]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Merge remote-tracking branch 'remotes/xtensa/tags/20170306-xtensa' into staging
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
b67d9a52 27#include "tcg.h"
741da0d3 28#include "hw/qdev-core.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
741da0d3 46#include "exec/address-spaces.h"
9c17d615 47#include "sysemu/xen-mapcache.h"
0ab8ed18 48#include "trace-root.h"
d3a5038c 49
e2fa71f5
DDAG
50#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
51#include <fcntl.h>
52#include <linux/falloc.h>
53#endif
54
53a5960a 55#endif
0d6d3c87 56#include "exec/cpu-all.h"
0dc3f44a 57#include "qemu/rcu_queue.h"
4840f10e 58#include "qemu/main-loop.h"
5b6dd868 59#include "translate-all.h"
7615936e 60#include "sysemu/replay.h"
0cac1b66 61
022c62cb 62#include "exec/memory-internal.h"
220c3ebd 63#include "exec/ram_addr.h"
508127e2 64#include "exec/log.h"
67d95c15 65
9dfeca7c
BR
66#include "migration/vmstate.h"
67
b35ba30f 68#include "qemu/range.h"
794e8f30
MT
69#ifndef _WIN32
70#include "qemu/mmap-alloc.h"
71#endif
b35ba30f 72
db7b5426 73//#define DEBUG_SUBPAGE
1196be37 74
e2eef170 75#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
76/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
77 * are protected by the ramlist lock.
78 */
0d53d9fe 79RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
80
81static MemoryRegion *system_memory;
309cb471 82static MemoryRegion *system_io;
62152b8a 83
f6790af6
AK
84AddressSpace address_space_io;
85AddressSpace address_space_memory;
2673a5da 86
0844e007 87MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 88static MemoryRegion io_mem_unassigned;
0e0df1e2 89
7bd4f430
PB
90/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
91#define RAM_PREALLOC (1 << 0)
92
dbcb8981
PB
93/* RAM is mmap-ed with MAP_SHARED */
94#define RAM_SHARED (1 << 1)
95
62be4e3a
MT
96/* Only a portion of RAM (used_length) is actually used, and migrated.
97 * This used_length size can change across reboots.
98 */
99#define RAM_RESIZEABLE (1 << 2)
100
e2eef170 101#endif
9fa3e853 102
20bccb82
PM
103#ifdef TARGET_PAGE_BITS_VARY
104int target_page_bits;
105bool target_page_bits_decided;
106#endif
107
bdc44640 108struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
109/* current CPU in the current thread. It is only valid inside
110 cpu_exec() */
f240eb6f 111__thread CPUState *current_cpu;
2e70f6ef 112/* 0 = Do not count executed instructions.
bf20dc07 113 1 = Precise instruction counting.
2e70f6ef 114 2 = Adaptive rate instruction counting. */
5708fc66 115int use_icount;
6a00d601 116
20bccb82
PM
117bool set_preferred_target_page_bits(int bits)
118{
119 /* The target page size is the lowest common denominator for all
120 * the CPUs in the system, so we can only make it smaller, never
121 * larger. And we can't make it smaller once we've committed to
122 * a particular size.
123 */
124#ifdef TARGET_PAGE_BITS_VARY
125 assert(bits >= TARGET_PAGE_BITS_MIN);
126 if (target_page_bits == 0 || target_page_bits > bits) {
127 if (target_page_bits_decided) {
128 return false;
129 }
130 target_page_bits = bits;
131 }
132#endif
133 return true;
134}
135
e2eef170 136#if !defined(CONFIG_USER_ONLY)
4346ae3e 137
20bccb82
PM
138static void finalize_target_page_bits(void)
139{
140#ifdef TARGET_PAGE_BITS_VARY
141 if (target_page_bits == 0) {
142 target_page_bits = TARGET_PAGE_BITS_MIN;
143 }
144 target_page_bits_decided = true;
145#endif
146}
147
1db8abb1
PB
148typedef struct PhysPageEntry PhysPageEntry;
149
150struct PhysPageEntry {
9736e55b 151 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 152 uint32_t skip : 6;
9736e55b 153 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 154 uint32_t ptr : 26;
1db8abb1
PB
155};
156
8b795765
MT
157#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
158
03f49957 159/* Size of the L2 (and L3, etc) page tables. */
57271d63 160#define ADDR_SPACE_BITS 64
03f49957 161
026736ce 162#define P_L2_BITS 9
03f49957
PB
163#define P_L2_SIZE (1 << P_L2_BITS)
164
165#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
166
167typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 168
53cb28cb 169typedef struct PhysPageMap {
79e2b9ae
PB
170 struct rcu_head rcu;
171
53cb28cb
MA
172 unsigned sections_nb;
173 unsigned sections_nb_alloc;
174 unsigned nodes_nb;
175 unsigned nodes_nb_alloc;
176 Node *nodes;
177 MemoryRegionSection *sections;
178} PhysPageMap;
179
1db8abb1 180struct AddressSpaceDispatch {
79e2b9ae
PB
181 struct rcu_head rcu;
182
729633c2 183 MemoryRegionSection *mru_section;
1db8abb1
PB
184 /* This is a multi-level map on the physical address space.
185 * The bottom level has pointers to MemoryRegionSections.
186 */
187 PhysPageEntry phys_map;
53cb28cb 188 PhysPageMap map;
acc9d80b 189 AddressSpace *as;
1db8abb1
PB
190};
191
90260c6c
JK
192#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
193typedef struct subpage_t {
194 MemoryRegion iomem;
acc9d80b 195 AddressSpace *as;
90260c6c 196 hwaddr base;
2615fabd 197 uint16_t sub_section[];
90260c6c
JK
198} subpage_t;
199
b41aac4f
LPF
200#define PHYS_SECTION_UNASSIGNED 0
201#define PHYS_SECTION_NOTDIRTY 1
202#define PHYS_SECTION_ROM 2
203#define PHYS_SECTION_WATCH 3
5312bd8b 204
e2eef170 205static void io_mem_init(void);
62152b8a 206static void memory_map_init(void);
09daed84 207static void tcg_commit(MemoryListener *listener);
e2eef170 208
1ec9b909 209static MemoryRegion io_mem_watch;
32857f4d
PM
210
211/**
212 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
213 * @cpu: the CPU whose AddressSpace this is
214 * @as: the AddressSpace itself
215 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
216 * @tcg_as_listener: listener for tracking changes to the AddressSpace
217 */
218struct CPUAddressSpace {
219 CPUState *cpu;
220 AddressSpace *as;
221 struct AddressSpaceDispatch *memory_dispatch;
222 MemoryListener tcg_as_listener;
223};
224
6658ffb8 225#endif
fd6ce8f6 226
6d9a1304 227#if !defined(CONFIG_USER_ONLY)
d6f2ea22 228
53cb28cb 229static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 230{
101420b8 231 static unsigned alloc_hint = 16;
53cb28cb 232 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
235 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 236 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 237 }
f7bf5461
AK
238}
239
db94604b 240static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
241{
242 unsigned i;
8b795765 243 uint32_t ret;
db94604b
PB
244 PhysPageEntry e;
245 PhysPageEntry *p;
f7bf5461 246
53cb28cb 247 ret = map->nodes_nb++;
db94604b 248 p = map->nodes[ret];
f7bf5461 249 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 250 assert(ret != map->nodes_nb_alloc);
db94604b
PB
251
252 e.skip = leaf ? 0 : 1;
253 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 254 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 255 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 256 }
f7bf5461 257 return ret;
d6f2ea22
AK
258}
259
53cb28cb
MA
260static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
261 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 262 int level)
f7bf5461
AK
263{
264 PhysPageEntry *p;
03f49957 265 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 266
9736e55b 267 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 268 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 269 }
db94604b 270 p = map->nodes[lp->ptr];
03f49957 271 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 272
03f49957 273 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 274 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 275 lp->skip = 0;
c19e8800 276 lp->ptr = leaf;
07f07b31
AK
277 *index += step;
278 *nb -= step;
2999097b 279 } else {
53cb28cb 280 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
281 }
282 ++lp;
f7bf5461
AK
283 }
284}
285
ac1970fb 286static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 287 hwaddr index, hwaddr nb,
2999097b 288 uint16_t leaf)
f7bf5461 289{
2999097b 290 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 291 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 292
53cb28cb 293 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
294}
295
b35ba30f
MT
296/* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
298 */
efee678d 299static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
300{
301 unsigned valid_ptr = P_L2_SIZE;
302 int valid = 0;
303 PhysPageEntry *p;
304 int i;
305
306 if (lp->ptr == PHYS_MAP_NODE_NIL) {
307 return;
308 }
309
310 p = nodes[lp->ptr];
311 for (i = 0; i < P_L2_SIZE; i++) {
312 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
313 continue;
314 }
315
316 valid_ptr = i;
317 valid++;
318 if (p[i].skip) {
efee678d 319 phys_page_compact(&p[i], nodes);
b35ba30f
MT
320 }
321 }
322
323 /* We can only compress if there's only one child. */
324 if (valid != 1) {
325 return;
326 }
327
328 assert(valid_ptr < P_L2_SIZE);
329
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
332 return;
333 }
334
335 lp->ptr = p[valid_ptr].ptr;
336 if (!p[valid_ptr].skip) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
341 * change this rule.
342 */
343 lp->skip = 0;
344 } else {
345 lp->skip += p[valid_ptr].skip;
346 }
347}
348
349static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
350{
b35ba30f 351 if (d->phys_map.skip) {
efee678d 352 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
353 }
354}
355
29cb533d
FZ
356static inline bool section_covers_addr(const MemoryRegionSection *section,
357 hwaddr addr)
358{
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
361 */
258dfaaa 362 return int128_gethi(section->size) ||
29cb533d 363 range_covers_byte(section->offset_within_address_space,
258dfaaa 364 int128_getlo(section->size), addr);
29cb533d
FZ
365}
366
97115a8d 367static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 368 Node *nodes, MemoryRegionSection *sections)
92e873b9 369{
31ab2b4a 370 PhysPageEntry *p;
97115a8d 371 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 372 int i;
f1f6e3b8 373
9736e55b 374 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 375 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 376 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 377 }
9affd6fc 378 p = nodes[lp.ptr];
03f49957 379 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 380 }
b35ba30f 381
29cb533d 382 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
383 return &sections[lp.ptr];
384 } else {
385 return &sections[PHYS_SECTION_UNASSIGNED];
386 }
f3705d53
AK
387}
388
e5548617
BS
389bool memory_region_is_unassigned(MemoryRegion *mr)
390{
2a8e7499 391 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 392 && mr != &io_mem_watch;
fd6ce8f6 393}
149f54b5 394
79e2b9ae 395/* Called from RCU critical section */
c7086b4a 396static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
397 hwaddr addr,
398 bool resolve_subpage)
9f029603 399{
729633c2 400 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 401 subpage_t *subpage;
729633c2 402 bool update;
90260c6c 403
729633c2
FZ
404 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
405 section_covers_addr(section, addr)) {
406 update = false;
407 } else {
408 section = phys_page_find(d->phys_map, addr, d->map.nodes,
409 d->map.sections);
410 update = true;
411 }
90260c6c
JK
412 if (resolve_subpage && section->mr->subpage) {
413 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 414 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 415 }
729633c2
FZ
416 if (update) {
417 atomic_set(&d->mru_section, section);
418 }
90260c6c 419 return section;
9f029603
JK
420}
421
79e2b9ae 422/* Called from RCU critical section */
90260c6c 423static MemoryRegionSection *
c7086b4a 424address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 425 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
426{
427 MemoryRegionSection *section;
965eb2fc 428 MemoryRegion *mr;
a87f3954 429 Int128 diff;
149f54b5 430
c7086b4a 431 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
432 /* Compute offset within MemoryRegionSection */
433 addr -= section->offset_within_address_space;
434
435 /* Compute offset within MemoryRegion */
436 *xlat = addr + section->offset_within_region;
437
965eb2fc 438 mr = section->mr;
b242e0e0
PB
439
440 /* MMIO registers can be expected to perform full-width accesses based only
441 * on their address, without considering adjacent registers that could
442 * decode to completely different MemoryRegions. When such registers
443 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
444 * regions overlap wildly. For this reason we cannot clamp the accesses
445 * here.
446 *
447 * If the length is small (as is the case for address_space_ldl/stl),
448 * everything works fine. If the incoming length is large, however,
449 * the caller really has to do the clamping through memory_access_size.
450 */
965eb2fc 451 if (memory_region_is_ram(mr)) {
e4a511f8 452 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
453 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
454 }
149f54b5
PB
455 return section;
456}
90260c6c 457
41063e1e 458/* Called from RCU critical section */
052c8fa9
JW
459IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
460 bool is_write)
461{
462 IOMMUTLBEntry iotlb = {0};
463 MemoryRegionSection *section;
464 MemoryRegion *mr;
465
466 for (;;) {
467 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
468 section = address_space_lookup_region(d, addr, false);
469 addr = addr - section->offset_within_address_space
470 + section->offset_within_region;
471 mr = section->mr;
472
473 if (!mr->iommu_ops) {
474 break;
475 }
476
477 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
478 if (!(iotlb.perm & (1 << is_write))) {
479 iotlb.target_as = NULL;
480 break;
481 }
482
483 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
484 | (addr & iotlb.addr_mask));
485 as = iotlb.target_as;
486 }
487
488 return iotlb;
489}
490
491/* Called from RCU critical section */
5c8a00ce
PB
492MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
493 hwaddr *xlat, hwaddr *plen,
494 bool is_write)
90260c6c 495{
30951157
AK
496 IOMMUTLBEntry iotlb;
497 MemoryRegionSection *section;
498 MemoryRegion *mr;
30951157
AK
499
500 for (;;) {
79e2b9ae
PB
501 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
502 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
503 mr = section->mr;
504
505 if (!mr->iommu_ops) {
506 break;
507 }
508
8d7b8cb9 509 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
510 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
511 | (addr & iotlb.addr_mask));
23820dbf 512 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
513 if (!(iotlb.perm & (1 << is_write))) {
514 mr = &io_mem_unassigned;
515 break;
516 }
517
518 as = iotlb.target_as;
519 }
520
fe680d0d 521 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 522 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 523 *plen = MIN(page, *plen);
a87f3954
PB
524 }
525
30951157
AK
526 *xlat = addr;
527 return mr;
90260c6c
JK
528}
529
79e2b9ae 530/* Called from RCU critical section */
90260c6c 531MemoryRegionSection *
d7898cda 532address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 533 hwaddr *xlat, hwaddr *plen)
90260c6c 534{
30951157 535 MemoryRegionSection *section;
f35e44e7 536 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
537
538 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
539
540 assert(!section->mr->iommu_ops);
541 return section;
90260c6c 542}
5b6dd868 543#endif
fd6ce8f6 544
b170fce3 545#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
546
547static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 548{
259186a7 549 CPUState *cpu = opaque;
a513fe19 550
5b6dd868
BS
551 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
552 version_id is increased. */
259186a7 553 cpu->interrupt_request &= ~0x01;
d10eb08f 554 tlb_flush(cpu);
5b6dd868
BS
555
556 return 0;
a513fe19 557}
7501267e 558
6c3bff0e
PD
559static int cpu_common_pre_load(void *opaque)
560{
561 CPUState *cpu = opaque;
562
adee6424 563 cpu->exception_index = -1;
6c3bff0e
PD
564
565 return 0;
566}
567
568static bool cpu_common_exception_index_needed(void *opaque)
569{
570 CPUState *cpu = opaque;
571
adee6424 572 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
573}
574
575static const VMStateDescription vmstate_cpu_common_exception_index = {
576 .name = "cpu_common/exception_index",
577 .version_id = 1,
578 .minimum_version_id = 1,
5cd8cada 579 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
580 .fields = (VMStateField[]) {
581 VMSTATE_INT32(exception_index, CPUState),
582 VMSTATE_END_OF_LIST()
583 }
584};
585
bac05aa9
AS
586static bool cpu_common_crash_occurred_needed(void *opaque)
587{
588 CPUState *cpu = opaque;
589
590 return cpu->crash_occurred;
591}
592
593static const VMStateDescription vmstate_cpu_common_crash_occurred = {
594 .name = "cpu_common/crash_occurred",
595 .version_id = 1,
596 .minimum_version_id = 1,
597 .needed = cpu_common_crash_occurred_needed,
598 .fields = (VMStateField[]) {
599 VMSTATE_BOOL(crash_occurred, CPUState),
600 VMSTATE_END_OF_LIST()
601 }
602};
603
1a1562f5 604const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
605 .name = "cpu_common",
606 .version_id = 1,
607 .minimum_version_id = 1,
6c3bff0e 608 .pre_load = cpu_common_pre_load,
5b6dd868 609 .post_load = cpu_common_post_load,
35d08458 610 .fields = (VMStateField[]) {
259186a7
AF
611 VMSTATE_UINT32(halted, CPUState),
612 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 613 VMSTATE_END_OF_LIST()
6c3bff0e 614 },
5cd8cada
JQ
615 .subsections = (const VMStateDescription*[]) {
616 &vmstate_cpu_common_exception_index,
bac05aa9 617 &vmstate_cpu_common_crash_occurred,
5cd8cada 618 NULL
5b6dd868
BS
619 }
620};
1a1562f5 621
5b6dd868 622#endif
ea041c0e 623
38d8f5c8 624CPUState *qemu_get_cpu(int index)
ea041c0e 625{
bdc44640 626 CPUState *cpu;
ea041c0e 627
bdc44640 628 CPU_FOREACH(cpu) {
55e5c285 629 if (cpu->cpu_index == index) {
bdc44640 630 return cpu;
55e5c285 631 }
ea041c0e 632 }
5b6dd868 633
bdc44640 634 return NULL;
ea041c0e
FB
635}
636
09daed84 637#if !defined(CONFIG_USER_ONLY)
56943e8c 638void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 639{
12ebc9a7
PM
640 CPUAddressSpace *newas;
641
642 /* Target code should have set num_ases before calling us */
643 assert(asidx < cpu->num_ases);
644
56943e8c
PM
645 if (asidx == 0) {
646 /* address space 0 gets the convenience alias */
647 cpu->as = as;
648 }
649
12ebc9a7
PM
650 /* KVM cannot currently support multiple address spaces. */
651 assert(asidx == 0 || !kvm_enabled());
09daed84 652
12ebc9a7
PM
653 if (!cpu->cpu_ases) {
654 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 655 }
32857f4d 656
12ebc9a7
PM
657 newas = &cpu->cpu_ases[asidx];
658 newas->cpu = cpu;
659 newas->as = as;
56943e8c 660 if (tcg_enabled()) {
12ebc9a7
PM
661 newas->tcg_as_listener.commit = tcg_commit;
662 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 663 }
09daed84 664}
651a5bc0
PM
665
666AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
667{
668 /* Return the AddressSpace corresponding to the specified index */
669 return cpu->cpu_ases[asidx].as;
670}
09daed84
EI
671#endif
672
7bbc124e 673void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 674{
9dfeca7c
BR
675 CPUClass *cc = CPU_GET_CLASS(cpu);
676
267f685b 677 cpu_list_remove(cpu);
9dfeca7c
BR
678
679 if (cc->vmsd != NULL) {
680 vmstate_unregister(NULL, cc->vmsd, cpu);
681 }
682 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
683 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
684 }
1c59eb39
BR
685}
686
39e329e3 687void cpu_exec_initfn(CPUState *cpu)
ea041c0e 688{
56943e8c 689 cpu->as = NULL;
12ebc9a7 690 cpu->num_ases = 0;
56943e8c 691
291135b5 692#ifndef CONFIG_USER_ONLY
291135b5 693 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
694
695 /* This is a softmmu CPU object, so create a property for it
696 * so users can wire up its memory. (This can't go in qom/cpu.c
697 * because that file is compiled only once for both user-mode
698 * and system builds.) The default if no link is set up is to use
699 * the system address space.
700 */
701 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
702 (Object **)&cpu->memory,
703 qdev_prop_allow_set_link_before_realize,
704 OBJ_PROP_LINK_UNREF_ON_RELEASE,
705 &error_abort);
706 cpu->memory = system_memory;
707 object_ref(OBJECT(cpu->memory));
291135b5 708#endif
39e329e3
LV
709}
710
ce5b1bbf 711void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
712{
713 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 714
267f685b 715 cpu_list_add(cpu);
1bc7e522
IM
716
717#ifndef CONFIG_USER_ONLY
e0d47944 718 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 719 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 720 }
b170fce3 721 if (cc->vmsd != NULL) {
741da0d3 722 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 723 }
741da0d3 724#endif
ea041c0e
FB
725}
726
00b941e5 727static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 728{
a9353fe8
PM
729 /* Flush the whole TB as this will not have race conditions
730 * even if we don't have proper locking yet.
731 * Ideally we would just invalidate the TBs for the
732 * specified PC.
733 */
734 tb_flush(cpu);
1e7855a5 735}
d720b93d 736
c527ee8f 737#if defined(CONFIG_USER_ONLY)
75a34036 738void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
739
740{
741}
742
3ee887e8
PM
743int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
744 int flags)
745{
746 return -ENOSYS;
747}
748
749void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
750{
751}
752
75a34036 753int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
754 int flags, CPUWatchpoint **watchpoint)
755{
756 return -ENOSYS;
757}
758#else
6658ffb8 759/* Add a watchpoint. */
75a34036 760int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 761 int flags, CPUWatchpoint **watchpoint)
6658ffb8 762{
c0ce998e 763 CPUWatchpoint *wp;
6658ffb8 764
05068c0d 765 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 766 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
767 error_report("tried to set invalid watchpoint at %"
768 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
769 return -EINVAL;
770 }
7267c094 771 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
772
773 wp->vaddr = addr;
05068c0d 774 wp->len = len;
a1d1bb31
AL
775 wp->flags = flags;
776
2dc9f411 777 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
778 if (flags & BP_GDB) {
779 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
780 } else {
781 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
782 }
6658ffb8 783
31b030d4 784 tlb_flush_page(cpu, addr);
a1d1bb31
AL
785
786 if (watchpoint)
787 *watchpoint = wp;
788 return 0;
6658ffb8
PB
789}
790
a1d1bb31 791/* Remove a specific watchpoint. */
75a34036 792int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 793 int flags)
6658ffb8 794{
a1d1bb31 795 CPUWatchpoint *wp;
6658ffb8 796
ff4700b0 797 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 798 if (addr == wp->vaddr && len == wp->len
6e140f28 799 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 800 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
801 return 0;
802 }
803 }
a1d1bb31 804 return -ENOENT;
6658ffb8
PB
805}
806
a1d1bb31 807/* Remove a specific watchpoint by reference. */
75a34036 808void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 809{
ff4700b0 810 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 811
31b030d4 812 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 813
7267c094 814 g_free(watchpoint);
a1d1bb31
AL
815}
816
817/* Remove all matching watchpoints. */
75a34036 818void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 819{
c0ce998e 820 CPUWatchpoint *wp, *next;
a1d1bb31 821
ff4700b0 822 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
823 if (wp->flags & mask) {
824 cpu_watchpoint_remove_by_ref(cpu, wp);
825 }
c0ce998e 826 }
7d03f82f 827}
05068c0d
PM
828
829/* Return true if this watchpoint address matches the specified
830 * access (ie the address range covered by the watchpoint overlaps
831 * partially or completely with the address range covered by the
832 * access).
833 */
834static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
835 vaddr addr,
836 vaddr len)
837{
838 /* We know the lengths are non-zero, but a little caution is
839 * required to avoid errors in the case where the range ends
840 * exactly at the top of the address space and so addr + len
841 * wraps round to zero.
842 */
843 vaddr wpend = wp->vaddr + wp->len - 1;
844 vaddr addrend = addr + len - 1;
845
846 return !(addr > wpend || wp->vaddr > addrend);
847}
848
c527ee8f 849#endif
7d03f82f 850
a1d1bb31 851/* Add a breakpoint. */
b3310ab3 852int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 853 CPUBreakpoint **breakpoint)
4c3a88a2 854{
c0ce998e 855 CPUBreakpoint *bp;
3b46e624 856
7267c094 857 bp = g_malloc(sizeof(*bp));
4c3a88a2 858
a1d1bb31
AL
859 bp->pc = pc;
860 bp->flags = flags;
861
2dc9f411 862 /* keep all GDB-injected breakpoints in front */
00b941e5 863 if (flags & BP_GDB) {
f0c3c505 864 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 865 } else {
f0c3c505 866 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 867 }
3b46e624 868
f0c3c505 869 breakpoint_invalidate(cpu, pc);
a1d1bb31 870
00b941e5 871 if (breakpoint) {
a1d1bb31 872 *breakpoint = bp;
00b941e5 873 }
4c3a88a2 874 return 0;
4c3a88a2
FB
875}
876
a1d1bb31 877/* Remove a specific breakpoint. */
b3310ab3 878int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 879{
a1d1bb31
AL
880 CPUBreakpoint *bp;
881
f0c3c505 882 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 883 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 884 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
885 return 0;
886 }
7d03f82f 887 }
a1d1bb31 888 return -ENOENT;
7d03f82f
EI
889}
890
a1d1bb31 891/* Remove a specific breakpoint by reference. */
b3310ab3 892void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 893{
f0c3c505
AF
894 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
895
896 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 897
7267c094 898 g_free(breakpoint);
a1d1bb31
AL
899}
900
901/* Remove all matching breakpoints. */
b3310ab3 902void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 903{
c0ce998e 904 CPUBreakpoint *bp, *next;
a1d1bb31 905
f0c3c505 906 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
907 if (bp->flags & mask) {
908 cpu_breakpoint_remove_by_ref(cpu, bp);
909 }
c0ce998e 910 }
4c3a88a2
FB
911}
912
c33a346e
FB
913/* enable or disable single step mode. EXCP_DEBUG is returned by the
914 CPU loop after each instruction */
3825b28f 915void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 916{
ed2803da
AF
917 if (cpu->singlestep_enabled != enabled) {
918 cpu->singlestep_enabled = enabled;
919 if (kvm_enabled()) {
38e478ec 920 kvm_update_guest_debug(cpu, 0);
ed2803da 921 } else {
ccbb4d44 922 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 923 /* XXX: only flush what is necessary */
bbd77c18 924 tb_flush(cpu);
e22a25c9 925 }
c33a346e 926 }
c33a346e
FB
927}
928
a47dddd7 929void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
930{
931 va_list ap;
493ae1f0 932 va_list ap2;
7501267e
FB
933
934 va_start(ap, fmt);
493ae1f0 935 va_copy(ap2, ap);
7501267e
FB
936 fprintf(stderr, "qemu: fatal: ");
937 vfprintf(stderr, fmt, ap);
938 fprintf(stderr, "\n");
878096ee 939 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 940 if (qemu_log_separate()) {
1ee73216 941 qemu_log_lock();
93fcfe39
AL
942 qemu_log("qemu: fatal: ");
943 qemu_log_vprintf(fmt, ap2);
944 qemu_log("\n");
a0762859 945 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 946 qemu_log_flush();
1ee73216 947 qemu_log_unlock();
93fcfe39 948 qemu_log_close();
924edcae 949 }
493ae1f0 950 va_end(ap2);
f9373291 951 va_end(ap);
7615936e 952 replay_finish();
fd052bf6
RV
953#if defined(CONFIG_USER_ONLY)
954 {
955 struct sigaction act;
956 sigfillset(&act.sa_mask);
957 act.sa_handler = SIG_DFL;
958 sigaction(SIGABRT, &act, NULL);
959 }
960#endif
7501267e
FB
961 abort();
962}
963
0124311e 964#if !defined(CONFIG_USER_ONLY)
0dc3f44a 965/* Called from RCU critical section */
041603fe
PB
966static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
967{
968 RAMBlock *block;
969
43771539 970 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 971 if (block && addr - block->offset < block->max_length) {
68851b98 972 return block;
041603fe 973 }
0dc3f44a 974 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 975 if (addr - block->offset < block->max_length) {
041603fe
PB
976 goto found;
977 }
978 }
979
980 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
981 abort();
982
983found:
43771539
PB
984 /* It is safe to write mru_block outside the iothread lock. This
985 * is what happens:
986 *
987 * mru_block = xxx
988 * rcu_read_unlock()
989 * xxx removed from list
990 * rcu_read_lock()
991 * read mru_block
992 * mru_block = NULL;
993 * call_rcu(reclaim_ramblock, xxx);
994 * rcu_read_unlock()
995 *
996 * atomic_rcu_set is not needed here. The block was already published
997 * when it was placed into the list. Here we're just making an extra
998 * copy of the pointer.
999 */
041603fe
PB
1000 ram_list.mru_block = block;
1001 return block;
1002}
1003
a2f4d5be 1004static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1005{
9a13565d 1006 CPUState *cpu;
041603fe 1007 ram_addr_t start1;
a2f4d5be
JQ
1008 RAMBlock *block;
1009 ram_addr_t end;
1010
1011 end = TARGET_PAGE_ALIGN(start + length);
1012 start &= TARGET_PAGE_MASK;
d24981d3 1013
0dc3f44a 1014 rcu_read_lock();
041603fe
PB
1015 block = qemu_get_ram_block(start);
1016 assert(block == qemu_get_ram_block(end - 1));
1240be24 1017 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1018 CPU_FOREACH(cpu) {
1019 tlb_reset_dirty(cpu, start1, length);
1020 }
0dc3f44a 1021 rcu_read_unlock();
d24981d3
JQ
1022}
1023
5579c7f3 1024/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1025bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1026 ram_addr_t length,
1027 unsigned client)
1ccde1cb 1028{
5b82b703 1029 DirtyMemoryBlocks *blocks;
03eebc9e 1030 unsigned long end, page;
5b82b703 1031 bool dirty = false;
03eebc9e
SH
1032
1033 if (length == 0) {
1034 return false;
1035 }
f23db169 1036
03eebc9e
SH
1037 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1038 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1039
1040 rcu_read_lock();
1041
1042 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1043
1044 while (page < end) {
1045 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1046 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1047 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1048
1049 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1050 offset, num);
1051 page += num;
1052 }
1053
1054 rcu_read_unlock();
03eebc9e
SH
1055
1056 if (dirty && tcg_enabled()) {
a2f4d5be 1057 tlb_reset_dirty_range_all(start, length);
5579c7f3 1058 }
03eebc9e
SH
1059
1060 return dirty;
1ccde1cb
FB
1061}
1062
79e2b9ae 1063/* Called from RCU critical section */
bb0e627a 1064hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1065 MemoryRegionSection *section,
1066 target_ulong vaddr,
1067 hwaddr paddr, hwaddr xlat,
1068 int prot,
1069 target_ulong *address)
e5548617 1070{
a8170e5e 1071 hwaddr iotlb;
e5548617
BS
1072 CPUWatchpoint *wp;
1073
cc5bea60 1074 if (memory_region_is_ram(section->mr)) {
e5548617 1075 /* Normal RAM. */
e4e69794 1076 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1077 if (!section->readonly) {
b41aac4f 1078 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1079 } else {
b41aac4f 1080 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1081 }
1082 } else {
0b8e2c10
PM
1083 AddressSpaceDispatch *d;
1084
1085 d = atomic_rcu_read(&section->address_space->dispatch);
1086 iotlb = section - d->map.sections;
149f54b5 1087 iotlb += xlat;
e5548617
BS
1088 }
1089
1090 /* Make accesses to pages with watchpoints go via the
1091 watchpoint trap routines. */
ff4700b0 1092 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1093 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1094 /* Avoid trapping reads of pages with a write breakpoint. */
1095 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1096 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1097 *address |= TLB_MMIO;
1098 break;
1099 }
1100 }
1101 }
1102
1103 return iotlb;
1104}
9fa3e853
FB
1105#endif /* defined(CONFIG_USER_ONLY) */
1106
e2eef170 1107#if !defined(CONFIG_USER_ONLY)
8da3ff18 1108
c227f099 1109static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1110 uint16_t section);
acc9d80b 1111static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1112
a2b257d6
IM
1113static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1114 qemu_anon_ram_alloc;
91138037
MA
1115
1116/*
1117 * Set a custom physical guest memory alloator.
1118 * Accelerators with unusual needs may need this. Hopefully, we can
1119 * get rid of it eventually.
1120 */
a2b257d6 1121void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1122{
1123 phys_mem_alloc = alloc;
1124}
1125
53cb28cb
MA
1126static uint16_t phys_section_add(PhysPageMap *map,
1127 MemoryRegionSection *section)
5312bd8b 1128{
68f3f65b
PB
1129 /* The physical section number is ORed with a page-aligned
1130 * pointer to produce the iotlb entries. Thus it should
1131 * never overflow into the page-aligned value.
1132 */
53cb28cb 1133 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1134
53cb28cb
MA
1135 if (map->sections_nb == map->sections_nb_alloc) {
1136 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1137 map->sections = g_renew(MemoryRegionSection, map->sections,
1138 map->sections_nb_alloc);
5312bd8b 1139 }
53cb28cb 1140 map->sections[map->sections_nb] = *section;
dfde4e6e 1141 memory_region_ref(section->mr);
53cb28cb 1142 return map->sections_nb++;
5312bd8b
AK
1143}
1144
058bc4b5
PB
1145static void phys_section_destroy(MemoryRegion *mr)
1146{
55b4e80b
DS
1147 bool have_sub_page = mr->subpage;
1148
dfde4e6e
PB
1149 memory_region_unref(mr);
1150
55b4e80b 1151 if (have_sub_page) {
058bc4b5 1152 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1153 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1154 g_free(subpage);
1155 }
1156}
1157
6092666e 1158static void phys_sections_free(PhysPageMap *map)
5312bd8b 1159{
9affd6fc
PB
1160 while (map->sections_nb > 0) {
1161 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1162 phys_section_destroy(section->mr);
1163 }
9affd6fc
PB
1164 g_free(map->sections);
1165 g_free(map->nodes);
5312bd8b
AK
1166}
1167
ac1970fb 1168static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1169{
1170 subpage_t *subpage;
a8170e5e 1171 hwaddr base = section->offset_within_address_space
0f0cb164 1172 & TARGET_PAGE_MASK;
97115a8d 1173 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1174 d->map.nodes, d->map.sections);
0f0cb164
AK
1175 MemoryRegionSection subsection = {
1176 .offset_within_address_space = base,
052e87b0 1177 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1178 };
a8170e5e 1179 hwaddr start, end;
0f0cb164 1180
f3705d53 1181 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1182
f3705d53 1183 if (!(existing->mr->subpage)) {
acc9d80b 1184 subpage = subpage_init(d->as, base);
3be91e86 1185 subsection.address_space = d->as;
0f0cb164 1186 subsection.mr = &subpage->iomem;
ac1970fb 1187 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1188 phys_section_add(&d->map, &subsection));
0f0cb164 1189 } else {
f3705d53 1190 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1191 }
1192 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1193 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1194 subpage_register(subpage, start, end,
1195 phys_section_add(&d->map, section));
0f0cb164
AK
1196}
1197
1198
052e87b0
PB
1199static void register_multipage(AddressSpaceDispatch *d,
1200 MemoryRegionSection *section)
33417e70 1201{
a8170e5e 1202 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1203 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1204 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1205 TARGET_PAGE_BITS));
dd81124b 1206
733d5ef5
PB
1207 assert(num_pages);
1208 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1209}
1210
ac1970fb 1211static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1212{
89ae337a 1213 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1214 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1215 MemoryRegionSection now = *section, remain = *section;
052e87b0 1216 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1217
733d5ef5
PB
1218 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1219 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1220 - now.offset_within_address_space;
1221
052e87b0 1222 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1223 register_subpage(d, &now);
733d5ef5 1224 } else {
052e87b0 1225 now.size = int128_zero();
733d5ef5 1226 }
052e87b0
PB
1227 while (int128_ne(remain.size, now.size)) {
1228 remain.size = int128_sub(remain.size, now.size);
1229 remain.offset_within_address_space += int128_get64(now.size);
1230 remain.offset_within_region += int128_get64(now.size);
69b67646 1231 now = remain;
052e87b0 1232 if (int128_lt(remain.size, page_size)) {
733d5ef5 1233 register_subpage(d, &now);
88266249 1234 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1235 now.size = page_size;
ac1970fb 1236 register_subpage(d, &now);
69b67646 1237 } else {
052e87b0 1238 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1239 register_multipage(d, &now);
69b67646 1240 }
0f0cb164
AK
1241 }
1242}
1243
62a2744c
SY
1244void qemu_flush_coalesced_mmio_buffer(void)
1245{
1246 if (kvm_enabled())
1247 kvm_flush_coalesced_mmio_buffer();
1248}
1249
b2a8658e
UD
1250void qemu_mutex_lock_ramlist(void)
1251{
1252 qemu_mutex_lock(&ram_list.mutex);
1253}
1254
1255void qemu_mutex_unlock_ramlist(void)
1256{
1257 qemu_mutex_unlock(&ram_list.mutex);
1258}
1259
9c607668
AK
1260#ifdef __linux__
1261/*
1262 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1263 * may or may not name the same files / on the same filesystem now as
1264 * when we actually open and map them. Iterate over the file
1265 * descriptors instead, and use qemu_fd_getpagesize().
1266 */
1267static int find_max_supported_pagesize(Object *obj, void *opaque)
1268{
1269 char *mem_path;
1270 long *hpsize_min = opaque;
1271
1272 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1273 mem_path = object_property_get_str(obj, "mem-path", NULL);
1274 if (mem_path) {
1275 long hpsize = qemu_mempath_getpagesize(mem_path);
1276 if (hpsize < *hpsize_min) {
1277 *hpsize_min = hpsize;
1278 }
1279 } else {
1280 *hpsize_min = getpagesize();
1281 }
1282 }
1283
1284 return 0;
1285}
1286
1287long qemu_getrampagesize(void)
1288{
1289 long hpsize = LONG_MAX;
1290 long mainrampagesize;
1291 Object *memdev_root;
1292
1293 if (mem_path) {
1294 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1295 } else {
1296 mainrampagesize = getpagesize();
1297 }
1298
1299 /* it's possible we have memory-backend objects with
1300 * hugepage-backed RAM. these may get mapped into system
1301 * address space via -numa parameters or memory hotplug
1302 * hooks. we want to take these into account, but we
1303 * also want to make sure these supported hugepage
1304 * sizes are applicable across the entire range of memory
1305 * we may boot from, so we take the min across all
1306 * backends, and assume normal pages in cases where a
1307 * backend isn't backed by hugepages.
1308 */
1309 memdev_root = object_resolve_path("/objects", NULL);
1310 if (memdev_root) {
1311 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1312 }
1313 if (hpsize == LONG_MAX) {
1314 /* No additional memory regions found ==> Report main RAM page size */
1315 return mainrampagesize;
1316 }
1317
1318 /* If NUMA is disabled or the NUMA nodes are not backed with a
1319 * memory-backend, then there is at least one node using "normal" RAM,
1320 * so if its page size is smaller we have got to report that size instead.
1321 */
1322 if (hpsize > mainrampagesize &&
1323 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1324 static bool warned;
1325 if (!warned) {
1326 error_report("Huge page support disabled (n/a for main memory).");
1327 warned = true;
1328 }
1329 return mainrampagesize;
1330 }
1331
1332 return hpsize;
1333}
1334#else
1335long qemu_getrampagesize(void)
1336{
1337 return getpagesize();
1338}
1339#endif
1340
e1e84ba0 1341#ifdef __linux__
d6af99c9
HZ
1342static int64_t get_file_size(int fd)
1343{
1344 int64_t size = lseek(fd, 0, SEEK_END);
1345 if (size < 0) {
1346 return -errno;
1347 }
1348 return size;
1349}
1350
04b16653
AW
1351static void *file_ram_alloc(RAMBlock *block,
1352 ram_addr_t memory,
7f56e740
PB
1353 const char *path,
1354 Error **errp)
c902760f 1355{
fd97fd44 1356 bool unlink_on_error = false;
c902760f 1357 char *filename;
8ca761f6
PF
1358 char *sanitized_name;
1359 char *c;
056b68af 1360 void *area = MAP_FAILED;
5c3ece79 1361 int fd = -1;
d6af99c9 1362 int64_t file_size;
c902760f
MT
1363
1364 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1365 error_setg(errp,
1366 "host lacks kvm mmu notifiers, -mem-path unsupported");
fd97fd44 1367 return NULL;
c902760f
MT
1368 }
1369
fd97fd44
MA
1370 for (;;) {
1371 fd = open(path, O_RDWR);
1372 if (fd >= 0) {
1373 /* @path names an existing file, use it */
1374 break;
8d31d6b6 1375 }
fd97fd44
MA
1376 if (errno == ENOENT) {
1377 /* @path names a file that doesn't exist, create it */
1378 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1379 if (fd >= 0) {
1380 unlink_on_error = true;
1381 break;
1382 }
1383 } else if (errno == EISDIR) {
1384 /* @path names a directory, create a file there */
1385 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1386 sanitized_name = g_strdup(memory_region_name(block->mr));
1387 for (c = sanitized_name; *c != '\0'; c++) {
1388 if (*c == '/') {
1389 *c = '_';
1390 }
1391 }
8ca761f6 1392
fd97fd44
MA
1393 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1394 sanitized_name);
1395 g_free(sanitized_name);
8d31d6b6 1396
fd97fd44
MA
1397 fd = mkstemp(filename);
1398 if (fd >= 0) {
1399 unlink(filename);
1400 g_free(filename);
1401 break;
1402 }
1403 g_free(filename);
8d31d6b6 1404 }
fd97fd44
MA
1405 if (errno != EEXIST && errno != EINTR) {
1406 error_setg_errno(errp, errno,
1407 "can't open backing store %s for guest RAM",
1408 path);
1409 goto error;
1410 }
1411 /*
1412 * Try again on EINTR and EEXIST. The latter happens when
1413 * something else creates the file between our two open().
1414 */
8d31d6b6 1415 }
c902760f 1416
863e9621 1417 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1418 block->mr->align = block->page_size;
1419#if defined(__s390x__)
1420 if (kvm_enabled()) {
1421 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1422 }
1423#endif
fd97fd44 1424
d6af99c9
HZ
1425 file_size = get_file_size(fd);
1426
863e9621 1427 if (memory < block->page_size) {
fd97fd44 1428 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1429 "or larger than page size 0x%zx",
1430 memory, block->page_size);
f9a49dfa 1431 goto error;
c902760f 1432 }
c902760f 1433
1775f111
HZ
1434 if (file_size > 0 && file_size < memory) {
1435 error_setg(errp, "backing store %s size 0x%" PRIx64
1436 " does not match 'size' option 0x" RAM_ADDR_FMT,
1437 path, file_size, memory);
1438 goto error;
1439 }
1440
863e9621 1441 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1442
1443 /*
1444 * ftruncate is not supported by hugetlbfs in older
1445 * hosts, so don't bother bailing out on errors.
1446 * If anything goes wrong with it under other filesystems,
1447 * mmap will fail.
d6af99c9
HZ
1448 *
1449 * Do not truncate the non-empty backend file to avoid corrupting
1450 * the existing data in the file. Disabling shrinking is not
1451 * enough. For example, the current vNVDIMM implementation stores
1452 * the guest NVDIMM labels at the end of the backend file. If the
1453 * backend file is later extended, QEMU will not be able to find
1454 * those labels. Therefore, extending the non-empty backend file
1455 * is disabled as well.
c902760f 1456 */
d6af99c9 1457 if (!file_size && ftruncate(fd, memory)) {
9742bf26 1458 perror("ftruncate");
7f56e740 1459 }
c902760f 1460
d2f39add
DD
1461 area = qemu_ram_mmap(fd, memory, block->mr->align,
1462 block->flags & RAM_SHARED);
c902760f 1463 if (area == MAP_FAILED) {
7f56e740 1464 error_setg_errno(errp, errno,
fd97fd44 1465 "unable to map backing store for guest RAM");
f9a49dfa 1466 goto error;
c902760f 1467 }
ef36fa14
MT
1468
1469 if (mem_prealloc) {
056b68af
IM
1470 os_mem_prealloc(fd, area, memory, errp);
1471 if (errp && *errp) {
1472 goto error;
1473 }
ef36fa14
MT
1474 }
1475
04b16653 1476 block->fd = fd;
c902760f 1477 return area;
f9a49dfa
MT
1478
1479error:
056b68af
IM
1480 if (area != MAP_FAILED) {
1481 qemu_ram_munmap(area, memory);
1482 }
fd97fd44
MA
1483 if (unlink_on_error) {
1484 unlink(path);
1485 }
5c3ece79
PB
1486 if (fd != -1) {
1487 close(fd);
1488 }
f9a49dfa 1489 return NULL;
c902760f
MT
1490}
1491#endif
1492
0dc3f44a 1493/* Called with the ramlist lock held. */
d17b5288 1494static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1495{
1496 RAMBlock *block, *next_block;
3e837b2c 1497 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1498
49cd9ac6
SH
1499 assert(size != 0); /* it would hand out same offset multiple times */
1500
0dc3f44a 1501 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1502 return 0;
0d53d9fe 1503 }
04b16653 1504
0dc3f44a 1505 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1506 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1507
62be4e3a 1508 end = block->offset + block->max_length;
04b16653 1509
0dc3f44a 1510 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1511 if (next_block->offset >= end) {
1512 next = MIN(next, next_block->offset);
1513 }
1514 }
1515 if (next - end >= size && next - end < mingap) {
3e837b2c 1516 offset = end;
04b16653
AW
1517 mingap = next - end;
1518 }
1519 }
3e837b2c
AW
1520
1521 if (offset == RAM_ADDR_MAX) {
1522 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1523 (uint64_t)size);
1524 abort();
1525 }
1526
04b16653
AW
1527 return offset;
1528}
1529
652d7ec2 1530ram_addr_t last_ram_offset(void)
d17b5288
AW
1531{
1532 RAMBlock *block;
1533 ram_addr_t last = 0;
1534
0dc3f44a
MD
1535 rcu_read_lock();
1536 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1537 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1538 }
0dc3f44a 1539 rcu_read_unlock();
d17b5288
AW
1540 return last;
1541}
1542
ddb97f1d
JB
1543static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1544{
1545 int ret;
ddb97f1d
JB
1546
1547 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1548 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1549 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1550 if (ret) {
1551 perror("qemu_madvise");
1552 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1553 "but dump_guest_core=off specified\n");
1554 }
1555 }
1556}
1557
422148d3
DDAG
1558const char *qemu_ram_get_idstr(RAMBlock *rb)
1559{
1560 return rb->idstr;
1561}
1562
ae3a7047 1563/* Called with iothread lock held. */
fa53a0e5 1564void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1565{
fa53a0e5 1566 RAMBlock *block;
20cfe881 1567
c5705a77
AK
1568 assert(new_block);
1569 assert(!new_block->idstr[0]);
84b89d78 1570
09e5ab63
AL
1571 if (dev) {
1572 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1573 if (id) {
1574 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1575 g_free(id);
84b89d78
CM
1576 }
1577 }
1578 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1579
ab0a9956 1580 rcu_read_lock();
0dc3f44a 1581 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
fa53a0e5
GA
1582 if (block != new_block &&
1583 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1584 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1585 new_block->idstr);
1586 abort();
1587 }
1588 }
0dc3f44a 1589 rcu_read_unlock();
c5705a77
AK
1590}
1591
ae3a7047 1592/* Called with iothread lock held. */
fa53a0e5 1593void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1594{
ae3a7047
MD
1595 /* FIXME: arch_init.c assumes that this is not called throughout
1596 * migration. Ignore the problem since hot-unplug during migration
1597 * does not work anyway.
1598 */
20cfe881
HT
1599 if (block) {
1600 memset(block->idstr, 0, sizeof(block->idstr));
1601 }
1602}
1603
863e9621
DDAG
1604size_t qemu_ram_pagesize(RAMBlock *rb)
1605{
1606 return rb->page_size;
1607}
1608
67f11b5c
DDAG
1609/* Returns the largest size of page in use */
1610size_t qemu_ram_pagesize_largest(void)
1611{
1612 RAMBlock *block;
1613 size_t largest = 0;
1614
1615 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1616 largest = MAX(largest, qemu_ram_pagesize(block));
1617 }
1618
1619 return largest;
1620}
1621
8490fc78
LC
1622static int memory_try_enable_merging(void *addr, size_t len)
1623{
75cc7f01 1624 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1625 /* disabled by the user */
1626 return 0;
1627 }
1628
1629 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1630}
1631
62be4e3a
MT
1632/* Only legal before guest might have detected the memory size: e.g. on
1633 * incoming migration, or right after reset.
1634 *
1635 * As memory core doesn't know how is memory accessed, it is up to
1636 * resize callback to update device state and/or add assertions to detect
1637 * misuse, if necessary.
1638 */
fa53a0e5 1639int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1640{
62be4e3a
MT
1641 assert(block);
1642
4ed023ce 1643 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1644
62be4e3a
MT
1645 if (block->used_length == newsize) {
1646 return 0;
1647 }
1648
1649 if (!(block->flags & RAM_RESIZEABLE)) {
1650 error_setg_errno(errp, EINVAL,
1651 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1652 " in != 0x" RAM_ADDR_FMT, block->idstr,
1653 newsize, block->used_length);
1654 return -EINVAL;
1655 }
1656
1657 if (block->max_length < newsize) {
1658 error_setg_errno(errp, EINVAL,
1659 "Length too large: %s: 0x" RAM_ADDR_FMT
1660 " > 0x" RAM_ADDR_FMT, block->idstr,
1661 newsize, block->max_length);
1662 return -EINVAL;
1663 }
1664
1665 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1666 block->used_length = newsize;
58d2707e
PB
1667 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1668 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1669 memory_region_set_size(block->mr, newsize);
1670 if (block->resized) {
1671 block->resized(block->idstr, newsize, block->host);
1672 }
1673 return 0;
1674}
1675
5b82b703
SH
1676/* Called with ram_list.mutex held */
1677static void dirty_memory_extend(ram_addr_t old_ram_size,
1678 ram_addr_t new_ram_size)
1679{
1680 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1681 DIRTY_MEMORY_BLOCK_SIZE);
1682 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1683 DIRTY_MEMORY_BLOCK_SIZE);
1684 int i;
1685
1686 /* Only need to extend if block count increased */
1687 if (new_num_blocks <= old_num_blocks) {
1688 return;
1689 }
1690
1691 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1692 DirtyMemoryBlocks *old_blocks;
1693 DirtyMemoryBlocks *new_blocks;
1694 int j;
1695
1696 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1697 new_blocks = g_malloc(sizeof(*new_blocks) +
1698 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1699
1700 if (old_num_blocks) {
1701 memcpy(new_blocks->blocks, old_blocks->blocks,
1702 old_num_blocks * sizeof(old_blocks->blocks[0]));
1703 }
1704
1705 for (j = old_num_blocks; j < new_num_blocks; j++) {
1706 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1707 }
1708
1709 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1710
1711 if (old_blocks) {
1712 g_free_rcu(old_blocks, rcu);
1713 }
1714 }
1715}
1716
528f46af 1717static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1718{
e1c57ab8 1719 RAMBlock *block;
0d53d9fe 1720 RAMBlock *last_block = NULL;
2152f5ca 1721 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1722 Error *err = NULL;
2152f5ca
JQ
1723
1724 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1725
b2a8658e 1726 qemu_mutex_lock_ramlist();
9b8424d5 1727 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1728
1729 if (!new_block->host) {
1730 if (xen_enabled()) {
9b8424d5 1731 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1732 new_block->mr, &err);
1733 if (err) {
1734 error_propagate(errp, err);
1735 qemu_mutex_unlock_ramlist();
39c350ee 1736 return;
37aa7a0e 1737 }
e1c57ab8 1738 } else {
9b8424d5 1739 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1740 &new_block->mr->align);
39228250 1741 if (!new_block->host) {
ef701d7b
HT
1742 error_setg_errno(errp, errno,
1743 "cannot set up guest memory '%s'",
1744 memory_region_name(new_block->mr));
1745 qemu_mutex_unlock_ramlist();
39c350ee 1746 return;
39228250 1747 }
9b8424d5 1748 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1749 }
c902760f 1750 }
94a6b54f 1751
dd631697
LZ
1752 new_ram_size = MAX(old_ram_size,
1753 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1754 if (new_ram_size > old_ram_size) {
1755 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1756 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1757 }
0d53d9fe
MD
1758 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1759 * QLIST (which has an RCU-friendly variant) does not have insertion at
1760 * tail, so save the last element in last_block.
1761 */
0dc3f44a 1762 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1763 last_block = block;
9b8424d5 1764 if (block->max_length < new_block->max_length) {
abb26d63
PB
1765 break;
1766 }
1767 }
1768 if (block) {
0dc3f44a 1769 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1770 } else if (last_block) {
0dc3f44a 1771 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1772 } else { /* list is empty */
0dc3f44a 1773 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1774 }
0d6d3c87 1775 ram_list.mru_block = NULL;
94a6b54f 1776
0dc3f44a
MD
1777 /* Write list before version */
1778 smp_wmb();
f798b07f 1779 ram_list.version++;
b2a8658e 1780 qemu_mutex_unlock_ramlist();
f798b07f 1781
9b8424d5 1782 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1783 new_block->used_length,
1784 DIRTY_CLIENTS_ALL);
94a6b54f 1785
a904c911
PB
1786 if (new_block->host) {
1787 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1788 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1789 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1790 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1791 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1792 }
94a6b54f 1793}
e9a1ab19 1794
0b183fc8 1795#ifdef __linux__
528f46af
FZ
1796RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1797 bool share, const char *mem_path,
1798 Error **errp)
e1c57ab8
PB
1799{
1800 RAMBlock *new_block;
ef701d7b 1801 Error *local_err = NULL;
e1c57ab8
PB
1802
1803 if (xen_enabled()) {
7f56e740 1804 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1805 return NULL;
e1c57ab8
PB
1806 }
1807
1808 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1809 /*
1810 * file_ram_alloc() needs to allocate just like
1811 * phys_mem_alloc, but we haven't bothered to provide
1812 * a hook there.
1813 */
7f56e740
PB
1814 error_setg(errp,
1815 "-mem-path not supported with this accelerator");
528f46af 1816 return NULL;
e1c57ab8
PB
1817 }
1818
4ed023ce 1819 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1820 new_block = g_malloc0(sizeof(*new_block));
1821 new_block->mr = mr;
9b8424d5
MT
1822 new_block->used_length = size;
1823 new_block->max_length = size;
dbcb8981 1824 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1825 new_block->host = file_ram_alloc(new_block, size,
1826 mem_path, errp);
1827 if (!new_block->host) {
1828 g_free(new_block);
528f46af 1829 return NULL;
7f56e740
PB
1830 }
1831
528f46af 1832 ram_block_add(new_block, &local_err);
ef701d7b
HT
1833 if (local_err) {
1834 g_free(new_block);
1835 error_propagate(errp, local_err);
528f46af 1836 return NULL;
ef701d7b 1837 }
528f46af 1838 return new_block;
e1c57ab8 1839}
0b183fc8 1840#endif
e1c57ab8 1841
62be4e3a 1842static
528f46af
FZ
1843RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1844 void (*resized)(const char*,
1845 uint64_t length,
1846 void *host),
1847 void *host, bool resizeable,
1848 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1849{
1850 RAMBlock *new_block;
ef701d7b 1851 Error *local_err = NULL;
e1c57ab8 1852
4ed023ce
DDAG
1853 size = HOST_PAGE_ALIGN(size);
1854 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1855 new_block = g_malloc0(sizeof(*new_block));
1856 new_block->mr = mr;
62be4e3a 1857 new_block->resized = resized;
9b8424d5
MT
1858 new_block->used_length = size;
1859 new_block->max_length = max_size;
62be4e3a 1860 assert(max_size >= size);
e1c57ab8 1861 new_block->fd = -1;
863e9621 1862 new_block->page_size = getpagesize();
e1c57ab8
PB
1863 new_block->host = host;
1864 if (host) {
7bd4f430 1865 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1866 }
62be4e3a
MT
1867 if (resizeable) {
1868 new_block->flags |= RAM_RESIZEABLE;
1869 }
528f46af 1870 ram_block_add(new_block, &local_err);
ef701d7b
HT
1871 if (local_err) {
1872 g_free(new_block);
1873 error_propagate(errp, local_err);
528f46af 1874 return NULL;
ef701d7b 1875 }
528f46af 1876 return new_block;
e1c57ab8
PB
1877}
1878
528f46af 1879RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1880 MemoryRegion *mr, Error **errp)
1881{
1882 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1883}
1884
528f46af 1885RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1886{
62be4e3a
MT
1887 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1888}
1889
528f46af 1890RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1891 void (*resized)(const char*,
1892 uint64_t length,
1893 void *host),
1894 MemoryRegion *mr, Error **errp)
1895{
1896 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1897}
1898
43771539
PB
1899static void reclaim_ramblock(RAMBlock *block)
1900{
1901 if (block->flags & RAM_PREALLOC) {
1902 ;
1903 } else if (xen_enabled()) {
1904 xen_invalidate_map_cache_entry(block->host);
1905#ifndef _WIN32
1906 } else if (block->fd >= 0) {
2f3a2bb1 1907 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1908 close(block->fd);
1909#endif
1910 } else {
1911 qemu_anon_ram_free(block->host, block->max_length);
1912 }
1913 g_free(block);
1914}
1915
f1060c55 1916void qemu_ram_free(RAMBlock *block)
e9a1ab19 1917{
85bc2a15
MAL
1918 if (!block) {
1919 return;
1920 }
1921
0987d735
PB
1922 if (block->host) {
1923 ram_block_notify_remove(block->host, block->max_length);
1924 }
1925
b2a8658e 1926 qemu_mutex_lock_ramlist();
f1060c55
FZ
1927 QLIST_REMOVE_RCU(block, next);
1928 ram_list.mru_block = NULL;
1929 /* Write list before version */
1930 smp_wmb();
1931 ram_list.version++;
1932 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1933 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1934}
1935
cd19cfa2
HY
1936#ifndef _WIN32
1937void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1938{
1939 RAMBlock *block;
1940 ram_addr_t offset;
1941 int flags;
1942 void *area, *vaddr;
1943
0dc3f44a 1944 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1945 offset = addr - block->offset;
9b8424d5 1946 if (offset < block->max_length) {
1240be24 1947 vaddr = ramblock_ptr(block, offset);
7bd4f430 1948 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1949 ;
dfeaf2ab
MA
1950 } else if (xen_enabled()) {
1951 abort();
cd19cfa2
HY
1952 } else {
1953 flags = MAP_FIXED;
3435f395 1954 if (block->fd >= 0) {
dbcb8981
PB
1955 flags |= (block->flags & RAM_SHARED ?
1956 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1957 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1958 flags, block->fd, offset);
cd19cfa2 1959 } else {
2eb9fbaa
MA
1960 /*
1961 * Remap needs to match alloc. Accelerators that
1962 * set phys_mem_alloc never remap. If they did,
1963 * we'd need a remap hook here.
1964 */
1965 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1966
cd19cfa2
HY
1967 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1968 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1969 flags, -1, 0);
cd19cfa2
HY
1970 }
1971 if (area != vaddr) {
f15fbc4b
AP
1972 fprintf(stderr, "Could not remap addr: "
1973 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1974 length, addr);
1975 exit(1);
1976 }
8490fc78 1977 memory_try_enable_merging(vaddr, length);
ddb97f1d 1978 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1979 }
cd19cfa2
HY
1980 }
1981 }
1982}
1983#endif /* !_WIN32 */
1984
1b5ec234 1985/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1986 * This should not be used for general purpose DMA. Use address_space_map
1987 * or address_space_rw instead. For local memory (e.g. video ram) that the
1988 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1989 *
49b24afc 1990 * Called within RCU critical section.
1b5ec234 1991 */
0878d0e1 1992void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1993{
3655cb9c
GA
1994 RAMBlock *block = ram_block;
1995
1996 if (block == NULL) {
1997 block = qemu_get_ram_block(addr);
0878d0e1 1998 addr -= block->offset;
3655cb9c 1999 }
ae3a7047
MD
2000
2001 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2002 /* We need to check if the requested address is in the RAM
2003 * because we don't want to map the entire memory in QEMU.
2004 * In that case just map until the end of the page.
2005 */
2006 if (block->offset == 0) {
49b24afc 2007 return xen_map_cache(addr, 0, 0);
0d6d3c87 2008 }
ae3a7047
MD
2009
2010 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 2011 }
0878d0e1 2012 return ramblock_ptr(block, addr);
dc828ca1
PB
2013}
2014
0878d0e1 2015/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2016 * but takes a size argument.
0dc3f44a 2017 *
e81bcda5 2018 * Called within RCU critical section.
ae3a7047 2019 */
3655cb9c
GA
2020static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2021 hwaddr *size)
38bee5dc 2022{
3655cb9c 2023 RAMBlock *block = ram_block;
8ab934f9
SS
2024 if (*size == 0) {
2025 return NULL;
2026 }
e81bcda5 2027
3655cb9c
GA
2028 if (block == NULL) {
2029 block = qemu_get_ram_block(addr);
0878d0e1 2030 addr -= block->offset;
3655cb9c 2031 }
0878d0e1 2032 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2033
2034 if (xen_enabled() && block->host == NULL) {
2035 /* We need to check if the requested address is in the RAM
2036 * because we don't want to map the entire memory in QEMU.
2037 * In that case just map the requested area.
2038 */
2039 if (block->offset == 0) {
2040 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
2041 }
2042
e81bcda5 2043 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 2044 }
e81bcda5 2045
0878d0e1 2046 return ramblock_ptr(block, addr);
38bee5dc
SS
2047}
2048
422148d3
DDAG
2049/*
2050 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2051 * in that RAMBlock.
2052 *
2053 * ptr: Host pointer to look up
2054 * round_offset: If true round the result offset down to a page boundary
2055 * *ram_addr: set to result ram_addr
2056 * *offset: set to result offset within the RAMBlock
2057 *
2058 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2059 *
2060 * By the time this function returns, the returned pointer is not protected
2061 * by RCU anymore. If the caller is not within an RCU critical section and
2062 * does not hold the iothread lock, it must have other means of protecting the
2063 * pointer, such as a reference to the region that includes the incoming
2064 * ram_addr_t.
2065 */
422148d3 2066RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2067 ram_addr_t *offset)
5579c7f3 2068{
94a6b54f
PB
2069 RAMBlock *block;
2070 uint8_t *host = ptr;
2071
868bb33f 2072 if (xen_enabled()) {
f615f396 2073 ram_addr_t ram_addr;
0dc3f44a 2074 rcu_read_lock();
f615f396
PB
2075 ram_addr = xen_ram_addr_from_mapcache(ptr);
2076 block = qemu_get_ram_block(ram_addr);
422148d3 2077 if (block) {
d6b6aec4 2078 *offset = ram_addr - block->offset;
422148d3 2079 }
0dc3f44a 2080 rcu_read_unlock();
422148d3 2081 return block;
712c2b41
SS
2082 }
2083
0dc3f44a
MD
2084 rcu_read_lock();
2085 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2086 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2087 goto found;
2088 }
2089
0dc3f44a 2090 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
2091 /* This case append when the block is not mapped. */
2092 if (block->host == NULL) {
2093 continue;
2094 }
9b8424d5 2095 if (host - block->host < block->max_length) {
23887b79 2096 goto found;
f471a17e 2097 }
94a6b54f 2098 }
432d268c 2099
0dc3f44a 2100 rcu_read_unlock();
1b5ec234 2101 return NULL;
23887b79
PB
2102
2103found:
422148d3
DDAG
2104 *offset = (host - block->host);
2105 if (round_offset) {
2106 *offset &= TARGET_PAGE_MASK;
2107 }
0dc3f44a 2108 rcu_read_unlock();
422148d3
DDAG
2109 return block;
2110}
2111
e3dd7493
DDAG
2112/*
2113 * Finds the named RAMBlock
2114 *
2115 * name: The name of RAMBlock to find
2116 *
2117 * Returns: RAMBlock (or NULL if not found)
2118 */
2119RAMBlock *qemu_ram_block_by_name(const char *name)
2120{
2121 RAMBlock *block;
2122
2123 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2124 if (!strcmp(name, block->idstr)) {
2125 return block;
2126 }
2127 }
2128
2129 return NULL;
2130}
2131
422148d3
DDAG
2132/* Some of the softmmu routines need to translate from a host pointer
2133 (typically a TLB entry) back to a ram offset. */
07bdaa41 2134ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2135{
2136 RAMBlock *block;
f615f396 2137 ram_addr_t offset;
422148d3 2138
f615f396 2139 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2140 if (!block) {
07bdaa41 2141 return RAM_ADDR_INVALID;
422148d3
DDAG
2142 }
2143
07bdaa41 2144 return block->offset + offset;
e890261f 2145}
f471a17e 2146
49b24afc 2147/* Called within RCU critical section. */
a8170e5e 2148static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2149 uint64_t val, unsigned size)
9fa3e853 2150{
ba051fb5
AB
2151 bool locked = false;
2152
52159192 2153 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2154 locked = true;
2155 tb_lock();
0e0df1e2 2156 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2157 }
0e0df1e2
AK
2158 switch (size) {
2159 case 1:
0878d0e1 2160 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2161 break;
2162 case 2:
0878d0e1 2163 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2164 break;
2165 case 4:
0878d0e1 2166 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2167 break;
2168 default:
2169 abort();
3a7d929e 2170 }
ba051fb5
AB
2171
2172 if (locked) {
2173 tb_unlock();
2174 }
2175
58d2707e
PB
2176 /* Set both VGA and migration bits for simplicity and to remove
2177 * the notdirty callback faster.
2178 */
2179 cpu_physical_memory_set_dirty_range(ram_addr, size,
2180 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2181 /* we remove the notdirty callback only if the code has been
2182 flushed */
a2cd8c85 2183 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2184 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2185 }
9fa3e853
FB
2186}
2187
b018ddf6
PB
2188static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2189 unsigned size, bool is_write)
2190{
2191 return is_write;
2192}
2193
0e0df1e2 2194static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2195 .write = notdirty_mem_write,
b018ddf6 2196 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2197 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2198};
2199
0f459d16 2200/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2201static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2202{
93afeade 2203 CPUState *cpu = current_cpu;
568496c0 2204 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2205 CPUArchState *env = cpu->env_ptr;
06d55cc1 2206 target_ulong pc, cs_base;
0f459d16 2207 target_ulong vaddr;
a1d1bb31 2208 CPUWatchpoint *wp;
89fee74a 2209 uint32_t cpu_flags;
0f459d16 2210
ff4700b0 2211 if (cpu->watchpoint_hit) {
06d55cc1
AL
2212 /* We re-entered the check after replacing the TB. Now raise
2213 * the debug interrupt so that is will trigger after the
2214 * current instruction. */
93afeade 2215 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2216 return;
2217 }
93afeade 2218 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2219 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2220 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2221 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2222 && (wp->flags & flags)) {
08225676
PM
2223 if (flags == BP_MEM_READ) {
2224 wp->flags |= BP_WATCHPOINT_HIT_READ;
2225 } else {
2226 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2227 }
2228 wp->hitaddr = vaddr;
66b9b43c 2229 wp->hitattrs = attrs;
ff4700b0 2230 if (!cpu->watchpoint_hit) {
568496c0
SF
2231 if (wp->flags & BP_CPU &&
2232 !cc->debug_check_watchpoint(cpu, wp)) {
2233 wp->flags &= ~BP_WATCHPOINT_HIT;
2234 continue;
2235 }
ff4700b0 2236 cpu->watchpoint_hit = wp;
a5e99826 2237
8d04fb55
JK
2238 /* Both tb_lock and iothread_mutex will be reset when
2239 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2240 * back into the cpu_exec main loop.
a5e99826
FK
2241 */
2242 tb_lock();
239c51a5 2243 tb_check_watchpoint(cpu);
6e140f28 2244 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2245 cpu->exception_index = EXCP_DEBUG;
5638d180 2246 cpu_loop_exit(cpu);
6e140f28
AL
2247 } else {
2248 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2249 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2250 cpu_loop_exit_noexc(cpu);
6e140f28 2251 }
06d55cc1 2252 }
6e140f28
AL
2253 } else {
2254 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2255 }
2256 }
2257}
2258
6658ffb8
PB
2259/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2260 so these check for a hit then pass through to the normal out-of-line
2261 phys routines. */
66b9b43c
PM
2262static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2263 unsigned size, MemTxAttrs attrs)
6658ffb8 2264{
66b9b43c
PM
2265 MemTxResult res;
2266 uint64_t data;
79ed0416
PM
2267 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2268 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2269
2270 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2271 switch (size) {
66b9b43c 2272 case 1:
79ed0416 2273 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2274 break;
2275 case 2:
79ed0416 2276 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2277 break;
2278 case 4:
79ed0416 2279 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2280 break;
1ec9b909
AK
2281 default: abort();
2282 }
66b9b43c
PM
2283 *pdata = data;
2284 return res;
6658ffb8
PB
2285}
2286
66b9b43c
PM
2287static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2288 uint64_t val, unsigned size,
2289 MemTxAttrs attrs)
6658ffb8 2290{
66b9b43c 2291 MemTxResult res;
79ed0416
PM
2292 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2293 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2294
2295 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2296 switch (size) {
67364150 2297 case 1:
79ed0416 2298 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2299 break;
2300 case 2:
79ed0416 2301 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2302 break;
2303 case 4:
79ed0416 2304 address_space_stl(as, addr, val, attrs, &res);
67364150 2305 break;
1ec9b909
AK
2306 default: abort();
2307 }
66b9b43c 2308 return res;
6658ffb8
PB
2309}
2310
1ec9b909 2311static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2312 .read_with_attrs = watch_mem_read,
2313 .write_with_attrs = watch_mem_write,
1ec9b909 2314 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2315};
6658ffb8 2316
f25a49e0
PM
2317static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2318 unsigned len, MemTxAttrs attrs)
db7b5426 2319{
acc9d80b 2320 subpage_t *subpage = opaque;
ff6cff75 2321 uint8_t buf[8];
5c9eb028 2322 MemTxResult res;
791af8c8 2323
db7b5426 2324#if defined(DEBUG_SUBPAGE)
016e9d62 2325 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2326 subpage, len, addr);
db7b5426 2327#endif
5c9eb028
PM
2328 res = address_space_read(subpage->as, addr + subpage->base,
2329 attrs, buf, len);
2330 if (res) {
2331 return res;
f25a49e0 2332 }
acc9d80b
JK
2333 switch (len) {
2334 case 1:
f25a49e0
PM
2335 *data = ldub_p(buf);
2336 return MEMTX_OK;
acc9d80b 2337 case 2:
f25a49e0
PM
2338 *data = lduw_p(buf);
2339 return MEMTX_OK;
acc9d80b 2340 case 4:
f25a49e0
PM
2341 *data = ldl_p(buf);
2342 return MEMTX_OK;
ff6cff75 2343 case 8:
f25a49e0
PM
2344 *data = ldq_p(buf);
2345 return MEMTX_OK;
acc9d80b
JK
2346 default:
2347 abort();
2348 }
db7b5426
BS
2349}
2350
f25a49e0
PM
2351static MemTxResult subpage_write(void *opaque, hwaddr addr,
2352 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2353{
acc9d80b 2354 subpage_t *subpage = opaque;
ff6cff75 2355 uint8_t buf[8];
acc9d80b 2356
db7b5426 2357#if defined(DEBUG_SUBPAGE)
016e9d62 2358 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2359 " value %"PRIx64"\n",
2360 __func__, subpage, len, addr, value);
db7b5426 2361#endif
acc9d80b
JK
2362 switch (len) {
2363 case 1:
2364 stb_p(buf, value);
2365 break;
2366 case 2:
2367 stw_p(buf, value);
2368 break;
2369 case 4:
2370 stl_p(buf, value);
2371 break;
ff6cff75
PB
2372 case 8:
2373 stq_p(buf, value);
2374 break;
acc9d80b
JK
2375 default:
2376 abort();
2377 }
5c9eb028
PM
2378 return address_space_write(subpage->as, addr + subpage->base,
2379 attrs, buf, len);
db7b5426
BS
2380}
2381
c353e4cc 2382static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2383 unsigned len, bool is_write)
c353e4cc 2384{
acc9d80b 2385 subpage_t *subpage = opaque;
c353e4cc 2386#if defined(DEBUG_SUBPAGE)
016e9d62 2387 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2388 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2389#endif
2390
acc9d80b 2391 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2392 len, is_write);
c353e4cc
PB
2393}
2394
70c68e44 2395static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2396 .read_with_attrs = subpage_read,
2397 .write_with_attrs = subpage_write,
ff6cff75
PB
2398 .impl.min_access_size = 1,
2399 .impl.max_access_size = 8,
2400 .valid.min_access_size = 1,
2401 .valid.max_access_size = 8,
c353e4cc 2402 .valid.accepts = subpage_accepts,
70c68e44 2403 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2404};
2405
c227f099 2406static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2407 uint16_t section)
db7b5426
BS
2408{
2409 int idx, eidx;
2410
2411 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2412 return -1;
2413 idx = SUBPAGE_IDX(start);
2414 eidx = SUBPAGE_IDX(end);
2415#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2416 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2417 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2418#endif
db7b5426 2419 for (; idx <= eidx; idx++) {
5312bd8b 2420 mmio->sub_section[idx] = section;
db7b5426
BS
2421 }
2422
2423 return 0;
2424}
2425
acc9d80b 2426static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2427{
c227f099 2428 subpage_t *mmio;
db7b5426 2429
2615fabd 2430 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
acc9d80b 2431 mmio->as = as;
1eec614b 2432 mmio->base = base;
2c9b15ca 2433 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2434 NULL, TARGET_PAGE_SIZE);
b3b00c78 2435 mmio->iomem.subpage = true;
db7b5426 2436#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2437 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2438 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2439#endif
b41aac4f 2440 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2441
2442 return mmio;
2443}
2444
a656e22f
PC
2445static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2446 MemoryRegion *mr)
5312bd8b 2447{
a656e22f 2448 assert(as);
5312bd8b 2449 MemoryRegionSection section = {
a656e22f 2450 .address_space = as,
5312bd8b
AK
2451 .mr = mr,
2452 .offset_within_address_space = 0,
2453 .offset_within_region = 0,
052e87b0 2454 .size = int128_2_64(),
5312bd8b
AK
2455 };
2456
53cb28cb 2457 return phys_section_add(map, &section);
5312bd8b
AK
2458}
2459
a54c87b6 2460MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2461{
a54c87b6
PM
2462 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2463 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2464 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2465 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2466
2467 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2468}
2469
e9179ce1
AK
2470static void io_mem_init(void)
2471{
1f6245e5 2472 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2473 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2474 NULL, UINT64_MAX);
8d04fb55
JK
2475
2476 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2477 * which can be called without the iothread mutex.
2478 */
2c9b15ca 2479 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2480 NULL, UINT64_MAX);
8d04fb55
JK
2481 memory_region_clear_global_locking(&io_mem_notdirty);
2482
2c9b15ca 2483 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2484 NULL, UINT64_MAX);
e9179ce1
AK
2485}
2486
ac1970fb 2487static void mem_begin(MemoryListener *listener)
00752703
PB
2488{
2489 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2490 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2491 uint16_t n;
2492
a656e22f 2493 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2494 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2495 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2496 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2497 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2498 assert(n == PHYS_SECTION_ROM);
a656e22f 2499 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2500 assert(n == PHYS_SECTION_WATCH);
00752703 2501
9736e55b 2502 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2503 d->as = as;
2504 as->next_dispatch = d;
2505}
2506
79e2b9ae
PB
2507static void address_space_dispatch_free(AddressSpaceDispatch *d)
2508{
2509 phys_sections_free(&d->map);
2510 g_free(d);
2511}
2512
00752703 2513static void mem_commit(MemoryListener *listener)
ac1970fb 2514{
89ae337a 2515 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2516 AddressSpaceDispatch *cur = as->dispatch;
2517 AddressSpaceDispatch *next = as->next_dispatch;
2518
53cb28cb 2519 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2520
79e2b9ae 2521 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2522 if (cur) {
79e2b9ae 2523 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2524 }
9affd6fc
PB
2525}
2526
1d71148e 2527static void tcg_commit(MemoryListener *listener)
50c1e149 2528{
32857f4d
PM
2529 CPUAddressSpace *cpuas;
2530 AddressSpaceDispatch *d;
117712c3
AK
2531
2532 /* since each CPU stores ram addresses in its TLB cache, we must
2533 reset the modified entries */
32857f4d
PM
2534 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2535 cpu_reloading_memory_map();
2536 /* The CPU and TLB are protected by the iothread lock.
2537 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2538 * may have split the RCU critical section.
2539 */
2540 d = atomic_rcu_read(&cpuas->as->dispatch);
f35e44e7 2541 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2542 tlb_flush(cpuas->cpu);
50c1e149
AK
2543}
2544
ac1970fb
AK
2545void address_space_init_dispatch(AddressSpace *as)
2546{
00752703 2547 as->dispatch = NULL;
89ae337a 2548 as->dispatch_listener = (MemoryListener) {
ac1970fb 2549 .begin = mem_begin,
00752703 2550 .commit = mem_commit,
ac1970fb
AK
2551 .region_add = mem_add,
2552 .region_nop = mem_add,
2553 .priority = 0,
2554 };
89ae337a 2555 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2556}
2557
6e48e8f9
PB
2558void address_space_unregister(AddressSpace *as)
2559{
2560 memory_listener_unregister(&as->dispatch_listener);
2561}
2562
83f3c251
AK
2563void address_space_destroy_dispatch(AddressSpace *as)
2564{
2565 AddressSpaceDispatch *d = as->dispatch;
2566
79e2b9ae
PB
2567 atomic_rcu_set(&as->dispatch, NULL);
2568 if (d) {
2569 call_rcu(d, address_space_dispatch_free, rcu);
2570 }
83f3c251
AK
2571}
2572
62152b8a
AK
2573static void memory_map_init(void)
2574{
7267c094 2575 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2576
57271d63 2577 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2578 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2579
7267c094 2580 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2581 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2582 65536);
7dca8043 2583 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2584}
2585
2586MemoryRegion *get_system_memory(void)
2587{
2588 return system_memory;
2589}
2590
309cb471
AK
2591MemoryRegion *get_system_io(void)
2592{
2593 return system_io;
2594}
2595
e2eef170
PB
2596#endif /* !defined(CONFIG_USER_ONLY) */
2597
13eb76e0
FB
2598/* physical memory access (slow version, mainly for debug) */
2599#if defined(CONFIG_USER_ONLY)
f17ec444 2600int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2601 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2602{
2603 int l, flags;
2604 target_ulong page;
53a5960a 2605 void * p;
13eb76e0
FB
2606
2607 while (len > 0) {
2608 page = addr & TARGET_PAGE_MASK;
2609 l = (page + TARGET_PAGE_SIZE) - addr;
2610 if (l > len)
2611 l = len;
2612 flags = page_get_flags(page);
2613 if (!(flags & PAGE_VALID))
a68fe89c 2614 return -1;
13eb76e0
FB
2615 if (is_write) {
2616 if (!(flags & PAGE_WRITE))
a68fe89c 2617 return -1;
579a97f7 2618 /* XXX: this code should not depend on lock_user */
72fb7daa 2619 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2620 return -1;
72fb7daa
AJ
2621 memcpy(p, buf, l);
2622 unlock_user(p, addr, l);
13eb76e0
FB
2623 } else {
2624 if (!(flags & PAGE_READ))
a68fe89c 2625 return -1;
579a97f7 2626 /* XXX: this code should not depend on lock_user */
72fb7daa 2627 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2628 return -1;
72fb7daa 2629 memcpy(buf, p, l);
5b257578 2630 unlock_user(p, addr, 0);
13eb76e0
FB
2631 }
2632 len -= l;
2633 buf += l;
2634 addr += l;
2635 }
a68fe89c 2636 return 0;
13eb76e0 2637}
8df1cd07 2638
13eb76e0 2639#else
51d7a9eb 2640
845b6214 2641static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2642 hwaddr length)
51d7a9eb 2643{
e87f7778 2644 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2645 addr += memory_region_get_ram_addr(mr);
2646
e87f7778
PB
2647 /* No early return if dirty_log_mask is or becomes 0, because
2648 * cpu_physical_memory_set_dirty_range will still call
2649 * xen_modified_memory.
2650 */
2651 if (dirty_log_mask) {
2652 dirty_log_mask =
2653 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2654 }
2655 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
ba051fb5 2656 tb_lock();
e87f7778 2657 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2658 tb_unlock();
e87f7778 2659 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2660 }
e87f7778 2661 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2662}
2663
23326164 2664static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2665{
e1622f4b 2666 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2667
2668 /* Regions are assumed to support 1-4 byte accesses unless
2669 otherwise specified. */
23326164
RH
2670 if (access_size_max == 0) {
2671 access_size_max = 4;
2672 }
2673
2674 /* Bound the maximum access by the alignment of the address. */
2675 if (!mr->ops->impl.unaligned) {
2676 unsigned align_size_max = addr & -addr;
2677 if (align_size_max != 0 && align_size_max < access_size_max) {
2678 access_size_max = align_size_max;
2679 }
82f2563f 2680 }
23326164
RH
2681
2682 /* Don't attempt accesses larger than the maximum. */
2683 if (l > access_size_max) {
2684 l = access_size_max;
82f2563f 2685 }
6554f5c0 2686 l = pow2floor(l);
23326164
RH
2687
2688 return l;
82f2563f
PB
2689}
2690
4840f10e 2691static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2692{
4840f10e
JK
2693 bool unlocked = !qemu_mutex_iothread_locked();
2694 bool release_lock = false;
2695
2696 if (unlocked && mr->global_locking) {
2697 qemu_mutex_lock_iothread();
2698 unlocked = false;
2699 release_lock = true;
2700 }
125b3806 2701 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2702 if (unlocked) {
2703 qemu_mutex_lock_iothread();
2704 }
125b3806 2705 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2706 if (unlocked) {
2707 qemu_mutex_unlock_iothread();
2708 }
125b3806 2709 }
4840f10e
JK
2710
2711 return release_lock;
125b3806
PB
2712}
2713
a203ac70
PB
2714/* Called within RCU critical section. */
2715static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2716 MemTxAttrs attrs,
2717 const uint8_t *buf,
2718 int len, hwaddr addr1,
2719 hwaddr l, MemoryRegion *mr)
13eb76e0 2720{
13eb76e0 2721 uint8_t *ptr;
791af8c8 2722 uint64_t val;
3b643495 2723 MemTxResult result = MEMTX_OK;
4840f10e 2724 bool release_lock = false;
3b46e624 2725
a203ac70 2726 for (;;) {
eb7eeb88
PB
2727 if (!memory_access_is_direct(mr, true)) {
2728 release_lock |= prepare_mmio_access(mr);
2729 l = memory_access_size(mr, l, addr1);
2730 /* XXX: could force current_cpu to NULL to avoid
2731 potential bugs */
2732 switch (l) {
2733 case 8:
2734 /* 64 bit write access */
2735 val = ldq_p(buf);
2736 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2737 attrs);
2738 break;
2739 case 4:
2740 /* 32 bit write access */
6da67de6 2741 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2742 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2743 attrs);
2744 break;
2745 case 2:
2746 /* 16 bit write access */
2747 val = lduw_p(buf);
2748 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2749 attrs);
2750 break;
2751 case 1:
2752 /* 8 bit write access */
2753 val = ldub_p(buf);
2754 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2755 attrs);
2756 break;
2757 default:
2758 abort();
13eb76e0
FB
2759 }
2760 } else {
eb7eeb88 2761 /* RAM case */
0878d0e1 2762 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2763 memcpy(ptr, buf, l);
2764 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2765 }
4840f10e
JK
2766
2767 if (release_lock) {
2768 qemu_mutex_unlock_iothread();
2769 release_lock = false;
2770 }
2771
13eb76e0
FB
2772 len -= l;
2773 buf += l;
2774 addr += l;
a203ac70
PB
2775
2776 if (!len) {
2777 break;
2778 }
2779
2780 l = len;
2781 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2782 }
fd8aaa76 2783
3b643495 2784 return result;
13eb76e0 2785}
8df1cd07 2786
a203ac70
PB
2787MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2788 const uint8_t *buf, int len)
ac1970fb 2789{
eb7eeb88 2790 hwaddr l;
eb7eeb88
PB
2791 hwaddr addr1;
2792 MemoryRegion *mr;
2793 MemTxResult result = MEMTX_OK;
eb7eeb88 2794
a203ac70
PB
2795 if (len > 0) {
2796 rcu_read_lock();
eb7eeb88 2797 l = len;
a203ac70
PB
2798 mr = address_space_translate(as, addr, &addr1, &l, true);
2799 result = address_space_write_continue(as, addr, attrs, buf, len,
2800 addr1, l, mr);
2801 rcu_read_unlock();
2802 }
2803
2804 return result;
2805}
2806
2807/* Called within RCU critical section. */
2808MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2809 MemTxAttrs attrs, uint8_t *buf,
2810 int len, hwaddr addr1, hwaddr l,
2811 MemoryRegion *mr)
2812{
2813 uint8_t *ptr;
2814 uint64_t val;
2815 MemTxResult result = MEMTX_OK;
2816 bool release_lock = false;
eb7eeb88 2817
a203ac70 2818 for (;;) {
eb7eeb88
PB
2819 if (!memory_access_is_direct(mr, false)) {
2820 /* I/O case */
2821 release_lock |= prepare_mmio_access(mr);
2822 l = memory_access_size(mr, l, addr1);
2823 switch (l) {
2824 case 8:
2825 /* 64 bit read access */
2826 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2827 attrs);
2828 stq_p(buf, val);
2829 break;
2830 case 4:
2831 /* 32 bit read access */
2832 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2833 attrs);
2834 stl_p(buf, val);
2835 break;
2836 case 2:
2837 /* 16 bit read access */
2838 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2839 attrs);
2840 stw_p(buf, val);
2841 break;
2842 case 1:
2843 /* 8 bit read access */
2844 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2845 attrs);
2846 stb_p(buf, val);
2847 break;
2848 default:
2849 abort();
2850 }
2851 } else {
2852 /* RAM case */
0878d0e1 2853 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2854 memcpy(buf, ptr, l);
2855 }
2856
2857 if (release_lock) {
2858 qemu_mutex_unlock_iothread();
2859 release_lock = false;
2860 }
2861
2862 len -= l;
2863 buf += l;
2864 addr += l;
a203ac70
PB
2865
2866 if (!len) {
2867 break;
2868 }
2869
2870 l = len;
2871 mr = address_space_translate(as, addr, &addr1, &l, false);
2872 }
2873
2874 return result;
2875}
2876
3cc8f884
PB
2877MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2878 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2879{
2880 hwaddr l;
2881 hwaddr addr1;
2882 MemoryRegion *mr;
2883 MemTxResult result = MEMTX_OK;
2884
2885 if (len > 0) {
2886 rcu_read_lock();
2887 l = len;
2888 mr = address_space_translate(as, addr, &addr1, &l, false);
2889 result = address_space_read_continue(as, addr, attrs, buf, len,
2890 addr1, l, mr);
2891 rcu_read_unlock();
eb7eeb88 2892 }
eb7eeb88
PB
2893
2894 return result;
ac1970fb
AK
2895}
2896
eb7eeb88
PB
2897MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2898 uint8_t *buf, int len, bool is_write)
2899{
2900 if (is_write) {
2901 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2902 } else {
2903 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2904 }
2905}
ac1970fb 2906
a8170e5e 2907void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2908 int len, int is_write)
2909{
5c9eb028
PM
2910 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2911 buf, len, is_write);
ac1970fb
AK
2912}
2913
582b55a9
AG
2914enum write_rom_type {
2915 WRITE_DATA,
2916 FLUSH_CACHE,
2917};
2918
2a221651 2919static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2920 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2921{
149f54b5 2922 hwaddr l;
d0ecd2aa 2923 uint8_t *ptr;
149f54b5 2924 hwaddr addr1;
5c8a00ce 2925 MemoryRegion *mr;
3b46e624 2926
41063e1e 2927 rcu_read_lock();
d0ecd2aa 2928 while (len > 0) {
149f54b5 2929 l = len;
2a221651 2930 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2931
5c8a00ce
PB
2932 if (!(memory_region_is_ram(mr) ||
2933 memory_region_is_romd(mr))) {
b242e0e0 2934 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2935 } else {
d0ecd2aa 2936 /* ROM/RAM case */
0878d0e1 2937 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2938 switch (type) {
2939 case WRITE_DATA:
2940 memcpy(ptr, buf, l);
845b6214 2941 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2942 break;
2943 case FLUSH_CACHE:
2944 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2945 break;
2946 }
d0ecd2aa
FB
2947 }
2948 len -= l;
2949 buf += l;
2950 addr += l;
2951 }
41063e1e 2952 rcu_read_unlock();
d0ecd2aa
FB
2953}
2954
582b55a9 2955/* used for ROM loading : can write in RAM and ROM */
2a221651 2956void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2957 const uint8_t *buf, int len)
2958{
2a221651 2959 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2960}
2961
2962void cpu_flush_icache_range(hwaddr start, int len)
2963{
2964 /*
2965 * This function should do the same thing as an icache flush that was
2966 * triggered from within the guest. For TCG we are always cache coherent,
2967 * so there is no need to flush anything. For KVM / Xen we need to flush
2968 * the host's instruction cache at least.
2969 */
2970 if (tcg_enabled()) {
2971 return;
2972 }
2973
2a221651
EI
2974 cpu_physical_memory_write_rom_internal(&address_space_memory,
2975 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2976}
2977
6d16c2f8 2978typedef struct {
d3e71559 2979 MemoryRegion *mr;
6d16c2f8 2980 void *buffer;
a8170e5e
AK
2981 hwaddr addr;
2982 hwaddr len;
c2cba0ff 2983 bool in_use;
6d16c2f8
AL
2984} BounceBuffer;
2985
2986static BounceBuffer bounce;
2987
ba223c29 2988typedef struct MapClient {
e95205e1 2989 QEMUBH *bh;
72cf2d4f 2990 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2991} MapClient;
2992
38e047b5 2993QemuMutex map_client_list_lock;
72cf2d4f
BS
2994static QLIST_HEAD(map_client_list, MapClient) map_client_list
2995 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2996
e95205e1
FZ
2997static void cpu_unregister_map_client_do(MapClient *client)
2998{
2999 QLIST_REMOVE(client, link);
3000 g_free(client);
3001}
3002
33b6c2ed
FZ
3003static void cpu_notify_map_clients_locked(void)
3004{
3005 MapClient *client;
3006
3007 while (!QLIST_EMPTY(&map_client_list)) {
3008 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3009 qemu_bh_schedule(client->bh);
3010 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3011 }
3012}
3013
e95205e1 3014void cpu_register_map_client(QEMUBH *bh)
ba223c29 3015{
7267c094 3016 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3017
38e047b5 3018 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3019 client->bh = bh;
72cf2d4f 3020 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3021 if (!atomic_read(&bounce.in_use)) {
3022 cpu_notify_map_clients_locked();
3023 }
38e047b5 3024 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3025}
3026
38e047b5 3027void cpu_exec_init_all(void)
ba223c29 3028{
38e047b5 3029 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3030 /* The data structures we set up here depend on knowing the page size,
3031 * so no more changes can be made after this point.
3032 * In an ideal world, nothing we did before we had finished the
3033 * machine setup would care about the target page size, and we could
3034 * do this much later, rather than requiring board models to state
3035 * up front what their requirements are.
3036 */
3037 finalize_target_page_bits();
38e047b5 3038 io_mem_init();
680a4783 3039 memory_map_init();
38e047b5 3040 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3041}
3042
e95205e1 3043void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3044{
3045 MapClient *client;
3046
e95205e1
FZ
3047 qemu_mutex_lock(&map_client_list_lock);
3048 QLIST_FOREACH(client, &map_client_list, link) {
3049 if (client->bh == bh) {
3050 cpu_unregister_map_client_do(client);
3051 break;
3052 }
ba223c29 3053 }
e95205e1 3054 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3055}
3056
3057static void cpu_notify_map_clients(void)
3058{
38e047b5 3059 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3060 cpu_notify_map_clients_locked();
38e047b5 3061 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3062}
3063
51644ab7
PB
3064bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3065{
5c8a00ce 3066 MemoryRegion *mr;
51644ab7
PB
3067 hwaddr l, xlat;
3068
41063e1e 3069 rcu_read_lock();
51644ab7
PB
3070 while (len > 0) {
3071 l = len;
5c8a00ce
PB
3072 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3073 if (!memory_access_is_direct(mr, is_write)) {
3074 l = memory_access_size(mr, l, addr);
3075 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3076 rcu_read_unlock();
51644ab7
PB
3077 return false;
3078 }
3079 }
3080
3081 len -= l;
3082 addr += l;
3083 }
41063e1e 3084 rcu_read_unlock();
51644ab7
PB
3085 return true;
3086}
3087
715c31ec
PB
3088static hwaddr
3089address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3090 MemoryRegion *mr, hwaddr base, hwaddr len,
3091 bool is_write)
3092{
3093 hwaddr done = 0;
3094 hwaddr xlat;
3095 MemoryRegion *this_mr;
3096
3097 for (;;) {
3098 target_len -= len;
3099 addr += len;
3100 done += len;
3101 if (target_len == 0) {
3102 return done;
3103 }
3104
3105 len = target_len;
3106 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3107 if (this_mr != mr || xlat != base + done) {
3108 return done;
3109 }
3110 }
3111}
3112
6d16c2f8
AL
3113/* Map a physical memory region into a host virtual address.
3114 * May map a subset of the requested range, given by and returned in *plen.
3115 * May return NULL if resources needed to perform the mapping are exhausted.
3116 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3117 * Use cpu_register_map_client() to know when retrying the map operation is
3118 * likely to succeed.
6d16c2f8 3119 */
ac1970fb 3120void *address_space_map(AddressSpace *as,
a8170e5e
AK
3121 hwaddr addr,
3122 hwaddr *plen,
ac1970fb 3123 bool is_write)
6d16c2f8 3124{
a8170e5e 3125 hwaddr len = *plen;
715c31ec
PB
3126 hwaddr l, xlat;
3127 MemoryRegion *mr;
e81bcda5 3128 void *ptr;
6d16c2f8 3129
e3127ae0
PB
3130 if (len == 0) {
3131 return NULL;
3132 }
38bee5dc 3133
e3127ae0 3134 l = len;
41063e1e 3135 rcu_read_lock();
e3127ae0 3136 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 3137
e3127ae0 3138 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3139 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3140 rcu_read_unlock();
e3127ae0 3141 return NULL;
6d16c2f8 3142 }
e85d9db5
KW
3143 /* Avoid unbounded allocations */
3144 l = MIN(l, TARGET_PAGE_SIZE);
3145 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3146 bounce.addr = addr;
3147 bounce.len = l;
d3e71559
PB
3148
3149 memory_region_ref(mr);
3150 bounce.mr = mr;
e3127ae0 3151 if (!is_write) {
5c9eb028
PM
3152 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3153 bounce.buffer, l);
8ab934f9 3154 }
6d16c2f8 3155
41063e1e 3156 rcu_read_unlock();
e3127ae0
PB
3157 *plen = l;
3158 return bounce.buffer;
3159 }
3160
e3127ae0 3161
d3e71559 3162 memory_region_ref(mr);
715c31ec
PB
3163 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3164 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
e81bcda5
PB
3165 rcu_read_unlock();
3166
3167 return ptr;
6d16c2f8
AL
3168}
3169
ac1970fb 3170/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3171 * Will also mark the memory as dirty if is_write == 1. access_len gives
3172 * the amount of memory that was actually read or written by the caller.
3173 */
a8170e5e
AK
3174void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3175 int is_write, hwaddr access_len)
6d16c2f8
AL
3176{
3177 if (buffer != bounce.buffer) {
d3e71559
PB
3178 MemoryRegion *mr;
3179 ram_addr_t addr1;
3180
07bdaa41 3181 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3182 assert(mr != NULL);
6d16c2f8 3183 if (is_write) {
845b6214 3184 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3185 }
868bb33f 3186 if (xen_enabled()) {
e41d7c69 3187 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3188 }
d3e71559 3189 memory_region_unref(mr);
6d16c2f8
AL
3190 return;
3191 }
3192 if (is_write) {
5c9eb028
PM
3193 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3194 bounce.buffer, access_len);
6d16c2f8 3195 }
f8a83245 3196 qemu_vfree(bounce.buffer);
6d16c2f8 3197 bounce.buffer = NULL;
d3e71559 3198 memory_region_unref(bounce.mr);
c2cba0ff 3199 atomic_mb_set(&bounce.in_use, false);
ba223c29 3200 cpu_notify_map_clients();
6d16c2f8 3201}
d0ecd2aa 3202
a8170e5e
AK
3203void *cpu_physical_memory_map(hwaddr addr,
3204 hwaddr *plen,
ac1970fb
AK
3205 int is_write)
3206{
3207 return address_space_map(&address_space_memory, addr, plen, is_write);
3208}
3209
a8170e5e
AK
3210void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3211 int is_write, hwaddr access_len)
ac1970fb
AK
3212{
3213 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3214}
3215
0ce265ff
PB
3216#define ARG1_DECL AddressSpace *as
3217#define ARG1 as
3218#define SUFFIX
3219#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3220#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3221#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3222#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3223#define RCU_READ_LOCK(...) rcu_read_lock()
3224#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3225#include "memory_ldst.inc.c"
1e78bcc1 3226
1f4e496e
PB
3227int64_t address_space_cache_init(MemoryRegionCache *cache,
3228 AddressSpace *as,
3229 hwaddr addr,
3230 hwaddr len,
3231 bool is_write)
3232{
3233 hwaddr l, xlat;
3234 MemoryRegion *mr;
3235 void *ptr;
3236
3237 assert(len > 0);
3238
3239 l = len;
3240 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3241 if (!memory_access_is_direct(mr, is_write)) {
3242 return -EINVAL;
3243 }
3244
3245 l = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3246 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, &l);
3247
3248 cache->xlat = xlat;
3249 cache->is_write = is_write;
3250 cache->mr = mr;
3251 cache->ptr = ptr;
3252 cache->len = l;
3253 memory_region_ref(cache->mr);
3254
3255 return l;
3256}
3257
3258void address_space_cache_invalidate(MemoryRegionCache *cache,
3259 hwaddr addr,
3260 hwaddr access_len)
3261{
3262 assert(cache->is_write);
3263 invalidate_and_set_dirty(cache->mr, addr + cache->xlat, access_len);
3264}
3265
3266void address_space_cache_destroy(MemoryRegionCache *cache)
3267{
3268 if (!cache->mr) {
3269 return;
3270 }
3271
3272 if (xen_enabled()) {
3273 xen_invalidate_map_cache_entry(cache->ptr);
3274 }
3275 memory_region_unref(cache->mr);
91047df3 3276 cache->mr = NULL;
1f4e496e
PB
3277}
3278
3279/* Called from RCU critical section. This function has the same
3280 * semantics as address_space_translate, but it only works on a
3281 * predefined range of a MemoryRegion that was mapped with
3282 * address_space_cache_init.
3283 */
3284static inline MemoryRegion *address_space_translate_cached(
3285 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3286 hwaddr *plen, bool is_write)
3287{
3288 assert(addr < cache->len && *plen <= cache->len - addr);
3289 *xlat = addr + cache->xlat;
3290 return cache->mr;
3291}
3292
3293#define ARG1_DECL MemoryRegionCache *cache
3294#define ARG1 cache
3295#define SUFFIX _cached
3296#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3297#define IS_DIRECT(mr, is_write) true
3298#define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3299#define INVALIDATE(mr, ofs, len) ((void)0)
3300#define RCU_READ_LOCK() ((void)0)
3301#define RCU_READ_UNLOCK() ((void)0)
3302#include "memory_ldst.inc.c"
3303
5e2972fd 3304/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3305int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3306 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3307{
3308 int l;
a8170e5e 3309 hwaddr phys_addr;
9b3c35e0 3310 target_ulong page;
13eb76e0
FB
3311
3312 while (len > 0) {
5232e4c7
PM
3313 int asidx;
3314 MemTxAttrs attrs;
3315
13eb76e0 3316 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3317 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3318 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3319 /* if no physical page mapped, return an error */
3320 if (phys_addr == -1)
3321 return -1;
3322 l = (page + TARGET_PAGE_SIZE) - addr;
3323 if (l > len)
3324 l = len;
5e2972fd 3325 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3326 if (is_write) {
5232e4c7
PM
3327 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3328 phys_addr, buf, l);
2e38847b 3329 } else {
5232e4c7
PM
3330 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3331 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3332 buf, l, 0);
2e38847b 3333 }
13eb76e0
FB
3334 len -= l;
3335 buf += l;
3336 addr += l;
3337 }
3338 return 0;
3339}
038629a6
DDAG
3340
3341/*
3342 * Allows code that needs to deal with migration bitmaps etc to still be built
3343 * target independent.
3344 */
3345size_t qemu_target_page_bits(void)
3346{
3347 return TARGET_PAGE_BITS;
3348}
3349
a68fe89c 3350#endif
13eb76e0 3351
8e4a424b
BS
3352/*
3353 * A helper function for the _utterly broken_ virtio device model to find out if
3354 * it's running on a big endian machine. Don't do this at home kids!
3355 */
98ed8ecf
GK
3356bool target_words_bigendian(void);
3357bool target_words_bigendian(void)
8e4a424b
BS
3358{
3359#if defined(TARGET_WORDS_BIGENDIAN)
3360 return true;
3361#else
3362 return false;
3363#endif
3364}
3365
76f35538 3366#ifndef CONFIG_USER_ONLY
a8170e5e 3367bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3368{
5c8a00ce 3369 MemoryRegion*mr;
149f54b5 3370 hwaddr l = 1;
41063e1e 3371 bool res;
76f35538 3372
41063e1e 3373 rcu_read_lock();
5c8a00ce
PB
3374 mr = address_space_translate(&address_space_memory,
3375 phys_addr, &phys_addr, &l, false);
76f35538 3376
41063e1e
PB
3377 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3378 rcu_read_unlock();
3379 return res;
76f35538 3380}
bd2fa51f 3381
e3807054 3382int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3383{
3384 RAMBlock *block;
e3807054 3385 int ret = 0;
bd2fa51f 3386
0dc3f44a
MD
3387 rcu_read_lock();
3388 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3389 ret = func(block->idstr, block->host, block->offset,
3390 block->used_length, opaque);
3391 if (ret) {
3392 break;
3393 }
bd2fa51f 3394 }
0dc3f44a 3395 rcu_read_unlock();
e3807054 3396 return ret;
bd2fa51f 3397}
d3a5038c
DDAG
3398
3399/*
3400 * Unmap pages of memory from start to start+length such that
3401 * they a) read as 0, b) Trigger whatever fault mechanism
3402 * the OS provides for postcopy.
3403 * The pages must be unmapped by the end of the function.
3404 * Returns: 0 on success, none-0 on failure
3405 *
3406 */
3407int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3408{
3409 int ret = -1;
3410
3411 uint8_t *host_startaddr = rb->host + start;
3412
3413 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3414 error_report("ram_block_discard_range: Unaligned start address: %p",
3415 host_startaddr);
3416 goto err;
3417 }
3418
3419 if ((start + length) <= rb->used_length) {
3420 uint8_t *host_endaddr = host_startaddr + length;
3421 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3422 error_report("ram_block_discard_range: Unaligned end address: %p",
3423 host_endaddr);
3424 goto err;
3425 }
3426
3427 errno = ENOTSUP; /* If we are missing MADVISE etc */
3428
e2fa71f5 3429 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3430#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3431 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3432 * freeing the page.
3433 */
3434 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3435#endif
e2fa71f5
DDAG
3436 } else {
3437 /* Huge page case - unfortunately it can't do DONTNEED, but
3438 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3439 * huge page file.
3440 */
3441#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3442 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3443 start, length);
3444#endif
3445 }
d3a5038c
DDAG
3446 if (ret) {
3447 ret = -errno;
3448 error_report("ram_block_discard_range: Failed to discard range "
3449 "%s:%" PRIx64 " +%zx (%d)",
3450 rb->idstr, start, length, ret);
3451 }
3452 } else {
3453 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3454 "/%zx/" RAM_ADDR_FMT")",
3455 rb->idstr, start, length, rb->used_length);
3456 }
3457
3458err:
3459 return ret;
3460}
3461
ec3f8c99 3462#endif