]> git.proxmox.com Git - qemu.git/blame - exec.c
tcg-ia64: Fix warning in qemu_ld.
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181
FB
28#include "cpu.h"
29#include "exec-all.h"
b67d9a52 30#include "tcg.h"
b3c7724c 31#include "hw/hw.h"
cc9e98cb 32#include "hw/qdev.h"
74576198 33#include "osdep.h"
7ba1e619 34#include "kvm.h"
29e922b6 35#include "qemu-timer.h"
53a5960a
PB
36#if defined(CONFIG_USER_ONLY)
37#include <qemu.h>
fd052bf6 38#include <signal.h>
f01576f1
JL
39#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40#include <sys/param.h>
41#if __FreeBSD_version >= 700104
42#define HAVE_KINFO_GETVMMAP
43#define sigqueue sigqueue_freebsd /* avoid redefinition */
44#include <sys/time.h>
45#include <sys/proc.h>
46#include <machine/profile.h>
47#define _KERNEL
48#include <sys/user.h>
49#undef _KERNEL
50#undef sigqueue
51#include <libutil.h>
52#endif
53#endif
53a5960a 54#endif
54936004 55
fd6ce8f6 56//#define DEBUG_TB_INVALIDATE
66e85a21 57//#define DEBUG_FLUSH
9fa3e853 58//#define DEBUG_TLB
67d3b957 59//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
60
61/* make various TB consistency checks */
5fafdf24
TS
62//#define DEBUG_TB_CHECK
63//#define DEBUG_TLB_CHECK
fd6ce8f6 64
1196be37 65//#define DEBUG_IOPORT
db7b5426 66//#define DEBUG_SUBPAGE
1196be37 67
99773bd4
PB
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
9fa3e853
FB
73#define SMC_BITMAP_USE_THRESHOLD 10
74
bdaf78e0 75static TranslationBlock *tbs;
24ab68ac 76static int code_gen_max_blocks;
9fa3e853 77TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 78static int nb_tbs;
eb51d102 79/* any access to the tbs or the page table must use this lock */
c227f099 80spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 81
141ac468
BS
82#if defined(__arm__) || defined(__sparc_v9__)
83/* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
85 section close to code segment. */
86#define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
f8e2af11
SW
89#elif defined(_WIN32)
90/* Maximum alignment for Win32 is 16. */
91#define code_gen_section \
92 __attribute__((aligned (16)))
d03d860b
BS
93#else
94#define code_gen_section \
95 __attribute__((aligned (32)))
96#endif
97
98uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
99static uint8_t *code_gen_buffer;
100static unsigned long code_gen_buffer_size;
26a5f13b 101/* threshold to flush the translated code buffer */
bdaf78e0 102static unsigned long code_gen_buffer_max_size;
24ab68ac 103static uint8_t *code_gen_ptr;
fd6ce8f6 104
e2eef170 105#if !defined(CONFIG_USER_ONLY)
9fa3e853 106int phys_ram_fd;
74576198 107static int in_migration;
94a6b54f 108
f471a17e 109RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
e2eef170 110#endif
9fa3e853 111
6a00d601
FB
112CPUState *first_cpu;
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
5fafdf24 115CPUState *cpu_single_env;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef
PB
118 2 = Adaptive rate instruction counting. */
119int use_icount = 0;
120/* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122int64_t qemu_icount;
6a00d601 123
54936004 124typedef struct PageDesc {
92e873b9 125 /* list of TBs intersecting this ram page */
fd6ce8f6 126 TranslationBlock *first_tb;
9fa3e853
FB
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131#if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133#endif
54936004
FB
134} PageDesc;
135
41c1b1c9 136/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
137 while in user mode we want it to be based on virtual addresses. */
138#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
139#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141#else
5cd2c5b6 142# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 143#endif
bedb69ea 144#else
5cd2c5b6 145# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 146#endif
54936004 147
5cd2c5b6
RH
148/* Size of the L2 (and L3, etc) page tables. */
149#define L2_BITS 10
54936004
FB
150#define L2_SIZE (1 << L2_BITS)
151
5cd2c5b6
RH
152/* The bits remaining after N lower levels of page tables. */
153#define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155#define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157
158/* Size of the L1 page table. Avoid silly small sizes. */
159#if P_L1_BITS_REM < 4
160#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161#else
162#define P_L1_BITS P_L1_BITS_REM
163#endif
164
165#if V_L1_BITS_REM < 4
166#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167#else
168#define V_L1_BITS V_L1_BITS_REM
169#endif
170
171#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
173
174#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
176
83fb7adf
FB
177unsigned long qemu_real_host_page_size;
178unsigned long qemu_host_page_bits;
179unsigned long qemu_host_page_size;
180unsigned long qemu_host_page_mask;
54936004 181
5cd2c5b6
RH
182/* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184static void *l1_map[V_L1_SIZE];
54936004 185
e2eef170 186#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
187typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191} PhysPageDesc;
192
5cd2c5b6
RH
193/* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195static void *l1_phys_map[P_L1_SIZE];
6d9a1304 196
e2eef170
PB
197static void io_mem_init(void);
198
33417e70 199/* io memory support */
33417e70
FB
200CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 202void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 203static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
204static int io_mem_watch;
205#endif
33417e70 206
34865134 207/* log support */
1e8b27ca
JR
208#ifdef WIN32
209static const char *logfilename = "qemu.log";
210#else
d9b630fd 211static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 212#endif
34865134
FB
213FILE *logfile;
214int loglevel;
e735b91c 215static int log_append = 0;
34865134 216
e3db7226 217/* statistics */
b3755a91 218#if !defined(CONFIG_USER_ONLY)
e3db7226 219static int tlb_flush_count;
b3755a91 220#endif
e3db7226
FB
221static int tb_flush_count;
222static int tb_phys_invalidate_count;
223
7cb69cae
FB
224#ifdef _WIN32
225static void map_exec(void *addr, long size)
226{
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
230
231}
232#else
233static void map_exec(void *addr, long size)
234{
4369415f 235 unsigned long start, end, page_size;
7cb69cae 236
4369415f 237 page_size = getpagesize();
7cb69cae 238 start = (unsigned long)addr;
4369415f 239 start &= ~(page_size - 1);
7cb69cae
FB
240
241 end = (unsigned long)addr + size;
4369415f
FB
242 end += page_size - 1;
243 end &= ~(page_size - 1);
7cb69cae
FB
244
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
247}
248#endif
249
b346ff46 250static void page_init(void)
54936004 251{
83fb7adf 252 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 253 TARGET_PAGE_SIZE */
c2b48b69
AL
254#ifdef _WIN32
255 {
256 SYSTEM_INFO system_info;
257
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
260 }
261#else
262 qemu_real_host_page_size = getpagesize();
263#endif
83fb7adf
FB
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 272
2e9a5713 273#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 274 {
f01576f1
JL
275#ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
278
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
284
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
289
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
fd436907 292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
293 } else {
294#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
fd436907 296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
297#endif
298 }
299 }
300 }
301 free(freep);
302 mmap_unlock();
303 }
304#else
50a9569b 305 FILE *f;
50a9569b 306
0776590d 307 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 308
fd436907 309 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 310 if (f) {
5cd2c5b6
RH
311 mmap_lock();
312
50a9569b 313 do {
5cd2c5b6
RH
314 unsigned long startaddr, endaddr;
315 int n;
316
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
318
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
321
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
326 }
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
328 }
329 } while (!feof(f));
5cd2c5b6 330
50a9569b 331 fclose(f);
5cd2c5b6 332 mmap_unlock();
50a9569b 333 }
f01576f1 334#endif
50a9569b
AZ
335 }
336#endif
54936004
FB
337}
338
41c1b1c9 339static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 340{
41c1b1c9
PB
341 PageDesc *pd;
342 void **lp;
343 int i;
344
5cd2c5b6 345#if defined(CONFIG_USER_ONLY)
2e9a5713 346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
347# define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
351 } while (0)
352#else
353# define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 355#endif
434929bf 356
5cd2c5b6
RH
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
359
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
363
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
367 }
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
17e2377a 370 }
5cd2c5b6
RH
371
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
373 }
374
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
379 }
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
54936004 382 }
5cd2c5b6
RH
383
384#undef ALLOC
5cd2c5b6
RH
385
386 return pd + (index & (L2_SIZE - 1));
54936004
FB
387}
388
41c1b1c9 389static inline PageDesc *page_find(tb_page_addr_t index)
54936004 390{
5cd2c5b6 391 return page_find_alloc(index, 0);
fd6ce8f6
FB
392}
393
6d9a1304 394#if !defined(CONFIG_USER_ONLY)
c227f099 395static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 396{
e3f4e2a4 397 PhysPageDesc *pd;
5cd2c5b6
RH
398 void **lp;
399 int i;
92e873b9 400
5cd2c5b6
RH
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 403
5cd2c5b6
RH
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
410 }
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
412 }
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 414 }
5cd2c5b6 415
e3f4e2a4 416 pd = *lp;
5cd2c5b6 417 if (pd == NULL) {
e3f4e2a4 418 int i;
5cd2c5b6
RH
419
420 if (!alloc) {
108c49b8 421 return NULL;
5cd2c5b6
RH
422 }
423
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
425
67c4d23c 426 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 429 }
92e873b9 430 }
5cd2c5b6
RH
431
432 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
433}
434
c227f099 435static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 436{
108c49b8 437 return phys_page_find_alloc(index, 0);
92e873b9
FB
438}
439
c227f099
AL
440static void tlb_protect_code(ram_addr_t ram_addr);
441static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 442 target_ulong vaddr);
c8a706fe
PB
443#define mmap_lock() do { } while(0)
444#define mmap_unlock() do { } while(0)
9fa3e853 445#endif
fd6ce8f6 446
4369415f
FB
447#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
448
449#if defined(CONFIG_USER_ONLY)
ccbb4d44 450/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
451 user mode. It will change when a dedicated libc will be used */
452#define USE_STATIC_CODE_GEN_BUFFER
453#endif
454
455#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
456static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
458#endif
459
8fcd3692 460static void code_gen_alloc(unsigned long tb_size)
26a5f13b 461{
4369415f
FB
462#ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466#else
26a5f13b
FB
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
4369415f
FB
469#if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472#else
ccbb4d44 473 /* XXX: needs adjustments */
94a6b54f 474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 475#endif
26a5f13b
FB
476 }
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481#if defined(__linux__)
482 {
483 int flags;
141ac468
BS
484 void *start = NULL;
485
26a5f13b
FB
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487#if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
492#elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 498#elif defined(__arm__)
63d41246 499 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
504#elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
509 }
510 start = (void *)0x90000000UL;
26a5f13b 511#endif
141ac468
BS
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
518 }
519 }
a167ba50 520#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
521 {
522 int flags;
523 void *addr = NULL;
524 flags = MAP_PRIVATE | MAP_ANONYMOUS;
525#if defined(__x86_64__)
526 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
527 * 0x40000000 is free */
528 flags |= MAP_FIXED;
529 addr = (void *)0x40000000;
530 /* Cannot map more than that */
531 if (code_gen_buffer_size > (800 * 1024 * 1024))
532 code_gen_buffer_size = (800 * 1024 * 1024);
533#endif
534 code_gen_buffer = mmap(addr, code_gen_buffer_size,
535 PROT_WRITE | PROT_READ | PROT_EXEC,
536 flags, -1, 0);
537 if (code_gen_buffer == MAP_FAILED) {
538 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
539 exit(1);
540 }
541 }
26a5f13b
FB
542#else
543 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
544 map_exec(code_gen_buffer, code_gen_buffer_size);
545#endif
4369415f 546#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
547 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
548 code_gen_buffer_max_size = code_gen_buffer_size -
239fda31 549 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
26a5f13b
FB
550 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
551 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
552}
553
554/* Must be called before using the QEMU cpus. 'tb_size' is the size
555 (in bytes) allocated to the translation buffer. Zero means default
556 size. */
557void cpu_exec_init_all(unsigned long tb_size)
558{
26a5f13b
FB
559 cpu_gen_init();
560 code_gen_alloc(tb_size);
561 code_gen_ptr = code_gen_buffer;
4369415f 562 page_init();
e2eef170 563#if !defined(CONFIG_USER_ONLY)
26a5f13b 564 io_mem_init();
e2eef170 565#endif
9002ec79
RH
566#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
567 /* There's no guest base to take into account, so go ahead and
568 initialize the prologue now. */
569 tcg_prologue_init(&tcg_ctx);
570#endif
26a5f13b
FB
571}
572
9656f324
PB
573#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
574
e59fb374 575static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
576{
577 CPUState *env = opaque;
9656f324 578
3098dba0
AJ
579 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
580 version_id is increased. */
581 env->interrupt_request &= ~0x01;
9656f324
PB
582 tlb_flush(env, 1);
583
584 return 0;
585}
e7f4eff7
JQ
586
587static const VMStateDescription vmstate_cpu_common = {
588 .name = "cpu_common",
589 .version_id = 1,
590 .minimum_version_id = 1,
591 .minimum_version_id_old = 1,
e7f4eff7
JQ
592 .post_load = cpu_common_post_load,
593 .fields = (VMStateField []) {
594 VMSTATE_UINT32(halted, CPUState),
595 VMSTATE_UINT32(interrupt_request, CPUState),
596 VMSTATE_END_OF_LIST()
597 }
598};
9656f324
PB
599#endif
600
950f1472
GC
601CPUState *qemu_get_cpu(int cpu)
602{
603 CPUState *env = first_cpu;
604
605 while (env) {
606 if (env->cpu_index == cpu)
607 break;
608 env = env->next_cpu;
609 }
610
611 return env;
612}
613
6a00d601 614void cpu_exec_init(CPUState *env)
fd6ce8f6 615{
6a00d601
FB
616 CPUState **penv;
617 int cpu_index;
618
c2764719
PB
619#if defined(CONFIG_USER_ONLY)
620 cpu_list_lock();
621#endif
6a00d601
FB
622 env->next_cpu = NULL;
623 penv = &first_cpu;
624 cpu_index = 0;
625 while (*penv != NULL) {
1e9fa730 626 penv = &(*penv)->next_cpu;
6a00d601
FB
627 cpu_index++;
628 }
629 env->cpu_index = cpu_index;
268a362c 630 env->numa_node = 0;
72cf2d4f
BS
631 QTAILQ_INIT(&env->breakpoints);
632 QTAILQ_INIT(&env->watchpoints);
6a00d601 633 *penv = env;
c2764719
PB
634#if defined(CONFIG_USER_ONLY)
635 cpu_list_unlock();
636#endif
b3c7724c 637#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
638 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
639 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
640 cpu_save, cpu_load, env);
641#endif
fd6ce8f6
FB
642}
643
9fa3e853
FB
644static inline void invalidate_page_bitmap(PageDesc *p)
645{
646 if (p->code_bitmap) {
59817ccb 647 qemu_free(p->code_bitmap);
9fa3e853
FB
648 p->code_bitmap = NULL;
649 }
650 p->code_write_count = 0;
651}
652
5cd2c5b6
RH
653/* Set to NULL all the 'first_tb' fields in all PageDescs. */
654
655static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 656{
5cd2c5b6 657 int i;
fd6ce8f6 658
5cd2c5b6
RH
659 if (*lp == NULL) {
660 return;
661 }
662 if (level == 0) {
663 PageDesc *pd = *lp;
7296abac 664 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
665 pd[i].first_tb = NULL;
666 invalidate_page_bitmap(pd + i);
fd6ce8f6 667 }
5cd2c5b6
RH
668 } else {
669 void **pp = *lp;
7296abac 670 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
671 page_flush_tb_1 (level - 1, pp + i);
672 }
673 }
674}
675
676static void page_flush_tb(void)
677{
678 int i;
679 for (i = 0; i < V_L1_SIZE; i++) {
680 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
681 }
682}
683
684/* flush all the translation blocks */
d4e8164f 685/* XXX: tb_flush is currently not thread safe */
6a00d601 686void tb_flush(CPUState *env1)
fd6ce8f6 687{
6a00d601 688 CPUState *env;
0124311e 689#if defined(DEBUG_FLUSH)
ab3d1727
BS
690 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
691 (unsigned long)(code_gen_ptr - code_gen_buffer),
692 nb_tbs, nb_tbs > 0 ?
693 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 694#endif
26a5f13b 695 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
696 cpu_abort(env1, "Internal error: code buffer overflow\n");
697
fd6ce8f6 698 nb_tbs = 0;
3b46e624 699
6a00d601
FB
700 for(env = first_cpu; env != NULL; env = env->next_cpu) {
701 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
702 }
9fa3e853 703
8a8a608f 704 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 705 page_flush_tb();
9fa3e853 706
fd6ce8f6 707 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
708 /* XXX: flush processor icache at this point if cache flush is
709 expensive */
e3db7226 710 tb_flush_count++;
fd6ce8f6
FB
711}
712
713#ifdef DEBUG_TB_CHECK
714
bc98a7ef 715static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
716{
717 TranslationBlock *tb;
718 int i;
719 address &= TARGET_PAGE_MASK;
99773bd4
PB
720 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
721 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
722 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
723 address >= tb->pc + tb->size)) {
0bf9e31a
BS
724 printf("ERROR invalidate: address=" TARGET_FMT_lx
725 " PC=%08lx size=%04x\n",
99773bd4 726 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
727 }
728 }
729 }
730}
731
732/* verify that all the pages have correct rights for code */
733static void tb_page_check(void)
734{
735 TranslationBlock *tb;
736 int i, flags1, flags2;
3b46e624 737
99773bd4
PB
738 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
739 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
740 flags1 = page_get_flags(tb->pc);
741 flags2 = page_get_flags(tb->pc + tb->size - 1);
742 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
743 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 744 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
745 }
746 }
747 }
748}
749
750#endif
751
752/* invalidate one TB */
753static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
754 int next_offset)
755{
756 TranslationBlock *tb1;
757 for(;;) {
758 tb1 = *ptb;
759 if (tb1 == tb) {
760 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
761 break;
762 }
763 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
764 }
765}
766
9fa3e853
FB
767static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
768{
769 TranslationBlock *tb1;
770 unsigned int n1;
771
772 for(;;) {
773 tb1 = *ptb;
774 n1 = (long)tb1 & 3;
775 tb1 = (TranslationBlock *)((long)tb1 & ~3);
776 if (tb1 == tb) {
777 *ptb = tb1->page_next[n1];
778 break;
779 }
780 ptb = &tb1->page_next[n1];
781 }
782}
783
d4e8164f
FB
784static inline void tb_jmp_remove(TranslationBlock *tb, int n)
785{
786 TranslationBlock *tb1, **ptb;
787 unsigned int n1;
788
789 ptb = &tb->jmp_next[n];
790 tb1 = *ptb;
791 if (tb1) {
792 /* find tb(n) in circular list */
793 for(;;) {
794 tb1 = *ptb;
795 n1 = (long)tb1 & 3;
796 tb1 = (TranslationBlock *)((long)tb1 & ~3);
797 if (n1 == n && tb1 == tb)
798 break;
799 if (n1 == 2) {
800 ptb = &tb1->jmp_first;
801 } else {
802 ptb = &tb1->jmp_next[n1];
803 }
804 }
805 /* now we can suppress tb(n) from the list */
806 *ptb = tb->jmp_next[n];
807
808 tb->jmp_next[n] = NULL;
809 }
810}
811
812/* reset the jump entry 'n' of a TB so that it is not chained to
813 another TB */
814static inline void tb_reset_jump(TranslationBlock *tb, int n)
815{
816 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
817}
818
41c1b1c9 819void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 820{
6a00d601 821 CPUState *env;
8a40a180 822 PageDesc *p;
d4e8164f 823 unsigned int h, n1;
41c1b1c9 824 tb_page_addr_t phys_pc;
8a40a180 825 TranslationBlock *tb1, *tb2;
3b46e624 826
8a40a180
FB
827 /* remove the TB from the hash list */
828 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
829 h = tb_phys_hash_func(phys_pc);
5fafdf24 830 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
831 offsetof(TranslationBlock, phys_hash_next));
832
833 /* remove the TB from the page list */
834 if (tb->page_addr[0] != page_addr) {
835 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
836 tb_page_remove(&p->first_tb, tb);
837 invalidate_page_bitmap(p);
838 }
839 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
840 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
841 tb_page_remove(&p->first_tb, tb);
842 invalidate_page_bitmap(p);
843 }
844
36bdbe54 845 tb_invalidated_flag = 1;
59817ccb 846
fd6ce8f6 847 /* remove the TB from the hash list */
8a40a180 848 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
849 for(env = first_cpu; env != NULL; env = env->next_cpu) {
850 if (env->tb_jmp_cache[h] == tb)
851 env->tb_jmp_cache[h] = NULL;
852 }
d4e8164f
FB
853
854 /* suppress this TB from the two jump lists */
855 tb_jmp_remove(tb, 0);
856 tb_jmp_remove(tb, 1);
857
858 /* suppress any remaining jumps to this TB */
859 tb1 = tb->jmp_first;
860 for(;;) {
861 n1 = (long)tb1 & 3;
862 if (n1 == 2)
863 break;
864 tb1 = (TranslationBlock *)((long)tb1 & ~3);
865 tb2 = tb1->jmp_next[n1];
866 tb_reset_jump(tb1, n1);
867 tb1->jmp_next[n1] = NULL;
868 tb1 = tb2;
869 }
870 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 871
e3db7226 872 tb_phys_invalidate_count++;
9fa3e853
FB
873}
874
875static inline void set_bits(uint8_t *tab, int start, int len)
876{
877 int end, mask, end1;
878
879 end = start + len;
880 tab += start >> 3;
881 mask = 0xff << (start & 7);
882 if ((start & ~7) == (end & ~7)) {
883 if (start < end) {
884 mask &= ~(0xff << (end & 7));
885 *tab |= mask;
886 }
887 } else {
888 *tab++ |= mask;
889 start = (start + 8) & ~7;
890 end1 = end & ~7;
891 while (start < end1) {
892 *tab++ = 0xff;
893 start += 8;
894 }
895 if (start < end) {
896 mask = ~(0xff << (end & 7));
897 *tab |= mask;
898 }
899 }
900}
901
902static void build_page_bitmap(PageDesc *p)
903{
904 int n, tb_start, tb_end;
905 TranslationBlock *tb;
3b46e624 906
b2a7081a 907 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
908
909 tb = p->first_tb;
910 while (tb != NULL) {
911 n = (long)tb & 3;
912 tb = (TranslationBlock *)((long)tb & ~3);
913 /* NOTE: this is subtle as a TB may span two physical pages */
914 if (n == 0) {
915 /* NOTE: tb_end may be after the end of the page, but
916 it is not a problem */
917 tb_start = tb->pc & ~TARGET_PAGE_MASK;
918 tb_end = tb_start + tb->size;
919 if (tb_end > TARGET_PAGE_SIZE)
920 tb_end = TARGET_PAGE_SIZE;
921 } else {
922 tb_start = 0;
923 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
924 }
925 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
926 tb = tb->page_next[n];
927 }
928}
929
2e70f6ef
PB
930TranslationBlock *tb_gen_code(CPUState *env,
931 target_ulong pc, target_ulong cs_base,
932 int flags, int cflags)
d720b93d
FB
933{
934 TranslationBlock *tb;
935 uint8_t *tc_ptr;
41c1b1c9
PB
936 tb_page_addr_t phys_pc, phys_page2;
937 target_ulong virt_page2;
d720b93d
FB
938 int code_gen_size;
939
41c1b1c9 940 phys_pc = get_page_addr_code(env, pc);
c27004ec 941 tb = tb_alloc(pc);
d720b93d
FB
942 if (!tb) {
943 /* flush must be done */
944 tb_flush(env);
945 /* cannot fail at this point */
c27004ec 946 tb = tb_alloc(pc);
2e70f6ef
PB
947 /* Don't forget to invalidate previous TB info. */
948 tb_invalidated_flag = 1;
d720b93d
FB
949 }
950 tc_ptr = code_gen_ptr;
951 tb->tc_ptr = tc_ptr;
952 tb->cs_base = cs_base;
953 tb->flags = flags;
954 tb->cflags = cflags;
d07bde88 955 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 956 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 957
d720b93d 958 /* check next page if needed */
c27004ec 959 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 960 phys_page2 = -1;
c27004ec 961 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 962 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 963 }
41c1b1c9 964 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 965 return tb;
d720b93d 966}
3b46e624 967
9fa3e853
FB
968/* invalidate all TBs which intersect with the target physical page
969 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
970 the same physical page. 'is_cpu_write_access' should be true if called
971 from a real cpu write access: the virtual CPU will exit the current
972 TB if code is modified inside this TB. */
41c1b1c9 973void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
974 int is_cpu_write_access)
975{
6b917547 976 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 977 CPUState *env = cpu_single_env;
41c1b1c9 978 tb_page_addr_t tb_start, tb_end;
6b917547
AL
979 PageDesc *p;
980 int n;
981#ifdef TARGET_HAS_PRECISE_SMC
982 int current_tb_not_found = is_cpu_write_access;
983 TranslationBlock *current_tb = NULL;
984 int current_tb_modified = 0;
985 target_ulong current_pc = 0;
986 target_ulong current_cs_base = 0;
987 int current_flags = 0;
988#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
989
990 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 991 if (!p)
9fa3e853 992 return;
5fafdf24 993 if (!p->code_bitmap &&
d720b93d
FB
994 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
995 is_cpu_write_access) {
9fa3e853
FB
996 /* build code bitmap */
997 build_page_bitmap(p);
998 }
999
1000 /* we remove all the TBs in the range [start, end[ */
1001 /* XXX: see if in some cases it could be faster to invalidate all the code */
1002 tb = p->first_tb;
1003 while (tb != NULL) {
1004 n = (long)tb & 3;
1005 tb = (TranslationBlock *)((long)tb & ~3);
1006 tb_next = tb->page_next[n];
1007 /* NOTE: this is subtle as a TB may span two physical pages */
1008 if (n == 0) {
1009 /* NOTE: tb_end may be after the end of the page, but
1010 it is not a problem */
1011 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1012 tb_end = tb_start + tb->size;
1013 } else {
1014 tb_start = tb->page_addr[1];
1015 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1016 }
1017 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1018#ifdef TARGET_HAS_PRECISE_SMC
1019 if (current_tb_not_found) {
1020 current_tb_not_found = 0;
1021 current_tb = NULL;
2e70f6ef 1022 if (env->mem_io_pc) {
d720b93d 1023 /* now we have a real cpu fault */
2e70f6ef 1024 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1025 }
1026 }
1027 if (current_tb == tb &&
2e70f6ef 1028 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1029 /* If we are modifying the current TB, we must stop
1030 its execution. We could be more precise by checking
1031 that the modification is after the current PC, but it
1032 would require a specialized function to partially
1033 restore the CPU state */
3b46e624 1034
d720b93d 1035 current_tb_modified = 1;
5fafdf24 1036 cpu_restore_state(current_tb, env,
2e70f6ef 1037 env->mem_io_pc, NULL);
6b917547
AL
1038 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1039 &current_flags);
d720b93d
FB
1040 }
1041#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1042 /* we need to do that to handle the case where a signal
1043 occurs while doing tb_phys_invalidate() */
1044 saved_tb = NULL;
1045 if (env) {
1046 saved_tb = env->current_tb;
1047 env->current_tb = NULL;
1048 }
9fa3e853 1049 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1050 if (env) {
1051 env->current_tb = saved_tb;
1052 if (env->interrupt_request && env->current_tb)
1053 cpu_interrupt(env, env->interrupt_request);
1054 }
9fa3e853
FB
1055 }
1056 tb = tb_next;
1057 }
1058#if !defined(CONFIG_USER_ONLY)
1059 /* if no code remaining, no need to continue to use slow writes */
1060 if (!p->first_tb) {
1061 invalidate_page_bitmap(p);
d720b93d 1062 if (is_cpu_write_access) {
2e70f6ef 1063 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1064 }
1065 }
1066#endif
1067#ifdef TARGET_HAS_PRECISE_SMC
1068 if (current_tb_modified) {
1069 /* we generate a block containing just the instruction
1070 modifying the memory. It will ensure that it cannot modify
1071 itself */
ea1c1802 1072 env->current_tb = NULL;
2e70f6ef 1073 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1074 cpu_resume_from_signal(env, NULL);
9fa3e853 1075 }
fd6ce8f6 1076#endif
9fa3e853 1077}
fd6ce8f6 1078
9fa3e853 1079/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1080static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1081{
1082 PageDesc *p;
1083 int offset, b;
59817ccb 1084#if 0
a4193c8a 1085 if (1) {
93fcfe39
AL
1086 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1087 cpu_single_env->mem_io_vaddr, len,
1088 cpu_single_env->eip,
1089 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1090 }
1091#endif
9fa3e853 1092 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1093 if (!p)
9fa3e853
FB
1094 return;
1095 if (p->code_bitmap) {
1096 offset = start & ~TARGET_PAGE_MASK;
1097 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1098 if (b & ((1 << len) - 1))
1099 goto do_invalidate;
1100 } else {
1101 do_invalidate:
d720b93d 1102 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1103 }
1104}
1105
9fa3e853 1106#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1107static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1108 unsigned long pc, void *puc)
9fa3e853 1109{
6b917547 1110 TranslationBlock *tb;
9fa3e853 1111 PageDesc *p;
6b917547 1112 int n;
d720b93d 1113#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1114 TranslationBlock *current_tb = NULL;
d720b93d 1115 CPUState *env = cpu_single_env;
6b917547
AL
1116 int current_tb_modified = 0;
1117 target_ulong current_pc = 0;
1118 target_ulong current_cs_base = 0;
1119 int current_flags = 0;
d720b93d 1120#endif
9fa3e853
FB
1121
1122 addr &= TARGET_PAGE_MASK;
1123 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1124 if (!p)
9fa3e853
FB
1125 return;
1126 tb = p->first_tb;
d720b93d
FB
1127#ifdef TARGET_HAS_PRECISE_SMC
1128 if (tb && pc != 0) {
1129 current_tb = tb_find_pc(pc);
1130 }
1131#endif
9fa3e853
FB
1132 while (tb != NULL) {
1133 n = (long)tb & 3;
1134 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1135#ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb == tb &&
2e70f6ef 1137 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1138 /* If we are modifying the current TB, we must stop
1139 its execution. We could be more precise by checking
1140 that the modification is after the current PC, but it
1141 would require a specialized function to partially
1142 restore the CPU state */
3b46e624 1143
d720b93d
FB
1144 current_tb_modified = 1;
1145 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1146 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1147 &current_flags);
d720b93d
FB
1148 }
1149#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1150 tb_phys_invalidate(tb, addr);
1151 tb = tb->page_next[n];
1152 }
fd6ce8f6 1153 p->first_tb = NULL;
d720b93d
FB
1154#ifdef TARGET_HAS_PRECISE_SMC
1155 if (current_tb_modified) {
1156 /* we generate a block containing just the instruction
1157 modifying the memory. It will ensure that it cannot modify
1158 itself */
ea1c1802 1159 env->current_tb = NULL;
2e70f6ef 1160 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1161 cpu_resume_from_signal(env, puc);
1162 }
1163#endif
fd6ce8f6 1164}
9fa3e853 1165#endif
fd6ce8f6
FB
1166
1167/* add the tb in the target page and protect it if necessary */
5fafdf24 1168static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1169 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1170{
1171 PageDesc *p;
9fa3e853
FB
1172 TranslationBlock *last_first_tb;
1173
1174 tb->page_addr[n] = page_addr;
5cd2c5b6 1175 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1176 tb->page_next[n] = p->first_tb;
1177 last_first_tb = p->first_tb;
1178 p->first_tb = (TranslationBlock *)((long)tb | n);
1179 invalidate_page_bitmap(p);
fd6ce8f6 1180
107db443 1181#if defined(TARGET_HAS_SMC) || 1
d720b93d 1182
9fa3e853 1183#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1184 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1185 target_ulong addr;
1186 PageDesc *p2;
9fa3e853
FB
1187 int prot;
1188
fd6ce8f6
FB
1189 /* force the host page as non writable (writes will have a
1190 page fault + mprotect overhead) */
53a5960a 1191 page_addr &= qemu_host_page_mask;
fd6ce8f6 1192 prot = 0;
53a5960a
PB
1193 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1194 addr += TARGET_PAGE_SIZE) {
1195
1196 p2 = page_find (addr >> TARGET_PAGE_BITS);
1197 if (!p2)
1198 continue;
1199 prot |= p2->flags;
1200 p2->flags &= ~PAGE_WRITE;
53a5960a 1201 }
5fafdf24 1202 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1203 (prot & PAGE_BITS) & ~PAGE_WRITE);
1204#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1205 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1206 page_addr);
fd6ce8f6 1207#endif
fd6ce8f6 1208 }
9fa3e853
FB
1209#else
1210 /* if some code is already present, then the pages are already
1211 protected. So we handle the case where only the first TB is
1212 allocated in a physical page */
1213 if (!last_first_tb) {
6a00d601 1214 tlb_protect_code(page_addr);
9fa3e853
FB
1215 }
1216#endif
d720b93d
FB
1217
1218#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1219}
1220
1221/* Allocate a new translation block. Flush the translation buffer if
1222 too many translation blocks or too much generated code. */
c27004ec 1223TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1224{
1225 TranslationBlock *tb;
fd6ce8f6 1226
26a5f13b
FB
1227 if (nb_tbs >= code_gen_max_blocks ||
1228 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1229 return NULL;
fd6ce8f6
FB
1230 tb = &tbs[nb_tbs++];
1231 tb->pc = pc;
b448f2f3 1232 tb->cflags = 0;
d4e8164f
FB
1233 return tb;
1234}
1235
2e70f6ef
PB
1236void tb_free(TranslationBlock *tb)
1237{
bf20dc07 1238 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1239 Ignore the hard cases and just back up if this TB happens to
1240 be the last one generated. */
1241 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1242 code_gen_ptr = tb->tc_ptr;
1243 nb_tbs--;
1244 }
1245}
1246
9fa3e853
FB
1247/* add a new TB and link it to the physical page tables. phys_page2 is
1248 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1249void tb_link_page(TranslationBlock *tb,
1250 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1251{
9fa3e853
FB
1252 unsigned int h;
1253 TranslationBlock **ptb;
1254
c8a706fe
PB
1255 /* Grab the mmap lock to stop another thread invalidating this TB
1256 before we are done. */
1257 mmap_lock();
9fa3e853
FB
1258 /* add in the physical hash table */
1259 h = tb_phys_hash_func(phys_pc);
1260 ptb = &tb_phys_hash[h];
1261 tb->phys_hash_next = *ptb;
1262 *ptb = tb;
fd6ce8f6
FB
1263
1264 /* add in the page list */
9fa3e853
FB
1265 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1266 if (phys_page2 != -1)
1267 tb_alloc_page(tb, 1, phys_page2);
1268 else
1269 tb->page_addr[1] = -1;
9fa3e853 1270
d4e8164f
FB
1271 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1272 tb->jmp_next[0] = NULL;
1273 tb->jmp_next[1] = NULL;
1274
1275 /* init original jump addresses */
1276 if (tb->tb_next_offset[0] != 0xffff)
1277 tb_reset_jump(tb, 0);
1278 if (tb->tb_next_offset[1] != 0xffff)
1279 tb_reset_jump(tb, 1);
8a40a180
FB
1280
1281#ifdef DEBUG_TB_CHECK
1282 tb_page_check();
1283#endif
c8a706fe 1284 mmap_unlock();
fd6ce8f6
FB
1285}
1286
9fa3e853
FB
1287/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1288 tb[1].tc_ptr. Return NULL if not found */
1289TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1290{
9fa3e853
FB
1291 int m_min, m_max, m;
1292 unsigned long v;
1293 TranslationBlock *tb;
a513fe19
FB
1294
1295 if (nb_tbs <= 0)
1296 return NULL;
1297 if (tc_ptr < (unsigned long)code_gen_buffer ||
1298 tc_ptr >= (unsigned long)code_gen_ptr)
1299 return NULL;
1300 /* binary search (cf Knuth) */
1301 m_min = 0;
1302 m_max = nb_tbs - 1;
1303 while (m_min <= m_max) {
1304 m = (m_min + m_max) >> 1;
1305 tb = &tbs[m];
1306 v = (unsigned long)tb->tc_ptr;
1307 if (v == tc_ptr)
1308 return tb;
1309 else if (tc_ptr < v) {
1310 m_max = m - 1;
1311 } else {
1312 m_min = m + 1;
1313 }
5fafdf24 1314 }
a513fe19
FB
1315 return &tbs[m_max];
1316}
7501267e 1317
ea041c0e
FB
1318static void tb_reset_jump_recursive(TranslationBlock *tb);
1319
1320static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1321{
1322 TranslationBlock *tb1, *tb_next, **ptb;
1323 unsigned int n1;
1324
1325 tb1 = tb->jmp_next[n];
1326 if (tb1 != NULL) {
1327 /* find head of list */
1328 for(;;) {
1329 n1 = (long)tb1 & 3;
1330 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1331 if (n1 == 2)
1332 break;
1333 tb1 = tb1->jmp_next[n1];
1334 }
1335 /* we are now sure now that tb jumps to tb1 */
1336 tb_next = tb1;
1337
1338 /* remove tb from the jmp_first list */
1339 ptb = &tb_next->jmp_first;
1340 for(;;) {
1341 tb1 = *ptb;
1342 n1 = (long)tb1 & 3;
1343 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1344 if (n1 == n && tb1 == tb)
1345 break;
1346 ptb = &tb1->jmp_next[n1];
1347 }
1348 *ptb = tb->jmp_next[n];
1349 tb->jmp_next[n] = NULL;
3b46e624 1350
ea041c0e
FB
1351 /* suppress the jump to next tb in generated code */
1352 tb_reset_jump(tb, n);
1353
0124311e 1354 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1355 tb_reset_jump_recursive(tb_next);
1356 }
1357}
1358
1359static void tb_reset_jump_recursive(TranslationBlock *tb)
1360{
1361 tb_reset_jump_recursive2(tb, 0);
1362 tb_reset_jump_recursive2(tb, 1);
1363}
1364
1fddef4b 1365#if defined(TARGET_HAS_ICE)
94df27fd
PB
1366#if defined(CONFIG_USER_ONLY)
1367static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1368{
1369 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1370}
1371#else
d720b93d
FB
1372static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1373{
c227f099 1374 target_phys_addr_t addr;
9b3c35e0 1375 target_ulong pd;
c227f099 1376 ram_addr_t ram_addr;
c2f07f81 1377 PhysPageDesc *p;
d720b93d 1378
c2f07f81
PB
1379 addr = cpu_get_phys_page_debug(env, pc);
1380 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1381 if (!p) {
1382 pd = IO_MEM_UNASSIGNED;
1383 } else {
1384 pd = p->phys_offset;
1385 }
1386 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1387 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1388}
c27004ec 1389#endif
94df27fd 1390#endif /* TARGET_HAS_ICE */
d720b93d 1391
c527ee8f
PB
1392#if defined(CONFIG_USER_ONLY)
1393void cpu_watchpoint_remove_all(CPUState *env, int mask)
1394
1395{
1396}
1397
1398int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1399 int flags, CPUWatchpoint **watchpoint)
1400{
1401 return -ENOSYS;
1402}
1403#else
6658ffb8 1404/* Add a watchpoint. */
a1d1bb31
AL
1405int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1406 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1407{
b4051334 1408 target_ulong len_mask = ~(len - 1);
c0ce998e 1409 CPUWatchpoint *wp;
6658ffb8 1410
b4051334
AL
1411 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1412 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1413 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1414 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1415 return -EINVAL;
1416 }
a1d1bb31 1417 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1418
1419 wp->vaddr = addr;
b4051334 1420 wp->len_mask = len_mask;
a1d1bb31
AL
1421 wp->flags = flags;
1422
2dc9f411 1423 /* keep all GDB-injected watchpoints in front */
c0ce998e 1424 if (flags & BP_GDB)
72cf2d4f 1425 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1426 else
72cf2d4f 1427 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1428
6658ffb8 1429 tlb_flush_page(env, addr);
a1d1bb31
AL
1430
1431 if (watchpoint)
1432 *watchpoint = wp;
1433 return 0;
6658ffb8
PB
1434}
1435
a1d1bb31
AL
1436/* Remove a specific watchpoint. */
1437int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1438 int flags)
6658ffb8 1439{
b4051334 1440 target_ulong len_mask = ~(len - 1);
a1d1bb31 1441 CPUWatchpoint *wp;
6658ffb8 1442
72cf2d4f 1443 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1444 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1445 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1446 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1447 return 0;
1448 }
1449 }
a1d1bb31 1450 return -ENOENT;
6658ffb8
PB
1451}
1452
a1d1bb31
AL
1453/* Remove a specific watchpoint by reference. */
1454void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1455{
72cf2d4f 1456 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1457
a1d1bb31
AL
1458 tlb_flush_page(env, watchpoint->vaddr);
1459
1460 qemu_free(watchpoint);
1461}
1462
1463/* Remove all matching watchpoints. */
1464void cpu_watchpoint_remove_all(CPUState *env, int mask)
1465{
c0ce998e 1466 CPUWatchpoint *wp, *next;
a1d1bb31 1467
72cf2d4f 1468 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1469 if (wp->flags & mask)
1470 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1471 }
7d03f82f 1472}
c527ee8f 1473#endif
7d03f82f 1474
a1d1bb31
AL
1475/* Add a breakpoint. */
1476int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1477 CPUBreakpoint **breakpoint)
4c3a88a2 1478{
1fddef4b 1479#if defined(TARGET_HAS_ICE)
c0ce998e 1480 CPUBreakpoint *bp;
3b46e624 1481
a1d1bb31 1482 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1483
a1d1bb31
AL
1484 bp->pc = pc;
1485 bp->flags = flags;
1486
2dc9f411 1487 /* keep all GDB-injected breakpoints in front */
c0ce998e 1488 if (flags & BP_GDB)
72cf2d4f 1489 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1490 else
72cf2d4f 1491 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1492
d720b93d 1493 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1494
1495 if (breakpoint)
1496 *breakpoint = bp;
4c3a88a2
FB
1497 return 0;
1498#else
a1d1bb31 1499 return -ENOSYS;
4c3a88a2
FB
1500#endif
1501}
1502
a1d1bb31
AL
1503/* Remove a specific breakpoint. */
1504int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1505{
7d03f82f 1506#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1507 CPUBreakpoint *bp;
1508
72cf2d4f 1509 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1510 if (bp->pc == pc && bp->flags == flags) {
1511 cpu_breakpoint_remove_by_ref(env, bp);
1512 return 0;
1513 }
7d03f82f 1514 }
a1d1bb31
AL
1515 return -ENOENT;
1516#else
1517 return -ENOSYS;
7d03f82f
EI
1518#endif
1519}
1520
a1d1bb31
AL
1521/* Remove a specific breakpoint by reference. */
1522void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1523{
1fddef4b 1524#if defined(TARGET_HAS_ICE)
72cf2d4f 1525 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1526
a1d1bb31
AL
1527 breakpoint_invalidate(env, breakpoint->pc);
1528
1529 qemu_free(breakpoint);
1530#endif
1531}
1532
1533/* Remove all matching breakpoints. */
1534void cpu_breakpoint_remove_all(CPUState *env, int mask)
1535{
1536#if defined(TARGET_HAS_ICE)
c0ce998e 1537 CPUBreakpoint *bp, *next;
a1d1bb31 1538
72cf2d4f 1539 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1540 if (bp->flags & mask)
1541 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1542 }
4c3a88a2
FB
1543#endif
1544}
1545
c33a346e
FB
1546/* enable or disable single step mode. EXCP_DEBUG is returned by the
1547 CPU loop after each instruction */
1548void cpu_single_step(CPUState *env, int enabled)
1549{
1fddef4b 1550#if defined(TARGET_HAS_ICE)
c33a346e
FB
1551 if (env->singlestep_enabled != enabled) {
1552 env->singlestep_enabled = enabled;
e22a25c9
AL
1553 if (kvm_enabled())
1554 kvm_update_guest_debug(env, 0);
1555 else {
ccbb4d44 1556 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1557 /* XXX: only flush what is necessary */
1558 tb_flush(env);
1559 }
c33a346e
FB
1560 }
1561#endif
1562}
1563
34865134
FB
1564/* enable or disable low levels log */
1565void cpu_set_log(int log_flags)
1566{
1567 loglevel = log_flags;
1568 if (loglevel && !logfile) {
11fcfab4 1569 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1570 if (!logfile) {
1571 perror(logfilename);
1572 _exit(1);
1573 }
9fa3e853
FB
1574#if !defined(CONFIG_SOFTMMU)
1575 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1576 {
b55266b5 1577 static char logfile_buf[4096];
9fa3e853
FB
1578 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1579 }
bf65f53f
FN
1580#elif !defined(_WIN32)
1581 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1582 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1583#endif
e735b91c
PB
1584 log_append = 1;
1585 }
1586 if (!loglevel && logfile) {
1587 fclose(logfile);
1588 logfile = NULL;
34865134
FB
1589 }
1590}
1591
1592void cpu_set_log_filename(const char *filename)
1593{
1594 logfilename = strdup(filename);
e735b91c
PB
1595 if (logfile) {
1596 fclose(logfile);
1597 logfile = NULL;
1598 }
1599 cpu_set_log(loglevel);
34865134 1600}
c33a346e 1601
3098dba0 1602static void cpu_unlink_tb(CPUState *env)
ea041c0e 1603{
3098dba0
AJ
1604 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1605 problem and hope the cpu will stop of its own accord. For userspace
1606 emulation this often isn't actually as bad as it sounds. Often
1607 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1608 TranslationBlock *tb;
c227f099 1609 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1610
cab1b4bd 1611 spin_lock(&interrupt_lock);
3098dba0
AJ
1612 tb = env->current_tb;
1613 /* if the cpu is currently executing code, we must unlink it and
1614 all the potentially executing TB */
f76cfe56 1615 if (tb) {
3098dba0
AJ
1616 env->current_tb = NULL;
1617 tb_reset_jump_recursive(tb);
be214e6c 1618 }
cab1b4bd 1619 spin_unlock(&interrupt_lock);
3098dba0
AJ
1620}
1621
1622/* mask must never be zero, except for A20 change call */
1623void cpu_interrupt(CPUState *env, int mask)
1624{
1625 int old_mask;
be214e6c 1626
2e70f6ef 1627 old_mask = env->interrupt_request;
68a79315 1628 env->interrupt_request |= mask;
3098dba0 1629
8edac960
AL
1630#ifndef CONFIG_USER_ONLY
1631 /*
1632 * If called from iothread context, wake the target cpu in
1633 * case its halted.
1634 */
1635 if (!qemu_cpu_self(env)) {
1636 qemu_cpu_kick(env);
1637 return;
1638 }
1639#endif
1640
2e70f6ef 1641 if (use_icount) {
266910c4 1642 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1643#ifndef CONFIG_USER_ONLY
2e70f6ef 1644 if (!can_do_io(env)
be214e6c 1645 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1646 cpu_abort(env, "Raised interrupt while not in I/O function");
1647 }
1648#endif
1649 } else {
3098dba0 1650 cpu_unlink_tb(env);
ea041c0e
FB
1651 }
1652}
1653
b54ad049
FB
1654void cpu_reset_interrupt(CPUState *env, int mask)
1655{
1656 env->interrupt_request &= ~mask;
1657}
1658
3098dba0
AJ
1659void cpu_exit(CPUState *env)
1660{
1661 env->exit_request = 1;
1662 cpu_unlink_tb(env);
1663}
1664
c7cd6a37 1665const CPULogItem cpu_log_items[] = {
5fafdf24 1666 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1667 "show generated host assembly code for each compiled TB" },
1668 { CPU_LOG_TB_IN_ASM, "in_asm",
1669 "show target assembly code for each compiled TB" },
5fafdf24 1670 { CPU_LOG_TB_OP, "op",
57fec1fe 1671 "show micro ops for each compiled TB" },
f193c797 1672 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1673 "show micro ops "
1674#ifdef TARGET_I386
1675 "before eflags optimization and "
f193c797 1676#endif
e01a1157 1677 "after liveness analysis" },
f193c797
FB
1678 { CPU_LOG_INT, "int",
1679 "show interrupts/exceptions in short format" },
1680 { CPU_LOG_EXEC, "exec",
1681 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1682 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1683 "show CPU state before block translation" },
f193c797
FB
1684#ifdef TARGET_I386
1685 { CPU_LOG_PCALL, "pcall",
1686 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1687 { CPU_LOG_RESET, "cpu_reset",
1688 "show CPU state before CPU resets" },
f193c797 1689#endif
8e3a9fd2 1690#ifdef DEBUG_IOPORT
fd872598
FB
1691 { CPU_LOG_IOPORT, "ioport",
1692 "show all i/o ports accesses" },
8e3a9fd2 1693#endif
f193c797
FB
1694 { 0, NULL, NULL },
1695};
1696
f6f3fbca
MT
1697#ifndef CONFIG_USER_ONLY
1698static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1699 = QLIST_HEAD_INITIALIZER(memory_client_list);
1700
1701static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26
YT
1702 ram_addr_t size,
1703 ram_addr_t phys_offset)
f6f3fbca
MT
1704{
1705 CPUPhysMemoryClient *client;
1706 QLIST_FOREACH(client, &memory_client_list, list) {
1707 client->set_memory(client, start_addr, size, phys_offset);
1708 }
1709}
1710
1711static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1712 target_phys_addr_t end)
f6f3fbca
MT
1713{
1714 CPUPhysMemoryClient *client;
1715 QLIST_FOREACH(client, &memory_client_list, list) {
1716 int r = client->sync_dirty_bitmap(client, start, end);
1717 if (r < 0)
1718 return r;
1719 }
1720 return 0;
1721}
1722
1723static int cpu_notify_migration_log(int enable)
1724{
1725 CPUPhysMemoryClient *client;
1726 QLIST_FOREACH(client, &memory_client_list, list) {
1727 int r = client->migration_log(client, enable);
1728 if (r < 0)
1729 return r;
1730 }
1731 return 0;
1732}
1733
5cd2c5b6
RH
1734static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1735 int level, void **lp)
f6f3fbca 1736{
5cd2c5b6 1737 int i;
f6f3fbca 1738
5cd2c5b6
RH
1739 if (*lp == NULL) {
1740 return;
1741 }
1742 if (level == 0) {
1743 PhysPageDesc *pd = *lp;
7296abac 1744 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1745 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1746 client->set_memory(client, pd[i].region_offset,
1747 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1748 }
5cd2c5b6
RH
1749 }
1750 } else {
1751 void **pp = *lp;
7296abac 1752 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1753 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1754 }
1755 }
1756}
1757
1758static void phys_page_for_each(CPUPhysMemoryClient *client)
1759{
5cd2c5b6
RH
1760 int i;
1761 for (i = 0; i < P_L1_SIZE; ++i) {
1762 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1763 l1_phys_map + 1);
f6f3fbca 1764 }
f6f3fbca
MT
1765}
1766
1767void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1768{
1769 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1770 phys_page_for_each(client);
1771}
1772
1773void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1774{
1775 QLIST_REMOVE(client, list);
1776}
1777#endif
1778
f193c797
FB
1779static int cmp1(const char *s1, int n, const char *s2)
1780{
1781 if (strlen(s2) != n)
1782 return 0;
1783 return memcmp(s1, s2, n) == 0;
1784}
3b46e624 1785
f193c797
FB
1786/* takes a comma separated list of log masks. Return 0 if error. */
1787int cpu_str_to_log_mask(const char *str)
1788{
c7cd6a37 1789 const CPULogItem *item;
f193c797
FB
1790 int mask;
1791 const char *p, *p1;
1792
1793 p = str;
1794 mask = 0;
1795 for(;;) {
1796 p1 = strchr(p, ',');
1797 if (!p1)
1798 p1 = p + strlen(p);
9742bf26
YT
1799 if(cmp1(p,p1-p,"all")) {
1800 for(item = cpu_log_items; item->mask != 0; item++) {
1801 mask |= item->mask;
1802 }
1803 } else {
1804 for(item = cpu_log_items; item->mask != 0; item++) {
1805 if (cmp1(p, p1 - p, item->name))
1806 goto found;
1807 }
1808 return 0;
f193c797 1809 }
f193c797
FB
1810 found:
1811 mask |= item->mask;
1812 if (*p1 != ',')
1813 break;
1814 p = p1 + 1;
1815 }
1816 return mask;
1817}
ea041c0e 1818
7501267e
FB
1819void cpu_abort(CPUState *env, const char *fmt, ...)
1820{
1821 va_list ap;
493ae1f0 1822 va_list ap2;
7501267e
FB
1823
1824 va_start(ap, fmt);
493ae1f0 1825 va_copy(ap2, ap);
7501267e
FB
1826 fprintf(stderr, "qemu: fatal: ");
1827 vfprintf(stderr, fmt, ap);
1828 fprintf(stderr, "\n");
1829#ifdef TARGET_I386
7fe48483
FB
1830 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1831#else
1832 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1833#endif
93fcfe39
AL
1834 if (qemu_log_enabled()) {
1835 qemu_log("qemu: fatal: ");
1836 qemu_log_vprintf(fmt, ap2);
1837 qemu_log("\n");
f9373291 1838#ifdef TARGET_I386
93fcfe39 1839 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1840#else
93fcfe39 1841 log_cpu_state(env, 0);
f9373291 1842#endif
31b1a7b4 1843 qemu_log_flush();
93fcfe39 1844 qemu_log_close();
924edcae 1845 }
493ae1f0 1846 va_end(ap2);
f9373291 1847 va_end(ap);
fd052bf6
RV
1848#if defined(CONFIG_USER_ONLY)
1849 {
1850 struct sigaction act;
1851 sigfillset(&act.sa_mask);
1852 act.sa_handler = SIG_DFL;
1853 sigaction(SIGABRT, &act, NULL);
1854 }
1855#endif
7501267e
FB
1856 abort();
1857}
1858
c5be9f08
TS
1859CPUState *cpu_copy(CPUState *env)
1860{
01ba9816 1861 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1862 CPUState *next_cpu = new_env->next_cpu;
1863 int cpu_index = new_env->cpu_index;
5a38f081
AL
1864#if defined(TARGET_HAS_ICE)
1865 CPUBreakpoint *bp;
1866 CPUWatchpoint *wp;
1867#endif
1868
c5be9f08 1869 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1870
1871 /* Preserve chaining and index. */
c5be9f08
TS
1872 new_env->next_cpu = next_cpu;
1873 new_env->cpu_index = cpu_index;
5a38f081
AL
1874
1875 /* Clone all break/watchpoints.
1876 Note: Once we support ptrace with hw-debug register access, make sure
1877 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1878 QTAILQ_INIT(&env->breakpoints);
1879 QTAILQ_INIT(&env->watchpoints);
5a38f081 1880#if defined(TARGET_HAS_ICE)
72cf2d4f 1881 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1882 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1883 }
72cf2d4f 1884 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1885 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1886 wp->flags, NULL);
1887 }
1888#endif
1889
c5be9f08
TS
1890 return new_env;
1891}
1892
0124311e
FB
1893#if !defined(CONFIG_USER_ONLY)
1894
5c751e99
EI
1895static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1896{
1897 unsigned int i;
1898
1899 /* Discard jump cache entries for any tb which might potentially
1900 overlap the flushed page. */
1901 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1902 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1903 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1904
1905 i = tb_jmp_cache_hash_page(addr);
1906 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1907 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1908}
1909
08738984
IK
1910static CPUTLBEntry s_cputlb_empty_entry = {
1911 .addr_read = -1,
1912 .addr_write = -1,
1913 .addr_code = -1,
1914 .addend = -1,
1915};
1916
ee8b7021
FB
1917/* NOTE: if flush_global is true, also flush global entries (not
1918 implemented yet) */
1919void tlb_flush(CPUState *env, int flush_global)
33417e70 1920{
33417e70 1921 int i;
0124311e 1922
9fa3e853
FB
1923#if defined(DEBUG_TLB)
1924 printf("tlb_flush:\n");
1925#endif
0124311e
FB
1926 /* must reset current TB so that interrupts cannot modify the
1927 links while we are modifying them */
1928 env->current_tb = NULL;
1929
33417e70 1930 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1931 int mmu_idx;
1932 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1933 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1934 }
33417e70 1935 }
9fa3e853 1936
8a40a180 1937 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1938
d4c430a8
PB
1939 env->tlb_flush_addr = -1;
1940 env->tlb_flush_mask = 0;
e3db7226 1941 tlb_flush_count++;
33417e70
FB
1942}
1943
274da6b2 1944static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1945{
5fafdf24 1946 if (addr == (tlb_entry->addr_read &
84b7b8e7 1947 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1948 addr == (tlb_entry->addr_write &
84b7b8e7 1949 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1950 addr == (tlb_entry->addr_code &
84b7b8e7 1951 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1952 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1953 }
61382a50
FB
1954}
1955
2e12669a 1956void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1957{
8a40a180 1958 int i;
cfde4bd9 1959 int mmu_idx;
0124311e 1960
9fa3e853 1961#if defined(DEBUG_TLB)
108c49b8 1962 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1963#endif
d4c430a8
PB
1964 /* Check if we need to flush due to large pages. */
1965 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1966#if defined(DEBUG_TLB)
1967 printf("tlb_flush_page: forced full flush ("
1968 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1969 env->tlb_flush_addr, env->tlb_flush_mask);
1970#endif
1971 tlb_flush(env, 1);
1972 return;
1973 }
0124311e
FB
1974 /* must reset current TB so that interrupts cannot modify the
1975 links while we are modifying them */
1976 env->current_tb = NULL;
61382a50
FB
1977
1978 addr &= TARGET_PAGE_MASK;
1979 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1980 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1981 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1982
5c751e99 1983 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1984}
1985
9fa3e853
FB
1986/* update the TLBs so that writes to code in the virtual page 'addr'
1987 can be detected */
c227f099 1988static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1989{
5fafdf24 1990 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1991 ram_addr + TARGET_PAGE_SIZE,
1992 CODE_DIRTY_FLAG);
9fa3e853
FB
1993}
1994
9fa3e853 1995/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1996 tested for self modifying code */
c227f099 1997static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1998 target_ulong vaddr)
9fa3e853 1999{
f7c11b53 2000 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2001}
2002
5fafdf24 2003static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2004 unsigned long start, unsigned long length)
2005{
2006 unsigned long addr;
84b7b8e7
FB
2007 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2008 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2009 if ((addr - start) < length) {
0f459d16 2010 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2011 }
2012 }
2013}
2014
5579c7f3 2015/* Note: start and end must be within the same ram block. */
c227f099 2016void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2017 int dirty_flags)
1ccde1cb
FB
2018{
2019 CPUState *env;
4f2ac237 2020 unsigned long length, start1;
f7c11b53 2021 int i;
1ccde1cb
FB
2022
2023 start &= TARGET_PAGE_MASK;
2024 end = TARGET_PAGE_ALIGN(end);
2025
2026 length = end - start;
2027 if (length == 0)
2028 return;
f7c11b53 2029 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2030
1ccde1cb
FB
2031 /* we modify the TLB cache so that the dirty bit will be set again
2032 when accessing the range */
5579c7f3
PB
2033 start1 = (unsigned long)qemu_get_ram_ptr(start);
2034 /* Chek that we don't span multiple blocks - this breaks the
2035 address comparisons below. */
2036 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2037 != (end - 1) - start) {
2038 abort();
2039 }
2040
6a00d601 2041 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2042 int mmu_idx;
2043 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2044 for(i = 0; i < CPU_TLB_SIZE; i++)
2045 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2046 start1, length);
2047 }
6a00d601 2048 }
1ccde1cb
FB
2049}
2050
74576198
AL
2051int cpu_physical_memory_set_dirty_tracking(int enable)
2052{
f6f3fbca 2053 int ret = 0;
74576198 2054 in_migration = enable;
f6f3fbca
MT
2055 ret = cpu_notify_migration_log(!!enable);
2056 return ret;
74576198
AL
2057}
2058
2059int cpu_physical_memory_get_dirty_tracking(void)
2060{
2061 return in_migration;
2062}
2063
c227f099
AL
2064int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2065 target_phys_addr_t end_addr)
2bec46dc 2066{
7b8f3b78 2067 int ret;
151f7749 2068
f6f3fbca 2069 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2070 return ret;
2bec46dc
AL
2071}
2072
3a7d929e
FB
2073static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2074{
c227f099 2075 ram_addr_t ram_addr;
5579c7f3 2076 void *p;
3a7d929e 2077
84b7b8e7 2078 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2079 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2080 + tlb_entry->addend);
e890261f 2081 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2082 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2083 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2084 }
2085 }
2086}
2087
2088/* update the TLB according to the current state of the dirty bits */
2089void cpu_tlb_update_dirty(CPUState *env)
2090{
2091 int i;
cfde4bd9
IY
2092 int mmu_idx;
2093 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2094 for(i = 0; i < CPU_TLB_SIZE; i++)
2095 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2096 }
3a7d929e
FB
2097}
2098
0f459d16 2099static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2100{
0f459d16
PB
2101 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2102 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2103}
2104
0f459d16
PB
2105/* update the TLB corresponding to virtual page vaddr
2106 so that it is no longer dirty */
2107static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2108{
1ccde1cb 2109 int i;
cfde4bd9 2110 int mmu_idx;
1ccde1cb 2111
0f459d16 2112 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2113 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2115 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2116}
2117
d4c430a8
PB
2118/* Our TLB does not support large pages, so remember the area covered by
2119 large pages and trigger a full TLB flush if these are invalidated. */
2120static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2121 target_ulong size)
2122{
2123 target_ulong mask = ~(size - 1);
2124
2125 if (env->tlb_flush_addr == (target_ulong)-1) {
2126 env->tlb_flush_addr = vaddr & mask;
2127 env->tlb_flush_mask = mask;
2128 return;
2129 }
2130 /* Extend the existing region to include the new page.
2131 This is a compromise between unnecessary flushes and the cost
2132 of maintaining a full variable size TLB. */
2133 mask &= env->tlb_flush_mask;
2134 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2135 mask <<= 1;
2136 }
2137 env->tlb_flush_addr &= mask;
2138 env->tlb_flush_mask = mask;
2139}
2140
2141/* Add a new TLB entry. At most one entry for a given virtual address
2142 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2143 supplied size is only used by tlb_flush_page. */
2144void tlb_set_page(CPUState *env, target_ulong vaddr,
2145 target_phys_addr_t paddr, int prot,
2146 int mmu_idx, target_ulong size)
9fa3e853 2147{
92e873b9 2148 PhysPageDesc *p;
4f2ac237 2149 unsigned long pd;
9fa3e853 2150 unsigned int index;
4f2ac237 2151 target_ulong address;
0f459d16 2152 target_ulong code_address;
355b1943 2153 unsigned long addend;
84b7b8e7 2154 CPUTLBEntry *te;
a1d1bb31 2155 CPUWatchpoint *wp;
c227f099 2156 target_phys_addr_t iotlb;
9fa3e853 2157
d4c430a8
PB
2158 assert(size >= TARGET_PAGE_SIZE);
2159 if (size != TARGET_PAGE_SIZE) {
2160 tlb_add_large_page(env, vaddr, size);
2161 }
92e873b9 2162 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2163 if (!p) {
2164 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2165 } else {
2166 pd = p->phys_offset;
9fa3e853
FB
2167 }
2168#if defined(DEBUG_TLB)
7fd3f494
SW
2169 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2170 " prot=%x idx=%d pd=0x%08lx\n",
2171 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2172#endif
2173
0f459d16
PB
2174 address = vaddr;
2175 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2176 /* IO memory case (romd handled later) */
2177 address |= TLB_MMIO;
2178 }
5579c7f3 2179 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2180 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2181 /* Normal RAM. */
2182 iotlb = pd & TARGET_PAGE_MASK;
2183 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2184 iotlb |= IO_MEM_NOTDIRTY;
2185 else
2186 iotlb |= IO_MEM_ROM;
2187 } else {
ccbb4d44 2188 /* IO handlers are currently passed a physical address.
0f459d16
PB
2189 It would be nice to pass an offset from the base address
2190 of that region. This would avoid having to special case RAM,
2191 and avoid full address decoding in every device.
2192 We can't use the high bits of pd for this because
2193 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2194 iotlb = (pd & ~TARGET_PAGE_MASK);
2195 if (p) {
8da3ff18
PB
2196 iotlb += p->region_offset;
2197 } else {
2198 iotlb += paddr;
2199 }
0f459d16
PB
2200 }
2201
2202 code_address = address;
2203 /* Make accesses to pages with watchpoints go via the
2204 watchpoint trap routines. */
72cf2d4f 2205 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2206 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2207 /* Avoid trapping reads of pages with a write breakpoint. */
2208 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2209 iotlb = io_mem_watch + paddr;
2210 address |= TLB_MMIO;
2211 break;
2212 }
6658ffb8 2213 }
0f459d16 2214 }
d79acba4 2215
0f459d16
PB
2216 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2217 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2218 te = &env->tlb_table[mmu_idx][index];
2219 te->addend = addend - vaddr;
2220 if (prot & PAGE_READ) {
2221 te->addr_read = address;
2222 } else {
2223 te->addr_read = -1;
2224 }
5c751e99 2225
0f459d16
PB
2226 if (prot & PAGE_EXEC) {
2227 te->addr_code = code_address;
2228 } else {
2229 te->addr_code = -1;
2230 }
2231 if (prot & PAGE_WRITE) {
2232 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2233 (pd & IO_MEM_ROMD)) {
2234 /* Write access calls the I/O callback. */
2235 te->addr_write = address | TLB_MMIO;
2236 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2237 !cpu_physical_memory_is_dirty(pd)) {
2238 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2239 } else {
0f459d16 2240 te->addr_write = address;
9fa3e853 2241 }
0f459d16
PB
2242 } else {
2243 te->addr_write = -1;
9fa3e853 2244 }
9fa3e853
FB
2245}
2246
0124311e
FB
2247#else
2248
ee8b7021 2249void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2250{
2251}
2252
2e12669a 2253void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2254{
2255}
2256
edf8e2af
MW
2257/*
2258 * Walks guest process memory "regions" one by one
2259 * and calls callback function 'fn' for each region.
2260 */
5cd2c5b6
RH
2261
2262struct walk_memory_regions_data
2263{
2264 walk_memory_regions_fn fn;
2265 void *priv;
2266 unsigned long start;
2267 int prot;
2268};
2269
2270static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2271 abi_ulong end, int new_prot)
5cd2c5b6
RH
2272{
2273 if (data->start != -1ul) {
2274 int rc = data->fn(data->priv, data->start, end, data->prot);
2275 if (rc != 0) {
2276 return rc;
2277 }
2278 }
2279
2280 data->start = (new_prot ? end : -1ul);
2281 data->prot = new_prot;
2282
2283 return 0;
2284}
2285
2286static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2287 abi_ulong base, int level, void **lp)
5cd2c5b6 2288{
b480d9b7 2289 abi_ulong pa;
5cd2c5b6
RH
2290 int i, rc;
2291
2292 if (*lp == NULL) {
2293 return walk_memory_regions_end(data, base, 0);
2294 }
2295
2296 if (level == 0) {
2297 PageDesc *pd = *lp;
7296abac 2298 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2299 int prot = pd[i].flags;
2300
2301 pa = base | (i << TARGET_PAGE_BITS);
2302 if (prot != data->prot) {
2303 rc = walk_memory_regions_end(data, pa, prot);
2304 if (rc != 0) {
2305 return rc;
9fa3e853 2306 }
9fa3e853 2307 }
5cd2c5b6
RH
2308 }
2309 } else {
2310 void **pp = *lp;
7296abac 2311 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2312 pa = base | ((abi_ulong)i <<
2313 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2314 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2315 if (rc != 0) {
2316 return rc;
2317 }
2318 }
2319 }
2320
2321 return 0;
2322}
2323
2324int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2325{
2326 struct walk_memory_regions_data data;
2327 unsigned long i;
2328
2329 data.fn = fn;
2330 data.priv = priv;
2331 data.start = -1ul;
2332 data.prot = 0;
2333
2334 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2335 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2336 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2337 if (rc != 0) {
2338 return rc;
9fa3e853 2339 }
33417e70 2340 }
5cd2c5b6
RH
2341
2342 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2343}
2344
b480d9b7
PB
2345static int dump_region(void *priv, abi_ulong start,
2346 abi_ulong end, unsigned long prot)
edf8e2af
MW
2347{
2348 FILE *f = (FILE *)priv;
2349
b480d9b7
PB
2350 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2351 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2352 start, end, end - start,
2353 ((prot & PAGE_READ) ? 'r' : '-'),
2354 ((prot & PAGE_WRITE) ? 'w' : '-'),
2355 ((prot & PAGE_EXEC) ? 'x' : '-'));
2356
2357 return (0);
2358}
2359
2360/* dump memory mappings */
2361void page_dump(FILE *f)
2362{
2363 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2364 "start", "end", "size", "prot");
2365 walk_memory_regions(f, dump_region);
33417e70
FB
2366}
2367
53a5960a 2368int page_get_flags(target_ulong address)
33417e70 2369{
9fa3e853
FB
2370 PageDesc *p;
2371
2372 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2373 if (!p)
9fa3e853
FB
2374 return 0;
2375 return p->flags;
2376}
2377
376a7909
RH
2378/* Modify the flags of a page and invalidate the code if necessary.
2379 The flag PAGE_WRITE_ORG is positioned automatically depending
2380 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2381void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2382{
376a7909
RH
2383 target_ulong addr, len;
2384
2385 /* This function should never be called with addresses outside the
2386 guest address space. If this assert fires, it probably indicates
2387 a missing call to h2g_valid. */
b480d9b7
PB
2388#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2389 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2390#endif
2391 assert(start < end);
9fa3e853
FB
2392
2393 start = start & TARGET_PAGE_MASK;
2394 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2395
2396 if (flags & PAGE_WRITE) {
9fa3e853 2397 flags |= PAGE_WRITE_ORG;
376a7909
RH
2398 }
2399
2400 for (addr = start, len = end - start;
2401 len != 0;
2402 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2403 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2404
2405 /* If the write protection bit is set, then we invalidate
2406 the code inside. */
5fafdf24 2407 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2408 (flags & PAGE_WRITE) &&
2409 p->first_tb) {
d720b93d 2410 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2411 }
2412 p->flags = flags;
2413 }
33417e70
FB
2414}
2415
3d97b40b
TS
2416int page_check_range(target_ulong start, target_ulong len, int flags)
2417{
2418 PageDesc *p;
2419 target_ulong end;
2420 target_ulong addr;
2421
376a7909
RH
2422 /* This function should never be called with addresses outside the
2423 guest address space. If this assert fires, it probably indicates
2424 a missing call to h2g_valid. */
338e9e6c
BS
2425#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2426 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2427#endif
2428
3e0650a9
RH
2429 if (len == 0) {
2430 return 0;
2431 }
376a7909
RH
2432 if (start + len - 1 < start) {
2433 /* We've wrapped around. */
55f280c9 2434 return -1;
376a7909 2435 }
55f280c9 2436
3d97b40b
TS
2437 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2438 start = start & TARGET_PAGE_MASK;
2439
376a7909
RH
2440 for (addr = start, len = end - start;
2441 len != 0;
2442 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2443 p = page_find(addr >> TARGET_PAGE_BITS);
2444 if( !p )
2445 return -1;
2446 if( !(p->flags & PAGE_VALID) )
2447 return -1;
2448
dae3270c 2449 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2450 return -1;
dae3270c
FB
2451 if (flags & PAGE_WRITE) {
2452 if (!(p->flags & PAGE_WRITE_ORG))
2453 return -1;
2454 /* unprotect the page if it was put read-only because it
2455 contains translated code */
2456 if (!(p->flags & PAGE_WRITE)) {
2457 if (!page_unprotect(addr, 0, NULL))
2458 return -1;
2459 }
2460 return 0;
2461 }
3d97b40b
TS
2462 }
2463 return 0;
2464}
2465
9fa3e853 2466/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2467 page. Return TRUE if the fault was successfully handled. */
53a5960a 2468int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2469{
45d679d6
AJ
2470 unsigned int prot;
2471 PageDesc *p;
53a5960a 2472 target_ulong host_start, host_end, addr;
9fa3e853 2473
c8a706fe
PB
2474 /* Technically this isn't safe inside a signal handler. However we
2475 know this only ever happens in a synchronous SEGV handler, so in
2476 practice it seems to be ok. */
2477 mmap_lock();
2478
45d679d6
AJ
2479 p = page_find(address >> TARGET_PAGE_BITS);
2480 if (!p) {
c8a706fe 2481 mmap_unlock();
9fa3e853 2482 return 0;
c8a706fe 2483 }
45d679d6 2484
9fa3e853
FB
2485 /* if the page was really writable, then we change its
2486 protection back to writable */
45d679d6
AJ
2487 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2488 host_start = address & qemu_host_page_mask;
2489 host_end = host_start + qemu_host_page_size;
2490
2491 prot = 0;
2492 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2493 p = page_find(addr >> TARGET_PAGE_BITS);
2494 p->flags |= PAGE_WRITE;
2495 prot |= p->flags;
2496
9fa3e853
FB
2497 /* and since the content will be modified, we must invalidate
2498 the corresponding translated code. */
45d679d6 2499 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2500#ifdef DEBUG_TB_CHECK
45d679d6 2501 tb_invalidate_check(addr);
9fa3e853 2502#endif
9fa3e853 2503 }
45d679d6
AJ
2504 mprotect((void *)g2h(host_start), qemu_host_page_size,
2505 prot & PAGE_BITS);
2506
2507 mmap_unlock();
2508 return 1;
9fa3e853 2509 }
c8a706fe 2510 mmap_unlock();
9fa3e853
FB
2511 return 0;
2512}
2513
6a00d601
FB
2514static inline void tlb_set_dirty(CPUState *env,
2515 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2516{
2517}
9fa3e853
FB
2518#endif /* defined(CONFIG_USER_ONLY) */
2519
e2eef170 2520#if !defined(CONFIG_USER_ONLY)
8da3ff18 2521
c04b2b78
PB
2522#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2523typedef struct subpage_t {
2524 target_phys_addr_t base;
f6405247
RH
2525 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2526 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2527} subpage_t;
2528
c227f099
AL
2529static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2530 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2531static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2532 ram_addr_t orig_memory,
2533 ram_addr_t region_offset);
db7b5426
BS
2534#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2535 need_subpage) \
2536 do { \
2537 if (addr > start_addr) \
2538 start_addr2 = 0; \
2539 else { \
2540 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2541 if (start_addr2 > 0) \
2542 need_subpage = 1; \
2543 } \
2544 \
49e9fba2 2545 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2546 end_addr2 = TARGET_PAGE_SIZE - 1; \
2547 else { \
2548 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2549 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2550 need_subpage = 1; \
2551 } \
2552 } while (0)
2553
8f2498f9
MT
2554/* register physical memory.
2555 For RAM, 'size' must be a multiple of the target page size.
2556 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2557 io memory page. The address used when calling the IO function is
2558 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2559 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2560 before calculating this offset. This should not be a problem unless
2561 the low bits of start_addr and region_offset differ. */
c227f099
AL
2562void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2563 ram_addr_t size,
2564 ram_addr_t phys_offset,
2565 ram_addr_t region_offset)
33417e70 2566{
c227f099 2567 target_phys_addr_t addr, end_addr;
92e873b9 2568 PhysPageDesc *p;
9d42037b 2569 CPUState *env;
c227f099 2570 ram_addr_t orig_size = size;
f6405247 2571 subpage_t *subpage;
33417e70 2572
f6f3fbca
MT
2573 cpu_notify_set_memory(start_addr, size, phys_offset);
2574
67c4d23c
PB
2575 if (phys_offset == IO_MEM_UNASSIGNED) {
2576 region_offset = start_addr;
2577 }
8da3ff18 2578 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2579 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2580 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2581 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2582 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2583 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2584 ram_addr_t orig_memory = p->phys_offset;
2585 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2586 int need_subpage = 0;
2587
2588 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2589 need_subpage);
f6405247 2590 if (need_subpage) {
db7b5426
BS
2591 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2592 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2593 &p->phys_offset, orig_memory,
2594 p->region_offset);
db7b5426
BS
2595 } else {
2596 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2597 >> IO_MEM_SHIFT];
2598 }
8da3ff18
PB
2599 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2600 region_offset);
2601 p->region_offset = 0;
db7b5426
BS
2602 } else {
2603 p->phys_offset = phys_offset;
2604 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2605 (phys_offset & IO_MEM_ROMD))
2606 phys_offset += TARGET_PAGE_SIZE;
2607 }
2608 } else {
2609 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2610 p->phys_offset = phys_offset;
8da3ff18 2611 p->region_offset = region_offset;
db7b5426 2612 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2613 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2614 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2615 } else {
c227f099 2616 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2617 int need_subpage = 0;
2618
2619 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2620 end_addr2, need_subpage);
2621
f6405247 2622 if (need_subpage) {
db7b5426 2623 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2624 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2625 addr & TARGET_PAGE_MASK);
db7b5426 2626 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2627 phys_offset, region_offset);
2628 p->region_offset = 0;
db7b5426
BS
2629 }
2630 }
2631 }
8da3ff18 2632 region_offset += TARGET_PAGE_SIZE;
33417e70 2633 }
3b46e624 2634
9d42037b
FB
2635 /* since each CPU stores ram addresses in its TLB cache, we must
2636 reset the modified entries */
2637 /* XXX: slow ! */
2638 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2639 tlb_flush(env, 1);
2640 }
33417e70
FB
2641}
2642
ba863458 2643/* XXX: temporary until new memory mapping API */
c227f099 2644ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2645{
2646 PhysPageDesc *p;
2647
2648 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2649 if (!p)
2650 return IO_MEM_UNASSIGNED;
2651 return p->phys_offset;
2652}
2653
c227f099 2654void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2655{
2656 if (kvm_enabled())
2657 kvm_coalesce_mmio_region(addr, size);
2658}
2659
c227f099 2660void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2661{
2662 if (kvm_enabled())
2663 kvm_uncoalesce_mmio_region(addr, size);
2664}
2665
62a2744c
SY
2666void qemu_flush_coalesced_mmio_buffer(void)
2667{
2668 if (kvm_enabled())
2669 kvm_flush_coalesced_mmio_buffer();
2670}
2671
c902760f
MT
2672#if defined(__linux__) && !defined(TARGET_S390X)
2673
2674#include <sys/vfs.h>
2675
2676#define HUGETLBFS_MAGIC 0x958458f6
2677
2678static long gethugepagesize(const char *path)
2679{
2680 struct statfs fs;
2681 int ret;
2682
2683 do {
9742bf26 2684 ret = statfs(path, &fs);
c902760f
MT
2685 } while (ret != 0 && errno == EINTR);
2686
2687 if (ret != 0) {
9742bf26
YT
2688 perror(path);
2689 return 0;
c902760f
MT
2690 }
2691
2692 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2693 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2694
2695 return fs.f_bsize;
2696}
2697
04b16653
AW
2698static void *file_ram_alloc(RAMBlock *block,
2699 ram_addr_t memory,
2700 const char *path)
c902760f
MT
2701{
2702 char *filename;
2703 void *area;
2704 int fd;
2705#ifdef MAP_POPULATE
2706 int flags;
2707#endif
2708 unsigned long hpagesize;
2709
2710 hpagesize = gethugepagesize(path);
2711 if (!hpagesize) {
9742bf26 2712 return NULL;
c902760f
MT
2713 }
2714
2715 if (memory < hpagesize) {
2716 return NULL;
2717 }
2718
2719 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2720 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2721 return NULL;
2722 }
2723
2724 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2725 return NULL;
c902760f
MT
2726 }
2727
2728 fd = mkstemp(filename);
2729 if (fd < 0) {
9742bf26
YT
2730 perror("unable to create backing store for hugepages");
2731 free(filename);
2732 return NULL;
c902760f
MT
2733 }
2734 unlink(filename);
2735 free(filename);
2736
2737 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2738
2739 /*
2740 * ftruncate is not supported by hugetlbfs in older
2741 * hosts, so don't bother bailing out on errors.
2742 * If anything goes wrong with it under other filesystems,
2743 * mmap will fail.
2744 */
2745 if (ftruncate(fd, memory))
9742bf26 2746 perror("ftruncate");
c902760f
MT
2747
2748#ifdef MAP_POPULATE
2749 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2750 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2751 * to sidestep this quirk.
2752 */
2753 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2754 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2755#else
2756 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2757#endif
2758 if (area == MAP_FAILED) {
9742bf26
YT
2759 perror("file_ram_alloc: can't mmap RAM pages");
2760 close(fd);
2761 return (NULL);
c902760f 2762 }
04b16653 2763 block->fd = fd;
c902760f
MT
2764 return area;
2765}
2766#endif
2767
d17b5288 2768static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2769{
2770 RAMBlock *block, *next_block;
09d7ae90 2771 ram_addr_t offset = 0, mingap = ULONG_MAX;
04b16653
AW
2772
2773 if (QLIST_EMPTY(&ram_list.blocks))
2774 return 0;
2775
2776 QLIST_FOREACH(block, &ram_list.blocks, next) {
2777 ram_addr_t end, next = ULONG_MAX;
2778
2779 end = block->offset + block->length;
2780
2781 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2782 if (next_block->offset >= end) {
2783 next = MIN(next, next_block->offset);
2784 }
2785 }
2786 if (next - end >= size && next - end < mingap) {
2787 offset = end;
2788 mingap = next - end;
2789 }
2790 }
2791 return offset;
2792}
2793
2794static ram_addr_t last_ram_offset(void)
d17b5288
AW
2795{
2796 RAMBlock *block;
2797 ram_addr_t last = 0;
2798
2799 QLIST_FOREACH(block, &ram_list.blocks, next)
2800 last = MAX(last, block->offset + block->length);
2801
2802 return last;
2803}
2804
84b89d78 2805ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
6977dfe6 2806 ram_addr_t size, void *host)
84b89d78
CM
2807{
2808 RAMBlock *new_block, *block;
2809
2810 size = TARGET_PAGE_ALIGN(size);
2811 new_block = qemu_mallocz(sizeof(*new_block));
2812
2813 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2814 char *id = dev->parent_bus->info->get_dev_path(dev);
2815 if (id) {
2816 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2817 qemu_free(id);
2818 }
2819 }
2820 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2821
2822 QLIST_FOREACH(block, &ram_list.blocks, next) {
2823 if (!strcmp(block->idstr, new_block->idstr)) {
2824 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2825 new_block->idstr);
2826 abort();
2827 }
2828 }
2829
6977dfe6
YT
2830 if (host) {
2831 new_block->host = host;
2832 } else {
2833 if (mem_path) {
c902760f 2834#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2835 new_block->host = file_ram_alloc(new_block, size, mem_path);
2836 if (!new_block->host) {
2837 new_block->host = qemu_vmalloc(size);
e78815a5 2838 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2839 }
c902760f 2840#else
6977dfe6
YT
2841 fprintf(stderr, "-mem-path option unsupported\n");
2842 exit(1);
c902760f 2843#endif
6977dfe6 2844 } else {
6b02494d 2845#if defined(TARGET_S390X) && defined(CONFIG_KVM)
6977dfe6
YT
2846 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2847 new_block->host = mmap((void*)0x1000000, size,
2848 PROT_EXEC|PROT_READ|PROT_WRITE,
2849 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2850#else
6977dfe6 2851 new_block->host = qemu_vmalloc(size);
6b02494d 2852#endif
e78815a5 2853 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2854 }
c902760f 2855 }
6977dfe6 2856
d17b5288 2857 new_block->offset = find_ram_offset(size);
94a6b54f
PB
2858 new_block->length = size;
2859
f471a17e 2860 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2861
f471a17e 2862 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
04b16653 2863 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2864 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2865 0xff, size >> TARGET_PAGE_BITS);
2866
6f0437e8
JK
2867 if (kvm_enabled())
2868 kvm_setup_guest_memory(new_block->host, size);
2869
94a6b54f
PB
2870 return new_block->offset;
2871}
e9a1ab19 2872
6977dfe6
YT
2873ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2874{
2875 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2876}
2877
c227f099 2878void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2879{
04b16653
AW
2880 RAMBlock *block;
2881
2882 QLIST_FOREACH(block, &ram_list.blocks, next) {
2883 if (addr == block->offset) {
2884 QLIST_REMOVE(block, next);
2885 if (mem_path) {
2886#if defined (__linux__) && !defined(TARGET_S390X)
2887 if (block->fd) {
2888 munmap(block->host, block->length);
2889 close(block->fd);
2890 } else {
2891 qemu_vfree(block->host);
2892 }
2893#endif
2894 } else {
2895#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2896 munmap(block->host, block->length);
2897#else
2898 qemu_vfree(block->host);
2899#endif
2900 }
2901 qemu_free(block);
2902 return;
2903 }
2904 }
2905
e9a1ab19
FB
2906}
2907
dc828ca1 2908/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2909 With the exception of the softmmu code in this file, this should
2910 only be used for local memory (e.g. video ram) that the device owns,
2911 and knows it isn't going to access beyond the end of the block.
2912
2913 It should not be used for general purpose DMA.
2914 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2915 */
c227f099 2916void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2917{
94a6b54f
PB
2918 RAMBlock *block;
2919
f471a17e
AW
2920 QLIST_FOREACH(block, &ram_list.blocks, next) {
2921 if (addr - block->offset < block->length) {
2922 QLIST_REMOVE(block, next);
2923 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2924 return block->host + (addr - block->offset);
2925 }
94a6b54f 2926 }
f471a17e
AW
2927
2928 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2929 abort();
2930
2931 return NULL;
dc828ca1
PB
2932}
2933
e890261f 2934int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 2935{
94a6b54f
PB
2936 RAMBlock *block;
2937 uint8_t *host = ptr;
2938
f471a17e
AW
2939 QLIST_FOREACH(block, &ram_list.blocks, next) {
2940 if (host - block->host < block->length) {
e890261f
MT
2941 *ram_addr = block->offset + (host - block->host);
2942 return 0;
f471a17e 2943 }
94a6b54f 2944 }
e890261f
MT
2945 return -1;
2946}
f471a17e 2947
e890261f
MT
2948/* Some of the softmmu routines need to translate from a host pointer
2949 (typically a TLB entry) back to a ram offset. */
2950ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2951{
2952 ram_addr_t ram_addr;
f471a17e 2953
e890261f
MT
2954 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2955 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2956 abort();
2957 }
2958 return ram_addr;
5579c7f3
PB
2959}
2960
c227f099 2961static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2962{
67d3b957 2963#ifdef DEBUG_UNASSIGNED
ab3d1727 2964 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2965#endif
faed1c2a 2966#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2967 do_unassigned_access(addr, 0, 0, 0, 1);
2968#endif
2969 return 0;
2970}
2971
c227f099 2972static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2973{
2974#ifdef DEBUG_UNASSIGNED
2975 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2976#endif
faed1c2a 2977#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2978 do_unassigned_access(addr, 0, 0, 0, 2);
2979#endif
2980 return 0;
2981}
2982
c227f099 2983static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2984{
2985#ifdef DEBUG_UNASSIGNED
2986 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2987#endif
faed1c2a 2988#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2989 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2990#endif
33417e70
FB
2991 return 0;
2992}
2993
c227f099 2994static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2995{
67d3b957 2996#ifdef DEBUG_UNASSIGNED
ab3d1727 2997 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2998#endif
faed1c2a 2999#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3000 do_unassigned_access(addr, 1, 0, 0, 1);
3001#endif
3002}
3003
c227f099 3004static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3005{
3006#ifdef DEBUG_UNASSIGNED
3007 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3008#endif
faed1c2a 3009#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3010 do_unassigned_access(addr, 1, 0, 0, 2);
3011#endif
3012}
3013
c227f099 3014static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3015{
3016#ifdef DEBUG_UNASSIGNED
3017 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3018#endif
faed1c2a 3019#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3020 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 3021#endif
33417e70
FB
3022}
3023
d60efc6b 3024static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3025 unassigned_mem_readb,
e18231a3
BS
3026 unassigned_mem_readw,
3027 unassigned_mem_readl,
33417e70
FB
3028};
3029
d60efc6b 3030static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3031 unassigned_mem_writeb,
e18231a3
BS
3032 unassigned_mem_writew,
3033 unassigned_mem_writel,
33417e70
FB
3034};
3035
c227f099 3036static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3037 uint32_t val)
9fa3e853 3038{
3a7d929e 3039 int dirty_flags;
f7c11b53 3040 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3041 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3042#if !defined(CONFIG_USER_ONLY)
3a7d929e 3043 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3044 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3045#endif
3a7d929e 3046 }
5579c7f3 3047 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3048 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3049 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3050 /* we remove the notdirty callback only if the code has been
3051 flushed */
3052 if (dirty_flags == 0xff)
2e70f6ef 3053 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3054}
3055
c227f099 3056static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3057 uint32_t val)
9fa3e853 3058{
3a7d929e 3059 int dirty_flags;
f7c11b53 3060 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3061 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3062#if !defined(CONFIG_USER_ONLY)
3a7d929e 3063 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3064 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3065#endif
3a7d929e 3066 }
5579c7f3 3067 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3068 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3069 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3070 /* we remove the notdirty callback only if the code has been
3071 flushed */
3072 if (dirty_flags == 0xff)
2e70f6ef 3073 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3074}
3075
c227f099 3076static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3077 uint32_t val)
9fa3e853 3078{
3a7d929e 3079 int dirty_flags;
f7c11b53 3080 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3081 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3082#if !defined(CONFIG_USER_ONLY)
3a7d929e 3083 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3084 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3085#endif
3a7d929e 3086 }
5579c7f3 3087 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3088 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3089 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3090 /* we remove the notdirty callback only if the code has been
3091 flushed */
3092 if (dirty_flags == 0xff)
2e70f6ef 3093 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3094}
3095
d60efc6b 3096static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3097 NULL, /* never used */
3098 NULL, /* never used */
3099 NULL, /* never used */
3100};
3101
d60efc6b 3102static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3103 notdirty_mem_writeb,
3104 notdirty_mem_writew,
3105 notdirty_mem_writel,
3106};
3107
0f459d16 3108/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3109static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3110{
3111 CPUState *env = cpu_single_env;
06d55cc1
AL
3112 target_ulong pc, cs_base;
3113 TranslationBlock *tb;
0f459d16 3114 target_ulong vaddr;
a1d1bb31 3115 CPUWatchpoint *wp;
06d55cc1 3116 int cpu_flags;
0f459d16 3117
06d55cc1
AL
3118 if (env->watchpoint_hit) {
3119 /* We re-entered the check after replacing the TB. Now raise
3120 * the debug interrupt so that is will trigger after the
3121 * current instruction. */
3122 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3123 return;
3124 }
2e70f6ef 3125 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3126 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3127 if ((vaddr == (wp->vaddr & len_mask) ||
3128 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3129 wp->flags |= BP_WATCHPOINT_HIT;
3130 if (!env->watchpoint_hit) {
3131 env->watchpoint_hit = wp;
3132 tb = tb_find_pc(env->mem_io_pc);
3133 if (!tb) {
3134 cpu_abort(env, "check_watchpoint: could not find TB for "
3135 "pc=%p", (void *)env->mem_io_pc);
3136 }
3137 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3138 tb_phys_invalidate(tb, -1);
3139 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3140 env->exception_index = EXCP_DEBUG;
3141 } else {
3142 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3143 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3144 }
3145 cpu_resume_from_signal(env, NULL);
06d55cc1 3146 }
6e140f28
AL
3147 } else {
3148 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3149 }
3150 }
3151}
3152
6658ffb8
PB
3153/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3154 so these check for a hit then pass through to the normal out-of-line
3155 phys routines. */
c227f099 3156static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3157{
b4051334 3158 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3159 return ldub_phys(addr);
3160}
3161
c227f099 3162static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3163{
b4051334 3164 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3165 return lduw_phys(addr);
3166}
3167
c227f099 3168static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3169{
b4051334 3170 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3171 return ldl_phys(addr);
3172}
3173
c227f099 3174static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3175 uint32_t val)
3176{
b4051334 3177 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3178 stb_phys(addr, val);
3179}
3180
c227f099 3181static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3182 uint32_t val)
3183{
b4051334 3184 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3185 stw_phys(addr, val);
3186}
3187
c227f099 3188static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3189 uint32_t val)
3190{
b4051334 3191 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3192 stl_phys(addr, val);
3193}
3194
d60efc6b 3195static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3196 watch_mem_readb,
3197 watch_mem_readw,
3198 watch_mem_readl,
3199};
3200
d60efc6b 3201static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3202 watch_mem_writeb,
3203 watch_mem_writew,
3204 watch_mem_writel,
3205};
6658ffb8 3206
f6405247
RH
3207static inline uint32_t subpage_readlen (subpage_t *mmio,
3208 target_phys_addr_t addr,
3209 unsigned int len)
db7b5426 3210{
f6405247 3211 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3212#if defined(DEBUG_SUBPAGE)
3213 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3214 mmio, len, addr, idx);
3215#endif
db7b5426 3216
f6405247
RH
3217 addr += mmio->region_offset[idx];
3218 idx = mmio->sub_io_index[idx];
3219 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3220}
3221
c227f099 3222static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3223 uint32_t value, unsigned int len)
db7b5426 3224{
f6405247 3225 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3226#if defined(DEBUG_SUBPAGE)
f6405247
RH
3227 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3228 __func__, mmio, len, addr, idx, value);
db7b5426 3229#endif
f6405247
RH
3230
3231 addr += mmio->region_offset[idx];
3232 idx = mmio->sub_io_index[idx];
3233 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3234}
3235
c227f099 3236static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3237{
db7b5426
BS
3238 return subpage_readlen(opaque, addr, 0);
3239}
3240
c227f099 3241static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3242 uint32_t value)
3243{
db7b5426
BS
3244 subpage_writelen(opaque, addr, value, 0);
3245}
3246
c227f099 3247static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3248{
db7b5426
BS
3249 return subpage_readlen(opaque, addr, 1);
3250}
3251
c227f099 3252static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3253 uint32_t value)
3254{
db7b5426
BS
3255 subpage_writelen(opaque, addr, value, 1);
3256}
3257
c227f099 3258static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3259{
db7b5426
BS
3260 return subpage_readlen(opaque, addr, 2);
3261}
3262
f6405247
RH
3263static void subpage_writel (void *opaque, target_phys_addr_t addr,
3264 uint32_t value)
db7b5426 3265{
db7b5426
BS
3266 subpage_writelen(opaque, addr, value, 2);
3267}
3268
d60efc6b 3269static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3270 &subpage_readb,
3271 &subpage_readw,
3272 &subpage_readl,
3273};
3274
d60efc6b 3275static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3276 &subpage_writeb,
3277 &subpage_writew,
3278 &subpage_writel,
3279};
3280
c227f099
AL
3281static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3282 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3283{
3284 int idx, eidx;
3285
3286 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3287 return -1;
3288 idx = SUBPAGE_IDX(start);
3289 eidx = SUBPAGE_IDX(end);
3290#if defined(DEBUG_SUBPAGE)
0bf9e31a 3291 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3292 mmio, start, end, idx, eidx, memory);
3293#endif
95c318f5
GN
3294 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3295 memory = IO_MEM_UNASSIGNED;
f6405247 3296 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3297 for (; idx <= eidx; idx++) {
f6405247
RH
3298 mmio->sub_io_index[idx] = memory;
3299 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3300 }
3301
3302 return 0;
3303}
3304
f6405247
RH
3305static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3306 ram_addr_t orig_memory,
3307 ram_addr_t region_offset)
db7b5426 3308{
c227f099 3309 subpage_t *mmio;
db7b5426
BS
3310 int subpage_memory;
3311
c227f099 3312 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3313
3314 mmio->base = base;
1eed09cb 3315 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3316#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3317 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3318 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3319#endif
1eec614b 3320 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3321 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3322
3323 return mmio;
3324}
3325
88715657
AL
3326static int get_free_io_mem_idx(void)
3327{
3328 int i;
3329
3330 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3331 if (!io_mem_used[i]) {
3332 io_mem_used[i] = 1;
3333 return i;
3334 }
c6703b47 3335 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3336 return -1;
3337}
3338
33417e70
FB
3339/* mem_read and mem_write are arrays of functions containing the
3340 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3341 2). Functions can be omitted with a NULL function pointer.
3ee89922 3342 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3343 modified. If it is zero, a new io zone is allocated. The return
3344 value can be used with cpu_register_physical_memory(). (-1) is
3345 returned if error. */
1eed09cb 3346static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3347 CPUReadMemoryFunc * const *mem_read,
3348 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3349 void *opaque)
33417e70 3350{
3cab721d
RH
3351 int i;
3352
33417e70 3353 if (io_index <= 0) {
88715657
AL
3354 io_index = get_free_io_mem_idx();
3355 if (io_index == -1)
3356 return io_index;
33417e70 3357 } else {
1eed09cb 3358 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3359 if (io_index >= IO_MEM_NB_ENTRIES)
3360 return -1;
3361 }
b5ff1b31 3362
3cab721d
RH
3363 for (i = 0; i < 3; ++i) {
3364 io_mem_read[io_index][i]
3365 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3366 }
3367 for (i = 0; i < 3; ++i) {
3368 io_mem_write[io_index][i]
3369 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3370 }
a4193c8a 3371 io_mem_opaque[io_index] = opaque;
f6405247
RH
3372
3373 return (io_index << IO_MEM_SHIFT);
33417e70 3374}
61382a50 3375
d60efc6b
BS
3376int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3377 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3378 void *opaque)
3379{
3380 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3381}
3382
88715657
AL
3383void cpu_unregister_io_memory(int io_table_address)
3384{
3385 int i;
3386 int io_index = io_table_address >> IO_MEM_SHIFT;
3387
3388 for (i=0;i < 3; i++) {
3389 io_mem_read[io_index][i] = unassigned_mem_read[i];
3390 io_mem_write[io_index][i] = unassigned_mem_write[i];
3391 }
3392 io_mem_opaque[io_index] = NULL;
3393 io_mem_used[io_index] = 0;
3394}
3395
e9179ce1
AK
3396static void io_mem_init(void)
3397{
3398 int i;
3399
3400 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3401 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3402 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3403 for (i=0; i<5; i++)
3404 io_mem_used[i] = 1;
3405
3406 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3407 watch_mem_write, NULL);
e9179ce1
AK
3408}
3409
e2eef170
PB
3410#endif /* !defined(CONFIG_USER_ONLY) */
3411
13eb76e0
FB
3412/* physical memory access (slow version, mainly for debug) */
3413#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3414int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3415 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3416{
3417 int l, flags;
3418 target_ulong page;
53a5960a 3419 void * p;
13eb76e0
FB
3420
3421 while (len > 0) {
3422 page = addr & TARGET_PAGE_MASK;
3423 l = (page + TARGET_PAGE_SIZE) - addr;
3424 if (l > len)
3425 l = len;
3426 flags = page_get_flags(page);
3427 if (!(flags & PAGE_VALID))
a68fe89c 3428 return -1;
13eb76e0
FB
3429 if (is_write) {
3430 if (!(flags & PAGE_WRITE))
a68fe89c 3431 return -1;
579a97f7 3432 /* XXX: this code should not depend on lock_user */
72fb7daa 3433 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3434 return -1;
72fb7daa
AJ
3435 memcpy(p, buf, l);
3436 unlock_user(p, addr, l);
13eb76e0
FB
3437 } else {
3438 if (!(flags & PAGE_READ))
a68fe89c 3439 return -1;
579a97f7 3440 /* XXX: this code should not depend on lock_user */
72fb7daa 3441 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3442 return -1;
72fb7daa 3443 memcpy(buf, p, l);
5b257578 3444 unlock_user(p, addr, 0);
13eb76e0
FB
3445 }
3446 len -= l;
3447 buf += l;
3448 addr += l;
3449 }
a68fe89c 3450 return 0;
13eb76e0 3451}
8df1cd07 3452
13eb76e0 3453#else
c227f099 3454void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3455 int len, int is_write)
3456{
3457 int l, io_index;
3458 uint8_t *ptr;
3459 uint32_t val;
c227f099 3460 target_phys_addr_t page;
2e12669a 3461 unsigned long pd;
92e873b9 3462 PhysPageDesc *p;
3b46e624 3463
13eb76e0
FB
3464 while (len > 0) {
3465 page = addr & TARGET_PAGE_MASK;
3466 l = (page + TARGET_PAGE_SIZE) - addr;
3467 if (l > len)
3468 l = len;
92e873b9 3469 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3470 if (!p) {
3471 pd = IO_MEM_UNASSIGNED;
3472 } else {
3473 pd = p->phys_offset;
3474 }
3b46e624 3475
13eb76e0 3476 if (is_write) {
3a7d929e 3477 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3478 target_phys_addr_t addr1 = addr;
13eb76e0 3479 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3480 if (p)
6c2934db 3481 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3482 /* XXX: could force cpu_single_env to NULL to avoid
3483 potential bugs */
6c2934db 3484 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3485 /* 32 bit write access */
c27004ec 3486 val = ldl_p(buf);
6c2934db 3487 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3488 l = 4;
6c2934db 3489 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3490 /* 16 bit write access */
c27004ec 3491 val = lduw_p(buf);
6c2934db 3492 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3493 l = 2;
3494 } else {
1c213d19 3495 /* 8 bit write access */
c27004ec 3496 val = ldub_p(buf);
6c2934db 3497 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3498 l = 1;
3499 }
3500 } else {
b448f2f3
FB
3501 unsigned long addr1;
3502 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3503 /* RAM case */
5579c7f3 3504 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3505 memcpy(ptr, buf, l);
3a7d929e
FB
3506 if (!cpu_physical_memory_is_dirty(addr1)) {
3507 /* invalidate code */
3508 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3509 /* set dirty bit */
f7c11b53
YT
3510 cpu_physical_memory_set_dirty_flags(
3511 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3512 }
13eb76e0
FB
3513 }
3514 } else {
5fafdf24 3515 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3516 !(pd & IO_MEM_ROMD)) {
c227f099 3517 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3518 /* I/O case */
3519 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3520 if (p)
6c2934db
AJ
3521 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3522 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3523 /* 32 bit read access */
6c2934db 3524 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3525 stl_p(buf, val);
13eb76e0 3526 l = 4;
6c2934db 3527 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3528 /* 16 bit read access */
6c2934db 3529 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3530 stw_p(buf, val);
13eb76e0
FB
3531 l = 2;
3532 } else {
1c213d19 3533 /* 8 bit read access */
6c2934db 3534 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3535 stb_p(buf, val);
13eb76e0
FB
3536 l = 1;
3537 }
3538 } else {
3539 /* RAM case */
5579c7f3 3540 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3541 (addr & ~TARGET_PAGE_MASK);
3542 memcpy(buf, ptr, l);
3543 }
3544 }
3545 len -= l;
3546 buf += l;
3547 addr += l;
3548 }
3549}
8df1cd07 3550
d0ecd2aa 3551/* used for ROM loading : can write in RAM and ROM */
c227f099 3552void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3553 const uint8_t *buf, int len)
3554{
3555 int l;
3556 uint8_t *ptr;
c227f099 3557 target_phys_addr_t page;
d0ecd2aa
FB
3558 unsigned long pd;
3559 PhysPageDesc *p;
3b46e624 3560
d0ecd2aa
FB
3561 while (len > 0) {
3562 page = addr & TARGET_PAGE_MASK;
3563 l = (page + TARGET_PAGE_SIZE) - addr;
3564 if (l > len)
3565 l = len;
3566 p = phys_page_find(page >> TARGET_PAGE_BITS);
3567 if (!p) {
3568 pd = IO_MEM_UNASSIGNED;
3569 } else {
3570 pd = p->phys_offset;
3571 }
3b46e624 3572
d0ecd2aa 3573 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3574 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3575 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3576 /* do nothing */
3577 } else {
3578 unsigned long addr1;
3579 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3580 /* ROM/RAM case */
5579c7f3 3581 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3582 memcpy(ptr, buf, l);
3583 }
3584 len -= l;
3585 buf += l;
3586 addr += l;
3587 }
3588}
3589
6d16c2f8
AL
3590typedef struct {
3591 void *buffer;
c227f099
AL
3592 target_phys_addr_t addr;
3593 target_phys_addr_t len;
6d16c2f8
AL
3594} BounceBuffer;
3595
3596static BounceBuffer bounce;
3597
ba223c29
AL
3598typedef struct MapClient {
3599 void *opaque;
3600 void (*callback)(void *opaque);
72cf2d4f 3601 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3602} MapClient;
3603
72cf2d4f
BS
3604static QLIST_HEAD(map_client_list, MapClient) map_client_list
3605 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3606
3607void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3608{
3609 MapClient *client = qemu_malloc(sizeof(*client));
3610
3611 client->opaque = opaque;
3612 client->callback = callback;
72cf2d4f 3613 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3614 return client;
3615}
3616
3617void cpu_unregister_map_client(void *_client)
3618{
3619 MapClient *client = (MapClient *)_client;
3620
72cf2d4f 3621 QLIST_REMOVE(client, link);
34d5e948 3622 qemu_free(client);
ba223c29
AL
3623}
3624
3625static void cpu_notify_map_clients(void)
3626{
3627 MapClient *client;
3628
72cf2d4f
BS
3629 while (!QLIST_EMPTY(&map_client_list)) {
3630 client = QLIST_FIRST(&map_client_list);
ba223c29 3631 client->callback(client->opaque);
34d5e948 3632 cpu_unregister_map_client(client);
ba223c29
AL
3633 }
3634}
3635
6d16c2f8
AL
3636/* Map a physical memory region into a host virtual address.
3637 * May map a subset of the requested range, given by and returned in *plen.
3638 * May return NULL if resources needed to perform the mapping are exhausted.
3639 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3640 * Use cpu_register_map_client() to know when retrying the map operation is
3641 * likely to succeed.
6d16c2f8 3642 */
c227f099
AL
3643void *cpu_physical_memory_map(target_phys_addr_t addr,
3644 target_phys_addr_t *plen,
6d16c2f8
AL
3645 int is_write)
3646{
c227f099
AL
3647 target_phys_addr_t len = *plen;
3648 target_phys_addr_t done = 0;
6d16c2f8
AL
3649 int l;
3650 uint8_t *ret = NULL;
3651 uint8_t *ptr;
c227f099 3652 target_phys_addr_t page;
6d16c2f8
AL
3653 unsigned long pd;
3654 PhysPageDesc *p;
3655 unsigned long addr1;
3656
3657 while (len > 0) {
3658 page = addr & TARGET_PAGE_MASK;
3659 l = (page + TARGET_PAGE_SIZE) - addr;
3660 if (l > len)
3661 l = len;
3662 p = phys_page_find(page >> TARGET_PAGE_BITS);
3663 if (!p) {
3664 pd = IO_MEM_UNASSIGNED;
3665 } else {
3666 pd = p->phys_offset;
3667 }
3668
3669 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3670 if (done || bounce.buffer) {
3671 break;
3672 }
3673 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3674 bounce.addr = addr;
3675 bounce.len = l;
3676 if (!is_write) {
3677 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3678 }
3679 ptr = bounce.buffer;
3680 } else {
3681 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3682 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3683 }
3684 if (!done) {
3685 ret = ptr;
3686 } else if (ret + done != ptr) {
3687 break;
3688 }
3689
3690 len -= l;
3691 addr += l;
3692 done += l;
3693 }
3694 *plen = done;
3695 return ret;
3696}
3697
3698/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3699 * Will also mark the memory as dirty if is_write == 1. access_len gives
3700 * the amount of memory that was actually read or written by the caller.
3701 */
c227f099
AL
3702void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3703 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3704{
3705 if (buffer != bounce.buffer) {
3706 if (is_write) {
e890261f 3707 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
3708 while (access_len) {
3709 unsigned l;
3710 l = TARGET_PAGE_SIZE;
3711 if (l > access_len)
3712 l = access_len;
3713 if (!cpu_physical_memory_is_dirty(addr1)) {
3714 /* invalidate code */
3715 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3716 /* set dirty bit */
f7c11b53
YT
3717 cpu_physical_memory_set_dirty_flags(
3718 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3719 }
3720 addr1 += l;
3721 access_len -= l;
3722 }
3723 }
3724 return;
3725 }
3726 if (is_write) {
3727 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3728 }
f8a83245 3729 qemu_vfree(bounce.buffer);
6d16c2f8 3730 bounce.buffer = NULL;
ba223c29 3731 cpu_notify_map_clients();
6d16c2f8 3732}
d0ecd2aa 3733
8df1cd07 3734/* warning: addr must be aligned */
c227f099 3735uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3736{
3737 int io_index;
3738 uint8_t *ptr;
3739 uint32_t val;
3740 unsigned long pd;
3741 PhysPageDesc *p;
3742
3743 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3744 if (!p) {
3745 pd = IO_MEM_UNASSIGNED;
3746 } else {
3747 pd = p->phys_offset;
3748 }
3b46e624 3749
5fafdf24 3750 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3751 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3752 /* I/O case */
3753 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3754 if (p)
3755 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3756 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3757 } else {
3758 /* RAM case */
5579c7f3 3759 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3760 (addr & ~TARGET_PAGE_MASK);
3761 val = ldl_p(ptr);
3762 }
3763 return val;
3764}
3765
84b7b8e7 3766/* warning: addr must be aligned */
c227f099 3767uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3768{
3769 int io_index;
3770 uint8_t *ptr;
3771 uint64_t val;
3772 unsigned long pd;
3773 PhysPageDesc *p;
3774
3775 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3776 if (!p) {
3777 pd = IO_MEM_UNASSIGNED;
3778 } else {
3779 pd = p->phys_offset;
3780 }
3b46e624 3781
2a4188a3
FB
3782 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3783 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3784 /* I/O case */
3785 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3786 if (p)
3787 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3788#ifdef TARGET_WORDS_BIGENDIAN
3789 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3790 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3791#else
3792 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3793 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3794#endif
3795 } else {
3796 /* RAM case */
5579c7f3 3797 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3798 (addr & ~TARGET_PAGE_MASK);
3799 val = ldq_p(ptr);
3800 }
3801 return val;
3802}
3803
aab33094 3804/* XXX: optimize */
c227f099 3805uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3806{
3807 uint8_t val;
3808 cpu_physical_memory_read(addr, &val, 1);
3809 return val;
3810}
3811
733f0b02 3812/* warning: addr must be aligned */
c227f099 3813uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 3814{
733f0b02
MT
3815 int io_index;
3816 uint8_t *ptr;
3817 uint64_t val;
3818 unsigned long pd;
3819 PhysPageDesc *p;
3820
3821 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3822 if (!p) {
3823 pd = IO_MEM_UNASSIGNED;
3824 } else {
3825 pd = p->phys_offset;
3826 }
3827
3828 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3829 !(pd & IO_MEM_ROMD)) {
3830 /* I/O case */
3831 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3832 if (p)
3833 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3834 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3835 } else {
3836 /* RAM case */
3837 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3838 (addr & ~TARGET_PAGE_MASK);
3839 val = lduw_p(ptr);
3840 }
3841 return val;
aab33094
FB
3842}
3843
8df1cd07
FB
3844/* warning: addr must be aligned. The ram page is not masked as dirty
3845 and the code inside is not invalidated. It is useful if the dirty
3846 bits are used to track modified PTEs */
c227f099 3847void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3848{
3849 int io_index;
3850 uint8_t *ptr;
3851 unsigned long pd;
3852 PhysPageDesc *p;
3853
3854 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3855 if (!p) {
3856 pd = IO_MEM_UNASSIGNED;
3857 } else {
3858 pd = p->phys_offset;
3859 }
3b46e624 3860
3a7d929e 3861 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3862 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3863 if (p)
3864 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3865 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3866 } else {
74576198 3867 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3868 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3869 stl_p(ptr, val);
74576198
AL
3870
3871 if (unlikely(in_migration)) {
3872 if (!cpu_physical_memory_is_dirty(addr1)) {
3873 /* invalidate code */
3874 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3875 /* set dirty bit */
f7c11b53
YT
3876 cpu_physical_memory_set_dirty_flags(
3877 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3878 }
3879 }
8df1cd07
FB
3880 }
3881}
3882
c227f099 3883void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3884{
3885 int io_index;
3886 uint8_t *ptr;
3887 unsigned long pd;
3888 PhysPageDesc *p;
3889
3890 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3891 if (!p) {
3892 pd = IO_MEM_UNASSIGNED;
3893 } else {
3894 pd = p->phys_offset;
3895 }
3b46e624 3896
bc98a7ef
JM
3897 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3898 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3899 if (p)
3900 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3901#ifdef TARGET_WORDS_BIGENDIAN
3902 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3903 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3904#else
3905 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3906 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3907#endif
3908 } else {
5579c7f3 3909 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3910 (addr & ~TARGET_PAGE_MASK);
3911 stq_p(ptr, val);
3912 }
3913}
3914
8df1cd07 3915/* warning: addr must be aligned */
c227f099 3916void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3917{
3918 int io_index;
3919 uint8_t *ptr;
3920 unsigned long pd;
3921 PhysPageDesc *p;
3922
3923 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3924 if (!p) {
3925 pd = IO_MEM_UNASSIGNED;
3926 } else {
3927 pd = p->phys_offset;
3928 }
3b46e624 3929
3a7d929e 3930 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3931 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3932 if (p)
3933 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3934 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3935 } else {
3936 unsigned long addr1;
3937 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3938 /* RAM case */
5579c7f3 3939 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3940 stl_p(ptr, val);
3a7d929e
FB
3941 if (!cpu_physical_memory_is_dirty(addr1)) {
3942 /* invalidate code */
3943 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3944 /* set dirty bit */
f7c11b53
YT
3945 cpu_physical_memory_set_dirty_flags(addr1,
3946 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3947 }
8df1cd07
FB
3948 }
3949}
3950
aab33094 3951/* XXX: optimize */
c227f099 3952void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3953{
3954 uint8_t v = val;
3955 cpu_physical_memory_write(addr, &v, 1);
3956}
3957
733f0b02 3958/* warning: addr must be aligned */
c227f099 3959void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 3960{
733f0b02
MT
3961 int io_index;
3962 uint8_t *ptr;
3963 unsigned long pd;
3964 PhysPageDesc *p;
3965
3966 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3967 if (!p) {
3968 pd = IO_MEM_UNASSIGNED;
3969 } else {
3970 pd = p->phys_offset;
3971 }
3972
3973 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3974 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3975 if (p)
3976 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3977 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3978 } else {
3979 unsigned long addr1;
3980 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3981 /* RAM case */
3982 ptr = qemu_get_ram_ptr(addr1);
3983 stw_p(ptr, val);
3984 if (!cpu_physical_memory_is_dirty(addr1)) {
3985 /* invalidate code */
3986 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
3987 /* set dirty bit */
3988 cpu_physical_memory_set_dirty_flags(addr1,
3989 (0xff & ~CODE_DIRTY_FLAG));
3990 }
3991 }
aab33094
FB
3992}
3993
3994/* XXX: optimize */
c227f099 3995void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3996{
3997 val = tswap64(val);
3998 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3999}
4000
5e2972fd 4001/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4002int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4003 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4004{
4005 int l;
c227f099 4006 target_phys_addr_t phys_addr;
9b3c35e0 4007 target_ulong page;
13eb76e0
FB
4008
4009 while (len > 0) {
4010 page = addr & TARGET_PAGE_MASK;
4011 phys_addr = cpu_get_phys_page_debug(env, page);
4012 /* if no physical page mapped, return an error */
4013 if (phys_addr == -1)
4014 return -1;
4015 l = (page + TARGET_PAGE_SIZE) - addr;
4016 if (l > len)
4017 l = len;
5e2972fd 4018 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4019 if (is_write)
4020 cpu_physical_memory_write_rom(phys_addr, buf, l);
4021 else
5e2972fd 4022 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4023 len -= l;
4024 buf += l;
4025 addr += l;
4026 }
4027 return 0;
4028}
a68fe89c 4029#endif
13eb76e0 4030
2e70f6ef
PB
4031/* in deterministic execution mode, instructions doing device I/Os
4032 must be at the end of the TB */
4033void cpu_io_recompile(CPUState *env, void *retaddr)
4034{
4035 TranslationBlock *tb;
4036 uint32_t n, cflags;
4037 target_ulong pc, cs_base;
4038 uint64_t flags;
4039
4040 tb = tb_find_pc((unsigned long)retaddr);
4041 if (!tb) {
4042 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4043 retaddr);
4044 }
4045 n = env->icount_decr.u16.low + tb->icount;
4046 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4047 /* Calculate how many instructions had been executed before the fault
bf20dc07 4048 occurred. */
2e70f6ef
PB
4049 n = n - env->icount_decr.u16.low;
4050 /* Generate a new TB ending on the I/O insn. */
4051 n++;
4052 /* On MIPS and SH, delay slot instructions can only be restarted if
4053 they were already the first instruction in the TB. If this is not
bf20dc07 4054 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4055 branch. */
4056#if defined(TARGET_MIPS)
4057 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4058 env->active_tc.PC -= 4;
4059 env->icount_decr.u16.low++;
4060 env->hflags &= ~MIPS_HFLAG_BMASK;
4061 }
4062#elif defined(TARGET_SH4)
4063 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4064 && n > 1) {
4065 env->pc -= 2;
4066 env->icount_decr.u16.low++;
4067 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4068 }
4069#endif
4070 /* This should never happen. */
4071 if (n > CF_COUNT_MASK)
4072 cpu_abort(env, "TB too big during recompile");
4073
4074 cflags = n | CF_LAST_IO;
4075 pc = tb->pc;
4076 cs_base = tb->cs_base;
4077 flags = tb->flags;
4078 tb_phys_invalidate(tb, -1);
4079 /* FIXME: In theory this could raise an exception. In practice
4080 we have already translated the block once so it's probably ok. */
4081 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4082 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4083 the first in the TB) then we end up generating a whole new TB and
4084 repeating the fault, which is horribly inefficient.
4085 Better would be to execute just this insn uncached, or generate a
4086 second new TB. */
4087 cpu_resume_from_signal(env, NULL);
4088}
4089
b3755a91
PB
4090#if !defined(CONFIG_USER_ONLY)
4091
055403b2 4092void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4093{
4094 int i, target_code_size, max_target_code_size;
4095 int direct_jmp_count, direct_jmp2_count, cross_page;
4096 TranslationBlock *tb;
3b46e624 4097
e3db7226
FB
4098 target_code_size = 0;
4099 max_target_code_size = 0;
4100 cross_page = 0;
4101 direct_jmp_count = 0;
4102 direct_jmp2_count = 0;
4103 for(i = 0; i < nb_tbs; i++) {
4104 tb = &tbs[i];
4105 target_code_size += tb->size;
4106 if (tb->size > max_target_code_size)
4107 max_target_code_size = tb->size;
4108 if (tb->page_addr[1] != -1)
4109 cross_page++;
4110 if (tb->tb_next_offset[0] != 0xffff) {
4111 direct_jmp_count++;
4112 if (tb->tb_next_offset[1] != 0xffff) {
4113 direct_jmp2_count++;
4114 }
4115 }
4116 }
4117 /* XXX: avoid using doubles ? */
57fec1fe 4118 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4119 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4120 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4121 cpu_fprintf(f, "TB count %d/%d\n",
4122 nb_tbs, code_gen_max_blocks);
5fafdf24 4123 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4124 nb_tbs ? target_code_size / nb_tbs : 0,
4125 max_target_code_size);
055403b2 4126 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4127 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4128 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4129 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4130 cross_page,
e3db7226
FB
4131 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4132 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4133 direct_jmp_count,
e3db7226
FB
4134 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4135 direct_jmp2_count,
4136 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4137 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4138 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4139 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4140 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4141 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4142}
4143
61382a50
FB
4144#define MMUSUFFIX _cmmu
4145#define GETPC() NULL
4146#define env cpu_single_env
b769d8fe 4147#define SOFTMMU_CODE_ACCESS
61382a50
FB
4148
4149#define SHIFT 0
4150#include "softmmu_template.h"
4151
4152#define SHIFT 1
4153#include "softmmu_template.h"
4154
4155#define SHIFT 2
4156#include "softmmu_template.h"
4157
4158#define SHIFT 3
4159#include "softmmu_template.h"
4160
4161#undef env
4162
4163#endif