]> git.proxmox.com Git - qemu.git/blame - exec.c
Fix last page errors in page_check_range and page_set_flags.
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
fd052bf6 43#include <signal.h>
53a5960a 44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
bdaf78e0 65static TranslationBlock *tbs;
26a5f13b 66int code_gen_max_blocks;
9fa3e853 67TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 68static int nb_tbs;
eb51d102 69/* any access to the tbs or the page table must use this lock */
c227f099 70spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 71
141ac468
BS
72#if defined(__arm__) || defined(__sparc_v9__)
73/* The prologue must be reachable with a direct jump. ARM and Sparc64
74 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
75 section close to code segment. */
76#define code_gen_section \
77 __attribute__((__section__(".gen_code"))) \
78 __attribute__((aligned (32)))
f8e2af11
SW
79#elif defined(_WIN32)
80/* Maximum alignment for Win32 is 16. */
81#define code_gen_section \
82 __attribute__((aligned (16)))
d03d860b
BS
83#else
84#define code_gen_section \
85 __attribute__((aligned (32)))
86#endif
87
88uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
89static uint8_t *code_gen_buffer;
90static unsigned long code_gen_buffer_size;
26a5f13b 91/* threshold to flush the translated code buffer */
bdaf78e0 92static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
93uint8_t *code_gen_ptr;
94
e2eef170 95#if !defined(CONFIG_USER_ONLY)
9fa3e853 96int phys_ram_fd;
1ccde1cb 97uint8_t *phys_ram_dirty;
74576198 98static int in_migration;
94a6b54f
PB
99
100typedef struct RAMBlock {
101 uint8_t *host;
c227f099
AL
102 ram_addr_t offset;
103 ram_addr_t length;
94a6b54f
PB
104 struct RAMBlock *next;
105} RAMBlock;
106
107static RAMBlock *ram_blocks;
108/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 109 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 110 of this variable will break. */
c227f099 111ram_addr_t last_ram_offset;
e2eef170 112#endif
9fa3e853 113
6a00d601
FB
114CPUState *first_cpu;
115/* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
5fafdf24 117CPUState *cpu_single_env;
2e70f6ef 118/* 0 = Do not count executed instructions.
bf20dc07 119 1 = Precise instruction counting.
2e70f6ef
PB
120 2 = Adaptive rate instruction counting. */
121int use_icount = 0;
122/* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
124int64_t qemu_icount;
6a00d601 125
54936004 126typedef struct PageDesc {
92e873b9 127 /* list of TBs intersecting this ram page */
fd6ce8f6 128 TranslationBlock *first_tb;
9fa3e853
FB
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count;
132 uint8_t *code_bitmap;
133#if defined(CONFIG_USER_ONLY)
134 unsigned long flags;
135#endif
54936004
FB
136} PageDesc;
137
92e873b9 138typedef struct PhysPageDesc {
0f459d16 139 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
140 ram_addr_t phys_offset;
141 ram_addr_t region_offset;
92e873b9
FB
142} PhysPageDesc;
143
5cd2c5b6
RH
144/* In system mode we want L1_MAP to be based on physical addresses,
145 while in user mode we want it to be based on virtual addresses. */
146#if !defined(CONFIG_USER_ONLY)
147# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
bedb69ea 148#else
5cd2c5b6 149# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 150#endif
54936004 151
5cd2c5b6
RH
152/* Size of the L2 (and L3, etc) page tables. */
153#define L2_BITS 10
54936004
FB
154#define L2_SIZE (1 << L2_BITS)
155
5cd2c5b6
RH
156/* The bits remaining after N lower levels of page tables. */
157#define P_L1_BITS_REM \
158 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
159#define V_L1_BITS_REM \
160 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
161
162/* Size of the L1 page table. Avoid silly small sizes. */
163#if P_L1_BITS_REM < 4
164#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
165#else
166#define P_L1_BITS P_L1_BITS_REM
167#endif
168
169#if V_L1_BITS_REM < 4
170#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171#else
172#define V_L1_BITS V_L1_BITS_REM
173#endif
174
175#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
176#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177
178#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
179#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
180
83fb7adf
FB
181unsigned long qemu_real_host_page_size;
182unsigned long qemu_host_page_bits;
183unsigned long qemu_host_page_size;
184unsigned long qemu_host_page_mask;
54936004 185
5cd2c5b6
RH
186/* This is a multi-level map on the virtual address space.
187 The bottom level has pointers to PageDesc. */
188static void *l1_map[V_L1_SIZE];
54936004 189
e2eef170 190#if !defined(CONFIG_USER_ONLY)
5cd2c5b6
RH
191/* This is a multi-level map on the physical address space.
192 The bottom level has pointers to PhysPageDesc. */
193static void *l1_phys_map[P_L1_SIZE];
6d9a1304 194
e2eef170
PB
195static void io_mem_init(void);
196
33417e70 197/* io memory support */
33417e70
FB
198CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
199CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 200void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 201static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
202static int io_mem_watch;
203#endif
33417e70 204
34865134 205/* log support */
1e8b27ca
JR
206#ifdef WIN32
207static const char *logfilename = "qemu.log";
208#else
d9b630fd 209static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 210#endif
34865134
FB
211FILE *logfile;
212int loglevel;
e735b91c 213static int log_append = 0;
34865134 214
e3db7226
FB
215/* statistics */
216static int tlb_flush_count;
217static int tb_flush_count;
218static int tb_phys_invalidate_count;
219
7cb69cae
FB
220#ifdef _WIN32
221static void map_exec(void *addr, long size)
222{
223 DWORD old_protect;
224 VirtualProtect(addr, size,
225 PAGE_EXECUTE_READWRITE, &old_protect);
226
227}
228#else
229static void map_exec(void *addr, long size)
230{
4369415f 231 unsigned long start, end, page_size;
7cb69cae 232
4369415f 233 page_size = getpagesize();
7cb69cae 234 start = (unsigned long)addr;
4369415f 235 start &= ~(page_size - 1);
7cb69cae
FB
236
237 end = (unsigned long)addr + size;
4369415f
FB
238 end += page_size - 1;
239 end &= ~(page_size - 1);
7cb69cae
FB
240
241 mprotect((void *)start, end - start,
242 PROT_READ | PROT_WRITE | PROT_EXEC);
243}
244#endif
245
b346ff46 246static void page_init(void)
54936004 247{
83fb7adf 248 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 249 TARGET_PAGE_SIZE */
c2b48b69
AL
250#ifdef _WIN32
251 {
252 SYSTEM_INFO system_info;
253
254 GetSystemInfo(&system_info);
255 qemu_real_host_page_size = system_info.dwPageSize;
256 }
257#else
258 qemu_real_host_page_size = getpagesize();
259#endif
83fb7adf
FB
260 if (qemu_host_page_size == 0)
261 qemu_host_page_size = qemu_real_host_page_size;
262 if (qemu_host_page_size < TARGET_PAGE_SIZE)
263 qemu_host_page_size = TARGET_PAGE_SIZE;
264 qemu_host_page_bits = 0;
265 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
266 qemu_host_page_bits++;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b
AZ
268
269#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
270 {
50a9569b 271 FILE *f;
50a9569b 272
0776590d 273 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 274
50a9569b
AZ
275 f = fopen("/proc/self/maps", "r");
276 if (f) {
5cd2c5b6
RH
277 mmap_lock();
278
50a9569b 279 do {
5cd2c5b6
RH
280 unsigned long startaddr, endaddr;
281 int n;
282
283 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
284
285 if (n == 2 && h2g_valid(startaddr)) {
286 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
287
288 if (h2g_valid(endaddr)) {
289 endaddr = h2g(endaddr);
290 } else {
291 endaddr = ~0ul;
292 }
293 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
294 }
295 } while (!feof(f));
5cd2c5b6 296
50a9569b 297 fclose(f);
5cd2c5b6 298 mmap_unlock();
50a9569b
AZ
299 }
300 }
301#endif
54936004
FB
302}
303
5cd2c5b6 304static PageDesc *page_find_alloc(target_ulong index, int alloc)
54936004 305{
5cd2c5b6
RH
306#if defined(CONFIG_USER_ONLY)
307 /* We can't use qemu_malloc because it may recurse into a locked mutex.
308 Neither can we record the new pages we reserve while allocating a
309 given page because that may recurse into an unallocated page table
310 entry. Stuff the allocations we do make into a queue and process
311 them after having completed one entire page table allocation. */
312
313 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
314 int reserve_idx = 0;
315
316# define ALLOC(P, SIZE) \
317 do { \
318 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
319 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
320 if (h2g_valid(P)) { \
321 reserve[reserve_idx] = h2g(P); \
322 reserve[reserve_idx + 1] = SIZE; \
323 reserve_idx += 2; \
324 } \
325 } while (0)
326#else
327# define ALLOC(P, SIZE) \
328 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 329#endif
434929bf 330
5cd2c5b6
RH
331 PageDesc *pd;
332 void **lp;
333 int i;
434929bf 334
5cd2c5b6
RH
335 /* Level 1. Always allocated. */
336 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
337
338 /* Level 2..N-1. */
339 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
340 void **p = *lp;
341
342 if (p == NULL) {
343 if (!alloc) {
344 return NULL;
345 }
346 ALLOC(p, sizeof(void *) * L2_SIZE);
347 *lp = p;
17e2377a 348 }
5cd2c5b6
RH
349
350 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
351 }
352
353 pd = *lp;
354 if (pd == NULL) {
355 if (!alloc) {
356 return NULL;
357 }
358 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
359 *lp = pd;
54936004 360 }
5cd2c5b6
RH
361
362#undef ALLOC
363#if defined(CONFIG_USER_ONLY)
364 for (i = 0; i < reserve_idx; i += 2) {
365 unsigned long addr = reserve[i];
366 unsigned long len = reserve[i + 1];
367
368 page_set_flags(addr & TARGET_PAGE_MASK,
369 TARGET_PAGE_ALIGN(addr + len),
370 PAGE_RESERVED);
371 }
372#endif
373
374 return pd + (index & (L2_SIZE - 1));
54936004
FB
375}
376
00f82b8a 377static inline PageDesc *page_find(target_ulong index)
54936004 378{
5cd2c5b6 379 return page_find_alloc(index, 0);
fd6ce8f6
FB
380}
381
6d9a1304 382#if !defined(CONFIG_USER_ONLY)
c227f099 383static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 384{
e3f4e2a4 385 PhysPageDesc *pd;
5cd2c5b6
RH
386 void **lp;
387 int i;
92e873b9 388
5cd2c5b6
RH
389 /* Level 1. Always allocated. */
390 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 391
5cd2c5b6
RH
392 /* Level 2..N-1. */
393 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
394 void **p = *lp;
395 if (p == NULL) {
396 if (!alloc) {
397 return NULL;
398 }
399 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
400 }
401 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 402 }
5cd2c5b6 403
e3f4e2a4 404 pd = *lp;
5cd2c5b6 405 if (pd == NULL) {
e3f4e2a4 406 int i;
5cd2c5b6
RH
407
408 if (!alloc) {
108c49b8 409 return NULL;
5cd2c5b6
RH
410 }
411
412 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
413
67c4d23c 414 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
415 pd[i].phys_offset = IO_MEM_UNASSIGNED;
416 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 417 }
92e873b9 418 }
5cd2c5b6
RH
419
420 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
421}
422
c227f099 423static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 424{
108c49b8 425 return phys_page_find_alloc(index, 0);
92e873b9
FB
426}
427
c227f099
AL
428static void tlb_protect_code(ram_addr_t ram_addr);
429static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 430 target_ulong vaddr);
c8a706fe
PB
431#define mmap_lock() do { } while(0)
432#define mmap_unlock() do { } while(0)
9fa3e853 433#endif
fd6ce8f6 434
4369415f
FB
435#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
436
437#if defined(CONFIG_USER_ONLY)
ccbb4d44 438/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
439 user mode. It will change when a dedicated libc will be used */
440#define USE_STATIC_CODE_GEN_BUFFER
441#endif
442
443#ifdef USE_STATIC_CODE_GEN_BUFFER
444static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
445#endif
446
8fcd3692 447static void code_gen_alloc(unsigned long tb_size)
26a5f13b 448{
4369415f
FB
449#ifdef USE_STATIC_CODE_GEN_BUFFER
450 code_gen_buffer = static_code_gen_buffer;
451 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
452 map_exec(code_gen_buffer, code_gen_buffer_size);
453#else
26a5f13b
FB
454 code_gen_buffer_size = tb_size;
455 if (code_gen_buffer_size == 0) {
4369415f
FB
456#if defined(CONFIG_USER_ONLY)
457 /* in user mode, phys_ram_size is not meaningful */
458 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
459#else
ccbb4d44 460 /* XXX: needs adjustments */
94a6b54f 461 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 462#endif
26a5f13b
FB
463 }
464 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
465 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
466 /* The code gen buffer location may have constraints depending on
467 the host cpu and OS */
468#if defined(__linux__)
469 {
470 int flags;
141ac468
BS
471 void *start = NULL;
472
26a5f13b
FB
473 flags = MAP_PRIVATE | MAP_ANONYMOUS;
474#if defined(__x86_64__)
475 flags |= MAP_32BIT;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
479#elif defined(__sparc_v9__)
480 // Map the buffer below 2G, so we can use direct calls and branches
481 flags |= MAP_FIXED;
482 start = (void *) 0x60000000UL;
483 if (code_gen_buffer_size > (512 * 1024 * 1024))
484 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 485#elif defined(__arm__)
63d41246 486 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
487 flags |= MAP_FIXED;
488 start = (void *) 0x01000000UL;
489 if (code_gen_buffer_size > 16 * 1024 * 1024)
490 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 491#endif
141ac468
BS
492 code_gen_buffer = mmap(start, code_gen_buffer_size,
493 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
494 flags, -1, 0);
495 if (code_gen_buffer == MAP_FAILED) {
496 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
497 exit(1);
498 }
499 }
a167ba50 500#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
501 {
502 int flags;
503 void *addr = NULL;
504 flags = MAP_PRIVATE | MAP_ANONYMOUS;
505#if defined(__x86_64__)
506 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
507 * 0x40000000 is free */
508 flags |= MAP_FIXED;
509 addr = (void *)0x40000000;
510 /* Cannot map more than that */
511 if (code_gen_buffer_size > (800 * 1024 * 1024))
512 code_gen_buffer_size = (800 * 1024 * 1024);
513#endif
514 code_gen_buffer = mmap(addr, code_gen_buffer_size,
515 PROT_WRITE | PROT_READ | PROT_EXEC,
516 flags, -1, 0);
517 if (code_gen_buffer == MAP_FAILED) {
518 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
519 exit(1);
520 }
521 }
26a5f13b
FB
522#else
523 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
524 map_exec(code_gen_buffer, code_gen_buffer_size);
525#endif
4369415f 526#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
527 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
528 code_gen_buffer_max_size = code_gen_buffer_size -
529 code_gen_max_block_size();
530 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
531 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
532}
533
534/* Must be called before using the QEMU cpus. 'tb_size' is the size
535 (in bytes) allocated to the translation buffer. Zero means default
536 size. */
537void cpu_exec_init_all(unsigned long tb_size)
538{
26a5f13b
FB
539 cpu_gen_init();
540 code_gen_alloc(tb_size);
541 code_gen_ptr = code_gen_buffer;
4369415f 542 page_init();
e2eef170 543#if !defined(CONFIG_USER_ONLY)
26a5f13b 544 io_mem_init();
e2eef170 545#endif
26a5f13b
FB
546}
547
9656f324
PB
548#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
549
e59fb374 550static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
551{
552 CPUState *env = opaque;
9656f324 553
3098dba0
AJ
554 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
555 version_id is increased. */
556 env->interrupt_request &= ~0x01;
9656f324
PB
557 tlb_flush(env, 1);
558
559 return 0;
560}
e7f4eff7
JQ
561
562static const VMStateDescription vmstate_cpu_common = {
563 .name = "cpu_common",
564 .version_id = 1,
565 .minimum_version_id = 1,
566 .minimum_version_id_old = 1,
e7f4eff7
JQ
567 .post_load = cpu_common_post_load,
568 .fields = (VMStateField []) {
569 VMSTATE_UINT32(halted, CPUState),
570 VMSTATE_UINT32(interrupt_request, CPUState),
571 VMSTATE_END_OF_LIST()
572 }
573};
9656f324
PB
574#endif
575
950f1472
GC
576CPUState *qemu_get_cpu(int cpu)
577{
578 CPUState *env = first_cpu;
579
580 while (env) {
581 if (env->cpu_index == cpu)
582 break;
583 env = env->next_cpu;
584 }
585
586 return env;
587}
588
6a00d601 589void cpu_exec_init(CPUState *env)
fd6ce8f6 590{
6a00d601
FB
591 CPUState **penv;
592 int cpu_index;
593
c2764719
PB
594#if defined(CONFIG_USER_ONLY)
595 cpu_list_lock();
596#endif
6a00d601
FB
597 env->next_cpu = NULL;
598 penv = &first_cpu;
599 cpu_index = 0;
600 while (*penv != NULL) {
1e9fa730 601 penv = &(*penv)->next_cpu;
6a00d601
FB
602 cpu_index++;
603 }
604 env->cpu_index = cpu_index;
268a362c 605 env->numa_node = 0;
72cf2d4f
BS
606 QTAILQ_INIT(&env->breakpoints);
607 QTAILQ_INIT(&env->watchpoints);
6a00d601 608 *penv = env;
c2764719
PB
609#if defined(CONFIG_USER_ONLY)
610 cpu_list_unlock();
611#endif
b3c7724c 612#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 613 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
614 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
615 cpu_save, cpu_load, env);
616#endif
fd6ce8f6
FB
617}
618
9fa3e853
FB
619static inline void invalidate_page_bitmap(PageDesc *p)
620{
621 if (p->code_bitmap) {
59817ccb 622 qemu_free(p->code_bitmap);
9fa3e853
FB
623 p->code_bitmap = NULL;
624 }
625 p->code_write_count = 0;
626}
627
5cd2c5b6
RH
628/* Set to NULL all the 'first_tb' fields in all PageDescs. */
629
630static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 631{
5cd2c5b6 632 int i;
fd6ce8f6 633
5cd2c5b6
RH
634 if (*lp == NULL) {
635 return;
636 }
637 if (level == 0) {
638 PageDesc *pd = *lp;
639 for (i = 0; i < L2_BITS; ++i) {
640 pd[i].first_tb = NULL;
641 invalidate_page_bitmap(pd + i);
fd6ce8f6 642 }
5cd2c5b6
RH
643 } else {
644 void **pp = *lp;
645 for (i = 0; i < L2_BITS; ++i) {
646 page_flush_tb_1 (level - 1, pp + i);
647 }
648 }
649}
650
651static void page_flush_tb(void)
652{
653 int i;
654 for (i = 0; i < V_L1_SIZE; i++) {
655 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
656 }
657}
658
659/* flush all the translation blocks */
d4e8164f 660/* XXX: tb_flush is currently not thread safe */
6a00d601 661void tb_flush(CPUState *env1)
fd6ce8f6 662{
6a00d601 663 CPUState *env;
0124311e 664#if defined(DEBUG_FLUSH)
ab3d1727
BS
665 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
666 (unsigned long)(code_gen_ptr - code_gen_buffer),
667 nb_tbs, nb_tbs > 0 ?
668 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 669#endif
26a5f13b 670 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
671 cpu_abort(env1, "Internal error: code buffer overflow\n");
672
fd6ce8f6 673 nb_tbs = 0;
3b46e624 674
6a00d601
FB
675 for(env = first_cpu; env != NULL; env = env->next_cpu) {
676 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
677 }
9fa3e853 678
8a8a608f 679 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 680 page_flush_tb();
9fa3e853 681
fd6ce8f6 682 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
683 /* XXX: flush processor icache at this point if cache flush is
684 expensive */
e3db7226 685 tb_flush_count++;
fd6ce8f6
FB
686}
687
688#ifdef DEBUG_TB_CHECK
689
bc98a7ef 690static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
691{
692 TranslationBlock *tb;
693 int i;
694 address &= TARGET_PAGE_MASK;
99773bd4
PB
695 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
696 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
697 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
698 address >= tb->pc + tb->size)) {
0bf9e31a
BS
699 printf("ERROR invalidate: address=" TARGET_FMT_lx
700 " PC=%08lx size=%04x\n",
99773bd4 701 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
702 }
703 }
704 }
705}
706
707/* verify that all the pages have correct rights for code */
708static void tb_page_check(void)
709{
710 TranslationBlock *tb;
711 int i, flags1, flags2;
3b46e624 712
99773bd4
PB
713 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
714 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
715 flags1 = page_get_flags(tb->pc);
716 flags2 = page_get_flags(tb->pc + tb->size - 1);
717 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
718 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 719 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
720 }
721 }
722 }
723}
724
725#endif
726
727/* invalidate one TB */
728static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
729 int next_offset)
730{
731 TranslationBlock *tb1;
732 for(;;) {
733 tb1 = *ptb;
734 if (tb1 == tb) {
735 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
736 break;
737 }
738 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
739 }
740}
741
9fa3e853
FB
742static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
743{
744 TranslationBlock *tb1;
745 unsigned int n1;
746
747 for(;;) {
748 tb1 = *ptb;
749 n1 = (long)tb1 & 3;
750 tb1 = (TranslationBlock *)((long)tb1 & ~3);
751 if (tb1 == tb) {
752 *ptb = tb1->page_next[n1];
753 break;
754 }
755 ptb = &tb1->page_next[n1];
756 }
757}
758
d4e8164f
FB
759static inline void tb_jmp_remove(TranslationBlock *tb, int n)
760{
761 TranslationBlock *tb1, **ptb;
762 unsigned int n1;
763
764 ptb = &tb->jmp_next[n];
765 tb1 = *ptb;
766 if (tb1) {
767 /* find tb(n) in circular list */
768 for(;;) {
769 tb1 = *ptb;
770 n1 = (long)tb1 & 3;
771 tb1 = (TranslationBlock *)((long)tb1 & ~3);
772 if (n1 == n && tb1 == tb)
773 break;
774 if (n1 == 2) {
775 ptb = &tb1->jmp_first;
776 } else {
777 ptb = &tb1->jmp_next[n1];
778 }
779 }
780 /* now we can suppress tb(n) from the list */
781 *ptb = tb->jmp_next[n];
782
783 tb->jmp_next[n] = NULL;
784 }
785}
786
787/* reset the jump entry 'n' of a TB so that it is not chained to
788 another TB */
789static inline void tb_reset_jump(TranslationBlock *tb, int n)
790{
791 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
792}
793
2e70f6ef 794void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 795{
6a00d601 796 CPUState *env;
8a40a180 797 PageDesc *p;
d4e8164f 798 unsigned int h, n1;
c227f099 799 target_phys_addr_t phys_pc;
8a40a180 800 TranslationBlock *tb1, *tb2;
3b46e624 801
8a40a180
FB
802 /* remove the TB from the hash list */
803 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
804 h = tb_phys_hash_func(phys_pc);
5fafdf24 805 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
806 offsetof(TranslationBlock, phys_hash_next));
807
808 /* remove the TB from the page list */
809 if (tb->page_addr[0] != page_addr) {
810 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
811 tb_page_remove(&p->first_tb, tb);
812 invalidate_page_bitmap(p);
813 }
814 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
815 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
816 tb_page_remove(&p->first_tb, tb);
817 invalidate_page_bitmap(p);
818 }
819
36bdbe54 820 tb_invalidated_flag = 1;
59817ccb 821
fd6ce8f6 822 /* remove the TB from the hash list */
8a40a180 823 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
824 for(env = first_cpu; env != NULL; env = env->next_cpu) {
825 if (env->tb_jmp_cache[h] == tb)
826 env->tb_jmp_cache[h] = NULL;
827 }
d4e8164f
FB
828
829 /* suppress this TB from the two jump lists */
830 tb_jmp_remove(tb, 0);
831 tb_jmp_remove(tb, 1);
832
833 /* suppress any remaining jumps to this TB */
834 tb1 = tb->jmp_first;
835 for(;;) {
836 n1 = (long)tb1 & 3;
837 if (n1 == 2)
838 break;
839 tb1 = (TranslationBlock *)((long)tb1 & ~3);
840 tb2 = tb1->jmp_next[n1];
841 tb_reset_jump(tb1, n1);
842 tb1->jmp_next[n1] = NULL;
843 tb1 = tb2;
844 }
845 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 846
e3db7226 847 tb_phys_invalidate_count++;
9fa3e853
FB
848}
849
850static inline void set_bits(uint8_t *tab, int start, int len)
851{
852 int end, mask, end1;
853
854 end = start + len;
855 tab += start >> 3;
856 mask = 0xff << (start & 7);
857 if ((start & ~7) == (end & ~7)) {
858 if (start < end) {
859 mask &= ~(0xff << (end & 7));
860 *tab |= mask;
861 }
862 } else {
863 *tab++ |= mask;
864 start = (start + 8) & ~7;
865 end1 = end & ~7;
866 while (start < end1) {
867 *tab++ = 0xff;
868 start += 8;
869 }
870 if (start < end) {
871 mask = ~(0xff << (end & 7));
872 *tab |= mask;
873 }
874 }
875}
876
877static void build_page_bitmap(PageDesc *p)
878{
879 int n, tb_start, tb_end;
880 TranslationBlock *tb;
3b46e624 881
b2a7081a 882 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
883
884 tb = p->first_tb;
885 while (tb != NULL) {
886 n = (long)tb & 3;
887 tb = (TranslationBlock *)((long)tb & ~3);
888 /* NOTE: this is subtle as a TB may span two physical pages */
889 if (n == 0) {
890 /* NOTE: tb_end may be after the end of the page, but
891 it is not a problem */
892 tb_start = tb->pc & ~TARGET_PAGE_MASK;
893 tb_end = tb_start + tb->size;
894 if (tb_end > TARGET_PAGE_SIZE)
895 tb_end = TARGET_PAGE_SIZE;
896 } else {
897 tb_start = 0;
898 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
899 }
900 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
901 tb = tb->page_next[n];
902 }
903}
904
2e70f6ef
PB
905TranslationBlock *tb_gen_code(CPUState *env,
906 target_ulong pc, target_ulong cs_base,
907 int flags, int cflags)
d720b93d
FB
908{
909 TranslationBlock *tb;
910 uint8_t *tc_ptr;
911 target_ulong phys_pc, phys_page2, virt_page2;
912 int code_gen_size;
913
c27004ec
FB
914 phys_pc = get_phys_addr_code(env, pc);
915 tb = tb_alloc(pc);
d720b93d
FB
916 if (!tb) {
917 /* flush must be done */
918 tb_flush(env);
919 /* cannot fail at this point */
c27004ec 920 tb = tb_alloc(pc);
2e70f6ef
PB
921 /* Don't forget to invalidate previous TB info. */
922 tb_invalidated_flag = 1;
d720b93d
FB
923 }
924 tc_ptr = code_gen_ptr;
925 tb->tc_ptr = tc_ptr;
926 tb->cs_base = cs_base;
927 tb->flags = flags;
928 tb->cflags = cflags;
d07bde88 929 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 930 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 931
d720b93d 932 /* check next page if needed */
c27004ec 933 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 934 phys_page2 = -1;
c27004ec 935 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
936 phys_page2 = get_phys_addr_code(env, virt_page2);
937 }
938 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 939 return tb;
d720b93d 940}
3b46e624 941
9fa3e853
FB
942/* invalidate all TBs which intersect with the target physical page
943 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
944 the same physical page. 'is_cpu_write_access' should be true if called
945 from a real cpu write access: the virtual CPU will exit the current
946 TB if code is modified inside this TB. */
c227f099 947void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
948 int is_cpu_write_access)
949{
6b917547 950 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 951 CPUState *env = cpu_single_env;
9fa3e853 952 target_ulong tb_start, tb_end;
6b917547
AL
953 PageDesc *p;
954 int n;
955#ifdef TARGET_HAS_PRECISE_SMC
956 int current_tb_not_found = is_cpu_write_access;
957 TranslationBlock *current_tb = NULL;
958 int current_tb_modified = 0;
959 target_ulong current_pc = 0;
960 target_ulong current_cs_base = 0;
961 int current_flags = 0;
962#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
963
964 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 965 if (!p)
9fa3e853 966 return;
5fafdf24 967 if (!p->code_bitmap &&
d720b93d
FB
968 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
969 is_cpu_write_access) {
9fa3e853
FB
970 /* build code bitmap */
971 build_page_bitmap(p);
972 }
973
974 /* we remove all the TBs in the range [start, end[ */
975 /* XXX: see if in some cases it could be faster to invalidate all the code */
976 tb = p->first_tb;
977 while (tb != NULL) {
978 n = (long)tb & 3;
979 tb = (TranslationBlock *)((long)tb & ~3);
980 tb_next = tb->page_next[n];
981 /* NOTE: this is subtle as a TB may span two physical pages */
982 if (n == 0) {
983 /* NOTE: tb_end may be after the end of the page, but
984 it is not a problem */
985 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
986 tb_end = tb_start + tb->size;
987 } else {
988 tb_start = tb->page_addr[1];
989 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
990 }
991 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
992#ifdef TARGET_HAS_PRECISE_SMC
993 if (current_tb_not_found) {
994 current_tb_not_found = 0;
995 current_tb = NULL;
2e70f6ef 996 if (env->mem_io_pc) {
d720b93d 997 /* now we have a real cpu fault */
2e70f6ef 998 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
999 }
1000 }
1001 if (current_tb == tb &&
2e70f6ef 1002 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1003 /* If we are modifying the current TB, we must stop
1004 its execution. We could be more precise by checking
1005 that the modification is after the current PC, but it
1006 would require a specialized function to partially
1007 restore the CPU state */
3b46e624 1008
d720b93d 1009 current_tb_modified = 1;
5fafdf24 1010 cpu_restore_state(current_tb, env,
2e70f6ef 1011 env->mem_io_pc, NULL);
6b917547
AL
1012 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1013 &current_flags);
d720b93d
FB
1014 }
1015#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1016 /* we need to do that to handle the case where a signal
1017 occurs while doing tb_phys_invalidate() */
1018 saved_tb = NULL;
1019 if (env) {
1020 saved_tb = env->current_tb;
1021 env->current_tb = NULL;
1022 }
9fa3e853 1023 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1024 if (env) {
1025 env->current_tb = saved_tb;
1026 if (env->interrupt_request && env->current_tb)
1027 cpu_interrupt(env, env->interrupt_request);
1028 }
9fa3e853
FB
1029 }
1030 tb = tb_next;
1031 }
1032#if !defined(CONFIG_USER_ONLY)
1033 /* if no code remaining, no need to continue to use slow writes */
1034 if (!p->first_tb) {
1035 invalidate_page_bitmap(p);
d720b93d 1036 if (is_cpu_write_access) {
2e70f6ef 1037 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1038 }
1039 }
1040#endif
1041#ifdef TARGET_HAS_PRECISE_SMC
1042 if (current_tb_modified) {
1043 /* we generate a block containing just the instruction
1044 modifying the memory. It will ensure that it cannot modify
1045 itself */
ea1c1802 1046 env->current_tb = NULL;
2e70f6ef 1047 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1048 cpu_resume_from_signal(env, NULL);
9fa3e853 1049 }
fd6ce8f6 1050#endif
9fa3e853 1051}
fd6ce8f6 1052
9fa3e853 1053/* len must be <= 8 and start must be a multiple of len */
c227f099 1054static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1055{
1056 PageDesc *p;
1057 int offset, b;
59817ccb 1058#if 0
a4193c8a 1059 if (1) {
93fcfe39
AL
1060 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1061 cpu_single_env->mem_io_vaddr, len,
1062 cpu_single_env->eip,
1063 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1064 }
1065#endif
9fa3e853 1066 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1067 if (!p)
9fa3e853
FB
1068 return;
1069 if (p->code_bitmap) {
1070 offset = start & ~TARGET_PAGE_MASK;
1071 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1072 if (b & ((1 << len) - 1))
1073 goto do_invalidate;
1074 } else {
1075 do_invalidate:
d720b93d 1076 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1077 }
1078}
1079
9fa3e853 1080#if !defined(CONFIG_SOFTMMU)
c227f099 1081static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1082 unsigned long pc, void *puc)
9fa3e853 1083{
6b917547 1084 TranslationBlock *tb;
9fa3e853 1085 PageDesc *p;
6b917547 1086 int n;
d720b93d 1087#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1088 TranslationBlock *current_tb = NULL;
d720b93d 1089 CPUState *env = cpu_single_env;
6b917547
AL
1090 int current_tb_modified = 0;
1091 target_ulong current_pc = 0;
1092 target_ulong current_cs_base = 0;
1093 int current_flags = 0;
d720b93d 1094#endif
9fa3e853
FB
1095
1096 addr &= TARGET_PAGE_MASK;
1097 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1098 if (!p)
9fa3e853
FB
1099 return;
1100 tb = p->first_tb;
d720b93d
FB
1101#ifdef TARGET_HAS_PRECISE_SMC
1102 if (tb && pc != 0) {
1103 current_tb = tb_find_pc(pc);
1104 }
1105#endif
9fa3e853
FB
1106 while (tb != NULL) {
1107 n = (long)tb & 3;
1108 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1109#ifdef TARGET_HAS_PRECISE_SMC
1110 if (current_tb == tb &&
2e70f6ef 1111 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1112 /* If we are modifying the current TB, we must stop
1113 its execution. We could be more precise by checking
1114 that the modification is after the current PC, but it
1115 would require a specialized function to partially
1116 restore the CPU state */
3b46e624 1117
d720b93d
FB
1118 current_tb_modified = 1;
1119 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1120 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1121 &current_flags);
d720b93d
FB
1122 }
1123#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1124 tb_phys_invalidate(tb, addr);
1125 tb = tb->page_next[n];
1126 }
fd6ce8f6 1127 p->first_tb = NULL;
d720b93d
FB
1128#ifdef TARGET_HAS_PRECISE_SMC
1129 if (current_tb_modified) {
1130 /* we generate a block containing just the instruction
1131 modifying the memory. It will ensure that it cannot modify
1132 itself */
ea1c1802 1133 env->current_tb = NULL;
2e70f6ef 1134 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1135 cpu_resume_from_signal(env, puc);
1136 }
1137#endif
fd6ce8f6 1138}
9fa3e853 1139#endif
fd6ce8f6
FB
1140
1141/* add the tb in the target page and protect it if necessary */
5fafdf24 1142static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1143 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1144{
1145 PageDesc *p;
9fa3e853
FB
1146 TranslationBlock *last_first_tb;
1147
1148 tb->page_addr[n] = page_addr;
5cd2c5b6 1149 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1150 tb->page_next[n] = p->first_tb;
1151 last_first_tb = p->first_tb;
1152 p->first_tb = (TranslationBlock *)((long)tb | n);
1153 invalidate_page_bitmap(p);
fd6ce8f6 1154
107db443 1155#if defined(TARGET_HAS_SMC) || 1
d720b93d 1156
9fa3e853 1157#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1158 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1159 target_ulong addr;
1160 PageDesc *p2;
9fa3e853
FB
1161 int prot;
1162
fd6ce8f6
FB
1163 /* force the host page as non writable (writes will have a
1164 page fault + mprotect overhead) */
53a5960a 1165 page_addr &= qemu_host_page_mask;
fd6ce8f6 1166 prot = 0;
53a5960a
PB
1167 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1168 addr += TARGET_PAGE_SIZE) {
1169
1170 p2 = page_find (addr >> TARGET_PAGE_BITS);
1171 if (!p2)
1172 continue;
1173 prot |= p2->flags;
1174 p2->flags &= ~PAGE_WRITE;
1175 page_get_flags(addr);
1176 }
5fafdf24 1177 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1178 (prot & PAGE_BITS) & ~PAGE_WRITE);
1179#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1180 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1181 page_addr);
fd6ce8f6 1182#endif
fd6ce8f6 1183 }
9fa3e853
FB
1184#else
1185 /* if some code is already present, then the pages are already
1186 protected. So we handle the case where only the first TB is
1187 allocated in a physical page */
1188 if (!last_first_tb) {
6a00d601 1189 tlb_protect_code(page_addr);
9fa3e853
FB
1190 }
1191#endif
d720b93d
FB
1192
1193#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1194}
1195
1196/* Allocate a new translation block. Flush the translation buffer if
1197 too many translation blocks or too much generated code. */
c27004ec 1198TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1199{
1200 TranslationBlock *tb;
fd6ce8f6 1201
26a5f13b
FB
1202 if (nb_tbs >= code_gen_max_blocks ||
1203 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1204 return NULL;
fd6ce8f6
FB
1205 tb = &tbs[nb_tbs++];
1206 tb->pc = pc;
b448f2f3 1207 tb->cflags = 0;
d4e8164f
FB
1208 return tb;
1209}
1210
2e70f6ef
PB
1211void tb_free(TranslationBlock *tb)
1212{
bf20dc07 1213 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1214 Ignore the hard cases and just back up if this TB happens to
1215 be the last one generated. */
1216 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1217 code_gen_ptr = tb->tc_ptr;
1218 nb_tbs--;
1219 }
1220}
1221
9fa3e853
FB
1222/* add a new TB and link it to the physical page tables. phys_page2 is
1223 (-1) to indicate that only one page contains the TB. */
5fafdf24 1224void tb_link_phys(TranslationBlock *tb,
9fa3e853 1225 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1226{
9fa3e853
FB
1227 unsigned int h;
1228 TranslationBlock **ptb;
1229
c8a706fe
PB
1230 /* Grab the mmap lock to stop another thread invalidating this TB
1231 before we are done. */
1232 mmap_lock();
9fa3e853
FB
1233 /* add in the physical hash table */
1234 h = tb_phys_hash_func(phys_pc);
1235 ptb = &tb_phys_hash[h];
1236 tb->phys_hash_next = *ptb;
1237 *ptb = tb;
fd6ce8f6
FB
1238
1239 /* add in the page list */
9fa3e853
FB
1240 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1241 if (phys_page2 != -1)
1242 tb_alloc_page(tb, 1, phys_page2);
1243 else
1244 tb->page_addr[1] = -1;
9fa3e853 1245
d4e8164f
FB
1246 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1247 tb->jmp_next[0] = NULL;
1248 tb->jmp_next[1] = NULL;
1249
1250 /* init original jump addresses */
1251 if (tb->tb_next_offset[0] != 0xffff)
1252 tb_reset_jump(tb, 0);
1253 if (tb->tb_next_offset[1] != 0xffff)
1254 tb_reset_jump(tb, 1);
8a40a180
FB
1255
1256#ifdef DEBUG_TB_CHECK
1257 tb_page_check();
1258#endif
c8a706fe 1259 mmap_unlock();
fd6ce8f6
FB
1260}
1261
9fa3e853
FB
1262/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1263 tb[1].tc_ptr. Return NULL if not found */
1264TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1265{
9fa3e853
FB
1266 int m_min, m_max, m;
1267 unsigned long v;
1268 TranslationBlock *tb;
a513fe19
FB
1269
1270 if (nb_tbs <= 0)
1271 return NULL;
1272 if (tc_ptr < (unsigned long)code_gen_buffer ||
1273 tc_ptr >= (unsigned long)code_gen_ptr)
1274 return NULL;
1275 /* binary search (cf Knuth) */
1276 m_min = 0;
1277 m_max = nb_tbs - 1;
1278 while (m_min <= m_max) {
1279 m = (m_min + m_max) >> 1;
1280 tb = &tbs[m];
1281 v = (unsigned long)tb->tc_ptr;
1282 if (v == tc_ptr)
1283 return tb;
1284 else if (tc_ptr < v) {
1285 m_max = m - 1;
1286 } else {
1287 m_min = m + 1;
1288 }
5fafdf24 1289 }
a513fe19
FB
1290 return &tbs[m_max];
1291}
7501267e 1292
ea041c0e
FB
1293static void tb_reset_jump_recursive(TranslationBlock *tb);
1294
1295static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1296{
1297 TranslationBlock *tb1, *tb_next, **ptb;
1298 unsigned int n1;
1299
1300 tb1 = tb->jmp_next[n];
1301 if (tb1 != NULL) {
1302 /* find head of list */
1303 for(;;) {
1304 n1 = (long)tb1 & 3;
1305 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1306 if (n1 == 2)
1307 break;
1308 tb1 = tb1->jmp_next[n1];
1309 }
1310 /* we are now sure now that tb jumps to tb1 */
1311 tb_next = tb1;
1312
1313 /* remove tb from the jmp_first list */
1314 ptb = &tb_next->jmp_first;
1315 for(;;) {
1316 tb1 = *ptb;
1317 n1 = (long)tb1 & 3;
1318 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1319 if (n1 == n && tb1 == tb)
1320 break;
1321 ptb = &tb1->jmp_next[n1];
1322 }
1323 *ptb = tb->jmp_next[n];
1324 tb->jmp_next[n] = NULL;
3b46e624 1325
ea041c0e
FB
1326 /* suppress the jump to next tb in generated code */
1327 tb_reset_jump(tb, n);
1328
0124311e 1329 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1330 tb_reset_jump_recursive(tb_next);
1331 }
1332}
1333
1334static void tb_reset_jump_recursive(TranslationBlock *tb)
1335{
1336 tb_reset_jump_recursive2(tb, 0);
1337 tb_reset_jump_recursive2(tb, 1);
1338}
1339
1fddef4b 1340#if defined(TARGET_HAS_ICE)
94df27fd
PB
1341#if defined(CONFIG_USER_ONLY)
1342static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1343{
1344 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1345}
1346#else
d720b93d
FB
1347static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1348{
c227f099 1349 target_phys_addr_t addr;
9b3c35e0 1350 target_ulong pd;
c227f099 1351 ram_addr_t ram_addr;
c2f07f81 1352 PhysPageDesc *p;
d720b93d 1353
c2f07f81
PB
1354 addr = cpu_get_phys_page_debug(env, pc);
1355 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1356 if (!p) {
1357 pd = IO_MEM_UNASSIGNED;
1358 } else {
1359 pd = p->phys_offset;
1360 }
1361 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1362 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1363}
c27004ec 1364#endif
94df27fd 1365#endif /* TARGET_HAS_ICE */
d720b93d 1366
c527ee8f
PB
1367#if defined(CONFIG_USER_ONLY)
1368void cpu_watchpoint_remove_all(CPUState *env, int mask)
1369
1370{
1371}
1372
1373int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1374 int flags, CPUWatchpoint **watchpoint)
1375{
1376 return -ENOSYS;
1377}
1378#else
6658ffb8 1379/* Add a watchpoint. */
a1d1bb31
AL
1380int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1381 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1382{
b4051334 1383 target_ulong len_mask = ~(len - 1);
c0ce998e 1384 CPUWatchpoint *wp;
6658ffb8 1385
b4051334
AL
1386 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1387 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1388 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1389 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1390 return -EINVAL;
1391 }
a1d1bb31 1392 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1393
1394 wp->vaddr = addr;
b4051334 1395 wp->len_mask = len_mask;
a1d1bb31
AL
1396 wp->flags = flags;
1397
2dc9f411 1398 /* keep all GDB-injected watchpoints in front */
c0ce998e 1399 if (flags & BP_GDB)
72cf2d4f 1400 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1401 else
72cf2d4f 1402 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1403
6658ffb8 1404 tlb_flush_page(env, addr);
a1d1bb31
AL
1405
1406 if (watchpoint)
1407 *watchpoint = wp;
1408 return 0;
6658ffb8
PB
1409}
1410
a1d1bb31
AL
1411/* Remove a specific watchpoint. */
1412int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1413 int flags)
6658ffb8 1414{
b4051334 1415 target_ulong len_mask = ~(len - 1);
a1d1bb31 1416 CPUWatchpoint *wp;
6658ffb8 1417
72cf2d4f 1418 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1419 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1420 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1421 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1422 return 0;
1423 }
1424 }
a1d1bb31 1425 return -ENOENT;
6658ffb8
PB
1426}
1427
a1d1bb31
AL
1428/* Remove a specific watchpoint by reference. */
1429void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1430{
72cf2d4f 1431 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1432
a1d1bb31
AL
1433 tlb_flush_page(env, watchpoint->vaddr);
1434
1435 qemu_free(watchpoint);
1436}
1437
1438/* Remove all matching watchpoints. */
1439void cpu_watchpoint_remove_all(CPUState *env, int mask)
1440{
c0ce998e 1441 CPUWatchpoint *wp, *next;
a1d1bb31 1442
72cf2d4f 1443 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1444 if (wp->flags & mask)
1445 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1446 }
7d03f82f 1447}
c527ee8f 1448#endif
7d03f82f 1449
a1d1bb31
AL
1450/* Add a breakpoint. */
1451int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1452 CPUBreakpoint **breakpoint)
4c3a88a2 1453{
1fddef4b 1454#if defined(TARGET_HAS_ICE)
c0ce998e 1455 CPUBreakpoint *bp;
3b46e624 1456
a1d1bb31 1457 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1458
a1d1bb31
AL
1459 bp->pc = pc;
1460 bp->flags = flags;
1461
2dc9f411 1462 /* keep all GDB-injected breakpoints in front */
c0ce998e 1463 if (flags & BP_GDB)
72cf2d4f 1464 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1465 else
72cf2d4f 1466 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1467
d720b93d 1468 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1469
1470 if (breakpoint)
1471 *breakpoint = bp;
4c3a88a2
FB
1472 return 0;
1473#else
a1d1bb31 1474 return -ENOSYS;
4c3a88a2
FB
1475#endif
1476}
1477
a1d1bb31
AL
1478/* Remove a specific breakpoint. */
1479int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1480{
7d03f82f 1481#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1482 CPUBreakpoint *bp;
1483
72cf2d4f 1484 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1485 if (bp->pc == pc && bp->flags == flags) {
1486 cpu_breakpoint_remove_by_ref(env, bp);
1487 return 0;
1488 }
7d03f82f 1489 }
a1d1bb31
AL
1490 return -ENOENT;
1491#else
1492 return -ENOSYS;
7d03f82f
EI
1493#endif
1494}
1495
a1d1bb31
AL
1496/* Remove a specific breakpoint by reference. */
1497void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1498{
1fddef4b 1499#if defined(TARGET_HAS_ICE)
72cf2d4f 1500 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1501
a1d1bb31
AL
1502 breakpoint_invalidate(env, breakpoint->pc);
1503
1504 qemu_free(breakpoint);
1505#endif
1506}
1507
1508/* Remove all matching breakpoints. */
1509void cpu_breakpoint_remove_all(CPUState *env, int mask)
1510{
1511#if defined(TARGET_HAS_ICE)
c0ce998e 1512 CPUBreakpoint *bp, *next;
a1d1bb31 1513
72cf2d4f 1514 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1515 if (bp->flags & mask)
1516 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1517 }
4c3a88a2
FB
1518#endif
1519}
1520
c33a346e
FB
1521/* enable or disable single step mode. EXCP_DEBUG is returned by the
1522 CPU loop after each instruction */
1523void cpu_single_step(CPUState *env, int enabled)
1524{
1fddef4b 1525#if defined(TARGET_HAS_ICE)
c33a346e
FB
1526 if (env->singlestep_enabled != enabled) {
1527 env->singlestep_enabled = enabled;
e22a25c9
AL
1528 if (kvm_enabled())
1529 kvm_update_guest_debug(env, 0);
1530 else {
ccbb4d44 1531 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1532 /* XXX: only flush what is necessary */
1533 tb_flush(env);
1534 }
c33a346e
FB
1535 }
1536#endif
1537}
1538
34865134
FB
1539/* enable or disable low levels log */
1540void cpu_set_log(int log_flags)
1541{
1542 loglevel = log_flags;
1543 if (loglevel && !logfile) {
11fcfab4 1544 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1545 if (!logfile) {
1546 perror(logfilename);
1547 _exit(1);
1548 }
9fa3e853
FB
1549#if !defined(CONFIG_SOFTMMU)
1550 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1551 {
b55266b5 1552 static char logfile_buf[4096];
9fa3e853
FB
1553 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1554 }
bf65f53f
FN
1555#elif !defined(_WIN32)
1556 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1557 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1558#endif
e735b91c
PB
1559 log_append = 1;
1560 }
1561 if (!loglevel && logfile) {
1562 fclose(logfile);
1563 logfile = NULL;
34865134
FB
1564 }
1565}
1566
1567void cpu_set_log_filename(const char *filename)
1568{
1569 logfilename = strdup(filename);
e735b91c
PB
1570 if (logfile) {
1571 fclose(logfile);
1572 logfile = NULL;
1573 }
1574 cpu_set_log(loglevel);
34865134 1575}
c33a346e 1576
3098dba0 1577static void cpu_unlink_tb(CPUState *env)
ea041c0e 1578{
3098dba0
AJ
1579 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1580 problem and hope the cpu will stop of its own accord. For userspace
1581 emulation this often isn't actually as bad as it sounds. Often
1582 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1583 TranslationBlock *tb;
c227f099 1584 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1585
cab1b4bd 1586 spin_lock(&interrupt_lock);
3098dba0
AJ
1587 tb = env->current_tb;
1588 /* if the cpu is currently executing code, we must unlink it and
1589 all the potentially executing TB */
f76cfe56 1590 if (tb) {
3098dba0
AJ
1591 env->current_tb = NULL;
1592 tb_reset_jump_recursive(tb);
be214e6c 1593 }
cab1b4bd 1594 spin_unlock(&interrupt_lock);
3098dba0
AJ
1595}
1596
1597/* mask must never be zero, except for A20 change call */
1598void cpu_interrupt(CPUState *env, int mask)
1599{
1600 int old_mask;
be214e6c 1601
2e70f6ef 1602 old_mask = env->interrupt_request;
68a79315 1603 env->interrupt_request |= mask;
3098dba0 1604
8edac960
AL
1605#ifndef CONFIG_USER_ONLY
1606 /*
1607 * If called from iothread context, wake the target cpu in
1608 * case its halted.
1609 */
1610 if (!qemu_cpu_self(env)) {
1611 qemu_cpu_kick(env);
1612 return;
1613 }
1614#endif
1615
2e70f6ef 1616 if (use_icount) {
266910c4 1617 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1618#ifndef CONFIG_USER_ONLY
2e70f6ef 1619 if (!can_do_io(env)
be214e6c 1620 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1621 cpu_abort(env, "Raised interrupt while not in I/O function");
1622 }
1623#endif
1624 } else {
3098dba0 1625 cpu_unlink_tb(env);
ea041c0e
FB
1626 }
1627}
1628
b54ad049
FB
1629void cpu_reset_interrupt(CPUState *env, int mask)
1630{
1631 env->interrupt_request &= ~mask;
1632}
1633
3098dba0
AJ
1634void cpu_exit(CPUState *env)
1635{
1636 env->exit_request = 1;
1637 cpu_unlink_tb(env);
1638}
1639
c7cd6a37 1640const CPULogItem cpu_log_items[] = {
5fafdf24 1641 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1642 "show generated host assembly code for each compiled TB" },
1643 { CPU_LOG_TB_IN_ASM, "in_asm",
1644 "show target assembly code for each compiled TB" },
5fafdf24 1645 { CPU_LOG_TB_OP, "op",
57fec1fe 1646 "show micro ops for each compiled TB" },
f193c797 1647 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1648 "show micro ops "
1649#ifdef TARGET_I386
1650 "before eflags optimization and "
f193c797 1651#endif
e01a1157 1652 "after liveness analysis" },
f193c797
FB
1653 { CPU_LOG_INT, "int",
1654 "show interrupts/exceptions in short format" },
1655 { CPU_LOG_EXEC, "exec",
1656 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1657 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1658 "show CPU state before block translation" },
f193c797
FB
1659#ifdef TARGET_I386
1660 { CPU_LOG_PCALL, "pcall",
1661 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1662 { CPU_LOG_RESET, "cpu_reset",
1663 "show CPU state before CPU resets" },
f193c797 1664#endif
8e3a9fd2 1665#ifdef DEBUG_IOPORT
fd872598
FB
1666 { CPU_LOG_IOPORT, "ioport",
1667 "show all i/o ports accesses" },
8e3a9fd2 1668#endif
f193c797
FB
1669 { 0, NULL, NULL },
1670};
1671
f6f3fbca
MT
1672#ifndef CONFIG_USER_ONLY
1673static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1674 = QLIST_HEAD_INITIALIZER(memory_client_list);
1675
1676static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1677 ram_addr_t size,
1678 ram_addr_t phys_offset)
1679{
1680 CPUPhysMemoryClient *client;
1681 QLIST_FOREACH(client, &memory_client_list, list) {
1682 client->set_memory(client, start_addr, size, phys_offset);
1683 }
1684}
1685
1686static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1687 target_phys_addr_t end)
1688{
1689 CPUPhysMemoryClient *client;
1690 QLIST_FOREACH(client, &memory_client_list, list) {
1691 int r = client->sync_dirty_bitmap(client, start, end);
1692 if (r < 0)
1693 return r;
1694 }
1695 return 0;
1696}
1697
1698static int cpu_notify_migration_log(int enable)
1699{
1700 CPUPhysMemoryClient *client;
1701 QLIST_FOREACH(client, &memory_client_list, list) {
1702 int r = client->migration_log(client, enable);
1703 if (r < 0)
1704 return r;
1705 }
1706 return 0;
1707}
1708
5cd2c5b6
RH
1709static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1710 int level, void **lp)
f6f3fbca 1711{
5cd2c5b6 1712 int i;
f6f3fbca 1713
5cd2c5b6
RH
1714 if (*lp == NULL) {
1715 return;
1716 }
1717 if (level == 0) {
1718 PhysPageDesc *pd = *lp;
1719 for (i = 0; i < L2_BITS; ++i) {
1720 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1721 client->set_memory(client, pd[i].region_offset,
1722 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1723 }
5cd2c5b6
RH
1724 }
1725 } else {
1726 void **pp = *lp;
1727 for (i = 0; i < L2_BITS; ++i) {
1728 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1729 }
1730 }
1731}
1732
1733static void phys_page_for_each(CPUPhysMemoryClient *client)
1734{
5cd2c5b6
RH
1735 int i;
1736 for (i = 0; i < P_L1_SIZE; ++i) {
1737 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1738 l1_phys_map + 1);
f6f3fbca 1739 }
f6f3fbca
MT
1740}
1741
1742void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1743{
1744 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1745 phys_page_for_each(client);
1746}
1747
1748void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1749{
1750 QLIST_REMOVE(client, list);
1751}
1752#endif
1753
f193c797
FB
1754static int cmp1(const char *s1, int n, const char *s2)
1755{
1756 if (strlen(s2) != n)
1757 return 0;
1758 return memcmp(s1, s2, n) == 0;
1759}
3b46e624 1760
f193c797
FB
1761/* takes a comma separated list of log masks. Return 0 if error. */
1762int cpu_str_to_log_mask(const char *str)
1763{
c7cd6a37 1764 const CPULogItem *item;
f193c797
FB
1765 int mask;
1766 const char *p, *p1;
1767
1768 p = str;
1769 mask = 0;
1770 for(;;) {
1771 p1 = strchr(p, ',');
1772 if (!p1)
1773 p1 = p + strlen(p);
8e3a9fd2
FB
1774 if(cmp1(p,p1-p,"all")) {
1775 for(item = cpu_log_items; item->mask != 0; item++) {
1776 mask |= item->mask;
1777 }
1778 } else {
f193c797
FB
1779 for(item = cpu_log_items; item->mask != 0; item++) {
1780 if (cmp1(p, p1 - p, item->name))
1781 goto found;
1782 }
1783 return 0;
8e3a9fd2 1784 }
f193c797
FB
1785 found:
1786 mask |= item->mask;
1787 if (*p1 != ',')
1788 break;
1789 p = p1 + 1;
1790 }
1791 return mask;
1792}
ea041c0e 1793
7501267e
FB
1794void cpu_abort(CPUState *env, const char *fmt, ...)
1795{
1796 va_list ap;
493ae1f0 1797 va_list ap2;
7501267e
FB
1798
1799 va_start(ap, fmt);
493ae1f0 1800 va_copy(ap2, ap);
7501267e
FB
1801 fprintf(stderr, "qemu: fatal: ");
1802 vfprintf(stderr, fmt, ap);
1803 fprintf(stderr, "\n");
1804#ifdef TARGET_I386
7fe48483
FB
1805 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1806#else
1807 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1808#endif
93fcfe39
AL
1809 if (qemu_log_enabled()) {
1810 qemu_log("qemu: fatal: ");
1811 qemu_log_vprintf(fmt, ap2);
1812 qemu_log("\n");
f9373291 1813#ifdef TARGET_I386
93fcfe39 1814 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1815#else
93fcfe39 1816 log_cpu_state(env, 0);
f9373291 1817#endif
31b1a7b4 1818 qemu_log_flush();
93fcfe39 1819 qemu_log_close();
924edcae 1820 }
493ae1f0 1821 va_end(ap2);
f9373291 1822 va_end(ap);
fd052bf6
RV
1823#if defined(CONFIG_USER_ONLY)
1824 {
1825 struct sigaction act;
1826 sigfillset(&act.sa_mask);
1827 act.sa_handler = SIG_DFL;
1828 sigaction(SIGABRT, &act, NULL);
1829 }
1830#endif
7501267e
FB
1831 abort();
1832}
1833
c5be9f08
TS
1834CPUState *cpu_copy(CPUState *env)
1835{
01ba9816 1836 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1837 CPUState *next_cpu = new_env->next_cpu;
1838 int cpu_index = new_env->cpu_index;
5a38f081
AL
1839#if defined(TARGET_HAS_ICE)
1840 CPUBreakpoint *bp;
1841 CPUWatchpoint *wp;
1842#endif
1843
c5be9f08 1844 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1845
1846 /* Preserve chaining and index. */
c5be9f08
TS
1847 new_env->next_cpu = next_cpu;
1848 new_env->cpu_index = cpu_index;
5a38f081
AL
1849
1850 /* Clone all break/watchpoints.
1851 Note: Once we support ptrace with hw-debug register access, make sure
1852 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1853 QTAILQ_INIT(&env->breakpoints);
1854 QTAILQ_INIT(&env->watchpoints);
5a38f081 1855#if defined(TARGET_HAS_ICE)
72cf2d4f 1856 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1857 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1858 }
72cf2d4f 1859 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1860 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1861 wp->flags, NULL);
1862 }
1863#endif
1864
c5be9f08
TS
1865 return new_env;
1866}
1867
0124311e
FB
1868#if !defined(CONFIG_USER_ONLY)
1869
5c751e99
EI
1870static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1871{
1872 unsigned int i;
1873
1874 /* Discard jump cache entries for any tb which might potentially
1875 overlap the flushed page. */
1876 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1877 memset (&env->tb_jmp_cache[i], 0,
1878 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1879
1880 i = tb_jmp_cache_hash_page(addr);
1881 memset (&env->tb_jmp_cache[i], 0,
1882 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1883}
1884
08738984
IK
1885static CPUTLBEntry s_cputlb_empty_entry = {
1886 .addr_read = -1,
1887 .addr_write = -1,
1888 .addr_code = -1,
1889 .addend = -1,
1890};
1891
ee8b7021
FB
1892/* NOTE: if flush_global is true, also flush global entries (not
1893 implemented yet) */
1894void tlb_flush(CPUState *env, int flush_global)
33417e70 1895{
33417e70 1896 int i;
0124311e 1897
9fa3e853
FB
1898#if defined(DEBUG_TLB)
1899 printf("tlb_flush:\n");
1900#endif
0124311e
FB
1901 /* must reset current TB so that interrupts cannot modify the
1902 links while we are modifying them */
1903 env->current_tb = NULL;
1904
33417e70 1905 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1906 int mmu_idx;
1907 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1908 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1909 }
33417e70 1910 }
9fa3e853 1911
8a40a180 1912 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1913
e3db7226 1914 tlb_flush_count++;
33417e70
FB
1915}
1916
274da6b2 1917static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1918{
5fafdf24 1919 if (addr == (tlb_entry->addr_read &
84b7b8e7 1920 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1921 addr == (tlb_entry->addr_write &
84b7b8e7 1922 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1923 addr == (tlb_entry->addr_code &
84b7b8e7 1924 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1925 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1926 }
61382a50
FB
1927}
1928
2e12669a 1929void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1930{
8a40a180 1931 int i;
cfde4bd9 1932 int mmu_idx;
0124311e 1933
9fa3e853 1934#if defined(DEBUG_TLB)
108c49b8 1935 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1936#endif
0124311e
FB
1937 /* must reset current TB so that interrupts cannot modify the
1938 links while we are modifying them */
1939 env->current_tb = NULL;
61382a50
FB
1940
1941 addr &= TARGET_PAGE_MASK;
1942 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1943 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1944 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1945
5c751e99 1946 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1947}
1948
9fa3e853
FB
1949/* update the TLBs so that writes to code in the virtual page 'addr'
1950 can be detected */
c227f099 1951static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1952{
5fafdf24 1953 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1954 ram_addr + TARGET_PAGE_SIZE,
1955 CODE_DIRTY_FLAG);
9fa3e853
FB
1956}
1957
9fa3e853 1958/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1959 tested for self modifying code */
c227f099 1960static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1961 target_ulong vaddr)
9fa3e853 1962{
3a7d929e 1963 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1964}
1965
5fafdf24 1966static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1967 unsigned long start, unsigned long length)
1968{
1969 unsigned long addr;
84b7b8e7
FB
1970 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1971 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1972 if ((addr - start) < length) {
0f459d16 1973 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1974 }
1975 }
1976}
1977
5579c7f3 1978/* Note: start and end must be within the same ram block. */
c227f099 1979void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1980 int dirty_flags)
1ccde1cb
FB
1981{
1982 CPUState *env;
4f2ac237 1983 unsigned long length, start1;
0a962c02
FB
1984 int i, mask, len;
1985 uint8_t *p;
1ccde1cb
FB
1986
1987 start &= TARGET_PAGE_MASK;
1988 end = TARGET_PAGE_ALIGN(end);
1989
1990 length = end - start;
1991 if (length == 0)
1992 return;
0a962c02 1993 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1994 mask = ~dirty_flags;
1995 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1996 for(i = 0; i < len; i++)
1997 p[i] &= mask;
1998
1ccde1cb
FB
1999 /* we modify the TLB cache so that the dirty bit will be set again
2000 when accessing the range */
5579c7f3
PB
2001 start1 = (unsigned long)qemu_get_ram_ptr(start);
2002 /* Chek that we don't span multiple blocks - this breaks the
2003 address comparisons below. */
2004 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2005 != (end - 1) - start) {
2006 abort();
2007 }
2008
6a00d601 2009 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2010 int mmu_idx;
2011 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2012 for(i = 0; i < CPU_TLB_SIZE; i++)
2013 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2014 start1, length);
2015 }
6a00d601 2016 }
1ccde1cb
FB
2017}
2018
74576198
AL
2019int cpu_physical_memory_set_dirty_tracking(int enable)
2020{
f6f3fbca 2021 int ret = 0;
74576198 2022 in_migration = enable;
f6f3fbca
MT
2023 ret = cpu_notify_migration_log(!!enable);
2024 return ret;
74576198
AL
2025}
2026
2027int cpu_physical_memory_get_dirty_tracking(void)
2028{
2029 return in_migration;
2030}
2031
c227f099
AL
2032int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2033 target_phys_addr_t end_addr)
2bec46dc 2034{
7b8f3b78 2035 int ret;
151f7749 2036
f6f3fbca 2037 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2038 return ret;
2bec46dc
AL
2039}
2040
3a7d929e
FB
2041static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2042{
c227f099 2043 ram_addr_t ram_addr;
5579c7f3 2044 void *p;
3a7d929e 2045
84b7b8e7 2046 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2047 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2048 + tlb_entry->addend);
2049 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2050 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2051 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2052 }
2053 }
2054}
2055
2056/* update the TLB according to the current state of the dirty bits */
2057void cpu_tlb_update_dirty(CPUState *env)
2058{
2059 int i;
cfde4bd9
IY
2060 int mmu_idx;
2061 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2062 for(i = 0; i < CPU_TLB_SIZE; i++)
2063 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2064 }
3a7d929e
FB
2065}
2066
0f459d16 2067static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2068{
0f459d16
PB
2069 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2070 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2071}
2072
0f459d16
PB
2073/* update the TLB corresponding to virtual page vaddr
2074 so that it is no longer dirty */
2075static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2076{
1ccde1cb 2077 int i;
cfde4bd9 2078 int mmu_idx;
1ccde1cb 2079
0f459d16 2080 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2081 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2082 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2083 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2084}
2085
59817ccb
FB
2086/* add a new TLB entry. At most one entry for a given virtual address
2087 is permitted. Return 0 if OK or 2 if the page could not be mapped
2088 (can only happen in non SOFTMMU mode for I/O pages or pages
2089 conflicting with the host address space). */
5fafdf24 2090int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2091 target_phys_addr_t paddr, int prot,
6ebbf390 2092 int mmu_idx, int is_softmmu)
9fa3e853 2093{
92e873b9 2094 PhysPageDesc *p;
4f2ac237 2095 unsigned long pd;
9fa3e853 2096 unsigned int index;
4f2ac237 2097 target_ulong address;
0f459d16 2098 target_ulong code_address;
c227f099 2099 target_phys_addr_t addend;
9fa3e853 2100 int ret;
84b7b8e7 2101 CPUTLBEntry *te;
a1d1bb31 2102 CPUWatchpoint *wp;
c227f099 2103 target_phys_addr_t iotlb;
9fa3e853 2104
92e873b9 2105 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2106 if (!p) {
2107 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2108 } else {
2109 pd = p->phys_offset;
9fa3e853
FB
2110 }
2111#if defined(DEBUG_TLB)
6ebbf390
JM
2112 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2113 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2114#endif
2115
2116 ret = 0;
0f459d16
PB
2117 address = vaddr;
2118 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2119 /* IO memory case (romd handled later) */
2120 address |= TLB_MMIO;
2121 }
5579c7f3 2122 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2123 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2124 /* Normal RAM. */
2125 iotlb = pd & TARGET_PAGE_MASK;
2126 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2127 iotlb |= IO_MEM_NOTDIRTY;
2128 else
2129 iotlb |= IO_MEM_ROM;
2130 } else {
ccbb4d44 2131 /* IO handlers are currently passed a physical address.
0f459d16
PB
2132 It would be nice to pass an offset from the base address
2133 of that region. This would avoid having to special case RAM,
2134 and avoid full address decoding in every device.
2135 We can't use the high bits of pd for this because
2136 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2137 iotlb = (pd & ~TARGET_PAGE_MASK);
2138 if (p) {
8da3ff18
PB
2139 iotlb += p->region_offset;
2140 } else {
2141 iotlb += paddr;
2142 }
0f459d16
PB
2143 }
2144
2145 code_address = address;
2146 /* Make accesses to pages with watchpoints go via the
2147 watchpoint trap routines. */
72cf2d4f 2148 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2149 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2150 iotlb = io_mem_watch + paddr;
2151 /* TODO: The memory case can be optimized by not trapping
2152 reads of pages with a write breakpoint. */
2153 address |= TLB_MMIO;
6658ffb8 2154 }
0f459d16 2155 }
d79acba4 2156
0f459d16
PB
2157 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2158 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2159 te = &env->tlb_table[mmu_idx][index];
2160 te->addend = addend - vaddr;
2161 if (prot & PAGE_READ) {
2162 te->addr_read = address;
2163 } else {
2164 te->addr_read = -1;
2165 }
5c751e99 2166
0f459d16
PB
2167 if (prot & PAGE_EXEC) {
2168 te->addr_code = code_address;
2169 } else {
2170 te->addr_code = -1;
2171 }
2172 if (prot & PAGE_WRITE) {
2173 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2174 (pd & IO_MEM_ROMD)) {
2175 /* Write access calls the I/O callback. */
2176 te->addr_write = address | TLB_MMIO;
2177 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2178 !cpu_physical_memory_is_dirty(pd)) {
2179 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2180 } else {
0f459d16 2181 te->addr_write = address;
9fa3e853 2182 }
0f459d16
PB
2183 } else {
2184 te->addr_write = -1;
9fa3e853 2185 }
9fa3e853
FB
2186 return ret;
2187}
2188
0124311e
FB
2189#else
2190
ee8b7021 2191void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2192{
2193}
2194
2e12669a 2195void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2196{
2197}
2198
edf8e2af
MW
2199/*
2200 * Walks guest process memory "regions" one by one
2201 * and calls callback function 'fn' for each region.
2202 */
5cd2c5b6
RH
2203
2204struct walk_memory_regions_data
2205{
2206 walk_memory_regions_fn fn;
2207 void *priv;
2208 unsigned long start;
2209 int prot;
2210};
2211
2212static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2213 unsigned long end, int new_prot)
2214{
2215 if (data->start != -1ul) {
2216 int rc = data->fn(data->priv, data->start, end, data->prot);
2217 if (rc != 0) {
2218 return rc;
2219 }
2220 }
2221
2222 data->start = (new_prot ? end : -1ul);
2223 data->prot = new_prot;
2224
2225 return 0;
2226}
2227
2228static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2229 unsigned long base, int level, void **lp)
2230{
2231 unsigned long pa;
2232 int i, rc;
2233
2234 if (*lp == NULL) {
2235 return walk_memory_regions_end(data, base, 0);
2236 }
2237
2238 if (level == 0) {
2239 PageDesc *pd = *lp;
2240 for (i = 0; i < L2_BITS; ++i) {
2241 int prot = pd[i].flags;
2242
2243 pa = base | (i << TARGET_PAGE_BITS);
2244 if (prot != data->prot) {
2245 rc = walk_memory_regions_end(data, pa, prot);
2246 if (rc != 0) {
2247 return rc;
9fa3e853 2248 }
9fa3e853 2249 }
5cd2c5b6
RH
2250 }
2251 } else {
2252 void **pp = *lp;
2253 for (i = 0; i < L2_BITS; ++i) {
2254 pa = base | (i << (TARGET_PAGE_BITS + L2_BITS * level));
2255 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2256 if (rc != 0) {
2257 return rc;
2258 }
2259 }
2260 }
2261
2262 return 0;
2263}
2264
2265int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2266{
2267 struct walk_memory_regions_data data;
2268 unsigned long i;
2269
2270 data.fn = fn;
2271 data.priv = priv;
2272 data.start = -1ul;
2273 data.prot = 0;
2274
2275 for (i = 0; i < V_L1_SIZE; i++) {
2276 int rc = walk_memory_regions_1(&data, i << V_L1_SHIFT,
2277 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2278 if (rc != 0) {
2279 return rc;
9fa3e853 2280 }
33417e70 2281 }
5cd2c5b6
RH
2282
2283 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2284}
2285
2286static int dump_region(void *priv, unsigned long start,
2287 unsigned long end, unsigned long prot)
2288{
2289 FILE *f = (FILE *)priv;
2290
2291 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2292 start, end, end - start,
2293 ((prot & PAGE_READ) ? 'r' : '-'),
2294 ((prot & PAGE_WRITE) ? 'w' : '-'),
2295 ((prot & PAGE_EXEC) ? 'x' : '-'));
2296
2297 return (0);
2298}
2299
2300/* dump memory mappings */
2301void page_dump(FILE *f)
2302{
2303 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2304 "start", "end", "size", "prot");
2305 walk_memory_regions(f, dump_region);
33417e70
FB
2306}
2307
53a5960a 2308int page_get_flags(target_ulong address)
33417e70 2309{
9fa3e853
FB
2310 PageDesc *p;
2311
2312 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2313 if (!p)
9fa3e853
FB
2314 return 0;
2315 return p->flags;
2316}
2317
376a7909
RH
2318/* Modify the flags of a page and invalidate the code if necessary.
2319 The flag PAGE_WRITE_ORG is positioned automatically depending
2320 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2321void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2322{
376a7909
RH
2323 target_ulong addr, len;
2324
2325 /* This function should never be called with addresses outside the
2326 guest address space. If this assert fires, it probably indicates
2327 a missing call to h2g_valid. */
2328#if HOST_LONG_BITS > L1_MAP_ADDR_SPACE_BITS
2329 assert(end < (1ul << L1_MAP_ADDR_SPACE_BITS));
2330#endif
2331 assert(start < end);
9fa3e853
FB
2332
2333 start = start & TARGET_PAGE_MASK;
2334 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2335
2336 if (flags & PAGE_WRITE) {
9fa3e853 2337 flags |= PAGE_WRITE_ORG;
376a7909
RH
2338 }
2339
2340 for (addr = start, len = end - start;
2341 len != 0;
2342 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2343 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2344
2345 /* If the write protection bit is set, then we invalidate
2346 the code inside. */
5fafdf24 2347 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2348 (flags & PAGE_WRITE) &&
2349 p->first_tb) {
d720b93d 2350 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2351 }
2352 p->flags = flags;
2353 }
33417e70
FB
2354}
2355
3d97b40b
TS
2356int page_check_range(target_ulong start, target_ulong len, int flags)
2357{
2358 PageDesc *p;
2359 target_ulong end;
2360 target_ulong addr;
2361
376a7909
RH
2362 /* This function should never be called with addresses outside the
2363 guest address space. If this assert fires, it probably indicates
2364 a missing call to h2g_valid. */
2365#if HOST_LONG_BITS > L1_MAP_ADDR_SPACE_BITS
2366 assert(start < (1ul << L1_MAP_ADDR_SPACE_BITS));
2367#endif
2368
2369 if (start + len - 1 < start) {
2370 /* We've wrapped around. */
55f280c9 2371 return -1;
376a7909 2372 }
55f280c9 2373
3d97b40b
TS
2374 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2375 start = start & TARGET_PAGE_MASK;
2376
376a7909
RH
2377 for (addr = start, len = end - start;
2378 len != 0;
2379 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2380 p = page_find(addr >> TARGET_PAGE_BITS);
2381 if( !p )
2382 return -1;
2383 if( !(p->flags & PAGE_VALID) )
2384 return -1;
2385
dae3270c 2386 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2387 return -1;
dae3270c
FB
2388 if (flags & PAGE_WRITE) {
2389 if (!(p->flags & PAGE_WRITE_ORG))
2390 return -1;
2391 /* unprotect the page if it was put read-only because it
2392 contains translated code */
2393 if (!(p->flags & PAGE_WRITE)) {
2394 if (!page_unprotect(addr, 0, NULL))
2395 return -1;
2396 }
2397 return 0;
2398 }
3d97b40b
TS
2399 }
2400 return 0;
2401}
2402
9fa3e853 2403/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2404 page. Return TRUE if the fault was successfully handled. */
53a5960a 2405int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2406{
2407 unsigned int page_index, prot, pindex;
2408 PageDesc *p, *p1;
53a5960a 2409 target_ulong host_start, host_end, addr;
9fa3e853 2410
c8a706fe
PB
2411 /* Technically this isn't safe inside a signal handler. However we
2412 know this only ever happens in a synchronous SEGV handler, so in
2413 practice it seems to be ok. */
2414 mmap_lock();
2415
83fb7adf 2416 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2417 page_index = host_start >> TARGET_PAGE_BITS;
2418 p1 = page_find(page_index);
c8a706fe
PB
2419 if (!p1) {
2420 mmap_unlock();
9fa3e853 2421 return 0;
c8a706fe 2422 }
83fb7adf 2423 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2424 p = p1;
2425 prot = 0;
2426 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2427 prot |= p->flags;
2428 p++;
2429 }
2430 /* if the page was really writable, then we change its
2431 protection back to writable */
2432 if (prot & PAGE_WRITE_ORG) {
2433 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2434 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2435 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2436 (prot & PAGE_BITS) | PAGE_WRITE);
2437 p1[pindex].flags |= PAGE_WRITE;
2438 /* and since the content will be modified, we must invalidate
2439 the corresponding translated code. */
d720b93d 2440 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2441#ifdef DEBUG_TB_CHECK
2442 tb_invalidate_check(address);
2443#endif
c8a706fe 2444 mmap_unlock();
9fa3e853
FB
2445 return 1;
2446 }
2447 }
c8a706fe 2448 mmap_unlock();
9fa3e853
FB
2449 return 0;
2450}
2451
6a00d601
FB
2452static inline void tlb_set_dirty(CPUState *env,
2453 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2454{
2455}
9fa3e853
FB
2456#endif /* defined(CONFIG_USER_ONLY) */
2457
e2eef170 2458#if !defined(CONFIG_USER_ONLY)
8da3ff18 2459
c04b2b78
PB
2460#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2461typedef struct subpage_t {
2462 target_phys_addr_t base;
2463 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2464 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2465 void *opaque[TARGET_PAGE_SIZE][2][4];
2466 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2467} subpage_t;
2468
c227f099
AL
2469static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2470 ram_addr_t memory, ram_addr_t region_offset);
2471static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2472 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2473#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2474 need_subpage) \
2475 do { \
2476 if (addr > start_addr) \
2477 start_addr2 = 0; \
2478 else { \
2479 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2480 if (start_addr2 > 0) \
2481 need_subpage = 1; \
2482 } \
2483 \
49e9fba2 2484 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2485 end_addr2 = TARGET_PAGE_SIZE - 1; \
2486 else { \
2487 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2488 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2489 need_subpage = 1; \
2490 } \
2491 } while (0)
2492
8f2498f9
MT
2493/* register physical memory.
2494 For RAM, 'size' must be a multiple of the target page size.
2495 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2496 io memory page. The address used when calling the IO function is
2497 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2498 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2499 before calculating this offset. This should not be a problem unless
2500 the low bits of start_addr and region_offset differ. */
c227f099
AL
2501void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2502 ram_addr_t size,
2503 ram_addr_t phys_offset,
2504 ram_addr_t region_offset)
33417e70 2505{
c227f099 2506 target_phys_addr_t addr, end_addr;
92e873b9 2507 PhysPageDesc *p;
9d42037b 2508 CPUState *env;
c227f099 2509 ram_addr_t orig_size = size;
db7b5426 2510 void *subpage;
33417e70 2511
f6f3fbca
MT
2512 cpu_notify_set_memory(start_addr, size, phys_offset);
2513
67c4d23c
PB
2514 if (phys_offset == IO_MEM_UNASSIGNED) {
2515 region_offset = start_addr;
2516 }
8da3ff18 2517 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2518 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2519 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2520 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2521 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2522 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2523 ram_addr_t orig_memory = p->phys_offset;
2524 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2525 int need_subpage = 0;
2526
2527 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2528 need_subpage);
4254fab8 2529 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2530 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2531 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2532 &p->phys_offset, orig_memory,
2533 p->region_offset);
db7b5426
BS
2534 } else {
2535 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2536 >> IO_MEM_SHIFT];
2537 }
8da3ff18
PB
2538 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2539 region_offset);
2540 p->region_offset = 0;
db7b5426
BS
2541 } else {
2542 p->phys_offset = phys_offset;
2543 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2544 (phys_offset & IO_MEM_ROMD))
2545 phys_offset += TARGET_PAGE_SIZE;
2546 }
2547 } else {
2548 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2549 p->phys_offset = phys_offset;
8da3ff18 2550 p->region_offset = region_offset;
db7b5426 2551 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2552 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2553 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2554 } else {
c227f099 2555 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2556 int need_subpage = 0;
2557
2558 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2559 end_addr2, need_subpage);
2560
4254fab8 2561 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2562 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2563 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2564 addr & TARGET_PAGE_MASK);
db7b5426 2565 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2566 phys_offset, region_offset);
2567 p->region_offset = 0;
db7b5426
BS
2568 }
2569 }
2570 }
8da3ff18 2571 region_offset += TARGET_PAGE_SIZE;
33417e70 2572 }
3b46e624 2573
9d42037b
FB
2574 /* since each CPU stores ram addresses in its TLB cache, we must
2575 reset the modified entries */
2576 /* XXX: slow ! */
2577 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2578 tlb_flush(env, 1);
2579 }
33417e70
FB
2580}
2581
ba863458 2582/* XXX: temporary until new memory mapping API */
c227f099 2583ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2584{
2585 PhysPageDesc *p;
2586
2587 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2588 if (!p)
2589 return IO_MEM_UNASSIGNED;
2590 return p->phys_offset;
2591}
2592
c227f099 2593void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2594{
2595 if (kvm_enabled())
2596 kvm_coalesce_mmio_region(addr, size);
2597}
2598
c227f099 2599void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2600{
2601 if (kvm_enabled())
2602 kvm_uncoalesce_mmio_region(addr, size);
2603}
2604
62a2744c
SY
2605void qemu_flush_coalesced_mmio_buffer(void)
2606{
2607 if (kvm_enabled())
2608 kvm_flush_coalesced_mmio_buffer();
2609}
2610
c902760f
MT
2611#if defined(__linux__) && !defined(TARGET_S390X)
2612
2613#include <sys/vfs.h>
2614
2615#define HUGETLBFS_MAGIC 0x958458f6
2616
2617static long gethugepagesize(const char *path)
2618{
2619 struct statfs fs;
2620 int ret;
2621
2622 do {
2623 ret = statfs(path, &fs);
2624 } while (ret != 0 && errno == EINTR);
2625
2626 if (ret != 0) {
2627 perror("statfs");
2628 return 0;
2629 }
2630
2631 if (fs.f_type != HUGETLBFS_MAGIC)
2632 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2633
2634 return fs.f_bsize;
2635}
2636
2637static void *file_ram_alloc(ram_addr_t memory, const char *path)
2638{
2639 char *filename;
2640 void *area;
2641 int fd;
2642#ifdef MAP_POPULATE
2643 int flags;
2644#endif
2645 unsigned long hpagesize;
2646
2647 hpagesize = gethugepagesize(path);
2648 if (!hpagesize) {
2649 return NULL;
2650 }
2651
2652 if (memory < hpagesize) {
2653 return NULL;
2654 }
2655
2656 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2657 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2658 return NULL;
2659 }
2660
2661 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2662 return NULL;
2663 }
2664
2665 fd = mkstemp(filename);
2666 if (fd < 0) {
2667 perror("mkstemp");
2668 free(filename);
2669 return NULL;
2670 }
2671 unlink(filename);
2672 free(filename);
2673
2674 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2675
2676 /*
2677 * ftruncate is not supported by hugetlbfs in older
2678 * hosts, so don't bother bailing out on errors.
2679 * If anything goes wrong with it under other filesystems,
2680 * mmap will fail.
2681 */
2682 if (ftruncate(fd, memory))
2683 perror("ftruncate");
2684
2685#ifdef MAP_POPULATE
2686 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2687 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2688 * to sidestep this quirk.
2689 */
2690 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2691 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2692#else
2693 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2694#endif
2695 if (area == MAP_FAILED) {
2696 perror("file_ram_alloc: can't mmap RAM pages");
2697 close(fd);
2698 return (NULL);
2699 }
2700 return area;
2701}
2702#endif
2703
c227f099 2704ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2705{
2706 RAMBlock *new_block;
2707
94a6b54f
PB
2708 size = TARGET_PAGE_ALIGN(size);
2709 new_block = qemu_malloc(sizeof(*new_block));
2710
c902760f
MT
2711 if (mem_path) {
2712#if defined (__linux__) && !defined(TARGET_S390X)
2713 new_block->host = file_ram_alloc(size, mem_path);
2714 if (!new_block->host)
2715 exit(1);
2716#else
2717 fprintf(stderr, "-mem-path option unsupported\n");
2718 exit(1);
2719#endif
2720 } else {
6b02494d 2721#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2722 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2723 new_block->host = mmap((void*)0x1000000, size,
2724 PROT_EXEC|PROT_READ|PROT_WRITE,
2725 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2726#else
c902760f 2727 new_block->host = qemu_vmalloc(size);
6b02494d 2728#endif
ccb167e9 2729#ifdef MADV_MERGEABLE
c902760f 2730 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2731#endif
c902760f 2732 }
94a6b54f
PB
2733 new_block->offset = last_ram_offset;
2734 new_block->length = size;
2735
2736 new_block->next = ram_blocks;
2737 ram_blocks = new_block;
2738
2739 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2740 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2741 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2742 0xff, size >> TARGET_PAGE_BITS);
2743
2744 last_ram_offset += size;
2745
6f0437e8
JK
2746 if (kvm_enabled())
2747 kvm_setup_guest_memory(new_block->host, size);
2748
94a6b54f
PB
2749 return new_block->offset;
2750}
e9a1ab19 2751
c227f099 2752void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2753{
94a6b54f 2754 /* TODO: implement this. */
e9a1ab19
FB
2755}
2756
dc828ca1 2757/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2758 With the exception of the softmmu code in this file, this should
2759 only be used for local memory (e.g. video ram) that the device owns,
2760 and knows it isn't going to access beyond the end of the block.
2761
2762 It should not be used for general purpose DMA.
2763 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2764 */
c227f099 2765void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2766{
94a6b54f
PB
2767 RAMBlock *prev;
2768 RAMBlock **prevp;
2769 RAMBlock *block;
2770
94a6b54f
PB
2771 prev = NULL;
2772 prevp = &ram_blocks;
2773 block = ram_blocks;
2774 while (block && (block->offset > addr
2775 || block->offset + block->length <= addr)) {
2776 if (prev)
2777 prevp = &prev->next;
2778 prev = block;
2779 block = block->next;
2780 }
2781 if (!block) {
2782 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2783 abort();
2784 }
2785 /* Move this entry to to start of the list. */
2786 if (prev) {
2787 prev->next = block->next;
2788 block->next = *prevp;
2789 *prevp = block;
2790 }
2791 return block->host + (addr - block->offset);
dc828ca1
PB
2792}
2793
5579c7f3
PB
2794/* Some of the softmmu routines need to translate from a host pointer
2795 (typically a TLB entry) back to a ram offset. */
c227f099 2796ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2797{
94a6b54f 2798 RAMBlock *prev;
94a6b54f
PB
2799 RAMBlock *block;
2800 uint8_t *host = ptr;
2801
94a6b54f 2802 prev = NULL;
94a6b54f
PB
2803 block = ram_blocks;
2804 while (block && (block->host > host
2805 || block->host + block->length <= host)) {
94a6b54f
PB
2806 prev = block;
2807 block = block->next;
2808 }
2809 if (!block) {
2810 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2811 abort();
2812 }
2813 return block->offset + (host - block->host);
5579c7f3
PB
2814}
2815
c227f099 2816static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2817{
67d3b957 2818#ifdef DEBUG_UNASSIGNED
ab3d1727 2819 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2820#endif
faed1c2a 2821#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2822 do_unassigned_access(addr, 0, 0, 0, 1);
2823#endif
2824 return 0;
2825}
2826
c227f099 2827static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2828{
2829#ifdef DEBUG_UNASSIGNED
2830 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2831#endif
faed1c2a 2832#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2833 do_unassigned_access(addr, 0, 0, 0, 2);
2834#endif
2835 return 0;
2836}
2837
c227f099 2838static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2839{
2840#ifdef DEBUG_UNASSIGNED
2841 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2842#endif
faed1c2a 2843#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2844 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2845#endif
33417e70
FB
2846 return 0;
2847}
2848
c227f099 2849static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2850{
67d3b957 2851#ifdef DEBUG_UNASSIGNED
ab3d1727 2852 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2853#endif
faed1c2a 2854#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2855 do_unassigned_access(addr, 1, 0, 0, 1);
2856#endif
2857}
2858
c227f099 2859static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2860{
2861#ifdef DEBUG_UNASSIGNED
2862 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2863#endif
faed1c2a 2864#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2865 do_unassigned_access(addr, 1, 0, 0, 2);
2866#endif
2867}
2868
c227f099 2869static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2870{
2871#ifdef DEBUG_UNASSIGNED
2872 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2873#endif
faed1c2a 2874#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2875 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2876#endif
33417e70
FB
2877}
2878
d60efc6b 2879static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2880 unassigned_mem_readb,
e18231a3
BS
2881 unassigned_mem_readw,
2882 unassigned_mem_readl,
33417e70
FB
2883};
2884
d60efc6b 2885static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2886 unassigned_mem_writeb,
e18231a3
BS
2887 unassigned_mem_writew,
2888 unassigned_mem_writel,
33417e70
FB
2889};
2890
c227f099 2891static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2892 uint32_t val)
9fa3e853 2893{
3a7d929e 2894 int dirty_flags;
3a7d929e
FB
2895 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2896 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2897#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2898 tb_invalidate_phys_page_fast(ram_addr, 1);
2899 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2900#endif
3a7d929e 2901 }
5579c7f3 2902 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2903 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2904 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2905 /* we remove the notdirty callback only if the code has been
2906 flushed */
2907 if (dirty_flags == 0xff)
2e70f6ef 2908 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2909}
2910
c227f099 2911static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2912 uint32_t val)
9fa3e853 2913{
3a7d929e 2914 int dirty_flags;
3a7d929e
FB
2915 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2916 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2917#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2918 tb_invalidate_phys_page_fast(ram_addr, 2);
2919 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2920#endif
3a7d929e 2921 }
5579c7f3 2922 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2923 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2924 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2925 /* we remove the notdirty callback only if the code has been
2926 flushed */
2927 if (dirty_flags == 0xff)
2e70f6ef 2928 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2929}
2930
c227f099 2931static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2932 uint32_t val)
9fa3e853 2933{
3a7d929e 2934 int dirty_flags;
3a7d929e
FB
2935 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2936 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2937#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2938 tb_invalidate_phys_page_fast(ram_addr, 4);
2939 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2940#endif
3a7d929e 2941 }
5579c7f3 2942 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2943 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2944 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2945 /* we remove the notdirty callback only if the code has been
2946 flushed */
2947 if (dirty_flags == 0xff)
2e70f6ef 2948 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2949}
2950
d60efc6b 2951static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2952 NULL, /* never used */
2953 NULL, /* never used */
2954 NULL, /* never used */
2955};
2956
d60efc6b 2957static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2958 notdirty_mem_writeb,
2959 notdirty_mem_writew,
2960 notdirty_mem_writel,
2961};
2962
0f459d16 2963/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2964static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2965{
2966 CPUState *env = cpu_single_env;
06d55cc1
AL
2967 target_ulong pc, cs_base;
2968 TranslationBlock *tb;
0f459d16 2969 target_ulong vaddr;
a1d1bb31 2970 CPUWatchpoint *wp;
06d55cc1 2971 int cpu_flags;
0f459d16 2972
06d55cc1
AL
2973 if (env->watchpoint_hit) {
2974 /* We re-entered the check after replacing the TB. Now raise
2975 * the debug interrupt so that is will trigger after the
2976 * current instruction. */
2977 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2978 return;
2979 }
2e70f6ef 2980 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2981 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2982 if ((vaddr == (wp->vaddr & len_mask) ||
2983 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2984 wp->flags |= BP_WATCHPOINT_HIT;
2985 if (!env->watchpoint_hit) {
2986 env->watchpoint_hit = wp;
2987 tb = tb_find_pc(env->mem_io_pc);
2988 if (!tb) {
2989 cpu_abort(env, "check_watchpoint: could not find TB for "
2990 "pc=%p", (void *)env->mem_io_pc);
2991 }
2992 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2993 tb_phys_invalidate(tb, -1);
2994 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2995 env->exception_index = EXCP_DEBUG;
2996 } else {
2997 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2998 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2999 }
3000 cpu_resume_from_signal(env, NULL);
06d55cc1 3001 }
6e140f28
AL
3002 } else {
3003 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3004 }
3005 }
3006}
3007
6658ffb8
PB
3008/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3009 so these check for a hit then pass through to the normal out-of-line
3010 phys routines. */
c227f099 3011static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3012{
b4051334 3013 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3014 return ldub_phys(addr);
3015}
3016
c227f099 3017static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3018{
b4051334 3019 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3020 return lduw_phys(addr);
3021}
3022
c227f099 3023static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3024{
b4051334 3025 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3026 return ldl_phys(addr);
3027}
3028
c227f099 3029static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3030 uint32_t val)
3031{
b4051334 3032 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3033 stb_phys(addr, val);
3034}
3035
c227f099 3036static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3037 uint32_t val)
3038{
b4051334 3039 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3040 stw_phys(addr, val);
3041}
3042
c227f099 3043static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3044 uint32_t val)
3045{
b4051334 3046 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3047 stl_phys(addr, val);
3048}
3049
d60efc6b 3050static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3051 watch_mem_readb,
3052 watch_mem_readw,
3053 watch_mem_readl,
3054};
3055
d60efc6b 3056static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3057 watch_mem_writeb,
3058 watch_mem_writew,
3059 watch_mem_writel,
3060};
6658ffb8 3061
c227f099 3062static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3063 unsigned int len)
3064{
db7b5426
BS
3065 uint32_t ret;
3066 unsigned int idx;
3067
8da3ff18 3068 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3069#if defined(DEBUG_SUBPAGE)
3070 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3071 mmio, len, addr, idx);
3072#endif
8da3ff18
PB
3073 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3074 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
3075
3076 return ret;
3077}
3078
c227f099 3079static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3080 uint32_t value, unsigned int len)
3081{
db7b5426
BS
3082 unsigned int idx;
3083
8da3ff18 3084 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3085#if defined(DEBUG_SUBPAGE)
3086 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3087 mmio, len, addr, idx, value);
3088#endif
8da3ff18
PB
3089 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3090 addr + mmio->region_offset[idx][1][len],
3091 value);
db7b5426
BS
3092}
3093
c227f099 3094static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3095{
3096#if defined(DEBUG_SUBPAGE)
3097 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3098#endif
3099
3100 return subpage_readlen(opaque, addr, 0);
3101}
3102
c227f099 3103static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3104 uint32_t value)
3105{
3106#if defined(DEBUG_SUBPAGE)
3107 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3108#endif
3109 subpage_writelen(opaque, addr, value, 0);
3110}
3111
c227f099 3112static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3113{
3114#if defined(DEBUG_SUBPAGE)
3115 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3116#endif
3117
3118 return subpage_readlen(opaque, addr, 1);
3119}
3120
c227f099 3121static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3122 uint32_t value)
3123{
3124#if defined(DEBUG_SUBPAGE)
3125 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3126#endif
3127 subpage_writelen(opaque, addr, value, 1);
3128}
3129
c227f099 3130static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3131{
3132#if defined(DEBUG_SUBPAGE)
3133 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3134#endif
3135
3136 return subpage_readlen(opaque, addr, 2);
3137}
3138
3139static void subpage_writel (void *opaque,
c227f099 3140 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
3141{
3142#if defined(DEBUG_SUBPAGE)
3143 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3144#endif
3145 subpage_writelen(opaque, addr, value, 2);
3146}
3147
d60efc6b 3148static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3149 &subpage_readb,
3150 &subpage_readw,
3151 &subpage_readl,
3152};
3153
d60efc6b 3154static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3155 &subpage_writeb,
3156 &subpage_writew,
3157 &subpage_writel,
3158};
3159
c227f099
AL
3160static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3161 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3162{
3163 int idx, eidx;
4254fab8 3164 unsigned int i;
db7b5426
BS
3165
3166 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3167 return -1;
3168 idx = SUBPAGE_IDX(start);
3169 eidx = SUBPAGE_IDX(end);
3170#if defined(DEBUG_SUBPAGE)
0bf9e31a 3171 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3172 mmio, start, end, idx, eidx, memory);
3173#endif
3174 memory >>= IO_MEM_SHIFT;
3175 for (; idx <= eidx; idx++) {
4254fab8 3176 for (i = 0; i < 4; i++) {
3ee89922
BS
3177 if (io_mem_read[memory][i]) {
3178 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3179 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 3180 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
3181 }
3182 if (io_mem_write[memory][i]) {
3183 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3184 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 3185 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 3186 }
4254fab8 3187 }
db7b5426
BS
3188 }
3189
3190 return 0;
3191}
3192
c227f099
AL
3193static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3194 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3195{
c227f099 3196 subpage_t *mmio;
db7b5426
BS
3197 int subpage_memory;
3198
c227f099 3199 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3200
3201 mmio->base = base;
1eed09cb 3202 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3203#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3204 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3205 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3206#endif
1eec614b
AL
3207 *phys = subpage_memory | IO_MEM_SUBPAGE;
3208 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3209 region_offset);
db7b5426
BS
3210
3211 return mmio;
3212}
3213
88715657
AL
3214static int get_free_io_mem_idx(void)
3215{
3216 int i;
3217
3218 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3219 if (!io_mem_used[i]) {
3220 io_mem_used[i] = 1;
3221 return i;
3222 }
c6703b47 3223 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3224 return -1;
3225}
3226
33417e70
FB
3227/* mem_read and mem_write are arrays of functions containing the
3228 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3229 2). Functions can be omitted with a NULL function pointer.
3ee89922 3230 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3231 modified. If it is zero, a new io zone is allocated. The return
3232 value can be used with cpu_register_physical_memory(). (-1) is
3233 returned if error. */
1eed09cb 3234static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3235 CPUReadMemoryFunc * const *mem_read,
3236 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3237 void *opaque)
33417e70 3238{
4254fab8 3239 int i, subwidth = 0;
33417e70
FB
3240
3241 if (io_index <= 0) {
88715657
AL
3242 io_index = get_free_io_mem_idx();
3243 if (io_index == -1)
3244 return io_index;
33417e70 3245 } else {
1eed09cb 3246 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3247 if (io_index >= IO_MEM_NB_ENTRIES)
3248 return -1;
3249 }
b5ff1b31 3250
33417e70 3251 for(i = 0;i < 3; i++) {
4254fab8
BS
3252 if (!mem_read[i] || !mem_write[i])
3253 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3254 io_mem_read[io_index][i] = mem_read[i];
3255 io_mem_write[io_index][i] = mem_write[i];
3256 }
a4193c8a 3257 io_mem_opaque[io_index] = opaque;
4254fab8 3258 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3259}
61382a50 3260
d60efc6b
BS
3261int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3262 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3263 void *opaque)
3264{
3265 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3266}
3267
88715657
AL
3268void cpu_unregister_io_memory(int io_table_address)
3269{
3270 int i;
3271 int io_index = io_table_address >> IO_MEM_SHIFT;
3272
3273 for (i=0;i < 3; i++) {
3274 io_mem_read[io_index][i] = unassigned_mem_read[i];
3275 io_mem_write[io_index][i] = unassigned_mem_write[i];
3276 }
3277 io_mem_opaque[io_index] = NULL;
3278 io_mem_used[io_index] = 0;
3279}
3280
e9179ce1
AK
3281static void io_mem_init(void)
3282{
3283 int i;
3284
3285 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3286 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3287 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3288 for (i=0; i<5; i++)
3289 io_mem_used[i] = 1;
3290
3291 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3292 watch_mem_write, NULL);
e9179ce1
AK
3293}
3294
e2eef170
PB
3295#endif /* !defined(CONFIG_USER_ONLY) */
3296
13eb76e0
FB
3297/* physical memory access (slow version, mainly for debug) */
3298#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3299int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3300 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3301{
3302 int l, flags;
3303 target_ulong page;
53a5960a 3304 void * p;
13eb76e0
FB
3305
3306 while (len > 0) {
3307 page = addr & TARGET_PAGE_MASK;
3308 l = (page + TARGET_PAGE_SIZE) - addr;
3309 if (l > len)
3310 l = len;
3311 flags = page_get_flags(page);
3312 if (!(flags & PAGE_VALID))
a68fe89c 3313 return -1;
13eb76e0
FB
3314 if (is_write) {
3315 if (!(flags & PAGE_WRITE))
a68fe89c 3316 return -1;
579a97f7 3317 /* XXX: this code should not depend on lock_user */
72fb7daa 3318 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3319 return -1;
72fb7daa
AJ
3320 memcpy(p, buf, l);
3321 unlock_user(p, addr, l);
13eb76e0
FB
3322 } else {
3323 if (!(flags & PAGE_READ))
a68fe89c 3324 return -1;
579a97f7 3325 /* XXX: this code should not depend on lock_user */
72fb7daa 3326 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3327 return -1;
72fb7daa 3328 memcpy(buf, p, l);
5b257578 3329 unlock_user(p, addr, 0);
13eb76e0
FB
3330 }
3331 len -= l;
3332 buf += l;
3333 addr += l;
3334 }
a68fe89c 3335 return 0;
13eb76e0 3336}
8df1cd07 3337
13eb76e0 3338#else
c227f099 3339void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3340 int len, int is_write)
3341{
3342 int l, io_index;
3343 uint8_t *ptr;
3344 uint32_t val;
c227f099 3345 target_phys_addr_t page;
2e12669a 3346 unsigned long pd;
92e873b9 3347 PhysPageDesc *p;
3b46e624 3348
13eb76e0
FB
3349 while (len > 0) {
3350 page = addr & TARGET_PAGE_MASK;
3351 l = (page + TARGET_PAGE_SIZE) - addr;
3352 if (l > len)
3353 l = len;
92e873b9 3354 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3355 if (!p) {
3356 pd = IO_MEM_UNASSIGNED;
3357 } else {
3358 pd = p->phys_offset;
3359 }
3b46e624 3360
13eb76e0 3361 if (is_write) {
3a7d929e 3362 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3363 target_phys_addr_t addr1 = addr;
13eb76e0 3364 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3365 if (p)
6c2934db 3366 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3367 /* XXX: could force cpu_single_env to NULL to avoid
3368 potential bugs */
6c2934db 3369 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3370 /* 32 bit write access */
c27004ec 3371 val = ldl_p(buf);
6c2934db 3372 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3373 l = 4;
6c2934db 3374 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3375 /* 16 bit write access */
c27004ec 3376 val = lduw_p(buf);
6c2934db 3377 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3378 l = 2;
3379 } else {
1c213d19 3380 /* 8 bit write access */
c27004ec 3381 val = ldub_p(buf);
6c2934db 3382 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3383 l = 1;
3384 }
3385 } else {
b448f2f3
FB
3386 unsigned long addr1;
3387 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3388 /* RAM case */
5579c7f3 3389 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3390 memcpy(ptr, buf, l);
3a7d929e
FB
3391 if (!cpu_physical_memory_is_dirty(addr1)) {
3392 /* invalidate code */
3393 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3394 /* set dirty bit */
5fafdf24 3395 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3396 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3397 }
13eb76e0
FB
3398 }
3399 } else {
5fafdf24 3400 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3401 !(pd & IO_MEM_ROMD)) {
c227f099 3402 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3403 /* I/O case */
3404 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3405 if (p)
6c2934db
AJ
3406 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3407 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3408 /* 32 bit read access */
6c2934db 3409 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3410 stl_p(buf, val);
13eb76e0 3411 l = 4;
6c2934db 3412 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3413 /* 16 bit read access */
6c2934db 3414 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3415 stw_p(buf, val);
13eb76e0
FB
3416 l = 2;
3417 } else {
1c213d19 3418 /* 8 bit read access */
6c2934db 3419 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3420 stb_p(buf, val);
13eb76e0
FB
3421 l = 1;
3422 }
3423 } else {
3424 /* RAM case */
5579c7f3 3425 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3426 (addr & ~TARGET_PAGE_MASK);
3427 memcpy(buf, ptr, l);
3428 }
3429 }
3430 len -= l;
3431 buf += l;
3432 addr += l;
3433 }
3434}
8df1cd07 3435
d0ecd2aa 3436/* used for ROM loading : can write in RAM and ROM */
c227f099 3437void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3438 const uint8_t *buf, int len)
3439{
3440 int l;
3441 uint8_t *ptr;
c227f099 3442 target_phys_addr_t page;
d0ecd2aa
FB
3443 unsigned long pd;
3444 PhysPageDesc *p;
3b46e624 3445
d0ecd2aa
FB
3446 while (len > 0) {
3447 page = addr & TARGET_PAGE_MASK;
3448 l = (page + TARGET_PAGE_SIZE) - addr;
3449 if (l > len)
3450 l = len;
3451 p = phys_page_find(page >> TARGET_PAGE_BITS);
3452 if (!p) {
3453 pd = IO_MEM_UNASSIGNED;
3454 } else {
3455 pd = p->phys_offset;
3456 }
3b46e624 3457
d0ecd2aa 3458 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3459 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3460 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3461 /* do nothing */
3462 } else {
3463 unsigned long addr1;
3464 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3465 /* ROM/RAM case */
5579c7f3 3466 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3467 memcpy(ptr, buf, l);
3468 }
3469 len -= l;
3470 buf += l;
3471 addr += l;
3472 }
3473}
3474
6d16c2f8
AL
3475typedef struct {
3476 void *buffer;
c227f099
AL
3477 target_phys_addr_t addr;
3478 target_phys_addr_t len;
6d16c2f8
AL
3479} BounceBuffer;
3480
3481static BounceBuffer bounce;
3482
ba223c29
AL
3483typedef struct MapClient {
3484 void *opaque;
3485 void (*callback)(void *opaque);
72cf2d4f 3486 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3487} MapClient;
3488
72cf2d4f
BS
3489static QLIST_HEAD(map_client_list, MapClient) map_client_list
3490 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3491
3492void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3493{
3494 MapClient *client = qemu_malloc(sizeof(*client));
3495
3496 client->opaque = opaque;
3497 client->callback = callback;
72cf2d4f 3498 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3499 return client;
3500}
3501
3502void cpu_unregister_map_client(void *_client)
3503{
3504 MapClient *client = (MapClient *)_client;
3505
72cf2d4f 3506 QLIST_REMOVE(client, link);
34d5e948 3507 qemu_free(client);
ba223c29
AL
3508}
3509
3510static void cpu_notify_map_clients(void)
3511{
3512 MapClient *client;
3513
72cf2d4f
BS
3514 while (!QLIST_EMPTY(&map_client_list)) {
3515 client = QLIST_FIRST(&map_client_list);
ba223c29 3516 client->callback(client->opaque);
34d5e948 3517 cpu_unregister_map_client(client);
ba223c29
AL
3518 }
3519}
3520
6d16c2f8
AL
3521/* Map a physical memory region into a host virtual address.
3522 * May map a subset of the requested range, given by and returned in *plen.
3523 * May return NULL if resources needed to perform the mapping are exhausted.
3524 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3525 * Use cpu_register_map_client() to know when retrying the map operation is
3526 * likely to succeed.
6d16c2f8 3527 */
c227f099
AL
3528void *cpu_physical_memory_map(target_phys_addr_t addr,
3529 target_phys_addr_t *plen,
6d16c2f8
AL
3530 int is_write)
3531{
c227f099
AL
3532 target_phys_addr_t len = *plen;
3533 target_phys_addr_t done = 0;
6d16c2f8
AL
3534 int l;
3535 uint8_t *ret = NULL;
3536 uint8_t *ptr;
c227f099 3537 target_phys_addr_t page;
6d16c2f8
AL
3538 unsigned long pd;
3539 PhysPageDesc *p;
3540 unsigned long addr1;
3541
3542 while (len > 0) {
3543 page = addr & TARGET_PAGE_MASK;
3544 l = (page + TARGET_PAGE_SIZE) - addr;
3545 if (l > len)
3546 l = len;
3547 p = phys_page_find(page >> TARGET_PAGE_BITS);
3548 if (!p) {
3549 pd = IO_MEM_UNASSIGNED;
3550 } else {
3551 pd = p->phys_offset;
3552 }
3553
3554 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3555 if (done || bounce.buffer) {
3556 break;
3557 }
3558 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3559 bounce.addr = addr;
3560 bounce.len = l;
3561 if (!is_write) {
3562 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3563 }
3564 ptr = bounce.buffer;
3565 } else {
3566 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3567 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3568 }
3569 if (!done) {
3570 ret = ptr;
3571 } else if (ret + done != ptr) {
3572 break;
3573 }
3574
3575 len -= l;
3576 addr += l;
3577 done += l;
3578 }
3579 *plen = done;
3580 return ret;
3581}
3582
3583/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3584 * Will also mark the memory as dirty if is_write == 1. access_len gives
3585 * the amount of memory that was actually read or written by the caller.
3586 */
c227f099
AL
3587void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3588 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3589{
3590 if (buffer != bounce.buffer) {
3591 if (is_write) {
c227f099 3592 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3593 while (access_len) {
3594 unsigned l;
3595 l = TARGET_PAGE_SIZE;
3596 if (l > access_len)
3597 l = access_len;
3598 if (!cpu_physical_memory_is_dirty(addr1)) {
3599 /* invalidate code */
3600 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3601 /* set dirty bit */
3602 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3603 (0xff & ~CODE_DIRTY_FLAG);
3604 }
3605 addr1 += l;
3606 access_len -= l;
3607 }
3608 }
3609 return;
3610 }
3611 if (is_write) {
3612 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3613 }
f8a83245 3614 qemu_vfree(bounce.buffer);
6d16c2f8 3615 bounce.buffer = NULL;
ba223c29 3616 cpu_notify_map_clients();
6d16c2f8 3617}
d0ecd2aa 3618
8df1cd07 3619/* warning: addr must be aligned */
c227f099 3620uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3621{
3622 int io_index;
3623 uint8_t *ptr;
3624 uint32_t val;
3625 unsigned long pd;
3626 PhysPageDesc *p;
3627
3628 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3629 if (!p) {
3630 pd = IO_MEM_UNASSIGNED;
3631 } else {
3632 pd = p->phys_offset;
3633 }
3b46e624 3634
5fafdf24 3635 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3636 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3637 /* I/O case */
3638 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3639 if (p)
3640 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3641 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3642 } else {
3643 /* RAM case */
5579c7f3 3644 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3645 (addr & ~TARGET_PAGE_MASK);
3646 val = ldl_p(ptr);
3647 }
3648 return val;
3649}
3650
84b7b8e7 3651/* warning: addr must be aligned */
c227f099 3652uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3653{
3654 int io_index;
3655 uint8_t *ptr;
3656 uint64_t val;
3657 unsigned long pd;
3658 PhysPageDesc *p;
3659
3660 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3661 if (!p) {
3662 pd = IO_MEM_UNASSIGNED;
3663 } else {
3664 pd = p->phys_offset;
3665 }
3b46e624 3666
2a4188a3
FB
3667 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3668 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3669 /* I/O case */
3670 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3671 if (p)
3672 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3673#ifdef TARGET_WORDS_BIGENDIAN
3674 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3675 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3676#else
3677 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3678 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3679#endif
3680 } else {
3681 /* RAM case */
5579c7f3 3682 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3683 (addr & ~TARGET_PAGE_MASK);
3684 val = ldq_p(ptr);
3685 }
3686 return val;
3687}
3688
aab33094 3689/* XXX: optimize */
c227f099 3690uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3691{
3692 uint8_t val;
3693 cpu_physical_memory_read(addr, &val, 1);
3694 return val;
3695}
3696
3697/* XXX: optimize */
c227f099 3698uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3699{
3700 uint16_t val;
3701 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3702 return tswap16(val);
3703}
3704
8df1cd07
FB
3705/* warning: addr must be aligned. The ram page is not masked as dirty
3706 and the code inside is not invalidated. It is useful if the dirty
3707 bits are used to track modified PTEs */
c227f099 3708void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3709{
3710 int io_index;
3711 uint8_t *ptr;
3712 unsigned long pd;
3713 PhysPageDesc *p;
3714
3715 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3716 if (!p) {
3717 pd = IO_MEM_UNASSIGNED;
3718 } else {
3719 pd = p->phys_offset;
3720 }
3b46e624 3721
3a7d929e 3722 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3723 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3724 if (p)
3725 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3726 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3727 } else {
74576198 3728 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3729 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3730 stl_p(ptr, val);
74576198
AL
3731
3732 if (unlikely(in_migration)) {
3733 if (!cpu_physical_memory_is_dirty(addr1)) {
3734 /* invalidate code */
3735 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3736 /* set dirty bit */
3737 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3738 (0xff & ~CODE_DIRTY_FLAG);
3739 }
3740 }
8df1cd07
FB
3741 }
3742}
3743
c227f099 3744void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3745{
3746 int io_index;
3747 uint8_t *ptr;
3748 unsigned long pd;
3749 PhysPageDesc *p;
3750
3751 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3752 if (!p) {
3753 pd = IO_MEM_UNASSIGNED;
3754 } else {
3755 pd = p->phys_offset;
3756 }
3b46e624 3757
bc98a7ef
JM
3758 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3759 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3760 if (p)
3761 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3762#ifdef TARGET_WORDS_BIGENDIAN
3763 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3764 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3765#else
3766 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3767 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3768#endif
3769 } else {
5579c7f3 3770 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3771 (addr & ~TARGET_PAGE_MASK);
3772 stq_p(ptr, val);
3773 }
3774}
3775
8df1cd07 3776/* warning: addr must be aligned */
c227f099 3777void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3778{
3779 int io_index;
3780 uint8_t *ptr;
3781 unsigned long pd;
3782 PhysPageDesc *p;
3783
3784 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3785 if (!p) {
3786 pd = IO_MEM_UNASSIGNED;
3787 } else {
3788 pd = p->phys_offset;
3789 }
3b46e624 3790
3a7d929e 3791 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3792 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3793 if (p)
3794 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3795 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3796 } else {
3797 unsigned long addr1;
3798 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3799 /* RAM case */
5579c7f3 3800 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3801 stl_p(ptr, val);
3a7d929e
FB
3802 if (!cpu_physical_memory_is_dirty(addr1)) {
3803 /* invalidate code */
3804 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3805 /* set dirty bit */
f23db169
FB
3806 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3807 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3808 }
8df1cd07
FB
3809 }
3810}
3811
aab33094 3812/* XXX: optimize */
c227f099 3813void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3814{
3815 uint8_t v = val;
3816 cpu_physical_memory_write(addr, &v, 1);
3817}
3818
3819/* XXX: optimize */
c227f099 3820void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3821{
3822 uint16_t v = tswap16(val);
3823 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3824}
3825
3826/* XXX: optimize */
c227f099 3827void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3828{
3829 val = tswap64(val);
3830 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3831}
3832
5e2972fd 3833/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3834int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3835 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3836{
3837 int l;
c227f099 3838 target_phys_addr_t phys_addr;
9b3c35e0 3839 target_ulong page;
13eb76e0
FB
3840
3841 while (len > 0) {
3842 page = addr & TARGET_PAGE_MASK;
3843 phys_addr = cpu_get_phys_page_debug(env, page);
3844 /* if no physical page mapped, return an error */
3845 if (phys_addr == -1)
3846 return -1;
3847 l = (page + TARGET_PAGE_SIZE) - addr;
3848 if (l > len)
3849 l = len;
5e2972fd 3850 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3851 if (is_write)
3852 cpu_physical_memory_write_rom(phys_addr, buf, l);
3853 else
5e2972fd 3854 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3855 len -= l;
3856 buf += l;
3857 addr += l;
3858 }
3859 return 0;
3860}
a68fe89c 3861#endif
13eb76e0 3862
2e70f6ef
PB
3863/* in deterministic execution mode, instructions doing device I/Os
3864 must be at the end of the TB */
3865void cpu_io_recompile(CPUState *env, void *retaddr)
3866{
3867 TranslationBlock *tb;
3868 uint32_t n, cflags;
3869 target_ulong pc, cs_base;
3870 uint64_t flags;
3871
3872 tb = tb_find_pc((unsigned long)retaddr);
3873 if (!tb) {
3874 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3875 retaddr);
3876 }
3877 n = env->icount_decr.u16.low + tb->icount;
3878 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3879 /* Calculate how many instructions had been executed before the fault
bf20dc07 3880 occurred. */
2e70f6ef
PB
3881 n = n - env->icount_decr.u16.low;
3882 /* Generate a new TB ending on the I/O insn. */
3883 n++;
3884 /* On MIPS and SH, delay slot instructions can only be restarted if
3885 they were already the first instruction in the TB. If this is not
bf20dc07 3886 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3887 branch. */
3888#if defined(TARGET_MIPS)
3889 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3890 env->active_tc.PC -= 4;
3891 env->icount_decr.u16.low++;
3892 env->hflags &= ~MIPS_HFLAG_BMASK;
3893 }
3894#elif defined(TARGET_SH4)
3895 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3896 && n > 1) {
3897 env->pc -= 2;
3898 env->icount_decr.u16.low++;
3899 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3900 }
3901#endif
3902 /* This should never happen. */
3903 if (n > CF_COUNT_MASK)
3904 cpu_abort(env, "TB too big during recompile");
3905
3906 cflags = n | CF_LAST_IO;
3907 pc = tb->pc;
3908 cs_base = tb->cs_base;
3909 flags = tb->flags;
3910 tb_phys_invalidate(tb, -1);
3911 /* FIXME: In theory this could raise an exception. In practice
3912 we have already translated the block once so it's probably ok. */
3913 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3914 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3915 the first in the TB) then we end up generating a whole new TB and
3916 repeating the fault, which is horribly inefficient.
3917 Better would be to execute just this insn uncached, or generate a
3918 second new TB. */
3919 cpu_resume_from_signal(env, NULL);
3920}
3921
e3db7226
FB
3922void dump_exec_info(FILE *f,
3923 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3924{
3925 int i, target_code_size, max_target_code_size;
3926 int direct_jmp_count, direct_jmp2_count, cross_page;
3927 TranslationBlock *tb;
3b46e624 3928
e3db7226
FB
3929 target_code_size = 0;
3930 max_target_code_size = 0;
3931 cross_page = 0;
3932 direct_jmp_count = 0;
3933 direct_jmp2_count = 0;
3934 for(i = 0; i < nb_tbs; i++) {
3935 tb = &tbs[i];
3936 target_code_size += tb->size;
3937 if (tb->size > max_target_code_size)
3938 max_target_code_size = tb->size;
3939 if (tb->page_addr[1] != -1)
3940 cross_page++;
3941 if (tb->tb_next_offset[0] != 0xffff) {
3942 direct_jmp_count++;
3943 if (tb->tb_next_offset[1] != 0xffff) {
3944 direct_jmp2_count++;
3945 }
3946 }
3947 }
3948 /* XXX: avoid using doubles ? */
57fec1fe 3949 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3950 cpu_fprintf(f, "gen code size %ld/%ld\n",
3951 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3952 cpu_fprintf(f, "TB count %d/%d\n",
3953 nb_tbs, code_gen_max_blocks);
5fafdf24 3954 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3955 nb_tbs ? target_code_size / nb_tbs : 0,
3956 max_target_code_size);
5fafdf24 3957 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3958 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3959 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3960 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3961 cross_page,
e3db7226
FB
3962 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3963 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3964 direct_jmp_count,
e3db7226
FB
3965 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3966 direct_jmp2_count,
3967 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3968 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3969 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3970 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3971 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3972 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3973}
3974
5fafdf24 3975#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3976
3977#define MMUSUFFIX _cmmu
3978#define GETPC() NULL
3979#define env cpu_single_env
b769d8fe 3980#define SOFTMMU_CODE_ACCESS
61382a50
FB
3981
3982#define SHIFT 0
3983#include "softmmu_template.h"
3984
3985#define SHIFT 1
3986#include "softmmu_template.h"
3987
3988#define SHIFT 2
3989#include "softmmu_template.h"
3990
3991#define SHIFT 3
3992#include "softmmu_template.h"
3993
3994#undef env
3995
3996#endif