]> git.proxmox.com Git - qemu.git/blame - exec.c
cpu: Replace qemu_for_each_cpu()
[qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
1de7afc9 32#include "qemu/osdep.h"
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
0d09e41a 35#include "hw/xen/xen.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
54936004 48
022c62cb 49#include "exec/cputlb.h"
5b6dd868 50#include "translate-all.h"
0cac1b66 51
022c62cb 52#include "exec/memory-internal.h"
67d95c15 53
db7b5426 54//#define DEBUG_SUBPAGE
1196be37 55
e2eef170 56#if !defined(CONFIG_USER_ONLY)
74576198 57static int in_migration;
94a6b54f 58
a3161038 59RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
60
61static MemoryRegion *system_memory;
309cb471 62static MemoryRegion *system_io;
62152b8a 63
f6790af6
AK
64AddressSpace address_space_io;
65AddressSpace address_space_memory;
2673a5da 66
0844e007 67MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 68static MemoryRegion io_mem_unassigned;
0e0df1e2 69
e2eef170 70#endif
9fa3e853 71
bdc44640 72struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
73/* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
4917cf44 75DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 76/* 0 = Do not count executed instructions.
bf20dc07 77 1 = Precise instruction counting.
2e70f6ef 78 2 = Adaptive rate instruction counting. */
5708fc66 79int use_icount;
6a00d601 80
e2eef170 81#if !defined(CONFIG_USER_ONLY)
4346ae3e 82
1db8abb1
PB
83typedef struct PhysPageEntry PhysPageEntry;
84
85struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89};
90
0475d94f
PB
91typedef PhysPageEntry Node[L2_SIZE];
92
1db8abb1
PB
93struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
96 */
97 PhysPageEntry phys_map;
0475d94f
PB
98 Node *nodes;
99 MemoryRegionSection *sections;
acc9d80b 100 AddressSpace *as;
1db8abb1
PB
101};
102
90260c6c
JK
103#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104typedef struct subpage_t {
105 MemoryRegion iomem;
acc9d80b 106 AddressSpace *as;
90260c6c
JK
107 hwaddr base;
108 uint16_t sub_section[TARGET_PAGE_SIZE];
109} subpage_t;
110
b41aac4f
LPF
111#define PHYS_SECTION_UNASSIGNED 0
112#define PHYS_SECTION_NOTDIRTY 1
113#define PHYS_SECTION_ROM 2
114#define PHYS_SECTION_WATCH 3
5312bd8b 115
9affd6fc
PB
116typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
119 unsigned nodes_nb;
120 unsigned nodes_nb_alloc;
121 Node *nodes;
122 MemoryRegionSection *sections;
123} PhysPageMap;
124
6092666e 125static PhysPageMap *prev_map;
9affd6fc 126static PhysPageMap next_map;
d6f2ea22 127
07f07b31 128#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
d6f2ea22 129
e2eef170 130static void io_mem_init(void);
62152b8a 131static void memory_map_init(void);
8b9c99d9 132static void *qemu_safe_ram_ptr(ram_addr_t addr);
e2eef170 133
1ec9b909 134static MemoryRegion io_mem_watch;
6658ffb8 135#endif
fd6ce8f6 136
6d9a1304 137#if !defined(CONFIG_USER_ONLY)
d6f2ea22 138
f7bf5461 139static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 140{
9affd6fc
PB
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
143 16);
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
d6f2ea22 148 }
f7bf5461
AK
149}
150
151static uint16_t phys_map_node_alloc(void)
152{
153 unsigned i;
154 uint16_t ret;
155
9affd6fc 156 ret = next_map.nodes_nb++;
f7bf5461 157 assert(ret != PHYS_MAP_NODE_NIL);
9affd6fc 158 assert(ret != next_map.nodes_nb_alloc);
d6f2ea22 159 for (i = 0; i < L2_SIZE; ++i) {
9affd6fc
PB
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 162 }
f7bf5461 163 return ret;
d6f2ea22
AK
164}
165
a8170e5e
AK
166static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
2999097b 168 int level)
f7bf5461
AK
169{
170 PhysPageEntry *p;
171 int i;
a8170e5e 172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
108c49b8 173
07f07b31 174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
c19e8800 175 lp->ptr = phys_map_node_alloc();
9affd6fc 176 p = next_map.nodes[lp->ptr];
f7bf5461
AK
177 if (level == 0) {
178 for (i = 0; i < L2_SIZE; i++) {
07f07b31 179 p[i].is_leaf = 1;
b41aac4f 180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
4346ae3e 181 }
67c4d23c 182 }
f7bf5461 183 } else {
9affd6fc 184 p = next_map.nodes[lp->ptr];
92e873b9 185 }
2999097b 186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
f7bf5461 187
2999097b 188 while (*nb && lp < &p[L2_SIZE]) {
07f07b31
AK
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
190 lp->is_leaf = true;
c19e8800 191 lp->ptr = leaf;
07f07b31
AK
192 *index += step;
193 *nb -= step;
2999097b
AK
194 } else {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
196 }
197 ++lp;
f7bf5461
AK
198 }
199}
200
ac1970fb 201static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 202 hwaddr index, hwaddr nb,
2999097b 203 uint16_t leaf)
f7bf5461 204{
2999097b 205 /* Wildly overreserve - it doesn't matter much. */
07f07b31 206 phys_map_node_reserve(3 * P_L2_LEVELS);
5cd2c5b6 207
ac1970fb 208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
209}
210
9affd6fc
PB
211static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
92e873b9 213{
31ab2b4a
AK
214 PhysPageEntry *p;
215 int i;
f1f6e3b8 216
07f07b31 217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
c19e8800 218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 219 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 220 }
9affd6fc 221 p = nodes[lp.ptr];
31ab2b4a 222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
5312bd8b 223 }
9affd6fc 224 return &sections[lp.ptr];
f3705d53
AK
225}
226
e5548617
BS
227bool memory_region_is_unassigned(MemoryRegion *mr)
228{
2a8e7499 229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 230 && mr != &io_mem_watch;
fd6ce8f6 231}
149f54b5 232
c7086b4a 233static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
234 hwaddr addr,
235 bool resolve_subpage)
9f029603 236{
90260c6c
JK
237 MemoryRegionSection *section;
238 subpage_t *subpage;
239
0475d94f
PB
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
90260c6c
JK
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
0475d94f 244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
245 }
246 return section;
9f029603
JK
247}
248
90260c6c 249static MemoryRegionSection *
c7086b4a 250address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 251 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
252{
253 MemoryRegionSection *section;
254 Int128 diff;
255
c7086b4a 256 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
259
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
262
263 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
265 return section;
266}
90260c6c 267
5c8a00ce
PB
268MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
270 bool is_write)
90260c6c 271{
30951157
AK
272 IOMMUTLBEntry iotlb;
273 MemoryRegionSection *section;
274 MemoryRegion *mr;
275 hwaddr len = *plen;
276
277 for (;;) {
c7086b4a 278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
30951157
AK
279 mr = section->mr;
280
281 if (!mr->iommu_ops) {
282 break;
283 }
284
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
291 break;
292 }
293
294 as = iotlb.target_as;
295 }
296
297 *plen = len;
298 *xlat = addr;
299 return mr;
90260c6c
JK
300}
301
302MemoryRegionSection *
303address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
304 hwaddr *plen)
305{
30951157 306 MemoryRegionSection *section;
c7086b4a 307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
30951157
AK
308
309 assert(!section->mr->iommu_ops);
310 return section;
90260c6c 311}
5b6dd868 312#endif
fd6ce8f6 313
5b6dd868 314void cpu_exec_init_all(void)
fdbb84d1 315{
5b6dd868 316#if !defined(CONFIG_USER_ONLY)
b2a8658e 317 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
318 memory_map_init();
319 io_mem_init();
fdbb84d1 320#endif
5b6dd868 321}
fdbb84d1 322
b170fce3 323#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
324
325static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 326{
259186a7 327 CPUState *cpu = opaque;
a513fe19 328
5b6dd868
BS
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
259186a7
AF
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
333
334 return 0;
a513fe19 335}
7501267e 336
1a1562f5 337const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
338 .name = "cpu_common",
339 .version_id = 1,
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
259186a7
AF
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
346 VMSTATE_END_OF_LIST()
347 }
348};
1a1562f5 349
5b6dd868 350#endif
ea041c0e 351
38d8f5c8 352CPUState *qemu_get_cpu(int index)
ea041c0e 353{
bdc44640 354 CPUState *cpu;
ea041c0e 355
bdc44640 356 CPU_FOREACH(cpu) {
55e5c285 357 if (cpu->cpu_index == index) {
bdc44640 358 return cpu;
55e5c285 359 }
ea041c0e 360 }
5b6dd868 361
bdc44640 362 return NULL;
ea041c0e
FB
363}
364
5b6dd868 365void cpu_exec_init(CPUArchState *env)
ea041c0e 366{
5b6dd868 367 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 368 CPUClass *cc = CPU_GET_CLASS(cpu);
bdc44640 369 CPUState *some_cpu;
5b6dd868
BS
370 int cpu_index;
371
372#if defined(CONFIG_USER_ONLY)
373 cpu_list_lock();
374#endif
5b6dd868 375 cpu_index = 0;
bdc44640 376 CPU_FOREACH(some_cpu) {
5b6dd868
BS
377 cpu_index++;
378 }
55e5c285 379 cpu->cpu_index = cpu_index;
1b1ed8dc 380 cpu->numa_node = 0;
5b6dd868
BS
381 QTAILQ_INIT(&env->breakpoints);
382 QTAILQ_INIT(&env->watchpoints);
383#ifndef CONFIG_USER_ONLY
384 cpu->thread_id = qemu_get_thread_id();
385#endif
bdc44640 386 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
387#if defined(CONFIG_USER_ONLY)
388 cpu_list_unlock();
389#endif
e0d47944
AF
390 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
391 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
392 }
5b6dd868 393#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
394 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
395 cpu_save, cpu_load, env);
b170fce3 396 assert(cc->vmsd == NULL);
e0d47944 397 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 398#endif
b170fce3
AF
399 if (cc->vmsd != NULL) {
400 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
401 }
ea041c0e
FB
402}
403
1fddef4b 404#if defined(TARGET_HAS_ICE)
94df27fd 405#if defined(CONFIG_USER_ONLY)
00b941e5 406static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
407{
408 tb_invalidate_phys_page_range(pc, pc + 1, 0);
409}
410#else
00b941e5 411static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 412{
00b941e5 413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
9d70c4b7 414 (pc & ~TARGET_PAGE_MASK));
1e7855a5 415}
c27004ec 416#endif
94df27fd 417#endif /* TARGET_HAS_ICE */
d720b93d 418
c527ee8f 419#if defined(CONFIG_USER_ONLY)
9349b4f9 420void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
421
422{
423}
424
9349b4f9 425int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
426 int flags, CPUWatchpoint **watchpoint)
427{
428 return -ENOSYS;
429}
430#else
6658ffb8 431/* Add a watchpoint. */
9349b4f9 432int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 433 int flags, CPUWatchpoint **watchpoint)
6658ffb8 434{
b4051334 435 target_ulong len_mask = ~(len - 1);
c0ce998e 436 CPUWatchpoint *wp;
6658ffb8 437
b4051334 438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
439 if ((len & (len - 1)) || (addr & ~len_mask) ||
440 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
443 return -EINVAL;
444 }
7267c094 445 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
446
447 wp->vaddr = addr;
b4051334 448 wp->len_mask = len_mask;
a1d1bb31
AL
449 wp->flags = flags;
450
2dc9f411 451 /* keep all GDB-injected watchpoints in front */
c0ce998e 452 if (flags & BP_GDB)
72cf2d4f 453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 454 else
72cf2d4f 455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 456
6658ffb8 457 tlb_flush_page(env, addr);
a1d1bb31
AL
458
459 if (watchpoint)
460 *watchpoint = wp;
461 return 0;
6658ffb8
PB
462}
463
a1d1bb31 464/* Remove a specific watchpoint. */
9349b4f9 465int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 466 int flags)
6658ffb8 467{
b4051334 468 target_ulong len_mask = ~(len - 1);
a1d1bb31 469 CPUWatchpoint *wp;
6658ffb8 470
72cf2d4f 471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 472 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 474 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
475 return 0;
476 }
477 }
a1d1bb31 478 return -ENOENT;
6658ffb8
PB
479}
480
a1d1bb31 481/* Remove a specific watchpoint by reference. */
9349b4f9 482void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 483{
72cf2d4f 484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 485
a1d1bb31
AL
486 tlb_flush_page(env, watchpoint->vaddr);
487
7267c094 488 g_free(watchpoint);
a1d1bb31
AL
489}
490
491/* Remove all matching watchpoints. */
9349b4f9 492void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 493{
c0ce998e 494 CPUWatchpoint *wp, *next;
a1d1bb31 495
72cf2d4f 496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
497 if (wp->flags & mask)
498 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 499 }
7d03f82f 500}
c527ee8f 501#endif
7d03f82f 502
a1d1bb31 503/* Add a breakpoint. */
9349b4f9 504int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 505 CPUBreakpoint **breakpoint)
4c3a88a2 506{
1fddef4b 507#if defined(TARGET_HAS_ICE)
c0ce998e 508 CPUBreakpoint *bp;
3b46e624 509
7267c094 510 bp = g_malloc(sizeof(*bp));
4c3a88a2 511
a1d1bb31
AL
512 bp->pc = pc;
513 bp->flags = flags;
514
2dc9f411 515 /* keep all GDB-injected breakpoints in front */
00b941e5 516 if (flags & BP_GDB) {
72cf2d4f 517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
00b941e5 518 } else {
72cf2d4f 519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
00b941e5 520 }
3b46e624 521
00b941e5 522 breakpoint_invalidate(ENV_GET_CPU(env), pc);
a1d1bb31 523
00b941e5 524 if (breakpoint) {
a1d1bb31 525 *breakpoint = bp;
00b941e5 526 }
4c3a88a2
FB
527 return 0;
528#else
a1d1bb31 529 return -ENOSYS;
4c3a88a2
FB
530#endif
531}
532
a1d1bb31 533/* Remove a specific breakpoint. */
9349b4f9 534int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 535{
7d03f82f 536#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
537 CPUBreakpoint *bp;
538
72cf2d4f 539 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
540 if (bp->pc == pc && bp->flags == flags) {
541 cpu_breakpoint_remove_by_ref(env, bp);
542 return 0;
543 }
7d03f82f 544 }
a1d1bb31
AL
545 return -ENOENT;
546#else
547 return -ENOSYS;
7d03f82f
EI
548#endif
549}
550
a1d1bb31 551/* Remove a specific breakpoint by reference. */
9349b4f9 552void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 553{
1fddef4b 554#if defined(TARGET_HAS_ICE)
72cf2d4f 555 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 556
00b941e5 557 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
a1d1bb31 558
7267c094 559 g_free(breakpoint);
a1d1bb31
AL
560#endif
561}
562
563/* Remove all matching breakpoints. */
9349b4f9 564void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
565{
566#if defined(TARGET_HAS_ICE)
c0ce998e 567 CPUBreakpoint *bp, *next;
a1d1bb31 568
72cf2d4f 569 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
570 if (bp->flags & mask)
571 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 572 }
4c3a88a2
FB
573#endif
574}
575
c33a346e
FB
576/* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
3825b28f 578void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 579{
1fddef4b 580#if defined(TARGET_HAS_ICE)
ed2803da
AF
581 if (cpu->singlestep_enabled != enabled) {
582 cpu->singlestep_enabled = enabled;
583 if (kvm_enabled()) {
38e478ec 584 kvm_update_guest_debug(cpu, 0);
ed2803da 585 } else {
ccbb4d44 586 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 587 /* XXX: only flush what is necessary */
38e478ec 588 CPUArchState *env = cpu->env_ptr;
e22a25c9
AL
589 tb_flush(env);
590 }
c33a346e
FB
591 }
592#endif
593}
594
9349b4f9 595void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 596{
878096ee 597 CPUState *cpu = ENV_GET_CPU(env);
7501267e 598 va_list ap;
493ae1f0 599 va_list ap2;
7501267e
FB
600
601 va_start(ap, fmt);
493ae1f0 602 va_copy(ap2, ap);
7501267e
FB
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
878096ee 606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
a0762859 611 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 612 qemu_log_flush();
93fcfe39 613 qemu_log_close();
924edcae 614 }
493ae1f0 615 va_end(ap2);
f9373291 616 va_end(ap);
fd052bf6
RV
617#if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624#endif
7501267e
FB
625 abort();
626}
627
9349b4f9 628CPUArchState *cpu_copy(CPUArchState *env)
c5be9f08 629{
9349b4f9 630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
5a38f081
AL
631#if defined(TARGET_HAS_ICE)
632 CPUBreakpoint *bp;
633 CPUWatchpoint *wp;
634#endif
635
b24c882b
AG
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env));
638
639 /* Copy arch specific state into the new CPU */
9349b4f9 640 memcpy(new_env, env, sizeof(CPUArchState));
5a38f081 641
5a38f081
AL
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
5a38f081 647#if defined(TARGET_HAS_ICE)
72cf2d4f 648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
72cf2d4f 651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655#endif
656
c5be9f08
TS
657 return new_env;
658}
659
0124311e 660#if !defined(CONFIG_USER_ONLY)
d24981d3
JQ
661static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663{
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677}
678
5579c7f3 679/* Note: start and end must be within the same ram block. */
c227f099 680void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 681 int dirty_flags)
1ccde1cb 682{
d24981d3 683 uintptr_t length;
1ccde1cb
FB
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
f7c11b53 691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 692
d24981d3
JQ
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
5579c7f3 695 }
1ccde1cb
FB
696}
697
8b9c99d9 698static int cpu_physical_memory_set_dirty_tracking(int enable)
74576198 699{
f6f3fbca 700 int ret = 0;
74576198 701 in_migration = enable;
f6f3fbca 702 return ret;
74576198
AL
703}
704
a8170e5e 705hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
e5548617 711{
a8170e5e 712 hwaddr iotlb;
e5548617
BS
713 CPUWatchpoint *wp;
714
cc5bea60 715 if (memory_region_is_ram(section->mr)) {
e5548617
BS
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 718 + xlat;
e5548617 719 if (!section->readonly) {
b41aac4f 720 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 721 } else {
b41aac4f 722 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
723 }
724 } else {
0475d94f 725 iotlb = section - address_space_memory.dispatch->sections;
149f54b5 726 iotlb += xlat;
e5548617
BS
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 735 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743}
9fa3e853
FB
744#endif /* defined(CONFIG_USER_ONLY) */
745
e2eef170 746#if !defined(CONFIG_USER_ONLY)
8da3ff18 747
c227f099 748static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 749 uint16_t section);
acc9d80b 750static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 751
5312bd8b
AK
752static uint16_t phys_section_add(MemoryRegionSection *section)
753{
68f3f65b
PB
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
757 */
9affd6fc 758 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
68f3f65b 759
9affd6fc
PB
760 if (next_map.sections_nb == next_map.sections_nb_alloc) {
761 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
762 16);
763 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
764 next_map.sections_nb_alloc);
5312bd8b 765 }
9affd6fc 766 next_map.sections[next_map.sections_nb] = *section;
dfde4e6e 767 memory_region_ref(section->mr);
9affd6fc 768 return next_map.sections_nb++;
5312bd8b
AK
769}
770
058bc4b5
PB
771static void phys_section_destroy(MemoryRegion *mr)
772{
dfde4e6e
PB
773 memory_region_unref(mr);
774
058bc4b5
PB
775 if (mr->subpage) {
776 subpage_t *subpage = container_of(mr, subpage_t, iomem);
777 memory_region_destroy(&subpage->iomem);
778 g_free(subpage);
779 }
780}
781
6092666e 782static void phys_sections_free(PhysPageMap *map)
5312bd8b 783{
9affd6fc
PB
784 while (map->sections_nb > 0) {
785 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
786 phys_section_destroy(section->mr);
787 }
9affd6fc
PB
788 g_free(map->sections);
789 g_free(map->nodes);
6092666e 790 g_free(map);
5312bd8b
AK
791}
792
ac1970fb 793static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
794{
795 subpage_t *subpage;
a8170e5e 796 hwaddr base = section->offset_within_address_space
0f0cb164 797 & TARGET_PAGE_MASK;
9affd6fc
PB
798 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
799 next_map.nodes, next_map.sections);
0f0cb164
AK
800 MemoryRegionSection subsection = {
801 .offset_within_address_space = base,
052e87b0 802 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 803 };
a8170e5e 804 hwaddr start, end;
0f0cb164 805
f3705d53 806 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 807
f3705d53 808 if (!(existing->mr->subpage)) {
acc9d80b 809 subpage = subpage_init(d->as, base);
0f0cb164 810 subsection.mr = &subpage->iomem;
ac1970fb 811 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
2999097b 812 phys_section_add(&subsection));
0f0cb164 813 } else {
f3705d53 814 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
815 }
816 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 817 end = start + int128_get64(section->size) - 1;
0f0cb164
AK
818 subpage_register(subpage, start, end, phys_section_add(section));
819}
820
821
052e87b0
PB
822static void register_multipage(AddressSpaceDispatch *d,
823 MemoryRegionSection *section)
33417e70 824{
a8170e5e 825 hwaddr start_addr = section->offset_within_address_space;
5312bd8b 826 uint16_t section_index = phys_section_add(section);
052e87b0
PB
827 uint64_t num_pages = int128_get64(int128_rshift(section->size,
828 TARGET_PAGE_BITS));
dd81124b 829
733d5ef5
PB
830 assert(num_pages);
831 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
832}
833
ac1970fb 834static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 835{
89ae337a 836 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 837 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 838 MemoryRegionSection now = *section, remain = *section;
052e87b0 839 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 840
733d5ef5
PB
841 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
842 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
843 - now.offset_within_address_space;
844
052e87b0 845 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 846 register_subpage(d, &now);
733d5ef5 847 } else {
052e87b0 848 now.size = int128_zero();
733d5ef5 849 }
052e87b0
PB
850 while (int128_ne(remain.size, now.size)) {
851 remain.size = int128_sub(remain.size, now.size);
852 remain.offset_within_address_space += int128_get64(now.size);
853 remain.offset_within_region += int128_get64(now.size);
69b67646 854 now = remain;
052e87b0 855 if (int128_lt(remain.size, page_size)) {
733d5ef5
PB
856 register_subpage(d, &now);
857 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
052e87b0 858 now.size = page_size;
ac1970fb 859 register_subpage(d, &now);
69b67646 860 } else {
052e87b0 861 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 862 register_multipage(d, &now);
69b67646 863 }
0f0cb164
AK
864 }
865}
866
62a2744c
SY
867void qemu_flush_coalesced_mmio_buffer(void)
868{
869 if (kvm_enabled())
870 kvm_flush_coalesced_mmio_buffer();
871}
872
b2a8658e
UD
873void qemu_mutex_lock_ramlist(void)
874{
875 qemu_mutex_lock(&ram_list.mutex);
876}
877
878void qemu_mutex_unlock_ramlist(void)
879{
880 qemu_mutex_unlock(&ram_list.mutex);
881}
882
c902760f
MT
883#if defined(__linux__) && !defined(TARGET_S390X)
884
885#include <sys/vfs.h>
886
887#define HUGETLBFS_MAGIC 0x958458f6
888
889static long gethugepagesize(const char *path)
890{
891 struct statfs fs;
892 int ret;
893
894 do {
9742bf26 895 ret = statfs(path, &fs);
c902760f
MT
896 } while (ret != 0 && errno == EINTR);
897
898 if (ret != 0) {
9742bf26
YT
899 perror(path);
900 return 0;
c902760f
MT
901 }
902
903 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 904 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
905
906 return fs.f_bsize;
907}
908
04b16653
AW
909static void *file_ram_alloc(RAMBlock *block,
910 ram_addr_t memory,
911 const char *path)
c902760f
MT
912{
913 char *filename;
8ca761f6
PF
914 char *sanitized_name;
915 char *c;
c902760f
MT
916 void *area;
917 int fd;
918#ifdef MAP_POPULATE
919 int flags;
920#endif
921 unsigned long hpagesize;
922
923 hpagesize = gethugepagesize(path);
924 if (!hpagesize) {
9742bf26 925 return NULL;
c902760f
MT
926 }
927
928 if (memory < hpagesize) {
929 return NULL;
930 }
931
932 if (kvm_enabled() && !kvm_has_sync_mmu()) {
933 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
934 return NULL;
935 }
936
8ca761f6
PF
937 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
938 sanitized_name = g_strdup(block->mr->name);
939 for (c = sanitized_name; *c != '\0'; c++) {
940 if (*c == '/')
941 *c = '_';
942 }
943
944 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
945 sanitized_name);
946 g_free(sanitized_name);
c902760f
MT
947
948 fd = mkstemp(filename);
949 if (fd < 0) {
9742bf26 950 perror("unable to create backing store for hugepages");
e4ada482 951 g_free(filename);
9742bf26 952 return NULL;
c902760f
MT
953 }
954 unlink(filename);
e4ada482 955 g_free(filename);
c902760f
MT
956
957 memory = (memory+hpagesize-1) & ~(hpagesize-1);
958
959 /*
960 * ftruncate is not supported by hugetlbfs in older
961 * hosts, so don't bother bailing out on errors.
962 * If anything goes wrong with it under other filesystems,
963 * mmap will fail.
964 */
965 if (ftruncate(fd, memory))
9742bf26 966 perror("ftruncate");
c902760f
MT
967
968#ifdef MAP_POPULATE
969 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
970 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
971 * to sidestep this quirk.
972 */
973 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
974 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
975#else
976 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
977#endif
978 if (area == MAP_FAILED) {
9742bf26
YT
979 perror("file_ram_alloc: can't mmap RAM pages");
980 close(fd);
981 return (NULL);
c902760f 982 }
04b16653 983 block->fd = fd;
c902760f
MT
984 return area;
985}
986#endif
987
d17b5288 988static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
989{
990 RAMBlock *block, *next_block;
3e837b2c 991 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 992
49cd9ac6
SH
993 assert(size != 0); /* it would hand out same offset multiple times */
994
a3161038 995 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
996 return 0;
997
a3161038 998 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 999 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
1000
1001 end = block->offset + block->length;
1002
a3161038 1003 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
1004 if (next_block->offset >= end) {
1005 next = MIN(next, next_block->offset);
1006 }
1007 }
1008 if (next - end >= size && next - end < mingap) {
3e837b2c 1009 offset = end;
04b16653
AW
1010 mingap = next - end;
1011 }
1012 }
3e837b2c
AW
1013
1014 if (offset == RAM_ADDR_MAX) {
1015 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1016 (uint64_t)size);
1017 abort();
1018 }
1019
04b16653
AW
1020 return offset;
1021}
1022
652d7ec2 1023ram_addr_t last_ram_offset(void)
d17b5288
AW
1024{
1025 RAMBlock *block;
1026 ram_addr_t last = 0;
1027
a3161038 1028 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1029 last = MAX(last, block->offset + block->length);
1030
1031 return last;
1032}
1033
ddb97f1d
JB
1034static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1035{
1036 int ret;
ddb97f1d
JB
1037
1038 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2ff3de68
MA
1039 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1040 "dump-guest-core", true)) {
ddb97f1d
JB
1041 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1042 if (ret) {
1043 perror("qemu_madvise");
1044 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1045 "but dump_guest_core=off specified\n");
1046 }
1047 }
1048}
1049
c5705a77 1050void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1051{
1052 RAMBlock *new_block, *block;
1053
c5705a77 1054 new_block = NULL;
a3161038 1055 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1056 if (block->offset == addr) {
1057 new_block = block;
1058 break;
1059 }
1060 }
1061 assert(new_block);
1062 assert(!new_block->idstr[0]);
84b89d78 1063
09e5ab63
AL
1064 if (dev) {
1065 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1066 if (id) {
1067 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1068 g_free(id);
84b89d78
CM
1069 }
1070 }
1071 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1072
b2a8658e
UD
1073 /* This assumes the iothread lock is taken here too. */
1074 qemu_mutex_lock_ramlist();
a3161038 1075 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1076 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1077 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1078 new_block->idstr);
1079 abort();
1080 }
1081 }
b2a8658e 1082 qemu_mutex_unlock_ramlist();
c5705a77
AK
1083}
1084
8490fc78
LC
1085static int memory_try_enable_merging(void *addr, size_t len)
1086{
2ff3de68 1087 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
8490fc78
LC
1088 /* disabled by the user */
1089 return 0;
1090 }
1091
1092 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1093}
1094
c5705a77
AK
1095ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1096 MemoryRegion *mr)
1097{
abb26d63 1098 RAMBlock *block, *new_block;
c5705a77
AK
1099
1100 size = TARGET_PAGE_ALIGN(size);
1101 new_block = g_malloc0(sizeof(*new_block));
84b89d78 1102
b2a8658e
UD
1103 /* This assumes the iothread lock is taken here too. */
1104 qemu_mutex_lock_ramlist();
7c637366 1105 new_block->mr = mr;
432d268c 1106 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1107 if (host) {
1108 new_block->host = host;
cd19cfa2 1109 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
1110 } else {
1111 if (mem_path) {
c902760f 1112#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
1113 new_block->host = file_ram_alloc(new_block, size, mem_path);
1114 if (!new_block->host) {
6eebf958 1115 new_block->host = qemu_anon_ram_alloc(size);
8490fc78 1116 memory_try_enable_merging(new_block->host, size);
6977dfe6 1117 }
c902760f 1118#else
6977dfe6
YT
1119 fprintf(stderr, "-mem-path option unsupported\n");
1120 exit(1);
c902760f 1121#endif
6977dfe6 1122 } else {
868bb33f 1123 if (xen_enabled()) {
fce537d4 1124 xen_ram_alloc(new_block->offset, size, mr);
fdec9918
CB
1125 } else if (kvm_enabled()) {
1126 /* some s390/kvm configurations have special constraints */
6eebf958 1127 new_block->host = kvm_ram_alloc(size);
432d268c 1128 } else {
6eebf958 1129 new_block->host = qemu_anon_ram_alloc(size);
432d268c 1130 }
8490fc78 1131 memory_try_enable_merging(new_block->host, size);
6977dfe6 1132 }
c902760f 1133 }
94a6b54f
PB
1134 new_block->length = size;
1135
abb26d63
PB
1136 /* Keep the list sorted from biggest to smallest block. */
1137 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1138 if (block->length < new_block->length) {
1139 break;
1140 }
1141 }
1142 if (block) {
1143 QTAILQ_INSERT_BEFORE(block, new_block, next);
1144 } else {
1145 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1146 }
0d6d3c87 1147 ram_list.mru_block = NULL;
94a6b54f 1148
f798b07f 1149 ram_list.version++;
b2a8658e 1150 qemu_mutex_unlock_ramlist();
f798b07f 1151
7267c094 1152 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 1153 last_ram_offset() >> TARGET_PAGE_BITS);
5fda043f
IM
1154 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1155 0, size >> TARGET_PAGE_BITS);
1720aeee 1156 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
94a6b54f 1157
ddb97f1d 1158 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1159 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
ddb97f1d 1160
6f0437e8
JK
1161 if (kvm_enabled())
1162 kvm_setup_guest_memory(new_block->host, size);
1163
94a6b54f
PB
1164 return new_block->offset;
1165}
e9a1ab19 1166
c5705a77 1167ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1168{
c5705a77 1169 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1170}
1171
1f2e98b6
AW
1172void qemu_ram_free_from_ptr(ram_addr_t addr)
1173{
1174 RAMBlock *block;
1175
b2a8658e
UD
1176 /* This assumes the iothread lock is taken here too. */
1177 qemu_mutex_lock_ramlist();
a3161038 1178 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1179 if (addr == block->offset) {
a3161038 1180 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1181 ram_list.mru_block = NULL;
f798b07f 1182 ram_list.version++;
7267c094 1183 g_free(block);
b2a8658e 1184 break;
1f2e98b6
AW
1185 }
1186 }
b2a8658e 1187 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1188}
1189
c227f099 1190void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1191{
04b16653
AW
1192 RAMBlock *block;
1193
b2a8658e
UD
1194 /* This assumes the iothread lock is taken here too. */
1195 qemu_mutex_lock_ramlist();
a3161038 1196 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1197 if (addr == block->offset) {
a3161038 1198 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1199 ram_list.mru_block = NULL;
f798b07f 1200 ram_list.version++;
cd19cfa2
HY
1201 if (block->flags & RAM_PREALLOC_MASK) {
1202 ;
1203 } else if (mem_path) {
04b16653
AW
1204#if defined (__linux__) && !defined(TARGET_S390X)
1205 if (block->fd) {
1206 munmap(block->host, block->length);
1207 close(block->fd);
1208 } else {
e7a09b92 1209 qemu_anon_ram_free(block->host, block->length);
04b16653 1210 }
fd28aa13
JK
1211#else
1212 abort();
04b16653
AW
1213#endif
1214 } else {
868bb33f 1215 if (xen_enabled()) {
e41d7c69 1216 xen_invalidate_map_cache_entry(block->host);
432d268c 1217 } else {
e7a09b92 1218 qemu_anon_ram_free(block->host, block->length);
432d268c 1219 }
04b16653 1220 }
7267c094 1221 g_free(block);
b2a8658e 1222 break;
04b16653
AW
1223 }
1224 }
b2a8658e 1225 qemu_mutex_unlock_ramlist();
04b16653 1226
e9a1ab19
FB
1227}
1228
cd19cfa2
HY
1229#ifndef _WIN32
1230void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1231{
1232 RAMBlock *block;
1233 ram_addr_t offset;
1234 int flags;
1235 void *area, *vaddr;
1236
a3161038 1237 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1238 offset = addr - block->offset;
1239 if (offset < block->length) {
1240 vaddr = block->host + offset;
1241 if (block->flags & RAM_PREALLOC_MASK) {
1242 ;
1243 } else {
1244 flags = MAP_FIXED;
1245 munmap(vaddr, length);
1246 if (mem_path) {
1247#if defined(__linux__) && !defined(TARGET_S390X)
1248 if (block->fd) {
1249#ifdef MAP_POPULATE
1250 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1251 MAP_PRIVATE;
1252#else
1253 flags |= MAP_PRIVATE;
1254#endif
1255 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1256 flags, block->fd, offset);
1257 } else {
1258 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1260 flags, -1, 0);
1261 }
fd28aa13
JK
1262#else
1263 abort();
cd19cfa2
HY
1264#endif
1265 } else {
1266#if defined(TARGET_S390X) && defined(CONFIG_KVM)
1267 flags |= MAP_SHARED | MAP_ANONYMOUS;
1268 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1269 flags, -1, 0);
1270#else
1271 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1272 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1273 flags, -1, 0);
1274#endif
1275 }
1276 if (area != vaddr) {
f15fbc4b
AP
1277 fprintf(stderr, "Could not remap addr: "
1278 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1279 length, addr);
1280 exit(1);
1281 }
8490fc78 1282 memory_try_enable_merging(vaddr, length);
ddb97f1d 1283 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1284 }
1285 return;
1286 }
1287 }
1288}
1289#endif /* !_WIN32 */
1290
1b5ec234 1291static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
dc828ca1 1292{
94a6b54f
PB
1293 RAMBlock *block;
1294
b2a8658e 1295 /* The list is protected by the iothread lock here. */
0d6d3c87
PB
1296 block = ram_list.mru_block;
1297 if (block && addr - block->offset < block->length) {
1298 goto found;
1299 }
a3161038 1300 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f471a17e 1301 if (addr - block->offset < block->length) {
0d6d3c87 1302 goto found;
f471a17e 1303 }
94a6b54f 1304 }
f471a17e
AW
1305
1306 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1307 abort();
1308
0d6d3c87
PB
1309found:
1310 ram_list.mru_block = block;
1b5ec234
PB
1311 return block;
1312}
1313
1314/* Return a host pointer to ram allocated with qemu_ram_alloc.
1315 With the exception of the softmmu code in this file, this should
1316 only be used for local memory (e.g. video ram) that the device owns,
1317 and knows it isn't going to access beyond the end of the block.
1318
1319 It should not be used for general purpose DMA.
1320 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1321 */
1322void *qemu_get_ram_ptr(ram_addr_t addr)
1323{
1324 RAMBlock *block = qemu_get_ram_block(addr);
1325
0d6d3c87
PB
1326 if (xen_enabled()) {
1327 /* We need to check if the requested address is in the RAM
1328 * because we don't want to map the entire memory in QEMU.
1329 * In that case just map until the end of the page.
1330 */
1331 if (block->offset == 0) {
1332 return xen_map_cache(addr, 0, 0);
1333 } else if (block->host == NULL) {
1334 block->host =
1335 xen_map_cache(block->offset, block->length, 1);
1336 }
1337 }
1338 return block->host + (addr - block->offset);
dc828ca1
PB
1339}
1340
0d6d3c87
PB
1341/* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1342 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1343 *
1344 * ??? Is this still necessary?
b2e0a138 1345 */
8b9c99d9 1346static void *qemu_safe_ram_ptr(ram_addr_t addr)
b2e0a138
MT
1347{
1348 RAMBlock *block;
1349
b2a8658e 1350 /* The list is protected by the iothread lock here. */
a3161038 1351 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
b2e0a138 1352 if (addr - block->offset < block->length) {
868bb33f 1353 if (xen_enabled()) {
432d268c
JN
1354 /* We need to check if the requested address is in the RAM
1355 * because we don't want to map the entire memory in QEMU.
712c2b41 1356 * In that case just map until the end of the page.
432d268c
JN
1357 */
1358 if (block->offset == 0) {
e41d7c69 1359 return xen_map_cache(addr, 0, 0);
432d268c 1360 } else if (block->host == NULL) {
e41d7c69
JK
1361 block->host =
1362 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
1363 }
1364 }
b2e0a138
MT
1365 return block->host + (addr - block->offset);
1366 }
1367 }
1368
1369 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1370 abort();
1371
1372 return NULL;
1373}
1374
38bee5dc
SS
1375/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1376 * but takes a size argument */
cb85f7ab 1377static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1378{
8ab934f9
SS
1379 if (*size == 0) {
1380 return NULL;
1381 }
868bb33f 1382 if (xen_enabled()) {
e41d7c69 1383 return xen_map_cache(addr, *size, 1);
868bb33f 1384 } else {
38bee5dc
SS
1385 RAMBlock *block;
1386
a3161038 1387 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1388 if (addr - block->offset < block->length) {
1389 if (addr - block->offset + *size > block->length)
1390 *size = block->length - addr + block->offset;
1391 return block->host + (addr - block->offset);
1392 }
1393 }
1394
1395 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1396 abort();
38bee5dc
SS
1397 }
1398}
1399
7443b437
PB
1400/* Some of the softmmu routines need to translate from a host pointer
1401 (typically a TLB entry) back to a ram offset. */
1b5ec234 1402MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1403{
94a6b54f
PB
1404 RAMBlock *block;
1405 uint8_t *host = ptr;
1406
868bb33f 1407 if (xen_enabled()) {
e41d7c69 1408 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1b5ec234 1409 return qemu_get_ram_block(*ram_addr)->mr;
712c2b41
SS
1410 }
1411
23887b79
PB
1412 block = ram_list.mru_block;
1413 if (block && block->host && host - block->host < block->length) {
1414 goto found;
1415 }
1416
a3161038 1417 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1418 /* This case append when the block is not mapped. */
1419 if (block->host == NULL) {
1420 continue;
1421 }
f471a17e 1422 if (host - block->host < block->length) {
23887b79 1423 goto found;
f471a17e 1424 }
94a6b54f 1425 }
432d268c 1426
1b5ec234 1427 return NULL;
23887b79
PB
1428
1429found:
1430 *ram_addr = block->offset + (host - block->host);
1b5ec234 1431 return block->mr;
e890261f 1432}
f471a17e 1433
a8170e5e 1434static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1435 uint64_t val, unsigned size)
9fa3e853 1436{
3a7d929e 1437 int dirty_flags;
f7c11b53 1438 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1439 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
0e0df1e2 1440 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 1441 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1442 }
0e0df1e2
AK
1443 switch (size) {
1444 case 1:
1445 stb_p(qemu_get_ram_ptr(ram_addr), val);
1446 break;
1447 case 2:
1448 stw_p(qemu_get_ram_ptr(ram_addr), val);
1449 break;
1450 case 4:
1451 stl_p(qemu_get_ram_ptr(ram_addr), val);
1452 break;
1453 default:
1454 abort();
3a7d929e 1455 }
f23db169 1456 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 1457 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
1458 /* we remove the notdirty callback only if the code has been
1459 flushed */
4917cf44
AF
1460 if (dirty_flags == 0xff) {
1461 CPUArchState *env = current_cpu->env_ptr;
1462 tlb_set_dirty(env, env->mem_io_vaddr);
1463 }
9fa3e853
FB
1464}
1465
b018ddf6
PB
1466static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1467 unsigned size, bool is_write)
1468{
1469 return is_write;
1470}
1471
0e0df1e2 1472static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1473 .write = notdirty_mem_write,
b018ddf6 1474 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1475 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1476};
1477
0f459d16 1478/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1479static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1480{
4917cf44 1481 CPUArchState *env = current_cpu->env_ptr;
06d55cc1 1482 target_ulong pc, cs_base;
0f459d16 1483 target_ulong vaddr;
a1d1bb31 1484 CPUWatchpoint *wp;
06d55cc1 1485 int cpu_flags;
0f459d16 1486
06d55cc1
AL
1487 if (env->watchpoint_hit) {
1488 /* We re-entered the check after replacing the TB. Now raise
1489 * the debug interrupt so that is will trigger after the
1490 * current instruction. */
c3affe56 1491 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1492 return;
1493 }
2e70f6ef 1494 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 1495 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
1496 if ((vaddr == (wp->vaddr & len_mask) ||
1497 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
1498 wp->flags |= BP_WATCHPOINT_HIT;
1499 if (!env->watchpoint_hit) {
1500 env->watchpoint_hit = wp;
5a316526 1501 tb_check_watchpoint(env);
6e140f28
AL
1502 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1503 env->exception_index = EXCP_DEBUG;
488d6577 1504 cpu_loop_exit(env);
6e140f28
AL
1505 } else {
1506 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1507 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 1508 cpu_resume_from_signal(env, NULL);
6e140f28 1509 }
06d55cc1 1510 }
6e140f28
AL
1511 } else {
1512 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1513 }
1514 }
1515}
1516
6658ffb8
PB
1517/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1518 so these check for a hit then pass through to the normal out-of-line
1519 phys routines. */
a8170e5e 1520static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1521 unsigned size)
6658ffb8 1522{
1ec9b909
AK
1523 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1524 switch (size) {
1525 case 1: return ldub_phys(addr);
1526 case 2: return lduw_phys(addr);
1527 case 4: return ldl_phys(addr);
1528 default: abort();
1529 }
6658ffb8
PB
1530}
1531
a8170e5e 1532static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1533 uint64_t val, unsigned size)
6658ffb8 1534{
1ec9b909
AK
1535 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1536 switch (size) {
67364150
MF
1537 case 1:
1538 stb_phys(addr, val);
1539 break;
1540 case 2:
1541 stw_phys(addr, val);
1542 break;
1543 case 4:
1544 stl_phys(addr, val);
1545 break;
1ec9b909
AK
1546 default: abort();
1547 }
6658ffb8
PB
1548}
1549
1ec9b909
AK
1550static const MemoryRegionOps watch_mem_ops = {
1551 .read = watch_mem_read,
1552 .write = watch_mem_write,
1553 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1554};
6658ffb8 1555
a8170e5e 1556static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1557 unsigned len)
db7b5426 1558{
acc9d80b
JK
1559 subpage_t *subpage = opaque;
1560 uint8_t buf[4];
791af8c8 1561
db7b5426 1562#if defined(DEBUG_SUBPAGE)
acc9d80b
JK
1563 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1564 subpage, len, addr);
db7b5426 1565#endif
acc9d80b
JK
1566 address_space_read(subpage->as, addr + subpage->base, buf, len);
1567 switch (len) {
1568 case 1:
1569 return ldub_p(buf);
1570 case 2:
1571 return lduw_p(buf);
1572 case 4:
1573 return ldl_p(buf);
1574 default:
1575 abort();
1576 }
db7b5426
BS
1577}
1578
a8170e5e 1579static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1580 uint64_t value, unsigned len)
db7b5426 1581{
acc9d80b
JK
1582 subpage_t *subpage = opaque;
1583 uint8_t buf[4];
1584
db7b5426 1585#if defined(DEBUG_SUBPAGE)
70c68e44 1586 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
acc9d80b
JK
1587 " value %"PRIx64"\n",
1588 __func__, subpage, len, addr, value);
db7b5426 1589#endif
acc9d80b
JK
1590 switch (len) {
1591 case 1:
1592 stb_p(buf, value);
1593 break;
1594 case 2:
1595 stw_p(buf, value);
1596 break;
1597 case 4:
1598 stl_p(buf, value);
1599 break;
1600 default:
1601 abort();
1602 }
1603 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1604}
1605
c353e4cc
PB
1606static bool subpage_accepts(void *opaque, hwaddr addr,
1607 unsigned size, bool is_write)
1608{
acc9d80b 1609 subpage_t *subpage = opaque;
c353e4cc 1610#if defined(DEBUG_SUBPAGE)
acc9d80b
JK
1611 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1612 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1613#endif
1614
acc9d80b
JK
1615 return address_space_access_valid(subpage->as, addr + subpage->base,
1616 size, is_write);
c353e4cc
PB
1617}
1618
70c68e44
AK
1619static const MemoryRegionOps subpage_ops = {
1620 .read = subpage_read,
1621 .write = subpage_write,
c353e4cc 1622 .valid.accepts = subpage_accepts,
70c68e44 1623 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1624};
1625
c227f099 1626static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1627 uint16_t section)
db7b5426
BS
1628{
1629 int idx, eidx;
1630
1631 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1632 return -1;
1633 idx = SUBPAGE_IDX(start);
1634 eidx = SUBPAGE_IDX(end);
1635#if defined(DEBUG_SUBPAGE)
0bf9e31a 1636 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
1637 mmio, start, end, idx, eidx, memory);
1638#endif
db7b5426 1639 for (; idx <= eidx; idx++) {
5312bd8b 1640 mmio->sub_section[idx] = section;
db7b5426
BS
1641 }
1642
1643 return 0;
1644}
1645
acc9d80b 1646static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1647{
c227f099 1648 subpage_t *mmio;
db7b5426 1649
7267c094 1650 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1651
acc9d80b 1652 mmio->as = as;
1eec614b 1653 mmio->base = base;
2c9b15ca 1654 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1655 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1656 mmio->iomem.subpage = true;
db7b5426 1657#if defined(DEBUG_SUBPAGE)
1eec614b
AL
1658 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1659 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 1660#endif
b41aac4f 1661 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
1662
1663 return mmio;
1664}
1665
5312bd8b
AK
1666static uint16_t dummy_section(MemoryRegion *mr)
1667{
1668 MemoryRegionSection section = {
1669 .mr = mr,
1670 .offset_within_address_space = 0,
1671 .offset_within_region = 0,
052e87b0 1672 .size = int128_2_64(),
5312bd8b
AK
1673 };
1674
1675 return phys_section_add(&section);
1676}
1677
a8170e5e 1678MemoryRegion *iotlb_to_region(hwaddr index)
aa102231 1679{
0475d94f 1680 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1681}
1682
e9179ce1
AK
1683static void io_mem_init(void)
1684{
2c9b15ca
PB
1685 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1686 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1687 "unassigned", UINT64_MAX);
2c9b15ca 1688 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1689 "notdirty", UINT64_MAX);
2c9b15ca 1690 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1691 "watch", UINT64_MAX);
e9179ce1
AK
1692}
1693
ac1970fb 1694static void mem_begin(MemoryListener *listener)
00752703
PB
1695{
1696 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1697 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1698
1699 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1700 d->as = as;
1701 as->next_dispatch = d;
1702}
1703
1704static void mem_commit(MemoryListener *listener)
ac1970fb 1705{
89ae337a 1706 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
1707 AddressSpaceDispatch *cur = as->dispatch;
1708 AddressSpaceDispatch *next = as->next_dispatch;
1709
1710 next->nodes = next_map.nodes;
1711 next->sections = next_map.sections;
ac1970fb 1712
0475d94f
PB
1713 as->dispatch = next;
1714 g_free(cur);
ac1970fb
AK
1715}
1716
50c1e149
AK
1717static void core_begin(MemoryListener *listener)
1718{
b41aac4f
LPF
1719 uint16_t n;
1720
6092666e
PB
1721 prev_map = g_new(PhysPageMap, 1);
1722 *prev_map = next_map;
1723
9affd6fc 1724 memset(&next_map, 0, sizeof(next_map));
b41aac4f
LPF
1725 n = dummy_section(&io_mem_unassigned);
1726 assert(n == PHYS_SECTION_UNASSIGNED);
1727 n = dummy_section(&io_mem_notdirty);
1728 assert(n == PHYS_SECTION_NOTDIRTY);
1729 n = dummy_section(&io_mem_rom);
1730 assert(n == PHYS_SECTION_ROM);
1731 n = dummy_section(&io_mem_watch);
1732 assert(n == PHYS_SECTION_WATCH);
50c1e149
AK
1733}
1734
9affd6fc
PB
1735/* This listener's commit run after the other AddressSpaceDispatch listeners'.
1736 * All AddressSpaceDispatch instances have switched to the next map.
1737 */
1738static void core_commit(MemoryListener *listener)
1739{
6092666e 1740 phys_sections_free(prev_map);
9affd6fc
PB
1741}
1742
1d71148e 1743static void tcg_commit(MemoryListener *listener)
50c1e149 1744{
182735ef 1745 CPUState *cpu;
117712c3
AK
1746
1747 /* since each CPU stores ram addresses in its TLB cache, we must
1748 reset the modified entries */
1749 /* XXX: slow ! */
bdc44640 1750 CPU_FOREACH(cpu) {
182735ef
AF
1751 CPUArchState *env = cpu->env_ptr;
1752
117712c3
AK
1753 tlb_flush(env, 1);
1754 }
50c1e149
AK
1755}
1756
93632747
AK
1757static void core_log_global_start(MemoryListener *listener)
1758{
1759 cpu_physical_memory_set_dirty_tracking(1);
1760}
1761
1762static void core_log_global_stop(MemoryListener *listener)
1763{
1764 cpu_physical_memory_set_dirty_tracking(0);
1765}
1766
93632747 1767static MemoryListener core_memory_listener = {
50c1e149 1768 .begin = core_begin,
9affd6fc 1769 .commit = core_commit,
93632747
AK
1770 .log_global_start = core_log_global_start,
1771 .log_global_stop = core_log_global_stop,
ac1970fb 1772 .priority = 1,
93632747
AK
1773};
1774
1d71148e
AK
1775static MemoryListener tcg_memory_listener = {
1776 .commit = tcg_commit,
1777};
1778
ac1970fb
AK
1779void address_space_init_dispatch(AddressSpace *as)
1780{
00752703 1781 as->dispatch = NULL;
89ae337a 1782 as->dispatch_listener = (MemoryListener) {
ac1970fb 1783 .begin = mem_begin,
00752703 1784 .commit = mem_commit,
ac1970fb
AK
1785 .region_add = mem_add,
1786 .region_nop = mem_add,
1787 .priority = 0,
1788 };
89ae337a 1789 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
1790}
1791
83f3c251
AK
1792void address_space_destroy_dispatch(AddressSpace *as)
1793{
1794 AddressSpaceDispatch *d = as->dispatch;
1795
89ae337a 1796 memory_listener_unregister(&as->dispatch_listener);
83f3c251
AK
1797 g_free(d);
1798 as->dispatch = NULL;
1799}
1800
62152b8a
AK
1801static void memory_map_init(void)
1802{
7267c094 1803 system_memory = g_malloc(sizeof(*system_memory));
2c9b15ca 1804 memory_region_init(system_memory, NULL, "system", INT64_MAX);
7dca8043 1805 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1806
7267c094 1807 system_io = g_malloc(sizeof(*system_io));
2c9b15ca 1808 memory_region_init(system_io, NULL, "io", 65536);
7dca8043 1809 address_space_init(&address_space_io, system_io, "I/O");
93632747 1810
f6790af6 1811 memory_listener_register(&core_memory_listener, &address_space_memory);
f6790af6 1812 memory_listener_register(&tcg_memory_listener, &address_space_memory);
62152b8a
AK
1813}
1814
1815MemoryRegion *get_system_memory(void)
1816{
1817 return system_memory;
1818}
1819
309cb471
AK
1820MemoryRegion *get_system_io(void)
1821{
1822 return system_io;
1823}
1824
e2eef170
PB
1825#endif /* !defined(CONFIG_USER_ONLY) */
1826
13eb76e0
FB
1827/* physical memory access (slow version, mainly for debug) */
1828#if defined(CONFIG_USER_ONLY)
f17ec444 1829int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 1830 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1831{
1832 int l, flags;
1833 target_ulong page;
53a5960a 1834 void * p;
13eb76e0
FB
1835
1836 while (len > 0) {
1837 page = addr & TARGET_PAGE_MASK;
1838 l = (page + TARGET_PAGE_SIZE) - addr;
1839 if (l > len)
1840 l = len;
1841 flags = page_get_flags(page);
1842 if (!(flags & PAGE_VALID))
a68fe89c 1843 return -1;
13eb76e0
FB
1844 if (is_write) {
1845 if (!(flags & PAGE_WRITE))
a68fe89c 1846 return -1;
579a97f7 1847 /* XXX: this code should not depend on lock_user */
72fb7daa 1848 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1849 return -1;
72fb7daa
AJ
1850 memcpy(p, buf, l);
1851 unlock_user(p, addr, l);
13eb76e0
FB
1852 } else {
1853 if (!(flags & PAGE_READ))
a68fe89c 1854 return -1;
579a97f7 1855 /* XXX: this code should not depend on lock_user */
72fb7daa 1856 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1857 return -1;
72fb7daa 1858 memcpy(buf, p, l);
5b257578 1859 unlock_user(p, addr, 0);
13eb76e0
FB
1860 }
1861 len -= l;
1862 buf += l;
1863 addr += l;
1864 }
a68fe89c 1865 return 0;
13eb76e0 1866}
8df1cd07 1867
13eb76e0 1868#else
51d7a9eb 1869
a8170e5e
AK
1870static void invalidate_and_set_dirty(hwaddr addr,
1871 hwaddr length)
51d7a9eb
AP
1872{
1873 if (!cpu_physical_memory_is_dirty(addr)) {
1874 /* invalidate code */
1875 tb_invalidate_phys_page_range(addr, addr + length, 0);
1876 /* set dirty bit */
1877 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1878 }
e226939d 1879 xen_modified_memory(addr, length);
51d7a9eb
AP
1880}
1881
2bbfa05d
PB
1882static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1883{
1884 if (memory_region_is_ram(mr)) {
1885 return !(is_write && mr->readonly);
1886 }
1887 if (memory_region_is_romd(mr)) {
1888 return !is_write;
1889 }
1890
1891 return false;
1892}
1893
23326164 1894static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 1895{
e1622f4b 1896 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
1897
1898 /* Regions are assumed to support 1-4 byte accesses unless
1899 otherwise specified. */
23326164
RH
1900 if (access_size_max == 0) {
1901 access_size_max = 4;
1902 }
1903
1904 /* Bound the maximum access by the alignment of the address. */
1905 if (!mr->ops->impl.unaligned) {
1906 unsigned align_size_max = addr & -addr;
1907 if (align_size_max != 0 && align_size_max < access_size_max) {
1908 access_size_max = align_size_max;
1909 }
82f2563f 1910 }
23326164
RH
1911
1912 /* Don't attempt accesses larger than the maximum. */
1913 if (l > access_size_max) {
1914 l = access_size_max;
82f2563f 1915 }
23326164
RH
1916
1917 return l;
82f2563f
PB
1918}
1919
fd8aaa76 1920bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 1921 int len, bool is_write)
13eb76e0 1922{
149f54b5 1923 hwaddr l;
13eb76e0 1924 uint8_t *ptr;
791af8c8 1925 uint64_t val;
149f54b5 1926 hwaddr addr1;
5c8a00ce 1927 MemoryRegion *mr;
fd8aaa76 1928 bool error = false;
3b46e624 1929
13eb76e0 1930 while (len > 0) {
149f54b5 1931 l = len;
5c8a00ce 1932 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 1933
13eb76e0 1934 if (is_write) {
5c8a00ce
PB
1935 if (!memory_access_is_direct(mr, is_write)) {
1936 l = memory_access_size(mr, l, addr1);
4917cf44 1937 /* XXX: could force current_cpu to NULL to avoid
6a00d601 1938 potential bugs */
23326164
RH
1939 switch (l) {
1940 case 8:
1941 /* 64 bit write access */
1942 val = ldq_p(buf);
1943 error |= io_mem_write(mr, addr1, val, 8);
1944 break;
1945 case 4:
1c213d19 1946 /* 32 bit write access */
c27004ec 1947 val = ldl_p(buf);
5c8a00ce 1948 error |= io_mem_write(mr, addr1, val, 4);
23326164
RH
1949 break;
1950 case 2:
1c213d19 1951 /* 16 bit write access */
c27004ec 1952 val = lduw_p(buf);
5c8a00ce 1953 error |= io_mem_write(mr, addr1, val, 2);
23326164
RH
1954 break;
1955 case 1:
1c213d19 1956 /* 8 bit write access */
c27004ec 1957 val = ldub_p(buf);
5c8a00ce 1958 error |= io_mem_write(mr, addr1, val, 1);
23326164
RH
1959 break;
1960 default:
1961 abort();
13eb76e0 1962 }
2bbfa05d 1963 } else {
5c8a00ce 1964 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 1965 /* RAM case */
5579c7f3 1966 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 1967 memcpy(ptr, buf, l);
51d7a9eb 1968 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
1969 }
1970 } else {
5c8a00ce 1971 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 1972 /* I/O case */
5c8a00ce 1973 l = memory_access_size(mr, l, addr1);
23326164
RH
1974 switch (l) {
1975 case 8:
1976 /* 64 bit read access */
1977 error |= io_mem_read(mr, addr1, &val, 8);
1978 stq_p(buf, val);
1979 break;
1980 case 4:
13eb76e0 1981 /* 32 bit read access */
5c8a00ce 1982 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 1983 stl_p(buf, val);
23326164
RH
1984 break;
1985 case 2:
13eb76e0 1986 /* 16 bit read access */
5c8a00ce 1987 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 1988 stw_p(buf, val);
23326164
RH
1989 break;
1990 case 1:
1c213d19 1991 /* 8 bit read access */
5c8a00ce 1992 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 1993 stb_p(buf, val);
23326164
RH
1994 break;
1995 default:
1996 abort();
13eb76e0
FB
1997 }
1998 } else {
1999 /* RAM case */
5c8a00ce 2000 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2001 memcpy(buf, ptr, l);
13eb76e0
FB
2002 }
2003 }
2004 len -= l;
2005 buf += l;
2006 addr += l;
2007 }
fd8aaa76
PB
2008
2009 return error;
13eb76e0 2010}
8df1cd07 2011
fd8aaa76 2012bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
2013 const uint8_t *buf, int len)
2014{
fd8aaa76 2015 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
2016}
2017
fd8aaa76 2018bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 2019{
fd8aaa76 2020 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
2021}
2022
2023
a8170e5e 2024void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2025 int len, int is_write)
2026{
fd8aaa76 2027 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
2028}
2029
d0ecd2aa 2030/* used for ROM loading : can write in RAM and ROM */
a8170e5e 2031void cpu_physical_memory_write_rom(hwaddr addr,
d0ecd2aa
FB
2032 const uint8_t *buf, int len)
2033{
149f54b5 2034 hwaddr l;
d0ecd2aa 2035 uint8_t *ptr;
149f54b5 2036 hwaddr addr1;
5c8a00ce 2037 MemoryRegion *mr;
3b46e624 2038
d0ecd2aa 2039 while (len > 0) {
149f54b5 2040 l = len;
5c8a00ce
PB
2041 mr = address_space_translate(&address_space_memory,
2042 addr, &addr1, &l, true);
3b46e624 2043
5c8a00ce
PB
2044 if (!(memory_region_is_ram(mr) ||
2045 memory_region_is_romd(mr))) {
d0ecd2aa
FB
2046 /* do nothing */
2047 } else {
5c8a00ce 2048 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2049 /* ROM/RAM case */
5579c7f3 2050 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 2051 memcpy(ptr, buf, l);
51d7a9eb 2052 invalidate_and_set_dirty(addr1, l);
d0ecd2aa
FB
2053 }
2054 len -= l;
2055 buf += l;
2056 addr += l;
2057 }
2058}
2059
6d16c2f8 2060typedef struct {
d3e71559 2061 MemoryRegion *mr;
6d16c2f8 2062 void *buffer;
a8170e5e
AK
2063 hwaddr addr;
2064 hwaddr len;
6d16c2f8
AL
2065} BounceBuffer;
2066
2067static BounceBuffer bounce;
2068
ba223c29
AL
2069typedef struct MapClient {
2070 void *opaque;
2071 void (*callback)(void *opaque);
72cf2d4f 2072 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2073} MapClient;
2074
72cf2d4f
BS
2075static QLIST_HEAD(map_client_list, MapClient) map_client_list
2076 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
2077
2078void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2079{
7267c094 2080 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2081
2082 client->opaque = opaque;
2083 client->callback = callback;
72cf2d4f 2084 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2085 return client;
2086}
2087
8b9c99d9 2088static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2089{
2090 MapClient *client = (MapClient *)_client;
2091
72cf2d4f 2092 QLIST_REMOVE(client, link);
7267c094 2093 g_free(client);
ba223c29
AL
2094}
2095
2096static void cpu_notify_map_clients(void)
2097{
2098 MapClient *client;
2099
72cf2d4f
BS
2100 while (!QLIST_EMPTY(&map_client_list)) {
2101 client = QLIST_FIRST(&map_client_list);
ba223c29 2102 client->callback(client->opaque);
34d5e948 2103 cpu_unregister_map_client(client);
ba223c29
AL
2104 }
2105}
2106
51644ab7
PB
2107bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2108{
5c8a00ce 2109 MemoryRegion *mr;
51644ab7
PB
2110 hwaddr l, xlat;
2111
2112 while (len > 0) {
2113 l = len;
5c8a00ce
PB
2114 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2115 if (!memory_access_is_direct(mr, is_write)) {
2116 l = memory_access_size(mr, l, addr);
2117 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2118 return false;
2119 }
2120 }
2121
2122 len -= l;
2123 addr += l;
2124 }
2125 return true;
2126}
2127
6d16c2f8
AL
2128/* Map a physical memory region into a host virtual address.
2129 * May map a subset of the requested range, given by and returned in *plen.
2130 * May return NULL if resources needed to perform the mapping are exhausted.
2131 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2132 * Use cpu_register_map_client() to know when retrying the map operation is
2133 * likely to succeed.
6d16c2f8 2134 */
ac1970fb 2135void *address_space_map(AddressSpace *as,
a8170e5e
AK
2136 hwaddr addr,
2137 hwaddr *plen,
ac1970fb 2138 bool is_write)
6d16c2f8 2139{
a8170e5e 2140 hwaddr len = *plen;
e3127ae0
PB
2141 hwaddr done = 0;
2142 hwaddr l, xlat, base;
2143 MemoryRegion *mr, *this_mr;
2144 ram_addr_t raddr;
6d16c2f8 2145
e3127ae0
PB
2146 if (len == 0) {
2147 return NULL;
2148 }
38bee5dc 2149
e3127ae0
PB
2150 l = len;
2151 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2152 if (!memory_access_is_direct(mr, is_write)) {
2153 if (bounce.buffer) {
2154 return NULL;
6d16c2f8 2155 }
e3127ae0
PB
2156 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2157 bounce.addr = addr;
2158 bounce.len = l;
d3e71559
PB
2159
2160 memory_region_ref(mr);
2161 bounce.mr = mr;
e3127ae0
PB
2162 if (!is_write) {
2163 address_space_read(as, addr, bounce.buffer, l);
8ab934f9 2164 }
6d16c2f8 2165
e3127ae0
PB
2166 *plen = l;
2167 return bounce.buffer;
2168 }
2169
2170 base = xlat;
2171 raddr = memory_region_get_ram_addr(mr);
2172
2173 for (;;) {
6d16c2f8
AL
2174 len -= l;
2175 addr += l;
e3127ae0
PB
2176 done += l;
2177 if (len == 0) {
2178 break;
2179 }
2180
2181 l = len;
2182 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2183 if (this_mr != mr || xlat != base + done) {
2184 break;
2185 }
6d16c2f8 2186 }
e3127ae0 2187
d3e71559 2188 memory_region_ref(mr);
e3127ae0
PB
2189 *plen = done;
2190 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2191}
2192
ac1970fb 2193/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2194 * Will also mark the memory as dirty if is_write == 1. access_len gives
2195 * the amount of memory that was actually read or written by the caller.
2196 */
a8170e5e
AK
2197void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2198 int is_write, hwaddr access_len)
6d16c2f8
AL
2199{
2200 if (buffer != bounce.buffer) {
d3e71559
PB
2201 MemoryRegion *mr;
2202 ram_addr_t addr1;
2203
2204 mr = qemu_ram_addr_from_host(buffer, &addr1);
2205 assert(mr != NULL);
6d16c2f8 2206 if (is_write) {
6d16c2f8
AL
2207 while (access_len) {
2208 unsigned l;
2209 l = TARGET_PAGE_SIZE;
2210 if (l > access_len)
2211 l = access_len;
51d7a9eb 2212 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2213 addr1 += l;
2214 access_len -= l;
2215 }
2216 }
868bb33f 2217 if (xen_enabled()) {
e41d7c69 2218 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2219 }
d3e71559 2220 memory_region_unref(mr);
6d16c2f8
AL
2221 return;
2222 }
2223 if (is_write) {
ac1970fb 2224 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2225 }
f8a83245 2226 qemu_vfree(bounce.buffer);
6d16c2f8 2227 bounce.buffer = NULL;
d3e71559 2228 memory_region_unref(bounce.mr);
ba223c29 2229 cpu_notify_map_clients();
6d16c2f8 2230}
d0ecd2aa 2231
a8170e5e
AK
2232void *cpu_physical_memory_map(hwaddr addr,
2233 hwaddr *plen,
ac1970fb
AK
2234 int is_write)
2235{
2236 return address_space_map(&address_space_memory, addr, plen, is_write);
2237}
2238
a8170e5e
AK
2239void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2240 int is_write, hwaddr access_len)
ac1970fb
AK
2241{
2242 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2243}
2244
8df1cd07 2245/* warning: addr must be aligned */
a8170e5e 2246static inline uint32_t ldl_phys_internal(hwaddr addr,
1e78bcc1 2247 enum device_endian endian)
8df1cd07 2248{
8df1cd07 2249 uint8_t *ptr;
791af8c8 2250 uint64_t val;
5c8a00ce 2251 MemoryRegion *mr;
149f54b5
PB
2252 hwaddr l = 4;
2253 hwaddr addr1;
8df1cd07 2254
5c8a00ce
PB
2255 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2256 false);
2257 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2258 /* I/O case */
5c8a00ce 2259 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2260#if defined(TARGET_WORDS_BIGENDIAN)
2261 if (endian == DEVICE_LITTLE_ENDIAN) {
2262 val = bswap32(val);
2263 }
2264#else
2265 if (endian == DEVICE_BIG_ENDIAN) {
2266 val = bswap32(val);
2267 }
2268#endif
8df1cd07
FB
2269 } else {
2270 /* RAM case */
5c8a00ce 2271 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2272 & TARGET_PAGE_MASK)
149f54b5 2273 + addr1);
1e78bcc1
AG
2274 switch (endian) {
2275 case DEVICE_LITTLE_ENDIAN:
2276 val = ldl_le_p(ptr);
2277 break;
2278 case DEVICE_BIG_ENDIAN:
2279 val = ldl_be_p(ptr);
2280 break;
2281 default:
2282 val = ldl_p(ptr);
2283 break;
2284 }
8df1cd07
FB
2285 }
2286 return val;
2287}
2288
a8170e5e 2289uint32_t ldl_phys(hwaddr addr)
1e78bcc1
AG
2290{
2291 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2292}
2293
a8170e5e 2294uint32_t ldl_le_phys(hwaddr addr)
1e78bcc1
AG
2295{
2296 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2297}
2298
a8170e5e 2299uint32_t ldl_be_phys(hwaddr addr)
1e78bcc1
AG
2300{
2301 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2302}
2303
84b7b8e7 2304/* warning: addr must be aligned */
a8170e5e 2305static inline uint64_t ldq_phys_internal(hwaddr addr,
1e78bcc1 2306 enum device_endian endian)
84b7b8e7 2307{
84b7b8e7
FB
2308 uint8_t *ptr;
2309 uint64_t val;
5c8a00ce 2310 MemoryRegion *mr;
149f54b5
PB
2311 hwaddr l = 8;
2312 hwaddr addr1;
84b7b8e7 2313
5c8a00ce
PB
2314 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2315 false);
2316 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2317 /* I/O case */
5c8a00ce 2318 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2319#if defined(TARGET_WORDS_BIGENDIAN)
2320 if (endian == DEVICE_LITTLE_ENDIAN) {
2321 val = bswap64(val);
2322 }
2323#else
2324 if (endian == DEVICE_BIG_ENDIAN) {
2325 val = bswap64(val);
2326 }
84b7b8e7
FB
2327#endif
2328 } else {
2329 /* RAM case */
5c8a00ce 2330 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2331 & TARGET_PAGE_MASK)
149f54b5 2332 + addr1);
1e78bcc1
AG
2333 switch (endian) {
2334 case DEVICE_LITTLE_ENDIAN:
2335 val = ldq_le_p(ptr);
2336 break;
2337 case DEVICE_BIG_ENDIAN:
2338 val = ldq_be_p(ptr);
2339 break;
2340 default:
2341 val = ldq_p(ptr);
2342 break;
2343 }
84b7b8e7
FB
2344 }
2345 return val;
2346}
2347
a8170e5e 2348uint64_t ldq_phys(hwaddr addr)
1e78bcc1
AG
2349{
2350 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2351}
2352
a8170e5e 2353uint64_t ldq_le_phys(hwaddr addr)
1e78bcc1
AG
2354{
2355 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2356}
2357
a8170e5e 2358uint64_t ldq_be_phys(hwaddr addr)
1e78bcc1
AG
2359{
2360 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2361}
2362
aab33094 2363/* XXX: optimize */
a8170e5e 2364uint32_t ldub_phys(hwaddr addr)
aab33094
FB
2365{
2366 uint8_t val;
2367 cpu_physical_memory_read(addr, &val, 1);
2368 return val;
2369}
2370
733f0b02 2371/* warning: addr must be aligned */
a8170e5e 2372static inline uint32_t lduw_phys_internal(hwaddr addr,
1e78bcc1 2373 enum device_endian endian)
aab33094 2374{
733f0b02
MT
2375 uint8_t *ptr;
2376 uint64_t val;
5c8a00ce 2377 MemoryRegion *mr;
149f54b5
PB
2378 hwaddr l = 2;
2379 hwaddr addr1;
733f0b02 2380
5c8a00ce
PB
2381 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2382 false);
2383 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2384 /* I/O case */
5c8a00ce 2385 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2386#if defined(TARGET_WORDS_BIGENDIAN)
2387 if (endian == DEVICE_LITTLE_ENDIAN) {
2388 val = bswap16(val);
2389 }
2390#else
2391 if (endian == DEVICE_BIG_ENDIAN) {
2392 val = bswap16(val);
2393 }
2394#endif
733f0b02
MT
2395 } else {
2396 /* RAM case */
5c8a00ce 2397 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2398 & TARGET_PAGE_MASK)
149f54b5 2399 + addr1);
1e78bcc1
AG
2400 switch (endian) {
2401 case DEVICE_LITTLE_ENDIAN:
2402 val = lduw_le_p(ptr);
2403 break;
2404 case DEVICE_BIG_ENDIAN:
2405 val = lduw_be_p(ptr);
2406 break;
2407 default:
2408 val = lduw_p(ptr);
2409 break;
2410 }
733f0b02
MT
2411 }
2412 return val;
aab33094
FB
2413}
2414
a8170e5e 2415uint32_t lduw_phys(hwaddr addr)
1e78bcc1
AG
2416{
2417 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2418}
2419
a8170e5e 2420uint32_t lduw_le_phys(hwaddr addr)
1e78bcc1
AG
2421{
2422 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2423}
2424
a8170e5e 2425uint32_t lduw_be_phys(hwaddr addr)
1e78bcc1
AG
2426{
2427 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2428}
2429
8df1cd07
FB
2430/* warning: addr must be aligned. The ram page is not masked as dirty
2431 and the code inside is not invalidated. It is useful if the dirty
2432 bits are used to track modified PTEs */
a8170e5e 2433void stl_phys_notdirty(hwaddr addr, uint32_t val)
8df1cd07 2434{
8df1cd07 2435 uint8_t *ptr;
5c8a00ce 2436 MemoryRegion *mr;
149f54b5
PB
2437 hwaddr l = 4;
2438 hwaddr addr1;
8df1cd07 2439
5c8a00ce
PB
2440 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2441 true);
2442 if (l < 4 || !memory_access_is_direct(mr, true)) {
2443 io_mem_write(mr, addr1, val, 4);
8df1cd07 2444 } else {
5c8a00ce 2445 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2446 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2447 stl_p(ptr, val);
74576198
AL
2448
2449 if (unlikely(in_migration)) {
2450 if (!cpu_physical_memory_is_dirty(addr1)) {
2451 /* invalidate code */
2452 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2453 /* set dirty bit */
f7c11b53
YT
2454 cpu_physical_memory_set_dirty_flags(
2455 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
2456 }
2457 }
8df1cd07
FB
2458 }
2459}
2460
2461/* warning: addr must be aligned */
a8170e5e 2462static inline void stl_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2463 enum device_endian endian)
8df1cd07 2464{
8df1cd07 2465 uint8_t *ptr;
5c8a00ce 2466 MemoryRegion *mr;
149f54b5
PB
2467 hwaddr l = 4;
2468 hwaddr addr1;
8df1cd07 2469
5c8a00ce
PB
2470 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2471 true);
2472 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2473#if defined(TARGET_WORDS_BIGENDIAN)
2474 if (endian == DEVICE_LITTLE_ENDIAN) {
2475 val = bswap32(val);
2476 }
2477#else
2478 if (endian == DEVICE_BIG_ENDIAN) {
2479 val = bswap32(val);
2480 }
2481#endif
5c8a00ce 2482 io_mem_write(mr, addr1, val, 4);
8df1cd07 2483 } else {
8df1cd07 2484 /* RAM case */
5c8a00ce 2485 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2486 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2487 switch (endian) {
2488 case DEVICE_LITTLE_ENDIAN:
2489 stl_le_p(ptr, val);
2490 break;
2491 case DEVICE_BIG_ENDIAN:
2492 stl_be_p(ptr, val);
2493 break;
2494 default:
2495 stl_p(ptr, val);
2496 break;
2497 }
51d7a9eb 2498 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2499 }
2500}
2501
a8170e5e 2502void stl_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2503{
2504 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2505}
2506
a8170e5e 2507void stl_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2508{
2509 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2510}
2511
a8170e5e 2512void stl_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2513{
2514 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2515}
2516
aab33094 2517/* XXX: optimize */
a8170e5e 2518void stb_phys(hwaddr addr, uint32_t val)
aab33094
FB
2519{
2520 uint8_t v = val;
2521 cpu_physical_memory_write(addr, &v, 1);
2522}
2523
733f0b02 2524/* warning: addr must be aligned */
a8170e5e 2525static inline void stw_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2526 enum device_endian endian)
aab33094 2527{
733f0b02 2528 uint8_t *ptr;
5c8a00ce 2529 MemoryRegion *mr;
149f54b5
PB
2530 hwaddr l = 2;
2531 hwaddr addr1;
733f0b02 2532
5c8a00ce
PB
2533 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2534 true);
2535 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2536#if defined(TARGET_WORDS_BIGENDIAN)
2537 if (endian == DEVICE_LITTLE_ENDIAN) {
2538 val = bswap16(val);
2539 }
2540#else
2541 if (endian == DEVICE_BIG_ENDIAN) {
2542 val = bswap16(val);
2543 }
2544#endif
5c8a00ce 2545 io_mem_write(mr, addr1, val, 2);
733f0b02 2546 } else {
733f0b02 2547 /* RAM case */
5c8a00ce 2548 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2549 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2550 switch (endian) {
2551 case DEVICE_LITTLE_ENDIAN:
2552 stw_le_p(ptr, val);
2553 break;
2554 case DEVICE_BIG_ENDIAN:
2555 stw_be_p(ptr, val);
2556 break;
2557 default:
2558 stw_p(ptr, val);
2559 break;
2560 }
51d7a9eb 2561 invalidate_and_set_dirty(addr1, 2);
733f0b02 2562 }
aab33094
FB
2563}
2564
a8170e5e 2565void stw_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2566{
2567 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2568}
2569
a8170e5e 2570void stw_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2571{
2572 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2573}
2574
a8170e5e 2575void stw_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2576{
2577 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2578}
2579
aab33094 2580/* XXX: optimize */
a8170e5e 2581void stq_phys(hwaddr addr, uint64_t val)
aab33094
FB
2582{
2583 val = tswap64(val);
71d2b725 2584 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
2585}
2586
a8170e5e 2587void stq_le_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2588{
2589 val = cpu_to_le64(val);
2590 cpu_physical_memory_write(addr, &val, 8);
2591}
2592
a8170e5e 2593void stq_be_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2594{
2595 val = cpu_to_be64(val);
2596 cpu_physical_memory_write(addr, &val, 8);
2597}
2598
5e2972fd 2599/* virtual memory access for debug (includes writing to ROM) */
f17ec444 2600int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 2601 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2602{
2603 int l;
a8170e5e 2604 hwaddr phys_addr;
9b3c35e0 2605 target_ulong page;
13eb76e0
FB
2606
2607 while (len > 0) {
2608 page = addr & TARGET_PAGE_MASK;
f17ec444 2609 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
2610 /* if no physical page mapped, return an error */
2611 if (phys_addr == -1)
2612 return -1;
2613 l = (page + TARGET_PAGE_SIZE) - addr;
2614 if (l > len)
2615 l = len;
5e2972fd 2616 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
2617 if (is_write)
2618 cpu_physical_memory_write_rom(phys_addr, buf, l);
2619 else
5e2972fd 2620 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
2621 len -= l;
2622 buf += l;
2623 addr += l;
2624 }
2625 return 0;
2626}
a68fe89c 2627#endif
13eb76e0 2628
8e4a424b
BS
2629#if !defined(CONFIG_USER_ONLY)
2630
2631/*
2632 * A helper function for the _utterly broken_ virtio device model to find out if
2633 * it's running on a big endian machine. Don't do this at home kids!
2634 */
2635bool virtio_is_big_endian(void);
2636bool virtio_is_big_endian(void)
2637{
2638#if defined(TARGET_WORDS_BIGENDIAN)
2639 return true;
2640#else
2641 return false;
2642#endif
2643}
2644
2645#endif
2646
76f35538 2647#ifndef CONFIG_USER_ONLY
a8170e5e 2648bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2649{
5c8a00ce 2650 MemoryRegion*mr;
149f54b5 2651 hwaddr l = 1;
76f35538 2652
5c8a00ce
PB
2653 mr = address_space_translate(&address_space_memory,
2654 phys_addr, &phys_addr, &l, false);
76f35538 2655
5c8a00ce
PB
2656 return !(memory_region_is_ram(mr) ||
2657 memory_region_is_romd(mr));
76f35538 2658}
bd2fa51f
MH
2659
2660void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2661{
2662 RAMBlock *block;
2663
2664 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2665 func(block->host, block->offset, block->length, opaque);
2666 }
2667}
ec3f8c99 2668#endif