]> git.proxmox.com Git - qemu.git/blame - exec.c
etraxfs_eth: drop bogus cpu_unregister_io_memory()
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
fd6ce8f6 60//#define DEBUG_TB_INVALIDATE
66e85a21 61//#define DEBUG_FLUSH
9fa3e853 62//#define DEBUG_TLB
67d3b957 63//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
64
65/* make various TB consistency checks */
5fafdf24
TS
66//#define DEBUG_TB_CHECK
67//#define DEBUG_TLB_CHECK
fd6ce8f6 68
1196be37 69//#define DEBUG_IOPORT
db7b5426 70//#define DEBUG_SUBPAGE
1196be37 71
99773bd4
PB
72#if !defined(CONFIG_USER_ONLY)
73/* TB consistency checks only implemented for usermode emulation. */
74#undef DEBUG_TB_CHECK
75#endif
76
9fa3e853
FB
77#define SMC_BITMAP_USE_THRESHOLD 10
78
bdaf78e0 79static TranslationBlock *tbs;
24ab68ac 80static int code_gen_max_blocks;
9fa3e853 81TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 82static int nb_tbs;
eb51d102 83/* any access to the tbs or the page table must use this lock */
c227f099 84spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 85
141ac468
BS
86#if defined(__arm__) || defined(__sparc_v9__)
87/* The prologue must be reachable with a direct jump. ARM and Sparc64
88 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
89 section close to code segment. */
90#define code_gen_section \
91 __attribute__((__section__(".gen_code"))) \
92 __attribute__((aligned (32)))
f8e2af11
SW
93#elif defined(_WIN32)
94/* Maximum alignment for Win32 is 16. */
95#define code_gen_section \
96 __attribute__((aligned (16)))
d03d860b
BS
97#else
98#define code_gen_section \
99 __attribute__((aligned (32)))
100#endif
101
102uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
103static uint8_t *code_gen_buffer;
104static unsigned long code_gen_buffer_size;
26a5f13b 105/* threshold to flush the translated code buffer */
bdaf78e0 106static unsigned long code_gen_buffer_max_size;
24ab68ac 107static uint8_t *code_gen_ptr;
fd6ce8f6 108
e2eef170 109#if !defined(CONFIG_USER_ONLY)
9fa3e853 110int phys_ram_fd;
74576198 111static int in_migration;
94a6b54f 112
85d59fef 113RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
114
115static MemoryRegion *system_memory;
309cb471 116static MemoryRegion *system_io;
62152b8a 117
e2eef170 118#endif
9fa3e853 119
6a00d601
FB
120CPUState *first_cpu;
121/* current CPU in the current thread. It is only valid inside
122 cpu_exec() */
b3c4bbe5 123DEFINE_TLS(CPUState *,cpu_single_env);
2e70f6ef 124/* 0 = Do not count executed instructions.
bf20dc07 125 1 = Precise instruction counting.
2e70f6ef
PB
126 2 = Adaptive rate instruction counting. */
127int use_icount = 0;
6a00d601 128
54936004 129typedef struct PageDesc {
92e873b9 130 /* list of TBs intersecting this ram page */
fd6ce8f6 131 TranslationBlock *first_tb;
9fa3e853
FB
132 /* in order to optimize self modifying code, we count the number
133 of lookups we do to a given page to use a bitmap */
134 unsigned int code_write_count;
135 uint8_t *code_bitmap;
136#if defined(CONFIG_USER_ONLY)
137 unsigned long flags;
138#endif
54936004
FB
139} PageDesc;
140
41c1b1c9 141/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
142 while in user mode we want it to be based on virtual addresses. */
143#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
144#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
145# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
146#else
5cd2c5b6 147# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 148#endif
bedb69ea 149#else
5cd2c5b6 150# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 151#endif
54936004 152
5cd2c5b6
RH
153/* Size of the L2 (and L3, etc) page tables. */
154#define L2_BITS 10
54936004
FB
155#define L2_SIZE (1 << L2_BITS)
156
5cd2c5b6
RH
157/* The bits remaining after N lower levels of page tables. */
158#define P_L1_BITS_REM \
159 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
160#define V_L1_BITS_REM \
161 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
162
163/* Size of the L1 page table. Avoid silly small sizes. */
164#if P_L1_BITS_REM < 4
165#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
166#else
167#define P_L1_BITS P_L1_BITS_REM
168#endif
169
170#if V_L1_BITS_REM < 4
171#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172#else
173#define V_L1_BITS V_L1_BITS_REM
174#endif
175
176#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
177#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
178
179#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
180#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
181
83fb7adf 182unsigned long qemu_real_host_page_size;
83fb7adf
FB
183unsigned long qemu_host_page_size;
184unsigned long qemu_host_page_mask;
54936004 185
5cd2c5b6
RH
186/* This is a multi-level map on the virtual address space.
187 The bottom level has pointers to PageDesc. */
188static void *l1_map[V_L1_SIZE];
54936004 189
e2eef170 190#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
191typedef struct PhysPageDesc {
192 /* offset in host memory of the page + io_index in the low bits */
193 ram_addr_t phys_offset;
194 ram_addr_t region_offset;
195} PhysPageDesc;
196
5cd2c5b6
RH
197/* This is a multi-level map on the physical address space.
198 The bottom level has pointers to PhysPageDesc. */
199static void *l1_phys_map[P_L1_SIZE];
6d9a1304 200
e2eef170 201static void io_mem_init(void);
62152b8a 202static void memory_map_init(void);
e2eef170 203
33417e70 204/* io memory support */
33417e70
FB
205CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
206CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 207void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 208static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
209static int io_mem_watch;
210#endif
33417e70 211
34865134 212/* log support */
1e8b27ca
JR
213#ifdef WIN32
214static const char *logfilename = "qemu.log";
215#else
d9b630fd 216static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 217#endif
34865134
FB
218FILE *logfile;
219int loglevel;
e735b91c 220static int log_append = 0;
34865134 221
e3db7226 222/* statistics */
b3755a91 223#if !defined(CONFIG_USER_ONLY)
e3db7226 224static int tlb_flush_count;
b3755a91 225#endif
e3db7226
FB
226static int tb_flush_count;
227static int tb_phys_invalidate_count;
228
7cb69cae
FB
229#ifdef _WIN32
230static void map_exec(void *addr, long size)
231{
232 DWORD old_protect;
233 VirtualProtect(addr, size,
234 PAGE_EXECUTE_READWRITE, &old_protect);
235
236}
237#else
238static void map_exec(void *addr, long size)
239{
4369415f 240 unsigned long start, end, page_size;
7cb69cae 241
4369415f 242 page_size = getpagesize();
7cb69cae 243 start = (unsigned long)addr;
4369415f 244 start &= ~(page_size - 1);
7cb69cae
FB
245
246 end = (unsigned long)addr + size;
4369415f
FB
247 end += page_size - 1;
248 end &= ~(page_size - 1);
7cb69cae
FB
249
250 mprotect((void *)start, end - start,
251 PROT_READ | PROT_WRITE | PROT_EXEC);
252}
253#endif
254
b346ff46 255static void page_init(void)
54936004 256{
83fb7adf 257 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 258 TARGET_PAGE_SIZE */
c2b48b69
AL
259#ifdef _WIN32
260 {
261 SYSTEM_INFO system_info;
262
263 GetSystemInfo(&system_info);
264 qemu_real_host_page_size = system_info.dwPageSize;
265 }
266#else
267 qemu_real_host_page_size = getpagesize();
268#endif
83fb7adf
FB
269 if (qemu_host_page_size == 0)
270 qemu_host_page_size = qemu_real_host_page_size;
271 if (qemu_host_page_size < TARGET_PAGE_SIZE)
272 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 274
2e9a5713 275#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 276 {
f01576f1
JL
277#ifdef HAVE_KINFO_GETVMMAP
278 struct kinfo_vmentry *freep;
279 int i, cnt;
280
281 freep = kinfo_getvmmap(getpid(), &cnt);
282 if (freep) {
283 mmap_lock();
284 for (i = 0; i < cnt; i++) {
285 unsigned long startaddr, endaddr;
286
287 startaddr = freep[i].kve_start;
288 endaddr = freep[i].kve_end;
289 if (h2g_valid(startaddr)) {
290 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
291
292 if (h2g_valid(endaddr)) {
293 endaddr = h2g(endaddr);
fd436907 294 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
295 } else {
296#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
297 endaddr = ~0ul;
fd436907 298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
299#endif
300 }
301 }
302 }
303 free(freep);
304 mmap_unlock();
305 }
306#else
50a9569b 307 FILE *f;
50a9569b 308
0776590d 309 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 310
fd436907 311 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 312 if (f) {
5cd2c5b6
RH
313 mmap_lock();
314
50a9569b 315 do {
5cd2c5b6
RH
316 unsigned long startaddr, endaddr;
317 int n;
318
319 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
320
321 if (n == 2 && h2g_valid(startaddr)) {
322 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
323
324 if (h2g_valid(endaddr)) {
325 endaddr = h2g(endaddr);
326 } else {
327 endaddr = ~0ul;
328 }
329 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
330 }
331 } while (!feof(f));
5cd2c5b6 332
50a9569b 333 fclose(f);
5cd2c5b6 334 mmap_unlock();
50a9569b 335 }
f01576f1 336#endif
50a9569b
AZ
337 }
338#endif
54936004
FB
339}
340
41c1b1c9 341static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 342{
41c1b1c9
PB
343 PageDesc *pd;
344 void **lp;
345 int i;
346
5cd2c5b6 347#if defined(CONFIG_USER_ONLY)
7267c094 348 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
349# define ALLOC(P, SIZE) \
350 do { \
351 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
352 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
353 } while (0)
354#else
355# define ALLOC(P, SIZE) \
7267c094 356 do { P = g_malloc0(SIZE); } while (0)
17e2377a 357#endif
434929bf 358
5cd2c5b6
RH
359 /* Level 1. Always allocated. */
360 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
361
362 /* Level 2..N-1. */
363 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
364 void **p = *lp;
365
366 if (p == NULL) {
367 if (!alloc) {
368 return NULL;
369 }
370 ALLOC(p, sizeof(void *) * L2_SIZE);
371 *lp = p;
17e2377a 372 }
5cd2c5b6
RH
373
374 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 }
376
377 pd = *lp;
378 if (pd == NULL) {
379 if (!alloc) {
380 return NULL;
381 }
382 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
383 *lp = pd;
54936004 384 }
5cd2c5b6
RH
385
386#undef ALLOC
5cd2c5b6
RH
387
388 return pd + (index & (L2_SIZE - 1));
54936004
FB
389}
390
41c1b1c9 391static inline PageDesc *page_find(tb_page_addr_t index)
54936004 392{
5cd2c5b6 393 return page_find_alloc(index, 0);
fd6ce8f6
FB
394}
395
6d9a1304 396#if !defined(CONFIG_USER_ONLY)
c227f099 397static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 398{
e3f4e2a4 399 PhysPageDesc *pd;
5cd2c5b6
RH
400 void **lp;
401 int i;
92e873b9 402
5cd2c5b6
RH
403 /* Level 1. Always allocated. */
404 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 405
5cd2c5b6
RH
406 /* Level 2..N-1. */
407 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
408 void **p = *lp;
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
412 }
7267c094 413 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
5cd2c5b6
RH
414 }
415 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 416 }
5cd2c5b6 417
e3f4e2a4 418 pd = *lp;
5cd2c5b6 419 if (pd == NULL) {
e3f4e2a4 420 int i;
5ab97b7f 421 int first_index = index & ~(L2_SIZE - 1);
5cd2c5b6
RH
422
423 if (!alloc) {
108c49b8 424 return NULL;
5cd2c5b6
RH
425 }
426
7267c094 427 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
5cd2c5b6 428
67c4d23c 429 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6 430 pd[i].phys_offset = IO_MEM_UNASSIGNED;
5ab97b7f 431 pd[i].region_offset = (first_index + i) << TARGET_PAGE_BITS;
67c4d23c 432 }
92e873b9 433 }
5cd2c5b6
RH
434
435 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
436}
437
c227f099 438static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 439{
108c49b8 440 return phys_page_find_alloc(index, 0);
92e873b9
FB
441}
442
c227f099
AL
443static void tlb_protect_code(ram_addr_t ram_addr);
444static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 445 target_ulong vaddr);
c8a706fe
PB
446#define mmap_lock() do { } while(0)
447#define mmap_unlock() do { } while(0)
9fa3e853 448#endif
fd6ce8f6 449
4369415f
FB
450#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
451
452#if defined(CONFIG_USER_ONLY)
ccbb4d44 453/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
454 user mode. It will change when a dedicated libc will be used */
455#define USE_STATIC_CODE_GEN_BUFFER
456#endif
457
458#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
459static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
460 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
461#endif
462
8fcd3692 463static void code_gen_alloc(unsigned long tb_size)
26a5f13b 464{
4369415f
FB
465#ifdef USE_STATIC_CODE_GEN_BUFFER
466 code_gen_buffer = static_code_gen_buffer;
467 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
468 map_exec(code_gen_buffer, code_gen_buffer_size);
469#else
26a5f13b
FB
470 code_gen_buffer_size = tb_size;
471 if (code_gen_buffer_size == 0) {
4369415f 472#if defined(CONFIG_USER_ONLY)
4369415f
FB
473 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
474#else
ccbb4d44 475 /* XXX: needs adjustments */
94a6b54f 476 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 477#endif
26a5f13b
FB
478 }
479 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
480 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
481 /* The code gen buffer location may have constraints depending on
482 the host cpu and OS */
483#if defined(__linux__)
484 {
485 int flags;
141ac468
BS
486 void *start = NULL;
487
26a5f13b
FB
488 flags = MAP_PRIVATE | MAP_ANONYMOUS;
489#if defined(__x86_64__)
490 flags |= MAP_32BIT;
491 /* Cannot map more than that */
492 if (code_gen_buffer_size > (800 * 1024 * 1024))
493 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
494#elif defined(__sparc_v9__)
495 // Map the buffer below 2G, so we can use direct calls and branches
496 flags |= MAP_FIXED;
497 start = (void *) 0x60000000UL;
498 if (code_gen_buffer_size > (512 * 1024 * 1024))
499 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 500#elif defined(__arm__)
222f23f5 501 /* Keep the buffer no bigger than 16GB to branch between blocks */
1cb0661e
AZ
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
504#elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
509 }
510 start = (void *)0x90000000UL;
26a5f13b 511#endif
141ac468
BS
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
518 }
519 }
cbb608a5 520#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
521 || defined(__DragonFly__) || defined(__OpenBSD__) \
522 || defined(__NetBSD__)
06e67a82
AL
523 {
524 int flags;
525 void *addr = NULL;
526 flags = MAP_PRIVATE | MAP_ANONYMOUS;
527#if defined(__x86_64__)
528 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
529 * 0x40000000 is free */
530 flags |= MAP_FIXED;
531 addr = (void *)0x40000000;
532 /* Cannot map more than that */
533 if (code_gen_buffer_size > (800 * 1024 * 1024))
534 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
535#elif defined(__sparc_v9__)
536 // Map the buffer below 2G, so we can use direct calls and branches
537 flags |= MAP_FIXED;
538 addr = (void *) 0x60000000UL;
539 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
540 code_gen_buffer_size = (512 * 1024 * 1024);
541 }
06e67a82
AL
542#endif
543 code_gen_buffer = mmap(addr, code_gen_buffer_size,
544 PROT_WRITE | PROT_READ | PROT_EXEC,
545 flags, -1, 0);
546 if (code_gen_buffer == MAP_FAILED) {
547 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
548 exit(1);
549 }
550 }
26a5f13b 551#else
7267c094 552 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
553 map_exec(code_gen_buffer, code_gen_buffer_size);
554#endif
4369415f 555#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 556 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
557 code_gen_buffer_max_size = code_gen_buffer_size -
558 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 559 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 560 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
561}
562
563/* Must be called before using the QEMU cpus. 'tb_size' is the size
564 (in bytes) allocated to the translation buffer. Zero means default
565 size. */
d5ab9713 566void tcg_exec_init(unsigned long tb_size)
26a5f13b 567{
26a5f13b
FB
568 cpu_gen_init();
569 code_gen_alloc(tb_size);
570 code_gen_ptr = code_gen_buffer;
4369415f 571 page_init();
9002ec79
RH
572#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
573 /* There's no guest base to take into account, so go ahead and
574 initialize the prologue now. */
575 tcg_prologue_init(&tcg_ctx);
576#endif
26a5f13b
FB
577}
578
d5ab9713
JK
579bool tcg_enabled(void)
580{
581 return code_gen_buffer != NULL;
582}
583
584void cpu_exec_init_all(void)
585{
586#if !defined(CONFIG_USER_ONLY)
587 memory_map_init();
588 io_mem_init();
589#endif
590}
591
9656f324
PB
592#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
593
e59fb374 594static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
595{
596 CPUState *env = opaque;
9656f324 597
3098dba0
AJ
598 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
599 version_id is increased. */
600 env->interrupt_request &= ~0x01;
9656f324
PB
601 tlb_flush(env, 1);
602
603 return 0;
604}
e7f4eff7
JQ
605
606static const VMStateDescription vmstate_cpu_common = {
607 .name = "cpu_common",
608 .version_id = 1,
609 .minimum_version_id = 1,
610 .minimum_version_id_old = 1,
e7f4eff7
JQ
611 .post_load = cpu_common_post_load,
612 .fields = (VMStateField []) {
613 VMSTATE_UINT32(halted, CPUState),
614 VMSTATE_UINT32(interrupt_request, CPUState),
615 VMSTATE_END_OF_LIST()
616 }
617};
9656f324
PB
618#endif
619
950f1472
GC
620CPUState *qemu_get_cpu(int cpu)
621{
622 CPUState *env = first_cpu;
623
624 while (env) {
625 if (env->cpu_index == cpu)
626 break;
627 env = env->next_cpu;
628 }
629
630 return env;
631}
632
6a00d601 633void cpu_exec_init(CPUState *env)
fd6ce8f6 634{
6a00d601
FB
635 CPUState **penv;
636 int cpu_index;
637
c2764719
PB
638#if defined(CONFIG_USER_ONLY)
639 cpu_list_lock();
640#endif
6a00d601
FB
641 env->next_cpu = NULL;
642 penv = &first_cpu;
643 cpu_index = 0;
644 while (*penv != NULL) {
1e9fa730 645 penv = &(*penv)->next_cpu;
6a00d601
FB
646 cpu_index++;
647 }
648 env->cpu_index = cpu_index;
268a362c 649 env->numa_node = 0;
72cf2d4f
BS
650 QTAILQ_INIT(&env->breakpoints);
651 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
652#ifndef CONFIG_USER_ONLY
653 env->thread_id = qemu_get_thread_id();
654#endif
6a00d601 655 *penv = env;
c2764719
PB
656#if defined(CONFIG_USER_ONLY)
657 cpu_list_unlock();
658#endif
b3c7724c 659#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
660 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
661 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
662 cpu_save, cpu_load, env);
663#endif
fd6ce8f6
FB
664}
665
d1a1eb74
TG
666/* Allocate a new translation block. Flush the translation buffer if
667 too many translation blocks or too much generated code. */
668static TranslationBlock *tb_alloc(target_ulong pc)
669{
670 TranslationBlock *tb;
671
672 if (nb_tbs >= code_gen_max_blocks ||
673 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
674 return NULL;
675 tb = &tbs[nb_tbs++];
676 tb->pc = pc;
677 tb->cflags = 0;
678 return tb;
679}
680
681void tb_free(TranslationBlock *tb)
682{
683 /* In practice this is mostly used for single use temporary TB
684 Ignore the hard cases and just back up if this TB happens to
685 be the last one generated. */
686 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
687 code_gen_ptr = tb->tc_ptr;
688 nb_tbs--;
689 }
690}
691
9fa3e853
FB
692static inline void invalidate_page_bitmap(PageDesc *p)
693{
694 if (p->code_bitmap) {
7267c094 695 g_free(p->code_bitmap);
9fa3e853
FB
696 p->code_bitmap = NULL;
697 }
698 p->code_write_count = 0;
699}
700
5cd2c5b6
RH
701/* Set to NULL all the 'first_tb' fields in all PageDescs. */
702
703static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 704{
5cd2c5b6 705 int i;
fd6ce8f6 706
5cd2c5b6
RH
707 if (*lp == NULL) {
708 return;
709 }
710 if (level == 0) {
711 PageDesc *pd = *lp;
7296abac 712 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
713 pd[i].first_tb = NULL;
714 invalidate_page_bitmap(pd + i);
fd6ce8f6 715 }
5cd2c5b6
RH
716 } else {
717 void **pp = *lp;
7296abac 718 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
719 page_flush_tb_1 (level - 1, pp + i);
720 }
721 }
722}
723
724static void page_flush_tb(void)
725{
726 int i;
727 for (i = 0; i < V_L1_SIZE; i++) {
728 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
729 }
730}
731
732/* flush all the translation blocks */
d4e8164f 733/* XXX: tb_flush is currently not thread safe */
6a00d601 734void tb_flush(CPUState *env1)
fd6ce8f6 735{
6a00d601 736 CPUState *env;
0124311e 737#if defined(DEBUG_FLUSH)
ab3d1727
BS
738 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
739 (unsigned long)(code_gen_ptr - code_gen_buffer),
740 nb_tbs, nb_tbs > 0 ?
741 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 742#endif
26a5f13b 743 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
744 cpu_abort(env1, "Internal error: code buffer overflow\n");
745
fd6ce8f6 746 nb_tbs = 0;
3b46e624 747
6a00d601
FB
748 for(env = first_cpu; env != NULL; env = env->next_cpu) {
749 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
750 }
9fa3e853 751
8a8a608f 752 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 753 page_flush_tb();
9fa3e853 754
fd6ce8f6 755 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
756 /* XXX: flush processor icache at this point if cache flush is
757 expensive */
e3db7226 758 tb_flush_count++;
fd6ce8f6
FB
759}
760
761#ifdef DEBUG_TB_CHECK
762
bc98a7ef 763static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
764{
765 TranslationBlock *tb;
766 int i;
767 address &= TARGET_PAGE_MASK;
99773bd4
PB
768 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
769 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
770 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
771 address >= tb->pc + tb->size)) {
0bf9e31a
BS
772 printf("ERROR invalidate: address=" TARGET_FMT_lx
773 " PC=%08lx size=%04x\n",
99773bd4 774 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
775 }
776 }
777 }
778}
779
780/* verify that all the pages have correct rights for code */
781static void tb_page_check(void)
782{
783 TranslationBlock *tb;
784 int i, flags1, flags2;
3b46e624 785
99773bd4
PB
786 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
787 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
788 flags1 = page_get_flags(tb->pc);
789 flags2 = page_get_flags(tb->pc + tb->size - 1);
790 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
791 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 792 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
793 }
794 }
795 }
796}
797
798#endif
799
800/* invalidate one TB */
801static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
802 int next_offset)
803{
804 TranslationBlock *tb1;
805 for(;;) {
806 tb1 = *ptb;
807 if (tb1 == tb) {
808 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
809 break;
810 }
811 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
812 }
813}
814
9fa3e853
FB
815static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
816{
817 TranslationBlock *tb1;
818 unsigned int n1;
819
820 for(;;) {
821 tb1 = *ptb;
822 n1 = (long)tb1 & 3;
823 tb1 = (TranslationBlock *)((long)tb1 & ~3);
824 if (tb1 == tb) {
825 *ptb = tb1->page_next[n1];
826 break;
827 }
828 ptb = &tb1->page_next[n1];
829 }
830}
831
d4e8164f
FB
832static inline void tb_jmp_remove(TranslationBlock *tb, int n)
833{
834 TranslationBlock *tb1, **ptb;
835 unsigned int n1;
836
837 ptb = &tb->jmp_next[n];
838 tb1 = *ptb;
839 if (tb1) {
840 /* find tb(n) in circular list */
841 for(;;) {
842 tb1 = *ptb;
843 n1 = (long)tb1 & 3;
844 tb1 = (TranslationBlock *)((long)tb1 & ~3);
845 if (n1 == n && tb1 == tb)
846 break;
847 if (n1 == 2) {
848 ptb = &tb1->jmp_first;
849 } else {
850 ptb = &tb1->jmp_next[n1];
851 }
852 }
853 /* now we can suppress tb(n) from the list */
854 *ptb = tb->jmp_next[n];
855
856 tb->jmp_next[n] = NULL;
857 }
858}
859
860/* reset the jump entry 'n' of a TB so that it is not chained to
861 another TB */
862static inline void tb_reset_jump(TranslationBlock *tb, int n)
863{
864 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
865}
866
41c1b1c9 867void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 868{
6a00d601 869 CPUState *env;
8a40a180 870 PageDesc *p;
d4e8164f 871 unsigned int h, n1;
41c1b1c9 872 tb_page_addr_t phys_pc;
8a40a180 873 TranslationBlock *tb1, *tb2;
3b46e624 874
8a40a180
FB
875 /* remove the TB from the hash list */
876 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
877 h = tb_phys_hash_func(phys_pc);
5fafdf24 878 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
879 offsetof(TranslationBlock, phys_hash_next));
880
881 /* remove the TB from the page list */
882 if (tb->page_addr[0] != page_addr) {
883 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
884 tb_page_remove(&p->first_tb, tb);
885 invalidate_page_bitmap(p);
886 }
887 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
888 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
889 tb_page_remove(&p->first_tb, tb);
890 invalidate_page_bitmap(p);
891 }
892
36bdbe54 893 tb_invalidated_flag = 1;
59817ccb 894
fd6ce8f6 895 /* remove the TB from the hash list */
8a40a180 896 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
897 for(env = first_cpu; env != NULL; env = env->next_cpu) {
898 if (env->tb_jmp_cache[h] == tb)
899 env->tb_jmp_cache[h] = NULL;
900 }
d4e8164f
FB
901
902 /* suppress this TB from the two jump lists */
903 tb_jmp_remove(tb, 0);
904 tb_jmp_remove(tb, 1);
905
906 /* suppress any remaining jumps to this TB */
907 tb1 = tb->jmp_first;
908 for(;;) {
909 n1 = (long)tb1 & 3;
910 if (n1 == 2)
911 break;
912 tb1 = (TranslationBlock *)((long)tb1 & ~3);
913 tb2 = tb1->jmp_next[n1];
914 tb_reset_jump(tb1, n1);
915 tb1->jmp_next[n1] = NULL;
916 tb1 = tb2;
917 }
918 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 919
e3db7226 920 tb_phys_invalidate_count++;
9fa3e853
FB
921}
922
923static inline void set_bits(uint8_t *tab, int start, int len)
924{
925 int end, mask, end1;
926
927 end = start + len;
928 tab += start >> 3;
929 mask = 0xff << (start & 7);
930 if ((start & ~7) == (end & ~7)) {
931 if (start < end) {
932 mask &= ~(0xff << (end & 7));
933 *tab |= mask;
934 }
935 } else {
936 *tab++ |= mask;
937 start = (start + 8) & ~7;
938 end1 = end & ~7;
939 while (start < end1) {
940 *tab++ = 0xff;
941 start += 8;
942 }
943 if (start < end) {
944 mask = ~(0xff << (end & 7));
945 *tab |= mask;
946 }
947 }
948}
949
950static void build_page_bitmap(PageDesc *p)
951{
952 int n, tb_start, tb_end;
953 TranslationBlock *tb;
3b46e624 954
7267c094 955 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
956
957 tb = p->first_tb;
958 while (tb != NULL) {
959 n = (long)tb & 3;
960 tb = (TranslationBlock *)((long)tb & ~3);
961 /* NOTE: this is subtle as a TB may span two physical pages */
962 if (n == 0) {
963 /* NOTE: tb_end may be after the end of the page, but
964 it is not a problem */
965 tb_start = tb->pc & ~TARGET_PAGE_MASK;
966 tb_end = tb_start + tb->size;
967 if (tb_end > TARGET_PAGE_SIZE)
968 tb_end = TARGET_PAGE_SIZE;
969 } else {
970 tb_start = 0;
971 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
972 }
973 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
974 tb = tb->page_next[n];
975 }
976}
977
2e70f6ef
PB
978TranslationBlock *tb_gen_code(CPUState *env,
979 target_ulong pc, target_ulong cs_base,
980 int flags, int cflags)
d720b93d
FB
981{
982 TranslationBlock *tb;
983 uint8_t *tc_ptr;
41c1b1c9
PB
984 tb_page_addr_t phys_pc, phys_page2;
985 target_ulong virt_page2;
d720b93d
FB
986 int code_gen_size;
987
41c1b1c9 988 phys_pc = get_page_addr_code(env, pc);
c27004ec 989 tb = tb_alloc(pc);
d720b93d
FB
990 if (!tb) {
991 /* flush must be done */
992 tb_flush(env);
993 /* cannot fail at this point */
c27004ec 994 tb = tb_alloc(pc);
2e70f6ef
PB
995 /* Don't forget to invalidate previous TB info. */
996 tb_invalidated_flag = 1;
d720b93d
FB
997 }
998 tc_ptr = code_gen_ptr;
999 tb->tc_ptr = tc_ptr;
1000 tb->cs_base = cs_base;
1001 tb->flags = flags;
1002 tb->cflags = cflags;
d07bde88 1003 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 1004 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1005
d720b93d 1006 /* check next page if needed */
c27004ec 1007 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1008 phys_page2 = -1;
c27004ec 1009 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1010 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1011 }
41c1b1c9 1012 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1013 return tb;
d720b93d 1014}
3b46e624 1015
9fa3e853
FB
1016/* invalidate all TBs which intersect with the target physical page
1017 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1018 the same physical page. 'is_cpu_write_access' should be true if called
1019 from a real cpu write access: the virtual CPU will exit the current
1020 TB if code is modified inside this TB. */
41c1b1c9 1021void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1022 int is_cpu_write_access)
1023{
6b917547 1024 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1025 CPUState *env = cpu_single_env;
41c1b1c9 1026 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1027 PageDesc *p;
1028 int n;
1029#ifdef TARGET_HAS_PRECISE_SMC
1030 int current_tb_not_found = is_cpu_write_access;
1031 TranslationBlock *current_tb = NULL;
1032 int current_tb_modified = 0;
1033 target_ulong current_pc = 0;
1034 target_ulong current_cs_base = 0;
1035 int current_flags = 0;
1036#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1037
1038 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1039 if (!p)
9fa3e853 1040 return;
5fafdf24 1041 if (!p->code_bitmap &&
d720b93d
FB
1042 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1043 is_cpu_write_access) {
9fa3e853
FB
1044 /* build code bitmap */
1045 build_page_bitmap(p);
1046 }
1047
1048 /* we remove all the TBs in the range [start, end[ */
1049 /* XXX: see if in some cases it could be faster to invalidate all the code */
1050 tb = p->first_tb;
1051 while (tb != NULL) {
1052 n = (long)tb & 3;
1053 tb = (TranslationBlock *)((long)tb & ~3);
1054 tb_next = tb->page_next[n];
1055 /* NOTE: this is subtle as a TB may span two physical pages */
1056 if (n == 0) {
1057 /* NOTE: tb_end may be after the end of the page, but
1058 it is not a problem */
1059 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1060 tb_end = tb_start + tb->size;
1061 } else {
1062 tb_start = tb->page_addr[1];
1063 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1064 }
1065 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1066#ifdef TARGET_HAS_PRECISE_SMC
1067 if (current_tb_not_found) {
1068 current_tb_not_found = 0;
1069 current_tb = NULL;
2e70f6ef 1070 if (env->mem_io_pc) {
d720b93d 1071 /* now we have a real cpu fault */
2e70f6ef 1072 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1073 }
1074 }
1075 if (current_tb == tb &&
2e70f6ef 1076 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1077 /* If we are modifying the current TB, we must stop
1078 its execution. We could be more precise by checking
1079 that the modification is after the current PC, but it
1080 would require a specialized function to partially
1081 restore the CPU state */
3b46e624 1082
d720b93d 1083 current_tb_modified = 1;
618ba8e6 1084 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1085 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1086 &current_flags);
d720b93d
FB
1087 }
1088#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1089 /* we need to do that to handle the case where a signal
1090 occurs while doing tb_phys_invalidate() */
1091 saved_tb = NULL;
1092 if (env) {
1093 saved_tb = env->current_tb;
1094 env->current_tb = NULL;
1095 }
9fa3e853 1096 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1097 if (env) {
1098 env->current_tb = saved_tb;
1099 if (env->interrupt_request && env->current_tb)
1100 cpu_interrupt(env, env->interrupt_request);
1101 }
9fa3e853
FB
1102 }
1103 tb = tb_next;
1104 }
1105#if !defined(CONFIG_USER_ONLY)
1106 /* if no code remaining, no need to continue to use slow writes */
1107 if (!p->first_tb) {
1108 invalidate_page_bitmap(p);
d720b93d 1109 if (is_cpu_write_access) {
2e70f6ef 1110 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1111 }
1112 }
1113#endif
1114#ifdef TARGET_HAS_PRECISE_SMC
1115 if (current_tb_modified) {
1116 /* we generate a block containing just the instruction
1117 modifying the memory. It will ensure that it cannot modify
1118 itself */
ea1c1802 1119 env->current_tb = NULL;
2e70f6ef 1120 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1121 cpu_resume_from_signal(env, NULL);
9fa3e853 1122 }
fd6ce8f6 1123#endif
9fa3e853 1124}
fd6ce8f6 1125
9fa3e853 1126/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1127static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1128{
1129 PageDesc *p;
1130 int offset, b;
59817ccb 1131#if 0
a4193c8a 1132 if (1) {
93fcfe39
AL
1133 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1134 cpu_single_env->mem_io_vaddr, len,
1135 cpu_single_env->eip,
1136 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1137 }
1138#endif
9fa3e853 1139 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1140 if (!p)
9fa3e853
FB
1141 return;
1142 if (p->code_bitmap) {
1143 offset = start & ~TARGET_PAGE_MASK;
1144 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1145 if (b & ((1 << len) - 1))
1146 goto do_invalidate;
1147 } else {
1148 do_invalidate:
d720b93d 1149 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1150 }
1151}
1152
9fa3e853 1153#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1154static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1155 unsigned long pc, void *puc)
9fa3e853 1156{
6b917547 1157 TranslationBlock *tb;
9fa3e853 1158 PageDesc *p;
6b917547 1159 int n;
d720b93d 1160#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1161 TranslationBlock *current_tb = NULL;
d720b93d 1162 CPUState *env = cpu_single_env;
6b917547
AL
1163 int current_tb_modified = 0;
1164 target_ulong current_pc = 0;
1165 target_ulong current_cs_base = 0;
1166 int current_flags = 0;
d720b93d 1167#endif
9fa3e853
FB
1168
1169 addr &= TARGET_PAGE_MASK;
1170 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1171 if (!p)
9fa3e853
FB
1172 return;
1173 tb = p->first_tb;
d720b93d
FB
1174#ifdef TARGET_HAS_PRECISE_SMC
1175 if (tb && pc != 0) {
1176 current_tb = tb_find_pc(pc);
1177 }
1178#endif
9fa3e853
FB
1179 while (tb != NULL) {
1180 n = (long)tb & 3;
1181 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1182#ifdef TARGET_HAS_PRECISE_SMC
1183 if (current_tb == tb &&
2e70f6ef 1184 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1185 /* If we are modifying the current TB, we must stop
1186 its execution. We could be more precise by checking
1187 that the modification is after the current PC, but it
1188 would require a specialized function to partially
1189 restore the CPU state */
3b46e624 1190
d720b93d 1191 current_tb_modified = 1;
618ba8e6 1192 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1193 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1194 &current_flags);
d720b93d
FB
1195 }
1196#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1197 tb_phys_invalidate(tb, addr);
1198 tb = tb->page_next[n];
1199 }
fd6ce8f6 1200 p->first_tb = NULL;
d720b93d
FB
1201#ifdef TARGET_HAS_PRECISE_SMC
1202 if (current_tb_modified) {
1203 /* we generate a block containing just the instruction
1204 modifying the memory. It will ensure that it cannot modify
1205 itself */
ea1c1802 1206 env->current_tb = NULL;
2e70f6ef 1207 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1208 cpu_resume_from_signal(env, puc);
1209 }
1210#endif
fd6ce8f6 1211}
9fa3e853 1212#endif
fd6ce8f6
FB
1213
1214/* add the tb in the target page and protect it if necessary */
5fafdf24 1215static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1216 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1217{
1218 PageDesc *p;
4429ab44
JQ
1219#ifndef CONFIG_USER_ONLY
1220 bool page_already_protected;
1221#endif
9fa3e853
FB
1222
1223 tb->page_addr[n] = page_addr;
5cd2c5b6 1224 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1225 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1226#ifndef CONFIG_USER_ONLY
1227 page_already_protected = p->first_tb != NULL;
1228#endif
9fa3e853
FB
1229 p->first_tb = (TranslationBlock *)((long)tb | n);
1230 invalidate_page_bitmap(p);
fd6ce8f6 1231
107db443 1232#if defined(TARGET_HAS_SMC) || 1
d720b93d 1233
9fa3e853 1234#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1235 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1236 target_ulong addr;
1237 PageDesc *p2;
9fa3e853
FB
1238 int prot;
1239
fd6ce8f6
FB
1240 /* force the host page as non writable (writes will have a
1241 page fault + mprotect overhead) */
53a5960a 1242 page_addr &= qemu_host_page_mask;
fd6ce8f6 1243 prot = 0;
53a5960a
PB
1244 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1245 addr += TARGET_PAGE_SIZE) {
1246
1247 p2 = page_find (addr >> TARGET_PAGE_BITS);
1248 if (!p2)
1249 continue;
1250 prot |= p2->flags;
1251 p2->flags &= ~PAGE_WRITE;
53a5960a 1252 }
5fafdf24 1253 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1254 (prot & PAGE_BITS) & ~PAGE_WRITE);
1255#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1256 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1257 page_addr);
fd6ce8f6 1258#endif
fd6ce8f6 1259 }
9fa3e853
FB
1260#else
1261 /* if some code is already present, then the pages are already
1262 protected. So we handle the case where only the first TB is
1263 allocated in a physical page */
4429ab44 1264 if (!page_already_protected) {
6a00d601 1265 tlb_protect_code(page_addr);
9fa3e853
FB
1266 }
1267#endif
d720b93d
FB
1268
1269#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1270}
1271
9fa3e853
FB
1272/* add a new TB and link it to the physical page tables. phys_page2 is
1273 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1274void tb_link_page(TranslationBlock *tb,
1275 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1276{
9fa3e853
FB
1277 unsigned int h;
1278 TranslationBlock **ptb;
1279
c8a706fe
PB
1280 /* Grab the mmap lock to stop another thread invalidating this TB
1281 before we are done. */
1282 mmap_lock();
9fa3e853
FB
1283 /* add in the physical hash table */
1284 h = tb_phys_hash_func(phys_pc);
1285 ptb = &tb_phys_hash[h];
1286 tb->phys_hash_next = *ptb;
1287 *ptb = tb;
fd6ce8f6
FB
1288
1289 /* add in the page list */
9fa3e853
FB
1290 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1291 if (phys_page2 != -1)
1292 tb_alloc_page(tb, 1, phys_page2);
1293 else
1294 tb->page_addr[1] = -1;
9fa3e853 1295
d4e8164f
FB
1296 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1297 tb->jmp_next[0] = NULL;
1298 tb->jmp_next[1] = NULL;
1299
1300 /* init original jump addresses */
1301 if (tb->tb_next_offset[0] != 0xffff)
1302 tb_reset_jump(tb, 0);
1303 if (tb->tb_next_offset[1] != 0xffff)
1304 tb_reset_jump(tb, 1);
8a40a180
FB
1305
1306#ifdef DEBUG_TB_CHECK
1307 tb_page_check();
1308#endif
c8a706fe 1309 mmap_unlock();
fd6ce8f6
FB
1310}
1311
9fa3e853
FB
1312/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1313 tb[1].tc_ptr. Return NULL if not found */
1314TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1315{
9fa3e853
FB
1316 int m_min, m_max, m;
1317 unsigned long v;
1318 TranslationBlock *tb;
a513fe19
FB
1319
1320 if (nb_tbs <= 0)
1321 return NULL;
1322 if (tc_ptr < (unsigned long)code_gen_buffer ||
1323 tc_ptr >= (unsigned long)code_gen_ptr)
1324 return NULL;
1325 /* binary search (cf Knuth) */
1326 m_min = 0;
1327 m_max = nb_tbs - 1;
1328 while (m_min <= m_max) {
1329 m = (m_min + m_max) >> 1;
1330 tb = &tbs[m];
1331 v = (unsigned long)tb->tc_ptr;
1332 if (v == tc_ptr)
1333 return tb;
1334 else if (tc_ptr < v) {
1335 m_max = m - 1;
1336 } else {
1337 m_min = m + 1;
1338 }
5fafdf24 1339 }
a513fe19
FB
1340 return &tbs[m_max];
1341}
7501267e 1342
ea041c0e
FB
1343static void tb_reset_jump_recursive(TranslationBlock *tb);
1344
1345static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1346{
1347 TranslationBlock *tb1, *tb_next, **ptb;
1348 unsigned int n1;
1349
1350 tb1 = tb->jmp_next[n];
1351 if (tb1 != NULL) {
1352 /* find head of list */
1353 for(;;) {
1354 n1 = (long)tb1 & 3;
1355 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1356 if (n1 == 2)
1357 break;
1358 tb1 = tb1->jmp_next[n1];
1359 }
1360 /* we are now sure now that tb jumps to tb1 */
1361 tb_next = tb1;
1362
1363 /* remove tb from the jmp_first list */
1364 ptb = &tb_next->jmp_first;
1365 for(;;) {
1366 tb1 = *ptb;
1367 n1 = (long)tb1 & 3;
1368 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1369 if (n1 == n && tb1 == tb)
1370 break;
1371 ptb = &tb1->jmp_next[n1];
1372 }
1373 *ptb = tb->jmp_next[n];
1374 tb->jmp_next[n] = NULL;
3b46e624 1375
ea041c0e
FB
1376 /* suppress the jump to next tb in generated code */
1377 tb_reset_jump(tb, n);
1378
0124311e 1379 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1380 tb_reset_jump_recursive(tb_next);
1381 }
1382}
1383
1384static void tb_reset_jump_recursive(TranslationBlock *tb)
1385{
1386 tb_reset_jump_recursive2(tb, 0);
1387 tb_reset_jump_recursive2(tb, 1);
1388}
1389
1fddef4b 1390#if defined(TARGET_HAS_ICE)
94df27fd
PB
1391#if defined(CONFIG_USER_ONLY)
1392static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1393{
1394 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1395}
1396#else
d720b93d
FB
1397static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1398{
c227f099 1399 target_phys_addr_t addr;
9b3c35e0 1400 target_ulong pd;
c227f099 1401 ram_addr_t ram_addr;
c2f07f81 1402 PhysPageDesc *p;
d720b93d 1403
c2f07f81
PB
1404 addr = cpu_get_phys_page_debug(env, pc);
1405 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1406 if (!p) {
1407 pd = IO_MEM_UNASSIGNED;
1408 } else {
1409 pd = p->phys_offset;
1410 }
1411 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1412 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1413}
c27004ec 1414#endif
94df27fd 1415#endif /* TARGET_HAS_ICE */
d720b93d 1416
c527ee8f
PB
1417#if defined(CONFIG_USER_ONLY)
1418void cpu_watchpoint_remove_all(CPUState *env, int mask)
1419
1420{
1421}
1422
1423int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1424 int flags, CPUWatchpoint **watchpoint)
1425{
1426 return -ENOSYS;
1427}
1428#else
6658ffb8 1429/* Add a watchpoint. */
a1d1bb31
AL
1430int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1431 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1432{
b4051334 1433 target_ulong len_mask = ~(len - 1);
c0ce998e 1434 CPUWatchpoint *wp;
6658ffb8 1435
b4051334
AL
1436 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1437 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1438 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1439 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1440 return -EINVAL;
1441 }
7267c094 1442 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1443
1444 wp->vaddr = addr;
b4051334 1445 wp->len_mask = len_mask;
a1d1bb31
AL
1446 wp->flags = flags;
1447
2dc9f411 1448 /* keep all GDB-injected watchpoints in front */
c0ce998e 1449 if (flags & BP_GDB)
72cf2d4f 1450 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1451 else
72cf2d4f 1452 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1453
6658ffb8 1454 tlb_flush_page(env, addr);
a1d1bb31
AL
1455
1456 if (watchpoint)
1457 *watchpoint = wp;
1458 return 0;
6658ffb8
PB
1459}
1460
a1d1bb31
AL
1461/* Remove a specific watchpoint. */
1462int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1463 int flags)
6658ffb8 1464{
b4051334 1465 target_ulong len_mask = ~(len - 1);
a1d1bb31 1466 CPUWatchpoint *wp;
6658ffb8 1467
72cf2d4f 1468 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1469 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1470 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1471 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1472 return 0;
1473 }
1474 }
a1d1bb31 1475 return -ENOENT;
6658ffb8
PB
1476}
1477
a1d1bb31
AL
1478/* Remove a specific watchpoint by reference. */
1479void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1480{
72cf2d4f 1481 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1482
a1d1bb31
AL
1483 tlb_flush_page(env, watchpoint->vaddr);
1484
7267c094 1485 g_free(watchpoint);
a1d1bb31
AL
1486}
1487
1488/* Remove all matching watchpoints. */
1489void cpu_watchpoint_remove_all(CPUState *env, int mask)
1490{
c0ce998e 1491 CPUWatchpoint *wp, *next;
a1d1bb31 1492
72cf2d4f 1493 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1494 if (wp->flags & mask)
1495 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1496 }
7d03f82f 1497}
c527ee8f 1498#endif
7d03f82f 1499
a1d1bb31
AL
1500/* Add a breakpoint. */
1501int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1502 CPUBreakpoint **breakpoint)
4c3a88a2 1503{
1fddef4b 1504#if defined(TARGET_HAS_ICE)
c0ce998e 1505 CPUBreakpoint *bp;
3b46e624 1506
7267c094 1507 bp = g_malloc(sizeof(*bp));
4c3a88a2 1508
a1d1bb31
AL
1509 bp->pc = pc;
1510 bp->flags = flags;
1511
2dc9f411 1512 /* keep all GDB-injected breakpoints in front */
c0ce998e 1513 if (flags & BP_GDB)
72cf2d4f 1514 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1515 else
72cf2d4f 1516 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1517
d720b93d 1518 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1519
1520 if (breakpoint)
1521 *breakpoint = bp;
4c3a88a2
FB
1522 return 0;
1523#else
a1d1bb31 1524 return -ENOSYS;
4c3a88a2
FB
1525#endif
1526}
1527
a1d1bb31
AL
1528/* Remove a specific breakpoint. */
1529int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1530{
7d03f82f 1531#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1532 CPUBreakpoint *bp;
1533
72cf2d4f 1534 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1535 if (bp->pc == pc && bp->flags == flags) {
1536 cpu_breakpoint_remove_by_ref(env, bp);
1537 return 0;
1538 }
7d03f82f 1539 }
a1d1bb31
AL
1540 return -ENOENT;
1541#else
1542 return -ENOSYS;
7d03f82f
EI
1543#endif
1544}
1545
a1d1bb31
AL
1546/* Remove a specific breakpoint by reference. */
1547void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1548{
1fddef4b 1549#if defined(TARGET_HAS_ICE)
72cf2d4f 1550 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1551
a1d1bb31
AL
1552 breakpoint_invalidate(env, breakpoint->pc);
1553
7267c094 1554 g_free(breakpoint);
a1d1bb31
AL
1555#endif
1556}
1557
1558/* Remove all matching breakpoints. */
1559void cpu_breakpoint_remove_all(CPUState *env, int mask)
1560{
1561#if defined(TARGET_HAS_ICE)
c0ce998e 1562 CPUBreakpoint *bp, *next;
a1d1bb31 1563
72cf2d4f 1564 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1565 if (bp->flags & mask)
1566 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1567 }
4c3a88a2
FB
1568#endif
1569}
1570
c33a346e
FB
1571/* enable or disable single step mode. EXCP_DEBUG is returned by the
1572 CPU loop after each instruction */
1573void cpu_single_step(CPUState *env, int enabled)
1574{
1fddef4b 1575#if defined(TARGET_HAS_ICE)
c33a346e
FB
1576 if (env->singlestep_enabled != enabled) {
1577 env->singlestep_enabled = enabled;
e22a25c9
AL
1578 if (kvm_enabled())
1579 kvm_update_guest_debug(env, 0);
1580 else {
ccbb4d44 1581 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1582 /* XXX: only flush what is necessary */
1583 tb_flush(env);
1584 }
c33a346e
FB
1585 }
1586#endif
1587}
1588
34865134
FB
1589/* enable or disable low levels log */
1590void cpu_set_log(int log_flags)
1591{
1592 loglevel = log_flags;
1593 if (loglevel && !logfile) {
11fcfab4 1594 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1595 if (!logfile) {
1596 perror(logfilename);
1597 _exit(1);
1598 }
9fa3e853
FB
1599#if !defined(CONFIG_SOFTMMU)
1600 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1601 {
b55266b5 1602 static char logfile_buf[4096];
9fa3e853
FB
1603 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1604 }
daf767b1
SW
1605#elif defined(_WIN32)
1606 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1607 setvbuf(logfile, NULL, _IONBF, 0);
1608#else
34865134 1609 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1610#endif
e735b91c
PB
1611 log_append = 1;
1612 }
1613 if (!loglevel && logfile) {
1614 fclose(logfile);
1615 logfile = NULL;
34865134
FB
1616 }
1617}
1618
1619void cpu_set_log_filename(const char *filename)
1620{
1621 logfilename = strdup(filename);
e735b91c
PB
1622 if (logfile) {
1623 fclose(logfile);
1624 logfile = NULL;
1625 }
1626 cpu_set_log(loglevel);
34865134 1627}
c33a346e 1628
3098dba0 1629static void cpu_unlink_tb(CPUState *env)
ea041c0e 1630{
3098dba0
AJ
1631 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1632 problem and hope the cpu will stop of its own accord. For userspace
1633 emulation this often isn't actually as bad as it sounds. Often
1634 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1635 TranslationBlock *tb;
c227f099 1636 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1637
cab1b4bd 1638 spin_lock(&interrupt_lock);
3098dba0
AJ
1639 tb = env->current_tb;
1640 /* if the cpu is currently executing code, we must unlink it and
1641 all the potentially executing TB */
f76cfe56 1642 if (tb) {
3098dba0
AJ
1643 env->current_tb = NULL;
1644 tb_reset_jump_recursive(tb);
be214e6c 1645 }
cab1b4bd 1646 spin_unlock(&interrupt_lock);
3098dba0
AJ
1647}
1648
97ffbd8d 1649#ifndef CONFIG_USER_ONLY
3098dba0 1650/* mask must never be zero, except for A20 change call */
ec6959d0 1651static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1652{
1653 int old_mask;
be214e6c 1654
2e70f6ef 1655 old_mask = env->interrupt_request;
68a79315 1656 env->interrupt_request |= mask;
3098dba0 1657
8edac960
AL
1658 /*
1659 * If called from iothread context, wake the target cpu in
1660 * case its halted.
1661 */
b7680cb6 1662 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1663 qemu_cpu_kick(env);
1664 return;
1665 }
8edac960 1666
2e70f6ef 1667 if (use_icount) {
266910c4 1668 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1669 if (!can_do_io(env)
be214e6c 1670 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1671 cpu_abort(env, "Raised interrupt while not in I/O function");
1672 }
2e70f6ef 1673 } else {
3098dba0 1674 cpu_unlink_tb(env);
ea041c0e
FB
1675 }
1676}
1677
ec6959d0
JK
1678CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1679
97ffbd8d
JK
1680#else /* CONFIG_USER_ONLY */
1681
1682void cpu_interrupt(CPUState *env, int mask)
1683{
1684 env->interrupt_request |= mask;
1685 cpu_unlink_tb(env);
1686}
1687#endif /* CONFIG_USER_ONLY */
1688
b54ad049
FB
1689void cpu_reset_interrupt(CPUState *env, int mask)
1690{
1691 env->interrupt_request &= ~mask;
1692}
1693
3098dba0
AJ
1694void cpu_exit(CPUState *env)
1695{
1696 env->exit_request = 1;
1697 cpu_unlink_tb(env);
1698}
1699
c7cd6a37 1700const CPULogItem cpu_log_items[] = {
5fafdf24 1701 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1702 "show generated host assembly code for each compiled TB" },
1703 { CPU_LOG_TB_IN_ASM, "in_asm",
1704 "show target assembly code for each compiled TB" },
5fafdf24 1705 { CPU_LOG_TB_OP, "op",
57fec1fe 1706 "show micro ops for each compiled TB" },
f193c797 1707 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1708 "show micro ops "
1709#ifdef TARGET_I386
1710 "before eflags optimization and "
f193c797 1711#endif
e01a1157 1712 "after liveness analysis" },
f193c797
FB
1713 { CPU_LOG_INT, "int",
1714 "show interrupts/exceptions in short format" },
1715 { CPU_LOG_EXEC, "exec",
1716 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1717 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1718 "show CPU state before block translation" },
f193c797
FB
1719#ifdef TARGET_I386
1720 { CPU_LOG_PCALL, "pcall",
1721 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1722 { CPU_LOG_RESET, "cpu_reset",
1723 "show CPU state before CPU resets" },
f193c797 1724#endif
8e3a9fd2 1725#ifdef DEBUG_IOPORT
fd872598
FB
1726 { CPU_LOG_IOPORT, "ioport",
1727 "show all i/o ports accesses" },
8e3a9fd2 1728#endif
f193c797
FB
1729 { 0, NULL, NULL },
1730};
1731
f6f3fbca
MT
1732#ifndef CONFIG_USER_ONLY
1733static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1734 = QLIST_HEAD_INITIALIZER(memory_client_list);
1735
1736static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26 1737 ram_addr_t size,
0fd542fb
MT
1738 ram_addr_t phys_offset,
1739 bool log_dirty)
f6f3fbca
MT
1740{
1741 CPUPhysMemoryClient *client;
1742 QLIST_FOREACH(client, &memory_client_list, list) {
0fd542fb 1743 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
f6f3fbca
MT
1744 }
1745}
1746
1747static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1748 target_phys_addr_t end)
f6f3fbca
MT
1749{
1750 CPUPhysMemoryClient *client;
1751 QLIST_FOREACH(client, &memory_client_list, list) {
1752 int r = client->sync_dirty_bitmap(client, start, end);
1753 if (r < 0)
1754 return r;
1755 }
1756 return 0;
1757}
1758
1759static int cpu_notify_migration_log(int enable)
1760{
1761 CPUPhysMemoryClient *client;
1762 QLIST_FOREACH(client, &memory_client_list, list) {
1763 int r = client->migration_log(client, enable);
1764 if (r < 0)
1765 return r;
1766 }
1767 return 0;
1768}
1769
2173a75f
AW
1770struct last_map {
1771 target_phys_addr_t start_addr;
1772 ram_addr_t size;
1773 ram_addr_t phys_offset;
1774};
1775
8d4c78e7
AW
1776/* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1777 * address. Each intermediate table provides the next L2_BITs of guest
1778 * physical address space. The number of levels vary based on host and
1779 * guest configuration, making it efficient to build the final guest
1780 * physical address by seeding the L1 offset and shifting and adding in
1781 * each L2 offset as we recurse through them. */
2173a75f
AW
1782static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
1783 void **lp, target_phys_addr_t addr,
1784 struct last_map *map)
f6f3fbca 1785{
5cd2c5b6 1786 int i;
f6f3fbca 1787
5cd2c5b6
RH
1788 if (*lp == NULL) {
1789 return;
1790 }
1791 if (level == 0) {
1792 PhysPageDesc *pd = *lp;
8d4c78e7 1793 addr <<= L2_BITS + TARGET_PAGE_BITS;
7296abac 1794 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1795 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
2173a75f
AW
1796 target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
1797
1798 if (map->size &&
1799 start_addr == map->start_addr + map->size &&
1800 pd[i].phys_offset == map->phys_offset + map->size) {
1801
1802 map->size += TARGET_PAGE_SIZE;
1803 continue;
1804 } else if (map->size) {
1805 client->set_memory(client, map->start_addr,
1806 map->size, map->phys_offset, false);
1807 }
1808
1809 map->start_addr = start_addr;
1810 map->size = TARGET_PAGE_SIZE;
1811 map->phys_offset = pd[i].phys_offset;
f6f3fbca 1812 }
5cd2c5b6
RH
1813 }
1814 } else {
1815 void **pp = *lp;
7296abac 1816 for (i = 0; i < L2_SIZE; ++i) {
8d4c78e7 1817 phys_page_for_each_1(client, level - 1, pp + i,
2173a75f 1818 (addr << L2_BITS) | i, map);
f6f3fbca
MT
1819 }
1820 }
1821}
1822
1823static void phys_page_for_each(CPUPhysMemoryClient *client)
1824{
5cd2c5b6 1825 int i;
2173a75f
AW
1826 struct last_map map = { };
1827
5cd2c5b6
RH
1828 for (i = 0; i < P_L1_SIZE; ++i) {
1829 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
2173a75f
AW
1830 l1_phys_map + i, i, &map);
1831 }
1832 if (map.size) {
1833 client->set_memory(client, map.start_addr, map.size, map.phys_offset,
1834 false);
f6f3fbca 1835 }
f6f3fbca
MT
1836}
1837
1838void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1839{
1840 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1841 phys_page_for_each(client);
1842}
1843
1844void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1845{
1846 QLIST_REMOVE(client, list);
1847}
1848#endif
1849
f193c797
FB
1850static int cmp1(const char *s1, int n, const char *s2)
1851{
1852 if (strlen(s2) != n)
1853 return 0;
1854 return memcmp(s1, s2, n) == 0;
1855}
3b46e624 1856
f193c797
FB
1857/* takes a comma separated list of log masks. Return 0 if error. */
1858int cpu_str_to_log_mask(const char *str)
1859{
c7cd6a37 1860 const CPULogItem *item;
f193c797
FB
1861 int mask;
1862 const char *p, *p1;
1863
1864 p = str;
1865 mask = 0;
1866 for(;;) {
1867 p1 = strchr(p, ',');
1868 if (!p1)
1869 p1 = p + strlen(p);
9742bf26
YT
1870 if(cmp1(p,p1-p,"all")) {
1871 for(item = cpu_log_items; item->mask != 0; item++) {
1872 mask |= item->mask;
1873 }
1874 } else {
1875 for(item = cpu_log_items; item->mask != 0; item++) {
1876 if (cmp1(p, p1 - p, item->name))
1877 goto found;
1878 }
1879 return 0;
f193c797 1880 }
f193c797
FB
1881 found:
1882 mask |= item->mask;
1883 if (*p1 != ',')
1884 break;
1885 p = p1 + 1;
1886 }
1887 return mask;
1888}
ea041c0e 1889
7501267e
FB
1890void cpu_abort(CPUState *env, const char *fmt, ...)
1891{
1892 va_list ap;
493ae1f0 1893 va_list ap2;
7501267e
FB
1894
1895 va_start(ap, fmt);
493ae1f0 1896 va_copy(ap2, ap);
7501267e
FB
1897 fprintf(stderr, "qemu: fatal: ");
1898 vfprintf(stderr, fmt, ap);
1899 fprintf(stderr, "\n");
1900#ifdef TARGET_I386
7fe48483
FB
1901 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1902#else
1903 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1904#endif
93fcfe39
AL
1905 if (qemu_log_enabled()) {
1906 qemu_log("qemu: fatal: ");
1907 qemu_log_vprintf(fmt, ap2);
1908 qemu_log("\n");
f9373291 1909#ifdef TARGET_I386
93fcfe39 1910 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1911#else
93fcfe39 1912 log_cpu_state(env, 0);
f9373291 1913#endif
31b1a7b4 1914 qemu_log_flush();
93fcfe39 1915 qemu_log_close();
924edcae 1916 }
493ae1f0 1917 va_end(ap2);
f9373291 1918 va_end(ap);
fd052bf6
RV
1919#if defined(CONFIG_USER_ONLY)
1920 {
1921 struct sigaction act;
1922 sigfillset(&act.sa_mask);
1923 act.sa_handler = SIG_DFL;
1924 sigaction(SIGABRT, &act, NULL);
1925 }
1926#endif
7501267e
FB
1927 abort();
1928}
1929
c5be9f08
TS
1930CPUState *cpu_copy(CPUState *env)
1931{
01ba9816 1932 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1933 CPUState *next_cpu = new_env->next_cpu;
1934 int cpu_index = new_env->cpu_index;
5a38f081
AL
1935#if defined(TARGET_HAS_ICE)
1936 CPUBreakpoint *bp;
1937 CPUWatchpoint *wp;
1938#endif
1939
c5be9f08 1940 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1941
1942 /* Preserve chaining and index. */
c5be9f08
TS
1943 new_env->next_cpu = next_cpu;
1944 new_env->cpu_index = cpu_index;
5a38f081
AL
1945
1946 /* Clone all break/watchpoints.
1947 Note: Once we support ptrace with hw-debug register access, make sure
1948 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1949 QTAILQ_INIT(&env->breakpoints);
1950 QTAILQ_INIT(&env->watchpoints);
5a38f081 1951#if defined(TARGET_HAS_ICE)
72cf2d4f 1952 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1953 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1954 }
72cf2d4f 1955 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1956 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1957 wp->flags, NULL);
1958 }
1959#endif
1960
c5be9f08
TS
1961 return new_env;
1962}
1963
0124311e
FB
1964#if !defined(CONFIG_USER_ONLY)
1965
5c751e99
EI
1966static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1967{
1968 unsigned int i;
1969
1970 /* Discard jump cache entries for any tb which might potentially
1971 overlap the flushed page. */
1972 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1973 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1974 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1975
1976 i = tb_jmp_cache_hash_page(addr);
1977 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1978 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1979}
1980
08738984
IK
1981static CPUTLBEntry s_cputlb_empty_entry = {
1982 .addr_read = -1,
1983 .addr_write = -1,
1984 .addr_code = -1,
1985 .addend = -1,
1986};
1987
ee8b7021
FB
1988/* NOTE: if flush_global is true, also flush global entries (not
1989 implemented yet) */
1990void tlb_flush(CPUState *env, int flush_global)
33417e70 1991{
33417e70 1992 int i;
0124311e 1993
9fa3e853
FB
1994#if defined(DEBUG_TLB)
1995 printf("tlb_flush:\n");
1996#endif
0124311e
FB
1997 /* must reset current TB so that interrupts cannot modify the
1998 links while we are modifying them */
1999 env->current_tb = NULL;
2000
33417e70 2001 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
2002 int mmu_idx;
2003 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 2004 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 2005 }
33417e70 2006 }
9fa3e853 2007
8a40a180 2008 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 2009
d4c430a8
PB
2010 env->tlb_flush_addr = -1;
2011 env->tlb_flush_mask = 0;
e3db7226 2012 tlb_flush_count++;
33417e70
FB
2013}
2014
274da6b2 2015static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 2016{
5fafdf24 2017 if (addr == (tlb_entry->addr_read &
84b7b8e7 2018 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2019 addr == (tlb_entry->addr_write &
84b7b8e7 2020 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2021 addr == (tlb_entry->addr_code &
84b7b8e7 2022 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 2023 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 2024 }
61382a50
FB
2025}
2026
2e12669a 2027void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 2028{
8a40a180 2029 int i;
cfde4bd9 2030 int mmu_idx;
0124311e 2031
9fa3e853 2032#if defined(DEBUG_TLB)
108c49b8 2033 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 2034#endif
d4c430a8
PB
2035 /* Check if we need to flush due to large pages. */
2036 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2037#if defined(DEBUG_TLB)
2038 printf("tlb_flush_page: forced full flush ("
2039 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2040 env->tlb_flush_addr, env->tlb_flush_mask);
2041#endif
2042 tlb_flush(env, 1);
2043 return;
2044 }
0124311e
FB
2045 /* must reset current TB so that interrupts cannot modify the
2046 links while we are modifying them */
2047 env->current_tb = NULL;
61382a50
FB
2048
2049 addr &= TARGET_PAGE_MASK;
2050 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2051 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2052 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2053
5c751e99 2054 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2055}
2056
9fa3e853
FB
2057/* update the TLBs so that writes to code in the virtual page 'addr'
2058 can be detected */
c227f099 2059static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2060{
5fafdf24 2061 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2062 ram_addr + TARGET_PAGE_SIZE,
2063 CODE_DIRTY_FLAG);
9fa3e853
FB
2064}
2065
9fa3e853 2066/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2067 tested for self modifying code */
c227f099 2068static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2069 target_ulong vaddr)
9fa3e853 2070{
f7c11b53 2071 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2072}
2073
5fafdf24 2074static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2075 unsigned long start, unsigned long length)
2076{
2077 unsigned long addr;
84b7b8e7
FB
2078 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2079 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2080 if ((addr - start) < length) {
0f459d16 2081 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2082 }
2083 }
2084}
2085
5579c7f3 2086/* Note: start and end must be within the same ram block. */
c227f099 2087void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2088 int dirty_flags)
1ccde1cb
FB
2089{
2090 CPUState *env;
4f2ac237 2091 unsigned long length, start1;
f7c11b53 2092 int i;
1ccde1cb
FB
2093
2094 start &= TARGET_PAGE_MASK;
2095 end = TARGET_PAGE_ALIGN(end);
2096
2097 length = end - start;
2098 if (length == 0)
2099 return;
f7c11b53 2100 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2101
1ccde1cb
FB
2102 /* we modify the TLB cache so that the dirty bit will be set again
2103 when accessing the range */
b2e0a138 2104 start1 = (unsigned long)qemu_safe_ram_ptr(start);
a57d23e4 2105 /* Check that we don't span multiple blocks - this breaks the
5579c7f3 2106 address comparisons below. */
b2e0a138 2107 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2108 != (end - 1) - start) {
2109 abort();
2110 }
2111
6a00d601 2112 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2113 int mmu_idx;
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2115 for(i = 0; i < CPU_TLB_SIZE; i++)
2116 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2117 start1, length);
2118 }
6a00d601 2119 }
1ccde1cb
FB
2120}
2121
74576198
AL
2122int cpu_physical_memory_set_dirty_tracking(int enable)
2123{
f6f3fbca 2124 int ret = 0;
74576198 2125 in_migration = enable;
f6f3fbca
MT
2126 ret = cpu_notify_migration_log(!!enable);
2127 return ret;
74576198
AL
2128}
2129
2130int cpu_physical_memory_get_dirty_tracking(void)
2131{
2132 return in_migration;
2133}
2134
c227f099
AL
2135int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2136 target_phys_addr_t end_addr)
2bec46dc 2137{
7b8f3b78 2138 int ret;
151f7749 2139
f6f3fbca 2140 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2141 return ret;
2bec46dc
AL
2142}
2143
e5896b12
AP
2144int cpu_physical_log_start(target_phys_addr_t start_addr,
2145 ram_addr_t size)
2146{
2147 CPUPhysMemoryClient *client;
2148 QLIST_FOREACH(client, &memory_client_list, list) {
2149 if (client->log_start) {
2150 int r = client->log_start(client, start_addr, size);
2151 if (r < 0) {
2152 return r;
2153 }
2154 }
2155 }
2156 return 0;
2157}
2158
2159int cpu_physical_log_stop(target_phys_addr_t start_addr,
2160 ram_addr_t size)
2161{
2162 CPUPhysMemoryClient *client;
2163 QLIST_FOREACH(client, &memory_client_list, list) {
2164 if (client->log_stop) {
2165 int r = client->log_stop(client, start_addr, size);
2166 if (r < 0) {
2167 return r;
2168 }
2169 }
2170 }
2171 return 0;
2172}
2173
3a7d929e
FB
2174static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2175{
c227f099 2176 ram_addr_t ram_addr;
5579c7f3 2177 void *p;
3a7d929e 2178
84b7b8e7 2179 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2180 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2181 + tlb_entry->addend);
e890261f 2182 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2183 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2184 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2185 }
2186 }
2187}
2188
2189/* update the TLB according to the current state of the dirty bits */
2190void cpu_tlb_update_dirty(CPUState *env)
2191{
2192 int i;
cfde4bd9
IY
2193 int mmu_idx;
2194 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2195 for(i = 0; i < CPU_TLB_SIZE; i++)
2196 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2197 }
3a7d929e
FB
2198}
2199
0f459d16 2200static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2201{
0f459d16
PB
2202 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2203 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2204}
2205
0f459d16
PB
2206/* update the TLB corresponding to virtual page vaddr
2207 so that it is no longer dirty */
2208static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2209{
1ccde1cb 2210 int i;
cfde4bd9 2211 int mmu_idx;
1ccde1cb 2212
0f459d16 2213 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2214 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2215 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2216 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2217}
2218
d4c430a8
PB
2219/* Our TLB does not support large pages, so remember the area covered by
2220 large pages and trigger a full TLB flush if these are invalidated. */
2221static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2222 target_ulong size)
2223{
2224 target_ulong mask = ~(size - 1);
2225
2226 if (env->tlb_flush_addr == (target_ulong)-1) {
2227 env->tlb_flush_addr = vaddr & mask;
2228 env->tlb_flush_mask = mask;
2229 return;
2230 }
2231 /* Extend the existing region to include the new page.
2232 This is a compromise between unnecessary flushes and the cost
2233 of maintaining a full variable size TLB. */
2234 mask &= env->tlb_flush_mask;
2235 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2236 mask <<= 1;
2237 }
2238 env->tlb_flush_addr &= mask;
2239 env->tlb_flush_mask = mask;
2240}
2241
2242/* Add a new TLB entry. At most one entry for a given virtual address
2243 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2244 supplied size is only used by tlb_flush_page. */
2245void tlb_set_page(CPUState *env, target_ulong vaddr,
2246 target_phys_addr_t paddr, int prot,
2247 int mmu_idx, target_ulong size)
9fa3e853 2248{
92e873b9 2249 PhysPageDesc *p;
4f2ac237 2250 unsigned long pd;
9fa3e853 2251 unsigned int index;
4f2ac237 2252 target_ulong address;
0f459d16 2253 target_ulong code_address;
355b1943 2254 unsigned long addend;
84b7b8e7 2255 CPUTLBEntry *te;
a1d1bb31 2256 CPUWatchpoint *wp;
c227f099 2257 target_phys_addr_t iotlb;
9fa3e853 2258
d4c430a8
PB
2259 assert(size >= TARGET_PAGE_SIZE);
2260 if (size != TARGET_PAGE_SIZE) {
2261 tlb_add_large_page(env, vaddr, size);
2262 }
92e873b9 2263 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2264 if (!p) {
2265 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2266 } else {
2267 pd = p->phys_offset;
9fa3e853
FB
2268 }
2269#if defined(DEBUG_TLB)
7fd3f494
SW
2270 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2271 " prot=%x idx=%d pd=0x%08lx\n",
2272 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2273#endif
2274
0f459d16
PB
2275 address = vaddr;
2276 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2277 /* IO memory case (romd handled later) */
2278 address |= TLB_MMIO;
2279 }
5579c7f3 2280 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2281 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2282 /* Normal RAM. */
2283 iotlb = pd & TARGET_PAGE_MASK;
2284 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2285 iotlb |= IO_MEM_NOTDIRTY;
2286 else
2287 iotlb |= IO_MEM_ROM;
2288 } else {
ccbb4d44 2289 /* IO handlers are currently passed a physical address.
0f459d16
PB
2290 It would be nice to pass an offset from the base address
2291 of that region. This would avoid having to special case RAM,
2292 and avoid full address decoding in every device.
2293 We can't use the high bits of pd for this because
2294 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2295 iotlb = (pd & ~TARGET_PAGE_MASK);
2296 if (p) {
8da3ff18
PB
2297 iotlb += p->region_offset;
2298 } else {
2299 iotlb += paddr;
2300 }
0f459d16
PB
2301 }
2302
2303 code_address = address;
2304 /* Make accesses to pages with watchpoints go via the
2305 watchpoint trap routines. */
72cf2d4f 2306 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2307 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2308 /* Avoid trapping reads of pages with a write breakpoint. */
2309 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2310 iotlb = io_mem_watch + paddr;
2311 address |= TLB_MMIO;
2312 break;
2313 }
6658ffb8 2314 }
0f459d16 2315 }
d79acba4 2316
0f459d16
PB
2317 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2318 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2319 te = &env->tlb_table[mmu_idx][index];
2320 te->addend = addend - vaddr;
2321 if (prot & PAGE_READ) {
2322 te->addr_read = address;
2323 } else {
2324 te->addr_read = -1;
2325 }
5c751e99 2326
0f459d16
PB
2327 if (prot & PAGE_EXEC) {
2328 te->addr_code = code_address;
2329 } else {
2330 te->addr_code = -1;
2331 }
2332 if (prot & PAGE_WRITE) {
2333 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2334 (pd & IO_MEM_ROMD)) {
2335 /* Write access calls the I/O callback. */
2336 te->addr_write = address | TLB_MMIO;
2337 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2338 !cpu_physical_memory_is_dirty(pd)) {
2339 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2340 } else {
0f459d16 2341 te->addr_write = address;
9fa3e853 2342 }
0f459d16
PB
2343 } else {
2344 te->addr_write = -1;
9fa3e853 2345 }
9fa3e853
FB
2346}
2347
0124311e
FB
2348#else
2349
ee8b7021 2350void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2351{
2352}
2353
2e12669a 2354void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2355{
2356}
2357
edf8e2af
MW
2358/*
2359 * Walks guest process memory "regions" one by one
2360 * and calls callback function 'fn' for each region.
2361 */
5cd2c5b6
RH
2362
2363struct walk_memory_regions_data
2364{
2365 walk_memory_regions_fn fn;
2366 void *priv;
2367 unsigned long start;
2368 int prot;
2369};
2370
2371static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2372 abi_ulong end, int new_prot)
5cd2c5b6
RH
2373{
2374 if (data->start != -1ul) {
2375 int rc = data->fn(data->priv, data->start, end, data->prot);
2376 if (rc != 0) {
2377 return rc;
2378 }
2379 }
2380
2381 data->start = (new_prot ? end : -1ul);
2382 data->prot = new_prot;
2383
2384 return 0;
2385}
2386
2387static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2388 abi_ulong base, int level, void **lp)
5cd2c5b6 2389{
b480d9b7 2390 abi_ulong pa;
5cd2c5b6
RH
2391 int i, rc;
2392
2393 if (*lp == NULL) {
2394 return walk_memory_regions_end(data, base, 0);
2395 }
2396
2397 if (level == 0) {
2398 PageDesc *pd = *lp;
7296abac 2399 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2400 int prot = pd[i].flags;
2401
2402 pa = base | (i << TARGET_PAGE_BITS);
2403 if (prot != data->prot) {
2404 rc = walk_memory_regions_end(data, pa, prot);
2405 if (rc != 0) {
2406 return rc;
9fa3e853 2407 }
9fa3e853 2408 }
5cd2c5b6
RH
2409 }
2410 } else {
2411 void **pp = *lp;
7296abac 2412 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2413 pa = base | ((abi_ulong)i <<
2414 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2415 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2416 if (rc != 0) {
2417 return rc;
2418 }
2419 }
2420 }
2421
2422 return 0;
2423}
2424
2425int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2426{
2427 struct walk_memory_regions_data data;
2428 unsigned long i;
2429
2430 data.fn = fn;
2431 data.priv = priv;
2432 data.start = -1ul;
2433 data.prot = 0;
2434
2435 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2436 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2437 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2438 if (rc != 0) {
2439 return rc;
9fa3e853 2440 }
33417e70 2441 }
5cd2c5b6
RH
2442
2443 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2444}
2445
b480d9b7
PB
2446static int dump_region(void *priv, abi_ulong start,
2447 abi_ulong end, unsigned long prot)
edf8e2af
MW
2448{
2449 FILE *f = (FILE *)priv;
2450
b480d9b7
PB
2451 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2452 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2453 start, end, end - start,
2454 ((prot & PAGE_READ) ? 'r' : '-'),
2455 ((prot & PAGE_WRITE) ? 'w' : '-'),
2456 ((prot & PAGE_EXEC) ? 'x' : '-'));
2457
2458 return (0);
2459}
2460
2461/* dump memory mappings */
2462void page_dump(FILE *f)
2463{
2464 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2465 "start", "end", "size", "prot");
2466 walk_memory_regions(f, dump_region);
33417e70
FB
2467}
2468
53a5960a 2469int page_get_flags(target_ulong address)
33417e70 2470{
9fa3e853
FB
2471 PageDesc *p;
2472
2473 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2474 if (!p)
9fa3e853
FB
2475 return 0;
2476 return p->flags;
2477}
2478
376a7909
RH
2479/* Modify the flags of a page and invalidate the code if necessary.
2480 The flag PAGE_WRITE_ORG is positioned automatically depending
2481 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2482void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2483{
376a7909
RH
2484 target_ulong addr, len;
2485
2486 /* This function should never be called with addresses outside the
2487 guest address space. If this assert fires, it probably indicates
2488 a missing call to h2g_valid. */
b480d9b7
PB
2489#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2490 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2491#endif
2492 assert(start < end);
9fa3e853
FB
2493
2494 start = start & TARGET_PAGE_MASK;
2495 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2496
2497 if (flags & PAGE_WRITE) {
9fa3e853 2498 flags |= PAGE_WRITE_ORG;
376a7909
RH
2499 }
2500
2501 for (addr = start, len = end - start;
2502 len != 0;
2503 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2504 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2505
2506 /* If the write protection bit is set, then we invalidate
2507 the code inside. */
5fafdf24 2508 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2509 (flags & PAGE_WRITE) &&
2510 p->first_tb) {
d720b93d 2511 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2512 }
2513 p->flags = flags;
2514 }
33417e70
FB
2515}
2516
3d97b40b
TS
2517int page_check_range(target_ulong start, target_ulong len, int flags)
2518{
2519 PageDesc *p;
2520 target_ulong end;
2521 target_ulong addr;
2522
376a7909
RH
2523 /* This function should never be called with addresses outside the
2524 guest address space. If this assert fires, it probably indicates
2525 a missing call to h2g_valid. */
338e9e6c
BS
2526#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2527 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2528#endif
2529
3e0650a9
RH
2530 if (len == 0) {
2531 return 0;
2532 }
376a7909
RH
2533 if (start + len - 1 < start) {
2534 /* We've wrapped around. */
55f280c9 2535 return -1;
376a7909 2536 }
55f280c9 2537
3d97b40b
TS
2538 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2539 start = start & TARGET_PAGE_MASK;
2540
376a7909
RH
2541 for (addr = start, len = end - start;
2542 len != 0;
2543 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2544 p = page_find(addr >> TARGET_PAGE_BITS);
2545 if( !p )
2546 return -1;
2547 if( !(p->flags & PAGE_VALID) )
2548 return -1;
2549
dae3270c 2550 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2551 return -1;
dae3270c
FB
2552 if (flags & PAGE_WRITE) {
2553 if (!(p->flags & PAGE_WRITE_ORG))
2554 return -1;
2555 /* unprotect the page if it was put read-only because it
2556 contains translated code */
2557 if (!(p->flags & PAGE_WRITE)) {
2558 if (!page_unprotect(addr, 0, NULL))
2559 return -1;
2560 }
2561 return 0;
2562 }
3d97b40b
TS
2563 }
2564 return 0;
2565}
2566
9fa3e853 2567/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2568 page. Return TRUE if the fault was successfully handled. */
53a5960a 2569int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2570{
45d679d6
AJ
2571 unsigned int prot;
2572 PageDesc *p;
53a5960a 2573 target_ulong host_start, host_end, addr;
9fa3e853 2574
c8a706fe
PB
2575 /* Technically this isn't safe inside a signal handler. However we
2576 know this only ever happens in a synchronous SEGV handler, so in
2577 practice it seems to be ok. */
2578 mmap_lock();
2579
45d679d6
AJ
2580 p = page_find(address >> TARGET_PAGE_BITS);
2581 if (!p) {
c8a706fe 2582 mmap_unlock();
9fa3e853 2583 return 0;
c8a706fe 2584 }
45d679d6 2585
9fa3e853
FB
2586 /* if the page was really writable, then we change its
2587 protection back to writable */
45d679d6
AJ
2588 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2589 host_start = address & qemu_host_page_mask;
2590 host_end = host_start + qemu_host_page_size;
2591
2592 prot = 0;
2593 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2594 p = page_find(addr >> TARGET_PAGE_BITS);
2595 p->flags |= PAGE_WRITE;
2596 prot |= p->flags;
2597
9fa3e853
FB
2598 /* and since the content will be modified, we must invalidate
2599 the corresponding translated code. */
45d679d6 2600 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2601#ifdef DEBUG_TB_CHECK
45d679d6 2602 tb_invalidate_check(addr);
9fa3e853 2603#endif
9fa3e853 2604 }
45d679d6
AJ
2605 mprotect((void *)g2h(host_start), qemu_host_page_size,
2606 prot & PAGE_BITS);
2607
2608 mmap_unlock();
2609 return 1;
9fa3e853 2610 }
c8a706fe 2611 mmap_unlock();
9fa3e853
FB
2612 return 0;
2613}
2614
6a00d601
FB
2615static inline void tlb_set_dirty(CPUState *env,
2616 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2617{
2618}
9fa3e853
FB
2619#endif /* defined(CONFIG_USER_ONLY) */
2620
e2eef170 2621#if !defined(CONFIG_USER_ONLY)
8da3ff18 2622
c04b2b78
PB
2623#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2624typedef struct subpage_t {
2625 target_phys_addr_t base;
f6405247
RH
2626 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2627 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2628} subpage_t;
2629
c227f099
AL
2630static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2631 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2632static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2633 ram_addr_t orig_memory,
2634 ram_addr_t region_offset);
db7b5426
BS
2635#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2636 need_subpage) \
2637 do { \
2638 if (addr > start_addr) \
2639 start_addr2 = 0; \
2640 else { \
2641 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2642 if (start_addr2 > 0) \
2643 need_subpage = 1; \
2644 } \
2645 \
49e9fba2 2646 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2647 end_addr2 = TARGET_PAGE_SIZE - 1; \
2648 else { \
2649 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2650 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2651 need_subpage = 1; \
2652 } \
2653 } while (0)
2654
8f2498f9
MT
2655/* register physical memory.
2656 For RAM, 'size' must be a multiple of the target page size.
2657 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2658 io memory page. The address used when calling the IO function is
2659 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2660 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2661 before calculating this offset. This should not be a problem unless
2662 the low bits of start_addr and region_offset differ. */
0fd542fb 2663void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
c227f099
AL
2664 ram_addr_t size,
2665 ram_addr_t phys_offset,
0fd542fb
MT
2666 ram_addr_t region_offset,
2667 bool log_dirty)
33417e70 2668{
c227f099 2669 target_phys_addr_t addr, end_addr;
92e873b9 2670 PhysPageDesc *p;
9d42037b 2671 CPUState *env;
c227f099 2672 ram_addr_t orig_size = size;
f6405247 2673 subpage_t *subpage;
33417e70 2674
3b8e6a2d 2675 assert(size);
0fd542fb 2676 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
f6f3fbca 2677
67c4d23c
PB
2678 if (phys_offset == IO_MEM_UNASSIGNED) {
2679 region_offset = start_addr;
2680 }
8da3ff18 2681 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2682 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2683 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2684
2685 addr = start_addr;
2686 do {
db7b5426
BS
2687 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2688 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2689 ram_addr_t orig_memory = p->phys_offset;
2690 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2691 int need_subpage = 0;
2692
2693 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2694 need_subpage);
f6405247 2695 if (need_subpage) {
db7b5426
BS
2696 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2697 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2698 &p->phys_offset, orig_memory,
2699 p->region_offset);
db7b5426
BS
2700 } else {
2701 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2702 >> IO_MEM_SHIFT];
2703 }
8da3ff18
PB
2704 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2705 region_offset);
2706 p->region_offset = 0;
db7b5426
BS
2707 } else {
2708 p->phys_offset = phys_offset;
2709 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2710 (phys_offset & IO_MEM_ROMD))
2711 phys_offset += TARGET_PAGE_SIZE;
2712 }
2713 } else {
2714 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2715 p->phys_offset = phys_offset;
8da3ff18 2716 p->region_offset = region_offset;
db7b5426 2717 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2718 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2719 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2720 } else {
c227f099 2721 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2722 int need_subpage = 0;
2723
2724 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2725 end_addr2, need_subpage);
2726
f6405247 2727 if (need_subpage) {
db7b5426 2728 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2729 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2730 addr & TARGET_PAGE_MASK);
db7b5426 2731 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2732 phys_offset, region_offset);
2733 p->region_offset = 0;
db7b5426
BS
2734 }
2735 }
2736 }
8da3ff18 2737 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2738 addr += TARGET_PAGE_SIZE;
2739 } while (addr != end_addr);
3b46e624 2740
9d42037b
FB
2741 /* since each CPU stores ram addresses in its TLB cache, we must
2742 reset the modified entries */
2743 /* XXX: slow ! */
2744 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2745 tlb_flush(env, 1);
2746 }
33417e70
FB
2747}
2748
ba863458 2749/* XXX: temporary until new memory mapping API */
c227f099 2750ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2751{
2752 PhysPageDesc *p;
2753
2754 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2755 if (!p)
2756 return IO_MEM_UNASSIGNED;
2757 return p->phys_offset;
2758}
2759
c227f099 2760void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2761{
2762 if (kvm_enabled())
2763 kvm_coalesce_mmio_region(addr, size);
2764}
2765
c227f099 2766void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2767{
2768 if (kvm_enabled())
2769 kvm_uncoalesce_mmio_region(addr, size);
2770}
2771
62a2744c
SY
2772void qemu_flush_coalesced_mmio_buffer(void)
2773{
2774 if (kvm_enabled())
2775 kvm_flush_coalesced_mmio_buffer();
2776}
2777
c902760f
MT
2778#if defined(__linux__) && !defined(TARGET_S390X)
2779
2780#include <sys/vfs.h>
2781
2782#define HUGETLBFS_MAGIC 0x958458f6
2783
2784static long gethugepagesize(const char *path)
2785{
2786 struct statfs fs;
2787 int ret;
2788
2789 do {
9742bf26 2790 ret = statfs(path, &fs);
c902760f
MT
2791 } while (ret != 0 && errno == EINTR);
2792
2793 if (ret != 0) {
9742bf26
YT
2794 perror(path);
2795 return 0;
c902760f
MT
2796 }
2797
2798 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2799 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2800
2801 return fs.f_bsize;
2802}
2803
04b16653
AW
2804static void *file_ram_alloc(RAMBlock *block,
2805 ram_addr_t memory,
2806 const char *path)
c902760f
MT
2807{
2808 char *filename;
2809 void *area;
2810 int fd;
2811#ifdef MAP_POPULATE
2812 int flags;
2813#endif
2814 unsigned long hpagesize;
2815
2816 hpagesize = gethugepagesize(path);
2817 if (!hpagesize) {
9742bf26 2818 return NULL;
c902760f
MT
2819 }
2820
2821 if (memory < hpagesize) {
2822 return NULL;
2823 }
2824
2825 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2826 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2827 return NULL;
2828 }
2829
2830 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2831 return NULL;
c902760f
MT
2832 }
2833
2834 fd = mkstemp(filename);
2835 if (fd < 0) {
9742bf26
YT
2836 perror("unable to create backing store for hugepages");
2837 free(filename);
2838 return NULL;
c902760f
MT
2839 }
2840 unlink(filename);
2841 free(filename);
2842
2843 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2844
2845 /*
2846 * ftruncate is not supported by hugetlbfs in older
2847 * hosts, so don't bother bailing out on errors.
2848 * If anything goes wrong with it under other filesystems,
2849 * mmap will fail.
2850 */
2851 if (ftruncate(fd, memory))
9742bf26 2852 perror("ftruncate");
c902760f
MT
2853
2854#ifdef MAP_POPULATE
2855 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2856 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2857 * to sidestep this quirk.
2858 */
2859 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2860 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2861#else
2862 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2863#endif
2864 if (area == MAP_FAILED) {
9742bf26
YT
2865 perror("file_ram_alloc: can't mmap RAM pages");
2866 close(fd);
2867 return (NULL);
c902760f 2868 }
04b16653 2869 block->fd = fd;
c902760f
MT
2870 return area;
2871}
2872#endif
2873
d17b5288 2874static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2875{
2876 RAMBlock *block, *next_block;
3e837b2c 2877 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2878
2879 if (QLIST_EMPTY(&ram_list.blocks))
2880 return 0;
2881
2882 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2883 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2884
2885 end = block->offset + block->length;
2886
2887 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2888 if (next_block->offset >= end) {
2889 next = MIN(next, next_block->offset);
2890 }
2891 }
2892 if (next - end >= size && next - end < mingap) {
3e837b2c 2893 offset = end;
04b16653
AW
2894 mingap = next - end;
2895 }
2896 }
3e837b2c
AW
2897
2898 if (offset == RAM_ADDR_MAX) {
2899 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2900 (uint64_t)size);
2901 abort();
2902 }
2903
04b16653
AW
2904 return offset;
2905}
2906
2907static ram_addr_t last_ram_offset(void)
d17b5288
AW
2908{
2909 RAMBlock *block;
2910 ram_addr_t last = 0;
2911
2912 QLIST_FOREACH(block, &ram_list.blocks, next)
2913 last = MAX(last, block->offset + block->length);
2914
2915 return last;
2916}
2917
84b89d78 2918ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
fce537d4
AK
2919 ram_addr_t size, void *host,
2920 MemoryRegion *mr)
84b89d78
CM
2921{
2922 RAMBlock *new_block, *block;
2923
2924 size = TARGET_PAGE_ALIGN(size);
7267c094 2925 new_block = g_malloc0(sizeof(*new_block));
84b89d78
CM
2926
2927 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2928 char *id = dev->parent_bus->info->get_dev_path(dev);
2929 if (id) {
2930 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2931 g_free(id);
84b89d78
CM
2932 }
2933 }
2934 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2935
2936 QLIST_FOREACH(block, &ram_list.blocks, next) {
2937 if (!strcmp(block->idstr, new_block->idstr)) {
2938 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2939 new_block->idstr);
2940 abort();
2941 }
2942 }
2943
432d268c 2944 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2945 if (host) {
2946 new_block->host = host;
cd19cfa2 2947 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2948 } else {
2949 if (mem_path) {
c902760f 2950#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2951 new_block->host = file_ram_alloc(new_block, size, mem_path);
2952 if (!new_block->host) {
2953 new_block->host = qemu_vmalloc(size);
e78815a5 2954 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2955 }
c902760f 2956#else
6977dfe6
YT
2957 fprintf(stderr, "-mem-path option unsupported\n");
2958 exit(1);
c902760f 2959#endif
6977dfe6 2960 } else {
6b02494d 2961#if defined(TARGET_S390X) && defined(CONFIG_KVM)
ff83678a
CB
2962 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2963 an system defined value, which is at least 256GB. Larger systems
2964 have larger values. We put the guest between the end of data
2965 segment (system break) and this value. We use 32GB as a base to
2966 have enough room for the system break to grow. */
2967 new_block->host = mmap((void*)0x800000000, size,
6977dfe6 2968 PROT_EXEC|PROT_READ|PROT_WRITE,
ff83678a 2969 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
fb8b2735
AG
2970 if (new_block->host == MAP_FAILED) {
2971 fprintf(stderr, "Allocating RAM failed\n");
2972 abort();
2973 }
6b02494d 2974#else
868bb33f 2975 if (xen_enabled()) {
fce537d4 2976 xen_ram_alloc(new_block->offset, size, mr);
432d268c
JN
2977 } else {
2978 new_block->host = qemu_vmalloc(size);
2979 }
6b02494d 2980#endif
e78815a5 2981 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2982 }
c902760f 2983 }
94a6b54f
PB
2984 new_block->length = size;
2985
f471a17e 2986 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2987
7267c094 2988 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2989 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2990 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2991 0xff, size >> TARGET_PAGE_BITS);
2992
6f0437e8
JK
2993 if (kvm_enabled())
2994 kvm_setup_guest_memory(new_block->host, size);
2995
94a6b54f
PB
2996 return new_block->offset;
2997}
e9a1ab19 2998
fce537d4
AK
2999ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size,
3000 MemoryRegion *mr)
6977dfe6 3001{
fce537d4 3002 return qemu_ram_alloc_from_ptr(dev, name, size, NULL, mr);
6977dfe6
YT
3003}
3004
1f2e98b6
AW
3005void qemu_ram_free_from_ptr(ram_addr_t addr)
3006{
3007 RAMBlock *block;
3008
3009 QLIST_FOREACH(block, &ram_list.blocks, next) {
3010 if (addr == block->offset) {
3011 QLIST_REMOVE(block, next);
7267c094 3012 g_free(block);
1f2e98b6
AW
3013 return;
3014 }
3015 }
3016}
3017
c227f099 3018void qemu_ram_free(ram_addr_t addr)
e9a1ab19 3019{
04b16653
AW
3020 RAMBlock *block;
3021
3022 QLIST_FOREACH(block, &ram_list.blocks, next) {
3023 if (addr == block->offset) {
3024 QLIST_REMOVE(block, next);
cd19cfa2
HY
3025 if (block->flags & RAM_PREALLOC_MASK) {
3026 ;
3027 } else if (mem_path) {
04b16653
AW
3028#if defined (__linux__) && !defined(TARGET_S390X)
3029 if (block->fd) {
3030 munmap(block->host, block->length);
3031 close(block->fd);
3032 } else {
3033 qemu_vfree(block->host);
3034 }
fd28aa13
JK
3035#else
3036 abort();
04b16653
AW
3037#endif
3038 } else {
3039#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3040 munmap(block->host, block->length);
3041#else
868bb33f 3042 if (xen_enabled()) {
e41d7c69 3043 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
3044 } else {
3045 qemu_vfree(block->host);
3046 }
04b16653
AW
3047#endif
3048 }
7267c094 3049 g_free(block);
04b16653
AW
3050 return;
3051 }
3052 }
3053
e9a1ab19
FB
3054}
3055
cd19cfa2
HY
3056#ifndef _WIN32
3057void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3058{
3059 RAMBlock *block;
3060 ram_addr_t offset;
3061 int flags;
3062 void *area, *vaddr;
3063
3064 QLIST_FOREACH(block, &ram_list.blocks, next) {
3065 offset = addr - block->offset;
3066 if (offset < block->length) {
3067 vaddr = block->host + offset;
3068 if (block->flags & RAM_PREALLOC_MASK) {
3069 ;
3070 } else {
3071 flags = MAP_FIXED;
3072 munmap(vaddr, length);
3073 if (mem_path) {
3074#if defined(__linux__) && !defined(TARGET_S390X)
3075 if (block->fd) {
3076#ifdef MAP_POPULATE
3077 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3078 MAP_PRIVATE;
3079#else
3080 flags |= MAP_PRIVATE;
3081#endif
3082 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3083 flags, block->fd, offset);
3084 } else {
3085 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3086 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3087 flags, -1, 0);
3088 }
fd28aa13
JK
3089#else
3090 abort();
cd19cfa2
HY
3091#endif
3092 } else {
3093#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3094 flags |= MAP_SHARED | MAP_ANONYMOUS;
3095 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3096 flags, -1, 0);
3097#else
3098 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3099 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3100 flags, -1, 0);
3101#endif
3102 }
3103 if (area != vaddr) {
f15fbc4b
AP
3104 fprintf(stderr, "Could not remap addr: "
3105 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
3106 length, addr);
3107 exit(1);
3108 }
3109 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3110 }
3111 return;
3112 }
3113 }
3114}
3115#endif /* !_WIN32 */
3116
dc828ca1 3117/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3118 With the exception of the softmmu code in this file, this should
3119 only be used for local memory (e.g. video ram) that the device owns,
3120 and knows it isn't going to access beyond the end of the block.
3121
3122 It should not be used for general purpose DMA.
3123 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3124 */
c227f099 3125void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3126{
94a6b54f
PB
3127 RAMBlock *block;
3128
f471a17e
AW
3129 QLIST_FOREACH(block, &ram_list.blocks, next) {
3130 if (addr - block->offset < block->length) {
7d82af38
VP
3131 /* Move this entry to to start of the list. */
3132 if (block != QLIST_FIRST(&ram_list.blocks)) {
3133 QLIST_REMOVE(block, next);
3134 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3135 }
868bb33f 3136 if (xen_enabled()) {
432d268c
JN
3137 /* We need to check if the requested address is in the RAM
3138 * because we don't want to map the entire memory in QEMU.
712c2b41 3139 * In that case just map until the end of the page.
432d268c
JN
3140 */
3141 if (block->offset == 0) {
e41d7c69 3142 return xen_map_cache(addr, 0, 0);
432d268c 3143 } else if (block->host == NULL) {
e41d7c69
JK
3144 block->host =
3145 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3146 }
3147 }
f471a17e
AW
3148 return block->host + (addr - block->offset);
3149 }
94a6b54f 3150 }
f471a17e
AW
3151
3152 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3153 abort();
3154
3155 return NULL;
dc828ca1
PB
3156}
3157
b2e0a138
MT
3158/* Return a host pointer to ram allocated with qemu_ram_alloc.
3159 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3160 */
3161void *qemu_safe_ram_ptr(ram_addr_t addr)
3162{
3163 RAMBlock *block;
3164
3165 QLIST_FOREACH(block, &ram_list.blocks, next) {
3166 if (addr - block->offset < block->length) {
868bb33f 3167 if (xen_enabled()) {
432d268c
JN
3168 /* We need to check if the requested address is in the RAM
3169 * because we don't want to map the entire memory in QEMU.
712c2b41 3170 * In that case just map until the end of the page.
432d268c
JN
3171 */
3172 if (block->offset == 0) {
e41d7c69 3173 return xen_map_cache(addr, 0, 0);
432d268c 3174 } else if (block->host == NULL) {
e41d7c69
JK
3175 block->host =
3176 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3177 }
3178 }
b2e0a138
MT
3179 return block->host + (addr - block->offset);
3180 }
3181 }
3182
3183 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3184 abort();
3185
3186 return NULL;
3187}
3188
38bee5dc
SS
3189/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3190 * but takes a size argument */
8ab934f9 3191void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 3192{
8ab934f9
SS
3193 if (*size == 0) {
3194 return NULL;
3195 }
868bb33f 3196 if (xen_enabled()) {
e41d7c69 3197 return xen_map_cache(addr, *size, 1);
868bb33f 3198 } else {
38bee5dc
SS
3199 RAMBlock *block;
3200
3201 QLIST_FOREACH(block, &ram_list.blocks, next) {
3202 if (addr - block->offset < block->length) {
3203 if (addr - block->offset + *size > block->length)
3204 *size = block->length - addr + block->offset;
3205 return block->host + (addr - block->offset);
3206 }
3207 }
3208
3209 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3210 abort();
38bee5dc
SS
3211 }
3212}
3213
050a0ddf
AP
3214void qemu_put_ram_ptr(void *addr)
3215{
3216 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
3217}
3218
e890261f 3219int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3220{
94a6b54f
PB
3221 RAMBlock *block;
3222 uint8_t *host = ptr;
3223
868bb33f 3224 if (xen_enabled()) {
e41d7c69 3225 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
3226 return 0;
3227 }
3228
f471a17e 3229 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
3230 /* This case append when the block is not mapped. */
3231 if (block->host == NULL) {
3232 continue;
3233 }
f471a17e 3234 if (host - block->host < block->length) {
e890261f
MT
3235 *ram_addr = block->offset + (host - block->host);
3236 return 0;
f471a17e 3237 }
94a6b54f 3238 }
432d268c 3239
e890261f
MT
3240 return -1;
3241}
f471a17e 3242
e890261f
MT
3243/* Some of the softmmu routines need to translate from a host pointer
3244 (typically a TLB entry) back to a ram offset. */
3245ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3246{
3247 ram_addr_t ram_addr;
f471a17e 3248
e890261f
MT
3249 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3250 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3251 abort();
3252 }
3253 return ram_addr;
5579c7f3
PB
3254}
3255
c227f099 3256static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 3257{
67d3b957 3258#ifdef DEBUG_UNASSIGNED
ab3d1727 3259 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 3260#endif
5b450407 3261#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3262 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
e18231a3
BS
3263#endif
3264 return 0;
3265}
3266
c227f099 3267static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3268{
3269#ifdef DEBUG_UNASSIGNED
3270 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3271#endif
5b450407 3272#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3273 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
e18231a3
BS
3274#endif
3275 return 0;
3276}
3277
c227f099 3278static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3279{
3280#ifdef DEBUG_UNASSIGNED
3281 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3282#endif
5b450407 3283#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3284 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
67d3b957 3285#endif
33417e70
FB
3286 return 0;
3287}
3288
c227f099 3289static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3290{
67d3b957 3291#ifdef DEBUG_UNASSIGNED
ab3d1727 3292 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3293#endif
5b450407 3294#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3295 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
e18231a3
BS
3296#endif
3297}
3298
c227f099 3299static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3300{
3301#ifdef DEBUG_UNASSIGNED
3302 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3303#endif
5b450407 3304#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3305 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
e18231a3
BS
3306#endif
3307}
3308
c227f099 3309static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3310{
3311#ifdef DEBUG_UNASSIGNED
3312 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3313#endif
5b450407 3314#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3315 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
b4f0a316 3316#endif
33417e70
FB
3317}
3318
d60efc6b 3319static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3320 unassigned_mem_readb,
e18231a3
BS
3321 unassigned_mem_readw,
3322 unassigned_mem_readl,
33417e70
FB
3323};
3324
d60efc6b 3325static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3326 unassigned_mem_writeb,
e18231a3
BS
3327 unassigned_mem_writew,
3328 unassigned_mem_writel,
33417e70
FB
3329};
3330
c227f099 3331static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3332 uint32_t val)
9fa3e853 3333{
3a7d929e 3334 int dirty_flags;
f7c11b53 3335 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3336 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3337#if !defined(CONFIG_USER_ONLY)
3a7d929e 3338 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3339 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3340#endif
3a7d929e 3341 }
5579c7f3 3342 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3343 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3344 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3345 /* we remove the notdirty callback only if the code has been
3346 flushed */
3347 if (dirty_flags == 0xff)
2e70f6ef 3348 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3349}
3350
c227f099 3351static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3352 uint32_t val)
9fa3e853 3353{
3a7d929e 3354 int dirty_flags;
f7c11b53 3355 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3356 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3357#if !defined(CONFIG_USER_ONLY)
3a7d929e 3358 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3359 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3360#endif
3a7d929e 3361 }
5579c7f3 3362 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3363 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3364 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3365 /* we remove the notdirty callback only if the code has been
3366 flushed */
3367 if (dirty_flags == 0xff)
2e70f6ef 3368 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3369}
3370
c227f099 3371static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3372 uint32_t val)
9fa3e853 3373{
3a7d929e 3374 int dirty_flags;
f7c11b53 3375 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3376 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3377#if !defined(CONFIG_USER_ONLY)
3a7d929e 3378 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3379 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3380#endif
3a7d929e 3381 }
5579c7f3 3382 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3383 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3384 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3385 /* we remove the notdirty callback only if the code has been
3386 flushed */
3387 if (dirty_flags == 0xff)
2e70f6ef 3388 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3389}
3390
d60efc6b 3391static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3392 NULL, /* never used */
3393 NULL, /* never used */
3394 NULL, /* never used */
3395};
3396
d60efc6b 3397static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3398 notdirty_mem_writeb,
3399 notdirty_mem_writew,
3400 notdirty_mem_writel,
3401};
3402
0f459d16 3403/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3404static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3405{
3406 CPUState *env = cpu_single_env;
06d55cc1
AL
3407 target_ulong pc, cs_base;
3408 TranslationBlock *tb;
0f459d16 3409 target_ulong vaddr;
a1d1bb31 3410 CPUWatchpoint *wp;
06d55cc1 3411 int cpu_flags;
0f459d16 3412
06d55cc1
AL
3413 if (env->watchpoint_hit) {
3414 /* We re-entered the check after replacing the TB. Now raise
3415 * the debug interrupt so that is will trigger after the
3416 * current instruction. */
3417 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3418 return;
3419 }
2e70f6ef 3420 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3421 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3422 if ((vaddr == (wp->vaddr & len_mask) ||
3423 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3424 wp->flags |= BP_WATCHPOINT_HIT;
3425 if (!env->watchpoint_hit) {
3426 env->watchpoint_hit = wp;
3427 tb = tb_find_pc(env->mem_io_pc);
3428 if (!tb) {
3429 cpu_abort(env, "check_watchpoint: could not find TB for "
3430 "pc=%p", (void *)env->mem_io_pc);
3431 }
618ba8e6 3432 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3433 tb_phys_invalidate(tb, -1);
3434 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3435 env->exception_index = EXCP_DEBUG;
3436 } else {
3437 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3438 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3439 }
3440 cpu_resume_from_signal(env, NULL);
06d55cc1 3441 }
6e140f28
AL
3442 } else {
3443 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3444 }
3445 }
3446}
3447
6658ffb8
PB
3448/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3449 so these check for a hit then pass through to the normal out-of-line
3450 phys routines. */
c227f099 3451static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3452{
b4051334 3453 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3454 return ldub_phys(addr);
3455}
3456
c227f099 3457static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3458{
b4051334 3459 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3460 return lduw_phys(addr);
3461}
3462
c227f099 3463static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3464{
b4051334 3465 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3466 return ldl_phys(addr);
3467}
3468
c227f099 3469static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3470 uint32_t val)
3471{
b4051334 3472 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3473 stb_phys(addr, val);
3474}
3475
c227f099 3476static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3477 uint32_t val)
3478{
b4051334 3479 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3480 stw_phys(addr, val);
3481}
3482
c227f099 3483static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3484 uint32_t val)
3485{
b4051334 3486 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3487 stl_phys(addr, val);
3488}
3489
d60efc6b 3490static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3491 watch_mem_readb,
3492 watch_mem_readw,
3493 watch_mem_readl,
3494};
3495
d60efc6b 3496static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3497 watch_mem_writeb,
3498 watch_mem_writew,
3499 watch_mem_writel,
3500};
6658ffb8 3501
f6405247
RH
3502static inline uint32_t subpage_readlen (subpage_t *mmio,
3503 target_phys_addr_t addr,
3504 unsigned int len)
db7b5426 3505{
f6405247 3506 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3507#if defined(DEBUG_SUBPAGE)
3508 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3509 mmio, len, addr, idx);
3510#endif
db7b5426 3511
f6405247
RH
3512 addr += mmio->region_offset[idx];
3513 idx = mmio->sub_io_index[idx];
3514 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3515}
3516
c227f099 3517static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3518 uint32_t value, unsigned int len)
db7b5426 3519{
f6405247 3520 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3521#if defined(DEBUG_SUBPAGE)
f6405247
RH
3522 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3523 __func__, mmio, len, addr, idx, value);
db7b5426 3524#endif
f6405247
RH
3525
3526 addr += mmio->region_offset[idx];
3527 idx = mmio->sub_io_index[idx];
3528 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3529}
3530
c227f099 3531static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3532{
db7b5426
BS
3533 return subpage_readlen(opaque, addr, 0);
3534}
3535
c227f099 3536static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3537 uint32_t value)
3538{
db7b5426
BS
3539 subpage_writelen(opaque, addr, value, 0);
3540}
3541
c227f099 3542static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3543{
db7b5426
BS
3544 return subpage_readlen(opaque, addr, 1);
3545}
3546
c227f099 3547static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3548 uint32_t value)
3549{
db7b5426
BS
3550 subpage_writelen(opaque, addr, value, 1);
3551}
3552
c227f099 3553static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3554{
db7b5426
BS
3555 return subpage_readlen(opaque, addr, 2);
3556}
3557
f6405247
RH
3558static void subpage_writel (void *opaque, target_phys_addr_t addr,
3559 uint32_t value)
db7b5426 3560{
db7b5426
BS
3561 subpage_writelen(opaque, addr, value, 2);
3562}
3563
d60efc6b 3564static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3565 &subpage_readb,
3566 &subpage_readw,
3567 &subpage_readl,
3568};
3569
d60efc6b 3570static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3571 &subpage_writeb,
3572 &subpage_writew,
3573 &subpage_writel,
3574};
3575
56384e8b
AF
3576static uint32_t subpage_ram_readb(void *opaque, target_phys_addr_t addr)
3577{
3578 ram_addr_t raddr = addr;
3579 void *ptr = qemu_get_ram_ptr(raddr);
3580 return ldub_p(ptr);
3581}
3582
3583static void subpage_ram_writeb(void *opaque, target_phys_addr_t addr,
3584 uint32_t value)
3585{
3586 ram_addr_t raddr = addr;
3587 void *ptr = qemu_get_ram_ptr(raddr);
3588 stb_p(ptr, value);
3589}
3590
3591static uint32_t subpage_ram_readw(void *opaque, target_phys_addr_t addr)
3592{
3593 ram_addr_t raddr = addr;
3594 void *ptr = qemu_get_ram_ptr(raddr);
3595 return lduw_p(ptr);
3596}
3597
3598static void subpage_ram_writew(void *opaque, target_phys_addr_t addr,
3599 uint32_t value)
3600{
3601 ram_addr_t raddr = addr;
3602 void *ptr = qemu_get_ram_ptr(raddr);
3603 stw_p(ptr, value);
3604}
3605
3606static uint32_t subpage_ram_readl(void *opaque, target_phys_addr_t addr)
3607{
3608 ram_addr_t raddr = addr;
3609 void *ptr = qemu_get_ram_ptr(raddr);
3610 return ldl_p(ptr);
3611}
3612
3613static void subpage_ram_writel(void *opaque, target_phys_addr_t addr,
3614 uint32_t value)
3615{
3616 ram_addr_t raddr = addr;
3617 void *ptr = qemu_get_ram_ptr(raddr);
3618 stl_p(ptr, value);
3619}
3620
3621static CPUReadMemoryFunc * const subpage_ram_read[] = {
3622 &subpage_ram_readb,
3623 &subpage_ram_readw,
3624 &subpage_ram_readl,
3625};
3626
3627static CPUWriteMemoryFunc * const subpage_ram_write[] = {
3628 &subpage_ram_writeb,
3629 &subpage_ram_writew,
3630 &subpage_ram_writel,
3631};
3632
c227f099
AL
3633static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3634 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3635{
3636 int idx, eidx;
3637
3638 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3639 return -1;
3640 idx = SUBPAGE_IDX(start);
3641 eidx = SUBPAGE_IDX(end);
3642#if defined(DEBUG_SUBPAGE)
0bf9e31a 3643 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3644 mmio, start, end, idx, eidx, memory);
3645#endif
56384e8b
AF
3646 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
3647 memory = IO_MEM_SUBPAGE_RAM;
3648 }
f6405247 3649 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3650 for (; idx <= eidx; idx++) {
f6405247
RH
3651 mmio->sub_io_index[idx] = memory;
3652 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3653 }
3654
3655 return 0;
3656}
3657
f6405247
RH
3658static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3659 ram_addr_t orig_memory,
3660 ram_addr_t region_offset)
db7b5426 3661{
c227f099 3662 subpage_t *mmio;
db7b5426
BS
3663 int subpage_memory;
3664
7267c094 3665 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3666
3667 mmio->base = base;
2507c12a
AG
3668 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3669 DEVICE_NATIVE_ENDIAN);
db7b5426 3670#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3671 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3672 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3673#endif
1eec614b 3674 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3675 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3676
3677 return mmio;
3678}
3679
88715657
AL
3680static int get_free_io_mem_idx(void)
3681{
3682 int i;
3683
3684 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3685 if (!io_mem_used[i]) {
3686 io_mem_used[i] = 1;
3687 return i;
3688 }
c6703b47 3689 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3690 return -1;
3691}
3692
dd310534
AG
3693/*
3694 * Usually, devices operate in little endian mode. There are devices out
3695 * there that operate in big endian too. Each device gets byte swapped
3696 * mmio if plugged onto a CPU that does the other endianness.
3697 *
3698 * CPU Device swap?
3699 *
3700 * little little no
3701 * little big yes
3702 * big little yes
3703 * big big no
3704 */
3705
3706typedef struct SwapEndianContainer {
3707 CPUReadMemoryFunc *read[3];
3708 CPUWriteMemoryFunc *write[3];
3709 void *opaque;
3710} SwapEndianContainer;
3711
3712static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3713{
3714 uint32_t val;
3715 SwapEndianContainer *c = opaque;
3716 val = c->read[0](c->opaque, addr);
3717 return val;
3718}
3719
3720static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3721{
3722 uint32_t val;
3723 SwapEndianContainer *c = opaque;
3724 val = bswap16(c->read[1](c->opaque, addr));
3725 return val;
3726}
3727
3728static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3729{
3730 uint32_t val;
3731 SwapEndianContainer *c = opaque;
3732 val = bswap32(c->read[2](c->opaque, addr));
3733 return val;
3734}
3735
3736static CPUReadMemoryFunc * const swapendian_readfn[3]={
3737 swapendian_mem_readb,
3738 swapendian_mem_readw,
3739 swapendian_mem_readl
3740};
3741
3742static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3743 uint32_t val)
3744{
3745 SwapEndianContainer *c = opaque;
3746 c->write[0](c->opaque, addr, val);
3747}
3748
3749static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3750 uint32_t val)
3751{
3752 SwapEndianContainer *c = opaque;
3753 c->write[1](c->opaque, addr, bswap16(val));
3754}
3755
3756static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3757 uint32_t val)
3758{
3759 SwapEndianContainer *c = opaque;
3760 c->write[2](c->opaque, addr, bswap32(val));
3761}
3762
3763static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3764 swapendian_mem_writeb,
3765 swapendian_mem_writew,
3766 swapendian_mem_writel
3767};
3768
3769static void swapendian_init(int io_index)
3770{
7267c094 3771 SwapEndianContainer *c = g_malloc(sizeof(SwapEndianContainer));
dd310534
AG
3772 int i;
3773
3774 /* Swap mmio for big endian targets */
3775 c->opaque = io_mem_opaque[io_index];
3776 for (i = 0; i < 3; i++) {
3777 c->read[i] = io_mem_read[io_index][i];
3778 c->write[i] = io_mem_write[io_index][i];
3779
3780 io_mem_read[io_index][i] = swapendian_readfn[i];
3781 io_mem_write[io_index][i] = swapendian_writefn[i];
3782 }
3783 io_mem_opaque[io_index] = c;
3784}
3785
3786static void swapendian_del(int io_index)
3787{
3788 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
7267c094 3789 g_free(io_mem_opaque[io_index]);
dd310534
AG
3790 }
3791}
3792
33417e70
FB
3793/* mem_read and mem_write are arrays of functions containing the
3794 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3795 2). Functions can be omitted with a NULL function pointer.
3ee89922 3796 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3797 modified. If it is zero, a new io zone is allocated. The return
3798 value can be used with cpu_register_physical_memory(). (-1) is
3799 returned if error. */
1eed09cb 3800static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3801 CPUReadMemoryFunc * const *mem_read,
3802 CPUWriteMemoryFunc * const *mem_write,
dd310534 3803 void *opaque, enum device_endian endian)
33417e70 3804{
3cab721d
RH
3805 int i;
3806
33417e70 3807 if (io_index <= 0) {
88715657
AL
3808 io_index = get_free_io_mem_idx();
3809 if (io_index == -1)
3810 return io_index;
33417e70 3811 } else {
1eed09cb 3812 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3813 if (io_index >= IO_MEM_NB_ENTRIES)
3814 return -1;
3815 }
b5ff1b31 3816
3cab721d
RH
3817 for (i = 0; i < 3; ++i) {
3818 io_mem_read[io_index][i]
3819 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3820 }
3821 for (i = 0; i < 3; ++i) {
3822 io_mem_write[io_index][i]
3823 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3824 }
a4193c8a 3825 io_mem_opaque[io_index] = opaque;
f6405247 3826
dd310534
AG
3827 switch (endian) {
3828 case DEVICE_BIG_ENDIAN:
3829#ifndef TARGET_WORDS_BIGENDIAN
3830 swapendian_init(io_index);
3831#endif
3832 break;
3833 case DEVICE_LITTLE_ENDIAN:
3834#ifdef TARGET_WORDS_BIGENDIAN
3835 swapendian_init(io_index);
3836#endif
3837 break;
3838 case DEVICE_NATIVE_ENDIAN:
3839 default:
3840 break;
3841 }
3842
f6405247 3843 return (io_index << IO_MEM_SHIFT);
33417e70 3844}
61382a50 3845
d60efc6b
BS
3846int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3847 CPUWriteMemoryFunc * const *mem_write,
dd310534 3848 void *opaque, enum device_endian endian)
1eed09cb 3849{
2507c12a 3850 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
1eed09cb
AK
3851}
3852
88715657
AL
3853void cpu_unregister_io_memory(int io_table_address)
3854{
3855 int i;
3856 int io_index = io_table_address >> IO_MEM_SHIFT;
3857
dd310534
AG
3858 swapendian_del(io_index);
3859
88715657
AL
3860 for (i=0;i < 3; i++) {
3861 io_mem_read[io_index][i] = unassigned_mem_read[i];
3862 io_mem_write[io_index][i] = unassigned_mem_write[i];
3863 }
3864 io_mem_opaque[io_index] = NULL;
3865 io_mem_used[io_index] = 0;
3866}
3867
e9179ce1
AK
3868static void io_mem_init(void)
3869{
3870 int i;
3871
2507c12a
AG
3872 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3873 unassigned_mem_write, NULL,
3874 DEVICE_NATIVE_ENDIAN);
3875 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3876 unassigned_mem_write, NULL,
3877 DEVICE_NATIVE_ENDIAN);
3878 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3879 notdirty_mem_write, NULL,
3880 DEVICE_NATIVE_ENDIAN);
56384e8b
AF
3881 cpu_register_io_memory_fixed(IO_MEM_SUBPAGE_RAM, subpage_ram_read,
3882 subpage_ram_write, NULL,
3883 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3884 for (i=0; i<5; i++)
3885 io_mem_used[i] = 1;
3886
3887 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2507c12a
AG
3888 watch_mem_write, NULL,
3889 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3890}
3891
62152b8a
AK
3892static void memory_map_init(void)
3893{
7267c094 3894 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3895 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3896 set_system_memory_map(system_memory);
309cb471 3897
7267c094 3898 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3899 memory_region_init(system_io, "io", 65536);
3900 set_system_io_map(system_io);
62152b8a
AK
3901}
3902
3903MemoryRegion *get_system_memory(void)
3904{
3905 return system_memory;
3906}
3907
309cb471
AK
3908MemoryRegion *get_system_io(void)
3909{
3910 return system_io;
3911}
3912
e2eef170
PB
3913#endif /* !defined(CONFIG_USER_ONLY) */
3914
13eb76e0
FB
3915/* physical memory access (slow version, mainly for debug) */
3916#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3917int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3918 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3919{
3920 int l, flags;
3921 target_ulong page;
53a5960a 3922 void * p;
13eb76e0
FB
3923
3924 while (len > 0) {
3925 page = addr & TARGET_PAGE_MASK;
3926 l = (page + TARGET_PAGE_SIZE) - addr;
3927 if (l > len)
3928 l = len;
3929 flags = page_get_flags(page);
3930 if (!(flags & PAGE_VALID))
a68fe89c 3931 return -1;
13eb76e0
FB
3932 if (is_write) {
3933 if (!(flags & PAGE_WRITE))
a68fe89c 3934 return -1;
579a97f7 3935 /* XXX: this code should not depend on lock_user */
72fb7daa 3936 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3937 return -1;
72fb7daa
AJ
3938 memcpy(p, buf, l);
3939 unlock_user(p, addr, l);
13eb76e0
FB
3940 } else {
3941 if (!(flags & PAGE_READ))
a68fe89c 3942 return -1;
579a97f7 3943 /* XXX: this code should not depend on lock_user */
72fb7daa 3944 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3945 return -1;
72fb7daa 3946 memcpy(buf, p, l);
5b257578 3947 unlock_user(p, addr, 0);
13eb76e0
FB
3948 }
3949 len -= l;
3950 buf += l;
3951 addr += l;
3952 }
a68fe89c 3953 return 0;
13eb76e0 3954}
8df1cd07 3955
13eb76e0 3956#else
c227f099 3957void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3958 int len, int is_write)
3959{
3960 int l, io_index;
3961 uint8_t *ptr;
3962 uint32_t val;
c227f099 3963 target_phys_addr_t page;
8ca5692d 3964 ram_addr_t pd;
92e873b9 3965 PhysPageDesc *p;
3b46e624 3966
13eb76e0
FB
3967 while (len > 0) {
3968 page = addr & TARGET_PAGE_MASK;
3969 l = (page + TARGET_PAGE_SIZE) - addr;
3970 if (l > len)
3971 l = len;
92e873b9 3972 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3973 if (!p) {
3974 pd = IO_MEM_UNASSIGNED;
3975 } else {
3976 pd = p->phys_offset;
3977 }
3b46e624 3978
13eb76e0 3979 if (is_write) {
3a7d929e 3980 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3981 target_phys_addr_t addr1 = addr;
13eb76e0 3982 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3983 if (p)
6c2934db 3984 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3985 /* XXX: could force cpu_single_env to NULL to avoid
3986 potential bugs */
6c2934db 3987 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3988 /* 32 bit write access */
c27004ec 3989 val = ldl_p(buf);
6c2934db 3990 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3991 l = 4;
6c2934db 3992 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3993 /* 16 bit write access */
c27004ec 3994 val = lduw_p(buf);
6c2934db 3995 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3996 l = 2;
3997 } else {
1c213d19 3998 /* 8 bit write access */
c27004ec 3999 val = ldub_p(buf);
6c2934db 4000 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
4001 l = 1;
4002 }
4003 } else {
8ca5692d 4004 ram_addr_t addr1;
b448f2f3 4005 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 4006 /* RAM case */
5579c7f3 4007 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 4008 memcpy(ptr, buf, l);
3a7d929e
FB
4009 if (!cpu_physical_memory_is_dirty(addr1)) {
4010 /* invalidate code */
4011 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4012 /* set dirty bit */
f7c11b53
YT
4013 cpu_physical_memory_set_dirty_flags(
4014 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4015 }
050a0ddf 4016 qemu_put_ram_ptr(ptr);
13eb76e0
FB
4017 }
4018 } else {
5fafdf24 4019 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4020 !(pd & IO_MEM_ROMD)) {
c227f099 4021 target_phys_addr_t addr1 = addr;
13eb76e0
FB
4022 /* I/O case */
4023 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 4024 if (p)
6c2934db
AJ
4025 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4026 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 4027 /* 32 bit read access */
6c2934db 4028 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 4029 stl_p(buf, val);
13eb76e0 4030 l = 4;
6c2934db 4031 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 4032 /* 16 bit read access */
6c2934db 4033 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 4034 stw_p(buf, val);
13eb76e0
FB
4035 l = 2;
4036 } else {
1c213d19 4037 /* 8 bit read access */
6c2934db 4038 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 4039 stb_p(buf, val);
13eb76e0
FB
4040 l = 1;
4041 }
4042 } else {
4043 /* RAM case */
050a0ddf
AP
4044 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
4045 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
4046 qemu_put_ram_ptr(ptr);
13eb76e0
FB
4047 }
4048 }
4049 len -= l;
4050 buf += l;
4051 addr += l;
4052 }
4053}
8df1cd07 4054
d0ecd2aa 4055/* used for ROM loading : can write in RAM and ROM */
c227f099 4056void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
4057 const uint8_t *buf, int len)
4058{
4059 int l;
4060 uint8_t *ptr;
c227f099 4061 target_phys_addr_t page;
d0ecd2aa
FB
4062 unsigned long pd;
4063 PhysPageDesc *p;
3b46e624 4064
d0ecd2aa
FB
4065 while (len > 0) {
4066 page = addr & TARGET_PAGE_MASK;
4067 l = (page + TARGET_PAGE_SIZE) - addr;
4068 if (l > len)
4069 l = len;
4070 p = phys_page_find(page >> TARGET_PAGE_BITS);
4071 if (!p) {
4072 pd = IO_MEM_UNASSIGNED;
4073 } else {
4074 pd = p->phys_offset;
4075 }
3b46e624 4076
d0ecd2aa 4077 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
4078 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
4079 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
4080 /* do nothing */
4081 } else {
4082 unsigned long addr1;
4083 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4084 /* ROM/RAM case */
5579c7f3 4085 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 4086 memcpy(ptr, buf, l);
050a0ddf 4087 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
4088 }
4089 len -= l;
4090 buf += l;
4091 addr += l;
4092 }
4093}
4094
6d16c2f8
AL
4095typedef struct {
4096 void *buffer;
c227f099
AL
4097 target_phys_addr_t addr;
4098 target_phys_addr_t len;
6d16c2f8
AL
4099} BounceBuffer;
4100
4101static BounceBuffer bounce;
4102
ba223c29
AL
4103typedef struct MapClient {
4104 void *opaque;
4105 void (*callback)(void *opaque);
72cf2d4f 4106 QLIST_ENTRY(MapClient) link;
ba223c29
AL
4107} MapClient;
4108
72cf2d4f
BS
4109static QLIST_HEAD(map_client_list, MapClient) map_client_list
4110 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
4111
4112void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
4113{
7267c094 4114 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
4115
4116 client->opaque = opaque;
4117 client->callback = callback;
72cf2d4f 4118 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
4119 return client;
4120}
4121
4122void cpu_unregister_map_client(void *_client)
4123{
4124 MapClient *client = (MapClient *)_client;
4125
72cf2d4f 4126 QLIST_REMOVE(client, link);
7267c094 4127 g_free(client);
ba223c29
AL
4128}
4129
4130static void cpu_notify_map_clients(void)
4131{
4132 MapClient *client;
4133
72cf2d4f
BS
4134 while (!QLIST_EMPTY(&map_client_list)) {
4135 client = QLIST_FIRST(&map_client_list);
ba223c29 4136 client->callback(client->opaque);
34d5e948 4137 cpu_unregister_map_client(client);
ba223c29
AL
4138 }
4139}
4140
6d16c2f8
AL
4141/* Map a physical memory region into a host virtual address.
4142 * May map a subset of the requested range, given by and returned in *plen.
4143 * May return NULL if resources needed to perform the mapping are exhausted.
4144 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
4145 * Use cpu_register_map_client() to know when retrying the map operation is
4146 * likely to succeed.
6d16c2f8 4147 */
c227f099
AL
4148void *cpu_physical_memory_map(target_phys_addr_t addr,
4149 target_phys_addr_t *plen,
6d16c2f8
AL
4150 int is_write)
4151{
c227f099 4152 target_phys_addr_t len = *plen;
38bee5dc 4153 target_phys_addr_t todo = 0;
6d16c2f8 4154 int l;
c227f099 4155 target_phys_addr_t page;
6d16c2f8
AL
4156 unsigned long pd;
4157 PhysPageDesc *p;
f15fbc4b 4158 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
4159 ram_addr_t rlen;
4160 void *ret;
6d16c2f8
AL
4161
4162 while (len > 0) {
4163 page = addr & TARGET_PAGE_MASK;
4164 l = (page + TARGET_PAGE_SIZE) - addr;
4165 if (l > len)
4166 l = len;
4167 p = phys_page_find(page >> TARGET_PAGE_BITS);
4168 if (!p) {
4169 pd = IO_MEM_UNASSIGNED;
4170 } else {
4171 pd = p->phys_offset;
4172 }
4173
4174 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
38bee5dc 4175 if (todo || bounce.buffer) {
6d16c2f8
AL
4176 break;
4177 }
4178 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4179 bounce.addr = addr;
4180 bounce.len = l;
4181 if (!is_write) {
54f7b4a3 4182 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 4183 }
38bee5dc
SS
4184
4185 *plen = l;
4186 return bounce.buffer;
6d16c2f8 4187 }
8ab934f9
SS
4188 if (!todo) {
4189 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4190 }
6d16c2f8
AL
4191
4192 len -= l;
4193 addr += l;
38bee5dc 4194 todo += l;
6d16c2f8 4195 }
8ab934f9
SS
4196 rlen = todo;
4197 ret = qemu_ram_ptr_length(raddr, &rlen);
4198 *plen = rlen;
4199 return ret;
6d16c2f8
AL
4200}
4201
4202/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4203 * Will also mark the memory as dirty if is_write == 1. access_len gives
4204 * the amount of memory that was actually read or written by the caller.
4205 */
c227f099
AL
4206void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4207 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
4208{
4209 if (buffer != bounce.buffer) {
4210 if (is_write) {
e890261f 4211 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
4212 while (access_len) {
4213 unsigned l;
4214 l = TARGET_PAGE_SIZE;
4215 if (l > access_len)
4216 l = access_len;
4217 if (!cpu_physical_memory_is_dirty(addr1)) {
4218 /* invalidate code */
4219 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4220 /* set dirty bit */
f7c11b53
YT
4221 cpu_physical_memory_set_dirty_flags(
4222 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
4223 }
4224 addr1 += l;
4225 access_len -= l;
4226 }
4227 }
868bb33f 4228 if (xen_enabled()) {
e41d7c69 4229 xen_invalidate_map_cache_entry(buffer);
050a0ddf 4230 }
6d16c2f8
AL
4231 return;
4232 }
4233 if (is_write) {
4234 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4235 }
f8a83245 4236 qemu_vfree(bounce.buffer);
6d16c2f8 4237 bounce.buffer = NULL;
ba223c29 4238 cpu_notify_map_clients();
6d16c2f8 4239}
d0ecd2aa 4240
8df1cd07 4241/* warning: addr must be aligned */
1e78bcc1
AG
4242static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4243 enum device_endian endian)
8df1cd07
FB
4244{
4245 int io_index;
4246 uint8_t *ptr;
4247 uint32_t val;
4248 unsigned long pd;
4249 PhysPageDesc *p;
4250
4251 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4252 if (!p) {
4253 pd = IO_MEM_UNASSIGNED;
4254 } else {
4255 pd = p->phys_offset;
4256 }
3b46e624 4257
5fafdf24 4258 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4259 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
4260 /* I/O case */
4261 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4262 if (p)
4263 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07 4264 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4265#if defined(TARGET_WORDS_BIGENDIAN)
4266 if (endian == DEVICE_LITTLE_ENDIAN) {
4267 val = bswap32(val);
4268 }
4269#else
4270 if (endian == DEVICE_BIG_ENDIAN) {
4271 val = bswap32(val);
4272 }
4273#endif
8df1cd07
FB
4274 } else {
4275 /* RAM case */
5579c7f3 4276 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07 4277 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4278 switch (endian) {
4279 case DEVICE_LITTLE_ENDIAN:
4280 val = ldl_le_p(ptr);
4281 break;
4282 case DEVICE_BIG_ENDIAN:
4283 val = ldl_be_p(ptr);
4284 break;
4285 default:
4286 val = ldl_p(ptr);
4287 break;
4288 }
8df1cd07
FB
4289 }
4290 return val;
4291}
4292
1e78bcc1
AG
4293uint32_t ldl_phys(target_phys_addr_t addr)
4294{
4295 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4296}
4297
4298uint32_t ldl_le_phys(target_phys_addr_t addr)
4299{
4300 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4301}
4302
4303uint32_t ldl_be_phys(target_phys_addr_t addr)
4304{
4305 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4306}
4307
84b7b8e7 4308/* warning: addr must be aligned */
1e78bcc1
AG
4309static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4310 enum device_endian endian)
84b7b8e7
FB
4311{
4312 int io_index;
4313 uint8_t *ptr;
4314 uint64_t val;
4315 unsigned long pd;
4316 PhysPageDesc *p;
4317
4318 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4319 if (!p) {
4320 pd = IO_MEM_UNASSIGNED;
4321 } else {
4322 pd = p->phys_offset;
4323 }
3b46e624 4324
2a4188a3
FB
4325 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4326 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
4327 /* I/O case */
4328 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4329 if (p)
4330 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4331
4332 /* XXX This is broken when device endian != cpu endian.
4333 Fix and add "endian" variable check */
84b7b8e7
FB
4334#ifdef TARGET_WORDS_BIGENDIAN
4335 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4336 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4337#else
4338 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4339 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4340#endif
4341 } else {
4342 /* RAM case */
5579c7f3 4343 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7 4344 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4345 switch (endian) {
4346 case DEVICE_LITTLE_ENDIAN:
4347 val = ldq_le_p(ptr);
4348 break;
4349 case DEVICE_BIG_ENDIAN:
4350 val = ldq_be_p(ptr);
4351 break;
4352 default:
4353 val = ldq_p(ptr);
4354 break;
4355 }
84b7b8e7
FB
4356 }
4357 return val;
4358}
4359
1e78bcc1
AG
4360uint64_t ldq_phys(target_phys_addr_t addr)
4361{
4362 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4363}
4364
4365uint64_t ldq_le_phys(target_phys_addr_t addr)
4366{
4367 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4368}
4369
4370uint64_t ldq_be_phys(target_phys_addr_t addr)
4371{
4372 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4373}
4374
aab33094 4375/* XXX: optimize */
c227f099 4376uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4377{
4378 uint8_t val;
4379 cpu_physical_memory_read(addr, &val, 1);
4380 return val;
4381}
4382
733f0b02 4383/* warning: addr must be aligned */
1e78bcc1
AG
4384static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4385 enum device_endian endian)
aab33094 4386{
733f0b02
MT
4387 int io_index;
4388 uint8_t *ptr;
4389 uint64_t val;
4390 unsigned long pd;
4391 PhysPageDesc *p;
4392
4393 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4394 if (!p) {
4395 pd = IO_MEM_UNASSIGNED;
4396 } else {
4397 pd = p->phys_offset;
4398 }
4399
4400 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4401 !(pd & IO_MEM_ROMD)) {
4402 /* I/O case */
4403 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4404 if (p)
4405 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4406 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4407#if defined(TARGET_WORDS_BIGENDIAN)
4408 if (endian == DEVICE_LITTLE_ENDIAN) {
4409 val = bswap16(val);
4410 }
4411#else
4412 if (endian == DEVICE_BIG_ENDIAN) {
4413 val = bswap16(val);
4414 }
4415#endif
733f0b02
MT
4416 } else {
4417 /* RAM case */
4418 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4419 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4420 switch (endian) {
4421 case DEVICE_LITTLE_ENDIAN:
4422 val = lduw_le_p(ptr);
4423 break;
4424 case DEVICE_BIG_ENDIAN:
4425 val = lduw_be_p(ptr);
4426 break;
4427 default:
4428 val = lduw_p(ptr);
4429 break;
4430 }
733f0b02
MT
4431 }
4432 return val;
aab33094
FB
4433}
4434
1e78bcc1
AG
4435uint32_t lduw_phys(target_phys_addr_t addr)
4436{
4437 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4438}
4439
4440uint32_t lduw_le_phys(target_phys_addr_t addr)
4441{
4442 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4443}
4444
4445uint32_t lduw_be_phys(target_phys_addr_t addr)
4446{
4447 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4448}
4449
8df1cd07
FB
4450/* warning: addr must be aligned. The ram page is not masked as dirty
4451 and the code inside is not invalidated. It is useful if the dirty
4452 bits are used to track modified PTEs */
c227f099 4453void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4454{
4455 int io_index;
4456 uint8_t *ptr;
4457 unsigned long pd;
4458 PhysPageDesc *p;
4459
4460 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4461 if (!p) {
4462 pd = IO_MEM_UNASSIGNED;
4463 } else {
4464 pd = p->phys_offset;
4465 }
3b46e624 4466
3a7d929e 4467 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4468 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4469 if (p)
4470 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4471 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4472 } else {
74576198 4473 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4474 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4475 stl_p(ptr, val);
74576198
AL
4476
4477 if (unlikely(in_migration)) {
4478 if (!cpu_physical_memory_is_dirty(addr1)) {
4479 /* invalidate code */
4480 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4481 /* set dirty bit */
f7c11b53
YT
4482 cpu_physical_memory_set_dirty_flags(
4483 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4484 }
4485 }
8df1cd07
FB
4486 }
4487}
4488
c227f099 4489void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4490{
4491 int io_index;
4492 uint8_t *ptr;
4493 unsigned long pd;
4494 PhysPageDesc *p;
4495
4496 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4497 if (!p) {
4498 pd = IO_MEM_UNASSIGNED;
4499 } else {
4500 pd = p->phys_offset;
4501 }
3b46e624 4502
bc98a7ef
JM
4503 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4504 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4505 if (p)
4506 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
4507#ifdef TARGET_WORDS_BIGENDIAN
4508 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4509 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4510#else
4511 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4512 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4513#endif
4514 } else {
5579c7f3 4515 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4516 (addr & ~TARGET_PAGE_MASK);
4517 stq_p(ptr, val);
4518 }
4519}
4520
8df1cd07 4521/* warning: addr must be aligned */
1e78bcc1
AG
4522static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4523 enum device_endian endian)
8df1cd07
FB
4524{
4525 int io_index;
4526 uint8_t *ptr;
4527 unsigned long pd;
4528 PhysPageDesc *p;
4529
4530 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4531 if (!p) {
4532 pd = IO_MEM_UNASSIGNED;
4533 } else {
4534 pd = p->phys_offset;
4535 }
3b46e624 4536
3a7d929e 4537 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4538 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4539 if (p)
4540 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4541#if defined(TARGET_WORDS_BIGENDIAN)
4542 if (endian == DEVICE_LITTLE_ENDIAN) {
4543 val = bswap32(val);
4544 }
4545#else
4546 if (endian == DEVICE_BIG_ENDIAN) {
4547 val = bswap32(val);
4548 }
4549#endif
8df1cd07
FB
4550 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4551 } else {
4552 unsigned long addr1;
4553 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4554 /* RAM case */
5579c7f3 4555 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4556 switch (endian) {
4557 case DEVICE_LITTLE_ENDIAN:
4558 stl_le_p(ptr, val);
4559 break;
4560 case DEVICE_BIG_ENDIAN:
4561 stl_be_p(ptr, val);
4562 break;
4563 default:
4564 stl_p(ptr, val);
4565 break;
4566 }
3a7d929e
FB
4567 if (!cpu_physical_memory_is_dirty(addr1)) {
4568 /* invalidate code */
4569 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4570 /* set dirty bit */
f7c11b53
YT
4571 cpu_physical_memory_set_dirty_flags(addr1,
4572 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4573 }
8df1cd07
FB
4574 }
4575}
4576
1e78bcc1
AG
4577void stl_phys(target_phys_addr_t addr, uint32_t val)
4578{
4579 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4580}
4581
4582void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4583{
4584 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4585}
4586
4587void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4588{
4589 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4590}
4591
aab33094 4592/* XXX: optimize */
c227f099 4593void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4594{
4595 uint8_t v = val;
4596 cpu_physical_memory_write(addr, &v, 1);
4597}
4598
733f0b02 4599/* warning: addr must be aligned */
1e78bcc1
AG
4600static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4601 enum device_endian endian)
aab33094 4602{
733f0b02
MT
4603 int io_index;
4604 uint8_t *ptr;
4605 unsigned long pd;
4606 PhysPageDesc *p;
4607
4608 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4609 if (!p) {
4610 pd = IO_MEM_UNASSIGNED;
4611 } else {
4612 pd = p->phys_offset;
4613 }
4614
4615 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4616 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4617 if (p)
4618 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4619#if defined(TARGET_WORDS_BIGENDIAN)
4620 if (endian == DEVICE_LITTLE_ENDIAN) {
4621 val = bswap16(val);
4622 }
4623#else
4624 if (endian == DEVICE_BIG_ENDIAN) {
4625 val = bswap16(val);
4626 }
4627#endif
733f0b02
MT
4628 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4629 } else {
4630 unsigned long addr1;
4631 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4632 /* RAM case */
4633 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4634 switch (endian) {
4635 case DEVICE_LITTLE_ENDIAN:
4636 stw_le_p(ptr, val);
4637 break;
4638 case DEVICE_BIG_ENDIAN:
4639 stw_be_p(ptr, val);
4640 break;
4641 default:
4642 stw_p(ptr, val);
4643 break;
4644 }
733f0b02
MT
4645 if (!cpu_physical_memory_is_dirty(addr1)) {
4646 /* invalidate code */
4647 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4648 /* set dirty bit */
4649 cpu_physical_memory_set_dirty_flags(addr1,
4650 (0xff & ~CODE_DIRTY_FLAG));
4651 }
4652 }
aab33094
FB
4653}
4654
1e78bcc1
AG
4655void stw_phys(target_phys_addr_t addr, uint32_t val)
4656{
4657 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4658}
4659
4660void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4661{
4662 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4663}
4664
4665void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4666{
4667 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4668}
4669
aab33094 4670/* XXX: optimize */
c227f099 4671void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4672{
4673 val = tswap64(val);
71d2b725 4674 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4675}
4676
1e78bcc1
AG
4677void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4678{
4679 val = cpu_to_le64(val);
4680 cpu_physical_memory_write(addr, &val, 8);
4681}
4682
4683void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4684{
4685 val = cpu_to_be64(val);
4686 cpu_physical_memory_write(addr, &val, 8);
4687}
4688
5e2972fd 4689/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4690int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4691 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4692{
4693 int l;
c227f099 4694 target_phys_addr_t phys_addr;
9b3c35e0 4695 target_ulong page;
13eb76e0
FB
4696
4697 while (len > 0) {
4698 page = addr & TARGET_PAGE_MASK;
4699 phys_addr = cpu_get_phys_page_debug(env, page);
4700 /* if no physical page mapped, return an error */
4701 if (phys_addr == -1)
4702 return -1;
4703 l = (page + TARGET_PAGE_SIZE) - addr;
4704 if (l > len)
4705 l = len;
5e2972fd 4706 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4707 if (is_write)
4708 cpu_physical_memory_write_rom(phys_addr, buf, l);
4709 else
5e2972fd 4710 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4711 len -= l;
4712 buf += l;
4713 addr += l;
4714 }
4715 return 0;
4716}
a68fe89c 4717#endif
13eb76e0 4718
2e70f6ef
PB
4719/* in deterministic execution mode, instructions doing device I/Os
4720 must be at the end of the TB */
4721void cpu_io_recompile(CPUState *env, void *retaddr)
4722{
4723 TranslationBlock *tb;
4724 uint32_t n, cflags;
4725 target_ulong pc, cs_base;
4726 uint64_t flags;
4727
4728 tb = tb_find_pc((unsigned long)retaddr);
4729 if (!tb) {
4730 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4731 retaddr);
4732 }
4733 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4734 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4735 /* Calculate how many instructions had been executed before the fault
bf20dc07 4736 occurred. */
2e70f6ef
PB
4737 n = n - env->icount_decr.u16.low;
4738 /* Generate a new TB ending on the I/O insn. */
4739 n++;
4740 /* On MIPS and SH, delay slot instructions can only be restarted if
4741 they were already the first instruction in the TB. If this is not
bf20dc07 4742 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4743 branch. */
4744#if defined(TARGET_MIPS)
4745 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4746 env->active_tc.PC -= 4;
4747 env->icount_decr.u16.low++;
4748 env->hflags &= ~MIPS_HFLAG_BMASK;
4749 }
4750#elif defined(TARGET_SH4)
4751 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4752 && n > 1) {
4753 env->pc -= 2;
4754 env->icount_decr.u16.low++;
4755 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4756 }
4757#endif
4758 /* This should never happen. */
4759 if (n > CF_COUNT_MASK)
4760 cpu_abort(env, "TB too big during recompile");
4761
4762 cflags = n | CF_LAST_IO;
4763 pc = tb->pc;
4764 cs_base = tb->cs_base;
4765 flags = tb->flags;
4766 tb_phys_invalidate(tb, -1);
4767 /* FIXME: In theory this could raise an exception. In practice
4768 we have already translated the block once so it's probably ok. */
4769 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4770 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4771 the first in the TB) then we end up generating a whole new TB and
4772 repeating the fault, which is horribly inefficient.
4773 Better would be to execute just this insn uncached, or generate a
4774 second new TB. */
4775 cpu_resume_from_signal(env, NULL);
4776}
4777
b3755a91
PB
4778#if !defined(CONFIG_USER_ONLY)
4779
055403b2 4780void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4781{
4782 int i, target_code_size, max_target_code_size;
4783 int direct_jmp_count, direct_jmp2_count, cross_page;
4784 TranslationBlock *tb;
3b46e624 4785
e3db7226
FB
4786 target_code_size = 0;
4787 max_target_code_size = 0;
4788 cross_page = 0;
4789 direct_jmp_count = 0;
4790 direct_jmp2_count = 0;
4791 for(i = 0; i < nb_tbs; i++) {
4792 tb = &tbs[i];
4793 target_code_size += tb->size;
4794 if (tb->size > max_target_code_size)
4795 max_target_code_size = tb->size;
4796 if (tb->page_addr[1] != -1)
4797 cross_page++;
4798 if (tb->tb_next_offset[0] != 0xffff) {
4799 direct_jmp_count++;
4800 if (tb->tb_next_offset[1] != 0xffff) {
4801 direct_jmp2_count++;
4802 }
4803 }
4804 }
4805 /* XXX: avoid using doubles ? */
57fec1fe 4806 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4807 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4808 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4809 cpu_fprintf(f, "TB count %d/%d\n",
4810 nb_tbs, code_gen_max_blocks);
5fafdf24 4811 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4812 nb_tbs ? target_code_size / nb_tbs : 0,
4813 max_target_code_size);
055403b2 4814 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4815 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4816 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4817 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4818 cross_page,
e3db7226
FB
4819 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4820 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4821 direct_jmp_count,
e3db7226
FB
4822 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4823 direct_jmp2_count,
4824 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4825 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4826 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4827 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4828 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4829 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4830}
4831
61382a50 4832#define MMUSUFFIX _cmmu
3917149d 4833#undef GETPC
61382a50
FB
4834#define GETPC() NULL
4835#define env cpu_single_env
b769d8fe 4836#define SOFTMMU_CODE_ACCESS
61382a50
FB
4837
4838#define SHIFT 0
4839#include "softmmu_template.h"
4840
4841#define SHIFT 1
4842#include "softmmu_template.h"
4843
4844#define SHIFT 2
4845#include "softmmu_template.h"
4846
4847#define SHIFT 3
4848#include "softmmu_template.h"
4849
4850#undef env
4851
4852#endif