mprotect((void *)g2h(host_start), qemu_host_page_size,
2606 prot & PAGE_BITS);
2607
2608 mmap_unlock();
2609 return 1;
9fa3e853 2610 }
c8a706fe 2611 mmap_unlock();
9fa3e853
FB
2612 return 0;
2613}
2614
6a00d601
FB
2615static inline void tlb_set_dirty(CPUState *env,
2616 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2617{
2618}
9fa3e853
FB
2619#endif /* defined(CONFIG_USER_ONLY) */
2620
e2eef170 2621#if !defined(CONFIG_USER_ONLY)
8da3ff18 2622
c04b2b78
PB
2623#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2624typedef struct subpage_t {
2625 target_phys_addr_t base;
f6405247
RH
2626 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2627 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2628} subpage_t;
2629
c227f099
AL
2630static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2631 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2632static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2633 ram_addr_t orig_memory,
2634 ram_addr_t region_offset);
db7b5426
BS
2635#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2636 need_subpage) \
2637 do { \
2638 if (addr > start_addr) \
2639 start_addr2 = 0; \
2640 else { \
2641 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2642 if (start_addr2 > 0) \
2643 need_subpage = 1; \
2644 } \
2645 \
49e9fba2 2646 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2647 end_addr2 = TARGET_PAGE_SIZE - 1; \
2648 else { \
2649 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2650 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2651 need_subpage = 1; \
2652 } \
2653 } while (0)
2654
8f2498f9
MT
2655/* register physical memory.
2656 For RAM, 'size' must be a multiple of the target page size.
2657 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2658 io memory page. The address used when calling the IO function is
2659 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2660 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2661 before calculating this offset. This should not be a problem unless
2662 the low bits of start_addr and region_offset differ. */
0fd542fb 2663void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
c227f099
AL
2664 ram_addr_t size,
2665 ram_addr_t phys_offset,
0fd542fb
MT
2666 ram_addr_t region_offset,
2667 bool log_dirty)
33417e70 2668{
c227f099 2669 target_phys_addr_t addr, end_addr;
92e873b9 2670 PhysPageDesc *p;
9d42037b 2671 CPUState *env;
c227f099 2672 ram_addr_t orig_size = size;
f6405247 2673 subpage_t *subpage;
33417e70 2674
3b8e6a2d 2675 assert(size);
0fd542fb 2676 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
f6f3fbca 2677
67c4d23c
PB
2678 if (phys_offset == IO_MEM_UNASSIGNED) {
2679 region_offset = start_addr;
2680 }
8da3ff18 2681 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2682 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2683 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2684
2685 addr = start_addr;
2686 do {
db7b5426
BS
2687 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2688 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2689 ram_addr_t orig_memory = p->phys_offset;
2690 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2691 int need_subpage = 0;
2692
2693 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2694 need_subpage);
f6405247 2695 if (need_subpage) {
db7b5426
BS
2696 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2697 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2698 &p->phys_offset, orig_memory,
2699 p->region_offset);
db7b5426
BS
2700 } else {
2701 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2702 >> IO_MEM_SHIFT];
2703 }
8da3ff18
PB
2704 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2705 region_offset);
2706 p->region_offset = 0;
db7b5426
BS
2707 } else {
2708 p->phys_offset = phys_offset;
2709 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2710 (phys_offset & IO_MEM_ROMD))
2711 phys_offset += TARGET_PAGE_SIZE;
2712 }
2713 } else {
2714 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2715 p->phys_offset = phys_offset;
8da3ff18 2716 p->region_offset = region_offset;
db7b5426 2717 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2718 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2719 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2720 } else {
c227f099 2721 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2722 int need_subpage = 0;
2723
2724 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2725 end_addr2, need_subpage);
2726
f6405247 2727 if (need_subpage) {
db7b5426 2728 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2729 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2730 addr & TARGET_PAGE_MASK);
db7b5426 2731 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2732 phys_offset, region_offset);
2733 p->region_offset = 0;
db7b5426
BS
2734 }
2735 }
2736 }
8da3ff18 2737 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2738 addr += TARGET_PAGE_SIZE;
2739 } while (addr != end_addr);
3b46e624 2740
9d42037b
FB
2741 /* since each CPU stores ram addresses in its TLB cache, we must
2742 reset the modified entries */
2743 /* XXX: slow ! */
2744 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2745 tlb_flush(env, 1);
2746 }
33417e70
FB
2747}
2748
ba863458 2749/* XXX: temporary until new memory mapping API */
c227f099 2750ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2751{
2752 PhysPageDesc *p;
2753
2754 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2755 if (!p)
2756 return IO_MEM_UNASSIGNED;
2757 return p->phys_offset;
2758}
2759
c227f099 2760void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2761{
2762 if (kvm_enabled())
2763 kvm_coalesce_mmio_region(addr, size);
2764}
2765
c227f099 2766void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2767{
2768 if (kvm_enabled())
2769 kvm_uncoalesce_mmio_region(addr, size);
2770}
2771
62a2744c
SY
2772void qemu_flush_coalesced_mmio_buffer(void)
2773{
2774 if (kvm_enabled())
2775 kvm_flush_coalesced_mmio_buffer();
2776}
2777
c902760f
MT
2778#if defined(__linux__) && !defined(TARGET_S390X)
2779
2780#include <sys/vfs.h>
2781
2782#define HUGETLBFS_MAGIC 0x958458f6
2783
2784static long gethugepagesize(const char *path)
2785{
2786 struct statfs fs;
2787 int ret;
2788
2789 do {
9742bf26 2790 ret = statfs(path, &fs);
c902760f
MT
2791 } while (ret != 0 && errno == EINTR);
2792
2793 if (ret != 0) {
9742bf26
YT
2794 perror(path);
2795 return 0;
c902760f
MT
2796 }
2797
2798 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2799 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2800
2801 return fs.f_bsize;
2802}
2803
04b16653
AW
2804static void *file_ram_alloc(RAMBlock *block,
2805 ram_addr_t memory,
2806 const char *path)
c902760f
MT
2807{
2808 char *filename;
2809 void *area;
2810 int fd;
2811#ifdef MAP_POPULATE
2812 int flags;
2813#endif
2814 unsigned long hpagesize;
2815
2816 hpagesize = gethugepagesize(path);
2817 if (!hpagesize) {
9742bf26 2818 return NULL;
c902760f
MT
2819 }
2820
2821 if (memory < hpagesize) {
2822 return NULL;
2823 }
2824
2825 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2826 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2827 return NULL;
2828 }
2829
2830 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2831 return NULL;
c902760f
MT
2832 }
2833
2834 fd = mkstemp(filename);
2835 if (fd < 0) {
9742bf26
YT
2836 perror("unable to create backing store for hugepages");
2837 free(filename);
2838 return NULL;
c902760f
MT
2839 }
2840 unlink(filename);
2841 free(filename);
2842
2843 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2844
2845 /*
2846 * ftruncate is not supported by hugetlbfs in older
2847 * hosts, so don't bother bailing out on errors.
2848 * If anything goes wrong with it under other filesystems,
2849 * mmap will fail.
2850 */
2851 if (ftruncate(fd, memory))
9742bf26 2852 perror("ftruncate");
c902760f
MT
2853
2854#ifdef MAP_POPULATE
2855 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2856 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2857 * to sidestep this quirk.
2858 */
2859 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2860 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2861#else
2862 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2863#endif
2864 if (area == MAP_FAILED) {
9742bf26
YT
2865 perror("file_ram_alloc: can't mmap RAM pages");
2866 close(fd);
2867 return (NULL);
c902760f 2868 }
04b16653 2869 block->fd = fd;
c902760f
MT
2870 return area;
2871}
2872#endif
2873
d17b5288 2874static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2875{
2876 RAMBlock *block, *next_block;
f15fbc4b 2877 ram_addr_t offset = 0, mingap = RAM_ADDR_MAX;
04b16653
AW
2878
2879 if (QLIST_EMPTY(&ram_list.blocks))
2880 return 0;
2881
2882 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2883 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2884
2885 end = block->offset + block->length;
2886
2887 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2888 if (next_block->offset >= end) {
2889 next = MIN(next, next_block->offset);
2890 }
2891 }
2892 if (next - end >= size && next - end < mingap) {
2893 offset = end;
2894 mingap = next - end;
2895 }
2896 }
2897 return offset;
2898}
2899
2900static ram_addr_t last_ram_offset(void)
d17b5288
AW
2901{
2902 RAMBlock *block;
2903 ram_addr_t last = 0;
2904
2905 QLIST_FOREACH(block, &ram_list.blocks, next)
2906 last = MAX(last, block->offset + block->length);
2907
2908 return last;
2909}
2910
84b89d78 2911ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
6977dfe6 2912 ram_addr_t size, void *host)
84b89d78
CM
2913{
2914 RAMBlock *new_block, *block;
2915
2916 size = TARGET_PAGE_ALIGN(size);
7267c094 2917 new_block = g_malloc0(sizeof(*new_block));
84b89d78
CM
2918
2919 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2920 char *id = dev->parent_bus->info->get_dev_path(dev);
2921 if (id) {
2922 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2923 g_free(id);
84b89d78
CM
2924 }
2925 }
2926 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2927
2928 QLIST_FOREACH(block, &ram_list.blocks, next) {
2929 if (!strcmp(block->idstr, new_block->idstr)) {
2930 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2931 new_block->idstr);
2932 abort();
2933 }
2934 }
2935
432d268c 2936 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2937 if (host) {
2938 new_block->host = host;
cd19cfa2 2939 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2940 } else {
2941 if (mem_path) {
c902760f 2942#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2943 new_block->host = file_ram_alloc(new_block, size, mem_path);
2944 if (!new_block->host) {
2945 new_block->host = qemu_vmalloc(size);
e78815a5 2946 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2947 }
c902760f 2948#else
6977dfe6
YT
2949 fprintf(stderr, "-mem-path option unsupported\n");
2950 exit(1);
c902760f 2951#endif
6977dfe6 2952 } else {
6b02494d 2953#if defined(TARGET_S390X) && defined(CONFIG_KVM)
ff83678a
CB
2954 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2955 an system defined value, which is at least 256GB. Larger systems
2956 have larger values. We put the guest between the end of data
2957 segment (system break) and this value. We use 32GB as a base to
2958 have enough room for the system break to grow. */
2959 new_block->host = mmap((void*)0x800000000, size,
6977dfe6 2960 PROT_EXEC|PROT_READ|PROT_WRITE,
ff83678a 2961 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
fb8b2735
AG
2962 if (new_block->host == MAP_FAILED) {
2963 fprintf(stderr, "Allocating RAM failed\n");
2964 abort();
2965 }
6b02494d 2966#else
868bb33f 2967 if (xen_enabled()) {
432d268c
JN
2968 xen_ram_alloc(new_block->offset, size);
2969 } else {
2970 new_block->host = qemu_vmalloc(size);
2971 }
6b02494d 2972#endif
e78815a5 2973 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2974 }
c902760f 2975 }
94a6b54f
PB
2976 new_block->length = size;
2977
f471a17e 2978 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2979
7267c094 2980 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2981 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2982 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2983 0xff, size >> TARGET_PAGE_BITS);
2984
6f0437e8
JK
2985 if (kvm_enabled())
2986 kvm_setup_guest_memory(new_block->host, size);
2987
94a6b54f
PB
2988 return new_block->offset;
2989}
e9a1ab19 2990
6977dfe6
YT
2991ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2992{
2993 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2994}
2995
1f2e98b6
AW
2996void qemu_ram_free_from_ptr(ram_addr_t addr)
2997{
2998 RAMBlock *block;
2999
3000 QLIST_FOREACH(block, &ram_list.blocks, next) {
3001 if (addr == block->offset) {
3002 QLIST_REMOVE(block, next);
7267c094 3003 g_free(block);
1f2e98b6
AW
3004 return;
3005 }
3006 }
3007}
3008
c227f099 3009void qemu_ram_free(ram_addr_t addr)
e9a1ab19 3010{
04b16653
AW
3011 RAMBlock *block;
3012
3013 QLIST_FOREACH(block, &ram_list.blocks, next) {
3014 if (addr == block->offset) {
3015 QLIST_REMOVE(block, next);
cd19cfa2
HY
3016 if (block->flags & RAM_PREALLOC_MASK) {
3017 ;
3018 } else if (mem_path) {
04b16653
AW
3019#if defined (__linux__) && !defined(TARGET_S390X)
3020 if (block->fd) {
3021 munmap(block->host, block->length);
3022 close(block->fd);
3023 } else {
3024 qemu_vfree(block->host);
3025 }
fd28aa13
JK
3026#else
3027 abort();
04b16653
AW
3028#endif
3029 } else {
3030#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3031 munmap(block->host, block->length);
3032#else
868bb33f 3033 if (xen_enabled()) {
e41d7c69 3034 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
3035 } else {
3036 qemu_vfree(block->host);
3037 }
04b16653
AW
3038#endif
3039 }
7267c094 3040 g_free(block);
04b16653
AW
3041 return;
3042 }
3043 }
3044
e9a1ab19
FB
3045}
3046
cd19cfa2
HY
3047#ifndef _WIN32
3048void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3049{
3050 RAMBlock *block;
3051 ram_addr_t offset;
3052 int flags;
3053 void *area, *vaddr;
3054
3055 QLIST_FOREACH(block, &ram_list.blocks, next) {
3056 offset = addr - block->offset;
3057 if (offset < block->length) {
3058 vaddr = block->host + offset;
3059 if (block->flags & RAM_PREALLOC_MASK) {
3060 ;
3061 } else {
3062 flags = MAP_FIXED;
3063 munmap(vaddr, length);
3064 if (mem_path) {
3065#if defined(__linux__) && !defined(TARGET_S390X)
3066 if (block->fd) {
3067#ifdef MAP_POPULATE
3068 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3069 MAP_PRIVATE;
3070#else
3071 flags |= MAP_PRIVATE;
3072#endif
3073 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3074 flags, block->fd, offset);
3075 } else {
3076 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3077 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3078 flags, -1, 0);
3079 }
fd28aa13
JK
3080#else
3081 abort();
cd19cfa2
HY
3082#endif
3083 } else {
3084#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3085 flags |= MAP_SHARED | MAP_ANONYMOUS;
3086 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3087 flags, -1, 0);
3088#else
3089 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3090 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3091 flags, -1, 0);
3092#endif
3093 }
3094 if (area != vaddr) {
f15fbc4b
AP
3095 fprintf(stderr, "Could not remap addr: "
3096 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
3097 length, addr);
3098 exit(1);
3099 }
3100 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3101 }
3102 return;
3103 }
3104 }
3105}
3106#endif /* !_WIN32 */
3107
dc828ca1 3108/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3109 With the exception of the softmmu code in this file, this should
3110 only be used for local memory (e.g. video ram) that the device owns,
3111 and knows it isn't going to access beyond the end of the block.
3112
3113 It should not be used for general purpose DMA.
3114 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3115 */
c227f099 3116void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3117{
94a6b54f
PB
3118 RAMBlock *block;
3119
f471a17e
AW
3120 QLIST_FOREACH(block, &ram_list.blocks, next) {
3121 if (addr - block->offset < block->length) {
7d82af38
VP
3122 /* Move this entry to to start of the list. */
3123 if (block != QLIST_FIRST(&ram_list.blocks)) {
3124 QLIST_REMOVE(block, next);
3125 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3126 }
868bb33f 3127 if (xen_enabled()) {
432d268c
JN
3128 /* We need to check if the requested address is in the RAM
3129 * because we don't want to map the entire memory in QEMU.
712c2b41 3130 * In that case just map until the end of the page.
432d268c
JN
3131 */
3132 if (block->offset == 0) {
e41d7c69 3133 return xen_map_cache(addr, 0, 0);
432d268c 3134 } else if (block->host == NULL) {
e41d7c69
JK
3135 block->host =
3136 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3137 }
3138 }
f471a17e
AW
3139 return block->host + (addr - block->offset);
3140 }
94a6b54f 3141 }
f471a17e
AW
3142
3143 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3144 abort();
3145
3146 return NULL;
dc828ca1
PB
3147}
3148
b2e0a138
MT
3149/* Return a host pointer to ram allocated with qemu_ram_alloc.
3150 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3151 */
3152void *qemu_safe_ram_ptr(ram_addr_t addr)
3153{
3154 RAMBlock *block;
3155
3156 QLIST_FOREACH(block, &ram_list.blocks, next) {
3157 if (addr - block->offset < block->length) {
868bb33f 3158 if (xen_enabled()) {
432d268c
JN
3159 /* We need to check if the requested address is in the RAM
3160 * because we don't want to map the entire memory in QEMU.
712c2b41 3161 * In that case just map until the end of the page.
432d268c
JN
3162 */
3163 if (block->offset == 0) {
e41d7c69 3164 return xen_map_cache(addr, 0, 0);
432d268c 3165 } else if (block->host == NULL) {
e41d7c69
JK
3166 block->host =
3167 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3168 }
3169 }
b2e0a138
MT
3170 return block->host + (addr - block->offset);
3171 }
3172 }
3173
3174 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3175 abort();
3176
3177 return NULL;
3178}
3179
38bee5dc
SS
3180/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3181 * but takes a size argument */
8ab934f9 3182void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 3183{
8ab934f9
SS
3184 if (*size == 0) {
3185 return NULL;
3186 }
868bb33f 3187 if (xen_enabled()) {
e41d7c69 3188 return xen_map_cache(addr, *size, 1);
868bb33f 3189 } else {
38bee5dc
SS
3190 RAMBlock *block;
3191
3192 QLIST_FOREACH(block, &ram_list.blocks, next) {
3193 if (addr - block->offset < block->length) {
3194 if (addr - block->offset + *size > block->length)
3195 *size = block->length - addr + block->offset;
3196 return block->host + (addr - block->offset);
3197 }
3198 }
3199
3200 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3201 abort();
38bee5dc
SS
3202 }
3203}
3204
050a0ddf
AP
3205void qemu_put_ram_ptr(void *addr)
3206{
3207 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
3208}
3209
e890261f 3210int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3211{
94a6b54f
PB
3212 RAMBlock *block;
3213 uint8_t *host = ptr;
3214
868bb33f 3215 if (xen_enabled()) {
e41d7c69 3216 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
3217 return 0;
3218 }
3219
f471a17e 3220 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
3221 /* This case append when the block is not mapped. */
3222 if (block->host == NULL) {
3223 continue;
3224 }
f471a17e 3225 if (host - block->host < block->length) {
e890261f
MT
3226 *ram_addr = block->offset + (host - block->host);
3227 return 0;
f471a17e 3228 }
94a6b54f 3229 }
432d268c 3230
e890261f
MT
3231 return -1;
3232}
f471a17e 3233
e890261f
MT
3234/* Some of the softmmu routines need to translate from a host pointer
3235 (typically a TLB entry) back to a ram offset. */
3236ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3237{
3238 ram_addr_t ram_addr;
f471a17e 3239
e890261f
MT
3240 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3241 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3242 abort();
3243 }
3244 return ram_addr;
5579c7f3
PB
3245}
3246
c227f099 3247static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 3248{
67d3b957 3249#ifdef DEBUG_UNASSIGNED
ab3d1727 3250 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 3251#endif
5b450407 3252#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3253 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
e18231a3
BS
3254#endif
3255 return 0;
3256}
3257
c227f099 3258static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3259{
3260#ifdef DEBUG_UNASSIGNED
3261 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3262#endif
5b450407 3263#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3264 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
e18231a3
BS
3265#endif
3266 return 0;
3267}
3268
c227f099 3269static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3270{
3271#ifdef DEBUG_UNASSIGNED
3272 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3273#endif
5b450407 3274#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3275 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
67d3b957 3276#endif
33417e70
FB
3277 return 0;
3278}
3279
c227f099 3280static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3281{
67d3b957 3282#ifdef DEBUG_UNASSIGNED
ab3d1727 3283 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3284#endif
5b450407 3285#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3286 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
e18231a3
BS
3287#endif
3288}
3289
c227f099 3290static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3291{
3292#ifdef DEBUG_UNASSIGNED
3293 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3294#endif
5b450407 3295#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3296 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
e18231a3
BS
3297#endif
3298}
3299
c227f099 3300static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3301{
3302#ifdef DEBUG_UNASSIGNED
3303 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3304#endif
5b450407 3305#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3306 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
b4f0a316 3307#endif
33417e70
FB
3308}
3309
d60efc6b 3310static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3311 unassigned_mem_readb,
e18231a3
BS
3312 unassigned_mem_readw,
3313 unassigned_mem_readl,
33417e70
FB
3314};
3315
d60efc6b 3316static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3317 unassigned_mem_writeb,
e18231a3
BS
3318 unassigned_mem_writew,
3319 unassigned_mem_writel,
33417e70
FB
3320};
3321
c227f099 3322static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3323 uint32_t val)
9fa3e853 3324{
3a7d929e 3325 int dirty_flags;
f7c11b53 3326 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3327 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3328#if !defined(CONFIG_USER_ONLY)
3a7d929e 3329 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3330 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3331#endif
3a7d929e 3332 }
5579c7f3 3333 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3334 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3335 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3336 /* we remove the notdirty callback only if the code has been
3337 flushed */
3338 if (dirty_flags == 0xff)
2e70f6ef 3339 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3340}
3341
c227f099 3342static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3343 uint32_t val)
9fa3e853 3344{
3a7d929e 3345 int dirty_flags;
f7c11b53 3346 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3347 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3348#if !defined(CONFIG_USER_ONLY)
3a7d929e 3349 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3350 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3351#endif
3a7d929e 3352 }
5579c7f3 3353 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3354 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3355 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3356 /* we remove the notdirty callback only if the code has been
3357 flushed */
3358 if (dirty_flags == 0xff)
2e70f6ef 3359 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3360}
3361
c227f099 3362static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3363 uint32_t val)
9fa3e853 3364{
3a7d929e 3365 int dirty_flags;
f7c11b53 3366 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3367 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3368#if !defined(CONFIG_USER_ONLY)
3a7d929e 3369 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3370 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3371#endif
3a7d929e 3372 }
5579c7f3 3373 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3374 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3375 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3376 /* we remove the notdirty callback only if the code has been
3377 flushed */
3378 if (dirty_flags == 0xff)
2e70f6ef 3379 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3380}
3381
d60efc6b 3382static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3383 NULL, /* never used */
3384 NULL, /* never used */
3385 NULL, /* never used */
3386};
3387
d60efc6b 3388static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3389 notdirty_mem_writeb,
3390 notdirty_mem_writew,
3391 notdirty_mem_writel,
3392};
3393
0f459d16 3394/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3395static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3396{
3397 CPUState *env = cpu_single_env;
06d55cc1
AL
3398 target_ulong pc, cs_base;
3399 TranslationBlock *tb;
0f459d16 3400 target_ulong vaddr;
a1d1bb31 3401 CPUWatchpoint *wp;
06d55cc1 3402 int cpu_flags;
0f459d16 3403
06d55cc1
AL
3404 if (env->watchpoint_hit) {
3405 /* We re-entered the check after replacing the TB. Now raise
3406 * the debug interrupt so that is will trigger after the
3407 * current instruction. */
3408 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3409 return;
3410 }
2e70f6ef 3411 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3412 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3413 if ((vaddr == (wp->vaddr & len_mask) ||
3414 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3415 wp->flags |= BP_WATCHPOINT_HIT;
3416 if (!env->watchpoint_hit) {
3417 env->watchpoint_hit = wp;
3418 tb = tb_find_pc(env->mem_io_pc);
3419 if (!tb) {
3420 cpu_abort(env, "check_watchpoint: could not find TB for "
3421 "pc=%p", (void *)env->mem_io_pc);
3422 }
618ba8e6 3423 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3424 tb_phys_invalidate(tb, -1);
3425 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3426 env->exception_index = EXCP_DEBUG;
3427 } else {
3428 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3429 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3430 }
3431 cpu_resume_from_signal(env, NULL);
06d55cc1 3432 }
6e140f28
AL
3433 } else {
3434 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3435 }
3436 }
3437}
3438
6658ffb8
PB
3439/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3440 so these check for a hit then pass through to the normal out-of-line
3441 phys routines. */
c227f099 3442static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3443{
b4051334 3444 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3445 return ldub_phys(addr);
3446}
3447
c227f099 3448static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3449{
b4051334 3450 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3451 return lduw_phys(addr);
3452}
3453
c227f099 3454static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3455{
b4051334 3456 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3457 return ldl_phys(addr);
3458}
3459
c227f099 3460static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3461 uint32_t val)
3462{
b4051334 3463 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3464 stb_phys(addr, val);
3465}
3466
c227f099 3467static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3468 uint32_t val)
3469{
b4051334 3470 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3471 stw_phys(addr, val);
3472}
3473
c227f099 3474static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3475 uint32_t val)
3476{
b4051334 3477 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3478 stl_phys(addr, val);
3479}
3480
d60efc6b 3481static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3482 watch_mem_readb,
3483 watch_mem_readw,
3484 watch_mem_readl,
3485};
3486
d60efc6b 3487static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3488 watch_mem_writeb,
3489 watch_mem_writew,
3490 watch_mem_writel,
3491};
6658ffb8 3492
f6405247
RH
3493static inline uint32_t subpage_readlen (subpage_t *mmio,
3494 target_phys_addr_t addr,
3495 unsigned int len)
db7b5426 3496{
f6405247 3497 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3498#if defined(DEBUG_SUBPAGE)
3499 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3500 mmio, len, addr, idx);
3501#endif
db7b5426 3502
f6405247
RH
3503 addr += mmio->region_offset[idx];
3504 idx = mmio->sub_io_index[idx];
3505 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3506}
3507
c227f099 3508static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3509 uint32_t value, unsigned int len)
db7b5426 3510{
f6405247 3511 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3512#if defined(DEBUG_SUBPAGE)
f6405247
RH
3513 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3514 __func__, mmio, len, addr, idx, value);
db7b5426 3515#endif
f6405247
RH
3516
3517 addr += mmio->region_offset[idx];
3518 idx = mmio->sub_io_index[idx];
3519 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3520}
3521
c227f099 3522static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3523{
db7b5426
BS
3524 return subpage_readlen(opaque, addr, 0);
3525}
3526
c227f099 3527static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3528 uint32_t value)
3529{
db7b5426
BS
3530 subpage_writelen(opaque, addr, value, 0);
3531}
3532
c227f099 3533static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3534{
db7b5426
BS
3535 return subpage_readlen(opaque, addr, 1);
3536}
3537
c227f099 3538static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3539 uint32_t value)
3540{
db7b5426
BS
3541 subpage_writelen(opaque, addr, value, 1);
3542}
3543
c227f099 3544static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3545{
db7b5426
BS
3546 return subpage_readlen(opaque, addr, 2);
3547}
3548
f6405247
RH
3549static void subpage_writel (void *opaque, target_phys_addr_t addr,
3550 uint32_t value)
db7b5426 3551{
db7b5426
BS
3552 subpage_writelen(opaque, addr, value, 2);
3553}
3554
d60efc6b 3555static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3556 &subpage_readb,
3557 &subpage_readw,
3558 &subpage_readl,
3559};
3560
d60efc6b 3561static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3562 &subpage_writeb,
3563 &subpage_writew,
3564 &subpage_writel,
3565};
3566
c227f099
AL
3567static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3568 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3569{
3570 int idx, eidx;
3571
3572 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3573 return -1;
3574 idx = SUBPAGE_IDX(start);
3575 eidx = SUBPAGE_IDX(end);
3576#if defined(DEBUG_SUBPAGE)
0bf9e31a 3577 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3578 mmio, start, end, idx, eidx, memory);
3579#endif
95c318f5
GN
3580 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3581 memory = IO_MEM_UNASSIGNED;
f6405247 3582 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3583 for (; idx <= eidx; idx++) {
f6405247
RH
3584 mmio->sub_io_index[idx] = memory;
3585 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3586 }
3587
3588 return 0;
3589}
3590
f6405247
RH
3591static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3592 ram_addr_t orig_memory,
3593 ram_addr_t region_offset)
db7b5426 3594{
c227f099 3595 subpage_t *mmio;
db7b5426
BS
3596 int subpage_memory;
3597
7267c094 3598 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3599
3600 mmio->base = base;
2507c12a
AG
3601 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3602 DEVICE_NATIVE_ENDIAN);
db7b5426 3603#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3604 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3605 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3606#endif
1eec614b 3607 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3608 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3609
3610 return mmio;
3611}
3612
88715657
AL
3613static int get_free_io_mem_idx(void)
3614{
3615 int i;
3616
3617 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3618 if (!io_mem_used[i]) {
3619 io_mem_used[i] = 1;
3620 return i;
3621 }
c6703b47 3622 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3623 return -1;
3624}
3625
dd310534
AG
3626/*
3627 * Usually, devices operate in little endian mode. There are devices out
3628 * there that operate in big endian too. Each device gets byte swapped
3629 * mmio if plugged onto a CPU that does the other endianness.
3630 *
3631 * CPU Device swap?
3632 *
3633 * little little no
3634 * little big yes
3635 * big little yes
3636 * big big no
3637 */
3638
3639typedef struct SwapEndianContainer {
3640 CPUReadMemoryFunc *read[3];
3641 CPUWriteMemoryFunc *write[3];
3642 void *opaque;
3643} SwapEndianContainer;
3644
3645static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3646{
3647 uint32_t val;
3648 SwapEndianContainer *c = opaque;
3649 val = c->read[0](c->opaque, addr);
3650 return val;
3651}
3652
3653static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3654{
3655 uint32_t val;
3656 SwapEndianContainer *c = opaque;
3657 val = bswap16(c->read[1](c->opaque, addr));
3658 return val;
3659}
3660
3661static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3662{
3663 uint32_t val;
3664 SwapEndianContainer *c = opaque;
3665 val = bswap32(c->read[2](c->opaque, addr));
3666 return val;
3667}
3668
3669static CPUReadMemoryFunc * const swapendian_readfn[3]={
3670 swapendian_mem_readb,
3671 swapendian_mem_readw,
3672 swapendian_mem_readl
3673};
3674
3675static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3676 uint32_t val)
3677{
3678 SwapEndianContainer *c = opaque;
3679 c->write[0](c->opaque, addr, val);
3680}
3681
3682static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3683 uint32_t val)
3684{
3685 SwapEndianContainer *c = opaque;
3686 c->write[1](c->opaque, addr, bswap16(val));
3687}
3688
3689static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3690 uint32_t val)
3691{
3692 SwapEndianContainer *c = opaque;
3693 c->write[2](c->opaque, addr, bswap32(val));
3694}
3695
3696static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3697 swapendian_mem_writeb,
3698 swapendian_mem_writew,
3699 swapendian_mem_writel
3700};
3701
3702static void swapendian_init(int io_index)
3703{
7267c094 3704 SwapEndianContainer *c = g_malloc(sizeof(SwapEndianContainer));
dd310534
AG
3705 int i;
3706
3707 /* Swap mmio for big endian targets */
3708 c->opaque = io_mem_opaque[io_index];
3709 for (i = 0; i < 3; i++) {
3710 c->read[i] = io_mem_read[io_index][i];
3711 c->write[i] = io_mem_write[io_index][i];
3712
3713 io_mem_read[io_index][i] = swapendian_readfn[i];
3714 io_mem_write[io_index][i] = swapendian_writefn[i];
3715 }
3716 io_mem_opaque[io_index] = c;
3717}
3718
3719static void swapendian_del(int io_index)
3720{
3721 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
7267c094 3722 g_free(io_mem_opaque[io_index]);
dd310534
AG
3723 }
3724}
3725
33417e70
FB
3726/* mem_read and mem_write are arrays of functions containing the
3727 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3728 2). Functions can be omitted with a NULL function pointer.
3ee89922 3729 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3730 modified. If it is zero, a new io zone is allocated. The return
3731 value can be used with cpu_register_physical_memory(). (-1) is
3732 returned if error. */
1eed09cb 3733static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3734 CPUReadMemoryFunc * const *mem_read,
3735 CPUWriteMemoryFunc * const *mem_write,
dd310534 3736 void *opaque, enum device_endian endian)
33417e70 3737{
3cab721d
RH
3738 int i;
3739
33417e70 3740 if (io_index <= 0) {
88715657
AL
3741 io_index = get_free_io_mem_idx();
3742 if (io_index == -1)
3743 return io_index;
33417e70 3744 } else {
1eed09cb 3745 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3746 if (io_index >= IO_MEM_NB_ENTRIES)
3747 return -1;
3748 }
b5ff1b31 3749
3cab721d
RH
3750 for (i = 0; i < 3; ++i) {
3751 io_mem_read[io_index][i]
3752 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3753 }
3754 for (i = 0; i < 3; ++i) {
3755 io_mem_write[io_index][i]
3756 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3757 }
a4193c8a 3758 io_mem_opaque[io_index] = opaque;
f6405247 3759
dd310534
AG
3760 switch (endian) {
3761 case DEVICE_BIG_ENDIAN:
3762#ifndef TARGET_WORDS_BIGENDIAN
3763 swapendian_init(io_index);
3764#endif
3765 break;
3766 case DEVICE_LITTLE_ENDIAN:
3767#ifdef TARGET_WORDS_BIGENDIAN
3768 swapendian_init(io_index);
3769#endif
3770 break;
3771 case DEVICE_NATIVE_ENDIAN:
3772 default:
3773 break;
3774 }
3775
f6405247 3776 return (io_index << IO_MEM_SHIFT);
33417e70 3777}
61382a50 3778
d60efc6b
BS
3779int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3780 CPUWriteMemoryFunc * const *mem_write,
dd310534 3781 void *opaque, enum device_endian endian)
1eed09cb 3782{
2507c12a 3783 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
1eed09cb
AK
3784}
3785
88715657
AL
3786void cpu_unregister_io_memory(int io_table_address)
3787{
3788 int i;
3789 int io_index = io_table_address >> IO_MEM_SHIFT;
3790
dd310534
AG
3791 swapendian_del(io_index);
3792
88715657
AL
3793 for (i=0;i < 3; i++) {
3794 io_mem_read[io_index][i] = unassigned_mem_read[i];
3795 io_mem_write[io_index][i] = unassigned_mem_write[i];
3796 }
3797 io_mem_opaque[io_index] = NULL;
3798 io_mem_used[io_index] = 0;
3799}
3800
e9179ce1
AK
3801static void io_mem_init(void)
3802{
3803 int i;
3804
2507c12a
AG
3805 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3806 unassigned_mem_write, NULL,
3807 DEVICE_NATIVE_ENDIAN);
3808 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3809 unassigned_mem_write, NULL,
3810 DEVICE_NATIVE_ENDIAN);
3811 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3812 notdirty_mem_write, NULL,
3813 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3814 for (i=0; i<5; i++)
3815 io_mem_used[i] = 1;
3816
3817 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2507c12a
AG
3818 watch_mem_write, NULL,
3819 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3820}
3821
62152b8a
AK
3822static void memory_map_init(void)
3823{
7267c094 3824 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3825 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3826 set_system_memory_map(system_memory);
309cb471 3827
7267c094 3828 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3829 memory_region_init(system_io, "io", 65536);
3830 set_system_io_map(system_io);
62152b8a
AK
3831}
3832
3833MemoryRegion *get_system_memory(void)
3834{
3835 return system_memory;
3836}
3837
309cb471
AK
3838MemoryRegion *get_system_io(void)
3839{
3840 return system_io;
3841}
3842
e2eef170
PB
3843#endif /* !defined(CONFIG_USER_ONLY) */
3844
13eb76e0
FB
3845/* physical memory access (slow version, mainly for debug) */
3846#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3847int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3848 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3849{
3850 int l, flags;
3851 target_ulong page;
53a5960a 3852 void * p;
13eb76e0
FB
3853
3854 while (len > 0) {
3855 page = addr & TARGET_PAGE_MASK;
3856 l = (page + TARGET_PAGE_SIZE) - addr;
3857 if (l > len)
3858 l = len;
3859 flags = page_get_flags(page);
3860 if (!(flags & PAGE_VALID))
a68fe89c 3861 return -1;
13eb76e0
FB
3862 if (is_write) {
3863 if (!(flags & PAGE_WRITE))
a68fe89c 3864 return -1;
579a97f7 3865 /* XXX: this code should not depend on lock_user */
72fb7daa 3866 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3867 return -1;
72fb7daa
AJ
3868 memcpy(p, buf, l);
3869 unlock_user(p, addr, l);
13eb76e0
FB
3870 } else {
3871 if (!(flags & PAGE_READ))
a68fe89c 3872 return -1;
579a97f7 3873 /* XXX: this code should not depend on lock_user */
72fb7daa 3874 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3875 return -1;
72fb7daa 3876 memcpy(buf, p, l);
5b257578 3877 unlock_user(p, addr, 0);
13eb76e0
FB
3878 }
3879 len -= l;
3880 buf += l;
3881 addr += l;
3882 }
a68fe89c 3883 return 0;
13eb76e0 3884}
8df1cd07 3885
13eb76e0 3886#else
c227f099 3887void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3888 int len, int is_write)
3889{
3890 int l, io_index;
3891 uint8_t *ptr;
3892 uint32_t val;
c227f099 3893 target_phys_addr_t page;
8ca5692d 3894 ram_addr_t pd;
92e873b9 3895 PhysPageDesc *p;
3b46e624 3896
13eb76e0
FB
3897 while (len > 0) {
3898 page = addr & TARGET_PAGE_MASK;
3899 l = (page + TARGET_PAGE_SIZE) - addr;
3900 if (l > len)
3901 l = len;
92e873b9 3902 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3903 if (!p) {
3904 pd = IO_MEM_UNASSIGNED;
3905 } else {
3906 pd = p->phys_offset;
3907 }
3b46e624 3908
13eb76e0 3909 if (is_write) {
3a7d929e 3910 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3911 target_phys_addr_t addr1 = addr;
13eb76e0 3912 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3913 if (p)
6c2934db 3914 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3915 /* XXX: could force cpu_single_env to NULL to avoid
3916 potential bugs */
6c2934db 3917 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3918 /* 32 bit write access */
c27004ec 3919 val = ldl_p(buf);
6c2934db 3920 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3921 l = 4;
6c2934db 3922 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3923 /* 16 bit write access */
c27004ec 3924 val = lduw_p(buf);
6c2934db 3925 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3926 l = 2;
3927 } else {
1c213d19 3928 /* 8 bit write access */
c27004ec 3929 val = ldub_p(buf);
6c2934db 3930 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3931 l = 1;
3932 }
3933 } else {
8ca5692d 3934 ram_addr_t addr1;
b448f2f3 3935 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3936 /* RAM case */
5579c7f3 3937 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3938 memcpy(ptr, buf, l);
3a7d929e
FB
3939 if (!cpu_physical_memory_is_dirty(addr1)) {
3940 /* invalidate code */
3941 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3942 /* set dirty bit */
f7c11b53
YT
3943 cpu_physical_memory_set_dirty_flags(
3944 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3945 }
050a0ddf 3946 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3947 }
3948 } else {
5fafdf24 3949 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3950 !(pd & IO_MEM_ROMD)) {
c227f099 3951 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3952 /* I/O case */
3953 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3954 if (p)
6c2934db
AJ
3955 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3956 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3957 /* 32 bit read access */
6c2934db 3958 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3959 stl_p(buf, val);
13eb76e0 3960 l = 4;
6c2934db 3961 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3962 /* 16 bit read access */
6c2934db 3963 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3964 stw_p(buf, val);
13eb76e0
FB
3965 l = 2;
3966 } else {
1c213d19 3967 /* 8 bit read access */
6c2934db 3968 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3969 stb_p(buf, val);
13eb76e0
FB
3970 l = 1;
3971 }
3972 } else {
3973 /* RAM case */
050a0ddf
AP
3974 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3975 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3976 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3977 }
3978 }
3979 len -= l;
3980 buf += l;
3981 addr += l;
3982 }
3983}
8df1cd07 3984
d0ecd2aa 3985/* used for ROM loading : can write in RAM and ROM */
c227f099 3986void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3987 const uint8_t *buf, int len)
3988{
3989 int l;
3990 uint8_t *ptr;
c227f099 3991 target_phys_addr_t page;
d0ecd2aa
FB
3992 unsigned long pd;
3993 PhysPageDesc *p;
3b46e624 3994
d0ecd2aa
FB
3995 while (len > 0) {
3996 page = addr & TARGET_PAGE_MASK;
3997 l = (page + TARGET_PAGE_SIZE) - addr;
3998 if (l > len)
3999 l = len;
4000 p = phys_page_find(page >> TARGET_PAGE_BITS);
4001 if (!p) {
4002 pd = IO_MEM_UNASSIGNED;
4003 } else {
4004 pd = p->phys_offset;
4005 }
3b46e624 4006
d0ecd2aa 4007 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
4008 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
4009 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
4010 /* do nothing */
4011 } else {
4012 unsigned long addr1;
4013 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4014 /* ROM/RAM case */
5579c7f3 4015 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 4016 memcpy(ptr, buf, l);
050a0ddf 4017 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
4018 }
4019 len -= l;
4020 buf += l;
4021 addr += l;
4022 }
4023}
4024
6d16c2f8
AL
4025typedef struct {
4026 void *buffer;
c227f099
AL
4027 target_phys_addr_t addr;
4028 target_phys_addr_t len;
6d16c2f8
AL
4029} BounceBuffer;
4030
4031static BounceBuffer bounce;
4032
ba223c29
AL
4033typedef struct MapClient {
4034 void *opaque;
4035 void (*callback)(void *opaque);
72cf2d4f 4036 QLIST_ENTRY(MapClient) link;
ba223c29
AL
4037} MapClient;
4038
72cf2d4f
BS
4039static QLIST_HEAD(map_client_list, MapClient) map_client_list
4040 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
4041
4042void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
4043{
7267c094 4044 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
4045
4046 client->opaque = opaque;
4047 client->callback = callback;
72cf2d4f 4048 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
4049 return client;
4050}
4051
4052void cpu_unregister_map_client(void *_client)
4053{
4054 MapClient *client = (MapClient *)_client;
4055
72cf2d4f 4056 QLIST_REMOVE(client, link);
7267c094 4057 g_free(client);
ba223c29
AL
4058}
4059
4060static void cpu_notify_map_clients(void)
4061{
4062 MapClient *client;
4063
72cf2d4f
BS
4064 while (!QLIST_EMPTY(&map_client_list)) {
4065 client = QLIST_FIRST(&map_client_list);
ba223c29 4066 client->callback(client->opaque);
34d5e948 4067 cpu_unregister_map_client(client);
ba223c29
AL
4068 }
4069}
4070
6d16c2f8
AL
4071/* Map a physical memory region into a host virtual address.
4072 * May map a subset of the requested range, given by and returned in *plen.
4073 * May return NULL if resources needed to perform the mapping are exhausted.
4074 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
4075 * Use cpu_register_map_client() to know when retrying the map operation is
4076 * likely to succeed.
6d16c2f8 4077 */
c227f099
AL
4078void *cpu_physical_memory_map(target_phys_addr_t addr,
4079 target_phys_addr_t *plen,
6d16c2f8
AL
4080 int is_write)
4081{
c227f099 4082 target_phys_addr_t len = *plen;
38bee5dc 4083 target_phys_addr_t todo = 0;
6d16c2f8 4084 int l;
c227f099 4085 target_phys_addr_t page;
6d16c2f8
AL
4086 unsigned long pd;
4087 PhysPageDesc *p;
f15fbc4b 4088 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
4089 ram_addr_t rlen;
4090 void *ret;
6d16c2f8
AL
4091
4092 while (len > 0) {
4093 page = addr & TARGET_PAGE_MASK;
4094 l = (page + TARGET_PAGE_SIZE) - addr;
4095 if (l > len)
4096 l = len;
4097 p = phys_page_find(page >> TARGET_PAGE_BITS);
4098 if (!p) {
4099 pd = IO_MEM_UNASSIGNED;
4100 } else {
4101 pd = p->phys_offset;
4102 }
4103
4104 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
38bee5dc 4105 if (todo || bounce.buffer) {
6d16c2f8
AL
4106 break;
4107 }
4108 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4109 bounce.addr = addr;
4110 bounce.len = l;
4111 if (!is_write) {
54f7b4a3 4112 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 4113 }
38bee5dc
SS
4114
4115 *plen = l;
4116 return bounce.buffer;
6d16c2f8 4117 }
8ab934f9
SS
4118 if (!todo) {
4119 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4120 }
6d16c2f8
AL
4121
4122 len -= l;
4123 addr += l;
38bee5dc 4124 todo += l;
6d16c2f8 4125 }
8ab934f9
SS
4126 rlen = todo;
4127 ret = qemu_ram_ptr_length(raddr, &rlen);
4128 *plen = rlen;
4129 return ret;
6d16c2f8
AL
4130}
4131
4132/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4133 * Will also mark the memory as dirty if is_write == 1. access_len gives
4134 * the amount of memory that was actually read or written by the caller.
4135 */
c227f099
AL
4136void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4137 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
4138{
4139 if (buffer != bounce.buffer) {
4140 if (is_write) {
e890261f 4141 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
4142 while (access_len) {
4143 unsigned l;
4144 l = TARGET_PAGE_SIZE;
4145 if (l > access_len)
4146 l = access_len;
4147 if (!cpu_physical_memory_is_dirty(addr1)) {
4148 /* invalidate code */
4149 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4150 /* set dirty bit */
f7c11b53
YT
4151 cpu_physical_memory_set_dirty_flags(
4152 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
4153 }
4154 addr1 += l;
4155 access_len -= l;
4156 }
4157 }
868bb33f 4158 if (xen_enabled()) {
e41d7c69 4159 xen_invalidate_map_cache_entry(buffer);
050a0ddf 4160 }
6d16c2f8
AL
4161 return;
4162 }
4163 if (is_write) {
4164 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4165 }
f8a83245 4166 qemu_vfree(bounce.buffer);
6d16c2f8 4167 bounce.buffer = NULL;
ba223c29 4168 cpu_notify_map_clients();
6d16c2f8 4169}
d0ecd2aa 4170
8df1cd07 4171/* warning: addr must be aligned */
1e78bcc1
AG
4172static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4173 enum device_endian endian)
8df1cd07
FB
4174{
4175 int io_index;
4176 uint8_t *ptr;
4177 uint32_t val;
4178 unsigned long pd;
4179 PhysPageDesc *p;
4180
4181 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4182 if (!p) {
4183 pd = IO_MEM_UNASSIGNED;
4184 } else {
4185 pd = p->phys_offset;
4186 }
3b46e624 4187
5fafdf24 4188 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4189 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
4190 /* I/O case */
4191 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4192 if (p)
4193 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07 4194 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4195#if defined(TARGET_WORDS_BIGENDIAN)
4196 if (endian == DEVICE_LITTLE_ENDIAN) {
4197 val = bswap32(val);
4198 }
4199#else
4200 if (endian == DEVICE_BIG_ENDIAN) {
4201 val = bswap32(val);
4202 }
4203#endif
8df1cd07
FB
4204 } else {
4205 /* RAM case */
5579c7f3 4206 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07 4207 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4208 switch (endian) {
4209 case DEVICE_LITTLE_ENDIAN:
4210 val = ldl_le_p(ptr);
4211 break;
4212 case DEVICE_BIG_ENDIAN:
4213 val = ldl_be_p(ptr);
4214 break;
4215 default:
4216 val = ldl_p(ptr);
4217 break;
4218 }
8df1cd07
FB
4219 }
4220 return val;
4221}
4222
1e78bcc1
AG
4223uint32_t ldl_phys(target_phys_addr_t addr)
4224{
4225 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4226}
4227
4228uint32_t ldl_le_phys(target_phys_addr_t addr)
4229{
4230 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4231}
4232
4233uint32_t ldl_be_phys(target_phys_addr_t addr)
4234{
4235 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4236}
4237
84b7b8e7 4238/* warning: addr must be aligned */
1e78bcc1
AG
4239static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4240 enum device_endian endian)
84b7b8e7
FB
4241{
4242 int io_index;
4243 uint8_t *ptr;
4244 uint64_t val;
4245 unsigned long pd;
4246 PhysPageDesc *p;
4247
4248 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4249 if (!p) {
4250 pd = IO_MEM_UNASSIGNED;
4251 } else {
4252 pd = p->phys_offset;
4253 }
3b46e624 4254
2a4188a3
FB
4255 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4256 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
4257 /* I/O case */
4258 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4259 if (p)
4260 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4261
4262 /* XXX This is broken when device endian != cpu endian.
4263 Fix and add "endian" variable check */
84b7b8e7
FB
4264#ifdef TARGET_WORDS_BIGENDIAN
4265 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4266 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4267#else
4268 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4269 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4270#endif
4271 } else {
4272 /* RAM case */
5579c7f3 4273 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7 4274 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4275 switch (endian) {
4276 case DEVICE_LITTLE_ENDIAN:
4277 val = ldq_le_p(ptr);
4278 break;
4279 case DEVICE_BIG_ENDIAN:
4280 val = ldq_be_p(ptr);
4281 break;
4282 default:
4283 val = ldq_p(ptr);
4284 break;
4285 }
84b7b8e7
FB
4286 }
4287 return val;
4288}
4289
1e78bcc1
AG
4290uint64_t ldq_phys(target_phys_addr_t addr)
4291{
4292 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4293}
4294
4295uint64_t ldq_le_phys(target_phys_addr_t addr)
4296{
4297 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4298}
4299
4300uint64_t ldq_be_phys(target_phys_addr_t addr)
4301{
4302 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4303}
4304
aab33094 4305/* XXX: optimize */
c227f099 4306uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4307{
4308 uint8_t val;
4309 cpu_physical_memory_read(addr, &val, 1);
4310 return val;
4311}
4312
733f0b02 4313/* warning: addr must be aligned */
1e78bcc1
AG
4314static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4315 enum device_endian endian)
aab33094 4316{
733f0b02
MT
4317 int io_index;
4318 uint8_t *ptr;
4319 uint64_t val;
4320 unsigned long pd;
4321 PhysPageDesc *p;
4322
4323 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4324 if (!p) {
4325 pd = IO_MEM_UNASSIGNED;
4326 } else {
4327 pd = p->phys_offset;
4328 }
4329
4330 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4331 !(pd & IO_MEM_ROMD)) {
4332 /* I/O case */
4333 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4334 if (p)
4335 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4336 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4337#if defined(TARGET_WORDS_BIGENDIAN)
4338 if (endian == DEVICE_LITTLE_ENDIAN) {
4339 val = bswap16(val);
4340 }
4341#else
4342 if (endian == DEVICE_BIG_ENDIAN) {
4343 val = bswap16(val);
4344 }
4345#endif
733f0b02
MT
4346 } else {
4347 /* RAM case */
4348 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4349 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4350 switch (endian) {
4351 case DEVICE_LITTLE_ENDIAN:
4352 val = lduw_le_p(ptr);
4353 break;
4354 case DEVICE_BIG_ENDIAN:
4355 val = lduw_be_p(ptr);
4356 break;
4357 default:
4358 val = lduw_p(ptr);
4359 break;
4360 }
733f0b02
MT
4361 }
4362 return val;
aab33094
FB
4363}
4364
1e78bcc1
AG
4365uint32_t lduw_phys(target_phys_addr_t addr)
4366{
4367 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4368}
4369
4370uint32_t lduw_le_phys(target_phys_addr_t addr)
4371{
4372 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4373}
4374
4375uint32_t lduw_be_phys(target_phys_addr_t addr)
4376{
4377 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4378}
4379
8df1cd07
FB
4380/* warning: addr must be aligned. The ram page is not masked as dirty
4381 and the code inside is not invalidated. It is useful if the dirty
4382 bits are used to track modified PTEs */
c227f099 4383void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4384{
4385 int io_index;
4386 uint8_t *ptr;
4387 unsigned long pd;
4388 PhysPageDesc *p;
4389
4390 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4391 if (!p) {
4392 pd = IO_MEM_UNASSIGNED;
4393 } else {
4394 pd = p->phys_offset;
4395 }
3b46e624 4396
3a7d929e 4397 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4398 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4399 if (p)
4400 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4401 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4402 } else {
74576198 4403 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4404 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4405 stl_p(ptr, val);
74576198
AL
4406
4407 if (unlikely(in_migration)) {
4408 if (!cpu_physical_memory_is_dirty(addr1)) {
4409 /* invalidate code */
4410 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4411 /* set dirty bit */
f7c11b53
YT
4412 cpu_physical_memory_set_dirty_flags(
4413 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4414 }
4415 }
8df1cd07
FB
4416 }
4417}
4418
c227f099 4419void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4420{
4421 int io_index;
4422 uint8_t *ptr;
4423 unsigned long pd;
4424 PhysPageDesc *p;
4425
4426 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4427 if (!p) {
4428 pd = IO_MEM_UNASSIGNED;
4429 } else {
4430 pd = p->phys_offset;
4431 }
3b46e624 4432
bc98a7ef
JM
4433 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4434 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4435 if (p)
4436 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
4437#ifdef TARGET_WORDS_BIGENDIAN
4438 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4439 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4440#else
4441 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4442 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4443#endif
4444 } else {
5579c7f3 4445 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4446 (addr & ~TARGET_PAGE_MASK);
4447 stq_p(ptr, val);
4448 }
4449}
4450
8df1cd07 4451/* warning: addr must be aligned */
1e78bcc1
AG
4452static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4453 enum device_endian endian)
8df1cd07
FB
4454{
4455 int io_index;
4456 uint8_t *ptr;
4457 unsigned long pd;
4458 PhysPageDesc *p;
4459
4460 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4461 if (!p) {
4462 pd = IO_MEM_UNASSIGNED;
4463 } else {
4464 pd = p->phys_offset;
4465 }
3b46e624 4466
3a7d929e 4467 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4468 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4469 if (p)
4470 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4471#if defined(TARGET_WORDS_BIGENDIAN)
4472 if (endian == DEVICE_LITTLE_ENDIAN) {
4473 val = bswap32(val);
4474 }
4475#else
4476 if (endian == DEVICE_BIG_ENDIAN) {
4477 val = bswap32(val);
4478 }
4479#endif
8df1cd07
FB
4480 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4481 } else {
4482 unsigned long addr1;
4483 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4484 /* RAM case */
5579c7f3 4485 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4486 switch (endian) {
4487 case DEVICE_LITTLE_ENDIAN:
4488 stl_le_p(ptr, val);
4489 break;
4490 case DEVICE_BIG_ENDIAN:
4491 stl_be_p(ptr, val);
4492 break;
4493 default:
4494 stl_p(ptr, val);
4495 break;
4496 }
3a7d929e
FB
4497 if (!cpu_physical_memory_is_dirty(addr1)) {
4498 /* invalidate code */
4499 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4500 /* set dirty bit */
f7c11b53
YT
4501 cpu_physical_memory_set_dirty_flags(addr1,
4502 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4503 }
8df1cd07
FB
4504 }
4505}
4506
1e78bcc1
AG
4507void stl_phys(target_phys_addr_t addr, uint32_t val)
4508{
4509 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4510}
4511
4512void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4513{
4514 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4515}
4516
4517void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4518{
4519 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4520}
4521
aab33094 4522/* XXX: optimize */
c227f099 4523void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4524{
4525 uint8_t v = val;
4526 cpu_physical_memory_write(addr, &v, 1);
4527}
4528
733f0b02 4529/* warning: addr must be aligned */
1e78bcc1
AG
4530static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4531 enum device_endian endian)
aab33094 4532{
733f0b02
MT
4533 int io_index;
4534 uint8_t *ptr;
4535 unsigned long pd;
4536 PhysPageDesc *p;
4537
4538 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4539 if (!p) {
4540 pd = IO_MEM_UNASSIGNED;
4541 } else {
4542 pd = p->phys_offset;
4543 }
4544
4545 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4546 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4547 if (p)
4548 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4549#if defined(TARGET_WORDS_BIGENDIAN)
4550 if (endian == DEVICE_LITTLE_ENDIAN) {
4551 val = bswap16(val);
4552 }
4553#else
4554 if (endian == DEVICE_BIG_ENDIAN) {
4555 val = bswap16(val);
4556 }
4557#endif
733f0b02
MT
4558 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4559 } else {
4560 unsigned long addr1;
4561 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4562 /* RAM case */
4563 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4564 switch (endian) {
4565 case DEVICE_LITTLE_ENDIAN:
4566 stw_le_p(ptr, val);
4567 break;
4568 case DEVICE_BIG_ENDIAN:
4569 stw_be_p(ptr, val);
4570 break;
4571 default:
4572 stw_p(ptr, val);
4573 break;
4574 }
733f0b02
MT
4575 if (!cpu_physical_memory_is_dirty(addr1)) {
4576 /* invalidate code */
4577 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4578 /* set dirty bit */
4579 cpu_physical_memory_set_dirty_flags(addr1,
4580 (0xff & ~CODE_DIRTY_FLAG));
4581 }
4582 }
aab33094
FB
4583}
4584
1e78bcc1
AG
4585void stw_phys(target_phys_addr_t addr, uint32_t val)
4586{
4587 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4588}
4589
4590void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4591{
4592 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4593}
4594
4595void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4596{
4597 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4598}
4599
aab33094 4600/* XXX: optimize */
c227f099 4601void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4602{
4603 val = tswap64(val);
71d2b725 4604 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4605}
4606
1e78bcc1
AG
4607void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4608{
4609 val = cpu_to_le64(val);
4610 cpu_physical_memory_write(addr, &val, 8);
4611}
4612
4613void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4614{
4615 val = cpu_to_be64(val);
4616 cpu_physical_memory_write(addr, &val, 8);
4617}
4618
5e2972fd 4619/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4620int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4621 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4622{
4623 int l;
c227f099 4624 target_phys_addr_t phys_addr;
9b3c35e0 4625 target_ulong page;
13eb76e0
FB
4626
4627 while (len > 0) {
4628 page = addr & TARGET_PAGE_MASK;
4629 phys_addr = cpu_get_phys_page_debug(env, page);
4630 /* if no physical page mapped, return an error */
4631 if (phys_addr == -1)
4632 return -1;
4633 l = (page + TARGET_PAGE_SIZE) - addr;
4634 if (l > len)
4635 l = len;
5e2972fd 4636 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4637 if (is_write)
4638 cpu_physical_memory_write_rom(phys_addr, buf, l);
4639 else
5e2972fd 4640 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4641 len -= l;
4642 buf += l;
4643 addr += l;
4644 }
4645 return 0;
4646}
a68fe89c 4647#endif
13eb76e0 4648
2e70f6ef
PB
4649/* in deterministic execution mode, instructions doing device I/Os
4650 must be at the end of the TB */
4651void cpu_io_recompile(CPUState *env, void *retaddr)
4652{
4653 TranslationBlock *tb;
4654 uint32_t n, cflags;
4655 target_ulong pc, cs_base;
4656 uint64_t flags;
4657
4658 tb = tb_find_pc((unsigned long)retaddr);
4659 if (!tb) {
4660 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4661 retaddr);
4662 }
4663 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4664 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4665 /* Calculate how many instructions had been executed before the fault
bf20dc07 4666 occurred. */
2e70f6ef
PB
4667 n = n - env->icount_decr.u16.low;
4668 /* Generate a new TB ending on the I/O insn. */
4669 n++;
4670 /* On MIPS and SH, delay slot instructions can only be restarted if
4671 they were already the first instruction in the TB. If this is not
bf20dc07 4672 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4673 branch. */
4674#if defined(TARGET_MIPS)
4675 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4676 env->active_tc.PC -= 4;
4677 env->icount_decr.u16.low++;
4678 env->hflags &= ~MIPS_HFLAG_BMASK;
4679 }
4680#elif defined(TARGET_SH4)
4681 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4682 && n > 1) {
4683 env->pc -= 2;
4684 env->icount_decr.u16.low++;
4685 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4686 }
4687#endif
4688 /* This should never happen. */
4689 if (n > CF_COUNT_MASK)
4690 cpu_abort(env, "TB too big during recompile");
4691
4692 cflags = n | CF_LAST_IO;
4693 pc = tb->pc;
4694 cs_base = tb->cs_base;
4695 flags = tb->flags;
4696 tb_phys_invalidate(tb, -1);
4697 /* FIXME: In theory this could raise an exception. In practice
4698 we have already translated the block once so it's probably ok. */
4699 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4700 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4701 the first in the TB) then we end up generating a whole new TB and
4702 repeating the fault, which is horribly inefficient.
4703 Better would be to execute just this insn uncached, or generate a
4704 second new TB. */
4705 cpu_resume_from_signal(env, NULL);
4706}
4707
b3755a91
PB
4708#if !defined(CONFIG_USER_ONLY)
4709
055403b2 4710void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4711{
4712 int i, target_code_size, max_target_code_size;
4713 int direct_jmp_count, direct_jmp2_count, cross_page;
4714 TranslationBlock *tb;
3b46e624 4715
e3db7226
FB
4716 target_code_size = 0;
4717 max_target_code_size = 0;
4718 cross_page = 0;
4719 direct_jmp_count = 0;
4720 direct_jmp2_count = 0;
4721 for(i = 0; i < nb_tbs; i++) {
4722 tb = &tbs[i];
4723 target_code_size += tb->size;
4724 if (tb->size > max_target_code_size)
4725 max_target_code_size = tb->size;
4726 if (tb->page_addr[1] != -1)
4727 cross_page++;
4728 if (tb->tb_next_offset[0] != 0xffff) {
4729 direct_jmp_count++;
4730 if (tb->tb_next_offset[1] != 0xffff) {
4731 direct_jmp2_count++;
4732 }
4733 }
4734 }
4735 /* XXX: avoid using doubles ? */
57fec1fe 4736 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4737 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4738 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4739 cpu_fprintf(f, "TB count %d/%d\n",
4740 nb_tbs, code_gen_max_blocks);
5fafdf24 4741 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4742 nb_tbs ? target_code_size / nb_tbs : 0,
4743 max_target_code_size);
055403b2 4744 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4745 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4746 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4747 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4748 cross_page,
e3db7226
FB
4749 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4750 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4751 direct_jmp_count,
e3db7226
FB
4752 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4753 direct_jmp2_count,
4754 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4755 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4756 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4757 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4758 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4759 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4760}
4761
61382a50 4762#define MMUSUFFIX _cmmu
3917149d 4763#undef GETPC
61382a50
FB
4764#define GETPC() NULL
4765#define env cpu_single_env
b769d8fe 4766#define SOFTMMU_CODE_ACCESS
61382a50
FB
4767
4768#define SHIFT 0
4769#include "softmmu_template.h"
4770
4771#define SHIFT 1
4772#include "softmmu_template.h"
4773
4774#define SHIFT 2
4775#include "softmmu_template.h"
4776
4777#define SHIFT 3
4778#include "softmmu_template.h"
4779
4780#undef env
4781
4782#endif