]> git.proxmox.com Git - qemu.git/blame - exec.c
hw/n*: pass owner to memory_region_init* functions
[qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
1de7afc9 32#include "qemu/osdep.h"
9c17d615 33#include "sysemu/kvm.h"
0d09e41a 34#include "hw/xen/xen.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
022c62cb 37#include "exec/memory.h"
9c17d615 38#include "sysemu/dma.h"
022c62cb 39#include "exec/address-spaces.h"
53a5960a
PB
40#if defined(CONFIG_USER_ONLY)
41#include <qemu.h>
432d268c 42#else /* !CONFIG_USER_ONLY */
9c17d615 43#include "sysemu/xen-mapcache.h"
6506e4f9 44#include "trace.h"
53a5960a 45#endif
0d6d3c87 46#include "exec/cpu-all.h"
54936004 47
022c62cb 48#include "exec/cputlb.h"
5b6dd868 49#include "translate-all.h"
0cac1b66 50
022c62cb 51#include "exec/memory-internal.h"
67d95c15 52
db7b5426 53//#define DEBUG_SUBPAGE
1196be37 54
e2eef170 55#if !defined(CONFIG_USER_ONLY)
9fa3e853 56int phys_ram_fd;
74576198 57static int in_migration;
94a6b54f 58
a3161038 59RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
60
61static MemoryRegion *system_memory;
309cb471 62static MemoryRegion *system_io;
62152b8a 63
f6790af6
AK
64AddressSpace address_space_io;
65AddressSpace address_space_memory;
2673a5da 66
0844e007 67MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 68static MemoryRegion io_mem_unassigned;
0e0df1e2 69
e2eef170 70#endif
9fa3e853 71
9349b4f9 72CPUArchState *first_cpu;
6a00d601
FB
73/* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
9349b4f9 75DEFINE_TLS(CPUArchState *,cpu_single_env);
2e70f6ef 76/* 0 = Do not count executed instructions.
bf20dc07 77 1 = Precise instruction counting.
2e70f6ef 78 2 = Adaptive rate instruction counting. */
5708fc66 79int use_icount;
6a00d601 80
e2eef170 81#if !defined(CONFIG_USER_ONLY)
4346ae3e 82
1db8abb1
PB
83typedef struct PhysPageEntry PhysPageEntry;
84
85struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89};
90
91struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
94 */
95 PhysPageEntry phys_map;
96 MemoryListener listener;
acc9d80b 97 AddressSpace *as;
1db8abb1
PB
98};
99
90260c6c
JK
100#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101typedef struct subpage_t {
102 MemoryRegion iomem;
acc9d80b 103 AddressSpace *as;
90260c6c
JK
104 hwaddr base;
105 uint16_t sub_section[TARGET_PAGE_SIZE];
106} subpage_t;
107
5312bd8b
AK
108static MemoryRegionSection *phys_sections;
109static unsigned phys_sections_nb, phys_sections_nb_alloc;
110static uint16_t phys_section_unassigned;
aa102231
AK
111static uint16_t phys_section_notdirty;
112static uint16_t phys_section_rom;
113static uint16_t phys_section_watch;
5312bd8b 114
d6f2ea22
AK
115/* Simple allocator for PhysPageEntry nodes */
116static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
117static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
118
07f07b31 119#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
d6f2ea22 120
e2eef170 121static void io_mem_init(void);
62152b8a 122static void memory_map_init(void);
8b9c99d9 123static void *qemu_safe_ram_ptr(ram_addr_t addr);
e2eef170 124
1ec9b909 125static MemoryRegion io_mem_watch;
6658ffb8 126#endif
fd6ce8f6 127
6d9a1304 128#if !defined(CONFIG_USER_ONLY)
d6f2ea22 129
f7bf5461 130static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 131{
f7bf5461 132 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
d6f2ea22
AK
133 typedef PhysPageEntry Node[L2_SIZE];
134 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
f7bf5461
AK
135 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
136 phys_map_nodes_nb + nodes);
d6f2ea22
AK
137 phys_map_nodes = g_renew(Node, phys_map_nodes,
138 phys_map_nodes_nb_alloc);
139 }
f7bf5461
AK
140}
141
142static uint16_t phys_map_node_alloc(void)
143{
144 unsigned i;
145 uint16_t ret;
146
147 ret = phys_map_nodes_nb++;
148 assert(ret != PHYS_MAP_NODE_NIL);
149 assert(ret != phys_map_nodes_nb_alloc);
d6f2ea22 150 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 151 phys_map_nodes[ret][i].is_leaf = 0;
c19e8800 152 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 153 }
f7bf5461 154 return ret;
d6f2ea22
AK
155}
156
a8170e5e
AK
157static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
158 hwaddr *nb, uint16_t leaf,
2999097b 159 int level)
f7bf5461
AK
160{
161 PhysPageEntry *p;
162 int i;
a8170e5e 163 hwaddr step = (hwaddr)1 << (level * L2_BITS);
108c49b8 164
07f07b31 165 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
c19e8800
AK
166 lp->ptr = phys_map_node_alloc();
167 p = phys_map_nodes[lp->ptr];
f7bf5461
AK
168 if (level == 0) {
169 for (i = 0; i < L2_SIZE; i++) {
07f07b31 170 p[i].is_leaf = 1;
c19e8800 171 p[i].ptr = phys_section_unassigned;
4346ae3e 172 }
67c4d23c 173 }
f7bf5461 174 } else {
c19e8800 175 p = phys_map_nodes[lp->ptr];
92e873b9 176 }
2999097b 177 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
f7bf5461 178
2999097b 179 while (*nb && lp < &p[L2_SIZE]) {
07f07b31
AK
180 if ((*index & (step - 1)) == 0 && *nb >= step) {
181 lp->is_leaf = true;
c19e8800 182 lp->ptr = leaf;
07f07b31
AK
183 *index += step;
184 *nb -= step;
2999097b
AK
185 } else {
186 phys_page_set_level(lp, index, nb, leaf, level - 1);
187 }
188 ++lp;
f7bf5461
AK
189 }
190}
191
ac1970fb 192static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 193 hwaddr index, hwaddr nb,
2999097b 194 uint16_t leaf)
f7bf5461 195{
2999097b 196 /* Wildly overreserve - it doesn't matter much. */
07f07b31 197 phys_map_node_reserve(3 * P_L2_LEVELS);
5cd2c5b6 198
ac1970fb 199 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
200}
201
149f54b5 202static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
92e873b9 203{
ac1970fb 204 PhysPageEntry lp = d->phys_map;
31ab2b4a
AK
205 PhysPageEntry *p;
206 int i;
f1f6e3b8 207
07f07b31 208 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
c19e8800 209 if (lp.ptr == PHYS_MAP_NODE_NIL) {
fd298934 210 return &phys_sections[phys_section_unassigned];
31ab2b4a 211 }
c19e8800 212 p = phys_map_nodes[lp.ptr];
31ab2b4a 213 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
5312bd8b 214 }
fd298934 215 return &phys_sections[lp.ptr];
f3705d53
AK
216}
217
e5548617
BS
218bool memory_region_is_unassigned(MemoryRegion *mr)
219{
2a8e7499 220 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 221 && mr != &io_mem_watch;
fd6ce8f6 222}
149f54b5 223
9f029603 224static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
90260c6c
JK
225 hwaddr addr,
226 bool resolve_subpage)
9f029603 227{
90260c6c
JK
228 MemoryRegionSection *section;
229 subpage_t *subpage;
230
231 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
232 if (resolve_subpage && section->mr->subpage) {
233 subpage = container_of(section->mr, subpage_t, iomem);
234 section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
235 }
236 return section;
9f029603
JK
237}
238
90260c6c
JK
239static MemoryRegionSection *
240address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
241 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
242{
243 MemoryRegionSection *section;
244 Int128 diff;
245
90260c6c 246 section = address_space_lookup_region(as, addr, resolve_subpage);
149f54b5
PB
247 /* Compute offset within MemoryRegionSection */
248 addr -= section->offset_within_address_space;
249
250 /* Compute offset within MemoryRegion */
251 *xlat = addr + section->offset_within_region;
252
253 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 254 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
255 return section;
256}
90260c6c 257
5c8a00ce
PB
258MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
259 hwaddr *xlat, hwaddr *plen,
260 bool is_write)
90260c6c 261{
30951157
AK
262 IOMMUTLBEntry iotlb;
263 MemoryRegionSection *section;
264 MemoryRegion *mr;
265 hwaddr len = *plen;
266
267 for (;;) {
268 section = address_space_translate_internal(as, addr, &addr, plen, true);
269 mr = section->mr;
270
271 if (!mr->iommu_ops) {
272 break;
273 }
274
275 iotlb = mr->iommu_ops->translate(mr, addr);
276 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
277 | (addr & iotlb.addr_mask));
278 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
279 if (!(iotlb.perm & (1 << is_write))) {
280 mr = &io_mem_unassigned;
281 break;
282 }
283
284 as = iotlb.target_as;
285 }
286
287 *plen = len;
288 *xlat = addr;
289 return mr;
90260c6c
JK
290}
291
292MemoryRegionSection *
293address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
294 hwaddr *plen)
295{
30951157
AK
296 MemoryRegionSection *section;
297 section = address_space_translate_internal(as, addr, xlat, plen, false);
298
299 assert(!section->mr->iommu_ops);
300 return section;
90260c6c 301}
5b6dd868 302#endif
fd6ce8f6 303
5b6dd868 304void cpu_exec_init_all(void)
fdbb84d1 305{
5b6dd868 306#if !defined(CONFIG_USER_ONLY)
b2a8658e 307 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
308 memory_map_init();
309 io_mem_init();
fdbb84d1 310#endif
5b6dd868 311}
fdbb84d1 312
b170fce3 313#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
314
315static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 316{
259186a7 317 CPUState *cpu = opaque;
a513fe19 318
5b6dd868
BS
319 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
320 version_id is increased. */
259186a7
AF
321 cpu->interrupt_request &= ~0x01;
322 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
323
324 return 0;
a513fe19 325}
7501267e 326
1a1562f5 327const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
328 .name = "cpu_common",
329 .version_id = 1,
330 .minimum_version_id = 1,
331 .minimum_version_id_old = 1,
332 .post_load = cpu_common_post_load,
333 .fields = (VMStateField []) {
259186a7
AF
334 VMSTATE_UINT32(halted, CPUState),
335 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
336 VMSTATE_END_OF_LIST()
337 }
338};
1a1562f5 339
5b6dd868 340#endif
ea041c0e 341
38d8f5c8 342CPUState *qemu_get_cpu(int index)
ea041c0e 343{
5b6dd868 344 CPUArchState *env = first_cpu;
38d8f5c8 345 CPUState *cpu = NULL;
ea041c0e 346
5b6dd868 347 while (env) {
55e5c285
AF
348 cpu = ENV_GET_CPU(env);
349 if (cpu->cpu_index == index) {
5b6dd868 350 break;
55e5c285 351 }
5b6dd868 352 env = env->next_cpu;
ea041c0e 353 }
5b6dd868 354
d76fddae 355 return env ? cpu : NULL;
ea041c0e
FB
356}
357
d6b9e0d6
MT
358void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
359{
360 CPUArchState *env = first_cpu;
361
362 while (env) {
363 func(ENV_GET_CPU(env), data);
364 env = env->next_cpu;
365 }
366}
367
5b6dd868 368void cpu_exec_init(CPUArchState *env)
ea041c0e 369{
5b6dd868 370 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 371 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868
BS
372 CPUArchState **penv;
373 int cpu_index;
374
375#if defined(CONFIG_USER_ONLY)
376 cpu_list_lock();
377#endif
378 env->next_cpu = NULL;
379 penv = &first_cpu;
380 cpu_index = 0;
381 while (*penv != NULL) {
382 penv = &(*penv)->next_cpu;
383 cpu_index++;
384 }
55e5c285 385 cpu->cpu_index = cpu_index;
1b1ed8dc 386 cpu->numa_node = 0;
5b6dd868
BS
387 QTAILQ_INIT(&env->breakpoints);
388 QTAILQ_INIT(&env->watchpoints);
389#ifndef CONFIG_USER_ONLY
390 cpu->thread_id = qemu_get_thread_id();
391#endif
392 *penv = env;
393#if defined(CONFIG_USER_ONLY)
394 cpu_list_unlock();
395#endif
259186a7 396 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
5b6dd868 397#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
398 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
399 cpu_save, cpu_load, env);
b170fce3 400 assert(cc->vmsd == NULL);
5b6dd868 401#endif
b170fce3
AF
402 if (cc->vmsd != NULL) {
403 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
404 }
ea041c0e
FB
405}
406
1fddef4b 407#if defined(TARGET_HAS_ICE)
94df27fd 408#if defined(CONFIG_USER_ONLY)
9349b4f9 409static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
94df27fd
PB
410{
411 tb_invalidate_phys_page_range(pc, pc + 1, 0);
412}
413#else
1e7855a5
MF
414static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
415{
9d70c4b7
MF
416 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
417 (pc & ~TARGET_PAGE_MASK));
1e7855a5 418}
c27004ec 419#endif
94df27fd 420#endif /* TARGET_HAS_ICE */
d720b93d 421
c527ee8f 422#if defined(CONFIG_USER_ONLY)
9349b4f9 423void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
424
425{
426}
427
9349b4f9 428int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
429 int flags, CPUWatchpoint **watchpoint)
430{
431 return -ENOSYS;
432}
433#else
6658ffb8 434/* Add a watchpoint. */
9349b4f9 435int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 436 int flags, CPUWatchpoint **watchpoint)
6658ffb8 437{
b4051334 438 target_ulong len_mask = ~(len - 1);
c0ce998e 439 CPUWatchpoint *wp;
6658ffb8 440
b4051334 441 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
442 if ((len & (len - 1)) || (addr & ~len_mask) ||
443 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
444 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
445 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
446 return -EINVAL;
447 }
7267c094 448 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
449
450 wp->vaddr = addr;
b4051334 451 wp->len_mask = len_mask;
a1d1bb31
AL
452 wp->flags = flags;
453
2dc9f411 454 /* keep all GDB-injected watchpoints in front */
c0ce998e 455 if (flags & BP_GDB)
72cf2d4f 456 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 457 else
72cf2d4f 458 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 459
6658ffb8 460 tlb_flush_page(env, addr);
a1d1bb31
AL
461
462 if (watchpoint)
463 *watchpoint = wp;
464 return 0;
6658ffb8
PB
465}
466
a1d1bb31 467/* Remove a specific watchpoint. */
9349b4f9 468int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 469 int flags)
6658ffb8 470{
b4051334 471 target_ulong len_mask = ~(len - 1);
a1d1bb31 472 CPUWatchpoint *wp;
6658ffb8 473
72cf2d4f 474 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 475 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 476 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 477 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
478 return 0;
479 }
480 }
a1d1bb31 481 return -ENOENT;
6658ffb8
PB
482}
483
a1d1bb31 484/* Remove a specific watchpoint by reference. */
9349b4f9 485void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 486{
72cf2d4f 487 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 488
a1d1bb31
AL
489 tlb_flush_page(env, watchpoint->vaddr);
490
7267c094 491 g_free(watchpoint);
a1d1bb31
AL
492}
493
494/* Remove all matching watchpoints. */
9349b4f9 495void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 496{
c0ce998e 497 CPUWatchpoint *wp, *next;
a1d1bb31 498
72cf2d4f 499 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
500 if (wp->flags & mask)
501 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 502 }
7d03f82f 503}
c527ee8f 504#endif
7d03f82f 505
a1d1bb31 506/* Add a breakpoint. */
9349b4f9 507int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 508 CPUBreakpoint **breakpoint)
4c3a88a2 509{
1fddef4b 510#if defined(TARGET_HAS_ICE)
c0ce998e 511 CPUBreakpoint *bp;
3b46e624 512
7267c094 513 bp = g_malloc(sizeof(*bp));
4c3a88a2 514
a1d1bb31
AL
515 bp->pc = pc;
516 bp->flags = flags;
517
2dc9f411 518 /* keep all GDB-injected breakpoints in front */
c0ce998e 519 if (flags & BP_GDB)
72cf2d4f 520 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 521 else
72cf2d4f 522 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 523
d720b93d 524 breakpoint_invalidate(env, pc);
a1d1bb31
AL
525
526 if (breakpoint)
527 *breakpoint = bp;
4c3a88a2
FB
528 return 0;
529#else
a1d1bb31 530 return -ENOSYS;
4c3a88a2
FB
531#endif
532}
533
a1d1bb31 534/* Remove a specific breakpoint. */
9349b4f9 535int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 536{
7d03f82f 537#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
538 CPUBreakpoint *bp;
539
72cf2d4f 540 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
541 if (bp->pc == pc && bp->flags == flags) {
542 cpu_breakpoint_remove_by_ref(env, bp);
543 return 0;
544 }
7d03f82f 545 }
a1d1bb31
AL
546 return -ENOENT;
547#else
548 return -ENOSYS;
7d03f82f
EI
549#endif
550}
551
a1d1bb31 552/* Remove a specific breakpoint by reference. */
9349b4f9 553void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 554{
1fddef4b 555#if defined(TARGET_HAS_ICE)
72cf2d4f 556 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 557
a1d1bb31
AL
558 breakpoint_invalidate(env, breakpoint->pc);
559
7267c094 560 g_free(breakpoint);
a1d1bb31
AL
561#endif
562}
563
564/* Remove all matching breakpoints. */
9349b4f9 565void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
566{
567#if defined(TARGET_HAS_ICE)
c0ce998e 568 CPUBreakpoint *bp, *next;
a1d1bb31 569
72cf2d4f 570 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
571 if (bp->flags & mask)
572 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 573 }
4c3a88a2
FB
574#endif
575}
576
c33a346e
FB
577/* enable or disable single step mode. EXCP_DEBUG is returned by the
578 CPU loop after each instruction */
9349b4f9 579void cpu_single_step(CPUArchState *env, int enabled)
c33a346e 580{
1fddef4b 581#if defined(TARGET_HAS_ICE)
c33a346e
FB
582 if (env->singlestep_enabled != enabled) {
583 env->singlestep_enabled = enabled;
e22a25c9
AL
584 if (kvm_enabled())
585 kvm_update_guest_debug(env, 0);
586 else {
ccbb4d44 587 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
588 /* XXX: only flush what is necessary */
589 tb_flush(env);
590 }
c33a346e
FB
591 }
592#endif
593}
594
9349b4f9 595void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 596{
878096ee 597 CPUState *cpu = ENV_GET_CPU(env);
7501267e 598 va_list ap;
493ae1f0 599 va_list ap2;
7501267e
FB
600
601 va_start(ap, fmt);
493ae1f0 602 va_copy(ap2, ap);
7501267e
FB
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
878096ee 606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
6fd2a026 611 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 612 qemu_log_flush();
93fcfe39 613 qemu_log_close();
924edcae 614 }
493ae1f0 615 va_end(ap2);
f9373291 616 va_end(ap);
fd052bf6
RV
617#if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624#endif
7501267e
FB
625 abort();
626}
627
9349b4f9 628CPUArchState *cpu_copy(CPUArchState *env)
c5be9f08 629{
9349b4f9
AF
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 CPUArchState *next_cpu = new_env->next_cpu;
5a38f081
AL
632#if defined(TARGET_HAS_ICE)
633 CPUBreakpoint *bp;
634 CPUWatchpoint *wp;
635#endif
636
9349b4f9 637 memcpy(new_env, env, sizeof(CPUArchState));
5a38f081 638
55e5c285 639 /* Preserve chaining. */
c5be9f08 640 new_env->next_cpu = next_cpu;
5a38f081
AL
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
5a38f081 647#if defined(TARGET_HAS_ICE)
72cf2d4f 648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
72cf2d4f 651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655#endif
656
c5be9f08
TS
657 return new_env;
658}
659
0124311e 660#if !defined(CONFIG_USER_ONLY)
d24981d3
JQ
661static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663{
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677}
678
5579c7f3 679/* Note: start and end must be within the same ram block. */
c227f099 680void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 681 int dirty_flags)
1ccde1cb 682{
d24981d3 683 uintptr_t length;
1ccde1cb
FB
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
f7c11b53 691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 692
d24981d3
JQ
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
5579c7f3 695 }
1ccde1cb
FB
696}
697
8b9c99d9 698static int cpu_physical_memory_set_dirty_tracking(int enable)
74576198 699{
f6f3fbca 700 int ret = 0;
74576198 701 in_migration = enable;
f6f3fbca 702 return ret;
74576198
AL
703}
704
a8170e5e 705hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
e5548617 711{
a8170e5e 712 hwaddr iotlb;
e5548617
BS
713 CPUWatchpoint *wp;
714
cc5bea60 715 if (memory_region_is_ram(section->mr)) {
e5548617
BS
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 718 + xlat;
e5548617
BS
719 if (!section->readonly) {
720 iotlb |= phys_section_notdirty;
721 } else {
722 iotlb |= phys_section_rom;
723 }
724 } else {
e5548617 725 iotlb = section - phys_sections;
149f54b5 726 iotlb += xlat;
e5548617
BS
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = phys_section_watch + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743}
9fa3e853
FB
744#endif /* defined(CONFIG_USER_ONLY) */
745
e2eef170 746#if !defined(CONFIG_USER_ONLY)
8da3ff18 747
c227f099 748static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 749 uint16_t section);
acc9d80b 750static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 751
5312bd8b
AK
752static uint16_t phys_section_add(MemoryRegionSection *section)
753{
68f3f65b
PB
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
757 */
758 assert(phys_sections_nb < TARGET_PAGE_SIZE);
759
5312bd8b
AK
760 if (phys_sections_nb == phys_sections_nb_alloc) {
761 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
762 phys_sections = g_renew(MemoryRegionSection, phys_sections,
763 phys_sections_nb_alloc);
764 }
765 phys_sections[phys_sections_nb] = *section;
dfde4e6e 766 memory_region_ref(section->mr);
5312bd8b
AK
767 return phys_sections_nb++;
768}
769
058bc4b5
PB
770static void phys_section_destroy(MemoryRegion *mr)
771{
dfde4e6e
PB
772 memory_region_unref(mr);
773
058bc4b5
PB
774 if (mr->subpage) {
775 subpage_t *subpage = container_of(mr, subpage_t, iomem);
776 memory_region_destroy(&subpage->iomem);
777 g_free(subpage);
778 }
779}
780
5312bd8b
AK
781static void phys_sections_clear(void)
782{
058bc4b5
PB
783 while (phys_sections_nb > 0) {
784 MemoryRegionSection *section = &phys_sections[--phys_sections_nb];
785 phys_section_destroy(section->mr);
786 }
b7e95164 787 phys_map_nodes_nb = 0;
5312bd8b
AK
788}
789
ac1970fb 790static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
791{
792 subpage_t *subpage;
a8170e5e 793 hwaddr base = section->offset_within_address_space
0f0cb164 794 & TARGET_PAGE_MASK;
ac1970fb 795 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
0f0cb164
AK
796 MemoryRegionSection subsection = {
797 .offset_within_address_space = base,
052e87b0 798 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 799 };
a8170e5e 800 hwaddr start, end;
0f0cb164 801
f3705d53 802 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 803
f3705d53 804 if (!(existing->mr->subpage)) {
acc9d80b 805 subpage = subpage_init(d->as, base);
0f0cb164 806 subsection.mr = &subpage->iomem;
ac1970fb 807 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
2999097b 808 phys_section_add(&subsection));
0f0cb164 809 } else {
f3705d53 810 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
811 }
812 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 813 end = start + int128_get64(section->size) - 1;
0f0cb164
AK
814 subpage_register(subpage, start, end, phys_section_add(section));
815}
816
817
052e87b0
PB
818static void register_multipage(AddressSpaceDispatch *d,
819 MemoryRegionSection *section)
33417e70 820{
a8170e5e 821 hwaddr start_addr = section->offset_within_address_space;
5312bd8b 822 uint16_t section_index = phys_section_add(section);
052e87b0
PB
823 uint64_t num_pages = int128_get64(int128_rshift(section->size,
824 TARGET_PAGE_BITS));
dd81124b 825
733d5ef5
PB
826 assert(num_pages);
827 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
828}
829
ac1970fb 830static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 831{
ac1970fb 832 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
99b9cc06 833 MemoryRegionSection now = *section, remain = *section;
052e87b0 834 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 835
733d5ef5
PB
836 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
837 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
838 - now.offset_within_address_space;
839
052e87b0 840 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 841 register_subpage(d, &now);
733d5ef5 842 } else {
052e87b0 843 now.size = int128_zero();
733d5ef5 844 }
052e87b0
PB
845 while (int128_ne(remain.size, now.size)) {
846 remain.size = int128_sub(remain.size, now.size);
847 remain.offset_within_address_space += int128_get64(now.size);
848 remain.offset_within_region += int128_get64(now.size);
69b67646 849 now = remain;
052e87b0 850 if (int128_lt(remain.size, page_size)) {
733d5ef5
PB
851 register_subpage(d, &now);
852 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
052e87b0 853 now.size = page_size;
ac1970fb 854 register_subpage(d, &now);
69b67646 855 } else {
052e87b0 856 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 857 register_multipage(d, &now);
69b67646 858 }
0f0cb164
AK
859 }
860}
861
62a2744c
SY
862void qemu_flush_coalesced_mmio_buffer(void)
863{
864 if (kvm_enabled())
865 kvm_flush_coalesced_mmio_buffer();
866}
867
b2a8658e
UD
868void qemu_mutex_lock_ramlist(void)
869{
870 qemu_mutex_lock(&ram_list.mutex);
871}
872
873void qemu_mutex_unlock_ramlist(void)
874{
875 qemu_mutex_unlock(&ram_list.mutex);
876}
877
c902760f
MT
878#if defined(__linux__) && !defined(TARGET_S390X)
879
880#include <sys/vfs.h>
881
882#define HUGETLBFS_MAGIC 0x958458f6
883
884static long gethugepagesize(const char *path)
885{
886 struct statfs fs;
887 int ret;
888
889 do {
9742bf26 890 ret = statfs(path, &fs);
c902760f
MT
891 } while (ret != 0 && errno == EINTR);
892
893 if (ret != 0) {
9742bf26
YT
894 perror(path);
895 return 0;
c902760f
MT
896 }
897
898 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 899 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
900
901 return fs.f_bsize;
902}
903
04b16653
AW
904static void *file_ram_alloc(RAMBlock *block,
905 ram_addr_t memory,
906 const char *path)
c902760f
MT
907{
908 char *filename;
8ca761f6
PF
909 char *sanitized_name;
910 char *c;
c902760f
MT
911 void *area;
912 int fd;
913#ifdef MAP_POPULATE
914 int flags;
915#endif
916 unsigned long hpagesize;
917
918 hpagesize = gethugepagesize(path);
919 if (!hpagesize) {
9742bf26 920 return NULL;
c902760f
MT
921 }
922
923 if (memory < hpagesize) {
924 return NULL;
925 }
926
927 if (kvm_enabled() && !kvm_has_sync_mmu()) {
928 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
929 return NULL;
930 }
931
8ca761f6
PF
932 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
933 sanitized_name = g_strdup(block->mr->name);
934 for (c = sanitized_name; *c != '\0'; c++) {
935 if (*c == '/')
936 *c = '_';
937 }
938
939 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
940 sanitized_name);
941 g_free(sanitized_name);
c902760f
MT
942
943 fd = mkstemp(filename);
944 if (fd < 0) {
9742bf26 945 perror("unable to create backing store for hugepages");
e4ada482 946 g_free(filename);
9742bf26 947 return NULL;
c902760f
MT
948 }
949 unlink(filename);
e4ada482 950 g_free(filename);
c902760f
MT
951
952 memory = (memory+hpagesize-1) & ~(hpagesize-1);
953
954 /*
955 * ftruncate is not supported by hugetlbfs in older
956 * hosts, so don't bother bailing out on errors.
957 * If anything goes wrong with it under other filesystems,
958 * mmap will fail.
959 */
960 if (ftruncate(fd, memory))
9742bf26 961 perror("ftruncate");
c902760f
MT
962
963#ifdef MAP_POPULATE
964 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
965 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
966 * to sidestep this quirk.
967 */
968 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
969 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
970#else
971 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
972#endif
973 if (area == MAP_FAILED) {
9742bf26
YT
974 perror("file_ram_alloc: can't mmap RAM pages");
975 close(fd);
976 return (NULL);
c902760f 977 }
04b16653 978 block->fd = fd;
c902760f
MT
979 return area;
980}
981#endif
982
d17b5288 983static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
984{
985 RAMBlock *block, *next_block;
3e837b2c 986 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 987
49cd9ac6
SH
988 assert(size != 0); /* it would hand out same offset multiple times */
989
a3161038 990 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
991 return 0;
992
a3161038 993 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 994 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
995
996 end = block->offset + block->length;
997
a3161038 998 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
999 if (next_block->offset >= end) {
1000 next = MIN(next, next_block->offset);
1001 }
1002 }
1003 if (next - end >= size && next - end < mingap) {
3e837b2c 1004 offset = end;
04b16653
AW
1005 mingap = next - end;
1006 }
1007 }
3e837b2c
AW
1008
1009 if (offset == RAM_ADDR_MAX) {
1010 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1011 (uint64_t)size);
1012 abort();
1013 }
1014
04b16653
AW
1015 return offset;
1016}
1017
652d7ec2 1018ram_addr_t last_ram_offset(void)
d17b5288
AW
1019{
1020 RAMBlock *block;
1021 ram_addr_t last = 0;
1022
a3161038 1023 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1024 last = MAX(last, block->offset + block->length);
1025
1026 return last;
1027}
1028
ddb97f1d
JB
1029static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1030{
1031 int ret;
1032 QemuOpts *machine_opts;
1033
1034 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1035 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1036 if (machine_opts &&
1037 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1038 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1039 if (ret) {
1040 perror("qemu_madvise");
1041 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1042 "but dump_guest_core=off specified\n");
1043 }
1044 }
1045}
1046
c5705a77 1047void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1048{
1049 RAMBlock *new_block, *block;
1050
c5705a77 1051 new_block = NULL;
a3161038 1052 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1053 if (block->offset == addr) {
1054 new_block = block;
1055 break;
1056 }
1057 }
1058 assert(new_block);
1059 assert(!new_block->idstr[0]);
84b89d78 1060
09e5ab63
AL
1061 if (dev) {
1062 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1063 if (id) {
1064 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1065 g_free(id);
84b89d78
CM
1066 }
1067 }
1068 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1069
b2a8658e
UD
1070 /* This assumes the iothread lock is taken here too. */
1071 qemu_mutex_lock_ramlist();
a3161038 1072 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1073 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1074 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1075 new_block->idstr);
1076 abort();
1077 }
1078 }
b2a8658e 1079 qemu_mutex_unlock_ramlist();
c5705a77
AK
1080}
1081
8490fc78
LC
1082static int memory_try_enable_merging(void *addr, size_t len)
1083{
1084 QemuOpts *opts;
1085
1086 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1087 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1088 /* disabled by the user */
1089 return 0;
1090 }
1091
1092 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1093}
1094
c5705a77
AK
1095ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1096 MemoryRegion *mr)
1097{
abb26d63 1098 RAMBlock *block, *new_block;
c5705a77
AK
1099
1100 size = TARGET_PAGE_ALIGN(size);
1101 new_block = g_malloc0(sizeof(*new_block));
84b89d78 1102
b2a8658e
UD
1103 /* This assumes the iothread lock is taken here too. */
1104 qemu_mutex_lock_ramlist();
7c637366 1105 new_block->mr = mr;
432d268c 1106 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1107 if (host) {
1108 new_block->host = host;
cd19cfa2 1109 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
1110 } else {
1111 if (mem_path) {
c902760f 1112#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
1113 new_block->host = file_ram_alloc(new_block, size, mem_path);
1114 if (!new_block->host) {
6eebf958 1115 new_block->host = qemu_anon_ram_alloc(size);
8490fc78 1116 memory_try_enable_merging(new_block->host, size);
6977dfe6 1117 }
c902760f 1118#else
6977dfe6
YT
1119 fprintf(stderr, "-mem-path option unsupported\n");
1120 exit(1);
c902760f 1121#endif
6977dfe6 1122 } else {
868bb33f 1123 if (xen_enabled()) {
fce537d4 1124 xen_ram_alloc(new_block->offset, size, mr);
fdec9918
CB
1125 } else if (kvm_enabled()) {
1126 /* some s390/kvm configurations have special constraints */
6eebf958 1127 new_block->host = kvm_ram_alloc(size);
432d268c 1128 } else {
6eebf958 1129 new_block->host = qemu_anon_ram_alloc(size);
432d268c 1130 }
8490fc78 1131 memory_try_enable_merging(new_block->host, size);
6977dfe6 1132 }
c902760f 1133 }
94a6b54f
PB
1134 new_block->length = size;
1135
abb26d63
PB
1136 /* Keep the list sorted from biggest to smallest block. */
1137 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1138 if (block->length < new_block->length) {
1139 break;
1140 }
1141 }
1142 if (block) {
1143 QTAILQ_INSERT_BEFORE(block, new_block, next);
1144 } else {
1145 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1146 }
0d6d3c87 1147 ram_list.mru_block = NULL;
94a6b54f 1148
f798b07f 1149 ram_list.version++;
b2a8658e 1150 qemu_mutex_unlock_ramlist();
f798b07f 1151
7267c094 1152 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 1153 last_ram_offset() >> TARGET_PAGE_BITS);
5fda043f
IM
1154 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1155 0, size >> TARGET_PAGE_BITS);
1720aeee 1156 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
94a6b54f 1157
ddb97f1d 1158 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1159 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
ddb97f1d 1160
6f0437e8
JK
1161 if (kvm_enabled())
1162 kvm_setup_guest_memory(new_block->host, size);
1163
94a6b54f
PB
1164 return new_block->offset;
1165}
e9a1ab19 1166
c5705a77 1167ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1168{
c5705a77 1169 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1170}
1171
1f2e98b6
AW
1172void qemu_ram_free_from_ptr(ram_addr_t addr)
1173{
1174 RAMBlock *block;
1175
b2a8658e
UD
1176 /* This assumes the iothread lock is taken here too. */
1177 qemu_mutex_lock_ramlist();
a3161038 1178 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1179 if (addr == block->offset) {
a3161038 1180 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1181 ram_list.mru_block = NULL;
f798b07f 1182 ram_list.version++;
7267c094 1183 g_free(block);
b2a8658e 1184 break;
1f2e98b6
AW
1185 }
1186 }
b2a8658e 1187 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1188}
1189
c227f099 1190void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1191{
04b16653
AW
1192 RAMBlock *block;
1193
b2a8658e
UD
1194 /* This assumes the iothread lock is taken here too. */
1195 qemu_mutex_lock_ramlist();
a3161038 1196 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1197 if (addr == block->offset) {
a3161038 1198 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1199 ram_list.mru_block = NULL;
f798b07f 1200 ram_list.version++;
cd19cfa2
HY
1201 if (block->flags & RAM_PREALLOC_MASK) {
1202 ;
1203 } else if (mem_path) {
04b16653
AW
1204#if defined (__linux__) && !defined(TARGET_S390X)
1205 if (block->fd) {
1206 munmap(block->host, block->length);
1207 close(block->fd);
1208 } else {
e7a09b92 1209 qemu_anon_ram_free(block->host, block->length);
04b16653 1210 }
fd28aa13
JK
1211#else
1212 abort();
04b16653
AW
1213#endif
1214 } else {
868bb33f 1215 if (xen_enabled()) {
e41d7c69 1216 xen_invalidate_map_cache_entry(block->host);
432d268c 1217 } else {
e7a09b92 1218 qemu_anon_ram_free(block->host, block->length);
432d268c 1219 }
04b16653 1220 }
7267c094 1221 g_free(block);
b2a8658e 1222 break;
04b16653
AW
1223 }
1224 }
b2a8658e 1225 qemu_mutex_unlock_ramlist();
04b16653 1226
e9a1ab19
FB
1227}
1228
cd19cfa2
HY
1229#ifndef _WIN32
1230void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1231{
1232 RAMBlock *block;
1233 ram_addr_t offset;
1234 int flags;
1235 void *area, *vaddr;
1236
a3161038 1237 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1238 offset = addr - block->offset;
1239 if (offset < block->length) {
1240 vaddr = block->host + offset;
1241 if (block->flags & RAM_PREALLOC_MASK) {
1242 ;
1243 } else {
1244 flags = MAP_FIXED;
1245 munmap(vaddr, length);
1246 if (mem_path) {
1247#if defined(__linux__) && !defined(TARGET_S390X)
1248 if (block->fd) {
1249#ifdef MAP_POPULATE
1250 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1251 MAP_PRIVATE;
1252#else
1253 flags |= MAP_PRIVATE;
1254#endif
1255 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1256 flags, block->fd, offset);
1257 } else {
1258 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1260 flags, -1, 0);
1261 }
fd28aa13
JK
1262#else
1263 abort();
cd19cfa2
HY
1264#endif
1265 } else {
1266#if defined(TARGET_S390X) && defined(CONFIG_KVM)
1267 flags |= MAP_SHARED | MAP_ANONYMOUS;
1268 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1269 flags, -1, 0);
1270#else
1271 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1272 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1273 flags, -1, 0);
1274#endif
1275 }
1276 if (area != vaddr) {
f15fbc4b
AP
1277 fprintf(stderr, "Could not remap addr: "
1278 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1279 length, addr);
1280 exit(1);
1281 }
8490fc78 1282 memory_try_enable_merging(vaddr, length);
ddb97f1d 1283 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1284 }
1285 return;
1286 }
1287 }
1288}
1289#endif /* !_WIN32 */
1290
1b5ec234 1291static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
dc828ca1 1292{
94a6b54f
PB
1293 RAMBlock *block;
1294
b2a8658e 1295 /* The list is protected by the iothread lock here. */
0d6d3c87
PB
1296 block = ram_list.mru_block;
1297 if (block && addr - block->offset < block->length) {
1298 goto found;
1299 }
a3161038 1300 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f471a17e 1301 if (addr - block->offset < block->length) {
0d6d3c87 1302 goto found;
f471a17e 1303 }
94a6b54f 1304 }
f471a17e
AW
1305
1306 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1307 abort();
1308
0d6d3c87
PB
1309found:
1310 ram_list.mru_block = block;
1b5ec234
PB
1311 return block;
1312}
1313
1314/* Return a host pointer to ram allocated with qemu_ram_alloc.
1315 With the exception of the softmmu code in this file, this should
1316 only be used for local memory (e.g. video ram) that the device owns,
1317 and knows it isn't going to access beyond the end of the block.
1318
1319 It should not be used for general purpose DMA.
1320 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1321 */
1322void *qemu_get_ram_ptr(ram_addr_t addr)
1323{
1324 RAMBlock *block = qemu_get_ram_block(addr);
1325
0d6d3c87
PB
1326 if (xen_enabled()) {
1327 /* We need to check if the requested address is in the RAM
1328 * because we don't want to map the entire memory in QEMU.
1329 * In that case just map until the end of the page.
1330 */
1331 if (block->offset == 0) {
1332 return xen_map_cache(addr, 0, 0);
1333 } else if (block->host == NULL) {
1334 block->host =
1335 xen_map_cache(block->offset, block->length, 1);
1336 }
1337 }
1338 return block->host + (addr - block->offset);
dc828ca1
PB
1339}
1340
0d6d3c87
PB
1341/* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1342 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1343 *
1344 * ??? Is this still necessary?
b2e0a138 1345 */
8b9c99d9 1346static void *qemu_safe_ram_ptr(ram_addr_t addr)
b2e0a138
MT
1347{
1348 RAMBlock *block;
1349
b2a8658e 1350 /* The list is protected by the iothread lock here. */
a3161038 1351 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
b2e0a138 1352 if (addr - block->offset < block->length) {
868bb33f 1353 if (xen_enabled()) {
432d268c
JN
1354 /* We need to check if the requested address is in the RAM
1355 * because we don't want to map the entire memory in QEMU.
712c2b41 1356 * In that case just map until the end of the page.
432d268c
JN
1357 */
1358 if (block->offset == 0) {
e41d7c69 1359 return xen_map_cache(addr, 0, 0);
432d268c 1360 } else if (block->host == NULL) {
e41d7c69
JK
1361 block->host =
1362 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
1363 }
1364 }
b2e0a138
MT
1365 return block->host + (addr - block->offset);
1366 }
1367 }
1368
1369 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1370 abort();
1371
1372 return NULL;
1373}
1374
38bee5dc
SS
1375/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1376 * but takes a size argument */
8b9c99d9 1377static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 1378{
8ab934f9
SS
1379 if (*size == 0) {
1380 return NULL;
1381 }
868bb33f 1382 if (xen_enabled()) {
e41d7c69 1383 return xen_map_cache(addr, *size, 1);
868bb33f 1384 } else {
38bee5dc
SS
1385 RAMBlock *block;
1386
a3161038 1387 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1388 if (addr - block->offset < block->length) {
1389 if (addr - block->offset + *size > block->length)
1390 *size = block->length - addr + block->offset;
1391 return block->host + (addr - block->offset);
1392 }
1393 }
1394
1395 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1396 abort();
38bee5dc
SS
1397 }
1398}
1399
7443b437
PB
1400/* Some of the softmmu routines need to translate from a host pointer
1401 (typically a TLB entry) back to a ram offset. */
1b5ec234 1402MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1403{
94a6b54f
PB
1404 RAMBlock *block;
1405 uint8_t *host = ptr;
1406
868bb33f 1407 if (xen_enabled()) {
e41d7c69 1408 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1b5ec234 1409 return qemu_get_ram_block(*ram_addr)->mr;
712c2b41
SS
1410 }
1411
23887b79
PB
1412 block = ram_list.mru_block;
1413 if (block && block->host && host - block->host < block->length) {
1414 goto found;
1415 }
1416
a3161038 1417 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1418 /* This case append when the block is not mapped. */
1419 if (block->host == NULL) {
1420 continue;
1421 }
f471a17e 1422 if (host - block->host < block->length) {
23887b79 1423 goto found;
f471a17e 1424 }
94a6b54f 1425 }
432d268c 1426
1b5ec234 1427 return NULL;
23887b79
PB
1428
1429found:
1430 *ram_addr = block->offset + (host - block->host);
1b5ec234 1431 return block->mr;
e890261f 1432}
f471a17e 1433
a8170e5e 1434static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1435 uint64_t val, unsigned size)
9fa3e853 1436{
3a7d929e 1437 int dirty_flags;
f7c11b53 1438 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1439 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
0e0df1e2 1440 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 1441 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1442 }
0e0df1e2
AK
1443 switch (size) {
1444 case 1:
1445 stb_p(qemu_get_ram_ptr(ram_addr), val);
1446 break;
1447 case 2:
1448 stw_p(qemu_get_ram_ptr(ram_addr), val);
1449 break;
1450 case 4:
1451 stl_p(qemu_get_ram_ptr(ram_addr), val);
1452 break;
1453 default:
1454 abort();
3a7d929e 1455 }
f23db169 1456 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 1457 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
1458 /* we remove the notdirty callback only if the code has been
1459 flushed */
1460 if (dirty_flags == 0xff)
2e70f6ef 1461 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
1462}
1463
b018ddf6
PB
1464static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1465 unsigned size, bool is_write)
1466{
1467 return is_write;
1468}
1469
0e0df1e2 1470static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1471 .write = notdirty_mem_write,
b018ddf6 1472 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1473 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1474};
1475
0f459d16 1476/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1477static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1478{
9349b4f9 1479 CPUArchState *env = cpu_single_env;
06d55cc1 1480 target_ulong pc, cs_base;
0f459d16 1481 target_ulong vaddr;
a1d1bb31 1482 CPUWatchpoint *wp;
06d55cc1 1483 int cpu_flags;
0f459d16 1484
06d55cc1
AL
1485 if (env->watchpoint_hit) {
1486 /* We re-entered the check after replacing the TB. Now raise
1487 * the debug interrupt so that is will trigger after the
1488 * current instruction. */
c3affe56 1489 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1490 return;
1491 }
2e70f6ef 1492 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 1493 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
1494 if ((vaddr == (wp->vaddr & len_mask) ||
1495 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
1496 wp->flags |= BP_WATCHPOINT_HIT;
1497 if (!env->watchpoint_hit) {
1498 env->watchpoint_hit = wp;
5a316526 1499 tb_check_watchpoint(env);
6e140f28
AL
1500 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1501 env->exception_index = EXCP_DEBUG;
488d6577 1502 cpu_loop_exit(env);
6e140f28
AL
1503 } else {
1504 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1505 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 1506 cpu_resume_from_signal(env, NULL);
6e140f28 1507 }
06d55cc1 1508 }
6e140f28
AL
1509 } else {
1510 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1511 }
1512 }
1513}
1514
6658ffb8
PB
1515/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1516 so these check for a hit then pass through to the normal out-of-line
1517 phys routines. */
a8170e5e 1518static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1519 unsigned size)
6658ffb8 1520{
1ec9b909
AK
1521 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1522 switch (size) {
1523 case 1: return ldub_phys(addr);
1524 case 2: return lduw_phys(addr);
1525 case 4: return ldl_phys(addr);
1526 default: abort();
1527 }
6658ffb8
PB
1528}
1529
a8170e5e 1530static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1531 uint64_t val, unsigned size)
6658ffb8 1532{
1ec9b909
AK
1533 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1534 switch (size) {
67364150
MF
1535 case 1:
1536 stb_phys(addr, val);
1537 break;
1538 case 2:
1539 stw_phys(addr, val);
1540 break;
1541 case 4:
1542 stl_phys(addr, val);
1543 break;
1ec9b909
AK
1544 default: abort();
1545 }
6658ffb8
PB
1546}
1547
1ec9b909
AK
1548static const MemoryRegionOps watch_mem_ops = {
1549 .read = watch_mem_read,
1550 .write = watch_mem_write,
1551 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1552};
6658ffb8 1553
a8170e5e 1554static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1555 unsigned len)
db7b5426 1556{
acc9d80b
JK
1557 subpage_t *subpage = opaque;
1558 uint8_t buf[4];
791af8c8 1559
db7b5426 1560#if defined(DEBUG_SUBPAGE)
acc9d80b
JK
1561 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1562 subpage, len, addr);
db7b5426 1563#endif
acc9d80b
JK
1564 address_space_read(subpage->as, addr + subpage->base, buf, len);
1565 switch (len) {
1566 case 1:
1567 return ldub_p(buf);
1568 case 2:
1569 return lduw_p(buf);
1570 case 4:
1571 return ldl_p(buf);
1572 default:
1573 abort();
1574 }
db7b5426
BS
1575}
1576
a8170e5e 1577static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1578 uint64_t value, unsigned len)
db7b5426 1579{
acc9d80b
JK
1580 subpage_t *subpage = opaque;
1581 uint8_t buf[4];
1582
db7b5426 1583#if defined(DEBUG_SUBPAGE)
70c68e44 1584 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
acc9d80b
JK
1585 " value %"PRIx64"\n",
1586 __func__, subpage, len, addr, value);
db7b5426 1587#endif
acc9d80b
JK
1588 switch (len) {
1589 case 1:
1590 stb_p(buf, value);
1591 break;
1592 case 2:
1593 stw_p(buf, value);
1594 break;
1595 case 4:
1596 stl_p(buf, value);
1597 break;
1598 default:
1599 abort();
1600 }
1601 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1602}
1603
c353e4cc
PB
1604static bool subpage_accepts(void *opaque, hwaddr addr,
1605 unsigned size, bool is_write)
1606{
acc9d80b 1607 subpage_t *subpage = opaque;
c353e4cc 1608#if defined(DEBUG_SUBPAGE)
acc9d80b
JK
1609 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1610 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1611#endif
1612
acc9d80b
JK
1613 return address_space_access_valid(subpage->as, addr + subpage->base,
1614 size, is_write);
c353e4cc
PB
1615}
1616
70c68e44
AK
1617static const MemoryRegionOps subpage_ops = {
1618 .read = subpage_read,
1619 .write = subpage_write,
c353e4cc 1620 .valid.accepts = subpage_accepts,
70c68e44 1621 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1622};
1623
c227f099 1624static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1625 uint16_t section)
db7b5426
BS
1626{
1627 int idx, eidx;
1628
1629 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1630 return -1;
1631 idx = SUBPAGE_IDX(start);
1632 eidx = SUBPAGE_IDX(end);
1633#if defined(DEBUG_SUBPAGE)
0bf9e31a 1634 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
1635 mmio, start, end, idx, eidx, memory);
1636#endif
db7b5426 1637 for (; idx <= eidx; idx++) {
5312bd8b 1638 mmio->sub_section[idx] = section;
db7b5426
BS
1639 }
1640
1641 return 0;
1642}
1643
acc9d80b 1644static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1645{
c227f099 1646 subpage_t *mmio;
db7b5426 1647
7267c094 1648 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1649
acc9d80b 1650 mmio->as = as;
1eec614b 1651 mmio->base = base;
2c9b15ca 1652 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1653 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1654 mmio->iomem.subpage = true;
db7b5426 1655#if defined(DEBUG_SUBPAGE)
1eec614b
AL
1656 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1657 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 1658#endif
0f0cb164 1659 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
db7b5426
BS
1660
1661 return mmio;
1662}
1663
5312bd8b
AK
1664static uint16_t dummy_section(MemoryRegion *mr)
1665{
1666 MemoryRegionSection section = {
1667 .mr = mr,
1668 .offset_within_address_space = 0,
1669 .offset_within_region = 0,
052e87b0 1670 .size = int128_2_64(),
5312bd8b
AK
1671 };
1672
1673 return phys_section_add(&section);
1674}
1675
a8170e5e 1676MemoryRegion *iotlb_to_region(hwaddr index)
aa102231 1677{
37ec01d4 1678 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1679}
1680
e9179ce1
AK
1681static void io_mem_init(void)
1682{
2c9b15ca
PB
1683 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1684 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1685 "unassigned", UINT64_MAX);
2c9b15ca 1686 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1687 "notdirty", UINT64_MAX);
2c9b15ca 1688 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1689 "watch", UINT64_MAX);
e9179ce1
AK
1690}
1691
ac1970fb
AK
1692static void mem_begin(MemoryListener *listener)
1693{
1694 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1695
ac1970fb
AK
1696 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1697}
1698
50c1e149
AK
1699static void core_begin(MemoryListener *listener)
1700{
5312bd8b
AK
1701 phys_sections_clear();
1702 phys_section_unassigned = dummy_section(&io_mem_unassigned);
aa102231
AK
1703 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1704 phys_section_rom = dummy_section(&io_mem_rom);
1705 phys_section_watch = dummy_section(&io_mem_watch);
50c1e149
AK
1706}
1707
1d71148e 1708static void tcg_commit(MemoryListener *listener)
50c1e149 1709{
9349b4f9 1710 CPUArchState *env;
117712c3
AK
1711
1712 /* since each CPU stores ram addresses in its TLB cache, we must
1713 reset the modified entries */
1714 /* XXX: slow ! */
1715 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1716 tlb_flush(env, 1);
1717 }
50c1e149
AK
1718}
1719
93632747
AK
1720static void core_log_global_start(MemoryListener *listener)
1721{
1722 cpu_physical_memory_set_dirty_tracking(1);
1723}
1724
1725static void core_log_global_stop(MemoryListener *listener)
1726{
1727 cpu_physical_memory_set_dirty_tracking(0);
1728}
1729
93632747 1730static MemoryListener core_memory_listener = {
50c1e149 1731 .begin = core_begin,
93632747
AK
1732 .log_global_start = core_log_global_start,
1733 .log_global_stop = core_log_global_stop,
ac1970fb 1734 .priority = 1,
93632747
AK
1735};
1736
1d71148e
AK
1737static MemoryListener tcg_memory_listener = {
1738 .commit = tcg_commit,
1739};
1740
ac1970fb
AK
1741void address_space_init_dispatch(AddressSpace *as)
1742{
1743 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1744
1745 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1746 d->listener = (MemoryListener) {
1747 .begin = mem_begin,
1748 .region_add = mem_add,
1749 .region_nop = mem_add,
1750 .priority = 0,
1751 };
acc9d80b 1752 d->as = as;
ac1970fb
AK
1753 as->dispatch = d;
1754 memory_listener_register(&d->listener, as);
1755}
1756
83f3c251
AK
1757void address_space_destroy_dispatch(AddressSpace *as)
1758{
1759 AddressSpaceDispatch *d = as->dispatch;
1760
1761 memory_listener_unregister(&d->listener);
83f3c251
AK
1762 g_free(d);
1763 as->dispatch = NULL;
1764}
1765
62152b8a
AK
1766static void memory_map_init(void)
1767{
7267c094 1768 system_memory = g_malloc(sizeof(*system_memory));
2c9b15ca 1769 memory_region_init(system_memory, NULL, "system", INT64_MAX);
7dca8043 1770 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1771
7267c094 1772 system_io = g_malloc(sizeof(*system_io));
2c9b15ca 1773 memory_region_init(system_io, NULL, "io", 65536);
7dca8043 1774 address_space_init(&address_space_io, system_io, "I/O");
93632747 1775
f6790af6 1776 memory_listener_register(&core_memory_listener, &address_space_memory);
f6790af6 1777 memory_listener_register(&tcg_memory_listener, &address_space_memory);
62152b8a
AK
1778}
1779
1780MemoryRegion *get_system_memory(void)
1781{
1782 return system_memory;
1783}
1784
309cb471
AK
1785MemoryRegion *get_system_io(void)
1786{
1787 return system_io;
1788}
1789
e2eef170
PB
1790#endif /* !defined(CONFIG_USER_ONLY) */
1791
13eb76e0
FB
1792/* physical memory access (slow version, mainly for debug) */
1793#if defined(CONFIG_USER_ONLY)
9349b4f9 1794int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
a68fe89c 1795 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1796{
1797 int l, flags;
1798 target_ulong page;
53a5960a 1799 void * p;
13eb76e0
FB
1800
1801 while (len > 0) {
1802 page = addr & TARGET_PAGE_MASK;
1803 l = (page + TARGET_PAGE_SIZE) - addr;
1804 if (l > len)
1805 l = len;
1806 flags = page_get_flags(page);
1807 if (!(flags & PAGE_VALID))
a68fe89c 1808 return -1;
13eb76e0
FB
1809 if (is_write) {
1810 if (!(flags & PAGE_WRITE))
a68fe89c 1811 return -1;
579a97f7 1812 /* XXX: this code should not depend on lock_user */
72fb7daa 1813 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1814 return -1;
72fb7daa
AJ
1815 memcpy(p, buf, l);
1816 unlock_user(p, addr, l);
13eb76e0
FB
1817 } else {
1818 if (!(flags & PAGE_READ))
a68fe89c 1819 return -1;
579a97f7 1820 /* XXX: this code should not depend on lock_user */
72fb7daa 1821 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1822 return -1;
72fb7daa 1823 memcpy(buf, p, l);
5b257578 1824 unlock_user(p, addr, 0);
13eb76e0
FB
1825 }
1826 len -= l;
1827 buf += l;
1828 addr += l;
1829 }
a68fe89c 1830 return 0;
13eb76e0 1831}
8df1cd07 1832
13eb76e0 1833#else
51d7a9eb 1834
a8170e5e
AK
1835static void invalidate_and_set_dirty(hwaddr addr,
1836 hwaddr length)
51d7a9eb
AP
1837{
1838 if (!cpu_physical_memory_is_dirty(addr)) {
1839 /* invalidate code */
1840 tb_invalidate_phys_page_range(addr, addr + length, 0);
1841 /* set dirty bit */
1842 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1843 }
e226939d 1844 xen_modified_memory(addr, length);
51d7a9eb
AP
1845}
1846
2bbfa05d
PB
1847static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1848{
1849 if (memory_region_is_ram(mr)) {
1850 return !(is_write && mr->readonly);
1851 }
1852 if (memory_region_is_romd(mr)) {
1853 return !is_write;
1854 }
1855
1856 return false;
1857}
1858
f52cc467 1859static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
82f2563f 1860{
f52cc467 1861 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
82f2563f
PB
1862 return 4;
1863 }
f52cc467 1864 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
82f2563f
PB
1865 return 2;
1866 }
1867 return 1;
1868}
1869
fd8aaa76 1870bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 1871 int len, bool is_write)
13eb76e0 1872{
149f54b5 1873 hwaddr l;
13eb76e0 1874 uint8_t *ptr;
791af8c8 1875 uint64_t val;
149f54b5 1876 hwaddr addr1;
5c8a00ce 1877 MemoryRegion *mr;
fd8aaa76 1878 bool error = false;
3b46e624 1879
13eb76e0 1880 while (len > 0) {
149f54b5 1881 l = len;
5c8a00ce 1882 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 1883
13eb76e0 1884 if (is_write) {
5c8a00ce
PB
1885 if (!memory_access_is_direct(mr, is_write)) {
1886 l = memory_access_size(mr, l, addr1);
6a00d601
FB
1887 /* XXX: could force cpu_single_env to NULL to avoid
1888 potential bugs */
82f2563f 1889 if (l == 4) {
1c213d19 1890 /* 32 bit write access */
c27004ec 1891 val = ldl_p(buf);
5c8a00ce 1892 error |= io_mem_write(mr, addr1, val, 4);
82f2563f 1893 } else if (l == 2) {
1c213d19 1894 /* 16 bit write access */
c27004ec 1895 val = lduw_p(buf);
5c8a00ce 1896 error |= io_mem_write(mr, addr1, val, 2);
13eb76e0 1897 } else {
1c213d19 1898 /* 8 bit write access */
c27004ec 1899 val = ldub_p(buf);
5c8a00ce 1900 error |= io_mem_write(mr, addr1, val, 1);
13eb76e0 1901 }
2bbfa05d 1902 } else {
5c8a00ce 1903 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 1904 /* RAM case */
5579c7f3 1905 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 1906 memcpy(ptr, buf, l);
51d7a9eb 1907 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
1908 }
1909 } else {
5c8a00ce 1910 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 1911 /* I/O case */
5c8a00ce 1912 l = memory_access_size(mr, l, addr1);
82f2563f 1913 if (l == 4) {
13eb76e0 1914 /* 32 bit read access */
5c8a00ce 1915 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 1916 stl_p(buf, val);
82f2563f 1917 } else if (l == 2) {
13eb76e0 1918 /* 16 bit read access */
5c8a00ce 1919 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 1920 stw_p(buf, val);
13eb76e0 1921 } else {
1c213d19 1922 /* 8 bit read access */
5c8a00ce 1923 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 1924 stb_p(buf, val);
13eb76e0
FB
1925 }
1926 } else {
1927 /* RAM case */
5c8a00ce 1928 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 1929 memcpy(buf, ptr, l);
13eb76e0
FB
1930 }
1931 }
1932 len -= l;
1933 buf += l;
1934 addr += l;
1935 }
fd8aaa76
PB
1936
1937 return error;
13eb76e0 1938}
8df1cd07 1939
fd8aaa76 1940bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
1941 const uint8_t *buf, int len)
1942{
fd8aaa76 1943 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
1944}
1945
fd8aaa76 1946bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 1947{
fd8aaa76 1948 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
1949}
1950
1951
a8170e5e 1952void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
1953 int len, int is_write)
1954{
fd8aaa76 1955 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
1956}
1957
d0ecd2aa 1958/* used for ROM loading : can write in RAM and ROM */
a8170e5e 1959void cpu_physical_memory_write_rom(hwaddr addr,
d0ecd2aa
FB
1960 const uint8_t *buf, int len)
1961{
149f54b5 1962 hwaddr l;
d0ecd2aa 1963 uint8_t *ptr;
149f54b5 1964 hwaddr addr1;
5c8a00ce 1965 MemoryRegion *mr;
3b46e624 1966
d0ecd2aa 1967 while (len > 0) {
149f54b5 1968 l = len;
5c8a00ce
PB
1969 mr = address_space_translate(&address_space_memory,
1970 addr, &addr1, &l, true);
3b46e624 1971
5c8a00ce
PB
1972 if (!(memory_region_is_ram(mr) ||
1973 memory_region_is_romd(mr))) {
d0ecd2aa
FB
1974 /* do nothing */
1975 } else {
5c8a00ce 1976 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 1977 /* ROM/RAM case */
5579c7f3 1978 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 1979 memcpy(ptr, buf, l);
51d7a9eb 1980 invalidate_and_set_dirty(addr1, l);
d0ecd2aa
FB
1981 }
1982 len -= l;
1983 buf += l;
1984 addr += l;
1985 }
1986}
1987
6d16c2f8 1988typedef struct {
d3e71559 1989 MemoryRegion *mr;
6d16c2f8 1990 void *buffer;
a8170e5e
AK
1991 hwaddr addr;
1992 hwaddr len;
6d16c2f8
AL
1993} BounceBuffer;
1994
1995static BounceBuffer bounce;
1996
ba223c29
AL
1997typedef struct MapClient {
1998 void *opaque;
1999 void (*callback)(void *opaque);
72cf2d4f 2000 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2001} MapClient;
2002
72cf2d4f
BS
2003static QLIST_HEAD(map_client_list, MapClient) map_client_list
2004 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
2005
2006void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2007{
7267c094 2008 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2009
2010 client->opaque = opaque;
2011 client->callback = callback;
72cf2d4f 2012 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2013 return client;
2014}
2015
8b9c99d9 2016static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2017{
2018 MapClient *client = (MapClient *)_client;
2019
72cf2d4f 2020 QLIST_REMOVE(client, link);
7267c094 2021 g_free(client);
ba223c29
AL
2022}
2023
2024static void cpu_notify_map_clients(void)
2025{
2026 MapClient *client;
2027
72cf2d4f
BS
2028 while (!QLIST_EMPTY(&map_client_list)) {
2029 client = QLIST_FIRST(&map_client_list);
ba223c29 2030 client->callback(client->opaque);
34d5e948 2031 cpu_unregister_map_client(client);
ba223c29
AL
2032 }
2033}
2034
51644ab7
PB
2035bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2036{
5c8a00ce 2037 MemoryRegion *mr;
51644ab7
PB
2038 hwaddr l, xlat;
2039
2040 while (len > 0) {
2041 l = len;
5c8a00ce
PB
2042 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2043 if (!memory_access_is_direct(mr, is_write)) {
2044 l = memory_access_size(mr, l, addr);
2045 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2046 return false;
2047 }
2048 }
2049
2050 len -= l;
2051 addr += l;
2052 }
2053 return true;
2054}
2055
6d16c2f8
AL
2056/* Map a physical memory region into a host virtual address.
2057 * May map a subset of the requested range, given by and returned in *plen.
2058 * May return NULL if resources needed to perform the mapping are exhausted.
2059 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2060 * Use cpu_register_map_client() to know when retrying the map operation is
2061 * likely to succeed.
6d16c2f8 2062 */
ac1970fb 2063void *address_space_map(AddressSpace *as,
a8170e5e
AK
2064 hwaddr addr,
2065 hwaddr *plen,
ac1970fb 2066 bool is_write)
6d16c2f8 2067{
a8170e5e 2068 hwaddr len = *plen;
e3127ae0
PB
2069 hwaddr done = 0;
2070 hwaddr l, xlat, base;
2071 MemoryRegion *mr, *this_mr;
2072 ram_addr_t raddr;
6d16c2f8 2073
e3127ae0
PB
2074 if (len == 0) {
2075 return NULL;
2076 }
38bee5dc 2077
e3127ae0
PB
2078 l = len;
2079 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2080 if (!memory_access_is_direct(mr, is_write)) {
2081 if (bounce.buffer) {
2082 return NULL;
6d16c2f8 2083 }
e3127ae0
PB
2084 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2085 bounce.addr = addr;
2086 bounce.len = l;
d3e71559
PB
2087
2088 memory_region_ref(mr);
2089 bounce.mr = mr;
e3127ae0
PB
2090 if (!is_write) {
2091 address_space_read(as, addr, bounce.buffer, l);
8ab934f9 2092 }
6d16c2f8 2093
e3127ae0
PB
2094 *plen = l;
2095 return bounce.buffer;
2096 }
2097
2098 base = xlat;
2099 raddr = memory_region_get_ram_addr(mr);
2100
2101 for (;;) {
6d16c2f8
AL
2102 len -= l;
2103 addr += l;
e3127ae0
PB
2104 done += l;
2105 if (len == 0) {
2106 break;
2107 }
2108
2109 l = len;
2110 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2111 if (this_mr != mr || xlat != base + done) {
2112 break;
2113 }
6d16c2f8 2114 }
e3127ae0 2115
d3e71559 2116 memory_region_ref(mr);
e3127ae0
PB
2117 *plen = done;
2118 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2119}
2120
ac1970fb 2121/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2122 * Will also mark the memory as dirty if is_write == 1. access_len gives
2123 * the amount of memory that was actually read or written by the caller.
2124 */
a8170e5e
AK
2125void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2126 int is_write, hwaddr access_len)
6d16c2f8
AL
2127{
2128 if (buffer != bounce.buffer) {
d3e71559
PB
2129 MemoryRegion *mr;
2130 ram_addr_t addr1;
2131
2132 mr = qemu_ram_addr_from_host(buffer, &addr1);
2133 assert(mr != NULL);
6d16c2f8 2134 if (is_write) {
6d16c2f8
AL
2135 while (access_len) {
2136 unsigned l;
2137 l = TARGET_PAGE_SIZE;
2138 if (l > access_len)
2139 l = access_len;
51d7a9eb 2140 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2141 addr1 += l;
2142 access_len -= l;
2143 }
2144 }
868bb33f 2145 if (xen_enabled()) {
e41d7c69 2146 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2147 }
d3e71559 2148 memory_region_unref(mr);
6d16c2f8
AL
2149 return;
2150 }
2151 if (is_write) {
ac1970fb 2152 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2153 }
f8a83245 2154 qemu_vfree(bounce.buffer);
6d16c2f8 2155 bounce.buffer = NULL;
d3e71559 2156 memory_region_unref(bounce.mr);
ba223c29 2157 cpu_notify_map_clients();
6d16c2f8 2158}
d0ecd2aa 2159
a8170e5e
AK
2160void *cpu_physical_memory_map(hwaddr addr,
2161 hwaddr *plen,
ac1970fb
AK
2162 int is_write)
2163{
2164 return address_space_map(&address_space_memory, addr, plen, is_write);
2165}
2166
a8170e5e
AK
2167void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2168 int is_write, hwaddr access_len)
ac1970fb
AK
2169{
2170 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2171}
2172
8df1cd07 2173/* warning: addr must be aligned */
a8170e5e 2174static inline uint32_t ldl_phys_internal(hwaddr addr,
1e78bcc1 2175 enum device_endian endian)
8df1cd07 2176{
8df1cd07 2177 uint8_t *ptr;
791af8c8 2178 uint64_t val;
5c8a00ce 2179 MemoryRegion *mr;
149f54b5
PB
2180 hwaddr l = 4;
2181 hwaddr addr1;
8df1cd07 2182
5c8a00ce
PB
2183 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2184 false);
2185 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2186 /* I/O case */
5c8a00ce 2187 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2188#if defined(TARGET_WORDS_BIGENDIAN)
2189 if (endian == DEVICE_LITTLE_ENDIAN) {
2190 val = bswap32(val);
2191 }
2192#else
2193 if (endian == DEVICE_BIG_ENDIAN) {
2194 val = bswap32(val);
2195 }
2196#endif
8df1cd07
FB
2197 } else {
2198 /* RAM case */
5c8a00ce 2199 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2200 & TARGET_PAGE_MASK)
149f54b5 2201 + addr1);
1e78bcc1
AG
2202 switch (endian) {
2203 case DEVICE_LITTLE_ENDIAN:
2204 val = ldl_le_p(ptr);
2205 break;
2206 case DEVICE_BIG_ENDIAN:
2207 val = ldl_be_p(ptr);
2208 break;
2209 default:
2210 val = ldl_p(ptr);
2211 break;
2212 }
8df1cd07
FB
2213 }
2214 return val;
2215}
2216
a8170e5e 2217uint32_t ldl_phys(hwaddr addr)
1e78bcc1
AG
2218{
2219 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2220}
2221
a8170e5e 2222uint32_t ldl_le_phys(hwaddr addr)
1e78bcc1
AG
2223{
2224 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2225}
2226
a8170e5e 2227uint32_t ldl_be_phys(hwaddr addr)
1e78bcc1
AG
2228{
2229 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2230}
2231
84b7b8e7 2232/* warning: addr must be aligned */
a8170e5e 2233static inline uint64_t ldq_phys_internal(hwaddr addr,
1e78bcc1 2234 enum device_endian endian)
84b7b8e7 2235{
84b7b8e7
FB
2236 uint8_t *ptr;
2237 uint64_t val;
5c8a00ce 2238 MemoryRegion *mr;
149f54b5
PB
2239 hwaddr l = 8;
2240 hwaddr addr1;
84b7b8e7 2241
5c8a00ce
PB
2242 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2243 false);
2244 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2245 /* I/O case */
5c8a00ce 2246 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2247#if defined(TARGET_WORDS_BIGENDIAN)
2248 if (endian == DEVICE_LITTLE_ENDIAN) {
2249 val = bswap64(val);
2250 }
2251#else
2252 if (endian == DEVICE_BIG_ENDIAN) {
2253 val = bswap64(val);
2254 }
84b7b8e7
FB
2255#endif
2256 } else {
2257 /* RAM case */
5c8a00ce 2258 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2259 & TARGET_PAGE_MASK)
149f54b5 2260 + addr1);
1e78bcc1
AG
2261 switch (endian) {
2262 case DEVICE_LITTLE_ENDIAN:
2263 val = ldq_le_p(ptr);
2264 break;
2265 case DEVICE_BIG_ENDIAN:
2266 val = ldq_be_p(ptr);
2267 break;
2268 default:
2269 val = ldq_p(ptr);
2270 break;
2271 }
84b7b8e7
FB
2272 }
2273 return val;
2274}
2275
a8170e5e 2276uint64_t ldq_phys(hwaddr addr)
1e78bcc1
AG
2277{
2278 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2279}
2280
a8170e5e 2281uint64_t ldq_le_phys(hwaddr addr)
1e78bcc1
AG
2282{
2283 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2284}
2285
a8170e5e 2286uint64_t ldq_be_phys(hwaddr addr)
1e78bcc1
AG
2287{
2288 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2289}
2290
aab33094 2291/* XXX: optimize */
a8170e5e 2292uint32_t ldub_phys(hwaddr addr)
aab33094
FB
2293{
2294 uint8_t val;
2295 cpu_physical_memory_read(addr, &val, 1);
2296 return val;
2297}
2298
733f0b02 2299/* warning: addr must be aligned */
a8170e5e 2300static inline uint32_t lduw_phys_internal(hwaddr addr,
1e78bcc1 2301 enum device_endian endian)
aab33094 2302{
733f0b02
MT
2303 uint8_t *ptr;
2304 uint64_t val;
5c8a00ce 2305 MemoryRegion *mr;
149f54b5
PB
2306 hwaddr l = 2;
2307 hwaddr addr1;
733f0b02 2308
5c8a00ce
PB
2309 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2310 false);
2311 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2312 /* I/O case */
5c8a00ce 2313 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2314#if defined(TARGET_WORDS_BIGENDIAN)
2315 if (endian == DEVICE_LITTLE_ENDIAN) {
2316 val = bswap16(val);
2317 }
2318#else
2319 if (endian == DEVICE_BIG_ENDIAN) {
2320 val = bswap16(val);
2321 }
2322#endif
733f0b02
MT
2323 } else {
2324 /* RAM case */
5c8a00ce 2325 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2326 & TARGET_PAGE_MASK)
149f54b5 2327 + addr1);
1e78bcc1
AG
2328 switch (endian) {
2329 case DEVICE_LITTLE_ENDIAN:
2330 val = lduw_le_p(ptr);
2331 break;
2332 case DEVICE_BIG_ENDIAN:
2333 val = lduw_be_p(ptr);
2334 break;
2335 default:
2336 val = lduw_p(ptr);
2337 break;
2338 }
733f0b02
MT
2339 }
2340 return val;
aab33094
FB
2341}
2342
a8170e5e 2343uint32_t lduw_phys(hwaddr addr)
1e78bcc1
AG
2344{
2345 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2346}
2347
a8170e5e 2348uint32_t lduw_le_phys(hwaddr addr)
1e78bcc1
AG
2349{
2350 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2351}
2352
a8170e5e 2353uint32_t lduw_be_phys(hwaddr addr)
1e78bcc1
AG
2354{
2355 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2356}
2357
8df1cd07
FB
2358/* warning: addr must be aligned. The ram page is not masked as dirty
2359 and the code inside is not invalidated. It is useful if the dirty
2360 bits are used to track modified PTEs */
a8170e5e 2361void stl_phys_notdirty(hwaddr addr, uint32_t val)
8df1cd07 2362{
8df1cd07 2363 uint8_t *ptr;
5c8a00ce 2364 MemoryRegion *mr;
149f54b5
PB
2365 hwaddr l = 4;
2366 hwaddr addr1;
8df1cd07 2367
5c8a00ce
PB
2368 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2369 true);
2370 if (l < 4 || !memory_access_is_direct(mr, true)) {
2371 io_mem_write(mr, addr1, val, 4);
8df1cd07 2372 } else {
5c8a00ce 2373 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2374 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2375 stl_p(ptr, val);
74576198
AL
2376
2377 if (unlikely(in_migration)) {
2378 if (!cpu_physical_memory_is_dirty(addr1)) {
2379 /* invalidate code */
2380 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2381 /* set dirty bit */
f7c11b53
YT
2382 cpu_physical_memory_set_dirty_flags(
2383 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
2384 }
2385 }
8df1cd07
FB
2386 }
2387}
2388
2389/* warning: addr must be aligned */
a8170e5e 2390static inline void stl_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2391 enum device_endian endian)
8df1cd07 2392{
8df1cd07 2393 uint8_t *ptr;
5c8a00ce 2394 MemoryRegion *mr;
149f54b5
PB
2395 hwaddr l = 4;
2396 hwaddr addr1;
8df1cd07 2397
5c8a00ce
PB
2398 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2399 true);
2400 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2401#if defined(TARGET_WORDS_BIGENDIAN)
2402 if (endian == DEVICE_LITTLE_ENDIAN) {
2403 val = bswap32(val);
2404 }
2405#else
2406 if (endian == DEVICE_BIG_ENDIAN) {
2407 val = bswap32(val);
2408 }
2409#endif
5c8a00ce 2410 io_mem_write(mr, addr1, val, 4);
8df1cd07 2411 } else {
8df1cd07 2412 /* RAM case */
5c8a00ce 2413 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2414 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2415 switch (endian) {
2416 case DEVICE_LITTLE_ENDIAN:
2417 stl_le_p(ptr, val);
2418 break;
2419 case DEVICE_BIG_ENDIAN:
2420 stl_be_p(ptr, val);
2421 break;
2422 default:
2423 stl_p(ptr, val);
2424 break;
2425 }
51d7a9eb 2426 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2427 }
2428}
2429
a8170e5e 2430void stl_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2431{
2432 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2433}
2434
a8170e5e 2435void stl_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2436{
2437 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2438}
2439
a8170e5e 2440void stl_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2441{
2442 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2443}
2444
aab33094 2445/* XXX: optimize */
a8170e5e 2446void stb_phys(hwaddr addr, uint32_t val)
aab33094
FB
2447{
2448 uint8_t v = val;
2449 cpu_physical_memory_write(addr, &v, 1);
2450}
2451
733f0b02 2452/* warning: addr must be aligned */
a8170e5e 2453static inline void stw_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2454 enum device_endian endian)
aab33094 2455{
733f0b02 2456 uint8_t *ptr;
5c8a00ce 2457 MemoryRegion *mr;
149f54b5
PB
2458 hwaddr l = 2;
2459 hwaddr addr1;
733f0b02 2460
5c8a00ce
PB
2461 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2462 true);
2463 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2464#if defined(TARGET_WORDS_BIGENDIAN)
2465 if (endian == DEVICE_LITTLE_ENDIAN) {
2466 val = bswap16(val);
2467 }
2468#else
2469 if (endian == DEVICE_BIG_ENDIAN) {
2470 val = bswap16(val);
2471 }
2472#endif
5c8a00ce 2473 io_mem_write(mr, addr1, val, 2);
733f0b02 2474 } else {
733f0b02 2475 /* RAM case */
5c8a00ce 2476 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2477 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2478 switch (endian) {
2479 case DEVICE_LITTLE_ENDIAN:
2480 stw_le_p(ptr, val);
2481 break;
2482 case DEVICE_BIG_ENDIAN:
2483 stw_be_p(ptr, val);
2484 break;
2485 default:
2486 stw_p(ptr, val);
2487 break;
2488 }
51d7a9eb 2489 invalidate_and_set_dirty(addr1, 2);
733f0b02 2490 }
aab33094
FB
2491}
2492
a8170e5e 2493void stw_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2494{
2495 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2496}
2497
a8170e5e 2498void stw_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2499{
2500 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2501}
2502
a8170e5e 2503void stw_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2504{
2505 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2506}
2507
aab33094 2508/* XXX: optimize */
a8170e5e 2509void stq_phys(hwaddr addr, uint64_t val)
aab33094
FB
2510{
2511 val = tswap64(val);
71d2b725 2512 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
2513}
2514
a8170e5e 2515void stq_le_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2516{
2517 val = cpu_to_le64(val);
2518 cpu_physical_memory_write(addr, &val, 8);
2519}
2520
a8170e5e 2521void stq_be_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2522{
2523 val = cpu_to_be64(val);
2524 cpu_physical_memory_write(addr, &val, 8);
2525}
2526
5e2972fd 2527/* virtual memory access for debug (includes writing to ROM) */
9349b4f9 2528int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
b448f2f3 2529 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2530{
2531 int l;
a8170e5e 2532 hwaddr phys_addr;
9b3c35e0 2533 target_ulong page;
13eb76e0
FB
2534
2535 while (len > 0) {
2536 page = addr & TARGET_PAGE_MASK;
2537 phys_addr = cpu_get_phys_page_debug(env, page);
2538 /* if no physical page mapped, return an error */
2539 if (phys_addr == -1)
2540 return -1;
2541 l = (page + TARGET_PAGE_SIZE) - addr;
2542 if (l > len)
2543 l = len;
5e2972fd 2544 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
2545 if (is_write)
2546 cpu_physical_memory_write_rom(phys_addr, buf, l);
2547 else
5e2972fd 2548 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
2549 len -= l;
2550 buf += l;
2551 addr += l;
2552 }
2553 return 0;
2554}
a68fe89c 2555#endif
13eb76e0 2556
8e4a424b
BS
2557#if !defined(CONFIG_USER_ONLY)
2558
2559/*
2560 * A helper function for the _utterly broken_ virtio device model to find out if
2561 * it's running on a big endian machine. Don't do this at home kids!
2562 */
2563bool virtio_is_big_endian(void);
2564bool virtio_is_big_endian(void)
2565{
2566#if defined(TARGET_WORDS_BIGENDIAN)
2567 return true;
2568#else
2569 return false;
2570#endif
2571}
2572
2573#endif
2574
76f35538 2575#ifndef CONFIG_USER_ONLY
a8170e5e 2576bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2577{
5c8a00ce 2578 MemoryRegion*mr;
149f54b5 2579 hwaddr l = 1;
76f35538 2580
5c8a00ce
PB
2581 mr = address_space_translate(&address_space_memory,
2582 phys_addr, &phys_addr, &l, false);
76f35538 2583
5c8a00ce
PB
2584 return !(memory_region_is_ram(mr) ||
2585 memory_region_is_romd(mr));
76f35538 2586}
bd2fa51f
MH
2587
2588void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2589{
2590 RAMBlock *block;
2591
2592 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2593 func(block->host, block->offset, block->length, opaque);
2594 }
2595}
ec3f8c99 2596#endif