]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
qapi: Reject alternates that can't work with keyval_parse()
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
4485bd26 30#if !defined(CONFIG_USER_ONLY)
47c8ca53 31#include "hw/boards.h"
33c11879 32#include "hw/xen/xen.h"
4485bd26 33#endif
9c17d615 34#include "sysemu/kvm.h"
2ff3de68 35#include "sysemu/sysemu.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
75a34036 38#include "qemu/error-report.h"
53a5960a 39#if defined(CONFIG_USER_ONLY)
a9c94277 40#include "qemu.h"
432d268c 41#else /* !CONFIG_USER_ONLY */
741da0d3
PB
42#include "hw/hw.h"
43#include "exec/memory.h"
df43d49c 44#include "exec/ioport.h"
741da0d3 45#include "sysemu/dma.h"
9c607668 46#include "sysemu/numa.h"
79ca7a1b 47#include "sysemu/hw_accel.h"
741da0d3 48#include "exec/address-spaces.h"
9c17d615 49#include "sysemu/xen-mapcache.h"
0ab8ed18 50#include "trace-root.h"
d3a5038c 51
e2fa71f5
DDAG
52#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53#include <fcntl.h>
54#include <linux/falloc.h>
55#endif
56
53a5960a 57#endif
0d6d3c87 58#include "exec/cpu-all.h"
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
0844e007 91MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 92static MemoryRegion io_mem_unassigned;
0e0df1e2 93
7bd4f430
PB
94/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95#define RAM_PREALLOC (1 << 0)
96
dbcb8981
PB
97/* RAM is mmap-ed with MAP_SHARED */
98#define RAM_SHARED (1 << 1)
99
62be4e3a
MT
100/* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103#define RAM_RESIZEABLE (1 << 2)
104
e2eef170 105#endif
9fa3e853 106
20bccb82
PM
107#ifdef TARGET_PAGE_BITS_VARY
108int target_page_bits;
109bool target_page_bits_decided;
110#endif
111
bdc44640 112struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
f240eb6f 115__thread CPUState *current_cpu;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef 118 2 = Adaptive rate instruction counting. */
5708fc66 119int use_icount;
6a00d601 120
20bccb82
PM
121bool set_preferred_target_page_bits(int bits)
122{
123 /* The target page size is the lowest common denominator for all
124 * the CPUs in the system, so we can only make it smaller, never
125 * larger. And we can't make it smaller once we've committed to
126 * a particular size.
127 */
128#ifdef TARGET_PAGE_BITS_VARY
129 assert(bits >= TARGET_PAGE_BITS_MIN);
130 if (target_page_bits == 0 || target_page_bits > bits) {
131 if (target_page_bits_decided) {
132 return false;
133 }
134 target_page_bits = bits;
135 }
136#endif
137 return true;
138}
139
e2eef170 140#if !defined(CONFIG_USER_ONLY)
4346ae3e 141
20bccb82
PM
142static void finalize_target_page_bits(void)
143{
144#ifdef TARGET_PAGE_BITS_VARY
145 if (target_page_bits == 0) {
146 target_page_bits = TARGET_PAGE_BITS_MIN;
147 }
148 target_page_bits_decided = true;
149#endif
150}
151
1db8abb1
PB
152typedef struct PhysPageEntry PhysPageEntry;
153
154struct PhysPageEntry {
9736e55b 155 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 156 uint32_t skip : 6;
9736e55b 157 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 158 uint32_t ptr : 26;
1db8abb1
PB
159};
160
8b795765
MT
161#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
162
03f49957 163/* Size of the L2 (and L3, etc) page tables. */
57271d63 164#define ADDR_SPACE_BITS 64
03f49957 165
026736ce 166#define P_L2_BITS 9
03f49957
PB
167#define P_L2_SIZE (1 << P_L2_BITS)
168
169#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
170
171typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 172
53cb28cb 173typedef struct PhysPageMap {
79e2b9ae
PB
174 struct rcu_head rcu;
175
53cb28cb
MA
176 unsigned sections_nb;
177 unsigned sections_nb_alloc;
178 unsigned nodes_nb;
179 unsigned nodes_nb_alloc;
180 Node *nodes;
181 MemoryRegionSection *sections;
182} PhysPageMap;
183
1db8abb1 184struct AddressSpaceDispatch {
79e2b9ae
PB
185 struct rcu_head rcu;
186
729633c2 187 MemoryRegionSection *mru_section;
1db8abb1
PB
188 /* This is a multi-level map on the physical address space.
189 * The bottom level has pointers to MemoryRegionSections.
190 */
191 PhysPageEntry phys_map;
53cb28cb 192 PhysPageMap map;
acc9d80b 193 AddressSpace *as;
1db8abb1
PB
194};
195
90260c6c
JK
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 MemoryRegion iomem;
acc9d80b 199 AddressSpace *as;
90260c6c 200 hwaddr base;
2615fabd 201 uint16_t sub_section[];
90260c6c
JK
202} subpage_t;
203
b41aac4f
LPF
204#define PHYS_SECTION_UNASSIGNED 0
205#define PHYS_SECTION_NOTDIRTY 1
206#define PHYS_SECTION_ROM 2
207#define PHYS_SECTION_WATCH 3
5312bd8b 208
e2eef170 209static void io_mem_init(void);
62152b8a 210static void memory_map_init(void);
09daed84 211static void tcg_commit(MemoryListener *listener);
e2eef170 212
1ec9b909 213static MemoryRegion io_mem_watch;
32857f4d
PM
214
215/**
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 */
222struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
227};
228
8deaf12c
GH
229struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
233};
234
6658ffb8 235#endif
fd6ce8f6 236
6d9a1304 237#if !defined(CONFIG_USER_ONLY)
d6f2ea22 238
53cb28cb 239static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 240{
101420b8 241 static unsigned alloc_hint = 16;
53cb28cb 242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 246 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 247 }
f7bf5461
AK
248}
249
db94604b 250static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
251{
252 unsigned i;
8b795765 253 uint32_t ret;
db94604b
PB
254 PhysPageEntry e;
255 PhysPageEntry *p;
f7bf5461 256
53cb28cb 257 ret = map->nodes_nb++;
db94604b 258 p = map->nodes[ret];
f7bf5461 259 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 260 assert(ret != map->nodes_nb_alloc);
db94604b
PB
261
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 264 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 265 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 266 }
f7bf5461 267 return ret;
d6f2ea22
AK
268}
269
53cb28cb
MA
270static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 272 int level)
f7bf5461
AK
273{
274 PhysPageEntry *p;
03f49957 275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 276
9736e55b 277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 278 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 279 }
db94604b 280 p = map->nodes[lp->ptr];
03f49957 281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 282
03f49957 283 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 284 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 285 lp->skip = 0;
c19e8800 286 lp->ptr = leaf;
07f07b31
AK
287 *index += step;
288 *nb -= step;
2999097b 289 } else {
53cb28cb 290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
291 }
292 ++lp;
f7bf5461
AK
293 }
294}
295
ac1970fb 296static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 297 hwaddr index, hwaddr nb,
2999097b 298 uint16_t leaf)
f7bf5461 299{
2999097b 300 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 302
53cb28cb 303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
304}
305
b35ba30f
MT
306/* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
308 */
efee678d 309static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
310{
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
315
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
318 }
319
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
324 }
325
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
efee678d 329 phys_page_compact(&p[i], nodes);
b35ba30f
MT
330 }
331 }
332
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
336 }
337
338 assert(valid_ptr < P_L2_SIZE);
339
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
343 }
344
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
352 */
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
356 }
357}
358
359static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
360{
b35ba30f 361 if (d->phys_map.skip) {
efee678d 362 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
363 }
364}
365
29cb533d
FZ
366static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
368{
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
371 */
258dfaaa 372 return int128_gethi(section->size) ||
29cb533d 373 range_covers_byte(section->offset_within_address_space,
258dfaaa 374 int128_getlo(section->size), addr);
29cb533d
FZ
375}
376
97115a8d 377static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 378 Node *nodes, MemoryRegionSection *sections)
92e873b9 379{
31ab2b4a 380 PhysPageEntry *p;
97115a8d 381 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 382 int i;
f1f6e3b8 383
9736e55b 384 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 385 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 386 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 387 }
9affd6fc 388 p = nodes[lp.ptr];
03f49957 389 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 390 }
b35ba30f 391
29cb533d 392 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
393 return &sections[lp.ptr];
394 } else {
395 return &sections[PHYS_SECTION_UNASSIGNED];
396 }
f3705d53
AK
397}
398
e5548617
BS
399bool memory_region_is_unassigned(MemoryRegion *mr)
400{
2a8e7499 401 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 402 && mr != &io_mem_watch;
fd6ce8f6 403}
149f54b5 404
79e2b9ae 405/* Called from RCU critical section */
c7086b4a 406static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
407 hwaddr addr,
408 bool resolve_subpage)
9f029603 409{
729633c2 410 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 411 subpage_t *subpage;
729633c2 412 bool update;
90260c6c 413
729633c2
FZ
414 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
415 section_covers_addr(section, addr)) {
416 update = false;
417 } else {
418 section = phys_page_find(d->phys_map, addr, d->map.nodes,
419 d->map.sections);
420 update = true;
421 }
90260c6c
JK
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 425 }
729633c2
FZ
426 if (update) {
427 atomic_set(&d->mru_section, section);
428 }
90260c6c 429 return section;
9f029603
JK
430}
431
79e2b9ae 432/* Called from RCU critical section */
90260c6c 433static MemoryRegionSection *
c7086b4a 434address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 435 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
436{
437 MemoryRegionSection *section;
965eb2fc 438 MemoryRegion *mr;
a87f3954 439 Int128 diff;
149f54b5 440
c7086b4a 441 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
444
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
447
965eb2fc 448 mr = section->mr;
b242e0e0
PB
449
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
456 *
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
460 */
965eb2fc 461 if (memory_region_is_ram(mr)) {
e4a511f8 462 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
464 }
149f54b5
PB
465 return section;
466}
90260c6c 467
41063e1e 468/* Called from RCU critical section */
a764040c
PX
469static MemoryRegionSection address_space_do_translate(AddressSpace *as,
470 hwaddr addr,
471 hwaddr *xlat,
472 hwaddr *plen,
473 bool is_write,
474 bool is_mmio)
052c8fa9 475{
a764040c 476 IOMMUTLBEntry iotlb;
052c8fa9
JW
477 MemoryRegionSection *section;
478 MemoryRegion *mr;
479
480 for (;;) {
481 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
a764040c 482 section = address_space_translate_internal(d, addr, &addr, plen, is_mmio);
052c8fa9
JW
483 mr = section->mr;
484
485 if (!mr->iommu_ops) {
486 break;
487 }
488
bf55b7af
PX
489 iotlb = mr->iommu_ops->translate(mr, addr, is_write ?
490 IOMMU_WO : IOMMU_RO);
a764040c
PX
491 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
492 | (addr & iotlb.addr_mask));
493 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 494 if (!(iotlb.perm & (1 << is_write))) {
a764040c 495 goto translate_fail;
052c8fa9
JW
496 }
497
052c8fa9
JW
498 as = iotlb.target_as;
499 }
500
a764040c
PX
501 *xlat = addr;
502
503 return *section;
504
505translate_fail:
506 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
507}
508
509/* Called from RCU critical section */
a764040c
PX
510IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
511 bool is_write)
90260c6c 512{
a764040c
PX
513 MemoryRegionSection section;
514 hwaddr xlat, plen;
30951157 515
a764040c
PX
516 /* Try to get maximum page mask during translation. */
517 plen = (hwaddr)-1;
30951157 518
a764040c
PX
519 /* This can never be MMIO. */
520 section = address_space_do_translate(as, addr, &xlat, &plen,
521 is_write, false);
30951157 522
a764040c
PX
523 /* Illegal translation */
524 if (section.mr == &io_mem_unassigned) {
525 goto iotlb_fail;
526 }
30951157 527
a764040c
PX
528 /* Convert memory region offset into address space offset */
529 xlat += section.offset_within_address_space -
530 section.offset_within_region;
531
532 if (plen == (hwaddr)-1) {
533 /*
534 * We use default page size here. Logically it only happens
535 * for identity mappings.
536 */
537 plen = TARGET_PAGE_SIZE;
30951157
AK
538 }
539
a764040c
PX
540 /* Convert to address mask */
541 plen -= 1;
542
543 return (IOMMUTLBEntry) {
544 .target_as = section.address_space,
545 .iova = addr & ~plen,
546 .translated_addr = xlat & ~plen,
547 .addr_mask = plen,
548 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
549 .perm = IOMMU_RW,
550 };
551
552iotlb_fail:
553 return (IOMMUTLBEntry) {0};
554}
555
556/* Called from RCU critical section */
557MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
558 hwaddr *xlat, hwaddr *plen,
559 bool is_write)
560{
561 MemoryRegion *mr;
562 MemoryRegionSection section;
563
564 /* This can be MMIO, so setup MMIO bit. */
565 section = address_space_do_translate(as, addr, xlat, plen, is_write, true);
566 mr = section.mr;
567
fe680d0d 568 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 569 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 570 *plen = MIN(page, *plen);
a87f3954
PB
571 }
572
30951157 573 return mr;
90260c6c
JK
574}
575
79e2b9ae 576/* Called from RCU critical section */
90260c6c 577MemoryRegionSection *
d7898cda 578address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 579 hwaddr *xlat, hwaddr *plen)
90260c6c 580{
30951157 581 MemoryRegionSection *section;
f35e44e7 582 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
583
584 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
585
586 assert(!section->mr->iommu_ops);
587 return section;
90260c6c 588}
5b6dd868 589#endif
fd6ce8f6 590
b170fce3 591#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
592
593static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 594{
259186a7 595 CPUState *cpu = opaque;
a513fe19 596
5b6dd868
BS
597 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
598 version_id is increased. */
259186a7 599 cpu->interrupt_request &= ~0x01;
d10eb08f 600 tlb_flush(cpu);
5b6dd868
BS
601
602 return 0;
a513fe19 603}
7501267e 604
6c3bff0e
PD
605static int cpu_common_pre_load(void *opaque)
606{
607 CPUState *cpu = opaque;
608
adee6424 609 cpu->exception_index = -1;
6c3bff0e
PD
610
611 return 0;
612}
613
614static bool cpu_common_exception_index_needed(void *opaque)
615{
616 CPUState *cpu = opaque;
617
adee6424 618 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
619}
620
621static const VMStateDescription vmstate_cpu_common_exception_index = {
622 .name = "cpu_common/exception_index",
623 .version_id = 1,
624 .minimum_version_id = 1,
5cd8cada 625 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
626 .fields = (VMStateField[]) {
627 VMSTATE_INT32(exception_index, CPUState),
628 VMSTATE_END_OF_LIST()
629 }
630};
631
bac05aa9
AS
632static bool cpu_common_crash_occurred_needed(void *opaque)
633{
634 CPUState *cpu = opaque;
635
636 return cpu->crash_occurred;
637}
638
639static const VMStateDescription vmstate_cpu_common_crash_occurred = {
640 .name = "cpu_common/crash_occurred",
641 .version_id = 1,
642 .minimum_version_id = 1,
643 .needed = cpu_common_crash_occurred_needed,
644 .fields = (VMStateField[]) {
645 VMSTATE_BOOL(crash_occurred, CPUState),
646 VMSTATE_END_OF_LIST()
647 }
648};
649
1a1562f5 650const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
651 .name = "cpu_common",
652 .version_id = 1,
653 .minimum_version_id = 1,
6c3bff0e 654 .pre_load = cpu_common_pre_load,
5b6dd868 655 .post_load = cpu_common_post_load,
35d08458 656 .fields = (VMStateField[]) {
259186a7
AF
657 VMSTATE_UINT32(halted, CPUState),
658 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 659 VMSTATE_END_OF_LIST()
6c3bff0e 660 },
5cd8cada
JQ
661 .subsections = (const VMStateDescription*[]) {
662 &vmstate_cpu_common_exception_index,
bac05aa9 663 &vmstate_cpu_common_crash_occurred,
5cd8cada 664 NULL
5b6dd868
BS
665 }
666};
1a1562f5 667
5b6dd868 668#endif
ea041c0e 669
38d8f5c8 670CPUState *qemu_get_cpu(int index)
ea041c0e 671{
bdc44640 672 CPUState *cpu;
ea041c0e 673
bdc44640 674 CPU_FOREACH(cpu) {
55e5c285 675 if (cpu->cpu_index == index) {
bdc44640 676 return cpu;
55e5c285 677 }
ea041c0e 678 }
5b6dd868 679
bdc44640 680 return NULL;
ea041c0e
FB
681}
682
09daed84 683#if !defined(CONFIG_USER_ONLY)
56943e8c 684void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 685{
12ebc9a7
PM
686 CPUAddressSpace *newas;
687
688 /* Target code should have set num_ases before calling us */
689 assert(asidx < cpu->num_ases);
690
56943e8c
PM
691 if (asidx == 0) {
692 /* address space 0 gets the convenience alias */
693 cpu->as = as;
694 }
695
12ebc9a7
PM
696 /* KVM cannot currently support multiple address spaces. */
697 assert(asidx == 0 || !kvm_enabled());
09daed84 698
12ebc9a7
PM
699 if (!cpu->cpu_ases) {
700 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 701 }
32857f4d 702
12ebc9a7
PM
703 newas = &cpu->cpu_ases[asidx];
704 newas->cpu = cpu;
705 newas->as = as;
56943e8c 706 if (tcg_enabled()) {
12ebc9a7
PM
707 newas->tcg_as_listener.commit = tcg_commit;
708 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 709 }
09daed84 710}
651a5bc0
PM
711
712AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
713{
714 /* Return the AddressSpace corresponding to the specified index */
715 return cpu->cpu_ases[asidx].as;
716}
09daed84
EI
717#endif
718
7bbc124e 719void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 720{
9dfeca7c
BR
721 CPUClass *cc = CPU_GET_CLASS(cpu);
722
267f685b 723 cpu_list_remove(cpu);
9dfeca7c
BR
724
725 if (cc->vmsd != NULL) {
726 vmstate_unregister(NULL, cc->vmsd, cpu);
727 }
728 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
729 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
730 }
1c59eb39
BR
731}
732
39e329e3 733void cpu_exec_initfn(CPUState *cpu)
ea041c0e 734{
56943e8c 735 cpu->as = NULL;
12ebc9a7 736 cpu->num_ases = 0;
56943e8c 737
291135b5 738#ifndef CONFIG_USER_ONLY
291135b5 739 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
740
741 /* This is a softmmu CPU object, so create a property for it
742 * so users can wire up its memory. (This can't go in qom/cpu.c
743 * because that file is compiled only once for both user-mode
744 * and system builds.) The default if no link is set up is to use
745 * the system address space.
746 */
747 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
748 (Object **)&cpu->memory,
749 qdev_prop_allow_set_link_before_realize,
750 OBJ_PROP_LINK_UNREF_ON_RELEASE,
751 &error_abort);
752 cpu->memory = system_memory;
753 object_ref(OBJECT(cpu->memory));
291135b5 754#endif
39e329e3
LV
755}
756
ce5b1bbf 757void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
758{
759 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 760
267f685b 761 cpu_list_add(cpu);
1bc7e522
IM
762
763#ifndef CONFIG_USER_ONLY
e0d47944 764 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 765 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 766 }
b170fce3 767 if (cc->vmsd != NULL) {
741da0d3 768 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 769 }
741da0d3 770#endif
ea041c0e
FB
771}
772
00b941e5 773static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 774{
a9353fe8
PM
775 /* Flush the whole TB as this will not have race conditions
776 * even if we don't have proper locking yet.
777 * Ideally we would just invalidate the TBs for the
778 * specified PC.
779 */
780 tb_flush(cpu);
1e7855a5 781}
d720b93d 782
c527ee8f 783#if defined(CONFIG_USER_ONLY)
75a34036 784void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
785
786{
787}
788
3ee887e8
PM
789int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
790 int flags)
791{
792 return -ENOSYS;
793}
794
795void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
796{
797}
798
75a34036 799int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
800 int flags, CPUWatchpoint **watchpoint)
801{
802 return -ENOSYS;
803}
804#else
6658ffb8 805/* Add a watchpoint. */
75a34036 806int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 807 int flags, CPUWatchpoint **watchpoint)
6658ffb8 808{
c0ce998e 809 CPUWatchpoint *wp;
6658ffb8 810
05068c0d 811 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 812 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
813 error_report("tried to set invalid watchpoint at %"
814 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
815 return -EINVAL;
816 }
7267c094 817 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
818
819 wp->vaddr = addr;
05068c0d 820 wp->len = len;
a1d1bb31
AL
821 wp->flags = flags;
822
2dc9f411 823 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
824 if (flags & BP_GDB) {
825 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
826 } else {
827 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
828 }
6658ffb8 829
31b030d4 830 tlb_flush_page(cpu, addr);
a1d1bb31
AL
831
832 if (watchpoint)
833 *watchpoint = wp;
834 return 0;
6658ffb8
PB
835}
836
a1d1bb31 837/* Remove a specific watchpoint. */
75a34036 838int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 839 int flags)
6658ffb8 840{
a1d1bb31 841 CPUWatchpoint *wp;
6658ffb8 842
ff4700b0 843 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 844 if (addr == wp->vaddr && len == wp->len
6e140f28 845 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 846 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
847 return 0;
848 }
849 }
a1d1bb31 850 return -ENOENT;
6658ffb8
PB
851}
852
a1d1bb31 853/* Remove a specific watchpoint by reference. */
75a34036 854void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 855{
ff4700b0 856 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 857
31b030d4 858 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 859
7267c094 860 g_free(watchpoint);
a1d1bb31
AL
861}
862
863/* Remove all matching watchpoints. */
75a34036 864void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 865{
c0ce998e 866 CPUWatchpoint *wp, *next;
a1d1bb31 867
ff4700b0 868 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
869 if (wp->flags & mask) {
870 cpu_watchpoint_remove_by_ref(cpu, wp);
871 }
c0ce998e 872 }
7d03f82f 873}
05068c0d
PM
874
875/* Return true if this watchpoint address matches the specified
876 * access (ie the address range covered by the watchpoint overlaps
877 * partially or completely with the address range covered by the
878 * access).
879 */
880static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
881 vaddr addr,
882 vaddr len)
883{
884 /* We know the lengths are non-zero, but a little caution is
885 * required to avoid errors in the case where the range ends
886 * exactly at the top of the address space and so addr + len
887 * wraps round to zero.
888 */
889 vaddr wpend = wp->vaddr + wp->len - 1;
890 vaddr addrend = addr + len - 1;
891
892 return !(addr > wpend || wp->vaddr > addrend);
893}
894
c527ee8f 895#endif
7d03f82f 896
a1d1bb31 897/* Add a breakpoint. */
b3310ab3 898int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 899 CPUBreakpoint **breakpoint)
4c3a88a2 900{
c0ce998e 901 CPUBreakpoint *bp;
3b46e624 902
7267c094 903 bp = g_malloc(sizeof(*bp));
4c3a88a2 904
a1d1bb31
AL
905 bp->pc = pc;
906 bp->flags = flags;
907
2dc9f411 908 /* keep all GDB-injected breakpoints in front */
00b941e5 909 if (flags & BP_GDB) {
f0c3c505 910 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 911 } else {
f0c3c505 912 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 913 }
3b46e624 914
f0c3c505 915 breakpoint_invalidate(cpu, pc);
a1d1bb31 916
00b941e5 917 if (breakpoint) {
a1d1bb31 918 *breakpoint = bp;
00b941e5 919 }
4c3a88a2 920 return 0;
4c3a88a2
FB
921}
922
a1d1bb31 923/* Remove a specific breakpoint. */
b3310ab3 924int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 925{
a1d1bb31
AL
926 CPUBreakpoint *bp;
927
f0c3c505 928 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 929 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 930 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
931 return 0;
932 }
7d03f82f 933 }
a1d1bb31 934 return -ENOENT;
7d03f82f
EI
935}
936
a1d1bb31 937/* Remove a specific breakpoint by reference. */
b3310ab3 938void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 939{
f0c3c505
AF
940 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
941
942 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 943
7267c094 944 g_free(breakpoint);
a1d1bb31
AL
945}
946
947/* Remove all matching breakpoints. */
b3310ab3 948void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 949{
c0ce998e 950 CPUBreakpoint *bp, *next;
a1d1bb31 951
f0c3c505 952 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
953 if (bp->flags & mask) {
954 cpu_breakpoint_remove_by_ref(cpu, bp);
955 }
c0ce998e 956 }
4c3a88a2
FB
957}
958
c33a346e
FB
959/* enable or disable single step mode. EXCP_DEBUG is returned by the
960 CPU loop after each instruction */
3825b28f 961void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 962{
ed2803da
AF
963 if (cpu->singlestep_enabled != enabled) {
964 cpu->singlestep_enabled = enabled;
965 if (kvm_enabled()) {
38e478ec 966 kvm_update_guest_debug(cpu, 0);
ed2803da 967 } else {
ccbb4d44 968 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 969 /* XXX: only flush what is necessary */
bbd77c18 970 tb_flush(cpu);
e22a25c9 971 }
c33a346e 972 }
c33a346e
FB
973}
974
a47dddd7 975void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
976{
977 va_list ap;
493ae1f0 978 va_list ap2;
7501267e
FB
979
980 va_start(ap, fmt);
493ae1f0 981 va_copy(ap2, ap);
7501267e
FB
982 fprintf(stderr, "qemu: fatal: ");
983 vfprintf(stderr, fmt, ap);
984 fprintf(stderr, "\n");
878096ee 985 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 986 if (qemu_log_separate()) {
1ee73216 987 qemu_log_lock();
93fcfe39
AL
988 qemu_log("qemu: fatal: ");
989 qemu_log_vprintf(fmt, ap2);
990 qemu_log("\n");
a0762859 991 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 992 qemu_log_flush();
1ee73216 993 qemu_log_unlock();
93fcfe39 994 qemu_log_close();
924edcae 995 }
493ae1f0 996 va_end(ap2);
f9373291 997 va_end(ap);
7615936e 998 replay_finish();
fd052bf6
RV
999#if defined(CONFIG_USER_ONLY)
1000 {
1001 struct sigaction act;
1002 sigfillset(&act.sa_mask);
1003 act.sa_handler = SIG_DFL;
1004 sigaction(SIGABRT, &act, NULL);
1005 }
1006#endif
7501267e
FB
1007 abort();
1008}
1009
0124311e 1010#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1011/* Called from RCU critical section */
041603fe
PB
1012static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1013{
1014 RAMBlock *block;
1015
43771539 1016 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1017 if (block && addr - block->offset < block->max_length) {
68851b98 1018 return block;
041603fe 1019 }
99e15582 1020 RAMBLOCK_FOREACH(block) {
9b8424d5 1021 if (addr - block->offset < block->max_length) {
041603fe
PB
1022 goto found;
1023 }
1024 }
1025
1026 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1027 abort();
1028
1029found:
43771539
PB
1030 /* It is safe to write mru_block outside the iothread lock. This
1031 * is what happens:
1032 *
1033 * mru_block = xxx
1034 * rcu_read_unlock()
1035 * xxx removed from list
1036 * rcu_read_lock()
1037 * read mru_block
1038 * mru_block = NULL;
1039 * call_rcu(reclaim_ramblock, xxx);
1040 * rcu_read_unlock()
1041 *
1042 * atomic_rcu_set is not needed here. The block was already published
1043 * when it was placed into the list. Here we're just making an extra
1044 * copy of the pointer.
1045 */
041603fe
PB
1046 ram_list.mru_block = block;
1047 return block;
1048}
1049
a2f4d5be 1050static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1051{
9a13565d 1052 CPUState *cpu;
041603fe 1053 ram_addr_t start1;
a2f4d5be
JQ
1054 RAMBlock *block;
1055 ram_addr_t end;
1056
1057 end = TARGET_PAGE_ALIGN(start + length);
1058 start &= TARGET_PAGE_MASK;
d24981d3 1059
0dc3f44a 1060 rcu_read_lock();
041603fe
PB
1061 block = qemu_get_ram_block(start);
1062 assert(block == qemu_get_ram_block(end - 1));
1240be24 1063 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1064 CPU_FOREACH(cpu) {
1065 tlb_reset_dirty(cpu, start1, length);
1066 }
0dc3f44a 1067 rcu_read_unlock();
d24981d3
JQ
1068}
1069
5579c7f3 1070/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1071bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1072 ram_addr_t length,
1073 unsigned client)
1ccde1cb 1074{
5b82b703 1075 DirtyMemoryBlocks *blocks;
03eebc9e 1076 unsigned long end, page;
5b82b703 1077 bool dirty = false;
03eebc9e
SH
1078
1079 if (length == 0) {
1080 return false;
1081 }
f23db169 1082
03eebc9e
SH
1083 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1084 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1085
1086 rcu_read_lock();
1087
1088 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1089
1090 while (page < end) {
1091 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1092 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1093 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1094
1095 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1096 offset, num);
1097 page += num;
1098 }
1099
1100 rcu_read_unlock();
03eebc9e
SH
1101
1102 if (dirty && tcg_enabled()) {
a2f4d5be 1103 tlb_reset_dirty_range_all(start, length);
5579c7f3 1104 }
03eebc9e
SH
1105
1106 return dirty;
1ccde1cb
FB
1107}
1108
8deaf12c
GH
1109DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1110 (ram_addr_t start, ram_addr_t length, unsigned client)
1111{
1112 DirtyMemoryBlocks *blocks;
1113 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1114 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1115 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1116 DirtyBitmapSnapshot *snap;
1117 unsigned long page, end, dest;
1118
1119 snap = g_malloc0(sizeof(*snap) +
1120 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1121 snap->start = first;
1122 snap->end = last;
1123
1124 page = first >> TARGET_PAGE_BITS;
1125 end = last >> TARGET_PAGE_BITS;
1126 dest = 0;
1127
1128 rcu_read_lock();
1129
1130 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1131
1132 while (page < end) {
1133 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1134 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1135 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1136
1137 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1138 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1139 offset >>= BITS_PER_LEVEL;
1140
1141 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1142 blocks->blocks[idx] + offset,
1143 num);
1144 page += num;
1145 dest += num >> BITS_PER_LEVEL;
1146 }
1147
1148 rcu_read_unlock();
1149
1150 if (tcg_enabled()) {
1151 tlb_reset_dirty_range_all(start, length);
1152 }
1153
1154 return snap;
1155}
1156
1157bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1158 ram_addr_t start,
1159 ram_addr_t length)
1160{
1161 unsigned long page, end;
1162
1163 assert(start >= snap->start);
1164 assert(start + length <= snap->end);
1165
1166 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1167 page = (start - snap->start) >> TARGET_PAGE_BITS;
1168
1169 while (page < end) {
1170 if (test_bit(page, snap->dirty)) {
1171 return true;
1172 }
1173 page++;
1174 }
1175 return false;
1176}
1177
79e2b9ae 1178/* Called from RCU critical section */
bb0e627a 1179hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1180 MemoryRegionSection *section,
1181 target_ulong vaddr,
1182 hwaddr paddr, hwaddr xlat,
1183 int prot,
1184 target_ulong *address)
e5548617 1185{
a8170e5e 1186 hwaddr iotlb;
e5548617
BS
1187 CPUWatchpoint *wp;
1188
cc5bea60 1189 if (memory_region_is_ram(section->mr)) {
e5548617 1190 /* Normal RAM. */
e4e69794 1191 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1192 if (!section->readonly) {
b41aac4f 1193 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1194 } else {
b41aac4f 1195 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1196 }
1197 } else {
0b8e2c10
PM
1198 AddressSpaceDispatch *d;
1199
1200 d = atomic_rcu_read(&section->address_space->dispatch);
1201 iotlb = section - d->map.sections;
149f54b5 1202 iotlb += xlat;
e5548617
BS
1203 }
1204
1205 /* Make accesses to pages with watchpoints go via the
1206 watchpoint trap routines. */
ff4700b0 1207 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1208 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1209 /* Avoid trapping reads of pages with a write breakpoint. */
1210 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1211 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1212 *address |= TLB_MMIO;
1213 break;
1214 }
1215 }
1216 }
1217
1218 return iotlb;
1219}
9fa3e853
FB
1220#endif /* defined(CONFIG_USER_ONLY) */
1221
e2eef170 1222#if !defined(CONFIG_USER_ONLY)
8da3ff18 1223
c227f099 1224static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1225 uint16_t section);
acc9d80b 1226static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1227
a2b257d6
IM
1228static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1229 qemu_anon_ram_alloc;
91138037
MA
1230
1231/*
1232 * Set a custom physical guest memory alloator.
1233 * Accelerators with unusual needs may need this. Hopefully, we can
1234 * get rid of it eventually.
1235 */
a2b257d6 1236void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1237{
1238 phys_mem_alloc = alloc;
1239}
1240
53cb28cb
MA
1241static uint16_t phys_section_add(PhysPageMap *map,
1242 MemoryRegionSection *section)
5312bd8b 1243{
68f3f65b
PB
1244 /* The physical section number is ORed with a page-aligned
1245 * pointer to produce the iotlb entries. Thus it should
1246 * never overflow into the page-aligned value.
1247 */
53cb28cb 1248 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1249
53cb28cb
MA
1250 if (map->sections_nb == map->sections_nb_alloc) {
1251 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1252 map->sections = g_renew(MemoryRegionSection, map->sections,
1253 map->sections_nb_alloc);
5312bd8b 1254 }
53cb28cb 1255 map->sections[map->sections_nb] = *section;
dfde4e6e 1256 memory_region_ref(section->mr);
53cb28cb 1257 return map->sections_nb++;
5312bd8b
AK
1258}
1259
058bc4b5
PB
1260static void phys_section_destroy(MemoryRegion *mr)
1261{
55b4e80b
DS
1262 bool have_sub_page = mr->subpage;
1263
dfde4e6e
PB
1264 memory_region_unref(mr);
1265
55b4e80b 1266 if (have_sub_page) {
058bc4b5 1267 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1268 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1269 g_free(subpage);
1270 }
1271}
1272
6092666e 1273static void phys_sections_free(PhysPageMap *map)
5312bd8b 1274{
9affd6fc
PB
1275 while (map->sections_nb > 0) {
1276 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1277 phys_section_destroy(section->mr);
1278 }
9affd6fc
PB
1279 g_free(map->sections);
1280 g_free(map->nodes);
5312bd8b
AK
1281}
1282
ac1970fb 1283static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1284{
1285 subpage_t *subpage;
a8170e5e 1286 hwaddr base = section->offset_within_address_space
0f0cb164 1287 & TARGET_PAGE_MASK;
97115a8d 1288 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1289 d->map.nodes, d->map.sections);
0f0cb164
AK
1290 MemoryRegionSection subsection = {
1291 .offset_within_address_space = base,
052e87b0 1292 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1293 };
a8170e5e 1294 hwaddr start, end;
0f0cb164 1295
f3705d53 1296 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1297
f3705d53 1298 if (!(existing->mr->subpage)) {
acc9d80b 1299 subpage = subpage_init(d->as, base);
3be91e86 1300 subsection.address_space = d->as;
0f0cb164 1301 subsection.mr = &subpage->iomem;
ac1970fb 1302 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1303 phys_section_add(&d->map, &subsection));
0f0cb164 1304 } else {
f3705d53 1305 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1306 }
1307 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1308 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1309 subpage_register(subpage, start, end,
1310 phys_section_add(&d->map, section));
0f0cb164
AK
1311}
1312
1313
052e87b0
PB
1314static void register_multipage(AddressSpaceDispatch *d,
1315 MemoryRegionSection *section)
33417e70 1316{
a8170e5e 1317 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1318 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1319 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1320 TARGET_PAGE_BITS));
dd81124b 1321
733d5ef5
PB
1322 assert(num_pages);
1323 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1324}
1325
ac1970fb 1326static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1327{
89ae337a 1328 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1329 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1330 MemoryRegionSection now = *section, remain = *section;
052e87b0 1331 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1332
733d5ef5
PB
1333 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1334 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1335 - now.offset_within_address_space;
1336
052e87b0 1337 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1338 register_subpage(d, &now);
733d5ef5 1339 } else {
052e87b0 1340 now.size = int128_zero();
733d5ef5 1341 }
052e87b0
PB
1342 while (int128_ne(remain.size, now.size)) {
1343 remain.size = int128_sub(remain.size, now.size);
1344 remain.offset_within_address_space += int128_get64(now.size);
1345 remain.offset_within_region += int128_get64(now.size);
69b67646 1346 now = remain;
052e87b0 1347 if (int128_lt(remain.size, page_size)) {
733d5ef5 1348 register_subpage(d, &now);
88266249 1349 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1350 now.size = page_size;
ac1970fb 1351 register_subpage(d, &now);
69b67646 1352 } else {
052e87b0 1353 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1354 register_multipage(d, &now);
69b67646 1355 }
0f0cb164
AK
1356 }
1357}
1358
62a2744c
SY
1359void qemu_flush_coalesced_mmio_buffer(void)
1360{
1361 if (kvm_enabled())
1362 kvm_flush_coalesced_mmio_buffer();
1363}
1364
b2a8658e
UD
1365void qemu_mutex_lock_ramlist(void)
1366{
1367 qemu_mutex_lock(&ram_list.mutex);
1368}
1369
1370void qemu_mutex_unlock_ramlist(void)
1371{
1372 qemu_mutex_unlock(&ram_list.mutex);
1373}
1374
be9b23c4
PX
1375void ram_block_dump(Monitor *mon)
1376{
1377 RAMBlock *block;
1378 char *psize;
1379
1380 rcu_read_lock();
1381 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1382 "Block Name", "PSize", "Offset", "Used", "Total");
1383 RAMBLOCK_FOREACH(block) {
1384 psize = size_to_str(block->page_size);
1385 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1386 " 0x%016" PRIx64 "\n", block->idstr, psize,
1387 (uint64_t)block->offset,
1388 (uint64_t)block->used_length,
1389 (uint64_t)block->max_length);
1390 g_free(psize);
1391 }
1392 rcu_read_unlock();
1393}
1394
9c607668
AK
1395#ifdef __linux__
1396/*
1397 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1398 * may or may not name the same files / on the same filesystem now as
1399 * when we actually open and map them. Iterate over the file
1400 * descriptors instead, and use qemu_fd_getpagesize().
1401 */
1402static int find_max_supported_pagesize(Object *obj, void *opaque)
1403{
1404 char *mem_path;
1405 long *hpsize_min = opaque;
1406
1407 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1408 mem_path = object_property_get_str(obj, "mem-path", NULL);
1409 if (mem_path) {
1410 long hpsize = qemu_mempath_getpagesize(mem_path);
1411 if (hpsize < *hpsize_min) {
1412 *hpsize_min = hpsize;
1413 }
1414 } else {
1415 *hpsize_min = getpagesize();
1416 }
1417 }
1418
1419 return 0;
1420}
1421
1422long qemu_getrampagesize(void)
1423{
1424 long hpsize = LONG_MAX;
1425 long mainrampagesize;
1426 Object *memdev_root;
1427
1428 if (mem_path) {
1429 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1430 } else {
1431 mainrampagesize = getpagesize();
1432 }
1433
1434 /* it's possible we have memory-backend objects with
1435 * hugepage-backed RAM. these may get mapped into system
1436 * address space via -numa parameters or memory hotplug
1437 * hooks. we want to take these into account, but we
1438 * also want to make sure these supported hugepage
1439 * sizes are applicable across the entire range of memory
1440 * we may boot from, so we take the min across all
1441 * backends, and assume normal pages in cases where a
1442 * backend isn't backed by hugepages.
1443 */
1444 memdev_root = object_resolve_path("/objects", NULL);
1445 if (memdev_root) {
1446 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1447 }
1448 if (hpsize == LONG_MAX) {
1449 /* No additional memory regions found ==> Report main RAM page size */
1450 return mainrampagesize;
1451 }
1452
1453 /* If NUMA is disabled or the NUMA nodes are not backed with a
1454 * memory-backend, then there is at least one node using "normal" RAM,
1455 * so if its page size is smaller we have got to report that size instead.
1456 */
1457 if (hpsize > mainrampagesize &&
1458 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1459 static bool warned;
1460 if (!warned) {
1461 error_report("Huge page support disabled (n/a for main memory).");
1462 warned = true;
1463 }
1464 return mainrampagesize;
1465 }
1466
1467 return hpsize;
1468}
1469#else
1470long qemu_getrampagesize(void)
1471{
1472 return getpagesize();
1473}
1474#endif
1475
e1e84ba0 1476#ifdef __linux__
d6af99c9
HZ
1477static int64_t get_file_size(int fd)
1478{
1479 int64_t size = lseek(fd, 0, SEEK_END);
1480 if (size < 0) {
1481 return -errno;
1482 }
1483 return size;
1484}
1485
04b16653
AW
1486static void *file_ram_alloc(RAMBlock *block,
1487 ram_addr_t memory,
7f56e740
PB
1488 const char *path,
1489 Error **errp)
c902760f 1490{
fd97fd44 1491 bool unlink_on_error = false;
c902760f 1492 char *filename;
8ca761f6
PF
1493 char *sanitized_name;
1494 char *c;
056b68af 1495 void *area = MAP_FAILED;
5c3ece79 1496 int fd = -1;
d6af99c9 1497 int64_t file_size;
c902760f
MT
1498
1499 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1500 error_setg(errp,
1501 "host lacks kvm mmu notifiers, -mem-path unsupported");
fd97fd44 1502 return NULL;
c902760f
MT
1503 }
1504
fd97fd44
MA
1505 for (;;) {
1506 fd = open(path, O_RDWR);
1507 if (fd >= 0) {
1508 /* @path names an existing file, use it */
1509 break;
8d31d6b6 1510 }
fd97fd44
MA
1511 if (errno == ENOENT) {
1512 /* @path names a file that doesn't exist, create it */
1513 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1514 if (fd >= 0) {
1515 unlink_on_error = true;
1516 break;
1517 }
1518 } else if (errno == EISDIR) {
1519 /* @path names a directory, create a file there */
1520 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1521 sanitized_name = g_strdup(memory_region_name(block->mr));
1522 for (c = sanitized_name; *c != '\0'; c++) {
1523 if (*c == '/') {
1524 *c = '_';
1525 }
1526 }
8ca761f6 1527
fd97fd44
MA
1528 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1529 sanitized_name);
1530 g_free(sanitized_name);
8d31d6b6 1531
fd97fd44
MA
1532 fd = mkstemp(filename);
1533 if (fd >= 0) {
1534 unlink(filename);
1535 g_free(filename);
1536 break;
1537 }
1538 g_free(filename);
8d31d6b6 1539 }
fd97fd44
MA
1540 if (errno != EEXIST && errno != EINTR) {
1541 error_setg_errno(errp, errno,
1542 "can't open backing store %s for guest RAM",
1543 path);
1544 goto error;
1545 }
1546 /*
1547 * Try again on EINTR and EEXIST. The latter happens when
1548 * something else creates the file between our two open().
1549 */
8d31d6b6 1550 }
c902760f 1551
863e9621 1552 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1553 block->mr->align = block->page_size;
1554#if defined(__s390x__)
1555 if (kvm_enabled()) {
1556 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1557 }
1558#endif
fd97fd44 1559
d6af99c9
HZ
1560 file_size = get_file_size(fd);
1561
863e9621 1562 if (memory < block->page_size) {
fd97fd44 1563 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1564 "or larger than page size 0x%zx",
1565 memory, block->page_size);
f9a49dfa 1566 goto error;
c902760f 1567 }
c902760f 1568
1775f111
HZ
1569 if (file_size > 0 && file_size < memory) {
1570 error_setg(errp, "backing store %s size 0x%" PRIx64
1571 " does not match 'size' option 0x" RAM_ADDR_FMT,
1572 path, file_size, memory);
1573 goto error;
1574 }
1575
863e9621 1576 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1577
1578 /*
1579 * ftruncate is not supported by hugetlbfs in older
1580 * hosts, so don't bother bailing out on errors.
1581 * If anything goes wrong with it under other filesystems,
1582 * mmap will fail.
d6af99c9
HZ
1583 *
1584 * Do not truncate the non-empty backend file to avoid corrupting
1585 * the existing data in the file. Disabling shrinking is not
1586 * enough. For example, the current vNVDIMM implementation stores
1587 * the guest NVDIMM labels at the end of the backend file. If the
1588 * backend file is later extended, QEMU will not be able to find
1589 * those labels. Therefore, extending the non-empty backend file
1590 * is disabled as well.
c902760f 1591 */
d6af99c9 1592 if (!file_size && ftruncate(fd, memory)) {
9742bf26 1593 perror("ftruncate");
7f56e740 1594 }
c902760f 1595
d2f39add
DD
1596 area = qemu_ram_mmap(fd, memory, block->mr->align,
1597 block->flags & RAM_SHARED);
c902760f 1598 if (area == MAP_FAILED) {
7f56e740 1599 error_setg_errno(errp, errno,
fd97fd44 1600 "unable to map backing store for guest RAM");
f9a49dfa 1601 goto error;
c902760f 1602 }
ef36fa14
MT
1603
1604 if (mem_prealloc) {
1e356fc1 1605 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af
IM
1606 if (errp && *errp) {
1607 goto error;
1608 }
ef36fa14
MT
1609 }
1610
04b16653 1611 block->fd = fd;
c902760f 1612 return area;
f9a49dfa
MT
1613
1614error:
056b68af
IM
1615 if (area != MAP_FAILED) {
1616 qemu_ram_munmap(area, memory);
1617 }
fd97fd44
MA
1618 if (unlink_on_error) {
1619 unlink(path);
1620 }
5c3ece79
PB
1621 if (fd != -1) {
1622 close(fd);
1623 }
f9a49dfa 1624 return NULL;
c902760f
MT
1625}
1626#endif
1627
0dc3f44a 1628/* Called with the ramlist lock held. */
d17b5288 1629static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1630{
1631 RAMBlock *block, *next_block;
3e837b2c 1632 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1633
49cd9ac6
SH
1634 assert(size != 0); /* it would hand out same offset multiple times */
1635
0dc3f44a 1636 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1637 return 0;
0d53d9fe 1638 }
04b16653 1639
99e15582 1640 RAMBLOCK_FOREACH(block) {
f15fbc4b 1641 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1642
62be4e3a 1643 end = block->offset + block->max_length;
04b16653 1644
99e15582 1645 RAMBLOCK_FOREACH(next_block) {
04b16653
AW
1646 if (next_block->offset >= end) {
1647 next = MIN(next, next_block->offset);
1648 }
1649 }
1650 if (next - end >= size && next - end < mingap) {
3e837b2c 1651 offset = end;
04b16653
AW
1652 mingap = next - end;
1653 }
1654 }
3e837b2c
AW
1655
1656 if (offset == RAM_ADDR_MAX) {
1657 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1658 (uint64_t)size);
1659 abort();
1660 }
1661
04b16653
AW
1662 return offset;
1663}
1664
b8c48993 1665unsigned long last_ram_page(void)
d17b5288
AW
1666{
1667 RAMBlock *block;
1668 ram_addr_t last = 0;
1669
0dc3f44a 1670 rcu_read_lock();
99e15582 1671 RAMBLOCK_FOREACH(block) {
62be4e3a 1672 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1673 }
0dc3f44a 1674 rcu_read_unlock();
b8c48993 1675 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1676}
1677
ddb97f1d
JB
1678static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1679{
1680 int ret;
ddb97f1d
JB
1681
1682 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1683 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1684 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1685 if (ret) {
1686 perror("qemu_madvise");
1687 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1688 "but dump_guest_core=off specified\n");
1689 }
1690 }
1691}
1692
422148d3
DDAG
1693const char *qemu_ram_get_idstr(RAMBlock *rb)
1694{
1695 return rb->idstr;
1696}
1697
463a4ac2
DDAG
1698bool qemu_ram_is_shared(RAMBlock *rb)
1699{
1700 return rb->flags & RAM_SHARED;
1701}
1702
ae3a7047 1703/* Called with iothread lock held. */
fa53a0e5 1704void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1705{
fa53a0e5 1706 RAMBlock *block;
20cfe881 1707
c5705a77
AK
1708 assert(new_block);
1709 assert(!new_block->idstr[0]);
84b89d78 1710
09e5ab63
AL
1711 if (dev) {
1712 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1713 if (id) {
1714 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1715 g_free(id);
84b89d78
CM
1716 }
1717 }
1718 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1719
ab0a9956 1720 rcu_read_lock();
99e15582 1721 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1722 if (block != new_block &&
1723 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1724 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1725 new_block->idstr);
1726 abort();
1727 }
1728 }
0dc3f44a 1729 rcu_read_unlock();
c5705a77
AK
1730}
1731
ae3a7047 1732/* Called with iothread lock held. */
fa53a0e5 1733void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1734{
ae3a7047
MD
1735 /* FIXME: arch_init.c assumes that this is not called throughout
1736 * migration. Ignore the problem since hot-unplug during migration
1737 * does not work anyway.
1738 */
20cfe881
HT
1739 if (block) {
1740 memset(block->idstr, 0, sizeof(block->idstr));
1741 }
1742}
1743
863e9621
DDAG
1744size_t qemu_ram_pagesize(RAMBlock *rb)
1745{
1746 return rb->page_size;
1747}
1748
67f11b5c
DDAG
1749/* Returns the largest size of page in use */
1750size_t qemu_ram_pagesize_largest(void)
1751{
1752 RAMBlock *block;
1753 size_t largest = 0;
1754
99e15582 1755 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1756 largest = MAX(largest, qemu_ram_pagesize(block));
1757 }
1758
1759 return largest;
1760}
1761
8490fc78
LC
1762static int memory_try_enable_merging(void *addr, size_t len)
1763{
75cc7f01 1764 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1765 /* disabled by the user */
1766 return 0;
1767 }
1768
1769 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1770}
1771
62be4e3a
MT
1772/* Only legal before guest might have detected the memory size: e.g. on
1773 * incoming migration, or right after reset.
1774 *
1775 * As memory core doesn't know how is memory accessed, it is up to
1776 * resize callback to update device state and/or add assertions to detect
1777 * misuse, if necessary.
1778 */
fa53a0e5 1779int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1780{
62be4e3a
MT
1781 assert(block);
1782
4ed023ce 1783 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1784
62be4e3a
MT
1785 if (block->used_length == newsize) {
1786 return 0;
1787 }
1788
1789 if (!(block->flags & RAM_RESIZEABLE)) {
1790 error_setg_errno(errp, EINVAL,
1791 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1792 " in != 0x" RAM_ADDR_FMT, block->idstr,
1793 newsize, block->used_length);
1794 return -EINVAL;
1795 }
1796
1797 if (block->max_length < newsize) {
1798 error_setg_errno(errp, EINVAL,
1799 "Length too large: %s: 0x" RAM_ADDR_FMT
1800 " > 0x" RAM_ADDR_FMT, block->idstr,
1801 newsize, block->max_length);
1802 return -EINVAL;
1803 }
1804
1805 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1806 block->used_length = newsize;
58d2707e
PB
1807 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1808 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1809 memory_region_set_size(block->mr, newsize);
1810 if (block->resized) {
1811 block->resized(block->idstr, newsize, block->host);
1812 }
1813 return 0;
1814}
1815
5b82b703
SH
1816/* Called with ram_list.mutex held */
1817static void dirty_memory_extend(ram_addr_t old_ram_size,
1818 ram_addr_t new_ram_size)
1819{
1820 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1821 DIRTY_MEMORY_BLOCK_SIZE);
1822 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1823 DIRTY_MEMORY_BLOCK_SIZE);
1824 int i;
1825
1826 /* Only need to extend if block count increased */
1827 if (new_num_blocks <= old_num_blocks) {
1828 return;
1829 }
1830
1831 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1832 DirtyMemoryBlocks *old_blocks;
1833 DirtyMemoryBlocks *new_blocks;
1834 int j;
1835
1836 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1837 new_blocks = g_malloc(sizeof(*new_blocks) +
1838 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1839
1840 if (old_num_blocks) {
1841 memcpy(new_blocks->blocks, old_blocks->blocks,
1842 old_num_blocks * sizeof(old_blocks->blocks[0]));
1843 }
1844
1845 for (j = old_num_blocks; j < new_num_blocks; j++) {
1846 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1847 }
1848
1849 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1850
1851 if (old_blocks) {
1852 g_free_rcu(old_blocks, rcu);
1853 }
1854 }
1855}
1856
528f46af 1857static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1858{
e1c57ab8 1859 RAMBlock *block;
0d53d9fe 1860 RAMBlock *last_block = NULL;
2152f5ca 1861 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1862 Error *err = NULL;
2152f5ca 1863
b8c48993 1864 old_ram_size = last_ram_page();
c5705a77 1865
b2a8658e 1866 qemu_mutex_lock_ramlist();
9b8424d5 1867 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1868
1869 if (!new_block->host) {
1870 if (xen_enabled()) {
9b8424d5 1871 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1872 new_block->mr, &err);
1873 if (err) {
1874 error_propagate(errp, err);
1875 qemu_mutex_unlock_ramlist();
39c350ee 1876 return;
37aa7a0e 1877 }
e1c57ab8 1878 } else {
9b8424d5 1879 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1880 &new_block->mr->align);
39228250 1881 if (!new_block->host) {
ef701d7b
HT
1882 error_setg_errno(errp, errno,
1883 "cannot set up guest memory '%s'",
1884 memory_region_name(new_block->mr));
1885 qemu_mutex_unlock_ramlist();
39c350ee 1886 return;
39228250 1887 }
9b8424d5 1888 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1889 }
c902760f 1890 }
94a6b54f 1891
dd631697
LZ
1892 new_ram_size = MAX(old_ram_size,
1893 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1894 if (new_ram_size > old_ram_size) {
5b82b703 1895 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1896 }
0d53d9fe
MD
1897 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1898 * QLIST (which has an RCU-friendly variant) does not have insertion at
1899 * tail, so save the last element in last_block.
1900 */
99e15582 1901 RAMBLOCK_FOREACH(block) {
0d53d9fe 1902 last_block = block;
9b8424d5 1903 if (block->max_length < new_block->max_length) {
abb26d63
PB
1904 break;
1905 }
1906 }
1907 if (block) {
0dc3f44a 1908 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1909 } else if (last_block) {
0dc3f44a 1910 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1911 } else { /* list is empty */
0dc3f44a 1912 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1913 }
0d6d3c87 1914 ram_list.mru_block = NULL;
94a6b54f 1915
0dc3f44a
MD
1916 /* Write list before version */
1917 smp_wmb();
f798b07f 1918 ram_list.version++;
b2a8658e 1919 qemu_mutex_unlock_ramlist();
f798b07f 1920
9b8424d5 1921 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1922 new_block->used_length,
1923 DIRTY_CLIENTS_ALL);
94a6b54f 1924
a904c911
PB
1925 if (new_block->host) {
1926 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1927 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1928 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1929 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1930 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1931 }
94a6b54f 1932}
e9a1ab19 1933
0b183fc8 1934#ifdef __linux__
528f46af
FZ
1935RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1936 bool share, const char *mem_path,
1937 Error **errp)
e1c57ab8
PB
1938{
1939 RAMBlock *new_block;
ef701d7b 1940 Error *local_err = NULL;
e1c57ab8
PB
1941
1942 if (xen_enabled()) {
7f56e740 1943 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1944 return NULL;
e1c57ab8
PB
1945 }
1946
1947 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1948 /*
1949 * file_ram_alloc() needs to allocate just like
1950 * phys_mem_alloc, but we haven't bothered to provide
1951 * a hook there.
1952 */
7f56e740
PB
1953 error_setg(errp,
1954 "-mem-path not supported with this accelerator");
528f46af 1955 return NULL;
e1c57ab8
PB
1956 }
1957
4ed023ce 1958 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1959 new_block = g_malloc0(sizeof(*new_block));
1960 new_block->mr = mr;
9b8424d5
MT
1961 new_block->used_length = size;
1962 new_block->max_length = size;
dbcb8981 1963 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1964 new_block->host = file_ram_alloc(new_block, size,
1965 mem_path, errp);
1966 if (!new_block->host) {
1967 g_free(new_block);
528f46af 1968 return NULL;
7f56e740
PB
1969 }
1970
528f46af 1971 ram_block_add(new_block, &local_err);
ef701d7b
HT
1972 if (local_err) {
1973 g_free(new_block);
1974 error_propagate(errp, local_err);
528f46af 1975 return NULL;
ef701d7b 1976 }
528f46af 1977 return new_block;
e1c57ab8 1978}
0b183fc8 1979#endif
e1c57ab8 1980
62be4e3a 1981static
528f46af
FZ
1982RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1983 void (*resized)(const char*,
1984 uint64_t length,
1985 void *host),
1986 void *host, bool resizeable,
1987 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1988{
1989 RAMBlock *new_block;
ef701d7b 1990 Error *local_err = NULL;
e1c57ab8 1991
4ed023ce
DDAG
1992 size = HOST_PAGE_ALIGN(size);
1993 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1994 new_block = g_malloc0(sizeof(*new_block));
1995 new_block->mr = mr;
62be4e3a 1996 new_block->resized = resized;
9b8424d5
MT
1997 new_block->used_length = size;
1998 new_block->max_length = max_size;
62be4e3a 1999 assert(max_size >= size);
e1c57ab8 2000 new_block->fd = -1;
863e9621 2001 new_block->page_size = getpagesize();
e1c57ab8
PB
2002 new_block->host = host;
2003 if (host) {
7bd4f430 2004 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2005 }
62be4e3a
MT
2006 if (resizeable) {
2007 new_block->flags |= RAM_RESIZEABLE;
2008 }
528f46af 2009 ram_block_add(new_block, &local_err);
ef701d7b
HT
2010 if (local_err) {
2011 g_free(new_block);
2012 error_propagate(errp, local_err);
528f46af 2013 return NULL;
ef701d7b 2014 }
528f46af 2015 return new_block;
e1c57ab8
PB
2016}
2017
528f46af 2018RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2019 MemoryRegion *mr, Error **errp)
2020{
2021 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2022}
2023
528f46af 2024RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 2025{
62be4e3a
MT
2026 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2027}
2028
528f46af 2029RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2030 void (*resized)(const char*,
2031 uint64_t length,
2032 void *host),
2033 MemoryRegion *mr, Error **errp)
2034{
2035 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
2036}
2037
43771539
PB
2038static void reclaim_ramblock(RAMBlock *block)
2039{
2040 if (block->flags & RAM_PREALLOC) {
2041 ;
2042 } else if (xen_enabled()) {
2043 xen_invalidate_map_cache_entry(block->host);
2044#ifndef _WIN32
2045 } else if (block->fd >= 0) {
2f3a2bb1 2046 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2047 close(block->fd);
2048#endif
2049 } else {
2050 qemu_anon_ram_free(block->host, block->max_length);
2051 }
2052 g_free(block);
2053}
2054
f1060c55 2055void qemu_ram_free(RAMBlock *block)
e9a1ab19 2056{
85bc2a15
MAL
2057 if (!block) {
2058 return;
2059 }
2060
0987d735
PB
2061 if (block->host) {
2062 ram_block_notify_remove(block->host, block->max_length);
2063 }
2064
b2a8658e 2065 qemu_mutex_lock_ramlist();
f1060c55
FZ
2066 QLIST_REMOVE_RCU(block, next);
2067 ram_list.mru_block = NULL;
2068 /* Write list before version */
2069 smp_wmb();
2070 ram_list.version++;
2071 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2072 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2073}
2074
cd19cfa2
HY
2075#ifndef _WIN32
2076void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2077{
2078 RAMBlock *block;
2079 ram_addr_t offset;
2080 int flags;
2081 void *area, *vaddr;
2082
99e15582 2083 RAMBLOCK_FOREACH(block) {
cd19cfa2 2084 offset = addr - block->offset;
9b8424d5 2085 if (offset < block->max_length) {
1240be24 2086 vaddr = ramblock_ptr(block, offset);
7bd4f430 2087 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2088 ;
dfeaf2ab
MA
2089 } else if (xen_enabled()) {
2090 abort();
cd19cfa2
HY
2091 } else {
2092 flags = MAP_FIXED;
3435f395 2093 if (block->fd >= 0) {
dbcb8981
PB
2094 flags |= (block->flags & RAM_SHARED ?
2095 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2096 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2097 flags, block->fd, offset);
cd19cfa2 2098 } else {
2eb9fbaa
MA
2099 /*
2100 * Remap needs to match alloc. Accelerators that
2101 * set phys_mem_alloc never remap. If they did,
2102 * we'd need a remap hook here.
2103 */
2104 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2105
cd19cfa2
HY
2106 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2107 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2108 flags, -1, 0);
cd19cfa2
HY
2109 }
2110 if (area != vaddr) {
f15fbc4b
AP
2111 fprintf(stderr, "Could not remap addr: "
2112 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2113 length, addr);
2114 exit(1);
2115 }
8490fc78 2116 memory_try_enable_merging(vaddr, length);
ddb97f1d 2117 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2118 }
cd19cfa2
HY
2119 }
2120 }
2121}
2122#endif /* !_WIN32 */
2123
1b5ec234 2124/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2125 * This should not be used for general purpose DMA. Use address_space_map
2126 * or address_space_rw instead. For local memory (e.g. video ram) that the
2127 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2128 *
49b24afc 2129 * Called within RCU critical section.
1b5ec234 2130 */
0878d0e1 2131void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2132{
3655cb9c
GA
2133 RAMBlock *block = ram_block;
2134
2135 if (block == NULL) {
2136 block = qemu_get_ram_block(addr);
0878d0e1 2137 addr -= block->offset;
3655cb9c 2138 }
ae3a7047
MD
2139
2140 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2141 /* We need to check if the requested address is in the RAM
2142 * because we don't want to map the entire memory in QEMU.
2143 * In that case just map until the end of the page.
2144 */
2145 if (block->offset == 0) {
1ff7c598 2146 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2147 }
ae3a7047 2148
1ff7c598 2149 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2150 }
0878d0e1 2151 return ramblock_ptr(block, addr);
dc828ca1
PB
2152}
2153
0878d0e1 2154/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2155 * but takes a size argument.
0dc3f44a 2156 *
e81bcda5 2157 * Called within RCU critical section.
ae3a7047 2158 */
3655cb9c
GA
2159static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2160 hwaddr *size)
38bee5dc 2161{
3655cb9c 2162 RAMBlock *block = ram_block;
8ab934f9
SS
2163 if (*size == 0) {
2164 return NULL;
2165 }
e81bcda5 2166
3655cb9c
GA
2167 if (block == NULL) {
2168 block = qemu_get_ram_block(addr);
0878d0e1 2169 addr -= block->offset;
3655cb9c 2170 }
0878d0e1 2171 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2172
2173 if (xen_enabled() && block->host == NULL) {
2174 /* We need to check if the requested address is in the RAM
2175 * because we don't want to map the entire memory in QEMU.
2176 * In that case just map the requested area.
2177 */
2178 if (block->offset == 0) {
1ff7c598 2179 return xen_map_cache(addr, *size, 1, true);
38bee5dc
SS
2180 }
2181
1ff7c598 2182 block->host = xen_map_cache(block->offset, block->max_length, 1, true);
38bee5dc 2183 }
e81bcda5 2184
0878d0e1 2185 return ramblock_ptr(block, addr);
38bee5dc
SS
2186}
2187
422148d3
DDAG
2188/*
2189 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2190 * in that RAMBlock.
2191 *
2192 * ptr: Host pointer to look up
2193 * round_offset: If true round the result offset down to a page boundary
2194 * *ram_addr: set to result ram_addr
2195 * *offset: set to result offset within the RAMBlock
2196 *
2197 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2198 *
2199 * By the time this function returns, the returned pointer is not protected
2200 * by RCU anymore. If the caller is not within an RCU critical section and
2201 * does not hold the iothread lock, it must have other means of protecting the
2202 * pointer, such as a reference to the region that includes the incoming
2203 * ram_addr_t.
2204 */
422148d3 2205RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2206 ram_addr_t *offset)
5579c7f3 2207{
94a6b54f
PB
2208 RAMBlock *block;
2209 uint8_t *host = ptr;
2210
868bb33f 2211 if (xen_enabled()) {
f615f396 2212 ram_addr_t ram_addr;
0dc3f44a 2213 rcu_read_lock();
f615f396
PB
2214 ram_addr = xen_ram_addr_from_mapcache(ptr);
2215 block = qemu_get_ram_block(ram_addr);
422148d3 2216 if (block) {
d6b6aec4 2217 *offset = ram_addr - block->offset;
422148d3 2218 }
0dc3f44a 2219 rcu_read_unlock();
422148d3 2220 return block;
712c2b41
SS
2221 }
2222
0dc3f44a
MD
2223 rcu_read_lock();
2224 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2225 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2226 goto found;
2227 }
2228
99e15582 2229 RAMBLOCK_FOREACH(block) {
432d268c
JN
2230 /* This case append when the block is not mapped. */
2231 if (block->host == NULL) {
2232 continue;
2233 }
9b8424d5 2234 if (host - block->host < block->max_length) {
23887b79 2235 goto found;
f471a17e 2236 }
94a6b54f 2237 }
432d268c 2238
0dc3f44a 2239 rcu_read_unlock();
1b5ec234 2240 return NULL;
23887b79
PB
2241
2242found:
422148d3
DDAG
2243 *offset = (host - block->host);
2244 if (round_offset) {
2245 *offset &= TARGET_PAGE_MASK;
2246 }
0dc3f44a 2247 rcu_read_unlock();
422148d3
DDAG
2248 return block;
2249}
2250
e3dd7493
DDAG
2251/*
2252 * Finds the named RAMBlock
2253 *
2254 * name: The name of RAMBlock to find
2255 *
2256 * Returns: RAMBlock (or NULL if not found)
2257 */
2258RAMBlock *qemu_ram_block_by_name(const char *name)
2259{
2260 RAMBlock *block;
2261
99e15582 2262 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2263 if (!strcmp(name, block->idstr)) {
2264 return block;
2265 }
2266 }
2267
2268 return NULL;
2269}
2270
422148d3
DDAG
2271/* Some of the softmmu routines need to translate from a host pointer
2272 (typically a TLB entry) back to a ram offset. */
07bdaa41 2273ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2274{
2275 RAMBlock *block;
f615f396 2276 ram_addr_t offset;
422148d3 2277
f615f396 2278 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2279 if (!block) {
07bdaa41 2280 return RAM_ADDR_INVALID;
422148d3
DDAG
2281 }
2282
07bdaa41 2283 return block->offset + offset;
e890261f 2284}
f471a17e 2285
49b24afc 2286/* Called within RCU critical section. */
a8170e5e 2287static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2288 uint64_t val, unsigned size)
9fa3e853 2289{
ba051fb5
AB
2290 bool locked = false;
2291
52159192 2292 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2293 locked = true;
2294 tb_lock();
0e0df1e2 2295 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2296 }
0e0df1e2
AK
2297 switch (size) {
2298 case 1:
0878d0e1 2299 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2300 break;
2301 case 2:
0878d0e1 2302 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2303 break;
2304 case 4:
0878d0e1 2305 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2306 break;
2307 default:
2308 abort();
3a7d929e 2309 }
ba051fb5
AB
2310
2311 if (locked) {
2312 tb_unlock();
2313 }
2314
58d2707e
PB
2315 /* Set both VGA and migration bits for simplicity and to remove
2316 * the notdirty callback faster.
2317 */
2318 cpu_physical_memory_set_dirty_range(ram_addr, size,
2319 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2320 /* we remove the notdirty callback only if the code has been
2321 flushed */
a2cd8c85 2322 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2323 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2324 }
9fa3e853
FB
2325}
2326
b018ddf6
PB
2327static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2328 unsigned size, bool is_write)
2329{
2330 return is_write;
2331}
2332
0e0df1e2 2333static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2334 .write = notdirty_mem_write,
b018ddf6 2335 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2336 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2337};
2338
0f459d16 2339/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2340static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2341{
93afeade 2342 CPUState *cpu = current_cpu;
568496c0 2343 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2344 CPUArchState *env = cpu->env_ptr;
06d55cc1 2345 target_ulong pc, cs_base;
0f459d16 2346 target_ulong vaddr;
a1d1bb31 2347 CPUWatchpoint *wp;
89fee74a 2348 uint32_t cpu_flags;
0f459d16 2349
ff4700b0 2350 if (cpu->watchpoint_hit) {
06d55cc1
AL
2351 /* We re-entered the check after replacing the TB. Now raise
2352 * the debug interrupt so that is will trigger after the
2353 * current instruction. */
93afeade 2354 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2355 return;
2356 }
93afeade 2357 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2358 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2359 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2360 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2361 && (wp->flags & flags)) {
08225676
PM
2362 if (flags == BP_MEM_READ) {
2363 wp->flags |= BP_WATCHPOINT_HIT_READ;
2364 } else {
2365 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2366 }
2367 wp->hitaddr = vaddr;
66b9b43c 2368 wp->hitattrs = attrs;
ff4700b0 2369 if (!cpu->watchpoint_hit) {
568496c0
SF
2370 if (wp->flags & BP_CPU &&
2371 !cc->debug_check_watchpoint(cpu, wp)) {
2372 wp->flags &= ~BP_WATCHPOINT_HIT;
2373 continue;
2374 }
ff4700b0 2375 cpu->watchpoint_hit = wp;
a5e99826 2376
8d04fb55
JK
2377 /* Both tb_lock and iothread_mutex will be reset when
2378 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2379 * back into the cpu_exec main loop.
a5e99826
FK
2380 */
2381 tb_lock();
239c51a5 2382 tb_check_watchpoint(cpu);
6e140f28 2383 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2384 cpu->exception_index = EXCP_DEBUG;
5638d180 2385 cpu_loop_exit(cpu);
6e140f28
AL
2386 } else {
2387 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2388 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2389 cpu_loop_exit_noexc(cpu);
6e140f28 2390 }
06d55cc1 2391 }
6e140f28
AL
2392 } else {
2393 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2394 }
2395 }
2396}
2397
6658ffb8
PB
2398/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2399 so these check for a hit then pass through to the normal out-of-line
2400 phys routines. */
66b9b43c
PM
2401static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2402 unsigned size, MemTxAttrs attrs)
6658ffb8 2403{
66b9b43c
PM
2404 MemTxResult res;
2405 uint64_t data;
79ed0416
PM
2406 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2407 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2408
2409 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2410 switch (size) {
66b9b43c 2411 case 1:
79ed0416 2412 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2413 break;
2414 case 2:
79ed0416 2415 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2416 break;
2417 case 4:
79ed0416 2418 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2419 break;
1ec9b909
AK
2420 default: abort();
2421 }
66b9b43c
PM
2422 *pdata = data;
2423 return res;
6658ffb8
PB
2424}
2425
66b9b43c
PM
2426static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2427 uint64_t val, unsigned size,
2428 MemTxAttrs attrs)
6658ffb8 2429{
66b9b43c 2430 MemTxResult res;
79ed0416
PM
2431 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2432 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2433
2434 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2435 switch (size) {
67364150 2436 case 1:
79ed0416 2437 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2438 break;
2439 case 2:
79ed0416 2440 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2441 break;
2442 case 4:
79ed0416 2443 address_space_stl(as, addr, val, attrs, &res);
67364150 2444 break;
1ec9b909
AK
2445 default: abort();
2446 }
66b9b43c 2447 return res;
6658ffb8
PB
2448}
2449
1ec9b909 2450static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2451 .read_with_attrs = watch_mem_read,
2452 .write_with_attrs = watch_mem_write,
1ec9b909 2453 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2454};
6658ffb8 2455
f25a49e0
PM
2456static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2457 unsigned len, MemTxAttrs attrs)
db7b5426 2458{
acc9d80b 2459 subpage_t *subpage = opaque;
ff6cff75 2460 uint8_t buf[8];
5c9eb028 2461 MemTxResult res;
791af8c8 2462
db7b5426 2463#if defined(DEBUG_SUBPAGE)
016e9d62 2464 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2465 subpage, len, addr);
db7b5426 2466#endif
5c9eb028
PM
2467 res = address_space_read(subpage->as, addr + subpage->base,
2468 attrs, buf, len);
2469 if (res) {
2470 return res;
f25a49e0 2471 }
acc9d80b
JK
2472 switch (len) {
2473 case 1:
f25a49e0
PM
2474 *data = ldub_p(buf);
2475 return MEMTX_OK;
acc9d80b 2476 case 2:
f25a49e0
PM
2477 *data = lduw_p(buf);
2478 return MEMTX_OK;
acc9d80b 2479 case 4:
f25a49e0
PM
2480 *data = ldl_p(buf);
2481 return MEMTX_OK;
ff6cff75 2482 case 8:
f25a49e0
PM
2483 *data = ldq_p(buf);
2484 return MEMTX_OK;
acc9d80b
JK
2485 default:
2486 abort();
2487 }
db7b5426
BS
2488}
2489
f25a49e0
PM
2490static MemTxResult subpage_write(void *opaque, hwaddr addr,
2491 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2492{
acc9d80b 2493 subpage_t *subpage = opaque;
ff6cff75 2494 uint8_t buf[8];
acc9d80b 2495
db7b5426 2496#if defined(DEBUG_SUBPAGE)
016e9d62 2497 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2498 " value %"PRIx64"\n",
2499 __func__, subpage, len, addr, value);
db7b5426 2500#endif
acc9d80b
JK
2501 switch (len) {
2502 case 1:
2503 stb_p(buf, value);
2504 break;
2505 case 2:
2506 stw_p(buf, value);
2507 break;
2508 case 4:
2509 stl_p(buf, value);
2510 break;
ff6cff75
PB
2511 case 8:
2512 stq_p(buf, value);
2513 break;
acc9d80b
JK
2514 default:
2515 abort();
2516 }
5c9eb028
PM
2517 return address_space_write(subpage->as, addr + subpage->base,
2518 attrs, buf, len);
db7b5426
BS
2519}
2520
c353e4cc 2521static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2522 unsigned len, bool is_write)
c353e4cc 2523{
acc9d80b 2524 subpage_t *subpage = opaque;
c353e4cc 2525#if defined(DEBUG_SUBPAGE)
016e9d62 2526 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2527 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2528#endif
2529
acc9d80b 2530 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2531 len, is_write);
c353e4cc
PB
2532}
2533
70c68e44 2534static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2535 .read_with_attrs = subpage_read,
2536 .write_with_attrs = subpage_write,
ff6cff75
PB
2537 .impl.min_access_size = 1,
2538 .impl.max_access_size = 8,
2539 .valid.min_access_size = 1,
2540 .valid.max_access_size = 8,
c353e4cc 2541 .valid.accepts = subpage_accepts,
70c68e44 2542 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2543};
2544
c227f099 2545static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2546 uint16_t section)
db7b5426
BS
2547{
2548 int idx, eidx;
2549
2550 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2551 return -1;
2552 idx = SUBPAGE_IDX(start);
2553 eidx = SUBPAGE_IDX(end);
2554#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2555 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2556 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2557#endif
db7b5426 2558 for (; idx <= eidx; idx++) {
5312bd8b 2559 mmio->sub_section[idx] = section;
db7b5426
BS
2560 }
2561
2562 return 0;
2563}
2564
acc9d80b 2565static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2566{
c227f099 2567 subpage_t *mmio;
db7b5426 2568
2615fabd 2569 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
acc9d80b 2570 mmio->as = as;
1eec614b 2571 mmio->base = base;
2c9b15ca 2572 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2573 NULL, TARGET_PAGE_SIZE);
b3b00c78 2574 mmio->iomem.subpage = true;
db7b5426 2575#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2576 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2577 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2578#endif
b41aac4f 2579 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2580
2581 return mmio;
2582}
2583
a656e22f
PC
2584static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2585 MemoryRegion *mr)
5312bd8b 2586{
a656e22f 2587 assert(as);
5312bd8b 2588 MemoryRegionSection section = {
a656e22f 2589 .address_space = as,
5312bd8b
AK
2590 .mr = mr,
2591 .offset_within_address_space = 0,
2592 .offset_within_region = 0,
052e87b0 2593 .size = int128_2_64(),
5312bd8b
AK
2594 };
2595
53cb28cb 2596 return phys_section_add(map, &section);
5312bd8b
AK
2597}
2598
a54c87b6 2599MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2600{
a54c87b6
PM
2601 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2602 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2603 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2604 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2605
2606 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2607}
2608
e9179ce1
AK
2609static void io_mem_init(void)
2610{
1f6245e5 2611 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2612 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2613 NULL, UINT64_MAX);
8d04fb55
JK
2614
2615 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2616 * which can be called without the iothread mutex.
2617 */
2c9b15ca 2618 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2619 NULL, UINT64_MAX);
8d04fb55
JK
2620 memory_region_clear_global_locking(&io_mem_notdirty);
2621
2c9b15ca 2622 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2623 NULL, UINT64_MAX);
e9179ce1
AK
2624}
2625
ac1970fb 2626static void mem_begin(MemoryListener *listener)
00752703
PB
2627{
2628 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2629 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2630 uint16_t n;
2631
a656e22f 2632 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2633 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2634 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2635 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2636 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2637 assert(n == PHYS_SECTION_ROM);
a656e22f 2638 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2639 assert(n == PHYS_SECTION_WATCH);
00752703 2640
9736e55b 2641 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2642 d->as = as;
2643 as->next_dispatch = d;
2644}
2645
79e2b9ae
PB
2646static void address_space_dispatch_free(AddressSpaceDispatch *d)
2647{
2648 phys_sections_free(&d->map);
2649 g_free(d);
2650}
2651
00752703 2652static void mem_commit(MemoryListener *listener)
ac1970fb 2653{
89ae337a 2654 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2655 AddressSpaceDispatch *cur = as->dispatch;
2656 AddressSpaceDispatch *next = as->next_dispatch;
2657
53cb28cb 2658 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2659
79e2b9ae 2660 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2661 if (cur) {
79e2b9ae 2662 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2663 }
9affd6fc
PB
2664}
2665
1d71148e 2666static void tcg_commit(MemoryListener *listener)
50c1e149 2667{
32857f4d
PM
2668 CPUAddressSpace *cpuas;
2669 AddressSpaceDispatch *d;
117712c3
AK
2670
2671 /* since each CPU stores ram addresses in its TLB cache, we must
2672 reset the modified entries */
32857f4d
PM
2673 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2674 cpu_reloading_memory_map();
2675 /* The CPU and TLB are protected by the iothread lock.
2676 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2677 * may have split the RCU critical section.
2678 */
2679 d = atomic_rcu_read(&cpuas->as->dispatch);
f35e44e7 2680 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2681 tlb_flush(cpuas->cpu);
50c1e149
AK
2682}
2683
ac1970fb
AK
2684void address_space_init_dispatch(AddressSpace *as)
2685{
00752703 2686 as->dispatch = NULL;
89ae337a 2687 as->dispatch_listener = (MemoryListener) {
ac1970fb 2688 .begin = mem_begin,
00752703 2689 .commit = mem_commit,
ac1970fb
AK
2690 .region_add = mem_add,
2691 .region_nop = mem_add,
2692 .priority = 0,
2693 };
89ae337a 2694 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2695}
2696
6e48e8f9
PB
2697void address_space_unregister(AddressSpace *as)
2698{
2699 memory_listener_unregister(&as->dispatch_listener);
2700}
2701
83f3c251
AK
2702void address_space_destroy_dispatch(AddressSpace *as)
2703{
2704 AddressSpaceDispatch *d = as->dispatch;
2705
79e2b9ae
PB
2706 atomic_rcu_set(&as->dispatch, NULL);
2707 if (d) {
2708 call_rcu(d, address_space_dispatch_free, rcu);
2709 }
83f3c251
AK
2710}
2711
62152b8a
AK
2712static void memory_map_init(void)
2713{
7267c094 2714 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2715
57271d63 2716 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2717 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2718
7267c094 2719 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2720 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2721 65536);
7dca8043 2722 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2723}
2724
2725MemoryRegion *get_system_memory(void)
2726{
2727 return system_memory;
2728}
2729
309cb471
AK
2730MemoryRegion *get_system_io(void)
2731{
2732 return system_io;
2733}
2734
e2eef170
PB
2735#endif /* !defined(CONFIG_USER_ONLY) */
2736
13eb76e0
FB
2737/* physical memory access (slow version, mainly for debug) */
2738#if defined(CONFIG_USER_ONLY)
f17ec444 2739int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2740 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2741{
2742 int l, flags;
2743 target_ulong page;
53a5960a 2744 void * p;
13eb76e0
FB
2745
2746 while (len > 0) {
2747 page = addr & TARGET_PAGE_MASK;
2748 l = (page + TARGET_PAGE_SIZE) - addr;
2749 if (l > len)
2750 l = len;
2751 flags = page_get_flags(page);
2752 if (!(flags & PAGE_VALID))
a68fe89c 2753 return -1;
13eb76e0
FB
2754 if (is_write) {
2755 if (!(flags & PAGE_WRITE))
a68fe89c 2756 return -1;
579a97f7 2757 /* XXX: this code should not depend on lock_user */
72fb7daa 2758 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2759 return -1;
72fb7daa
AJ
2760 memcpy(p, buf, l);
2761 unlock_user(p, addr, l);
13eb76e0
FB
2762 } else {
2763 if (!(flags & PAGE_READ))
a68fe89c 2764 return -1;
579a97f7 2765 /* XXX: this code should not depend on lock_user */
72fb7daa 2766 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2767 return -1;
72fb7daa 2768 memcpy(buf, p, l);
5b257578 2769 unlock_user(p, addr, 0);
13eb76e0
FB
2770 }
2771 len -= l;
2772 buf += l;
2773 addr += l;
2774 }
a68fe89c 2775 return 0;
13eb76e0 2776}
8df1cd07 2777
13eb76e0 2778#else
51d7a9eb 2779
845b6214 2780static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2781 hwaddr length)
51d7a9eb 2782{
e87f7778 2783 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2784 addr += memory_region_get_ram_addr(mr);
2785
e87f7778
PB
2786 /* No early return if dirty_log_mask is or becomes 0, because
2787 * cpu_physical_memory_set_dirty_range will still call
2788 * xen_modified_memory.
2789 */
2790 if (dirty_log_mask) {
2791 dirty_log_mask =
2792 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2793 }
2794 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
ba051fb5 2795 tb_lock();
e87f7778 2796 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2797 tb_unlock();
e87f7778 2798 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2799 }
e87f7778 2800 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2801}
2802
23326164 2803static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2804{
e1622f4b 2805 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2806
2807 /* Regions are assumed to support 1-4 byte accesses unless
2808 otherwise specified. */
23326164
RH
2809 if (access_size_max == 0) {
2810 access_size_max = 4;
2811 }
2812
2813 /* Bound the maximum access by the alignment of the address. */
2814 if (!mr->ops->impl.unaligned) {
2815 unsigned align_size_max = addr & -addr;
2816 if (align_size_max != 0 && align_size_max < access_size_max) {
2817 access_size_max = align_size_max;
2818 }
82f2563f 2819 }
23326164
RH
2820
2821 /* Don't attempt accesses larger than the maximum. */
2822 if (l > access_size_max) {
2823 l = access_size_max;
82f2563f 2824 }
6554f5c0 2825 l = pow2floor(l);
23326164
RH
2826
2827 return l;
82f2563f
PB
2828}
2829
4840f10e 2830static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2831{
4840f10e
JK
2832 bool unlocked = !qemu_mutex_iothread_locked();
2833 bool release_lock = false;
2834
2835 if (unlocked && mr->global_locking) {
2836 qemu_mutex_lock_iothread();
2837 unlocked = false;
2838 release_lock = true;
2839 }
125b3806 2840 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2841 if (unlocked) {
2842 qemu_mutex_lock_iothread();
2843 }
125b3806 2844 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2845 if (unlocked) {
2846 qemu_mutex_unlock_iothread();
2847 }
125b3806 2848 }
4840f10e
JK
2849
2850 return release_lock;
125b3806
PB
2851}
2852
a203ac70
PB
2853/* Called within RCU critical section. */
2854static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2855 MemTxAttrs attrs,
2856 const uint8_t *buf,
2857 int len, hwaddr addr1,
2858 hwaddr l, MemoryRegion *mr)
13eb76e0 2859{
13eb76e0 2860 uint8_t *ptr;
791af8c8 2861 uint64_t val;
3b643495 2862 MemTxResult result = MEMTX_OK;
4840f10e 2863 bool release_lock = false;
3b46e624 2864
a203ac70 2865 for (;;) {
eb7eeb88
PB
2866 if (!memory_access_is_direct(mr, true)) {
2867 release_lock |= prepare_mmio_access(mr);
2868 l = memory_access_size(mr, l, addr1);
2869 /* XXX: could force current_cpu to NULL to avoid
2870 potential bugs */
2871 switch (l) {
2872 case 8:
2873 /* 64 bit write access */
2874 val = ldq_p(buf);
2875 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2876 attrs);
2877 break;
2878 case 4:
2879 /* 32 bit write access */
6da67de6 2880 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2881 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2882 attrs);
2883 break;
2884 case 2:
2885 /* 16 bit write access */
2886 val = lduw_p(buf);
2887 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2888 attrs);
2889 break;
2890 case 1:
2891 /* 8 bit write access */
2892 val = ldub_p(buf);
2893 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2894 attrs);
2895 break;
2896 default:
2897 abort();
13eb76e0
FB
2898 }
2899 } else {
eb7eeb88 2900 /* RAM case */
0878d0e1 2901 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2902 memcpy(ptr, buf, l);
2903 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2904 }
4840f10e
JK
2905
2906 if (release_lock) {
2907 qemu_mutex_unlock_iothread();
2908 release_lock = false;
2909 }
2910
13eb76e0
FB
2911 len -= l;
2912 buf += l;
2913 addr += l;
a203ac70
PB
2914
2915 if (!len) {
2916 break;
2917 }
2918
2919 l = len;
2920 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2921 }
fd8aaa76 2922
3b643495 2923 return result;
13eb76e0 2924}
8df1cd07 2925
a203ac70
PB
2926MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2927 const uint8_t *buf, int len)
ac1970fb 2928{
eb7eeb88 2929 hwaddr l;
eb7eeb88
PB
2930 hwaddr addr1;
2931 MemoryRegion *mr;
2932 MemTxResult result = MEMTX_OK;
eb7eeb88 2933
a203ac70
PB
2934 if (len > 0) {
2935 rcu_read_lock();
eb7eeb88 2936 l = len;
a203ac70
PB
2937 mr = address_space_translate(as, addr, &addr1, &l, true);
2938 result = address_space_write_continue(as, addr, attrs, buf, len,
2939 addr1, l, mr);
2940 rcu_read_unlock();
2941 }
2942
2943 return result;
2944}
2945
2946/* Called within RCU critical section. */
2947MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2948 MemTxAttrs attrs, uint8_t *buf,
2949 int len, hwaddr addr1, hwaddr l,
2950 MemoryRegion *mr)
2951{
2952 uint8_t *ptr;
2953 uint64_t val;
2954 MemTxResult result = MEMTX_OK;
2955 bool release_lock = false;
eb7eeb88 2956
a203ac70 2957 for (;;) {
eb7eeb88
PB
2958 if (!memory_access_is_direct(mr, false)) {
2959 /* I/O case */
2960 release_lock |= prepare_mmio_access(mr);
2961 l = memory_access_size(mr, l, addr1);
2962 switch (l) {
2963 case 8:
2964 /* 64 bit read access */
2965 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2966 attrs);
2967 stq_p(buf, val);
2968 break;
2969 case 4:
2970 /* 32 bit read access */
2971 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2972 attrs);
2973 stl_p(buf, val);
2974 break;
2975 case 2:
2976 /* 16 bit read access */
2977 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2978 attrs);
2979 stw_p(buf, val);
2980 break;
2981 case 1:
2982 /* 8 bit read access */
2983 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2984 attrs);
2985 stb_p(buf, val);
2986 break;
2987 default:
2988 abort();
2989 }
2990 } else {
2991 /* RAM case */
0878d0e1 2992 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2993 memcpy(buf, ptr, l);
2994 }
2995
2996 if (release_lock) {
2997 qemu_mutex_unlock_iothread();
2998 release_lock = false;
2999 }
3000
3001 len -= l;
3002 buf += l;
3003 addr += l;
a203ac70
PB
3004
3005 if (!len) {
3006 break;
3007 }
3008
3009 l = len;
3010 mr = address_space_translate(as, addr, &addr1, &l, false);
3011 }
3012
3013 return result;
3014}
3015
3cc8f884
PB
3016MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3017 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3018{
3019 hwaddr l;
3020 hwaddr addr1;
3021 MemoryRegion *mr;
3022 MemTxResult result = MEMTX_OK;
3023
3024 if (len > 0) {
3025 rcu_read_lock();
3026 l = len;
3027 mr = address_space_translate(as, addr, &addr1, &l, false);
3028 result = address_space_read_continue(as, addr, attrs, buf, len,
3029 addr1, l, mr);
3030 rcu_read_unlock();
eb7eeb88 3031 }
eb7eeb88
PB
3032
3033 return result;
ac1970fb
AK
3034}
3035
eb7eeb88
PB
3036MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3037 uint8_t *buf, int len, bool is_write)
3038{
3039 if (is_write) {
3040 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
3041 } else {
3042 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
3043 }
3044}
ac1970fb 3045
a8170e5e 3046void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3047 int len, int is_write)
3048{
5c9eb028
PM
3049 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3050 buf, len, is_write);
ac1970fb
AK
3051}
3052
582b55a9
AG
3053enum write_rom_type {
3054 WRITE_DATA,
3055 FLUSH_CACHE,
3056};
3057
2a221651 3058static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3059 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3060{
149f54b5 3061 hwaddr l;
d0ecd2aa 3062 uint8_t *ptr;
149f54b5 3063 hwaddr addr1;
5c8a00ce 3064 MemoryRegion *mr;
3b46e624 3065
41063e1e 3066 rcu_read_lock();
d0ecd2aa 3067 while (len > 0) {
149f54b5 3068 l = len;
2a221651 3069 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3070
5c8a00ce
PB
3071 if (!(memory_region_is_ram(mr) ||
3072 memory_region_is_romd(mr))) {
b242e0e0 3073 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3074 } else {
d0ecd2aa 3075 /* ROM/RAM case */
0878d0e1 3076 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3077 switch (type) {
3078 case WRITE_DATA:
3079 memcpy(ptr, buf, l);
845b6214 3080 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3081 break;
3082 case FLUSH_CACHE:
3083 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3084 break;
3085 }
d0ecd2aa
FB
3086 }
3087 len -= l;
3088 buf += l;
3089 addr += l;
3090 }
41063e1e 3091 rcu_read_unlock();
d0ecd2aa
FB
3092}
3093
582b55a9 3094/* used for ROM loading : can write in RAM and ROM */
2a221651 3095void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3096 const uint8_t *buf, int len)
3097{
2a221651 3098 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3099}
3100
3101void cpu_flush_icache_range(hwaddr start, int len)
3102{
3103 /*
3104 * This function should do the same thing as an icache flush that was
3105 * triggered from within the guest. For TCG we are always cache coherent,
3106 * so there is no need to flush anything. For KVM / Xen we need to flush
3107 * the host's instruction cache at least.
3108 */
3109 if (tcg_enabled()) {
3110 return;
3111 }
3112
2a221651
EI
3113 cpu_physical_memory_write_rom_internal(&address_space_memory,
3114 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3115}
3116
6d16c2f8 3117typedef struct {
d3e71559 3118 MemoryRegion *mr;
6d16c2f8 3119 void *buffer;
a8170e5e
AK
3120 hwaddr addr;
3121 hwaddr len;
c2cba0ff 3122 bool in_use;
6d16c2f8
AL
3123} BounceBuffer;
3124
3125static BounceBuffer bounce;
3126
ba223c29 3127typedef struct MapClient {
e95205e1 3128 QEMUBH *bh;
72cf2d4f 3129 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3130} MapClient;
3131
38e047b5 3132QemuMutex map_client_list_lock;
72cf2d4f
BS
3133static QLIST_HEAD(map_client_list, MapClient) map_client_list
3134 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3135
e95205e1
FZ
3136static void cpu_unregister_map_client_do(MapClient *client)
3137{
3138 QLIST_REMOVE(client, link);
3139 g_free(client);
3140}
3141
33b6c2ed
FZ
3142static void cpu_notify_map_clients_locked(void)
3143{
3144 MapClient *client;
3145
3146 while (!QLIST_EMPTY(&map_client_list)) {
3147 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3148 qemu_bh_schedule(client->bh);
3149 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3150 }
3151}
3152
e95205e1 3153void cpu_register_map_client(QEMUBH *bh)
ba223c29 3154{
7267c094 3155 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3156
38e047b5 3157 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3158 client->bh = bh;
72cf2d4f 3159 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3160 if (!atomic_read(&bounce.in_use)) {
3161 cpu_notify_map_clients_locked();
3162 }
38e047b5 3163 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3164}
3165
38e047b5 3166void cpu_exec_init_all(void)
ba223c29 3167{
38e047b5 3168 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3169 /* The data structures we set up here depend on knowing the page size,
3170 * so no more changes can be made after this point.
3171 * In an ideal world, nothing we did before we had finished the
3172 * machine setup would care about the target page size, and we could
3173 * do this much later, rather than requiring board models to state
3174 * up front what their requirements are.
3175 */
3176 finalize_target_page_bits();
38e047b5 3177 io_mem_init();
680a4783 3178 memory_map_init();
38e047b5 3179 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3180}
3181
e95205e1 3182void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3183{
3184 MapClient *client;
3185
e95205e1
FZ
3186 qemu_mutex_lock(&map_client_list_lock);
3187 QLIST_FOREACH(client, &map_client_list, link) {
3188 if (client->bh == bh) {
3189 cpu_unregister_map_client_do(client);
3190 break;
3191 }
ba223c29 3192 }
e95205e1 3193 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3194}
3195
3196static void cpu_notify_map_clients(void)
3197{
38e047b5 3198 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3199 cpu_notify_map_clients_locked();
38e047b5 3200 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3201}
3202
51644ab7
PB
3203bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3204{
5c8a00ce 3205 MemoryRegion *mr;
51644ab7
PB
3206 hwaddr l, xlat;
3207
41063e1e 3208 rcu_read_lock();
51644ab7
PB
3209 while (len > 0) {
3210 l = len;
5c8a00ce
PB
3211 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3212 if (!memory_access_is_direct(mr, is_write)) {
3213 l = memory_access_size(mr, l, addr);
3214 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3215 rcu_read_unlock();
51644ab7
PB
3216 return false;
3217 }
3218 }
3219
3220 len -= l;
3221 addr += l;
3222 }
41063e1e 3223 rcu_read_unlock();
51644ab7
PB
3224 return true;
3225}
3226
715c31ec
PB
3227static hwaddr
3228address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3229 MemoryRegion *mr, hwaddr base, hwaddr len,
3230 bool is_write)
3231{
3232 hwaddr done = 0;
3233 hwaddr xlat;
3234 MemoryRegion *this_mr;
3235
3236 for (;;) {
3237 target_len -= len;
3238 addr += len;
3239 done += len;
3240 if (target_len == 0) {
3241 return done;
3242 }
3243
3244 len = target_len;
3245 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3246 if (this_mr != mr || xlat != base + done) {
3247 return done;
3248 }
3249 }
3250}
3251
6d16c2f8
AL
3252/* Map a physical memory region into a host virtual address.
3253 * May map a subset of the requested range, given by and returned in *plen.
3254 * May return NULL if resources needed to perform the mapping are exhausted.
3255 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3256 * Use cpu_register_map_client() to know when retrying the map operation is
3257 * likely to succeed.
6d16c2f8 3258 */
ac1970fb 3259void *address_space_map(AddressSpace *as,
a8170e5e
AK
3260 hwaddr addr,
3261 hwaddr *plen,
ac1970fb 3262 bool is_write)
6d16c2f8 3263{
a8170e5e 3264 hwaddr len = *plen;
715c31ec
PB
3265 hwaddr l, xlat;
3266 MemoryRegion *mr;
e81bcda5 3267 void *ptr;
6d16c2f8 3268
e3127ae0
PB
3269 if (len == 0) {
3270 return NULL;
3271 }
38bee5dc 3272
e3127ae0 3273 l = len;
41063e1e 3274 rcu_read_lock();
e3127ae0 3275 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 3276
e3127ae0 3277 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3278 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3279 rcu_read_unlock();
e3127ae0 3280 return NULL;
6d16c2f8 3281 }
e85d9db5
KW
3282 /* Avoid unbounded allocations */
3283 l = MIN(l, TARGET_PAGE_SIZE);
3284 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3285 bounce.addr = addr;
3286 bounce.len = l;
d3e71559
PB
3287
3288 memory_region_ref(mr);
3289 bounce.mr = mr;
e3127ae0 3290 if (!is_write) {
5c9eb028
PM
3291 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3292 bounce.buffer, l);
8ab934f9 3293 }
6d16c2f8 3294
41063e1e 3295 rcu_read_unlock();
e3127ae0
PB
3296 *plen = l;
3297 return bounce.buffer;
3298 }
3299
e3127ae0 3300
d3e71559 3301 memory_region_ref(mr);
715c31ec
PB
3302 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3303 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
e81bcda5
PB
3304 rcu_read_unlock();
3305
3306 return ptr;
6d16c2f8
AL
3307}
3308
ac1970fb 3309/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3310 * Will also mark the memory as dirty if is_write == 1. access_len gives
3311 * the amount of memory that was actually read or written by the caller.
3312 */
a8170e5e
AK
3313void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3314 int is_write, hwaddr access_len)
6d16c2f8
AL
3315{
3316 if (buffer != bounce.buffer) {
d3e71559
PB
3317 MemoryRegion *mr;
3318 ram_addr_t addr1;
3319
07bdaa41 3320 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3321 assert(mr != NULL);
6d16c2f8 3322 if (is_write) {
845b6214 3323 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3324 }
868bb33f 3325 if (xen_enabled()) {
e41d7c69 3326 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3327 }
d3e71559 3328 memory_region_unref(mr);
6d16c2f8
AL
3329 return;
3330 }
3331 if (is_write) {
5c9eb028
PM
3332 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3333 bounce.buffer, access_len);
6d16c2f8 3334 }
f8a83245 3335 qemu_vfree(bounce.buffer);
6d16c2f8 3336 bounce.buffer = NULL;
d3e71559 3337 memory_region_unref(bounce.mr);
c2cba0ff 3338 atomic_mb_set(&bounce.in_use, false);
ba223c29 3339 cpu_notify_map_clients();
6d16c2f8 3340}
d0ecd2aa 3341
a8170e5e
AK
3342void *cpu_physical_memory_map(hwaddr addr,
3343 hwaddr *plen,
ac1970fb
AK
3344 int is_write)
3345{
3346 return address_space_map(&address_space_memory, addr, plen, is_write);
3347}
3348
a8170e5e
AK
3349void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3350 int is_write, hwaddr access_len)
ac1970fb
AK
3351{
3352 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3353}
3354
0ce265ff
PB
3355#define ARG1_DECL AddressSpace *as
3356#define ARG1 as
3357#define SUFFIX
3358#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3359#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3360#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3361#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3362#define RCU_READ_LOCK(...) rcu_read_lock()
3363#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3364#include "memory_ldst.inc.c"
1e78bcc1 3365
1f4e496e
PB
3366int64_t address_space_cache_init(MemoryRegionCache *cache,
3367 AddressSpace *as,
3368 hwaddr addr,
3369 hwaddr len,
3370 bool is_write)
3371{
90c4fe5f
PB
3372 cache->len = len;
3373 cache->as = as;
3374 cache->xlat = addr;
3375 return len;
1f4e496e
PB
3376}
3377
3378void address_space_cache_invalidate(MemoryRegionCache *cache,
3379 hwaddr addr,
3380 hwaddr access_len)
3381{
1f4e496e
PB
3382}
3383
3384void address_space_cache_destroy(MemoryRegionCache *cache)
3385{
90c4fe5f 3386 cache->as = NULL;
1f4e496e
PB
3387}
3388
3389#define ARG1_DECL MemoryRegionCache *cache
3390#define ARG1 cache
3391#define SUFFIX _cached
90c4fe5f
PB
3392#define TRANSLATE(addr, ...) \
3393 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3394#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3395#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3396#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3397#define RCU_READ_LOCK() rcu_read_lock()
3398#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3399#include "memory_ldst.inc.c"
3400
5e2972fd 3401/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3402int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3403 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3404{
3405 int l;
a8170e5e 3406 hwaddr phys_addr;
9b3c35e0 3407 target_ulong page;
13eb76e0 3408
79ca7a1b 3409 cpu_synchronize_state(cpu);
13eb76e0 3410 while (len > 0) {
5232e4c7
PM
3411 int asidx;
3412 MemTxAttrs attrs;
3413
13eb76e0 3414 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3415 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3416 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3417 /* if no physical page mapped, return an error */
3418 if (phys_addr == -1)
3419 return -1;
3420 l = (page + TARGET_PAGE_SIZE) - addr;
3421 if (l > len)
3422 l = len;
5e2972fd 3423 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3424 if (is_write) {
5232e4c7
PM
3425 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3426 phys_addr, buf, l);
2e38847b 3427 } else {
5232e4c7
PM
3428 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3429 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3430 buf, l, 0);
2e38847b 3431 }
13eb76e0
FB
3432 len -= l;
3433 buf += l;
3434 addr += l;
3435 }
3436 return 0;
3437}
038629a6
DDAG
3438
3439/*
3440 * Allows code that needs to deal with migration bitmaps etc to still be built
3441 * target independent.
3442 */
20afaed9 3443size_t qemu_target_page_size(void)
038629a6 3444{
20afaed9 3445 return TARGET_PAGE_SIZE;
038629a6
DDAG
3446}
3447
46d702b1
JQ
3448int qemu_target_page_bits(void)
3449{
3450 return TARGET_PAGE_BITS;
3451}
3452
3453int qemu_target_page_bits_min(void)
3454{
3455 return TARGET_PAGE_BITS_MIN;
3456}
a68fe89c 3457#endif
13eb76e0 3458
8e4a424b
BS
3459/*
3460 * A helper function for the _utterly broken_ virtio device model to find out if
3461 * it's running on a big endian machine. Don't do this at home kids!
3462 */
98ed8ecf
GK
3463bool target_words_bigendian(void);
3464bool target_words_bigendian(void)
8e4a424b
BS
3465{
3466#if defined(TARGET_WORDS_BIGENDIAN)
3467 return true;
3468#else
3469 return false;
3470#endif
3471}
3472
76f35538 3473#ifndef CONFIG_USER_ONLY
a8170e5e 3474bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3475{
5c8a00ce 3476 MemoryRegion*mr;
149f54b5 3477 hwaddr l = 1;
41063e1e 3478 bool res;
76f35538 3479
41063e1e 3480 rcu_read_lock();
5c8a00ce
PB
3481 mr = address_space_translate(&address_space_memory,
3482 phys_addr, &phys_addr, &l, false);
76f35538 3483
41063e1e
PB
3484 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3485 rcu_read_unlock();
3486 return res;
76f35538 3487}
bd2fa51f 3488
e3807054 3489int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3490{
3491 RAMBlock *block;
e3807054 3492 int ret = 0;
bd2fa51f 3493
0dc3f44a 3494 rcu_read_lock();
99e15582 3495 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3496 ret = func(block->idstr, block->host, block->offset,
3497 block->used_length, opaque);
3498 if (ret) {
3499 break;
3500 }
bd2fa51f 3501 }
0dc3f44a 3502 rcu_read_unlock();
e3807054 3503 return ret;
bd2fa51f 3504}
d3a5038c
DDAG
3505
3506/*
3507 * Unmap pages of memory from start to start+length such that
3508 * they a) read as 0, b) Trigger whatever fault mechanism
3509 * the OS provides for postcopy.
3510 * The pages must be unmapped by the end of the function.
3511 * Returns: 0 on success, none-0 on failure
3512 *
3513 */
3514int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3515{
3516 int ret = -1;
3517
3518 uint8_t *host_startaddr = rb->host + start;
3519
3520 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3521 error_report("ram_block_discard_range: Unaligned start address: %p",
3522 host_startaddr);
3523 goto err;
3524 }
3525
3526 if ((start + length) <= rb->used_length) {
3527 uint8_t *host_endaddr = host_startaddr + length;
3528 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3529 error_report("ram_block_discard_range: Unaligned end address: %p",
3530 host_endaddr);
3531 goto err;
3532 }
3533
3534 errno = ENOTSUP; /* If we are missing MADVISE etc */
3535
e2fa71f5 3536 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3537#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3538 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3539 * freeing the page.
3540 */
3541 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3542#endif
e2fa71f5
DDAG
3543 } else {
3544 /* Huge page case - unfortunately it can't do DONTNEED, but
3545 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3546 * huge page file.
3547 */
3548#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3549 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3550 start, length);
3551#endif
3552 }
d3a5038c
DDAG
3553 if (ret) {
3554 ret = -errno;
3555 error_report("ram_block_discard_range: Failed to discard range "
3556 "%s:%" PRIx64 " +%zx (%d)",
3557 rb->idstr, start, length, ret);
3558 }
3559 } else {
3560 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3561 "/%zx/" RAM_ADDR_FMT")",
3562 rb->idstr, start, length, rb->used_length);
3563 }
3564
3565err:
3566 return ret;
3567}
3568
ec3f8c99 3569#endif