]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
exec: Change cpu_watchpoint_{insert,remove{,_by_ref,_all}} argument
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
777872e5 20#ifndef _WIN32
a98d49b1 21#include <sys/types.h>
d5a8f07c
FB
22#include <sys/mman.h>
23#endif
54936004 24
055403b2 25#include "qemu-common.h"
6180a181 26#include "cpu.h"
b67d9a52 27#include "tcg.h"
b3c7724c 28#include "hw/hw.h"
cc9e98cb 29#include "hw/qdev.h"
1de7afc9 30#include "qemu/osdep.h"
9c17d615 31#include "sysemu/kvm.h"
2ff3de68 32#include "sysemu/sysemu.h"
0d09e41a 33#include "hw/xen/xen.h"
1de7afc9
PB
34#include "qemu/timer.h"
35#include "qemu/config-file.h"
75a34036 36#include "qemu/error-report.h"
022c62cb 37#include "exec/memory.h"
9c17d615 38#include "sysemu/dma.h"
022c62cb 39#include "exec/address-spaces.h"
53a5960a
PB
40#if defined(CONFIG_USER_ONLY)
41#include <qemu.h>
432d268c 42#else /* !CONFIG_USER_ONLY */
9c17d615 43#include "sysemu/xen-mapcache.h"
6506e4f9 44#include "trace.h"
53a5960a 45#endif
0d6d3c87 46#include "exec/cpu-all.h"
54936004 47
022c62cb 48#include "exec/cputlb.h"
5b6dd868 49#include "translate-all.h"
0cac1b66 50
022c62cb 51#include "exec/memory-internal.h"
220c3ebd 52#include "exec/ram_addr.h"
582b55a9 53#include "qemu/cache-utils.h"
67d95c15 54
b35ba30f
MT
55#include "qemu/range.h"
56
db7b5426 57//#define DEBUG_SUBPAGE
1196be37 58
e2eef170 59#if !defined(CONFIG_USER_ONLY)
981fdf23 60static bool in_migration;
94a6b54f 61
a3161038 62RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
63
64static MemoryRegion *system_memory;
309cb471 65static MemoryRegion *system_io;
62152b8a 66
f6790af6
AK
67AddressSpace address_space_io;
68AddressSpace address_space_memory;
2673a5da 69
0844e007 70MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 71static MemoryRegion io_mem_unassigned;
0e0df1e2 72
e2eef170 73#endif
9fa3e853 74
bdc44640 75struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
76/* current CPU in the current thread. It is only valid inside
77 cpu_exec() */
4917cf44 78DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 79/* 0 = Do not count executed instructions.
bf20dc07 80 1 = Precise instruction counting.
2e70f6ef 81 2 = Adaptive rate instruction counting. */
5708fc66 82int use_icount;
6a00d601 83
e2eef170 84#if !defined(CONFIG_USER_ONLY)
4346ae3e 85
1db8abb1
PB
86typedef struct PhysPageEntry PhysPageEntry;
87
88struct PhysPageEntry {
9736e55b 89 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 90 uint32_t skip : 6;
9736e55b 91 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 92 uint32_t ptr : 26;
1db8abb1
PB
93};
94
8b795765
MT
95#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
96
03f49957 97/* Size of the L2 (and L3, etc) page tables. */
57271d63 98#define ADDR_SPACE_BITS 64
03f49957 99
026736ce 100#define P_L2_BITS 9
03f49957
PB
101#define P_L2_SIZE (1 << P_L2_BITS)
102
103#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
104
105typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 106
53cb28cb
MA
107typedef struct PhysPageMap {
108 unsigned sections_nb;
109 unsigned sections_nb_alloc;
110 unsigned nodes_nb;
111 unsigned nodes_nb_alloc;
112 Node *nodes;
113 MemoryRegionSection *sections;
114} PhysPageMap;
115
1db8abb1
PB
116struct AddressSpaceDispatch {
117 /* This is a multi-level map on the physical address space.
118 * The bottom level has pointers to MemoryRegionSections.
119 */
120 PhysPageEntry phys_map;
53cb28cb 121 PhysPageMap map;
acc9d80b 122 AddressSpace *as;
1db8abb1
PB
123};
124
90260c6c
JK
125#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
126typedef struct subpage_t {
127 MemoryRegion iomem;
acc9d80b 128 AddressSpace *as;
90260c6c
JK
129 hwaddr base;
130 uint16_t sub_section[TARGET_PAGE_SIZE];
131} subpage_t;
132
b41aac4f
LPF
133#define PHYS_SECTION_UNASSIGNED 0
134#define PHYS_SECTION_NOTDIRTY 1
135#define PHYS_SECTION_ROM 2
136#define PHYS_SECTION_WATCH 3
5312bd8b 137
e2eef170 138static void io_mem_init(void);
62152b8a 139static void memory_map_init(void);
09daed84 140static void tcg_commit(MemoryListener *listener);
e2eef170 141
1ec9b909 142static MemoryRegion io_mem_watch;
6658ffb8 143#endif
fd6ce8f6 144
6d9a1304 145#if !defined(CONFIG_USER_ONLY)
d6f2ea22 146
53cb28cb 147static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 148{
53cb28cb
MA
149 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
150 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
151 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
152 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 153 }
f7bf5461
AK
154}
155
53cb28cb 156static uint32_t phys_map_node_alloc(PhysPageMap *map)
f7bf5461
AK
157{
158 unsigned i;
8b795765 159 uint32_t ret;
f7bf5461 160
53cb28cb 161 ret = map->nodes_nb++;
f7bf5461 162 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 163 assert(ret != map->nodes_nb_alloc);
03f49957 164 for (i = 0; i < P_L2_SIZE; ++i) {
53cb28cb
MA
165 map->nodes[ret][i].skip = 1;
166 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 167 }
f7bf5461 168 return ret;
d6f2ea22
AK
169}
170
53cb28cb
MA
171static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
172 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 173 int level)
f7bf5461
AK
174{
175 PhysPageEntry *p;
176 int i;
03f49957 177 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 178
9736e55b 179 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
53cb28cb
MA
180 lp->ptr = phys_map_node_alloc(map);
181 p = map->nodes[lp->ptr];
f7bf5461 182 if (level == 0) {
03f49957 183 for (i = 0; i < P_L2_SIZE; i++) {
9736e55b 184 p[i].skip = 0;
b41aac4f 185 p[i].ptr = PHYS_SECTION_UNASSIGNED;
4346ae3e 186 }
67c4d23c 187 }
f7bf5461 188 } else {
53cb28cb 189 p = map->nodes[lp->ptr];
92e873b9 190 }
03f49957 191 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 192
03f49957 193 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 194 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 195 lp->skip = 0;
c19e8800 196 lp->ptr = leaf;
07f07b31
AK
197 *index += step;
198 *nb -= step;
2999097b 199 } else {
53cb28cb 200 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
201 }
202 ++lp;
f7bf5461
AK
203 }
204}
205
ac1970fb 206static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 207 hwaddr index, hwaddr nb,
2999097b 208 uint16_t leaf)
f7bf5461 209{
2999097b 210 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 211 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 212
53cb28cb 213 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
214}
215
b35ba30f
MT
216/* Compact a non leaf page entry. Simply detect that the entry has a single child,
217 * and update our entry so we can skip it and go directly to the destination.
218 */
219static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
220{
221 unsigned valid_ptr = P_L2_SIZE;
222 int valid = 0;
223 PhysPageEntry *p;
224 int i;
225
226 if (lp->ptr == PHYS_MAP_NODE_NIL) {
227 return;
228 }
229
230 p = nodes[lp->ptr];
231 for (i = 0; i < P_L2_SIZE; i++) {
232 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
233 continue;
234 }
235
236 valid_ptr = i;
237 valid++;
238 if (p[i].skip) {
239 phys_page_compact(&p[i], nodes, compacted);
240 }
241 }
242
243 /* We can only compress if there's only one child. */
244 if (valid != 1) {
245 return;
246 }
247
248 assert(valid_ptr < P_L2_SIZE);
249
250 /* Don't compress if it won't fit in the # of bits we have. */
251 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
252 return;
253 }
254
255 lp->ptr = p[valid_ptr].ptr;
256 if (!p[valid_ptr].skip) {
257 /* If our only child is a leaf, make this a leaf. */
258 /* By design, we should have made this node a leaf to begin with so we
259 * should never reach here.
260 * But since it's so simple to handle this, let's do it just in case we
261 * change this rule.
262 */
263 lp->skip = 0;
264 } else {
265 lp->skip += p[valid_ptr].skip;
266 }
267}
268
269static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
270{
271 DECLARE_BITMAP(compacted, nodes_nb);
272
273 if (d->phys_map.skip) {
53cb28cb 274 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
275 }
276}
277
97115a8d 278static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 279 Node *nodes, MemoryRegionSection *sections)
92e873b9 280{
31ab2b4a 281 PhysPageEntry *p;
97115a8d 282 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 283 int i;
f1f6e3b8 284
9736e55b 285 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 286 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 287 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 288 }
9affd6fc 289 p = nodes[lp.ptr];
03f49957 290 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 291 }
b35ba30f
MT
292
293 if (sections[lp.ptr].size.hi ||
294 range_covers_byte(sections[lp.ptr].offset_within_address_space,
295 sections[lp.ptr].size.lo, addr)) {
296 return &sections[lp.ptr];
297 } else {
298 return &sections[PHYS_SECTION_UNASSIGNED];
299 }
f3705d53
AK
300}
301
e5548617
BS
302bool memory_region_is_unassigned(MemoryRegion *mr)
303{
2a8e7499 304 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 305 && mr != &io_mem_watch;
fd6ce8f6 306}
149f54b5 307
c7086b4a 308static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
309 hwaddr addr,
310 bool resolve_subpage)
9f029603 311{
90260c6c
JK
312 MemoryRegionSection *section;
313 subpage_t *subpage;
314
53cb28cb 315 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
316 if (resolve_subpage && section->mr->subpage) {
317 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 318 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
319 }
320 return section;
9f029603
JK
321}
322
90260c6c 323static MemoryRegionSection *
c7086b4a 324address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 325 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
326{
327 MemoryRegionSection *section;
a87f3954 328 Int128 diff;
149f54b5 329
c7086b4a 330 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
331 /* Compute offset within MemoryRegionSection */
332 addr -= section->offset_within_address_space;
333
334 /* Compute offset within MemoryRegion */
335 *xlat = addr + section->offset_within_region;
336
337 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 338 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
339 return section;
340}
90260c6c 341
a87f3954
PB
342static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
343{
344 if (memory_region_is_ram(mr)) {
345 return !(is_write && mr->readonly);
346 }
347 if (memory_region_is_romd(mr)) {
348 return !is_write;
349 }
350
351 return false;
352}
353
5c8a00ce
PB
354MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
355 hwaddr *xlat, hwaddr *plen,
356 bool is_write)
90260c6c 357{
30951157
AK
358 IOMMUTLBEntry iotlb;
359 MemoryRegionSection *section;
360 MemoryRegion *mr;
361 hwaddr len = *plen;
362
363 for (;;) {
a87f3954 364 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
30951157
AK
365 mr = section->mr;
366
367 if (!mr->iommu_ops) {
368 break;
369 }
370
371 iotlb = mr->iommu_ops->translate(mr, addr);
372 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
373 | (addr & iotlb.addr_mask));
374 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
375 if (!(iotlb.perm & (1 << is_write))) {
376 mr = &io_mem_unassigned;
377 break;
378 }
379
380 as = iotlb.target_as;
381 }
382
a87f3954
PB
383 if (memory_access_is_direct(mr, is_write)) {
384 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
385 len = MIN(page, len);
386 }
387
30951157
AK
388 *plen = len;
389 *xlat = addr;
390 return mr;
90260c6c
JK
391}
392
393MemoryRegionSection *
394address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
395 hwaddr *plen)
396{
30951157 397 MemoryRegionSection *section;
c7086b4a 398 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
30951157
AK
399
400 assert(!section->mr->iommu_ops);
401 return section;
90260c6c 402}
5b6dd868 403#endif
fd6ce8f6 404
5b6dd868 405void cpu_exec_init_all(void)
fdbb84d1 406{
5b6dd868 407#if !defined(CONFIG_USER_ONLY)
b2a8658e 408 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
409 memory_map_init();
410 io_mem_init();
fdbb84d1 411#endif
5b6dd868 412}
fdbb84d1 413
b170fce3 414#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
415
416static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 417{
259186a7 418 CPUState *cpu = opaque;
a513fe19 419
5b6dd868
BS
420 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
421 version_id is increased. */
259186a7
AF
422 cpu->interrupt_request &= ~0x01;
423 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
424
425 return 0;
a513fe19 426}
7501267e 427
1a1562f5 428const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
429 .name = "cpu_common",
430 .version_id = 1,
431 .minimum_version_id = 1,
432 .minimum_version_id_old = 1,
433 .post_load = cpu_common_post_load,
434 .fields = (VMStateField []) {
259186a7
AF
435 VMSTATE_UINT32(halted, CPUState),
436 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
437 VMSTATE_END_OF_LIST()
438 }
439};
1a1562f5 440
5b6dd868 441#endif
ea041c0e 442
38d8f5c8 443CPUState *qemu_get_cpu(int index)
ea041c0e 444{
bdc44640 445 CPUState *cpu;
ea041c0e 446
bdc44640 447 CPU_FOREACH(cpu) {
55e5c285 448 if (cpu->cpu_index == index) {
bdc44640 449 return cpu;
55e5c285 450 }
ea041c0e 451 }
5b6dd868 452
bdc44640 453 return NULL;
ea041c0e
FB
454}
455
09daed84
EI
456#if !defined(CONFIG_USER_ONLY)
457void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
458{
459 /* We only support one address space per cpu at the moment. */
460 assert(cpu->as == as);
461
462 if (cpu->tcg_as_listener) {
463 memory_listener_unregister(cpu->tcg_as_listener);
464 } else {
465 cpu->tcg_as_listener = g_new0(MemoryListener, 1);
466 }
467 cpu->tcg_as_listener->commit = tcg_commit;
468 memory_listener_register(cpu->tcg_as_listener, as);
469}
470#endif
471
5b6dd868 472void cpu_exec_init(CPUArchState *env)
ea041c0e 473{
5b6dd868 474 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 475 CPUClass *cc = CPU_GET_CLASS(cpu);
bdc44640 476 CPUState *some_cpu;
5b6dd868
BS
477 int cpu_index;
478
479#if defined(CONFIG_USER_ONLY)
480 cpu_list_lock();
481#endif
5b6dd868 482 cpu_index = 0;
bdc44640 483 CPU_FOREACH(some_cpu) {
5b6dd868
BS
484 cpu_index++;
485 }
55e5c285 486 cpu->cpu_index = cpu_index;
1b1ed8dc 487 cpu->numa_node = 0;
f0c3c505 488 QTAILQ_INIT(&cpu->breakpoints);
ff4700b0 489 QTAILQ_INIT(&cpu->watchpoints);
5b6dd868 490#ifndef CONFIG_USER_ONLY
09daed84 491 cpu->as = &address_space_memory;
5b6dd868
BS
492 cpu->thread_id = qemu_get_thread_id();
493#endif
bdc44640 494 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
495#if defined(CONFIG_USER_ONLY)
496 cpu_list_unlock();
497#endif
e0d47944
AF
498 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
499 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
500 }
5b6dd868 501#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
502 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
503 cpu_save, cpu_load, env);
b170fce3 504 assert(cc->vmsd == NULL);
e0d47944 505 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 506#endif
b170fce3
AF
507 if (cc->vmsd != NULL) {
508 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
509 }
ea041c0e
FB
510}
511
1fddef4b 512#if defined(TARGET_HAS_ICE)
94df27fd 513#if defined(CONFIG_USER_ONLY)
00b941e5 514static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
515{
516 tb_invalidate_phys_page_range(pc, pc + 1, 0);
517}
518#else
00b941e5 519static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 520{
e8262a1b
MF
521 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
522 if (phys != -1) {
09daed84 523 tb_invalidate_phys_addr(cpu->as,
29d8ec7b 524 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 525 }
1e7855a5 526}
c27004ec 527#endif
94df27fd 528#endif /* TARGET_HAS_ICE */
d720b93d 529
c527ee8f 530#if defined(CONFIG_USER_ONLY)
75a34036 531void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
532
533{
534}
535
75a34036 536int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
537 int flags, CPUWatchpoint **watchpoint)
538{
539 return -ENOSYS;
540}
541#else
6658ffb8 542/* Add a watchpoint. */
75a34036 543int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 544 int flags, CPUWatchpoint **watchpoint)
6658ffb8 545{
75a34036
AF
546 CPUArchState *env = cpu->env_ptr;
547 vaddr len_mask = ~(len - 1);
c0ce998e 548 CPUWatchpoint *wp;
6658ffb8 549
b4051334 550 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
551 if ((len & (len - 1)) || (addr & ~len_mask) ||
552 len == 0 || len > TARGET_PAGE_SIZE) {
75a34036
AF
553 error_report("tried to set invalid watchpoint at %"
554 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
555 return -EINVAL;
556 }
7267c094 557 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
558
559 wp->vaddr = addr;
b4051334 560 wp->len_mask = len_mask;
a1d1bb31
AL
561 wp->flags = flags;
562
2dc9f411 563 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
564 if (flags & BP_GDB) {
565 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
566 } else {
567 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
568 }
6658ffb8 569
6658ffb8 570 tlb_flush_page(env, addr);
a1d1bb31
AL
571
572 if (watchpoint)
573 *watchpoint = wp;
574 return 0;
6658ffb8
PB
575}
576
a1d1bb31 577/* Remove a specific watchpoint. */
75a34036 578int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 579 int flags)
6658ffb8 580{
75a34036 581 vaddr len_mask = ~(len - 1);
a1d1bb31 582 CPUWatchpoint *wp;
6658ffb8 583
ff4700b0 584 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
b4051334 585 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 586 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 587 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
588 return 0;
589 }
590 }
a1d1bb31 591 return -ENOENT;
6658ffb8
PB
592}
593
a1d1bb31 594/* Remove a specific watchpoint by reference. */
75a34036 595void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 596{
75a34036 597 CPUArchState *env = cpu->env_ptr;
ff4700b0
AF
598
599 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 600
a1d1bb31
AL
601 tlb_flush_page(env, watchpoint->vaddr);
602
7267c094 603 g_free(watchpoint);
a1d1bb31
AL
604}
605
606/* Remove all matching watchpoints. */
75a34036 607void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 608{
c0ce998e 609 CPUWatchpoint *wp, *next;
a1d1bb31 610
ff4700b0 611 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
612 if (wp->flags & mask) {
613 cpu_watchpoint_remove_by_ref(cpu, wp);
614 }
c0ce998e 615 }
7d03f82f 616}
c527ee8f 617#endif
7d03f82f 618
a1d1bb31 619/* Add a breakpoint. */
9349b4f9 620int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 621 CPUBreakpoint **breakpoint)
4c3a88a2 622{
1fddef4b 623#if defined(TARGET_HAS_ICE)
f0c3c505 624 CPUState *cpu = ENV_GET_CPU(env);
c0ce998e 625 CPUBreakpoint *bp;
3b46e624 626
7267c094 627 bp = g_malloc(sizeof(*bp));
4c3a88a2 628
a1d1bb31
AL
629 bp->pc = pc;
630 bp->flags = flags;
631
2dc9f411 632 /* keep all GDB-injected breakpoints in front */
00b941e5 633 if (flags & BP_GDB) {
f0c3c505 634 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 635 } else {
f0c3c505 636 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 637 }
3b46e624 638
f0c3c505 639 breakpoint_invalidate(cpu, pc);
a1d1bb31 640
00b941e5 641 if (breakpoint) {
a1d1bb31 642 *breakpoint = bp;
00b941e5 643 }
4c3a88a2
FB
644 return 0;
645#else
a1d1bb31 646 return -ENOSYS;
4c3a88a2
FB
647#endif
648}
649
a1d1bb31 650/* Remove a specific breakpoint. */
9349b4f9 651int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 652{
7d03f82f 653#if defined(TARGET_HAS_ICE)
f0c3c505 654 CPUState *cpu = ENV_GET_CPU(env);
a1d1bb31
AL
655 CPUBreakpoint *bp;
656
f0c3c505 657 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31
AL
658 if (bp->pc == pc && bp->flags == flags) {
659 cpu_breakpoint_remove_by_ref(env, bp);
660 return 0;
661 }
7d03f82f 662 }
a1d1bb31
AL
663 return -ENOENT;
664#else
665 return -ENOSYS;
7d03f82f
EI
666#endif
667}
668
a1d1bb31 669/* Remove a specific breakpoint by reference. */
9349b4f9 670void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 671{
1fddef4b 672#if defined(TARGET_HAS_ICE)
f0c3c505 673 CPUState *cpu = ENV_GET_CPU(env);
d720b93d 674
f0c3c505
AF
675 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
676
677 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 678
7267c094 679 g_free(breakpoint);
a1d1bb31
AL
680#endif
681}
682
683/* Remove all matching breakpoints. */
9349b4f9 684void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
685{
686#if defined(TARGET_HAS_ICE)
f0c3c505 687 CPUState *cpu = ENV_GET_CPU(env);
c0ce998e 688 CPUBreakpoint *bp, *next;
a1d1bb31 689
f0c3c505 690 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
a1d1bb31
AL
691 if (bp->flags & mask)
692 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 693 }
4c3a88a2
FB
694#endif
695}
696
c33a346e
FB
697/* enable or disable single step mode. EXCP_DEBUG is returned by the
698 CPU loop after each instruction */
3825b28f 699void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 700{
1fddef4b 701#if defined(TARGET_HAS_ICE)
ed2803da
AF
702 if (cpu->singlestep_enabled != enabled) {
703 cpu->singlestep_enabled = enabled;
704 if (kvm_enabled()) {
38e478ec 705 kvm_update_guest_debug(cpu, 0);
ed2803da 706 } else {
ccbb4d44 707 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 708 /* XXX: only flush what is necessary */
38e478ec 709 CPUArchState *env = cpu->env_ptr;
e22a25c9
AL
710 tb_flush(env);
711 }
c33a346e
FB
712 }
713#endif
714}
715
9349b4f9 716void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 717{
878096ee 718 CPUState *cpu = ENV_GET_CPU(env);
7501267e 719 va_list ap;
493ae1f0 720 va_list ap2;
7501267e
FB
721
722 va_start(ap, fmt);
493ae1f0 723 va_copy(ap2, ap);
7501267e
FB
724 fprintf(stderr, "qemu: fatal: ");
725 vfprintf(stderr, fmt, ap);
726 fprintf(stderr, "\n");
878096ee 727 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
728 if (qemu_log_enabled()) {
729 qemu_log("qemu: fatal: ");
730 qemu_log_vprintf(fmt, ap2);
731 qemu_log("\n");
a0762859 732 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 733 qemu_log_flush();
93fcfe39 734 qemu_log_close();
924edcae 735 }
493ae1f0 736 va_end(ap2);
f9373291 737 va_end(ap);
fd052bf6
RV
738#if defined(CONFIG_USER_ONLY)
739 {
740 struct sigaction act;
741 sigfillset(&act.sa_mask);
742 act.sa_handler = SIG_DFL;
743 sigaction(SIGABRT, &act, NULL);
744 }
745#endif
7501267e
FB
746 abort();
747}
748
0124311e 749#if !defined(CONFIG_USER_ONLY)
041603fe
PB
750static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
751{
752 RAMBlock *block;
753
754 /* The list is protected by the iothread lock here. */
755 block = ram_list.mru_block;
756 if (block && addr - block->offset < block->length) {
757 goto found;
758 }
759 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
760 if (addr - block->offset < block->length) {
761 goto found;
762 }
763 }
764
765 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
766 abort();
767
768found:
769 ram_list.mru_block = block;
770 return block;
771}
772
a2f4d5be 773static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 774{
041603fe 775 ram_addr_t start1;
a2f4d5be
JQ
776 RAMBlock *block;
777 ram_addr_t end;
778
779 end = TARGET_PAGE_ALIGN(start + length);
780 start &= TARGET_PAGE_MASK;
d24981d3 781
041603fe
PB
782 block = qemu_get_ram_block(start);
783 assert(block == qemu_get_ram_block(end - 1));
784 start1 = (uintptr_t)block->host + (start - block->offset);
785 cpu_tlb_reset_dirty_all(start1, length);
d24981d3
JQ
786}
787
5579c7f3 788/* Note: start and end must be within the same ram block. */
a2f4d5be 789void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
52159192 790 unsigned client)
1ccde1cb 791{
1ccde1cb
FB
792 if (length == 0)
793 return;
ace694cc 794 cpu_physical_memory_clear_dirty_range(start, length, client);
f23db169 795
d24981d3 796 if (tcg_enabled()) {
a2f4d5be 797 tlb_reset_dirty_range_all(start, length);
5579c7f3 798 }
1ccde1cb
FB
799}
800
981fdf23 801static void cpu_physical_memory_set_dirty_tracking(bool enable)
74576198
AL
802{
803 in_migration = enable;
74576198
AL
804}
805
a8170e5e 806hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
807 MemoryRegionSection *section,
808 target_ulong vaddr,
809 hwaddr paddr, hwaddr xlat,
810 int prot,
811 target_ulong *address)
e5548617 812{
ff4700b0 813 CPUState *cpu = ENV_GET_CPU(env);
a8170e5e 814 hwaddr iotlb;
e5548617
BS
815 CPUWatchpoint *wp;
816
cc5bea60 817 if (memory_region_is_ram(section->mr)) {
e5548617
BS
818 /* Normal RAM. */
819 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 820 + xlat;
e5548617 821 if (!section->readonly) {
b41aac4f 822 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 823 } else {
b41aac4f 824 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
825 }
826 } else {
1b3fb98f 827 iotlb = section - section->address_space->dispatch->map.sections;
149f54b5 828 iotlb += xlat;
e5548617
BS
829 }
830
831 /* Make accesses to pages with watchpoints go via the
832 watchpoint trap routines. */
ff4700b0 833 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
e5548617
BS
834 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
835 /* Avoid trapping reads of pages with a write breakpoint. */
836 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 837 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
838 *address |= TLB_MMIO;
839 break;
840 }
841 }
842 }
843
844 return iotlb;
845}
9fa3e853
FB
846#endif /* defined(CONFIG_USER_ONLY) */
847
e2eef170 848#if !defined(CONFIG_USER_ONLY)
8da3ff18 849
c227f099 850static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 851 uint16_t section);
acc9d80b 852static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 853
575ddeb4 854static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
91138037
MA
855
856/*
857 * Set a custom physical guest memory alloator.
858 * Accelerators with unusual needs may need this. Hopefully, we can
859 * get rid of it eventually.
860 */
575ddeb4 861void phys_mem_set_alloc(void *(*alloc)(size_t))
91138037
MA
862{
863 phys_mem_alloc = alloc;
864}
865
53cb28cb
MA
866static uint16_t phys_section_add(PhysPageMap *map,
867 MemoryRegionSection *section)
5312bd8b 868{
68f3f65b
PB
869 /* The physical section number is ORed with a page-aligned
870 * pointer to produce the iotlb entries. Thus it should
871 * never overflow into the page-aligned value.
872 */
53cb28cb 873 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 874
53cb28cb
MA
875 if (map->sections_nb == map->sections_nb_alloc) {
876 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
877 map->sections = g_renew(MemoryRegionSection, map->sections,
878 map->sections_nb_alloc);
5312bd8b 879 }
53cb28cb 880 map->sections[map->sections_nb] = *section;
dfde4e6e 881 memory_region_ref(section->mr);
53cb28cb 882 return map->sections_nb++;
5312bd8b
AK
883}
884
058bc4b5
PB
885static void phys_section_destroy(MemoryRegion *mr)
886{
dfde4e6e
PB
887 memory_region_unref(mr);
888
058bc4b5
PB
889 if (mr->subpage) {
890 subpage_t *subpage = container_of(mr, subpage_t, iomem);
891 memory_region_destroy(&subpage->iomem);
892 g_free(subpage);
893 }
894}
895
6092666e 896static void phys_sections_free(PhysPageMap *map)
5312bd8b 897{
9affd6fc
PB
898 while (map->sections_nb > 0) {
899 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
900 phys_section_destroy(section->mr);
901 }
9affd6fc
PB
902 g_free(map->sections);
903 g_free(map->nodes);
5312bd8b
AK
904}
905
ac1970fb 906static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
907{
908 subpage_t *subpage;
a8170e5e 909 hwaddr base = section->offset_within_address_space
0f0cb164 910 & TARGET_PAGE_MASK;
97115a8d 911 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 912 d->map.nodes, d->map.sections);
0f0cb164
AK
913 MemoryRegionSection subsection = {
914 .offset_within_address_space = base,
052e87b0 915 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 916 };
a8170e5e 917 hwaddr start, end;
0f0cb164 918
f3705d53 919 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 920
f3705d53 921 if (!(existing->mr->subpage)) {
acc9d80b 922 subpage = subpage_init(d->as, base);
3be91e86 923 subsection.address_space = d->as;
0f0cb164 924 subsection.mr = &subpage->iomem;
ac1970fb 925 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 926 phys_section_add(&d->map, &subsection));
0f0cb164 927 } else {
f3705d53 928 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
929 }
930 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 931 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
932 subpage_register(subpage, start, end,
933 phys_section_add(&d->map, section));
0f0cb164
AK
934}
935
936
052e87b0
PB
937static void register_multipage(AddressSpaceDispatch *d,
938 MemoryRegionSection *section)
33417e70 939{
a8170e5e 940 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 941 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
942 uint64_t num_pages = int128_get64(int128_rshift(section->size,
943 TARGET_PAGE_BITS));
dd81124b 944
733d5ef5
PB
945 assert(num_pages);
946 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
947}
948
ac1970fb 949static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 950{
89ae337a 951 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 952 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 953 MemoryRegionSection now = *section, remain = *section;
052e87b0 954 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 955
733d5ef5
PB
956 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
957 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
958 - now.offset_within_address_space;
959
052e87b0 960 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 961 register_subpage(d, &now);
733d5ef5 962 } else {
052e87b0 963 now.size = int128_zero();
733d5ef5 964 }
052e87b0
PB
965 while (int128_ne(remain.size, now.size)) {
966 remain.size = int128_sub(remain.size, now.size);
967 remain.offset_within_address_space += int128_get64(now.size);
968 remain.offset_within_region += int128_get64(now.size);
69b67646 969 now = remain;
052e87b0 970 if (int128_lt(remain.size, page_size)) {
733d5ef5 971 register_subpage(d, &now);
88266249 972 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 973 now.size = page_size;
ac1970fb 974 register_subpage(d, &now);
69b67646 975 } else {
052e87b0 976 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 977 register_multipage(d, &now);
69b67646 978 }
0f0cb164
AK
979 }
980}
981
62a2744c
SY
982void qemu_flush_coalesced_mmio_buffer(void)
983{
984 if (kvm_enabled())
985 kvm_flush_coalesced_mmio_buffer();
986}
987
b2a8658e
UD
988void qemu_mutex_lock_ramlist(void)
989{
990 qemu_mutex_lock(&ram_list.mutex);
991}
992
993void qemu_mutex_unlock_ramlist(void)
994{
995 qemu_mutex_unlock(&ram_list.mutex);
996}
997
e1e84ba0 998#ifdef __linux__
c902760f
MT
999
1000#include <sys/vfs.h>
1001
1002#define HUGETLBFS_MAGIC 0x958458f6
1003
1004static long gethugepagesize(const char *path)
1005{
1006 struct statfs fs;
1007 int ret;
1008
1009 do {
9742bf26 1010 ret = statfs(path, &fs);
c902760f
MT
1011 } while (ret != 0 && errno == EINTR);
1012
1013 if (ret != 0) {
9742bf26
YT
1014 perror(path);
1015 return 0;
c902760f
MT
1016 }
1017
1018 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 1019 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
1020
1021 return fs.f_bsize;
1022}
1023
ef36fa14
MT
1024static sigjmp_buf sigjump;
1025
1026static void sigbus_handler(int signal)
1027{
1028 siglongjmp(sigjump, 1);
1029}
1030
04b16653
AW
1031static void *file_ram_alloc(RAMBlock *block,
1032 ram_addr_t memory,
1033 const char *path)
c902760f
MT
1034{
1035 char *filename;
8ca761f6
PF
1036 char *sanitized_name;
1037 char *c;
c902760f
MT
1038 void *area;
1039 int fd;
c902760f
MT
1040 unsigned long hpagesize;
1041
1042 hpagesize = gethugepagesize(path);
1043 if (!hpagesize) {
f9a49dfa 1044 goto error;
c902760f
MT
1045 }
1046
1047 if (memory < hpagesize) {
1048 return NULL;
1049 }
1050
1051 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1052 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
f9a49dfa 1053 goto error;
c902760f
MT
1054 }
1055
8ca761f6
PF
1056 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1057 sanitized_name = g_strdup(block->mr->name);
1058 for (c = sanitized_name; *c != '\0'; c++) {
1059 if (*c == '/')
1060 *c = '_';
1061 }
1062
1063 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1064 sanitized_name);
1065 g_free(sanitized_name);
c902760f
MT
1066
1067 fd = mkstemp(filename);
1068 if (fd < 0) {
9742bf26 1069 perror("unable to create backing store for hugepages");
e4ada482 1070 g_free(filename);
f9a49dfa 1071 goto error;
c902760f
MT
1072 }
1073 unlink(filename);
e4ada482 1074 g_free(filename);
c902760f
MT
1075
1076 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1077
1078 /*
1079 * ftruncate is not supported by hugetlbfs in older
1080 * hosts, so don't bother bailing out on errors.
1081 * If anything goes wrong with it under other filesystems,
1082 * mmap will fail.
1083 */
1084 if (ftruncate(fd, memory))
9742bf26 1085 perror("ftruncate");
c902760f 1086
c902760f 1087 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
c902760f 1088 if (area == MAP_FAILED) {
9742bf26
YT
1089 perror("file_ram_alloc: can't mmap RAM pages");
1090 close(fd);
f9a49dfa 1091 goto error;
c902760f 1092 }
ef36fa14
MT
1093
1094 if (mem_prealloc) {
1095 int ret, i;
1096 struct sigaction act, oldact;
1097 sigset_t set, oldset;
1098
1099 memset(&act, 0, sizeof(act));
1100 act.sa_handler = &sigbus_handler;
1101 act.sa_flags = 0;
1102
1103 ret = sigaction(SIGBUS, &act, &oldact);
1104 if (ret) {
1105 perror("file_ram_alloc: failed to install signal handler");
1106 exit(1);
1107 }
1108
1109 /* unblock SIGBUS */
1110 sigemptyset(&set);
1111 sigaddset(&set, SIGBUS);
1112 pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
1113
1114 if (sigsetjmp(sigjump, 1)) {
1115 fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
1116 exit(1);
1117 }
1118
1119 /* MAP_POPULATE silently ignores failures */
2ba82852 1120 for (i = 0; i < (memory/hpagesize); i++) {
ef36fa14
MT
1121 memset(area + (hpagesize*i), 0, 1);
1122 }
1123
1124 ret = sigaction(SIGBUS, &oldact, NULL);
1125 if (ret) {
1126 perror("file_ram_alloc: failed to reinstall signal handler");
1127 exit(1);
1128 }
1129
1130 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
1131 }
1132
04b16653 1133 block->fd = fd;
c902760f 1134 return area;
f9a49dfa
MT
1135
1136error:
1137 if (mem_prealloc) {
1138 exit(1);
1139 }
1140 return NULL;
c902760f 1141}
e1e84ba0
MA
1142#else
1143static void *file_ram_alloc(RAMBlock *block,
1144 ram_addr_t memory,
1145 const char *path)
1146{
1147 fprintf(stderr, "-mem-path not supported on this host\n");
1148 exit(1);
1149}
c902760f
MT
1150#endif
1151
d17b5288 1152static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1153{
1154 RAMBlock *block, *next_block;
3e837b2c 1155 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1156
49cd9ac6
SH
1157 assert(size != 0); /* it would hand out same offset multiple times */
1158
a3161038 1159 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
1160 return 0;
1161
a3161038 1162 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 1163 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
1164
1165 end = block->offset + block->length;
1166
a3161038 1167 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
1168 if (next_block->offset >= end) {
1169 next = MIN(next, next_block->offset);
1170 }
1171 }
1172 if (next - end >= size && next - end < mingap) {
3e837b2c 1173 offset = end;
04b16653
AW
1174 mingap = next - end;
1175 }
1176 }
3e837b2c
AW
1177
1178 if (offset == RAM_ADDR_MAX) {
1179 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1180 (uint64_t)size);
1181 abort();
1182 }
1183
04b16653
AW
1184 return offset;
1185}
1186
652d7ec2 1187ram_addr_t last_ram_offset(void)
d17b5288
AW
1188{
1189 RAMBlock *block;
1190 ram_addr_t last = 0;
1191
a3161038 1192 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1193 last = MAX(last, block->offset + block->length);
1194
1195 return last;
1196}
1197
ddb97f1d
JB
1198static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1199{
1200 int ret;
ddb97f1d
JB
1201
1202 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2ff3de68
MA
1203 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1204 "dump-guest-core", true)) {
ddb97f1d
JB
1205 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1206 if (ret) {
1207 perror("qemu_madvise");
1208 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1209 "but dump_guest_core=off specified\n");
1210 }
1211 }
1212}
1213
c5705a77 1214void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1215{
1216 RAMBlock *new_block, *block;
1217
c5705a77 1218 new_block = NULL;
a3161038 1219 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1220 if (block->offset == addr) {
1221 new_block = block;
1222 break;
1223 }
1224 }
1225 assert(new_block);
1226 assert(!new_block->idstr[0]);
84b89d78 1227
09e5ab63
AL
1228 if (dev) {
1229 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1230 if (id) {
1231 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1232 g_free(id);
84b89d78
CM
1233 }
1234 }
1235 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1236
b2a8658e
UD
1237 /* This assumes the iothread lock is taken here too. */
1238 qemu_mutex_lock_ramlist();
a3161038 1239 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1240 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1241 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1242 new_block->idstr);
1243 abort();
1244 }
1245 }
b2a8658e 1246 qemu_mutex_unlock_ramlist();
c5705a77
AK
1247}
1248
8490fc78
LC
1249static int memory_try_enable_merging(void *addr, size_t len)
1250{
2ff3de68 1251 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
8490fc78
LC
1252 /* disabled by the user */
1253 return 0;
1254 }
1255
1256 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1257}
1258
c5705a77
AK
1259ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1260 MemoryRegion *mr)
1261{
abb26d63 1262 RAMBlock *block, *new_block;
2152f5ca
JQ
1263 ram_addr_t old_ram_size, new_ram_size;
1264
1265 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77
AK
1266
1267 size = TARGET_PAGE_ALIGN(size);
1268 new_block = g_malloc0(sizeof(*new_block));
3435f395 1269 new_block->fd = -1;
84b89d78 1270
b2a8658e
UD
1271 /* This assumes the iothread lock is taken here too. */
1272 qemu_mutex_lock_ramlist();
7c637366 1273 new_block->mr = mr;
432d268c 1274 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1275 if (host) {
1276 new_block->host = host;
cd19cfa2 1277 new_block->flags |= RAM_PREALLOC_MASK;
dfeaf2ab
MA
1278 } else if (xen_enabled()) {
1279 if (mem_path) {
1280 fprintf(stderr, "-mem-path not supported with Xen\n");
1281 exit(1);
1282 }
1283 xen_ram_alloc(new_block->offset, size, mr);
6977dfe6
YT
1284 } else {
1285 if (mem_path) {
e1e84ba0
MA
1286 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1287 /*
1288 * file_ram_alloc() needs to allocate just like
1289 * phys_mem_alloc, but we haven't bothered to provide
1290 * a hook there.
1291 */
1292 fprintf(stderr,
1293 "-mem-path not supported with this accelerator\n");
1294 exit(1);
1295 }
6977dfe6 1296 new_block->host = file_ram_alloc(new_block, size, mem_path);
0628c182
MA
1297 }
1298 if (!new_block->host) {
91138037 1299 new_block->host = phys_mem_alloc(size);
39228250
MA
1300 if (!new_block->host) {
1301 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1302 new_block->mr->name, strerror(errno));
1303 exit(1);
1304 }
8490fc78 1305 memory_try_enable_merging(new_block->host, size);
6977dfe6 1306 }
c902760f 1307 }
94a6b54f
PB
1308 new_block->length = size;
1309
abb26d63
PB
1310 /* Keep the list sorted from biggest to smallest block. */
1311 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1312 if (block->length < new_block->length) {
1313 break;
1314 }
1315 }
1316 if (block) {
1317 QTAILQ_INSERT_BEFORE(block, new_block, next);
1318 } else {
1319 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1320 }
0d6d3c87 1321 ram_list.mru_block = NULL;
94a6b54f 1322
f798b07f 1323 ram_list.version++;
b2a8658e 1324 qemu_mutex_unlock_ramlist();
f798b07f 1325
2152f5ca
JQ
1326 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1327
1328 if (new_ram_size > old_ram_size) {
1ab4c8ce
JQ
1329 int i;
1330 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1331 ram_list.dirty_memory[i] =
1332 bitmap_zero_extend(ram_list.dirty_memory[i],
1333 old_ram_size, new_ram_size);
1334 }
2152f5ca 1335 }
75218e7f 1336 cpu_physical_memory_set_dirty_range(new_block->offset, size);
94a6b54f 1337
ddb97f1d 1338 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1339 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
3e469dbf 1340 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
ddb97f1d 1341
6f0437e8
JK
1342 if (kvm_enabled())
1343 kvm_setup_guest_memory(new_block->host, size);
1344
94a6b54f
PB
1345 return new_block->offset;
1346}
e9a1ab19 1347
c5705a77 1348ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1349{
c5705a77 1350 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1351}
1352
1f2e98b6
AW
1353void qemu_ram_free_from_ptr(ram_addr_t addr)
1354{
1355 RAMBlock *block;
1356
b2a8658e
UD
1357 /* This assumes the iothread lock is taken here too. */
1358 qemu_mutex_lock_ramlist();
a3161038 1359 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1360 if (addr == block->offset) {
a3161038 1361 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1362 ram_list.mru_block = NULL;
f798b07f 1363 ram_list.version++;
7267c094 1364 g_free(block);
b2a8658e 1365 break;
1f2e98b6
AW
1366 }
1367 }
b2a8658e 1368 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1369}
1370
c227f099 1371void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1372{
04b16653
AW
1373 RAMBlock *block;
1374
b2a8658e
UD
1375 /* This assumes the iothread lock is taken here too. */
1376 qemu_mutex_lock_ramlist();
a3161038 1377 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1378 if (addr == block->offset) {
a3161038 1379 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1380 ram_list.mru_block = NULL;
f798b07f 1381 ram_list.version++;
cd19cfa2
HY
1382 if (block->flags & RAM_PREALLOC_MASK) {
1383 ;
dfeaf2ab
MA
1384 } else if (xen_enabled()) {
1385 xen_invalidate_map_cache_entry(block->host);
089f3f76 1386#ifndef _WIN32
3435f395
MA
1387 } else if (block->fd >= 0) {
1388 munmap(block->host, block->length);
1389 close(block->fd);
089f3f76 1390#endif
04b16653 1391 } else {
dfeaf2ab 1392 qemu_anon_ram_free(block->host, block->length);
04b16653 1393 }
7267c094 1394 g_free(block);
b2a8658e 1395 break;
04b16653
AW
1396 }
1397 }
b2a8658e 1398 qemu_mutex_unlock_ramlist();
04b16653 1399
e9a1ab19
FB
1400}
1401
cd19cfa2
HY
1402#ifndef _WIN32
1403void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1404{
1405 RAMBlock *block;
1406 ram_addr_t offset;
1407 int flags;
1408 void *area, *vaddr;
1409
a3161038 1410 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1411 offset = addr - block->offset;
1412 if (offset < block->length) {
1413 vaddr = block->host + offset;
1414 if (block->flags & RAM_PREALLOC_MASK) {
1415 ;
dfeaf2ab
MA
1416 } else if (xen_enabled()) {
1417 abort();
cd19cfa2
HY
1418 } else {
1419 flags = MAP_FIXED;
1420 munmap(vaddr, length);
3435f395 1421 if (block->fd >= 0) {
cd19cfa2 1422#ifdef MAP_POPULATE
3435f395
MA
1423 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1424 MAP_PRIVATE;
fd28aa13 1425#else
3435f395 1426 flags |= MAP_PRIVATE;
cd19cfa2 1427#endif
3435f395
MA
1428 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1429 flags, block->fd, offset);
cd19cfa2 1430 } else {
2eb9fbaa
MA
1431 /*
1432 * Remap needs to match alloc. Accelerators that
1433 * set phys_mem_alloc never remap. If they did,
1434 * we'd need a remap hook here.
1435 */
1436 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1437
cd19cfa2
HY
1438 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1439 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1440 flags, -1, 0);
cd19cfa2
HY
1441 }
1442 if (area != vaddr) {
f15fbc4b
AP
1443 fprintf(stderr, "Could not remap addr: "
1444 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1445 length, addr);
1446 exit(1);
1447 }
8490fc78 1448 memory_try_enable_merging(vaddr, length);
ddb97f1d 1449 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1450 }
1451 return;
1452 }
1453 }
1454}
1455#endif /* !_WIN32 */
1456
1b5ec234
PB
1457/* Return a host pointer to ram allocated with qemu_ram_alloc.
1458 With the exception of the softmmu code in this file, this should
1459 only be used for local memory (e.g. video ram) that the device owns,
1460 and knows it isn't going to access beyond the end of the block.
1461
1462 It should not be used for general purpose DMA.
1463 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1464 */
1465void *qemu_get_ram_ptr(ram_addr_t addr)
1466{
1467 RAMBlock *block = qemu_get_ram_block(addr);
1468
0d6d3c87
PB
1469 if (xen_enabled()) {
1470 /* We need to check if the requested address is in the RAM
1471 * because we don't want to map the entire memory in QEMU.
1472 * In that case just map until the end of the page.
1473 */
1474 if (block->offset == 0) {
1475 return xen_map_cache(addr, 0, 0);
1476 } else if (block->host == NULL) {
1477 block->host =
1478 xen_map_cache(block->offset, block->length, 1);
1479 }
1480 }
1481 return block->host + (addr - block->offset);
dc828ca1
PB
1482}
1483
38bee5dc
SS
1484/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1485 * but takes a size argument */
cb85f7ab 1486static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1487{
8ab934f9
SS
1488 if (*size == 0) {
1489 return NULL;
1490 }
868bb33f 1491 if (xen_enabled()) {
e41d7c69 1492 return xen_map_cache(addr, *size, 1);
868bb33f 1493 } else {
38bee5dc
SS
1494 RAMBlock *block;
1495
a3161038 1496 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1497 if (addr - block->offset < block->length) {
1498 if (addr - block->offset + *size > block->length)
1499 *size = block->length - addr + block->offset;
1500 return block->host + (addr - block->offset);
1501 }
1502 }
1503
1504 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1505 abort();
38bee5dc
SS
1506 }
1507}
1508
7443b437
PB
1509/* Some of the softmmu routines need to translate from a host pointer
1510 (typically a TLB entry) back to a ram offset. */
1b5ec234 1511MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1512{
94a6b54f
PB
1513 RAMBlock *block;
1514 uint8_t *host = ptr;
1515
868bb33f 1516 if (xen_enabled()) {
e41d7c69 1517 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1b5ec234 1518 return qemu_get_ram_block(*ram_addr)->mr;
712c2b41
SS
1519 }
1520
23887b79
PB
1521 block = ram_list.mru_block;
1522 if (block && block->host && host - block->host < block->length) {
1523 goto found;
1524 }
1525
a3161038 1526 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1527 /* This case append when the block is not mapped. */
1528 if (block->host == NULL) {
1529 continue;
1530 }
f471a17e 1531 if (host - block->host < block->length) {
23887b79 1532 goto found;
f471a17e 1533 }
94a6b54f 1534 }
432d268c 1535
1b5ec234 1536 return NULL;
23887b79
PB
1537
1538found:
1539 *ram_addr = block->offset + (host - block->host);
1b5ec234 1540 return block->mr;
e890261f 1541}
f471a17e 1542
a8170e5e 1543static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1544 uint64_t val, unsigned size)
9fa3e853 1545{
52159192 1546 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1547 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1548 }
0e0df1e2
AK
1549 switch (size) {
1550 case 1:
1551 stb_p(qemu_get_ram_ptr(ram_addr), val);
1552 break;
1553 case 2:
1554 stw_p(qemu_get_ram_ptr(ram_addr), val);
1555 break;
1556 case 4:
1557 stl_p(qemu_get_ram_ptr(ram_addr), val);
1558 break;
1559 default:
1560 abort();
3a7d929e 1561 }
52159192
JQ
1562 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION);
1563 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA);
f23db169
FB
1564 /* we remove the notdirty callback only if the code has been
1565 flushed */
a2cd8c85 1566 if (!cpu_physical_memory_is_clean(ram_addr)) {
4917cf44 1567 CPUArchState *env = current_cpu->env_ptr;
93afeade 1568 tlb_set_dirty(env, current_cpu->mem_io_vaddr);
4917cf44 1569 }
9fa3e853
FB
1570}
1571
b018ddf6
PB
1572static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1573 unsigned size, bool is_write)
1574{
1575 return is_write;
1576}
1577
0e0df1e2 1578static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1579 .write = notdirty_mem_write,
b018ddf6 1580 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1581 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1582};
1583
0f459d16 1584/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1585static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1586{
93afeade
AF
1587 CPUState *cpu = current_cpu;
1588 CPUArchState *env = cpu->env_ptr;
06d55cc1 1589 target_ulong pc, cs_base;
0f459d16 1590 target_ulong vaddr;
a1d1bb31 1591 CPUWatchpoint *wp;
06d55cc1 1592 int cpu_flags;
0f459d16 1593
ff4700b0 1594 if (cpu->watchpoint_hit) {
06d55cc1
AL
1595 /* We re-entered the check after replacing the TB. Now raise
1596 * the debug interrupt so that is will trigger after the
1597 * current instruction. */
93afeade 1598 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1599 return;
1600 }
93afeade 1601 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 1602 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
b4051334
AL
1603 if ((vaddr == (wp->vaddr & len_mask) ||
1604 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28 1605 wp->flags |= BP_WATCHPOINT_HIT;
ff4700b0
AF
1606 if (!cpu->watchpoint_hit) {
1607 cpu->watchpoint_hit = wp;
239c51a5 1608 tb_check_watchpoint(cpu);
6e140f28 1609 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 1610 cpu->exception_index = EXCP_DEBUG;
5638d180 1611 cpu_loop_exit(cpu);
6e140f28
AL
1612 } else {
1613 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 1614 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
488d6577 1615 cpu_resume_from_signal(env, NULL);
6e140f28 1616 }
06d55cc1 1617 }
6e140f28
AL
1618 } else {
1619 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1620 }
1621 }
1622}
1623
6658ffb8
PB
1624/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1625 so these check for a hit then pass through to the normal out-of-line
1626 phys routines. */
a8170e5e 1627static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1628 unsigned size)
6658ffb8 1629{
1ec9b909
AK
1630 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1631 switch (size) {
2c17449b 1632 case 1: return ldub_phys(&address_space_memory, addr);
41701aa4 1633 case 2: return lduw_phys(&address_space_memory, addr);
fdfba1a2 1634 case 4: return ldl_phys(&address_space_memory, addr);
1ec9b909
AK
1635 default: abort();
1636 }
6658ffb8
PB
1637}
1638
a8170e5e 1639static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1640 uint64_t val, unsigned size)
6658ffb8 1641{
1ec9b909
AK
1642 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1643 switch (size) {
67364150 1644 case 1:
db3be60d 1645 stb_phys(&address_space_memory, addr, val);
67364150
MF
1646 break;
1647 case 2:
5ce5944d 1648 stw_phys(&address_space_memory, addr, val);
67364150
MF
1649 break;
1650 case 4:
ab1da857 1651 stl_phys(&address_space_memory, addr, val);
67364150 1652 break;
1ec9b909
AK
1653 default: abort();
1654 }
6658ffb8
PB
1655}
1656
1ec9b909
AK
1657static const MemoryRegionOps watch_mem_ops = {
1658 .read = watch_mem_read,
1659 .write = watch_mem_write,
1660 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1661};
6658ffb8 1662
a8170e5e 1663static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1664 unsigned len)
db7b5426 1665{
acc9d80b
JK
1666 subpage_t *subpage = opaque;
1667 uint8_t buf[4];
791af8c8 1668
db7b5426 1669#if defined(DEBUG_SUBPAGE)
016e9d62 1670 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 1671 subpage, len, addr);
db7b5426 1672#endif
acc9d80b
JK
1673 address_space_read(subpage->as, addr + subpage->base, buf, len);
1674 switch (len) {
1675 case 1:
1676 return ldub_p(buf);
1677 case 2:
1678 return lduw_p(buf);
1679 case 4:
1680 return ldl_p(buf);
1681 default:
1682 abort();
1683 }
db7b5426
BS
1684}
1685
a8170e5e 1686static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1687 uint64_t value, unsigned len)
db7b5426 1688{
acc9d80b
JK
1689 subpage_t *subpage = opaque;
1690 uint8_t buf[4];
1691
db7b5426 1692#if defined(DEBUG_SUBPAGE)
016e9d62 1693 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
1694 " value %"PRIx64"\n",
1695 __func__, subpage, len, addr, value);
db7b5426 1696#endif
acc9d80b
JK
1697 switch (len) {
1698 case 1:
1699 stb_p(buf, value);
1700 break;
1701 case 2:
1702 stw_p(buf, value);
1703 break;
1704 case 4:
1705 stl_p(buf, value);
1706 break;
1707 default:
1708 abort();
1709 }
1710 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1711}
1712
c353e4cc 1713static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 1714 unsigned len, bool is_write)
c353e4cc 1715{
acc9d80b 1716 subpage_t *subpage = opaque;
c353e4cc 1717#if defined(DEBUG_SUBPAGE)
016e9d62 1718 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 1719 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1720#endif
1721
acc9d80b 1722 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 1723 len, is_write);
c353e4cc
PB
1724}
1725
70c68e44
AK
1726static const MemoryRegionOps subpage_ops = {
1727 .read = subpage_read,
1728 .write = subpage_write,
c353e4cc 1729 .valid.accepts = subpage_accepts,
70c68e44 1730 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1731};
1732
c227f099 1733static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1734 uint16_t section)
db7b5426
BS
1735{
1736 int idx, eidx;
1737
1738 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1739 return -1;
1740 idx = SUBPAGE_IDX(start);
1741 eidx = SUBPAGE_IDX(end);
1742#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1743 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1744 __func__, mmio, start, end, idx, eidx, section);
db7b5426 1745#endif
db7b5426 1746 for (; idx <= eidx; idx++) {
5312bd8b 1747 mmio->sub_section[idx] = section;
db7b5426
BS
1748 }
1749
1750 return 0;
1751}
1752
acc9d80b 1753static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1754{
c227f099 1755 subpage_t *mmio;
db7b5426 1756
7267c094 1757 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1758
acc9d80b 1759 mmio->as = as;
1eec614b 1760 mmio->base = base;
2c9b15ca 1761 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1762 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1763 mmio->iomem.subpage = true;
db7b5426 1764#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1765 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
1766 mmio, base, TARGET_PAGE_SIZE);
db7b5426 1767#endif
b41aac4f 1768 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
1769
1770 return mmio;
1771}
1772
53cb28cb 1773static uint16_t dummy_section(PhysPageMap *map, MemoryRegion *mr)
5312bd8b
AK
1774{
1775 MemoryRegionSection section = {
3be91e86 1776 .address_space = &address_space_memory,
5312bd8b
AK
1777 .mr = mr,
1778 .offset_within_address_space = 0,
1779 .offset_within_region = 0,
052e87b0 1780 .size = int128_2_64(),
5312bd8b
AK
1781 };
1782
53cb28cb 1783 return phys_section_add(map, &section);
5312bd8b
AK
1784}
1785
77717094 1786MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index)
aa102231 1787{
77717094 1788 return as->dispatch->map.sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1789}
1790
e9179ce1
AK
1791static void io_mem_init(void)
1792{
2c9b15ca
PB
1793 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1794 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1795 "unassigned", UINT64_MAX);
2c9b15ca 1796 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1797 "notdirty", UINT64_MAX);
2c9b15ca 1798 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1799 "watch", UINT64_MAX);
e9179ce1
AK
1800}
1801
ac1970fb 1802static void mem_begin(MemoryListener *listener)
00752703
PB
1803{
1804 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
1805 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
1806 uint16_t n;
1807
1808 n = dummy_section(&d->map, &io_mem_unassigned);
1809 assert(n == PHYS_SECTION_UNASSIGNED);
1810 n = dummy_section(&d->map, &io_mem_notdirty);
1811 assert(n == PHYS_SECTION_NOTDIRTY);
1812 n = dummy_section(&d->map, &io_mem_rom);
1813 assert(n == PHYS_SECTION_ROM);
1814 n = dummy_section(&d->map, &io_mem_watch);
1815 assert(n == PHYS_SECTION_WATCH);
00752703 1816
9736e55b 1817 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
1818 d->as = as;
1819 as->next_dispatch = d;
1820}
1821
1822static void mem_commit(MemoryListener *listener)
ac1970fb 1823{
89ae337a 1824 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
1825 AddressSpaceDispatch *cur = as->dispatch;
1826 AddressSpaceDispatch *next = as->next_dispatch;
1827
53cb28cb 1828 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 1829
0475d94f 1830 as->dispatch = next;
b41aac4f 1831
53cb28cb
MA
1832 if (cur) {
1833 phys_sections_free(&cur->map);
1834 g_free(cur);
1835 }
9affd6fc
PB
1836}
1837
1d71148e 1838static void tcg_commit(MemoryListener *listener)
50c1e149 1839{
182735ef 1840 CPUState *cpu;
117712c3
AK
1841
1842 /* since each CPU stores ram addresses in its TLB cache, we must
1843 reset the modified entries */
1844 /* XXX: slow ! */
bdc44640 1845 CPU_FOREACH(cpu) {
182735ef
AF
1846 CPUArchState *env = cpu->env_ptr;
1847
33bde2e1
EI
1848 /* FIXME: Disentangle the cpu.h circular files deps so we can
1849 directly get the right CPU from listener. */
1850 if (cpu->tcg_as_listener != listener) {
1851 continue;
1852 }
117712c3
AK
1853 tlb_flush(env, 1);
1854 }
50c1e149
AK
1855}
1856
93632747
AK
1857static void core_log_global_start(MemoryListener *listener)
1858{
981fdf23 1859 cpu_physical_memory_set_dirty_tracking(true);
93632747
AK
1860}
1861
1862static void core_log_global_stop(MemoryListener *listener)
1863{
981fdf23 1864 cpu_physical_memory_set_dirty_tracking(false);
93632747
AK
1865}
1866
93632747 1867static MemoryListener core_memory_listener = {
93632747
AK
1868 .log_global_start = core_log_global_start,
1869 .log_global_stop = core_log_global_stop,
ac1970fb 1870 .priority = 1,
93632747
AK
1871};
1872
ac1970fb
AK
1873void address_space_init_dispatch(AddressSpace *as)
1874{
00752703 1875 as->dispatch = NULL;
89ae337a 1876 as->dispatch_listener = (MemoryListener) {
ac1970fb 1877 .begin = mem_begin,
00752703 1878 .commit = mem_commit,
ac1970fb
AK
1879 .region_add = mem_add,
1880 .region_nop = mem_add,
1881 .priority = 0,
1882 };
89ae337a 1883 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
1884}
1885
83f3c251
AK
1886void address_space_destroy_dispatch(AddressSpace *as)
1887{
1888 AddressSpaceDispatch *d = as->dispatch;
1889
89ae337a 1890 memory_listener_unregister(&as->dispatch_listener);
83f3c251
AK
1891 g_free(d);
1892 as->dispatch = NULL;
1893}
1894
62152b8a
AK
1895static void memory_map_init(void)
1896{
7267c094 1897 system_memory = g_malloc(sizeof(*system_memory));
03f49957 1898
57271d63 1899 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 1900 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1901
7267c094 1902 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
1903 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1904 65536);
7dca8043 1905 address_space_init(&address_space_io, system_io, "I/O");
93632747 1906
f6790af6 1907 memory_listener_register(&core_memory_listener, &address_space_memory);
62152b8a
AK
1908}
1909
1910MemoryRegion *get_system_memory(void)
1911{
1912 return system_memory;
1913}
1914
309cb471
AK
1915MemoryRegion *get_system_io(void)
1916{
1917 return system_io;
1918}
1919
e2eef170
PB
1920#endif /* !defined(CONFIG_USER_ONLY) */
1921
13eb76e0
FB
1922/* physical memory access (slow version, mainly for debug) */
1923#if defined(CONFIG_USER_ONLY)
f17ec444 1924int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 1925 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1926{
1927 int l, flags;
1928 target_ulong page;
53a5960a 1929 void * p;
13eb76e0
FB
1930
1931 while (len > 0) {
1932 page = addr & TARGET_PAGE_MASK;
1933 l = (page + TARGET_PAGE_SIZE) - addr;
1934 if (l > len)
1935 l = len;
1936 flags = page_get_flags(page);
1937 if (!(flags & PAGE_VALID))
a68fe89c 1938 return -1;
13eb76e0
FB
1939 if (is_write) {
1940 if (!(flags & PAGE_WRITE))
a68fe89c 1941 return -1;
579a97f7 1942 /* XXX: this code should not depend on lock_user */
72fb7daa 1943 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1944 return -1;
72fb7daa
AJ
1945 memcpy(p, buf, l);
1946 unlock_user(p, addr, l);
13eb76e0
FB
1947 } else {
1948 if (!(flags & PAGE_READ))
a68fe89c 1949 return -1;
579a97f7 1950 /* XXX: this code should not depend on lock_user */
72fb7daa 1951 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1952 return -1;
72fb7daa 1953 memcpy(buf, p, l);
5b257578 1954 unlock_user(p, addr, 0);
13eb76e0
FB
1955 }
1956 len -= l;
1957 buf += l;
1958 addr += l;
1959 }
a68fe89c 1960 return 0;
13eb76e0 1961}
8df1cd07 1962
13eb76e0 1963#else
51d7a9eb 1964
a8170e5e
AK
1965static void invalidate_and_set_dirty(hwaddr addr,
1966 hwaddr length)
51d7a9eb 1967{
a2cd8c85 1968 if (cpu_physical_memory_is_clean(addr)) {
51d7a9eb
AP
1969 /* invalidate code */
1970 tb_invalidate_phys_page_range(addr, addr + length, 0);
1971 /* set dirty bit */
52159192
JQ
1972 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA);
1973 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
51d7a9eb 1974 }
e226939d 1975 xen_modified_memory(addr, length);
51d7a9eb
AP
1976}
1977
23326164 1978static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 1979{
e1622f4b 1980 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
1981
1982 /* Regions are assumed to support 1-4 byte accesses unless
1983 otherwise specified. */
23326164
RH
1984 if (access_size_max == 0) {
1985 access_size_max = 4;
1986 }
1987
1988 /* Bound the maximum access by the alignment of the address. */
1989 if (!mr->ops->impl.unaligned) {
1990 unsigned align_size_max = addr & -addr;
1991 if (align_size_max != 0 && align_size_max < access_size_max) {
1992 access_size_max = align_size_max;
1993 }
82f2563f 1994 }
23326164
RH
1995
1996 /* Don't attempt accesses larger than the maximum. */
1997 if (l > access_size_max) {
1998 l = access_size_max;
82f2563f 1999 }
098178f2
PB
2000 if (l & (l - 1)) {
2001 l = 1 << (qemu_fls(l) - 1);
2002 }
23326164
RH
2003
2004 return l;
82f2563f
PB
2005}
2006
fd8aaa76 2007bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 2008 int len, bool is_write)
13eb76e0 2009{
149f54b5 2010 hwaddr l;
13eb76e0 2011 uint8_t *ptr;
791af8c8 2012 uint64_t val;
149f54b5 2013 hwaddr addr1;
5c8a00ce 2014 MemoryRegion *mr;
fd8aaa76 2015 bool error = false;
3b46e624 2016
13eb76e0 2017 while (len > 0) {
149f54b5 2018 l = len;
5c8a00ce 2019 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 2020
13eb76e0 2021 if (is_write) {
5c8a00ce
PB
2022 if (!memory_access_is_direct(mr, is_write)) {
2023 l = memory_access_size(mr, l, addr1);
4917cf44 2024 /* XXX: could force current_cpu to NULL to avoid
6a00d601 2025 potential bugs */
23326164
RH
2026 switch (l) {
2027 case 8:
2028 /* 64 bit write access */
2029 val = ldq_p(buf);
2030 error |= io_mem_write(mr, addr1, val, 8);
2031 break;
2032 case 4:
1c213d19 2033 /* 32 bit write access */
c27004ec 2034 val = ldl_p(buf);
5c8a00ce 2035 error |= io_mem_write(mr, addr1, val, 4);
23326164
RH
2036 break;
2037 case 2:
1c213d19 2038 /* 16 bit write access */
c27004ec 2039 val = lduw_p(buf);
5c8a00ce 2040 error |= io_mem_write(mr, addr1, val, 2);
23326164
RH
2041 break;
2042 case 1:
1c213d19 2043 /* 8 bit write access */
c27004ec 2044 val = ldub_p(buf);
5c8a00ce 2045 error |= io_mem_write(mr, addr1, val, 1);
23326164
RH
2046 break;
2047 default:
2048 abort();
13eb76e0 2049 }
2bbfa05d 2050 } else {
5c8a00ce 2051 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 2052 /* RAM case */
5579c7f3 2053 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 2054 memcpy(ptr, buf, l);
51d7a9eb 2055 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
2056 }
2057 } else {
5c8a00ce 2058 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 2059 /* I/O case */
5c8a00ce 2060 l = memory_access_size(mr, l, addr1);
23326164
RH
2061 switch (l) {
2062 case 8:
2063 /* 64 bit read access */
2064 error |= io_mem_read(mr, addr1, &val, 8);
2065 stq_p(buf, val);
2066 break;
2067 case 4:
13eb76e0 2068 /* 32 bit read access */
5c8a00ce 2069 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 2070 stl_p(buf, val);
23326164
RH
2071 break;
2072 case 2:
13eb76e0 2073 /* 16 bit read access */
5c8a00ce 2074 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 2075 stw_p(buf, val);
23326164
RH
2076 break;
2077 case 1:
1c213d19 2078 /* 8 bit read access */
5c8a00ce 2079 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 2080 stb_p(buf, val);
23326164
RH
2081 break;
2082 default:
2083 abort();
13eb76e0
FB
2084 }
2085 } else {
2086 /* RAM case */
5c8a00ce 2087 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2088 memcpy(buf, ptr, l);
13eb76e0
FB
2089 }
2090 }
2091 len -= l;
2092 buf += l;
2093 addr += l;
2094 }
fd8aaa76
PB
2095
2096 return error;
13eb76e0 2097}
8df1cd07 2098
fd8aaa76 2099bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
2100 const uint8_t *buf, int len)
2101{
fd8aaa76 2102 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
2103}
2104
fd8aaa76 2105bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 2106{
fd8aaa76 2107 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
2108}
2109
2110
a8170e5e 2111void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2112 int len, int is_write)
2113{
fd8aaa76 2114 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
2115}
2116
582b55a9
AG
2117enum write_rom_type {
2118 WRITE_DATA,
2119 FLUSH_CACHE,
2120};
2121
2a221651 2122static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2123 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2124{
149f54b5 2125 hwaddr l;
d0ecd2aa 2126 uint8_t *ptr;
149f54b5 2127 hwaddr addr1;
5c8a00ce 2128 MemoryRegion *mr;
3b46e624 2129
d0ecd2aa 2130 while (len > 0) {
149f54b5 2131 l = len;
2a221651 2132 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2133
5c8a00ce
PB
2134 if (!(memory_region_is_ram(mr) ||
2135 memory_region_is_romd(mr))) {
d0ecd2aa
FB
2136 /* do nothing */
2137 } else {
5c8a00ce 2138 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2139 /* ROM/RAM case */
5579c7f3 2140 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2141 switch (type) {
2142 case WRITE_DATA:
2143 memcpy(ptr, buf, l);
2144 invalidate_and_set_dirty(addr1, l);
2145 break;
2146 case FLUSH_CACHE:
2147 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2148 break;
2149 }
d0ecd2aa
FB
2150 }
2151 len -= l;
2152 buf += l;
2153 addr += l;
2154 }
2155}
2156
582b55a9 2157/* used for ROM loading : can write in RAM and ROM */
2a221651 2158void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2159 const uint8_t *buf, int len)
2160{
2a221651 2161 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2162}
2163
2164void cpu_flush_icache_range(hwaddr start, int len)
2165{
2166 /*
2167 * This function should do the same thing as an icache flush that was
2168 * triggered from within the guest. For TCG we are always cache coherent,
2169 * so there is no need to flush anything. For KVM / Xen we need to flush
2170 * the host's instruction cache at least.
2171 */
2172 if (tcg_enabled()) {
2173 return;
2174 }
2175
2a221651
EI
2176 cpu_physical_memory_write_rom_internal(&address_space_memory,
2177 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2178}
2179
6d16c2f8 2180typedef struct {
d3e71559 2181 MemoryRegion *mr;
6d16c2f8 2182 void *buffer;
a8170e5e
AK
2183 hwaddr addr;
2184 hwaddr len;
6d16c2f8
AL
2185} BounceBuffer;
2186
2187static BounceBuffer bounce;
2188
ba223c29
AL
2189typedef struct MapClient {
2190 void *opaque;
2191 void (*callback)(void *opaque);
72cf2d4f 2192 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2193} MapClient;
2194
72cf2d4f
BS
2195static QLIST_HEAD(map_client_list, MapClient) map_client_list
2196 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
2197
2198void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2199{
7267c094 2200 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2201
2202 client->opaque = opaque;
2203 client->callback = callback;
72cf2d4f 2204 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2205 return client;
2206}
2207
8b9c99d9 2208static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2209{
2210 MapClient *client = (MapClient *)_client;
2211
72cf2d4f 2212 QLIST_REMOVE(client, link);
7267c094 2213 g_free(client);
ba223c29
AL
2214}
2215
2216static void cpu_notify_map_clients(void)
2217{
2218 MapClient *client;
2219
72cf2d4f
BS
2220 while (!QLIST_EMPTY(&map_client_list)) {
2221 client = QLIST_FIRST(&map_client_list);
ba223c29 2222 client->callback(client->opaque);
34d5e948 2223 cpu_unregister_map_client(client);
ba223c29
AL
2224 }
2225}
2226
51644ab7
PB
2227bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2228{
5c8a00ce 2229 MemoryRegion *mr;
51644ab7
PB
2230 hwaddr l, xlat;
2231
2232 while (len > 0) {
2233 l = len;
5c8a00ce
PB
2234 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2235 if (!memory_access_is_direct(mr, is_write)) {
2236 l = memory_access_size(mr, l, addr);
2237 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2238 return false;
2239 }
2240 }
2241
2242 len -= l;
2243 addr += l;
2244 }
2245 return true;
2246}
2247
6d16c2f8
AL
2248/* Map a physical memory region into a host virtual address.
2249 * May map a subset of the requested range, given by and returned in *plen.
2250 * May return NULL if resources needed to perform the mapping are exhausted.
2251 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2252 * Use cpu_register_map_client() to know when retrying the map operation is
2253 * likely to succeed.
6d16c2f8 2254 */
ac1970fb 2255void *address_space_map(AddressSpace *as,
a8170e5e
AK
2256 hwaddr addr,
2257 hwaddr *plen,
ac1970fb 2258 bool is_write)
6d16c2f8 2259{
a8170e5e 2260 hwaddr len = *plen;
e3127ae0
PB
2261 hwaddr done = 0;
2262 hwaddr l, xlat, base;
2263 MemoryRegion *mr, *this_mr;
2264 ram_addr_t raddr;
6d16c2f8 2265
e3127ae0
PB
2266 if (len == 0) {
2267 return NULL;
2268 }
38bee5dc 2269
e3127ae0
PB
2270 l = len;
2271 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2272 if (!memory_access_is_direct(mr, is_write)) {
2273 if (bounce.buffer) {
2274 return NULL;
6d16c2f8 2275 }
e85d9db5
KW
2276 /* Avoid unbounded allocations */
2277 l = MIN(l, TARGET_PAGE_SIZE);
2278 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2279 bounce.addr = addr;
2280 bounce.len = l;
d3e71559
PB
2281
2282 memory_region_ref(mr);
2283 bounce.mr = mr;
e3127ae0
PB
2284 if (!is_write) {
2285 address_space_read(as, addr, bounce.buffer, l);
8ab934f9 2286 }
6d16c2f8 2287
e3127ae0
PB
2288 *plen = l;
2289 return bounce.buffer;
2290 }
2291
2292 base = xlat;
2293 raddr = memory_region_get_ram_addr(mr);
2294
2295 for (;;) {
6d16c2f8
AL
2296 len -= l;
2297 addr += l;
e3127ae0
PB
2298 done += l;
2299 if (len == 0) {
2300 break;
2301 }
2302
2303 l = len;
2304 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2305 if (this_mr != mr || xlat != base + done) {
2306 break;
2307 }
6d16c2f8 2308 }
e3127ae0 2309
d3e71559 2310 memory_region_ref(mr);
e3127ae0
PB
2311 *plen = done;
2312 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2313}
2314
ac1970fb 2315/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2316 * Will also mark the memory as dirty if is_write == 1. access_len gives
2317 * the amount of memory that was actually read or written by the caller.
2318 */
a8170e5e
AK
2319void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2320 int is_write, hwaddr access_len)
6d16c2f8
AL
2321{
2322 if (buffer != bounce.buffer) {
d3e71559
PB
2323 MemoryRegion *mr;
2324 ram_addr_t addr1;
2325
2326 mr = qemu_ram_addr_from_host(buffer, &addr1);
2327 assert(mr != NULL);
6d16c2f8 2328 if (is_write) {
6d16c2f8
AL
2329 while (access_len) {
2330 unsigned l;
2331 l = TARGET_PAGE_SIZE;
2332 if (l > access_len)
2333 l = access_len;
51d7a9eb 2334 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2335 addr1 += l;
2336 access_len -= l;
2337 }
2338 }
868bb33f 2339 if (xen_enabled()) {
e41d7c69 2340 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2341 }
d3e71559 2342 memory_region_unref(mr);
6d16c2f8
AL
2343 return;
2344 }
2345 if (is_write) {
ac1970fb 2346 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2347 }
f8a83245 2348 qemu_vfree(bounce.buffer);
6d16c2f8 2349 bounce.buffer = NULL;
d3e71559 2350 memory_region_unref(bounce.mr);
ba223c29 2351 cpu_notify_map_clients();
6d16c2f8 2352}
d0ecd2aa 2353
a8170e5e
AK
2354void *cpu_physical_memory_map(hwaddr addr,
2355 hwaddr *plen,
ac1970fb
AK
2356 int is_write)
2357{
2358 return address_space_map(&address_space_memory, addr, plen, is_write);
2359}
2360
a8170e5e
AK
2361void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2362 int is_write, hwaddr access_len)
ac1970fb
AK
2363{
2364 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2365}
2366
8df1cd07 2367/* warning: addr must be aligned */
fdfba1a2 2368static inline uint32_t ldl_phys_internal(AddressSpace *as, hwaddr addr,
1e78bcc1 2369 enum device_endian endian)
8df1cd07 2370{
8df1cd07 2371 uint8_t *ptr;
791af8c8 2372 uint64_t val;
5c8a00ce 2373 MemoryRegion *mr;
149f54b5
PB
2374 hwaddr l = 4;
2375 hwaddr addr1;
8df1cd07 2376
fdfba1a2 2377 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 2378 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2379 /* I/O case */
5c8a00ce 2380 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2381#if defined(TARGET_WORDS_BIGENDIAN)
2382 if (endian == DEVICE_LITTLE_ENDIAN) {
2383 val = bswap32(val);
2384 }
2385#else
2386 if (endian == DEVICE_BIG_ENDIAN) {
2387 val = bswap32(val);
2388 }
2389#endif
8df1cd07
FB
2390 } else {
2391 /* RAM case */
5c8a00ce 2392 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2393 & TARGET_PAGE_MASK)
149f54b5 2394 + addr1);
1e78bcc1
AG
2395 switch (endian) {
2396 case DEVICE_LITTLE_ENDIAN:
2397 val = ldl_le_p(ptr);
2398 break;
2399 case DEVICE_BIG_ENDIAN:
2400 val = ldl_be_p(ptr);
2401 break;
2402 default:
2403 val = ldl_p(ptr);
2404 break;
2405 }
8df1cd07
FB
2406 }
2407 return val;
2408}
2409
fdfba1a2 2410uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2411{
fdfba1a2 2412 return ldl_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2413}
2414
fdfba1a2 2415uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2416{
fdfba1a2 2417 return ldl_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2418}
2419
fdfba1a2 2420uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2421{
fdfba1a2 2422 return ldl_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2423}
2424
84b7b8e7 2425/* warning: addr must be aligned */
2c17449b 2426static inline uint64_t ldq_phys_internal(AddressSpace *as, hwaddr addr,
1e78bcc1 2427 enum device_endian endian)
84b7b8e7 2428{
84b7b8e7
FB
2429 uint8_t *ptr;
2430 uint64_t val;
5c8a00ce 2431 MemoryRegion *mr;
149f54b5
PB
2432 hwaddr l = 8;
2433 hwaddr addr1;
84b7b8e7 2434
2c17449b 2435 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2436 false);
2437 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2438 /* I/O case */
5c8a00ce 2439 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2440#if defined(TARGET_WORDS_BIGENDIAN)
2441 if (endian == DEVICE_LITTLE_ENDIAN) {
2442 val = bswap64(val);
2443 }
2444#else
2445 if (endian == DEVICE_BIG_ENDIAN) {
2446 val = bswap64(val);
2447 }
84b7b8e7
FB
2448#endif
2449 } else {
2450 /* RAM case */
5c8a00ce 2451 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2452 & TARGET_PAGE_MASK)
149f54b5 2453 + addr1);
1e78bcc1
AG
2454 switch (endian) {
2455 case DEVICE_LITTLE_ENDIAN:
2456 val = ldq_le_p(ptr);
2457 break;
2458 case DEVICE_BIG_ENDIAN:
2459 val = ldq_be_p(ptr);
2460 break;
2461 default:
2462 val = ldq_p(ptr);
2463 break;
2464 }
84b7b8e7
FB
2465 }
2466 return val;
2467}
2468
2c17449b 2469uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2470{
2c17449b 2471 return ldq_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2472}
2473
2c17449b 2474uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2475{
2c17449b 2476 return ldq_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2477}
2478
2c17449b 2479uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2480{
2c17449b 2481 return ldq_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2482}
2483
aab33094 2484/* XXX: optimize */
2c17449b 2485uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
aab33094
FB
2486{
2487 uint8_t val;
2c17449b 2488 address_space_rw(as, addr, &val, 1, 0);
aab33094
FB
2489 return val;
2490}
2491
733f0b02 2492/* warning: addr must be aligned */
41701aa4 2493static inline uint32_t lduw_phys_internal(AddressSpace *as, hwaddr addr,
1e78bcc1 2494 enum device_endian endian)
aab33094 2495{
733f0b02
MT
2496 uint8_t *ptr;
2497 uint64_t val;
5c8a00ce 2498 MemoryRegion *mr;
149f54b5
PB
2499 hwaddr l = 2;
2500 hwaddr addr1;
733f0b02 2501
41701aa4 2502 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2503 false);
2504 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2505 /* I/O case */
5c8a00ce 2506 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2507#if defined(TARGET_WORDS_BIGENDIAN)
2508 if (endian == DEVICE_LITTLE_ENDIAN) {
2509 val = bswap16(val);
2510 }
2511#else
2512 if (endian == DEVICE_BIG_ENDIAN) {
2513 val = bswap16(val);
2514 }
2515#endif
733f0b02
MT
2516 } else {
2517 /* RAM case */
5c8a00ce 2518 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2519 & TARGET_PAGE_MASK)
149f54b5 2520 + addr1);
1e78bcc1
AG
2521 switch (endian) {
2522 case DEVICE_LITTLE_ENDIAN:
2523 val = lduw_le_p(ptr);
2524 break;
2525 case DEVICE_BIG_ENDIAN:
2526 val = lduw_be_p(ptr);
2527 break;
2528 default:
2529 val = lduw_p(ptr);
2530 break;
2531 }
733f0b02
MT
2532 }
2533 return val;
aab33094
FB
2534}
2535
41701aa4 2536uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2537{
41701aa4 2538 return lduw_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2539}
2540
41701aa4 2541uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2542{
41701aa4 2543 return lduw_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2544}
2545
41701aa4 2546uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2547{
41701aa4 2548 return lduw_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2549}
2550
8df1cd07
FB
2551/* warning: addr must be aligned. The ram page is not masked as dirty
2552 and the code inside is not invalidated. It is useful if the dirty
2553 bits are used to track modified PTEs */
2198a121 2554void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
8df1cd07 2555{
8df1cd07 2556 uint8_t *ptr;
5c8a00ce 2557 MemoryRegion *mr;
149f54b5
PB
2558 hwaddr l = 4;
2559 hwaddr addr1;
8df1cd07 2560
2198a121 2561 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2562 true);
2563 if (l < 4 || !memory_access_is_direct(mr, true)) {
2564 io_mem_write(mr, addr1, val, 4);
8df1cd07 2565 } else {
5c8a00ce 2566 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2567 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2568 stl_p(ptr, val);
74576198
AL
2569
2570 if (unlikely(in_migration)) {
a2cd8c85 2571 if (cpu_physical_memory_is_clean(addr1)) {
74576198
AL
2572 /* invalidate code */
2573 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2574 /* set dirty bit */
52159192
JQ
2575 cpu_physical_memory_set_dirty_flag(addr1,
2576 DIRTY_MEMORY_MIGRATION);
2577 cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA);
74576198
AL
2578 }
2579 }
8df1cd07
FB
2580 }
2581}
2582
2583/* warning: addr must be aligned */
ab1da857
EI
2584static inline void stl_phys_internal(AddressSpace *as,
2585 hwaddr addr, uint32_t val,
1e78bcc1 2586 enum device_endian endian)
8df1cd07 2587{
8df1cd07 2588 uint8_t *ptr;
5c8a00ce 2589 MemoryRegion *mr;
149f54b5
PB
2590 hwaddr l = 4;
2591 hwaddr addr1;
8df1cd07 2592
ab1da857 2593 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2594 true);
2595 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2596#if defined(TARGET_WORDS_BIGENDIAN)
2597 if (endian == DEVICE_LITTLE_ENDIAN) {
2598 val = bswap32(val);
2599 }
2600#else
2601 if (endian == DEVICE_BIG_ENDIAN) {
2602 val = bswap32(val);
2603 }
2604#endif
5c8a00ce 2605 io_mem_write(mr, addr1, val, 4);
8df1cd07 2606 } else {
8df1cd07 2607 /* RAM case */
5c8a00ce 2608 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2609 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2610 switch (endian) {
2611 case DEVICE_LITTLE_ENDIAN:
2612 stl_le_p(ptr, val);
2613 break;
2614 case DEVICE_BIG_ENDIAN:
2615 stl_be_p(ptr, val);
2616 break;
2617 default:
2618 stl_p(ptr, val);
2619 break;
2620 }
51d7a9eb 2621 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2622 }
2623}
2624
ab1da857 2625void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2626{
ab1da857 2627 stl_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2628}
2629
ab1da857 2630void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2631{
ab1da857 2632 stl_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2633}
2634
ab1da857 2635void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2636{
ab1da857 2637 stl_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2638}
2639
aab33094 2640/* XXX: optimize */
db3be60d 2641void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
aab33094
FB
2642{
2643 uint8_t v = val;
db3be60d 2644 address_space_rw(as, addr, &v, 1, 1);
aab33094
FB
2645}
2646
733f0b02 2647/* warning: addr must be aligned */
5ce5944d
EI
2648static inline void stw_phys_internal(AddressSpace *as,
2649 hwaddr addr, uint32_t val,
1e78bcc1 2650 enum device_endian endian)
aab33094 2651{
733f0b02 2652 uint8_t *ptr;
5c8a00ce 2653 MemoryRegion *mr;
149f54b5
PB
2654 hwaddr l = 2;
2655 hwaddr addr1;
733f0b02 2656
5ce5944d 2657 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 2658 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2659#if defined(TARGET_WORDS_BIGENDIAN)
2660 if (endian == DEVICE_LITTLE_ENDIAN) {
2661 val = bswap16(val);
2662 }
2663#else
2664 if (endian == DEVICE_BIG_ENDIAN) {
2665 val = bswap16(val);
2666 }
2667#endif
5c8a00ce 2668 io_mem_write(mr, addr1, val, 2);
733f0b02 2669 } else {
733f0b02 2670 /* RAM case */
5c8a00ce 2671 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2672 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2673 switch (endian) {
2674 case DEVICE_LITTLE_ENDIAN:
2675 stw_le_p(ptr, val);
2676 break;
2677 case DEVICE_BIG_ENDIAN:
2678 stw_be_p(ptr, val);
2679 break;
2680 default:
2681 stw_p(ptr, val);
2682 break;
2683 }
51d7a9eb 2684 invalidate_and_set_dirty(addr1, 2);
733f0b02 2685 }
aab33094
FB
2686}
2687
5ce5944d 2688void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2689{
5ce5944d 2690 stw_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
1e78bcc1
AG
2691}
2692
5ce5944d 2693void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2694{
5ce5944d 2695 stw_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
1e78bcc1
AG
2696}
2697
5ce5944d 2698void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 2699{
5ce5944d 2700 stw_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
1e78bcc1
AG
2701}
2702
aab33094 2703/* XXX: optimize */
f606604f 2704void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
aab33094
FB
2705{
2706 val = tswap64(val);
f606604f 2707 address_space_rw(as, addr, (void *) &val, 8, 1);
aab33094
FB
2708}
2709
f606604f 2710void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1
AG
2711{
2712 val = cpu_to_le64(val);
f606604f 2713 address_space_rw(as, addr, (void *) &val, 8, 1);
1e78bcc1
AG
2714}
2715
f606604f 2716void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1
AG
2717{
2718 val = cpu_to_be64(val);
f606604f 2719 address_space_rw(as, addr, (void *) &val, 8, 1);
1e78bcc1
AG
2720}
2721
5e2972fd 2722/* virtual memory access for debug (includes writing to ROM) */
f17ec444 2723int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 2724 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2725{
2726 int l;
a8170e5e 2727 hwaddr phys_addr;
9b3c35e0 2728 target_ulong page;
13eb76e0
FB
2729
2730 while (len > 0) {
2731 page = addr & TARGET_PAGE_MASK;
f17ec444 2732 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
2733 /* if no physical page mapped, return an error */
2734 if (phys_addr == -1)
2735 return -1;
2736 l = (page + TARGET_PAGE_SIZE) - addr;
2737 if (l > len)
2738 l = len;
5e2972fd 2739 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b
EI
2740 if (is_write) {
2741 cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
2742 } else {
2743 address_space_rw(cpu->as, phys_addr, buf, l, 0);
2744 }
13eb76e0
FB
2745 len -= l;
2746 buf += l;
2747 addr += l;
2748 }
2749 return 0;
2750}
a68fe89c 2751#endif
13eb76e0 2752
8e4a424b
BS
2753#if !defined(CONFIG_USER_ONLY)
2754
2755/*
2756 * A helper function for the _utterly broken_ virtio device model to find out if
2757 * it's running on a big endian machine. Don't do this at home kids!
2758 */
2759bool virtio_is_big_endian(void);
2760bool virtio_is_big_endian(void)
2761{
2762#if defined(TARGET_WORDS_BIGENDIAN)
2763 return true;
2764#else
2765 return false;
2766#endif
2767}
2768
2769#endif
2770
76f35538 2771#ifndef CONFIG_USER_ONLY
a8170e5e 2772bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2773{
5c8a00ce 2774 MemoryRegion*mr;
149f54b5 2775 hwaddr l = 1;
76f35538 2776
5c8a00ce
PB
2777 mr = address_space_translate(&address_space_memory,
2778 phys_addr, &phys_addr, &l, false);
76f35538 2779
5c8a00ce
PB
2780 return !(memory_region_is_ram(mr) ||
2781 memory_region_is_romd(mr));
76f35538 2782}
bd2fa51f
MH
2783
2784void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2785{
2786 RAMBlock *block;
2787
2788 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2789 func(block->host, block->offset, block->length, opaque);
2790 }
2791}
ec3f8c99 2792#endif