]> git.proxmox.com Git - qemu.git/blame - exec.c
kvm: create kvmclock when one of the flags are present
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181
FB
28#include "cpu.h"
29#include "exec-all.h"
b67d9a52 30#include "tcg.h"
b3c7724c 31#include "hw/hw.h"
cc9e98cb 32#include "hw/qdev.h"
74576198 33#include "osdep.h"
7ba1e619 34#include "kvm.h"
29e922b6 35#include "qemu-timer.h"
53a5960a
PB
36#if defined(CONFIG_USER_ONLY)
37#include <qemu.h>
fd052bf6 38#include <signal.h>
f01576f1
JL
39#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40#include <sys/param.h>
41#if __FreeBSD_version >= 700104
42#define HAVE_KINFO_GETVMMAP
43#define sigqueue sigqueue_freebsd /* avoid redefinition */
44#include <sys/time.h>
45#include <sys/proc.h>
46#include <machine/profile.h>
47#define _KERNEL
48#include <sys/user.h>
49#undef _KERNEL
50#undef sigqueue
51#include <libutil.h>
52#endif
53#endif
53a5960a 54#endif
54936004 55
fd6ce8f6 56//#define DEBUG_TB_INVALIDATE
66e85a21 57//#define DEBUG_FLUSH
9fa3e853 58//#define DEBUG_TLB
67d3b957 59//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
60
61/* make various TB consistency checks */
5fafdf24
TS
62//#define DEBUG_TB_CHECK
63//#define DEBUG_TLB_CHECK
fd6ce8f6 64
1196be37 65//#define DEBUG_IOPORT
db7b5426 66//#define DEBUG_SUBPAGE
1196be37 67
99773bd4
PB
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
9fa3e853
FB
73#define SMC_BITMAP_USE_THRESHOLD 10
74
bdaf78e0 75static TranslationBlock *tbs;
24ab68ac 76static int code_gen_max_blocks;
9fa3e853 77TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 78static int nb_tbs;
eb51d102 79/* any access to the tbs or the page table must use this lock */
c227f099 80spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 81
141ac468
BS
82#if defined(__arm__) || defined(__sparc_v9__)
83/* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
85 section close to code segment. */
86#define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
f8e2af11
SW
89#elif defined(_WIN32)
90/* Maximum alignment for Win32 is 16. */
91#define code_gen_section \
92 __attribute__((aligned (16)))
d03d860b
BS
93#else
94#define code_gen_section \
95 __attribute__((aligned (32)))
96#endif
97
98uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
99static uint8_t *code_gen_buffer;
100static unsigned long code_gen_buffer_size;
26a5f13b 101/* threshold to flush the translated code buffer */
bdaf78e0 102static unsigned long code_gen_buffer_max_size;
24ab68ac 103static uint8_t *code_gen_ptr;
fd6ce8f6 104
e2eef170 105#if !defined(CONFIG_USER_ONLY)
9fa3e853 106int phys_ram_fd;
74576198 107static int in_migration;
94a6b54f 108
f471a17e 109RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
e2eef170 110#endif
9fa3e853 111
6a00d601
FB
112CPUState *first_cpu;
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
5fafdf24 115CPUState *cpu_single_env;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef
PB
118 2 = Adaptive rate instruction counting. */
119int use_icount = 0;
120/* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122int64_t qemu_icount;
6a00d601 123
54936004 124typedef struct PageDesc {
92e873b9 125 /* list of TBs intersecting this ram page */
fd6ce8f6 126 TranslationBlock *first_tb;
9fa3e853
FB
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131#if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133#endif
54936004
FB
134} PageDesc;
135
41c1b1c9 136/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
137 while in user mode we want it to be based on virtual addresses. */
138#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
139#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141#else
5cd2c5b6 142# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 143#endif
bedb69ea 144#else
5cd2c5b6 145# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 146#endif
54936004 147
5cd2c5b6
RH
148/* Size of the L2 (and L3, etc) page tables. */
149#define L2_BITS 10
54936004
FB
150#define L2_SIZE (1 << L2_BITS)
151
5cd2c5b6
RH
152/* The bits remaining after N lower levels of page tables. */
153#define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155#define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157
158/* Size of the L1 page table. Avoid silly small sizes. */
159#if P_L1_BITS_REM < 4
160#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161#else
162#define P_L1_BITS P_L1_BITS_REM
163#endif
164
165#if V_L1_BITS_REM < 4
166#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167#else
168#define V_L1_BITS V_L1_BITS_REM
169#endif
170
171#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
173
174#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
176
83fb7adf
FB
177unsigned long qemu_real_host_page_size;
178unsigned long qemu_host_page_bits;
179unsigned long qemu_host_page_size;
180unsigned long qemu_host_page_mask;
54936004 181
5cd2c5b6
RH
182/* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184static void *l1_map[V_L1_SIZE];
54936004 185
e2eef170 186#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
187typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191} PhysPageDesc;
192
5cd2c5b6
RH
193/* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195static void *l1_phys_map[P_L1_SIZE];
6d9a1304 196
e2eef170
PB
197static void io_mem_init(void);
198
33417e70 199/* io memory support */
33417e70
FB
200CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 202void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 203static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
204static int io_mem_watch;
205#endif
33417e70 206
34865134 207/* log support */
1e8b27ca
JR
208#ifdef WIN32
209static const char *logfilename = "qemu.log";
210#else
d9b630fd 211static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 212#endif
34865134
FB
213FILE *logfile;
214int loglevel;
e735b91c 215static int log_append = 0;
34865134 216
e3db7226 217/* statistics */
b3755a91 218#if !defined(CONFIG_USER_ONLY)
e3db7226 219static int tlb_flush_count;
b3755a91 220#endif
e3db7226
FB
221static int tb_flush_count;
222static int tb_phys_invalidate_count;
223
7cb69cae
FB
224#ifdef _WIN32
225static void map_exec(void *addr, long size)
226{
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
230
231}
232#else
233static void map_exec(void *addr, long size)
234{
4369415f 235 unsigned long start, end, page_size;
7cb69cae 236
4369415f 237 page_size = getpagesize();
7cb69cae 238 start = (unsigned long)addr;
4369415f 239 start &= ~(page_size - 1);
7cb69cae
FB
240
241 end = (unsigned long)addr + size;
4369415f
FB
242 end += page_size - 1;
243 end &= ~(page_size - 1);
7cb69cae
FB
244
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
247}
248#endif
249
b346ff46 250static void page_init(void)
54936004 251{
83fb7adf 252 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 253 TARGET_PAGE_SIZE */
c2b48b69
AL
254#ifdef _WIN32
255 {
256 SYSTEM_INFO system_info;
257
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
260 }
261#else
262 qemu_real_host_page_size = getpagesize();
263#endif
83fb7adf
FB
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 272
2e9a5713 273#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 274 {
f01576f1
JL
275#ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
278
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
284
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
289
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
fd436907 292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
293 } else {
294#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
fd436907 296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
297#endif
298 }
299 }
300 }
301 free(freep);
302 mmap_unlock();
303 }
304#else
50a9569b 305 FILE *f;
50a9569b 306
0776590d 307 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 308
fd436907 309 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 310 if (f) {
5cd2c5b6
RH
311 mmap_lock();
312
50a9569b 313 do {
5cd2c5b6
RH
314 unsigned long startaddr, endaddr;
315 int n;
316
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
318
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
321
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
326 }
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
328 }
329 } while (!feof(f));
5cd2c5b6 330
50a9569b 331 fclose(f);
5cd2c5b6 332 mmap_unlock();
50a9569b 333 }
f01576f1 334#endif
50a9569b
AZ
335 }
336#endif
54936004
FB
337}
338
41c1b1c9 339static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 340{
41c1b1c9
PB
341 PageDesc *pd;
342 void **lp;
343 int i;
344
5cd2c5b6 345#if defined(CONFIG_USER_ONLY)
2e9a5713 346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
347# define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
351 } while (0)
352#else
353# define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 355#endif
434929bf 356
5cd2c5b6
RH
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
359
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
363
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
367 }
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
17e2377a 370 }
5cd2c5b6
RH
371
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
373 }
374
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
379 }
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
54936004 382 }
5cd2c5b6
RH
383
384#undef ALLOC
5cd2c5b6
RH
385
386 return pd + (index & (L2_SIZE - 1));
54936004
FB
387}
388
41c1b1c9 389static inline PageDesc *page_find(tb_page_addr_t index)
54936004 390{
5cd2c5b6 391 return page_find_alloc(index, 0);
fd6ce8f6
FB
392}
393
6d9a1304 394#if !defined(CONFIG_USER_ONLY)
c227f099 395static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 396{
e3f4e2a4 397 PhysPageDesc *pd;
5cd2c5b6
RH
398 void **lp;
399 int i;
92e873b9 400
5cd2c5b6
RH
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 403
5cd2c5b6
RH
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
410 }
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
412 }
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 414 }
5cd2c5b6 415
e3f4e2a4 416 pd = *lp;
5cd2c5b6 417 if (pd == NULL) {
e3f4e2a4 418 int i;
5cd2c5b6
RH
419
420 if (!alloc) {
108c49b8 421 return NULL;
5cd2c5b6
RH
422 }
423
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
425
67c4d23c 426 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 429 }
92e873b9 430 }
5cd2c5b6
RH
431
432 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
433}
434
c227f099 435static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 436{
108c49b8 437 return phys_page_find_alloc(index, 0);
92e873b9
FB
438}
439
c227f099
AL
440static void tlb_protect_code(ram_addr_t ram_addr);
441static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 442 target_ulong vaddr);
c8a706fe
PB
443#define mmap_lock() do { } while(0)
444#define mmap_unlock() do { } while(0)
9fa3e853 445#endif
fd6ce8f6 446
4369415f
FB
447#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
448
449#if defined(CONFIG_USER_ONLY)
ccbb4d44 450/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
451 user mode. It will change when a dedicated libc will be used */
452#define USE_STATIC_CODE_GEN_BUFFER
453#endif
454
455#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
456static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
458#endif
459
8fcd3692 460static void code_gen_alloc(unsigned long tb_size)
26a5f13b 461{
4369415f
FB
462#ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466#else
26a5f13b
FB
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
4369415f
FB
469#if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472#else
ccbb4d44 473 /* XXX: needs adjustments */
94a6b54f 474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 475#endif
26a5f13b
FB
476 }
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481#if defined(__linux__)
482 {
483 int flags;
141ac468
BS
484 void *start = NULL;
485
26a5f13b
FB
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487#if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
492#elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 498#elif defined(__arm__)
63d41246 499 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
504#elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
509 }
510 start = (void *)0x90000000UL;
26a5f13b 511#endif
141ac468
BS
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
518 }
519 }
cbb608a5
B
520#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
06e67a82
AL
522 {
523 int flags;
524 void *addr = NULL;
525 flags = MAP_PRIVATE | MAP_ANONYMOUS;
526#if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
529 flags |= MAP_FIXED;
530 addr = (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size > (800 * 1024 * 1024))
533 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
534#elif defined(__sparc_v9__)
535 // Map the buffer below 2G, so we can use direct calls and branches
536 flags |= MAP_FIXED;
537 addr = (void *) 0x60000000UL;
538 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
539 code_gen_buffer_size = (512 * 1024 * 1024);
540 }
06e67a82
AL
541#endif
542 code_gen_buffer = mmap(addr, code_gen_buffer_size,
543 PROT_WRITE | PROT_READ | PROT_EXEC,
544 flags, -1, 0);
545 if (code_gen_buffer == MAP_FAILED) {
546 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
547 exit(1);
548 }
549 }
26a5f13b
FB
550#else
551 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
552 map_exec(code_gen_buffer, code_gen_buffer_size);
553#endif
4369415f 554#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
555 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
556 code_gen_buffer_max_size = code_gen_buffer_size -
239fda31 557 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
26a5f13b
FB
558 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
559 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
560}
561
562/* Must be called before using the QEMU cpus. 'tb_size' is the size
563 (in bytes) allocated to the translation buffer. Zero means default
564 size. */
565void cpu_exec_init_all(unsigned long tb_size)
566{
26a5f13b
FB
567 cpu_gen_init();
568 code_gen_alloc(tb_size);
569 code_gen_ptr = code_gen_buffer;
4369415f 570 page_init();
e2eef170 571#if !defined(CONFIG_USER_ONLY)
26a5f13b 572 io_mem_init();
e2eef170 573#endif
9002ec79
RH
574#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx);
578#endif
26a5f13b
FB
579}
580
9656f324
PB
581#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
582
e59fb374 583static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
584{
585 CPUState *env = opaque;
9656f324 586
3098dba0
AJ
587 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
588 version_id is increased. */
589 env->interrupt_request &= ~0x01;
9656f324
PB
590 tlb_flush(env, 1);
591
592 return 0;
593}
e7f4eff7
JQ
594
595static const VMStateDescription vmstate_cpu_common = {
596 .name = "cpu_common",
597 .version_id = 1,
598 .minimum_version_id = 1,
599 .minimum_version_id_old = 1,
e7f4eff7
JQ
600 .post_load = cpu_common_post_load,
601 .fields = (VMStateField []) {
602 VMSTATE_UINT32(halted, CPUState),
603 VMSTATE_UINT32(interrupt_request, CPUState),
604 VMSTATE_END_OF_LIST()
605 }
606};
9656f324
PB
607#endif
608
950f1472
GC
609CPUState *qemu_get_cpu(int cpu)
610{
611 CPUState *env = first_cpu;
612
613 while (env) {
614 if (env->cpu_index == cpu)
615 break;
616 env = env->next_cpu;
617 }
618
619 return env;
620}
621
6a00d601 622void cpu_exec_init(CPUState *env)
fd6ce8f6 623{
6a00d601
FB
624 CPUState **penv;
625 int cpu_index;
626
c2764719
PB
627#if defined(CONFIG_USER_ONLY)
628 cpu_list_lock();
629#endif
6a00d601
FB
630 env->next_cpu = NULL;
631 penv = &first_cpu;
632 cpu_index = 0;
633 while (*penv != NULL) {
1e9fa730 634 penv = &(*penv)->next_cpu;
6a00d601
FB
635 cpu_index++;
636 }
637 env->cpu_index = cpu_index;
268a362c 638 env->numa_node = 0;
72cf2d4f
BS
639 QTAILQ_INIT(&env->breakpoints);
640 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
641#ifndef CONFIG_USER_ONLY
642 env->thread_id = qemu_get_thread_id();
643#endif
6a00d601 644 *penv = env;
c2764719
PB
645#if defined(CONFIG_USER_ONLY)
646 cpu_list_unlock();
647#endif
b3c7724c 648#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
649 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
650 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
651 cpu_save, cpu_load, env);
652#endif
fd6ce8f6
FB
653}
654
d1a1eb74
TG
655/* Allocate a new translation block. Flush the translation buffer if
656 too many translation blocks or too much generated code. */
657static TranslationBlock *tb_alloc(target_ulong pc)
658{
659 TranslationBlock *tb;
660
661 if (nb_tbs >= code_gen_max_blocks ||
662 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
663 return NULL;
664 tb = &tbs[nb_tbs++];
665 tb->pc = pc;
666 tb->cflags = 0;
667 return tb;
668}
669
670void tb_free(TranslationBlock *tb)
671{
672 /* In practice this is mostly used for single use temporary TB
673 Ignore the hard cases and just back up if this TB happens to
674 be the last one generated. */
675 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
676 code_gen_ptr = tb->tc_ptr;
677 nb_tbs--;
678 }
679}
680
9fa3e853
FB
681static inline void invalidate_page_bitmap(PageDesc *p)
682{
683 if (p->code_bitmap) {
59817ccb 684 qemu_free(p->code_bitmap);
9fa3e853
FB
685 p->code_bitmap = NULL;
686 }
687 p->code_write_count = 0;
688}
689
5cd2c5b6
RH
690/* Set to NULL all the 'first_tb' fields in all PageDescs. */
691
692static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 693{
5cd2c5b6 694 int i;
fd6ce8f6 695
5cd2c5b6
RH
696 if (*lp == NULL) {
697 return;
698 }
699 if (level == 0) {
700 PageDesc *pd = *lp;
7296abac 701 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
702 pd[i].first_tb = NULL;
703 invalidate_page_bitmap(pd + i);
fd6ce8f6 704 }
5cd2c5b6
RH
705 } else {
706 void **pp = *lp;
7296abac 707 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
708 page_flush_tb_1 (level - 1, pp + i);
709 }
710 }
711}
712
713static void page_flush_tb(void)
714{
715 int i;
716 for (i = 0; i < V_L1_SIZE; i++) {
717 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
718 }
719}
720
721/* flush all the translation blocks */
d4e8164f 722/* XXX: tb_flush is currently not thread safe */
6a00d601 723void tb_flush(CPUState *env1)
fd6ce8f6 724{
6a00d601 725 CPUState *env;
0124311e 726#if defined(DEBUG_FLUSH)
ab3d1727
BS
727 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
728 (unsigned long)(code_gen_ptr - code_gen_buffer),
729 nb_tbs, nb_tbs > 0 ?
730 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 731#endif
26a5f13b 732 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
733 cpu_abort(env1, "Internal error: code buffer overflow\n");
734
fd6ce8f6 735 nb_tbs = 0;
3b46e624 736
6a00d601
FB
737 for(env = first_cpu; env != NULL; env = env->next_cpu) {
738 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
739 }
9fa3e853 740
8a8a608f 741 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 742 page_flush_tb();
9fa3e853 743
fd6ce8f6 744 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
745 /* XXX: flush processor icache at this point if cache flush is
746 expensive */
e3db7226 747 tb_flush_count++;
fd6ce8f6
FB
748}
749
750#ifdef DEBUG_TB_CHECK
751
bc98a7ef 752static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
753{
754 TranslationBlock *tb;
755 int i;
756 address &= TARGET_PAGE_MASK;
99773bd4
PB
757 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
758 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
759 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
760 address >= tb->pc + tb->size)) {
0bf9e31a
BS
761 printf("ERROR invalidate: address=" TARGET_FMT_lx
762 " PC=%08lx size=%04x\n",
99773bd4 763 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
764 }
765 }
766 }
767}
768
769/* verify that all the pages have correct rights for code */
770static void tb_page_check(void)
771{
772 TranslationBlock *tb;
773 int i, flags1, flags2;
3b46e624 774
99773bd4
PB
775 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
776 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
777 flags1 = page_get_flags(tb->pc);
778 flags2 = page_get_flags(tb->pc + tb->size - 1);
779 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
780 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 781 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
782 }
783 }
784 }
785}
786
787#endif
788
789/* invalidate one TB */
790static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
791 int next_offset)
792{
793 TranslationBlock *tb1;
794 for(;;) {
795 tb1 = *ptb;
796 if (tb1 == tb) {
797 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
798 break;
799 }
800 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
801 }
802}
803
9fa3e853
FB
804static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
805{
806 TranslationBlock *tb1;
807 unsigned int n1;
808
809 for(;;) {
810 tb1 = *ptb;
811 n1 = (long)tb1 & 3;
812 tb1 = (TranslationBlock *)((long)tb1 & ~3);
813 if (tb1 == tb) {
814 *ptb = tb1->page_next[n1];
815 break;
816 }
817 ptb = &tb1->page_next[n1];
818 }
819}
820
d4e8164f
FB
821static inline void tb_jmp_remove(TranslationBlock *tb, int n)
822{
823 TranslationBlock *tb1, **ptb;
824 unsigned int n1;
825
826 ptb = &tb->jmp_next[n];
827 tb1 = *ptb;
828 if (tb1) {
829 /* find tb(n) in circular list */
830 for(;;) {
831 tb1 = *ptb;
832 n1 = (long)tb1 & 3;
833 tb1 = (TranslationBlock *)((long)tb1 & ~3);
834 if (n1 == n && tb1 == tb)
835 break;
836 if (n1 == 2) {
837 ptb = &tb1->jmp_first;
838 } else {
839 ptb = &tb1->jmp_next[n1];
840 }
841 }
842 /* now we can suppress tb(n) from the list */
843 *ptb = tb->jmp_next[n];
844
845 tb->jmp_next[n] = NULL;
846 }
847}
848
849/* reset the jump entry 'n' of a TB so that it is not chained to
850 another TB */
851static inline void tb_reset_jump(TranslationBlock *tb, int n)
852{
853 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
854}
855
41c1b1c9 856void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 857{
6a00d601 858 CPUState *env;
8a40a180 859 PageDesc *p;
d4e8164f 860 unsigned int h, n1;
41c1b1c9 861 tb_page_addr_t phys_pc;
8a40a180 862 TranslationBlock *tb1, *tb2;
3b46e624 863
8a40a180
FB
864 /* remove the TB from the hash list */
865 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
866 h = tb_phys_hash_func(phys_pc);
5fafdf24 867 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
868 offsetof(TranslationBlock, phys_hash_next));
869
870 /* remove the TB from the page list */
871 if (tb->page_addr[0] != page_addr) {
872 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
875 }
876 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
877 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
878 tb_page_remove(&p->first_tb, tb);
879 invalidate_page_bitmap(p);
880 }
881
36bdbe54 882 tb_invalidated_flag = 1;
59817ccb 883
fd6ce8f6 884 /* remove the TB from the hash list */
8a40a180 885 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
886 for(env = first_cpu; env != NULL; env = env->next_cpu) {
887 if (env->tb_jmp_cache[h] == tb)
888 env->tb_jmp_cache[h] = NULL;
889 }
d4e8164f
FB
890
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb, 0);
893 tb_jmp_remove(tb, 1);
894
895 /* suppress any remaining jumps to this TB */
896 tb1 = tb->jmp_first;
897 for(;;) {
898 n1 = (long)tb1 & 3;
899 if (n1 == 2)
900 break;
901 tb1 = (TranslationBlock *)((long)tb1 & ~3);
902 tb2 = tb1->jmp_next[n1];
903 tb_reset_jump(tb1, n1);
904 tb1->jmp_next[n1] = NULL;
905 tb1 = tb2;
906 }
907 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 908
e3db7226 909 tb_phys_invalidate_count++;
9fa3e853
FB
910}
911
912static inline void set_bits(uint8_t *tab, int start, int len)
913{
914 int end, mask, end1;
915
916 end = start + len;
917 tab += start >> 3;
918 mask = 0xff << (start & 7);
919 if ((start & ~7) == (end & ~7)) {
920 if (start < end) {
921 mask &= ~(0xff << (end & 7));
922 *tab |= mask;
923 }
924 } else {
925 *tab++ |= mask;
926 start = (start + 8) & ~7;
927 end1 = end & ~7;
928 while (start < end1) {
929 *tab++ = 0xff;
930 start += 8;
931 }
932 if (start < end) {
933 mask = ~(0xff << (end & 7));
934 *tab |= mask;
935 }
936 }
937}
938
939static void build_page_bitmap(PageDesc *p)
940{
941 int n, tb_start, tb_end;
942 TranslationBlock *tb;
3b46e624 943
b2a7081a 944 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
945
946 tb = p->first_tb;
947 while (tb != NULL) {
948 n = (long)tb & 3;
949 tb = (TranslationBlock *)((long)tb & ~3);
950 /* NOTE: this is subtle as a TB may span two physical pages */
951 if (n == 0) {
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start = tb->pc & ~TARGET_PAGE_MASK;
955 tb_end = tb_start + tb->size;
956 if (tb_end > TARGET_PAGE_SIZE)
957 tb_end = TARGET_PAGE_SIZE;
958 } else {
959 tb_start = 0;
960 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
961 }
962 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
963 tb = tb->page_next[n];
964 }
965}
966
2e70f6ef
PB
967TranslationBlock *tb_gen_code(CPUState *env,
968 target_ulong pc, target_ulong cs_base,
969 int flags, int cflags)
d720b93d
FB
970{
971 TranslationBlock *tb;
972 uint8_t *tc_ptr;
41c1b1c9
PB
973 tb_page_addr_t phys_pc, phys_page2;
974 target_ulong virt_page2;
d720b93d
FB
975 int code_gen_size;
976
41c1b1c9 977 phys_pc = get_page_addr_code(env, pc);
c27004ec 978 tb = tb_alloc(pc);
d720b93d
FB
979 if (!tb) {
980 /* flush must be done */
981 tb_flush(env);
982 /* cannot fail at this point */
c27004ec 983 tb = tb_alloc(pc);
2e70f6ef
PB
984 /* Don't forget to invalidate previous TB info. */
985 tb_invalidated_flag = 1;
d720b93d
FB
986 }
987 tc_ptr = code_gen_ptr;
988 tb->tc_ptr = tc_ptr;
989 tb->cs_base = cs_base;
990 tb->flags = flags;
991 tb->cflags = cflags;
d07bde88 992 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 993 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 994
d720b93d 995 /* check next page if needed */
c27004ec 996 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 997 phys_page2 = -1;
c27004ec 998 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 999 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1000 }
41c1b1c9 1001 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1002 return tb;
d720b93d 1003}
3b46e624 1004
9fa3e853
FB
1005/* invalidate all TBs which intersect with the target physical page
1006 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1007 the same physical page. 'is_cpu_write_access' should be true if called
1008 from a real cpu write access: the virtual CPU will exit the current
1009 TB if code is modified inside this TB. */
41c1b1c9 1010void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1011 int is_cpu_write_access)
1012{
6b917547 1013 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1014 CPUState *env = cpu_single_env;
41c1b1c9 1015 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1016 PageDesc *p;
1017 int n;
1018#ifdef TARGET_HAS_PRECISE_SMC
1019 int current_tb_not_found = is_cpu_write_access;
1020 TranslationBlock *current_tb = NULL;
1021 int current_tb_modified = 0;
1022 target_ulong current_pc = 0;
1023 target_ulong current_cs_base = 0;
1024 int current_flags = 0;
1025#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1026
1027 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1028 if (!p)
9fa3e853 1029 return;
5fafdf24 1030 if (!p->code_bitmap &&
d720b93d
FB
1031 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1032 is_cpu_write_access) {
9fa3e853
FB
1033 /* build code bitmap */
1034 build_page_bitmap(p);
1035 }
1036
1037 /* we remove all the TBs in the range [start, end[ */
1038 /* XXX: see if in some cases it could be faster to invalidate all the code */
1039 tb = p->first_tb;
1040 while (tb != NULL) {
1041 n = (long)tb & 3;
1042 tb = (TranslationBlock *)((long)tb & ~3);
1043 tb_next = tb->page_next[n];
1044 /* NOTE: this is subtle as a TB may span two physical pages */
1045 if (n == 0) {
1046 /* NOTE: tb_end may be after the end of the page, but
1047 it is not a problem */
1048 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1049 tb_end = tb_start + tb->size;
1050 } else {
1051 tb_start = tb->page_addr[1];
1052 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1053 }
1054 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1055#ifdef TARGET_HAS_PRECISE_SMC
1056 if (current_tb_not_found) {
1057 current_tb_not_found = 0;
1058 current_tb = NULL;
2e70f6ef 1059 if (env->mem_io_pc) {
d720b93d 1060 /* now we have a real cpu fault */
2e70f6ef 1061 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1062 }
1063 }
1064 if (current_tb == tb &&
2e70f6ef 1065 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1066 /* If we are modifying the current TB, we must stop
1067 its execution. We could be more precise by checking
1068 that the modification is after the current PC, but it
1069 would require a specialized function to partially
1070 restore the CPU state */
3b46e624 1071
d720b93d 1072 current_tb_modified = 1;
618ba8e6 1073 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1074 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1075 &current_flags);
d720b93d
FB
1076 }
1077#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1078 /* we need to do that to handle the case where a signal
1079 occurs while doing tb_phys_invalidate() */
1080 saved_tb = NULL;
1081 if (env) {
1082 saved_tb = env->current_tb;
1083 env->current_tb = NULL;
1084 }
9fa3e853 1085 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1086 if (env) {
1087 env->current_tb = saved_tb;
1088 if (env->interrupt_request && env->current_tb)
1089 cpu_interrupt(env, env->interrupt_request);
1090 }
9fa3e853
FB
1091 }
1092 tb = tb_next;
1093 }
1094#if !defined(CONFIG_USER_ONLY)
1095 /* if no code remaining, no need to continue to use slow writes */
1096 if (!p->first_tb) {
1097 invalidate_page_bitmap(p);
d720b93d 1098 if (is_cpu_write_access) {
2e70f6ef 1099 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1100 }
1101 }
1102#endif
1103#ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
ea1c1802 1108 env->current_tb = NULL;
2e70f6ef 1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1110 cpu_resume_from_signal(env, NULL);
9fa3e853 1111 }
fd6ce8f6 1112#endif
9fa3e853 1113}
fd6ce8f6 1114
9fa3e853 1115/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1116static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1117{
1118 PageDesc *p;
1119 int offset, b;
59817ccb 1120#if 0
a4193c8a 1121 if (1) {
93fcfe39
AL
1122 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1123 cpu_single_env->mem_io_vaddr, len,
1124 cpu_single_env->eip,
1125 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1126 }
1127#endif
9fa3e853 1128 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1129 if (!p)
9fa3e853
FB
1130 return;
1131 if (p->code_bitmap) {
1132 offset = start & ~TARGET_PAGE_MASK;
1133 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1134 if (b & ((1 << len) - 1))
1135 goto do_invalidate;
1136 } else {
1137 do_invalidate:
d720b93d 1138 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1139 }
1140}
1141
9fa3e853 1142#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1143static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1144 unsigned long pc, void *puc)
9fa3e853 1145{
6b917547 1146 TranslationBlock *tb;
9fa3e853 1147 PageDesc *p;
6b917547 1148 int n;
d720b93d 1149#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1150 TranslationBlock *current_tb = NULL;
d720b93d 1151 CPUState *env = cpu_single_env;
6b917547
AL
1152 int current_tb_modified = 0;
1153 target_ulong current_pc = 0;
1154 target_ulong current_cs_base = 0;
1155 int current_flags = 0;
d720b93d 1156#endif
9fa3e853
FB
1157
1158 addr &= TARGET_PAGE_MASK;
1159 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1160 if (!p)
9fa3e853
FB
1161 return;
1162 tb = p->first_tb;
d720b93d
FB
1163#ifdef TARGET_HAS_PRECISE_SMC
1164 if (tb && pc != 0) {
1165 current_tb = tb_find_pc(pc);
1166 }
1167#endif
9fa3e853
FB
1168 while (tb != NULL) {
1169 n = (long)tb & 3;
1170 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1171#ifdef TARGET_HAS_PRECISE_SMC
1172 if (current_tb == tb &&
2e70f6ef 1173 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1174 /* If we are modifying the current TB, we must stop
1175 its execution. We could be more precise by checking
1176 that the modification is after the current PC, but it
1177 would require a specialized function to partially
1178 restore the CPU state */
3b46e624 1179
d720b93d 1180 current_tb_modified = 1;
618ba8e6 1181 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1182 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1183 &current_flags);
d720b93d
FB
1184 }
1185#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1186 tb_phys_invalidate(tb, addr);
1187 tb = tb->page_next[n];
1188 }
fd6ce8f6 1189 p->first_tb = NULL;
d720b93d
FB
1190#ifdef TARGET_HAS_PRECISE_SMC
1191 if (current_tb_modified) {
1192 /* we generate a block containing just the instruction
1193 modifying the memory. It will ensure that it cannot modify
1194 itself */
ea1c1802 1195 env->current_tb = NULL;
2e70f6ef 1196 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1197 cpu_resume_from_signal(env, puc);
1198 }
1199#endif
fd6ce8f6 1200}
9fa3e853 1201#endif
fd6ce8f6
FB
1202
1203/* add the tb in the target page and protect it if necessary */
5fafdf24 1204static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1205 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1206{
1207 PageDesc *p;
9fa3e853
FB
1208 TranslationBlock *last_first_tb;
1209
1210 tb->page_addr[n] = page_addr;
5cd2c5b6 1211 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1212 tb->page_next[n] = p->first_tb;
1213 last_first_tb = p->first_tb;
1214 p->first_tb = (TranslationBlock *)((long)tb | n);
1215 invalidate_page_bitmap(p);
fd6ce8f6 1216
107db443 1217#if defined(TARGET_HAS_SMC) || 1
d720b93d 1218
9fa3e853 1219#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1220 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1221 target_ulong addr;
1222 PageDesc *p2;
9fa3e853
FB
1223 int prot;
1224
fd6ce8f6
FB
1225 /* force the host page as non writable (writes will have a
1226 page fault + mprotect overhead) */
53a5960a 1227 page_addr &= qemu_host_page_mask;
fd6ce8f6 1228 prot = 0;
53a5960a
PB
1229 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1230 addr += TARGET_PAGE_SIZE) {
1231
1232 p2 = page_find (addr >> TARGET_PAGE_BITS);
1233 if (!p2)
1234 continue;
1235 prot |= p2->flags;
1236 p2->flags &= ~PAGE_WRITE;
53a5960a 1237 }
5fafdf24 1238 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1239 (prot & PAGE_BITS) & ~PAGE_WRITE);
1240#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1241 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1242 page_addr);
fd6ce8f6 1243#endif
fd6ce8f6 1244 }
9fa3e853
FB
1245#else
1246 /* if some code is already present, then the pages are already
1247 protected. So we handle the case where only the first TB is
1248 allocated in a physical page */
1249 if (!last_first_tb) {
6a00d601 1250 tlb_protect_code(page_addr);
9fa3e853
FB
1251 }
1252#endif
d720b93d
FB
1253
1254#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1255}
1256
9fa3e853
FB
1257/* add a new TB and link it to the physical page tables. phys_page2 is
1258 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1259void tb_link_page(TranslationBlock *tb,
1260 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1261{
9fa3e853
FB
1262 unsigned int h;
1263 TranslationBlock **ptb;
1264
c8a706fe
PB
1265 /* Grab the mmap lock to stop another thread invalidating this TB
1266 before we are done. */
1267 mmap_lock();
9fa3e853
FB
1268 /* add in the physical hash table */
1269 h = tb_phys_hash_func(phys_pc);
1270 ptb = &tb_phys_hash[h];
1271 tb->phys_hash_next = *ptb;
1272 *ptb = tb;
fd6ce8f6
FB
1273
1274 /* add in the page list */
9fa3e853
FB
1275 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1276 if (phys_page2 != -1)
1277 tb_alloc_page(tb, 1, phys_page2);
1278 else
1279 tb->page_addr[1] = -1;
9fa3e853 1280
d4e8164f
FB
1281 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1282 tb->jmp_next[0] = NULL;
1283 tb->jmp_next[1] = NULL;
1284
1285 /* init original jump addresses */
1286 if (tb->tb_next_offset[0] != 0xffff)
1287 tb_reset_jump(tb, 0);
1288 if (tb->tb_next_offset[1] != 0xffff)
1289 tb_reset_jump(tb, 1);
8a40a180
FB
1290
1291#ifdef DEBUG_TB_CHECK
1292 tb_page_check();
1293#endif
c8a706fe 1294 mmap_unlock();
fd6ce8f6
FB
1295}
1296
9fa3e853
FB
1297/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1298 tb[1].tc_ptr. Return NULL if not found */
1299TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1300{
9fa3e853
FB
1301 int m_min, m_max, m;
1302 unsigned long v;
1303 TranslationBlock *tb;
a513fe19
FB
1304
1305 if (nb_tbs <= 0)
1306 return NULL;
1307 if (tc_ptr < (unsigned long)code_gen_buffer ||
1308 tc_ptr >= (unsigned long)code_gen_ptr)
1309 return NULL;
1310 /* binary search (cf Knuth) */
1311 m_min = 0;
1312 m_max = nb_tbs - 1;
1313 while (m_min <= m_max) {
1314 m = (m_min + m_max) >> 1;
1315 tb = &tbs[m];
1316 v = (unsigned long)tb->tc_ptr;
1317 if (v == tc_ptr)
1318 return tb;
1319 else if (tc_ptr < v) {
1320 m_max = m - 1;
1321 } else {
1322 m_min = m + 1;
1323 }
5fafdf24 1324 }
a513fe19
FB
1325 return &tbs[m_max];
1326}
7501267e 1327
ea041c0e
FB
1328static void tb_reset_jump_recursive(TranslationBlock *tb);
1329
1330static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1331{
1332 TranslationBlock *tb1, *tb_next, **ptb;
1333 unsigned int n1;
1334
1335 tb1 = tb->jmp_next[n];
1336 if (tb1 != NULL) {
1337 /* find head of list */
1338 for(;;) {
1339 n1 = (long)tb1 & 3;
1340 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1341 if (n1 == 2)
1342 break;
1343 tb1 = tb1->jmp_next[n1];
1344 }
1345 /* we are now sure now that tb jumps to tb1 */
1346 tb_next = tb1;
1347
1348 /* remove tb from the jmp_first list */
1349 ptb = &tb_next->jmp_first;
1350 for(;;) {
1351 tb1 = *ptb;
1352 n1 = (long)tb1 & 3;
1353 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1354 if (n1 == n && tb1 == tb)
1355 break;
1356 ptb = &tb1->jmp_next[n1];
1357 }
1358 *ptb = tb->jmp_next[n];
1359 tb->jmp_next[n] = NULL;
3b46e624 1360
ea041c0e
FB
1361 /* suppress the jump to next tb in generated code */
1362 tb_reset_jump(tb, n);
1363
0124311e 1364 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1365 tb_reset_jump_recursive(tb_next);
1366 }
1367}
1368
1369static void tb_reset_jump_recursive(TranslationBlock *tb)
1370{
1371 tb_reset_jump_recursive2(tb, 0);
1372 tb_reset_jump_recursive2(tb, 1);
1373}
1374
1fddef4b 1375#if defined(TARGET_HAS_ICE)
94df27fd
PB
1376#if defined(CONFIG_USER_ONLY)
1377static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1378{
1379 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1380}
1381#else
d720b93d
FB
1382static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1383{
c227f099 1384 target_phys_addr_t addr;
9b3c35e0 1385 target_ulong pd;
c227f099 1386 ram_addr_t ram_addr;
c2f07f81 1387 PhysPageDesc *p;
d720b93d 1388
c2f07f81
PB
1389 addr = cpu_get_phys_page_debug(env, pc);
1390 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1391 if (!p) {
1392 pd = IO_MEM_UNASSIGNED;
1393 } else {
1394 pd = p->phys_offset;
1395 }
1396 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1397 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1398}
c27004ec 1399#endif
94df27fd 1400#endif /* TARGET_HAS_ICE */
d720b93d 1401
c527ee8f
PB
1402#if defined(CONFIG_USER_ONLY)
1403void cpu_watchpoint_remove_all(CPUState *env, int mask)
1404
1405{
1406}
1407
1408int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1409 int flags, CPUWatchpoint **watchpoint)
1410{
1411 return -ENOSYS;
1412}
1413#else
6658ffb8 1414/* Add a watchpoint. */
a1d1bb31
AL
1415int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1416 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1417{
b4051334 1418 target_ulong len_mask = ~(len - 1);
c0ce998e 1419 CPUWatchpoint *wp;
6658ffb8 1420
b4051334
AL
1421 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1422 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1423 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1424 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1425 return -EINVAL;
1426 }
a1d1bb31 1427 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1428
1429 wp->vaddr = addr;
b4051334 1430 wp->len_mask = len_mask;
a1d1bb31
AL
1431 wp->flags = flags;
1432
2dc9f411 1433 /* keep all GDB-injected watchpoints in front */
c0ce998e 1434 if (flags & BP_GDB)
72cf2d4f 1435 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1436 else
72cf2d4f 1437 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1438
6658ffb8 1439 tlb_flush_page(env, addr);
a1d1bb31
AL
1440
1441 if (watchpoint)
1442 *watchpoint = wp;
1443 return 0;
6658ffb8
PB
1444}
1445
a1d1bb31
AL
1446/* Remove a specific watchpoint. */
1447int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1448 int flags)
6658ffb8 1449{
b4051334 1450 target_ulong len_mask = ~(len - 1);
a1d1bb31 1451 CPUWatchpoint *wp;
6658ffb8 1452
72cf2d4f 1453 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1454 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1455 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1456 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1457 return 0;
1458 }
1459 }
a1d1bb31 1460 return -ENOENT;
6658ffb8
PB
1461}
1462
a1d1bb31
AL
1463/* Remove a specific watchpoint by reference. */
1464void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1465{
72cf2d4f 1466 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1467
a1d1bb31
AL
1468 tlb_flush_page(env, watchpoint->vaddr);
1469
1470 qemu_free(watchpoint);
1471}
1472
1473/* Remove all matching watchpoints. */
1474void cpu_watchpoint_remove_all(CPUState *env, int mask)
1475{
c0ce998e 1476 CPUWatchpoint *wp, *next;
a1d1bb31 1477
72cf2d4f 1478 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1479 if (wp->flags & mask)
1480 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1481 }
7d03f82f 1482}
c527ee8f 1483#endif
7d03f82f 1484
a1d1bb31
AL
1485/* Add a breakpoint. */
1486int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1487 CPUBreakpoint **breakpoint)
4c3a88a2 1488{
1fddef4b 1489#if defined(TARGET_HAS_ICE)
c0ce998e 1490 CPUBreakpoint *bp;
3b46e624 1491
a1d1bb31 1492 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1493
a1d1bb31
AL
1494 bp->pc = pc;
1495 bp->flags = flags;
1496
2dc9f411 1497 /* keep all GDB-injected breakpoints in front */
c0ce998e 1498 if (flags & BP_GDB)
72cf2d4f 1499 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1500 else
72cf2d4f 1501 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1502
d720b93d 1503 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1504
1505 if (breakpoint)
1506 *breakpoint = bp;
4c3a88a2
FB
1507 return 0;
1508#else
a1d1bb31 1509 return -ENOSYS;
4c3a88a2
FB
1510#endif
1511}
1512
a1d1bb31
AL
1513/* Remove a specific breakpoint. */
1514int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1515{
7d03f82f 1516#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1517 CPUBreakpoint *bp;
1518
72cf2d4f 1519 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1520 if (bp->pc == pc && bp->flags == flags) {
1521 cpu_breakpoint_remove_by_ref(env, bp);
1522 return 0;
1523 }
7d03f82f 1524 }
a1d1bb31
AL
1525 return -ENOENT;
1526#else
1527 return -ENOSYS;
7d03f82f
EI
1528#endif
1529}
1530
a1d1bb31
AL
1531/* Remove a specific breakpoint by reference. */
1532void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1533{
1fddef4b 1534#if defined(TARGET_HAS_ICE)
72cf2d4f 1535 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1536
a1d1bb31
AL
1537 breakpoint_invalidate(env, breakpoint->pc);
1538
1539 qemu_free(breakpoint);
1540#endif
1541}
1542
1543/* Remove all matching breakpoints. */
1544void cpu_breakpoint_remove_all(CPUState *env, int mask)
1545{
1546#if defined(TARGET_HAS_ICE)
c0ce998e 1547 CPUBreakpoint *bp, *next;
a1d1bb31 1548
72cf2d4f 1549 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1550 if (bp->flags & mask)
1551 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1552 }
4c3a88a2
FB
1553#endif
1554}
1555
c33a346e
FB
1556/* enable or disable single step mode. EXCP_DEBUG is returned by the
1557 CPU loop after each instruction */
1558void cpu_single_step(CPUState *env, int enabled)
1559{
1fddef4b 1560#if defined(TARGET_HAS_ICE)
c33a346e
FB
1561 if (env->singlestep_enabled != enabled) {
1562 env->singlestep_enabled = enabled;
e22a25c9
AL
1563 if (kvm_enabled())
1564 kvm_update_guest_debug(env, 0);
1565 else {
ccbb4d44 1566 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1567 /* XXX: only flush what is necessary */
1568 tb_flush(env);
1569 }
c33a346e
FB
1570 }
1571#endif
1572}
1573
34865134
FB
1574/* enable or disable low levels log */
1575void cpu_set_log(int log_flags)
1576{
1577 loglevel = log_flags;
1578 if (loglevel && !logfile) {
11fcfab4 1579 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1580 if (!logfile) {
1581 perror(logfilename);
1582 _exit(1);
1583 }
9fa3e853
FB
1584#if !defined(CONFIG_SOFTMMU)
1585 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1586 {
b55266b5 1587 static char logfile_buf[4096];
9fa3e853
FB
1588 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1589 }
bf65f53f
FN
1590#elif !defined(_WIN32)
1591 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1592 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1593#endif
e735b91c
PB
1594 log_append = 1;
1595 }
1596 if (!loglevel && logfile) {
1597 fclose(logfile);
1598 logfile = NULL;
34865134
FB
1599 }
1600}
1601
1602void cpu_set_log_filename(const char *filename)
1603{
1604 logfilename = strdup(filename);
e735b91c
PB
1605 if (logfile) {
1606 fclose(logfile);
1607 logfile = NULL;
1608 }
1609 cpu_set_log(loglevel);
34865134 1610}
c33a346e 1611
3098dba0 1612static void cpu_unlink_tb(CPUState *env)
ea041c0e 1613{
3098dba0
AJ
1614 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1615 problem and hope the cpu will stop of its own accord. For userspace
1616 emulation this often isn't actually as bad as it sounds. Often
1617 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1618 TranslationBlock *tb;
c227f099 1619 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1620
cab1b4bd 1621 spin_lock(&interrupt_lock);
3098dba0
AJ
1622 tb = env->current_tb;
1623 /* if the cpu is currently executing code, we must unlink it and
1624 all the potentially executing TB */
f76cfe56 1625 if (tb) {
3098dba0
AJ
1626 env->current_tb = NULL;
1627 tb_reset_jump_recursive(tb);
be214e6c 1628 }
cab1b4bd 1629 spin_unlock(&interrupt_lock);
3098dba0
AJ
1630}
1631
1632/* mask must never be zero, except for A20 change call */
1633void cpu_interrupt(CPUState *env, int mask)
1634{
1635 int old_mask;
be214e6c 1636
2e70f6ef 1637 old_mask = env->interrupt_request;
68a79315 1638 env->interrupt_request |= mask;
3098dba0 1639
8edac960
AL
1640#ifndef CONFIG_USER_ONLY
1641 /*
1642 * If called from iothread context, wake the target cpu in
1643 * case its halted.
1644 */
b7680cb6 1645 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1646 qemu_cpu_kick(env);
1647 return;
1648 }
1649#endif
1650
2e70f6ef 1651 if (use_icount) {
266910c4 1652 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1653#ifndef CONFIG_USER_ONLY
2e70f6ef 1654 if (!can_do_io(env)
be214e6c 1655 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1656 cpu_abort(env, "Raised interrupt while not in I/O function");
1657 }
1658#endif
1659 } else {
3098dba0 1660 cpu_unlink_tb(env);
ea041c0e
FB
1661 }
1662}
1663
b54ad049
FB
1664void cpu_reset_interrupt(CPUState *env, int mask)
1665{
1666 env->interrupt_request &= ~mask;
1667}
1668
3098dba0
AJ
1669void cpu_exit(CPUState *env)
1670{
1671 env->exit_request = 1;
1672 cpu_unlink_tb(env);
1673}
1674
c7cd6a37 1675const CPULogItem cpu_log_items[] = {
5fafdf24 1676 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1677 "show generated host assembly code for each compiled TB" },
1678 { CPU_LOG_TB_IN_ASM, "in_asm",
1679 "show target assembly code for each compiled TB" },
5fafdf24 1680 { CPU_LOG_TB_OP, "op",
57fec1fe 1681 "show micro ops for each compiled TB" },
f193c797 1682 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1683 "show micro ops "
1684#ifdef TARGET_I386
1685 "before eflags optimization and "
f193c797 1686#endif
e01a1157 1687 "after liveness analysis" },
f193c797
FB
1688 { CPU_LOG_INT, "int",
1689 "show interrupts/exceptions in short format" },
1690 { CPU_LOG_EXEC, "exec",
1691 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1692 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1693 "show CPU state before block translation" },
f193c797
FB
1694#ifdef TARGET_I386
1695 { CPU_LOG_PCALL, "pcall",
1696 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1697 { CPU_LOG_RESET, "cpu_reset",
1698 "show CPU state before CPU resets" },
f193c797 1699#endif
8e3a9fd2 1700#ifdef DEBUG_IOPORT
fd872598
FB
1701 { CPU_LOG_IOPORT, "ioport",
1702 "show all i/o ports accesses" },
8e3a9fd2 1703#endif
f193c797
FB
1704 { 0, NULL, NULL },
1705};
1706
f6f3fbca
MT
1707#ifndef CONFIG_USER_ONLY
1708static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1709 = QLIST_HEAD_INITIALIZER(memory_client_list);
1710
1711static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26
YT
1712 ram_addr_t size,
1713 ram_addr_t phys_offset)
f6f3fbca
MT
1714{
1715 CPUPhysMemoryClient *client;
1716 QLIST_FOREACH(client, &memory_client_list, list) {
1717 client->set_memory(client, start_addr, size, phys_offset);
1718 }
1719}
1720
1721static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1722 target_phys_addr_t end)
f6f3fbca
MT
1723{
1724 CPUPhysMemoryClient *client;
1725 QLIST_FOREACH(client, &memory_client_list, list) {
1726 int r = client->sync_dirty_bitmap(client, start, end);
1727 if (r < 0)
1728 return r;
1729 }
1730 return 0;
1731}
1732
1733static int cpu_notify_migration_log(int enable)
1734{
1735 CPUPhysMemoryClient *client;
1736 QLIST_FOREACH(client, &memory_client_list, list) {
1737 int r = client->migration_log(client, enable);
1738 if (r < 0)
1739 return r;
1740 }
1741 return 0;
1742}
1743
5cd2c5b6
RH
1744static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1745 int level, void **lp)
f6f3fbca 1746{
5cd2c5b6 1747 int i;
f6f3fbca 1748
5cd2c5b6
RH
1749 if (*lp == NULL) {
1750 return;
1751 }
1752 if (level == 0) {
1753 PhysPageDesc *pd = *lp;
7296abac 1754 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1755 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1756 client->set_memory(client, pd[i].region_offset,
1757 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1758 }
5cd2c5b6
RH
1759 }
1760 } else {
1761 void **pp = *lp;
7296abac 1762 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1763 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1764 }
1765 }
1766}
1767
1768static void phys_page_for_each(CPUPhysMemoryClient *client)
1769{
5cd2c5b6
RH
1770 int i;
1771 for (i = 0; i < P_L1_SIZE; ++i) {
1772 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1773 l1_phys_map + 1);
f6f3fbca 1774 }
f6f3fbca
MT
1775}
1776
1777void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1778{
1779 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1780 phys_page_for_each(client);
1781}
1782
1783void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1784{
1785 QLIST_REMOVE(client, list);
1786}
1787#endif
1788
f193c797
FB
1789static int cmp1(const char *s1, int n, const char *s2)
1790{
1791 if (strlen(s2) != n)
1792 return 0;
1793 return memcmp(s1, s2, n) == 0;
1794}
3b46e624 1795
f193c797
FB
1796/* takes a comma separated list of log masks. Return 0 if error. */
1797int cpu_str_to_log_mask(const char *str)
1798{
c7cd6a37 1799 const CPULogItem *item;
f193c797
FB
1800 int mask;
1801 const char *p, *p1;
1802
1803 p = str;
1804 mask = 0;
1805 for(;;) {
1806 p1 = strchr(p, ',');
1807 if (!p1)
1808 p1 = p + strlen(p);
9742bf26
YT
1809 if(cmp1(p,p1-p,"all")) {
1810 for(item = cpu_log_items; item->mask != 0; item++) {
1811 mask |= item->mask;
1812 }
1813 } else {
1814 for(item = cpu_log_items; item->mask != 0; item++) {
1815 if (cmp1(p, p1 - p, item->name))
1816 goto found;
1817 }
1818 return 0;
f193c797 1819 }
f193c797
FB
1820 found:
1821 mask |= item->mask;
1822 if (*p1 != ',')
1823 break;
1824 p = p1 + 1;
1825 }
1826 return mask;
1827}
ea041c0e 1828
7501267e
FB
1829void cpu_abort(CPUState *env, const char *fmt, ...)
1830{
1831 va_list ap;
493ae1f0 1832 va_list ap2;
7501267e
FB
1833
1834 va_start(ap, fmt);
493ae1f0 1835 va_copy(ap2, ap);
7501267e
FB
1836 fprintf(stderr, "qemu: fatal: ");
1837 vfprintf(stderr, fmt, ap);
1838 fprintf(stderr, "\n");
1839#ifdef TARGET_I386
7fe48483
FB
1840 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1841#else
1842 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1843#endif
93fcfe39
AL
1844 if (qemu_log_enabled()) {
1845 qemu_log("qemu: fatal: ");
1846 qemu_log_vprintf(fmt, ap2);
1847 qemu_log("\n");
f9373291 1848#ifdef TARGET_I386
93fcfe39 1849 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1850#else
93fcfe39 1851 log_cpu_state(env, 0);
f9373291 1852#endif
31b1a7b4 1853 qemu_log_flush();
93fcfe39 1854 qemu_log_close();
924edcae 1855 }
493ae1f0 1856 va_end(ap2);
f9373291 1857 va_end(ap);
fd052bf6
RV
1858#if defined(CONFIG_USER_ONLY)
1859 {
1860 struct sigaction act;
1861 sigfillset(&act.sa_mask);
1862 act.sa_handler = SIG_DFL;
1863 sigaction(SIGABRT, &act, NULL);
1864 }
1865#endif
7501267e
FB
1866 abort();
1867}
1868
c5be9f08
TS
1869CPUState *cpu_copy(CPUState *env)
1870{
01ba9816 1871 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1872 CPUState *next_cpu = new_env->next_cpu;
1873 int cpu_index = new_env->cpu_index;
5a38f081
AL
1874#if defined(TARGET_HAS_ICE)
1875 CPUBreakpoint *bp;
1876 CPUWatchpoint *wp;
1877#endif
1878
c5be9f08 1879 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1880
1881 /* Preserve chaining and index. */
c5be9f08
TS
1882 new_env->next_cpu = next_cpu;
1883 new_env->cpu_index = cpu_index;
5a38f081
AL
1884
1885 /* Clone all break/watchpoints.
1886 Note: Once we support ptrace with hw-debug register access, make sure
1887 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1888 QTAILQ_INIT(&env->breakpoints);
1889 QTAILQ_INIT(&env->watchpoints);
5a38f081 1890#if defined(TARGET_HAS_ICE)
72cf2d4f 1891 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1892 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1893 }
72cf2d4f 1894 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1895 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1896 wp->flags, NULL);
1897 }
1898#endif
1899
c5be9f08
TS
1900 return new_env;
1901}
1902
0124311e
FB
1903#if !defined(CONFIG_USER_ONLY)
1904
5c751e99
EI
1905static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1906{
1907 unsigned int i;
1908
1909 /* Discard jump cache entries for any tb which might potentially
1910 overlap the flushed page. */
1911 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1912 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1913 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1914
1915 i = tb_jmp_cache_hash_page(addr);
1916 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1917 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1918}
1919
08738984
IK
1920static CPUTLBEntry s_cputlb_empty_entry = {
1921 .addr_read = -1,
1922 .addr_write = -1,
1923 .addr_code = -1,
1924 .addend = -1,
1925};
1926
ee8b7021
FB
1927/* NOTE: if flush_global is true, also flush global entries (not
1928 implemented yet) */
1929void tlb_flush(CPUState *env, int flush_global)
33417e70 1930{
33417e70 1931 int i;
0124311e 1932
9fa3e853
FB
1933#if defined(DEBUG_TLB)
1934 printf("tlb_flush:\n");
1935#endif
0124311e
FB
1936 /* must reset current TB so that interrupts cannot modify the
1937 links while we are modifying them */
1938 env->current_tb = NULL;
1939
33417e70 1940 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1941 int mmu_idx;
1942 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1943 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1944 }
33417e70 1945 }
9fa3e853 1946
8a40a180 1947 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1948
d4c430a8
PB
1949 env->tlb_flush_addr = -1;
1950 env->tlb_flush_mask = 0;
e3db7226 1951 tlb_flush_count++;
33417e70
FB
1952}
1953
274da6b2 1954static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1955{
5fafdf24 1956 if (addr == (tlb_entry->addr_read &
84b7b8e7 1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1958 addr == (tlb_entry->addr_write &
84b7b8e7 1959 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1960 addr == (tlb_entry->addr_code &
84b7b8e7 1961 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1962 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1963 }
61382a50
FB
1964}
1965
2e12669a 1966void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1967{
8a40a180 1968 int i;
cfde4bd9 1969 int mmu_idx;
0124311e 1970
9fa3e853 1971#if defined(DEBUG_TLB)
108c49b8 1972 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1973#endif
d4c430a8
PB
1974 /* Check if we need to flush due to large pages. */
1975 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1976#if defined(DEBUG_TLB)
1977 printf("tlb_flush_page: forced full flush ("
1978 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1979 env->tlb_flush_addr, env->tlb_flush_mask);
1980#endif
1981 tlb_flush(env, 1);
1982 return;
1983 }
0124311e
FB
1984 /* must reset current TB so that interrupts cannot modify the
1985 links while we are modifying them */
1986 env->current_tb = NULL;
61382a50
FB
1987
1988 addr &= TARGET_PAGE_MASK;
1989 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1990 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1991 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1992
5c751e99 1993 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1994}
1995
9fa3e853
FB
1996/* update the TLBs so that writes to code in the virtual page 'addr'
1997 can be detected */
c227f099 1998static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1999{
5fafdf24 2000 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2001 ram_addr + TARGET_PAGE_SIZE,
2002 CODE_DIRTY_FLAG);
9fa3e853
FB
2003}
2004
9fa3e853 2005/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2006 tested for self modifying code */
c227f099 2007static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2008 target_ulong vaddr)
9fa3e853 2009{
f7c11b53 2010 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2011}
2012
5fafdf24 2013static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2014 unsigned long start, unsigned long length)
2015{
2016 unsigned long addr;
84b7b8e7
FB
2017 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2018 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2019 if ((addr - start) < length) {
0f459d16 2020 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2021 }
2022 }
2023}
2024
5579c7f3 2025/* Note: start and end must be within the same ram block. */
c227f099 2026void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2027 int dirty_flags)
1ccde1cb
FB
2028{
2029 CPUState *env;
4f2ac237 2030 unsigned long length, start1;
f7c11b53 2031 int i;
1ccde1cb
FB
2032
2033 start &= TARGET_PAGE_MASK;
2034 end = TARGET_PAGE_ALIGN(end);
2035
2036 length = end - start;
2037 if (length == 0)
2038 return;
f7c11b53 2039 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2040
1ccde1cb
FB
2041 /* we modify the TLB cache so that the dirty bit will be set again
2042 when accessing the range */
b2e0a138 2043 start1 = (unsigned long)qemu_safe_ram_ptr(start);
5579c7f3
PB
2044 /* Chek that we don't span multiple blocks - this breaks the
2045 address comparisons below. */
b2e0a138 2046 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2047 != (end - 1) - start) {
2048 abort();
2049 }
2050
6a00d601 2051 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2052 int mmu_idx;
2053 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2054 for(i = 0; i < CPU_TLB_SIZE; i++)
2055 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2056 start1, length);
2057 }
6a00d601 2058 }
1ccde1cb
FB
2059}
2060
74576198
AL
2061int cpu_physical_memory_set_dirty_tracking(int enable)
2062{
f6f3fbca 2063 int ret = 0;
74576198 2064 in_migration = enable;
f6f3fbca
MT
2065 ret = cpu_notify_migration_log(!!enable);
2066 return ret;
74576198
AL
2067}
2068
2069int cpu_physical_memory_get_dirty_tracking(void)
2070{
2071 return in_migration;
2072}
2073
c227f099
AL
2074int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2075 target_phys_addr_t end_addr)
2bec46dc 2076{
7b8f3b78 2077 int ret;
151f7749 2078
f6f3fbca 2079 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2080 return ret;
2bec46dc
AL
2081}
2082
e5896b12
AP
2083int cpu_physical_log_start(target_phys_addr_t start_addr,
2084 ram_addr_t size)
2085{
2086 CPUPhysMemoryClient *client;
2087 QLIST_FOREACH(client, &memory_client_list, list) {
2088 if (client->log_start) {
2089 int r = client->log_start(client, start_addr, size);
2090 if (r < 0) {
2091 return r;
2092 }
2093 }
2094 }
2095 return 0;
2096}
2097
2098int cpu_physical_log_stop(target_phys_addr_t start_addr,
2099 ram_addr_t size)
2100{
2101 CPUPhysMemoryClient *client;
2102 QLIST_FOREACH(client, &memory_client_list, list) {
2103 if (client->log_stop) {
2104 int r = client->log_stop(client, start_addr, size);
2105 if (r < 0) {
2106 return r;
2107 }
2108 }
2109 }
2110 return 0;
2111}
2112
3a7d929e
FB
2113static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2114{
c227f099 2115 ram_addr_t ram_addr;
5579c7f3 2116 void *p;
3a7d929e 2117
84b7b8e7 2118 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2119 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2120 + tlb_entry->addend);
e890261f 2121 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2122 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2123 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2124 }
2125 }
2126}
2127
2128/* update the TLB according to the current state of the dirty bits */
2129void cpu_tlb_update_dirty(CPUState *env)
2130{
2131 int i;
cfde4bd9
IY
2132 int mmu_idx;
2133 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2134 for(i = 0; i < CPU_TLB_SIZE; i++)
2135 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2136 }
3a7d929e
FB
2137}
2138
0f459d16 2139static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2140{
0f459d16
PB
2141 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2142 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2143}
2144
0f459d16
PB
2145/* update the TLB corresponding to virtual page vaddr
2146 so that it is no longer dirty */
2147static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2148{
1ccde1cb 2149 int i;
cfde4bd9 2150 int mmu_idx;
1ccde1cb 2151
0f459d16 2152 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2153 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2154 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2155 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2156}
2157
d4c430a8
PB
2158/* Our TLB does not support large pages, so remember the area covered by
2159 large pages and trigger a full TLB flush if these are invalidated. */
2160static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2161 target_ulong size)
2162{
2163 target_ulong mask = ~(size - 1);
2164
2165 if (env->tlb_flush_addr == (target_ulong)-1) {
2166 env->tlb_flush_addr = vaddr & mask;
2167 env->tlb_flush_mask = mask;
2168 return;
2169 }
2170 /* Extend the existing region to include the new page.
2171 This is a compromise between unnecessary flushes and the cost
2172 of maintaining a full variable size TLB. */
2173 mask &= env->tlb_flush_mask;
2174 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2175 mask <<= 1;
2176 }
2177 env->tlb_flush_addr &= mask;
2178 env->tlb_flush_mask = mask;
2179}
2180
2181/* Add a new TLB entry. At most one entry for a given virtual address
2182 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2183 supplied size is only used by tlb_flush_page. */
2184void tlb_set_page(CPUState *env, target_ulong vaddr,
2185 target_phys_addr_t paddr, int prot,
2186 int mmu_idx, target_ulong size)
9fa3e853 2187{
92e873b9 2188 PhysPageDesc *p;
4f2ac237 2189 unsigned long pd;
9fa3e853 2190 unsigned int index;
4f2ac237 2191 target_ulong address;
0f459d16 2192 target_ulong code_address;
355b1943 2193 unsigned long addend;
84b7b8e7 2194 CPUTLBEntry *te;
a1d1bb31 2195 CPUWatchpoint *wp;
c227f099 2196 target_phys_addr_t iotlb;
9fa3e853 2197
d4c430a8
PB
2198 assert(size >= TARGET_PAGE_SIZE);
2199 if (size != TARGET_PAGE_SIZE) {
2200 tlb_add_large_page(env, vaddr, size);
2201 }
92e873b9 2202 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2203 if (!p) {
2204 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2205 } else {
2206 pd = p->phys_offset;
9fa3e853
FB
2207 }
2208#if defined(DEBUG_TLB)
7fd3f494
SW
2209 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2210 " prot=%x idx=%d pd=0x%08lx\n",
2211 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2212#endif
2213
0f459d16
PB
2214 address = vaddr;
2215 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2216 /* IO memory case (romd handled later) */
2217 address |= TLB_MMIO;
2218 }
5579c7f3 2219 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2220 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2221 /* Normal RAM. */
2222 iotlb = pd & TARGET_PAGE_MASK;
2223 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2224 iotlb |= IO_MEM_NOTDIRTY;
2225 else
2226 iotlb |= IO_MEM_ROM;
2227 } else {
ccbb4d44 2228 /* IO handlers are currently passed a physical address.
0f459d16
PB
2229 It would be nice to pass an offset from the base address
2230 of that region. This would avoid having to special case RAM,
2231 and avoid full address decoding in every device.
2232 We can't use the high bits of pd for this because
2233 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2234 iotlb = (pd & ~TARGET_PAGE_MASK);
2235 if (p) {
8da3ff18
PB
2236 iotlb += p->region_offset;
2237 } else {
2238 iotlb += paddr;
2239 }
0f459d16
PB
2240 }
2241
2242 code_address = address;
2243 /* Make accesses to pages with watchpoints go via the
2244 watchpoint trap routines. */
72cf2d4f 2245 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2246 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2247 /* Avoid trapping reads of pages with a write breakpoint. */
2248 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2249 iotlb = io_mem_watch + paddr;
2250 address |= TLB_MMIO;
2251 break;
2252 }
6658ffb8 2253 }
0f459d16 2254 }
d79acba4 2255
0f459d16
PB
2256 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2257 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2258 te = &env->tlb_table[mmu_idx][index];
2259 te->addend = addend - vaddr;
2260 if (prot & PAGE_READ) {
2261 te->addr_read = address;
2262 } else {
2263 te->addr_read = -1;
2264 }
5c751e99 2265
0f459d16
PB
2266 if (prot & PAGE_EXEC) {
2267 te->addr_code = code_address;
2268 } else {
2269 te->addr_code = -1;
2270 }
2271 if (prot & PAGE_WRITE) {
2272 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2273 (pd & IO_MEM_ROMD)) {
2274 /* Write access calls the I/O callback. */
2275 te->addr_write = address | TLB_MMIO;
2276 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2277 !cpu_physical_memory_is_dirty(pd)) {
2278 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2279 } else {
0f459d16 2280 te->addr_write = address;
9fa3e853 2281 }
0f459d16
PB
2282 } else {
2283 te->addr_write = -1;
9fa3e853 2284 }
9fa3e853
FB
2285}
2286
0124311e
FB
2287#else
2288
ee8b7021 2289void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2290{
2291}
2292
2e12669a 2293void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2294{
2295}
2296
edf8e2af
MW
2297/*
2298 * Walks guest process memory "regions" one by one
2299 * and calls callback function 'fn' for each region.
2300 */
5cd2c5b6
RH
2301
2302struct walk_memory_regions_data
2303{
2304 walk_memory_regions_fn fn;
2305 void *priv;
2306 unsigned long start;
2307 int prot;
2308};
2309
2310static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2311 abi_ulong end, int new_prot)
5cd2c5b6
RH
2312{
2313 if (data->start != -1ul) {
2314 int rc = data->fn(data->priv, data->start, end, data->prot);
2315 if (rc != 0) {
2316 return rc;
2317 }
2318 }
2319
2320 data->start = (new_prot ? end : -1ul);
2321 data->prot = new_prot;
2322
2323 return 0;
2324}
2325
2326static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2327 abi_ulong base, int level, void **lp)
5cd2c5b6 2328{
b480d9b7 2329 abi_ulong pa;
5cd2c5b6
RH
2330 int i, rc;
2331
2332 if (*lp == NULL) {
2333 return walk_memory_regions_end(data, base, 0);
2334 }
2335
2336 if (level == 0) {
2337 PageDesc *pd = *lp;
7296abac 2338 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2339 int prot = pd[i].flags;
2340
2341 pa = base | (i << TARGET_PAGE_BITS);
2342 if (prot != data->prot) {
2343 rc = walk_memory_regions_end(data, pa, prot);
2344 if (rc != 0) {
2345 return rc;
9fa3e853 2346 }
9fa3e853 2347 }
5cd2c5b6
RH
2348 }
2349 } else {
2350 void **pp = *lp;
7296abac 2351 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2352 pa = base | ((abi_ulong)i <<
2353 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2354 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2355 if (rc != 0) {
2356 return rc;
2357 }
2358 }
2359 }
2360
2361 return 0;
2362}
2363
2364int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2365{
2366 struct walk_memory_regions_data data;
2367 unsigned long i;
2368
2369 data.fn = fn;
2370 data.priv = priv;
2371 data.start = -1ul;
2372 data.prot = 0;
2373
2374 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2375 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2376 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2377 if (rc != 0) {
2378 return rc;
9fa3e853 2379 }
33417e70 2380 }
5cd2c5b6
RH
2381
2382 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2383}
2384
b480d9b7
PB
2385static int dump_region(void *priv, abi_ulong start,
2386 abi_ulong end, unsigned long prot)
edf8e2af
MW
2387{
2388 FILE *f = (FILE *)priv;
2389
b480d9b7
PB
2390 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2391 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2392 start, end, end - start,
2393 ((prot & PAGE_READ) ? 'r' : '-'),
2394 ((prot & PAGE_WRITE) ? 'w' : '-'),
2395 ((prot & PAGE_EXEC) ? 'x' : '-'));
2396
2397 return (0);
2398}
2399
2400/* dump memory mappings */
2401void page_dump(FILE *f)
2402{
2403 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2404 "start", "end", "size", "prot");
2405 walk_memory_regions(f, dump_region);
33417e70
FB
2406}
2407
53a5960a 2408int page_get_flags(target_ulong address)
33417e70 2409{
9fa3e853
FB
2410 PageDesc *p;
2411
2412 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2413 if (!p)
9fa3e853
FB
2414 return 0;
2415 return p->flags;
2416}
2417
376a7909
RH
2418/* Modify the flags of a page and invalidate the code if necessary.
2419 The flag PAGE_WRITE_ORG is positioned automatically depending
2420 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2421void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2422{
376a7909
RH
2423 target_ulong addr, len;
2424
2425 /* This function should never be called with addresses outside the
2426 guest address space. If this assert fires, it probably indicates
2427 a missing call to h2g_valid. */
b480d9b7
PB
2428#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2429 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2430#endif
2431 assert(start < end);
9fa3e853
FB
2432
2433 start = start & TARGET_PAGE_MASK;
2434 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2435
2436 if (flags & PAGE_WRITE) {
9fa3e853 2437 flags |= PAGE_WRITE_ORG;
376a7909
RH
2438 }
2439
2440 for (addr = start, len = end - start;
2441 len != 0;
2442 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2443 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2444
2445 /* If the write protection bit is set, then we invalidate
2446 the code inside. */
5fafdf24 2447 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2448 (flags & PAGE_WRITE) &&
2449 p->first_tb) {
d720b93d 2450 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2451 }
2452 p->flags = flags;
2453 }
33417e70
FB
2454}
2455
3d97b40b
TS
2456int page_check_range(target_ulong start, target_ulong len, int flags)
2457{
2458 PageDesc *p;
2459 target_ulong end;
2460 target_ulong addr;
2461
376a7909
RH
2462 /* This function should never be called with addresses outside the
2463 guest address space. If this assert fires, it probably indicates
2464 a missing call to h2g_valid. */
338e9e6c
BS
2465#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2466 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2467#endif
2468
3e0650a9
RH
2469 if (len == 0) {
2470 return 0;
2471 }
376a7909
RH
2472 if (start + len - 1 < start) {
2473 /* We've wrapped around. */
55f280c9 2474 return -1;
376a7909 2475 }
55f280c9 2476
3d97b40b
TS
2477 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2478 start = start & TARGET_PAGE_MASK;
2479
376a7909
RH
2480 for (addr = start, len = end - start;
2481 len != 0;
2482 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2483 p = page_find(addr >> TARGET_PAGE_BITS);
2484 if( !p )
2485 return -1;
2486 if( !(p->flags & PAGE_VALID) )
2487 return -1;
2488
dae3270c 2489 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2490 return -1;
dae3270c
FB
2491 if (flags & PAGE_WRITE) {
2492 if (!(p->flags & PAGE_WRITE_ORG))
2493 return -1;
2494 /* unprotect the page if it was put read-only because it
2495 contains translated code */
2496 if (!(p->flags & PAGE_WRITE)) {
2497 if (!page_unprotect(addr, 0, NULL))
2498 return -1;
2499 }
2500 return 0;
2501 }
3d97b40b
TS
2502 }
2503 return 0;
2504}
2505
9fa3e853 2506/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2507 page. Return TRUE if the fault was successfully handled. */
53a5960a 2508int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2509{
45d679d6
AJ
2510 unsigned int prot;
2511 PageDesc *p;
53a5960a 2512 target_ulong host_start, host_end, addr;
9fa3e853 2513
c8a706fe
PB
2514 /* Technically this isn't safe inside a signal handler. However we
2515 know this only ever happens in a synchronous SEGV handler, so in
2516 practice it seems to be ok. */
2517 mmap_lock();
2518
45d679d6
AJ
2519 p = page_find(address >> TARGET_PAGE_BITS);
2520 if (!p) {
c8a706fe 2521 mmap_unlock();
9fa3e853 2522 return 0;
c8a706fe 2523 }
45d679d6 2524
9fa3e853
FB
2525 /* if the page was really writable, then we change its
2526 protection back to writable */
45d679d6
AJ
2527 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2528 host_start = address & qemu_host_page_mask;
2529 host_end = host_start + qemu_host_page_size;
2530
2531 prot = 0;
2532 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2533 p = page_find(addr >> TARGET_PAGE_BITS);
2534 p->flags |= PAGE_WRITE;
2535 prot |= p->flags;
2536
9fa3e853
FB
2537 /* and since the content will be modified, we must invalidate
2538 the corresponding translated code. */
45d679d6 2539 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2540#ifdef DEBUG_TB_CHECK
45d679d6 2541 tb_invalidate_check(addr);
9fa3e853 2542#endif
9fa3e853 2543 }
45d679d6
AJ
2544 mprotect((void *)g2h(host_start), qemu_host_page_size,
2545 prot & PAGE_BITS);
2546
2547 mmap_unlock();
2548 return 1;
9fa3e853 2549 }
c8a706fe 2550 mmap_unlock();
9fa3e853
FB
2551 return 0;
2552}
2553
6a00d601
FB
2554static inline void tlb_set_dirty(CPUState *env,
2555 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2556{
2557}
9fa3e853
FB
2558#endif /* defined(CONFIG_USER_ONLY) */
2559
e2eef170 2560#if !defined(CONFIG_USER_ONLY)
8da3ff18 2561
c04b2b78
PB
2562#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2563typedef struct subpage_t {
2564 target_phys_addr_t base;
f6405247
RH
2565 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2566 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2567} subpage_t;
2568
c227f099
AL
2569static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2570 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2571static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2572 ram_addr_t orig_memory,
2573 ram_addr_t region_offset);
db7b5426
BS
2574#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2575 need_subpage) \
2576 do { \
2577 if (addr > start_addr) \
2578 start_addr2 = 0; \
2579 else { \
2580 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2581 if (start_addr2 > 0) \
2582 need_subpage = 1; \
2583 } \
2584 \
49e9fba2 2585 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2586 end_addr2 = TARGET_PAGE_SIZE - 1; \
2587 else { \
2588 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2589 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2590 need_subpage = 1; \
2591 } \
2592 } while (0)
2593
8f2498f9
MT
2594/* register physical memory.
2595 For RAM, 'size' must be a multiple of the target page size.
2596 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2597 io memory page. The address used when calling the IO function is
2598 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2599 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2600 before calculating this offset. This should not be a problem unless
2601 the low bits of start_addr and region_offset differ. */
c227f099
AL
2602void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2603 ram_addr_t size,
2604 ram_addr_t phys_offset,
2605 ram_addr_t region_offset)
33417e70 2606{
c227f099 2607 target_phys_addr_t addr, end_addr;
92e873b9 2608 PhysPageDesc *p;
9d42037b 2609 CPUState *env;
c227f099 2610 ram_addr_t orig_size = size;
f6405247 2611 subpage_t *subpage;
33417e70 2612
3b8e6a2d 2613 assert(size);
f6f3fbca
MT
2614 cpu_notify_set_memory(start_addr, size, phys_offset);
2615
67c4d23c
PB
2616 if (phys_offset == IO_MEM_UNASSIGNED) {
2617 region_offset = start_addr;
2618 }
8da3ff18 2619 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2620 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2621 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2622
2623 addr = start_addr;
2624 do {
db7b5426
BS
2625 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2626 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2627 ram_addr_t orig_memory = p->phys_offset;
2628 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2629 int need_subpage = 0;
2630
2631 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2632 need_subpage);
f6405247 2633 if (need_subpage) {
db7b5426
BS
2634 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2635 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2636 &p->phys_offset, orig_memory,
2637 p->region_offset);
db7b5426
BS
2638 } else {
2639 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2640 >> IO_MEM_SHIFT];
2641 }
8da3ff18
PB
2642 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2643 region_offset);
2644 p->region_offset = 0;
db7b5426
BS
2645 } else {
2646 p->phys_offset = phys_offset;
2647 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2648 (phys_offset & IO_MEM_ROMD))
2649 phys_offset += TARGET_PAGE_SIZE;
2650 }
2651 } else {
2652 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2653 p->phys_offset = phys_offset;
8da3ff18 2654 p->region_offset = region_offset;
db7b5426 2655 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2656 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2657 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2658 } else {
c227f099 2659 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2660 int need_subpage = 0;
2661
2662 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2663 end_addr2, need_subpage);
2664
f6405247 2665 if (need_subpage) {
db7b5426 2666 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2667 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2668 addr & TARGET_PAGE_MASK);
db7b5426 2669 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2670 phys_offset, region_offset);
2671 p->region_offset = 0;
db7b5426
BS
2672 }
2673 }
2674 }
8da3ff18 2675 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2676 addr += TARGET_PAGE_SIZE;
2677 } while (addr != end_addr);
3b46e624 2678
9d42037b
FB
2679 /* since each CPU stores ram addresses in its TLB cache, we must
2680 reset the modified entries */
2681 /* XXX: slow ! */
2682 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2683 tlb_flush(env, 1);
2684 }
33417e70
FB
2685}
2686
ba863458 2687/* XXX: temporary until new memory mapping API */
c227f099 2688ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2689{
2690 PhysPageDesc *p;
2691
2692 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2693 if (!p)
2694 return IO_MEM_UNASSIGNED;
2695 return p->phys_offset;
2696}
2697
c227f099 2698void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2699{
2700 if (kvm_enabled())
2701 kvm_coalesce_mmio_region(addr, size);
2702}
2703
c227f099 2704void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2705{
2706 if (kvm_enabled())
2707 kvm_uncoalesce_mmio_region(addr, size);
2708}
2709
62a2744c
SY
2710void qemu_flush_coalesced_mmio_buffer(void)
2711{
2712 if (kvm_enabled())
2713 kvm_flush_coalesced_mmio_buffer();
2714}
2715
c902760f
MT
2716#if defined(__linux__) && !defined(TARGET_S390X)
2717
2718#include <sys/vfs.h>
2719
2720#define HUGETLBFS_MAGIC 0x958458f6
2721
2722static long gethugepagesize(const char *path)
2723{
2724 struct statfs fs;
2725 int ret;
2726
2727 do {
9742bf26 2728 ret = statfs(path, &fs);
c902760f
MT
2729 } while (ret != 0 && errno == EINTR);
2730
2731 if (ret != 0) {
9742bf26
YT
2732 perror(path);
2733 return 0;
c902760f
MT
2734 }
2735
2736 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2737 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2738
2739 return fs.f_bsize;
2740}
2741
04b16653
AW
2742static void *file_ram_alloc(RAMBlock *block,
2743 ram_addr_t memory,
2744 const char *path)
c902760f
MT
2745{
2746 char *filename;
2747 void *area;
2748 int fd;
2749#ifdef MAP_POPULATE
2750 int flags;
2751#endif
2752 unsigned long hpagesize;
2753
2754 hpagesize = gethugepagesize(path);
2755 if (!hpagesize) {
9742bf26 2756 return NULL;
c902760f
MT
2757 }
2758
2759 if (memory < hpagesize) {
2760 return NULL;
2761 }
2762
2763 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2764 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2765 return NULL;
2766 }
2767
2768 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2769 return NULL;
c902760f
MT
2770 }
2771
2772 fd = mkstemp(filename);
2773 if (fd < 0) {
9742bf26
YT
2774 perror("unable to create backing store for hugepages");
2775 free(filename);
2776 return NULL;
c902760f
MT
2777 }
2778 unlink(filename);
2779 free(filename);
2780
2781 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2782
2783 /*
2784 * ftruncate is not supported by hugetlbfs in older
2785 * hosts, so don't bother bailing out on errors.
2786 * If anything goes wrong with it under other filesystems,
2787 * mmap will fail.
2788 */
2789 if (ftruncate(fd, memory))
9742bf26 2790 perror("ftruncate");
c902760f
MT
2791
2792#ifdef MAP_POPULATE
2793 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2794 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2795 * to sidestep this quirk.
2796 */
2797 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2798 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2799#else
2800 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2801#endif
2802 if (area == MAP_FAILED) {
9742bf26
YT
2803 perror("file_ram_alloc: can't mmap RAM pages");
2804 close(fd);
2805 return (NULL);
c902760f 2806 }
04b16653 2807 block->fd = fd;
c902760f
MT
2808 return area;
2809}
2810#endif
2811
d17b5288 2812static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2813{
2814 RAMBlock *block, *next_block;
09d7ae90 2815 ram_addr_t offset = 0, mingap = ULONG_MAX;
04b16653
AW
2816
2817 if (QLIST_EMPTY(&ram_list.blocks))
2818 return 0;
2819
2820 QLIST_FOREACH(block, &ram_list.blocks, next) {
2821 ram_addr_t end, next = ULONG_MAX;
2822
2823 end = block->offset + block->length;
2824
2825 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2826 if (next_block->offset >= end) {
2827 next = MIN(next, next_block->offset);
2828 }
2829 }
2830 if (next - end >= size && next - end < mingap) {
2831 offset = end;
2832 mingap = next - end;
2833 }
2834 }
2835 return offset;
2836}
2837
2838static ram_addr_t last_ram_offset(void)
d17b5288
AW
2839{
2840 RAMBlock *block;
2841 ram_addr_t last = 0;
2842
2843 QLIST_FOREACH(block, &ram_list.blocks, next)
2844 last = MAX(last, block->offset + block->length);
2845
2846 return last;
2847}
2848
84b89d78 2849ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
6977dfe6 2850 ram_addr_t size, void *host)
84b89d78
CM
2851{
2852 RAMBlock *new_block, *block;
2853
2854 size = TARGET_PAGE_ALIGN(size);
2855 new_block = qemu_mallocz(sizeof(*new_block));
2856
2857 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2858 char *id = dev->parent_bus->info->get_dev_path(dev);
2859 if (id) {
2860 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2861 qemu_free(id);
2862 }
2863 }
2864 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2865
2866 QLIST_FOREACH(block, &ram_list.blocks, next) {
2867 if (!strcmp(block->idstr, new_block->idstr)) {
2868 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2869 new_block->idstr);
2870 abort();
2871 }
2872 }
2873
6977dfe6
YT
2874 if (host) {
2875 new_block->host = host;
cd19cfa2 2876 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2877 } else {
2878 if (mem_path) {
c902760f 2879#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2880 new_block->host = file_ram_alloc(new_block, size, mem_path);
2881 if (!new_block->host) {
2882 new_block->host = qemu_vmalloc(size);
e78815a5 2883 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2884 }
c902760f 2885#else
6977dfe6
YT
2886 fprintf(stderr, "-mem-path option unsupported\n");
2887 exit(1);
c902760f 2888#endif
6977dfe6 2889 } else {
6b02494d 2890#if defined(TARGET_S390X) && defined(CONFIG_KVM)
6977dfe6
YT
2891 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2892 new_block->host = mmap((void*)0x1000000, size,
2893 PROT_EXEC|PROT_READ|PROT_WRITE,
2894 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2895#else
6977dfe6 2896 new_block->host = qemu_vmalloc(size);
6b02494d 2897#endif
e78815a5 2898 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2899 }
c902760f 2900 }
6977dfe6 2901
d17b5288 2902 new_block->offset = find_ram_offset(size);
94a6b54f
PB
2903 new_block->length = size;
2904
f471a17e 2905 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2906
f471a17e 2907 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
04b16653 2908 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2909 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2910 0xff, size >> TARGET_PAGE_BITS);
2911
6f0437e8
JK
2912 if (kvm_enabled())
2913 kvm_setup_guest_memory(new_block->host, size);
2914
94a6b54f
PB
2915 return new_block->offset;
2916}
e9a1ab19 2917
6977dfe6
YT
2918ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2919{
2920 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2921}
2922
c227f099 2923void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2924{
04b16653
AW
2925 RAMBlock *block;
2926
2927 QLIST_FOREACH(block, &ram_list.blocks, next) {
2928 if (addr == block->offset) {
2929 QLIST_REMOVE(block, next);
cd19cfa2
HY
2930 if (block->flags & RAM_PREALLOC_MASK) {
2931 ;
2932 } else if (mem_path) {
04b16653
AW
2933#if defined (__linux__) && !defined(TARGET_S390X)
2934 if (block->fd) {
2935 munmap(block->host, block->length);
2936 close(block->fd);
2937 } else {
2938 qemu_vfree(block->host);
2939 }
fd28aa13
JK
2940#else
2941 abort();
04b16653
AW
2942#endif
2943 } else {
2944#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2945 munmap(block->host, block->length);
2946#else
2947 qemu_vfree(block->host);
2948#endif
2949 }
2950 qemu_free(block);
2951 return;
2952 }
2953 }
2954
e9a1ab19
FB
2955}
2956
cd19cfa2
HY
2957#ifndef _WIN32
2958void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2959{
2960 RAMBlock *block;
2961 ram_addr_t offset;
2962 int flags;
2963 void *area, *vaddr;
2964
2965 QLIST_FOREACH(block, &ram_list.blocks, next) {
2966 offset = addr - block->offset;
2967 if (offset < block->length) {
2968 vaddr = block->host + offset;
2969 if (block->flags & RAM_PREALLOC_MASK) {
2970 ;
2971 } else {
2972 flags = MAP_FIXED;
2973 munmap(vaddr, length);
2974 if (mem_path) {
2975#if defined(__linux__) && !defined(TARGET_S390X)
2976 if (block->fd) {
2977#ifdef MAP_POPULATE
2978 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2979 MAP_PRIVATE;
2980#else
2981 flags |= MAP_PRIVATE;
2982#endif
2983 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2984 flags, block->fd, offset);
2985 } else {
2986 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2987 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2988 flags, -1, 0);
2989 }
fd28aa13
JK
2990#else
2991 abort();
cd19cfa2
HY
2992#endif
2993 } else {
2994#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2995 flags |= MAP_SHARED | MAP_ANONYMOUS;
2996 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2997 flags, -1, 0);
2998#else
2999 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3000 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3001 flags, -1, 0);
3002#endif
3003 }
3004 if (area != vaddr) {
3005 fprintf(stderr, "Could not remap addr: %lx@%lx\n",
3006 length, addr);
3007 exit(1);
3008 }
3009 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3010 }
3011 return;
3012 }
3013 }
3014}
3015#endif /* !_WIN32 */
3016
dc828ca1 3017/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3018 With the exception of the softmmu code in this file, this should
3019 only be used for local memory (e.g. video ram) that the device owns,
3020 and knows it isn't going to access beyond the end of the block.
3021
3022 It should not be used for general purpose DMA.
3023 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3024 */
c227f099 3025void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3026{
94a6b54f
PB
3027 RAMBlock *block;
3028
f471a17e
AW
3029 QLIST_FOREACH(block, &ram_list.blocks, next) {
3030 if (addr - block->offset < block->length) {
7d82af38
VP
3031 /* Move this entry to to start of the list. */
3032 if (block != QLIST_FIRST(&ram_list.blocks)) {
3033 QLIST_REMOVE(block, next);
3034 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3035 }
f471a17e
AW
3036 return block->host + (addr - block->offset);
3037 }
94a6b54f 3038 }
f471a17e
AW
3039
3040 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3041 abort();
3042
3043 return NULL;
dc828ca1
PB
3044}
3045
b2e0a138
MT
3046/* Return a host pointer to ram allocated with qemu_ram_alloc.
3047 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3048 */
3049void *qemu_safe_ram_ptr(ram_addr_t addr)
3050{
3051 RAMBlock *block;
3052
3053 QLIST_FOREACH(block, &ram_list.blocks, next) {
3054 if (addr - block->offset < block->length) {
3055 return block->host + (addr - block->offset);
3056 }
3057 }
3058
3059 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3060 abort();
3061
3062 return NULL;
3063}
3064
e890261f 3065int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3066{
94a6b54f
PB
3067 RAMBlock *block;
3068 uint8_t *host = ptr;
3069
f471a17e
AW
3070 QLIST_FOREACH(block, &ram_list.blocks, next) {
3071 if (host - block->host < block->length) {
e890261f
MT
3072 *ram_addr = block->offset + (host - block->host);
3073 return 0;
f471a17e 3074 }
94a6b54f 3075 }
e890261f
MT
3076 return -1;
3077}
f471a17e 3078
e890261f
MT
3079/* Some of the softmmu routines need to translate from a host pointer
3080 (typically a TLB entry) back to a ram offset. */
3081ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3082{
3083 ram_addr_t ram_addr;
f471a17e 3084
e890261f
MT
3085 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3086 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3087 abort();
3088 }
3089 return ram_addr;
5579c7f3
PB
3090}
3091
c227f099 3092static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 3093{
67d3b957 3094#ifdef DEBUG_UNASSIGNED
ab3d1727 3095 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 3096#endif
faed1c2a 3097#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3098 do_unassigned_access(addr, 0, 0, 0, 1);
3099#endif
3100 return 0;
3101}
3102
c227f099 3103static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3104{
3105#ifdef DEBUG_UNASSIGNED
3106 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3107#endif
faed1c2a 3108#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3109 do_unassigned_access(addr, 0, 0, 0, 2);
3110#endif
3111 return 0;
3112}
3113
c227f099 3114static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3115{
3116#ifdef DEBUG_UNASSIGNED
3117 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3118#endif
faed1c2a 3119#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3120 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 3121#endif
33417e70
FB
3122 return 0;
3123}
3124
c227f099 3125static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3126{
67d3b957 3127#ifdef DEBUG_UNASSIGNED
ab3d1727 3128 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3129#endif
faed1c2a 3130#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3131 do_unassigned_access(addr, 1, 0, 0, 1);
3132#endif
3133}
3134
c227f099 3135static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3136{
3137#ifdef DEBUG_UNASSIGNED
3138 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3139#endif
faed1c2a 3140#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3141 do_unassigned_access(addr, 1, 0, 0, 2);
3142#endif
3143}
3144
c227f099 3145static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3146{
3147#ifdef DEBUG_UNASSIGNED
3148 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3149#endif
faed1c2a 3150#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3151 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 3152#endif
33417e70
FB
3153}
3154
d60efc6b 3155static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3156 unassigned_mem_readb,
e18231a3
BS
3157 unassigned_mem_readw,
3158 unassigned_mem_readl,
33417e70
FB
3159};
3160
d60efc6b 3161static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3162 unassigned_mem_writeb,
e18231a3
BS
3163 unassigned_mem_writew,
3164 unassigned_mem_writel,
33417e70
FB
3165};
3166
c227f099 3167static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3168 uint32_t val)
9fa3e853 3169{
3a7d929e 3170 int dirty_flags;
f7c11b53 3171 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3172 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3173#if !defined(CONFIG_USER_ONLY)
3a7d929e 3174 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3175 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3176#endif
3a7d929e 3177 }
5579c7f3 3178 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3179 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3180 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3181 /* we remove the notdirty callback only if the code has been
3182 flushed */
3183 if (dirty_flags == 0xff)
2e70f6ef 3184 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3185}
3186
c227f099 3187static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3188 uint32_t val)
9fa3e853 3189{
3a7d929e 3190 int dirty_flags;
f7c11b53 3191 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3192 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3193#if !defined(CONFIG_USER_ONLY)
3a7d929e 3194 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3195 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3196#endif
3a7d929e 3197 }
5579c7f3 3198 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3199 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3200 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3201 /* we remove the notdirty callback only if the code has been
3202 flushed */
3203 if (dirty_flags == 0xff)
2e70f6ef 3204 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3205}
3206
c227f099 3207static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3208 uint32_t val)
9fa3e853 3209{
3a7d929e 3210 int dirty_flags;
f7c11b53 3211 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3212 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3213#if !defined(CONFIG_USER_ONLY)
3a7d929e 3214 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3215 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3216#endif
3a7d929e 3217 }
5579c7f3 3218 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3219 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3220 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3221 /* we remove the notdirty callback only if the code has been
3222 flushed */
3223 if (dirty_flags == 0xff)
2e70f6ef 3224 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3225}
3226
d60efc6b 3227static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3228 NULL, /* never used */
3229 NULL, /* never used */
3230 NULL, /* never used */
3231};
3232
d60efc6b 3233static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3234 notdirty_mem_writeb,
3235 notdirty_mem_writew,
3236 notdirty_mem_writel,
3237};
3238
0f459d16 3239/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3240static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3241{
3242 CPUState *env = cpu_single_env;
06d55cc1
AL
3243 target_ulong pc, cs_base;
3244 TranslationBlock *tb;
0f459d16 3245 target_ulong vaddr;
a1d1bb31 3246 CPUWatchpoint *wp;
06d55cc1 3247 int cpu_flags;
0f459d16 3248
06d55cc1
AL
3249 if (env->watchpoint_hit) {
3250 /* We re-entered the check after replacing the TB. Now raise
3251 * the debug interrupt so that is will trigger after the
3252 * current instruction. */
3253 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3254 return;
3255 }
2e70f6ef 3256 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3257 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3258 if ((vaddr == (wp->vaddr & len_mask) ||
3259 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3260 wp->flags |= BP_WATCHPOINT_HIT;
3261 if (!env->watchpoint_hit) {
3262 env->watchpoint_hit = wp;
3263 tb = tb_find_pc(env->mem_io_pc);
3264 if (!tb) {
3265 cpu_abort(env, "check_watchpoint: could not find TB for "
3266 "pc=%p", (void *)env->mem_io_pc);
3267 }
618ba8e6 3268 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3269 tb_phys_invalidate(tb, -1);
3270 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3271 env->exception_index = EXCP_DEBUG;
3272 } else {
3273 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3274 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3275 }
3276 cpu_resume_from_signal(env, NULL);
06d55cc1 3277 }
6e140f28
AL
3278 } else {
3279 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3280 }
3281 }
3282}
3283
6658ffb8
PB
3284/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3285 so these check for a hit then pass through to the normal out-of-line
3286 phys routines. */
c227f099 3287static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3288{
b4051334 3289 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3290 return ldub_phys(addr);
3291}
3292
c227f099 3293static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3294{
b4051334 3295 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3296 return lduw_phys(addr);
3297}
3298
c227f099 3299static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3300{
b4051334 3301 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3302 return ldl_phys(addr);
3303}
3304
c227f099 3305static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3306 uint32_t val)
3307{
b4051334 3308 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3309 stb_phys(addr, val);
3310}
3311
c227f099 3312static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3313 uint32_t val)
3314{
b4051334 3315 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3316 stw_phys(addr, val);
3317}
3318
c227f099 3319static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3320 uint32_t val)
3321{
b4051334 3322 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3323 stl_phys(addr, val);
3324}
3325
d60efc6b 3326static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3327 watch_mem_readb,
3328 watch_mem_readw,
3329 watch_mem_readl,
3330};
3331
d60efc6b 3332static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3333 watch_mem_writeb,
3334 watch_mem_writew,
3335 watch_mem_writel,
3336};
6658ffb8 3337
f6405247
RH
3338static inline uint32_t subpage_readlen (subpage_t *mmio,
3339 target_phys_addr_t addr,
3340 unsigned int len)
db7b5426 3341{
f6405247 3342 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3343#if defined(DEBUG_SUBPAGE)
3344 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3345 mmio, len, addr, idx);
3346#endif
db7b5426 3347
f6405247
RH
3348 addr += mmio->region_offset[idx];
3349 idx = mmio->sub_io_index[idx];
3350 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3351}
3352
c227f099 3353static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3354 uint32_t value, unsigned int len)
db7b5426 3355{
f6405247 3356 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3357#if defined(DEBUG_SUBPAGE)
f6405247
RH
3358 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3359 __func__, mmio, len, addr, idx, value);
db7b5426 3360#endif
f6405247
RH
3361
3362 addr += mmio->region_offset[idx];
3363 idx = mmio->sub_io_index[idx];
3364 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3365}
3366
c227f099 3367static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3368{
db7b5426
BS
3369 return subpage_readlen(opaque, addr, 0);
3370}
3371
c227f099 3372static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3373 uint32_t value)
3374{
db7b5426
BS
3375 subpage_writelen(opaque, addr, value, 0);
3376}
3377
c227f099 3378static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3379{
db7b5426
BS
3380 return subpage_readlen(opaque, addr, 1);
3381}
3382
c227f099 3383static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3384 uint32_t value)
3385{
db7b5426
BS
3386 subpage_writelen(opaque, addr, value, 1);
3387}
3388
c227f099 3389static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3390{
db7b5426
BS
3391 return subpage_readlen(opaque, addr, 2);
3392}
3393
f6405247
RH
3394static void subpage_writel (void *opaque, target_phys_addr_t addr,
3395 uint32_t value)
db7b5426 3396{
db7b5426
BS
3397 subpage_writelen(opaque, addr, value, 2);
3398}
3399
d60efc6b 3400static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3401 &subpage_readb,
3402 &subpage_readw,
3403 &subpage_readl,
3404};
3405
d60efc6b 3406static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3407 &subpage_writeb,
3408 &subpage_writew,
3409 &subpage_writel,
3410};
3411
c227f099
AL
3412static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3413 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3414{
3415 int idx, eidx;
3416
3417 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3418 return -1;
3419 idx = SUBPAGE_IDX(start);
3420 eidx = SUBPAGE_IDX(end);
3421#if defined(DEBUG_SUBPAGE)
0bf9e31a 3422 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3423 mmio, start, end, idx, eidx, memory);
3424#endif
95c318f5
GN
3425 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3426 memory = IO_MEM_UNASSIGNED;
f6405247 3427 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3428 for (; idx <= eidx; idx++) {
f6405247
RH
3429 mmio->sub_io_index[idx] = memory;
3430 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3431 }
3432
3433 return 0;
3434}
3435
f6405247
RH
3436static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3437 ram_addr_t orig_memory,
3438 ram_addr_t region_offset)
db7b5426 3439{
c227f099 3440 subpage_t *mmio;
db7b5426
BS
3441 int subpage_memory;
3442
c227f099 3443 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3444
3445 mmio->base = base;
2507c12a
AG
3446 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3447 DEVICE_NATIVE_ENDIAN);
db7b5426 3448#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3449 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3450 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3451#endif
1eec614b 3452 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3453 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3454
3455 return mmio;
3456}
3457
88715657
AL
3458static int get_free_io_mem_idx(void)
3459{
3460 int i;
3461
3462 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3463 if (!io_mem_used[i]) {
3464 io_mem_used[i] = 1;
3465 return i;
3466 }
c6703b47 3467 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3468 return -1;
3469}
3470
dd310534
AG
3471/*
3472 * Usually, devices operate in little endian mode. There are devices out
3473 * there that operate in big endian too. Each device gets byte swapped
3474 * mmio if plugged onto a CPU that does the other endianness.
3475 *
3476 * CPU Device swap?
3477 *
3478 * little little no
3479 * little big yes
3480 * big little yes
3481 * big big no
3482 */
3483
3484typedef struct SwapEndianContainer {
3485 CPUReadMemoryFunc *read[3];
3486 CPUWriteMemoryFunc *write[3];
3487 void *opaque;
3488} SwapEndianContainer;
3489
3490static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3491{
3492 uint32_t val;
3493 SwapEndianContainer *c = opaque;
3494 val = c->read[0](c->opaque, addr);
3495 return val;
3496}
3497
3498static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3499{
3500 uint32_t val;
3501 SwapEndianContainer *c = opaque;
3502 val = bswap16(c->read[1](c->opaque, addr));
3503 return val;
3504}
3505
3506static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3507{
3508 uint32_t val;
3509 SwapEndianContainer *c = opaque;
3510 val = bswap32(c->read[2](c->opaque, addr));
3511 return val;
3512}
3513
3514static CPUReadMemoryFunc * const swapendian_readfn[3]={
3515 swapendian_mem_readb,
3516 swapendian_mem_readw,
3517 swapendian_mem_readl
3518};
3519
3520static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3521 uint32_t val)
3522{
3523 SwapEndianContainer *c = opaque;
3524 c->write[0](c->opaque, addr, val);
3525}
3526
3527static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3528 uint32_t val)
3529{
3530 SwapEndianContainer *c = opaque;
3531 c->write[1](c->opaque, addr, bswap16(val));
3532}
3533
3534static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3535 uint32_t val)
3536{
3537 SwapEndianContainer *c = opaque;
3538 c->write[2](c->opaque, addr, bswap32(val));
3539}
3540
3541static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3542 swapendian_mem_writeb,
3543 swapendian_mem_writew,
3544 swapendian_mem_writel
3545};
3546
3547static void swapendian_init(int io_index)
3548{
3549 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3550 int i;
3551
3552 /* Swap mmio for big endian targets */
3553 c->opaque = io_mem_opaque[io_index];
3554 for (i = 0; i < 3; i++) {
3555 c->read[i] = io_mem_read[io_index][i];
3556 c->write[i] = io_mem_write[io_index][i];
3557
3558 io_mem_read[io_index][i] = swapendian_readfn[i];
3559 io_mem_write[io_index][i] = swapendian_writefn[i];
3560 }
3561 io_mem_opaque[io_index] = c;
3562}
3563
3564static void swapendian_del(int io_index)
3565{
3566 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3567 qemu_free(io_mem_opaque[io_index]);
3568 }
3569}
3570
33417e70
FB
3571/* mem_read and mem_write are arrays of functions containing the
3572 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3573 2). Functions can be omitted with a NULL function pointer.
3ee89922 3574 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3575 modified. If it is zero, a new io zone is allocated. The return
3576 value can be used with cpu_register_physical_memory(). (-1) is
3577 returned if error. */
1eed09cb 3578static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3579 CPUReadMemoryFunc * const *mem_read,
3580 CPUWriteMemoryFunc * const *mem_write,
dd310534 3581 void *opaque, enum device_endian endian)
33417e70 3582{
3cab721d
RH
3583 int i;
3584
33417e70 3585 if (io_index <= 0) {
88715657
AL
3586 io_index = get_free_io_mem_idx();
3587 if (io_index == -1)
3588 return io_index;
33417e70 3589 } else {
1eed09cb 3590 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3591 if (io_index >= IO_MEM_NB_ENTRIES)
3592 return -1;
3593 }
b5ff1b31 3594
3cab721d
RH
3595 for (i = 0; i < 3; ++i) {
3596 io_mem_read[io_index][i]
3597 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3598 }
3599 for (i = 0; i < 3; ++i) {
3600 io_mem_write[io_index][i]
3601 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3602 }
a4193c8a 3603 io_mem_opaque[io_index] = opaque;
f6405247 3604
dd310534
AG
3605 switch (endian) {
3606 case DEVICE_BIG_ENDIAN:
3607#ifndef TARGET_WORDS_BIGENDIAN
3608 swapendian_init(io_index);
3609#endif
3610 break;
3611 case DEVICE_LITTLE_ENDIAN:
3612#ifdef TARGET_WORDS_BIGENDIAN
3613 swapendian_init(io_index);
3614#endif
3615 break;
3616 case DEVICE_NATIVE_ENDIAN:
3617 default:
3618 break;
3619 }
3620
f6405247 3621 return (io_index << IO_MEM_SHIFT);
33417e70 3622}
61382a50 3623
d60efc6b
BS
3624int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3625 CPUWriteMemoryFunc * const *mem_write,
dd310534 3626 void *opaque, enum device_endian endian)
1eed09cb 3627{
2507c12a 3628 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
1eed09cb
AK
3629}
3630
88715657
AL
3631void cpu_unregister_io_memory(int io_table_address)
3632{
3633 int i;
3634 int io_index = io_table_address >> IO_MEM_SHIFT;
3635
dd310534
AG
3636 swapendian_del(io_index);
3637
88715657
AL
3638 for (i=0;i < 3; i++) {
3639 io_mem_read[io_index][i] = unassigned_mem_read[i];
3640 io_mem_write[io_index][i] = unassigned_mem_write[i];
3641 }
3642 io_mem_opaque[io_index] = NULL;
3643 io_mem_used[io_index] = 0;
3644}
3645
e9179ce1
AK
3646static void io_mem_init(void)
3647{
3648 int i;
3649
2507c12a
AG
3650 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3651 unassigned_mem_write, NULL,
3652 DEVICE_NATIVE_ENDIAN);
3653 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3654 unassigned_mem_write, NULL,
3655 DEVICE_NATIVE_ENDIAN);
3656 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3657 notdirty_mem_write, NULL,
3658 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3659 for (i=0; i<5; i++)
3660 io_mem_used[i] = 1;
3661
3662 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2507c12a
AG
3663 watch_mem_write, NULL,
3664 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3665}
3666
e2eef170
PB
3667#endif /* !defined(CONFIG_USER_ONLY) */
3668
13eb76e0
FB
3669/* physical memory access (slow version, mainly for debug) */
3670#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3671int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3672 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3673{
3674 int l, flags;
3675 target_ulong page;
53a5960a 3676 void * p;
13eb76e0
FB
3677
3678 while (len > 0) {
3679 page = addr & TARGET_PAGE_MASK;
3680 l = (page + TARGET_PAGE_SIZE) - addr;
3681 if (l > len)
3682 l = len;
3683 flags = page_get_flags(page);
3684 if (!(flags & PAGE_VALID))
a68fe89c 3685 return -1;
13eb76e0
FB
3686 if (is_write) {
3687 if (!(flags & PAGE_WRITE))
a68fe89c 3688 return -1;
579a97f7 3689 /* XXX: this code should not depend on lock_user */
72fb7daa 3690 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3691 return -1;
72fb7daa
AJ
3692 memcpy(p, buf, l);
3693 unlock_user(p, addr, l);
13eb76e0
FB
3694 } else {
3695 if (!(flags & PAGE_READ))
a68fe89c 3696 return -1;
579a97f7 3697 /* XXX: this code should not depend on lock_user */
72fb7daa 3698 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3699 return -1;
72fb7daa 3700 memcpy(buf, p, l);
5b257578 3701 unlock_user(p, addr, 0);
13eb76e0
FB
3702 }
3703 len -= l;
3704 buf += l;
3705 addr += l;
3706 }
a68fe89c 3707 return 0;
13eb76e0 3708}
8df1cd07 3709
13eb76e0 3710#else
c227f099 3711void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3712 int len, int is_write)
3713{
3714 int l, io_index;
3715 uint8_t *ptr;
3716 uint32_t val;
c227f099 3717 target_phys_addr_t page;
2e12669a 3718 unsigned long pd;
92e873b9 3719 PhysPageDesc *p;
3b46e624 3720
13eb76e0
FB
3721 while (len > 0) {
3722 page = addr & TARGET_PAGE_MASK;
3723 l = (page + TARGET_PAGE_SIZE) - addr;
3724 if (l > len)
3725 l = len;
92e873b9 3726 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3727 if (!p) {
3728 pd = IO_MEM_UNASSIGNED;
3729 } else {
3730 pd = p->phys_offset;
3731 }
3b46e624 3732
13eb76e0 3733 if (is_write) {
3a7d929e 3734 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3735 target_phys_addr_t addr1 = addr;
13eb76e0 3736 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3737 if (p)
6c2934db 3738 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3739 /* XXX: could force cpu_single_env to NULL to avoid
3740 potential bugs */
6c2934db 3741 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3742 /* 32 bit write access */
c27004ec 3743 val = ldl_p(buf);
6c2934db 3744 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3745 l = 4;
6c2934db 3746 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3747 /* 16 bit write access */
c27004ec 3748 val = lduw_p(buf);
6c2934db 3749 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3750 l = 2;
3751 } else {
1c213d19 3752 /* 8 bit write access */
c27004ec 3753 val = ldub_p(buf);
6c2934db 3754 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3755 l = 1;
3756 }
3757 } else {
b448f2f3
FB
3758 unsigned long addr1;
3759 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3760 /* RAM case */
5579c7f3 3761 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3762 memcpy(ptr, buf, l);
3a7d929e
FB
3763 if (!cpu_physical_memory_is_dirty(addr1)) {
3764 /* invalidate code */
3765 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3766 /* set dirty bit */
f7c11b53
YT
3767 cpu_physical_memory_set_dirty_flags(
3768 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3769 }
13eb76e0
FB
3770 }
3771 } else {
5fafdf24 3772 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3773 !(pd & IO_MEM_ROMD)) {
c227f099 3774 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3775 /* I/O case */
3776 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3777 if (p)
6c2934db
AJ
3778 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3779 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3780 /* 32 bit read access */
6c2934db 3781 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3782 stl_p(buf, val);
13eb76e0 3783 l = 4;
6c2934db 3784 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3785 /* 16 bit read access */
6c2934db 3786 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3787 stw_p(buf, val);
13eb76e0
FB
3788 l = 2;
3789 } else {
1c213d19 3790 /* 8 bit read access */
6c2934db 3791 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3792 stb_p(buf, val);
13eb76e0
FB
3793 l = 1;
3794 }
3795 } else {
3796 /* RAM case */
5579c7f3 3797 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3798 (addr & ~TARGET_PAGE_MASK);
3799 memcpy(buf, ptr, l);
3800 }
3801 }
3802 len -= l;
3803 buf += l;
3804 addr += l;
3805 }
3806}
8df1cd07 3807
d0ecd2aa 3808/* used for ROM loading : can write in RAM and ROM */
c227f099 3809void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3810 const uint8_t *buf, int len)
3811{
3812 int l;
3813 uint8_t *ptr;
c227f099 3814 target_phys_addr_t page;
d0ecd2aa
FB
3815 unsigned long pd;
3816 PhysPageDesc *p;
3b46e624 3817
d0ecd2aa
FB
3818 while (len > 0) {
3819 page = addr & TARGET_PAGE_MASK;
3820 l = (page + TARGET_PAGE_SIZE) - addr;
3821 if (l > len)
3822 l = len;
3823 p = phys_page_find(page >> TARGET_PAGE_BITS);
3824 if (!p) {
3825 pd = IO_MEM_UNASSIGNED;
3826 } else {
3827 pd = p->phys_offset;
3828 }
3b46e624 3829
d0ecd2aa 3830 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3831 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3832 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3833 /* do nothing */
3834 } else {
3835 unsigned long addr1;
3836 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3837 /* ROM/RAM case */
5579c7f3 3838 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3839 memcpy(ptr, buf, l);
3840 }
3841 len -= l;
3842 buf += l;
3843 addr += l;
3844 }
3845}
3846
6d16c2f8
AL
3847typedef struct {
3848 void *buffer;
c227f099
AL
3849 target_phys_addr_t addr;
3850 target_phys_addr_t len;
6d16c2f8
AL
3851} BounceBuffer;
3852
3853static BounceBuffer bounce;
3854
ba223c29
AL
3855typedef struct MapClient {
3856 void *opaque;
3857 void (*callback)(void *opaque);
72cf2d4f 3858 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3859} MapClient;
3860
72cf2d4f
BS
3861static QLIST_HEAD(map_client_list, MapClient) map_client_list
3862 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3863
3864void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3865{
3866 MapClient *client = qemu_malloc(sizeof(*client));
3867
3868 client->opaque = opaque;
3869 client->callback = callback;
72cf2d4f 3870 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3871 return client;
3872}
3873
3874void cpu_unregister_map_client(void *_client)
3875{
3876 MapClient *client = (MapClient *)_client;
3877
72cf2d4f 3878 QLIST_REMOVE(client, link);
34d5e948 3879 qemu_free(client);
ba223c29
AL
3880}
3881
3882static void cpu_notify_map_clients(void)
3883{
3884 MapClient *client;
3885
72cf2d4f
BS
3886 while (!QLIST_EMPTY(&map_client_list)) {
3887 client = QLIST_FIRST(&map_client_list);
ba223c29 3888 client->callback(client->opaque);
34d5e948 3889 cpu_unregister_map_client(client);
ba223c29
AL
3890 }
3891}
3892
6d16c2f8
AL
3893/* Map a physical memory region into a host virtual address.
3894 * May map a subset of the requested range, given by and returned in *plen.
3895 * May return NULL if resources needed to perform the mapping are exhausted.
3896 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3897 * Use cpu_register_map_client() to know when retrying the map operation is
3898 * likely to succeed.
6d16c2f8 3899 */
c227f099
AL
3900void *cpu_physical_memory_map(target_phys_addr_t addr,
3901 target_phys_addr_t *plen,
6d16c2f8
AL
3902 int is_write)
3903{
c227f099
AL
3904 target_phys_addr_t len = *plen;
3905 target_phys_addr_t done = 0;
6d16c2f8
AL
3906 int l;
3907 uint8_t *ret = NULL;
3908 uint8_t *ptr;
c227f099 3909 target_phys_addr_t page;
6d16c2f8
AL
3910 unsigned long pd;
3911 PhysPageDesc *p;
3912 unsigned long addr1;
3913
3914 while (len > 0) {
3915 page = addr & TARGET_PAGE_MASK;
3916 l = (page + TARGET_PAGE_SIZE) - addr;
3917 if (l > len)
3918 l = len;
3919 p = phys_page_find(page >> TARGET_PAGE_BITS);
3920 if (!p) {
3921 pd = IO_MEM_UNASSIGNED;
3922 } else {
3923 pd = p->phys_offset;
3924 }
3925
3926 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3927 if (done || bounce.buffer) {
3928 break;
3929 }
3930 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3931 bounce.addr = addr;
3932 bounce.len = l;
3933 if (!is_write) {
54f7b4a3 3934 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8
AL
3935 }
3936 ptr = bounce.buffer;
3937 } else {
3938 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3939 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3940 }
3941 if (!done) {
3942 ret = ptr;
3943 } else if (ret + done != ptr) {
3944 break;
3945 }
3946
3947 len -= l;
3948 addr += l;
3949 done += l;
3950 }
3951 *plen = done;
3952 return ret;
3953}
3954
3955/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3956 * Will also mark the memory as dirty if is_write == 1. access_len gives
3957 * the amount of memory that was actually read or written by the caller.
3958 */
c227f099
AL
3959void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3960 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3961{
3962 if (buffer != bounce.buffer) {
3963 if (is_write) {
e890261f 3964 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
3965 while (access_len) {
3966 unsigned l;
3967 l = TARGET_PAGE_SIZE;
3968 if (l > access_len)
3969 l = access_len;
3970 if (!cpu_physical_memory_is_dirty(addr1)) {
3971 /* invalidate code */
3972 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3973 /* set dirty bit */
f7c11b53
YT
3974 cpu_physical_memory_set_dirty_flags(
3975 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3976 }
3977 addr1 += l;
3978 access_len -= l;
3979 }
3980 }
3981 return;
3982 }
3983 if (is_write) {
3984 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3985 }
f8a83245 3986 qemu_vfree(bounce.buffer);
6d16c2f8 3987 bounce.buffer = NULL;
ba223c29 3988 cpu_notify_map_clients();
6d16c2f8 3989}
d0ecd2aa 3990
8df1cd07 3991/* warning: addr must be aligned */
c227f099 3992uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3993{
3994 int io_index;
3995 uint8_t *ptr;
3996 uint32_t val;
3997 unsigned long pd;
3998 PhysPageDesc *p;
3999
4000 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4001 if (!p) {
4002 pd = IO_MEM_UNASSIGNED;
4003 } else {
4004 pd = p->phys_offset;
4005 }
3b46e624 4006
5fafdf24 4007 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4008 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
4009 /* I/O case */
4010 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4011 if (p)
4012 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4013 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4014 } else {
4015 /* RAM case */
5579c7f3 4016 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
4017 (addr & ~TARGET_PAGE_MASK);
4018 val = ldl_p(ptr);
4019 }
4020 return val;
4021}
4022
84b7b8e7 4023/* warning: addr must be aligned */
c227f099 4024uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
4025{
4026 int io_index;
4027 uint8_t *ptr;
4028 uint64_t val;
4029 unsigned long pd;
4030 PhysPageDesc *p;
4031
4032 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4033 if (!p) {
4034 pd = IO_MEM_UNASSIGNED;
4035 } else {
4036 pd = p->phys_offset;
4037 }
3b46e624 4038
2a4188a3
FB
4039 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4040 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
4041 /* I/O case */
4042 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4043 if (p)
4044 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
4045#ifdef TARGET_WORDS_BIGENDIAN
4046 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4047 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4048#else
4049 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4050 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4051#endif
4052 } else {
4053 /* RAM case */
5579c7f3 4054 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
4055 (addr & ~TARGET_PAGE_MASK);
4056 val = ldq_p(ptr);
4057 }
4058 return val;
4059}
4060
aab33094 4061/* XXX: optimize */
c227f099 4062uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4063{
4064 uint8_t val;
4065 cpu_physical_memory_read(addr, &val, 1);
4066 return val;
4067}
4068
733f0b02 4069/* warning: addr must be aligned */
c227f099 4070uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 4071{
733f0b02
MT
4072 int io_index;
4073 uint8_t *ptr;
4074 uint64_t val;
4075 unsigned long pd;
4076 PhysPageDesc *p;
4077
4078 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4079 if (!p) {
4080 pd = IO_MEM_UNASSIGNED;
4081 } else {
4082 pd = p->phys_offset;
4083 }
4084
4085 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4086 !(pd & IO_MEM_ROMD)) {
4087 /* I/O case */
4088 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4089 if (p)
4090 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4091 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4092 } else {
4093 /* RAM case */
4094 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4095 (addr & ~TARGET_PAGE_MASK);
4096 val = lduw_p(ptr);
4097 }
4098 return val;
aab33094
FB
4099}
4100
8df1cd07
FB
4101/* warning: addr must be aligned. The ram page is not masked as dirty
4102 and the code inside is not invalidated. It is useful if the dirty
4103 bits are used to track modified PTEs */
c227f099 4104void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4105{
4106 int io_index;
4107 uint8_t *ptr;
4108 unsigned long pd;
4109 PhysPageDesc *p;
4110
4111 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4112 if (!p) {
4113 pd = IO_MEM_UNASSIGNED;
4114 } else {
4115 pd = p->phys_offset;
4116 }
3b46e624 4117
3a7d929e 4118 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4119 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4120 if (p)
4121 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4122 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4123 } else {
74576198 4124 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4125 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4126 stl_p(ptr, val);
74576198
AL
4127
4128 if (unlikely(in_migration)) {
4129 if (!cpu_physical_memory_is_dirty(addr1)) {
4130 /* invalidate code */
4131 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4132 /* set dirty bit */
f7c11b53
YT
4133 cpu_physical_memory_set_dirty_flags(
4134 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4135 }
4136 }
8df1cd07
FB
4137 }
4138}
4139
c227f099 4140void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4141{
4142 int io_index;
4143 uint8_t *ptr;
4144 unsigned long pd;
4145 PhysPageDesc *p;
4146
4147 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4148 if (!p) {
4149 pd = IO_MEM_UNASSIGNED;
4150 } else {
4151 pd = p->phys_offset;
4152 }
3b46e624 4153
bc98a7ef
JM
4154 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4155 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4156 if (p)
4157 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
4158#ifdef TARGET_WORDS_BIGENDIAN
4159 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4160 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4161#else
4162 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4163 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4164#endif
4165 } else {
5579c7f3 4166 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4167 (addr & ~TARGET_PAGE_MASK);
4168 stq_p(ptr, val);
4169 }
4170}
4171
8df1cd07 4172/* warning: addr must be aligned */
c227f099 4173void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4174{
4175 int io_index;
4176 uint8_t *ptr;
4177 unsigned long pd;
4178 PhysPageDesc *p;
4179
4180 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4181 if (!p) {
4182 pd = IO_MEM_UNASSIGNED;
4183 } else {
4184 pd = p->phys_offset;
4185 }
3b46e624 4186
3a7d929e 4187 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4188 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4189 if (p)
4190 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4191 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4192 } else {
4193 unsigned long addr1;
4194 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4195 /* RAM case */
5579c7f3 4196 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4197 stl_p(ptr, val);
3a7d929e
FB
4198 if (!cpu_physical_memory_is_dirty(addr1)) {
4199 /* invalidate code */
4200 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4201 /* set dirty bit */
f7c11b53
YT
4202 cpu_physical_memory_set_dirty_flags(addr1,
4203 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4204 }
8df1cd07
FB
4205 }
4206}
4207
aab33094 4208/* XXX: optimize */
c227f099 4209void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4210{
4211 uint8_t v = val;
4212 cpu_physical_memory_write(addr, &v, 1);
4213}
4214
733f0b02 4215/* warning: addr must be aligned */
c227f099 4216void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 4217{
733f0b02
MT
4218 int io_index;
4219 uint8_t *ptr;
4220 unsigned long pd;
4221 PhysPageDesc *p;
4222
4223 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4224 if (!p) {
4225 pd = IO_MEM_UNASSIGNED;
4226 } else {
4227 pd = p->phys_offset;
4228 }
4229
4230 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4231 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4232 if (p)
4233 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4234 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4235 } else {
4236 unsigned long addr1;
4237 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4238 /* RAM case */
4239 ptr = qemu_get_ram_ptr(addr1);
4240 stw_p(ptr, val);
4241 if (!cpu_physical_memory_is_dirty(addr1)) {
4242 /* invalidate code */
4243 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4244 /* set dirty bit */
4245 cpu_physical_memory_set_dirty_flags(addr1,
4246 (0xff & ~CODE_DIRTY_FLAG));
4247 }
4248 }
aab33094
FB
4249}
4250
4251/* XXX: optimize */
c227f099 4252void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4253{
4254 val = tswap64(val);
71d2b725 4255 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4256}
4257
5e2972fd 4258/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4259int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4260 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4261{
4262 int l;
c227f099 4263 target_phys_addr_t phys_addr;
9b3c35e0 4264 target_ulong page;
13eb76e0
FB
4265
4266 while (len > 0) {
4267 page = addr & TARGET_PAGE_MASK;
4268 phys_addr = cpu_get_phys_page_debug(env, page);
4269 /* if no physical page mapped, return an error */
4270 if (phys_addr == -1)
4271 return -1;
4272 l = (page + TARGET_PAGE_SIZE) - addr;
4273 if (l > len)
4274 l = len;
5e2972fd 4275 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4276 if (is_write)
4277 cpu_physical_memory_write_rom(phys_addr, buf, l);
4278 else
5e2972fd 4279 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4280 len -= l;
4281 buf += l;
4282 addr += l;
4283 }
4284 return 0;
4285}
a68fe89c 4286#endif
13eb76e0 4287
2e70f6ef
PB
4288/* in deterministic execution mode, instructions doing device I/Os
4289 must be at the end of the TB */
4290void cpu_io_recompile(CPUState *env, void *retaddr)
4291{
4292 TranslationBlock *tb;
4293 uint32_t n, cflags;
4294 target_ulong pc, cs_base;
4295 uint64_t flags;
4296
4297 tb = tb_find_pc((unsigned long)retaddr);
4298 if (!tb) {
4299 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4300 retaddr);
4301 }
4302 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4303 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4304 /* Calculate how many instructions had been executed before the fault
bf20dc07 4305 occurred. */
2e70f6ef
PB
4306 n = n - env->icount_decr.u16.low;
4307 /* Generate a new TB ending on the I/O insn. */
4308 n++;
4309 /* On MIPS and SH, delay slot instructions can only be restarted if
4310 they were already the first instruction in the TB. If this is not
bf20dc07 4311 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4312 branch. */
4313#if defined(TARGET_MIPS)
4314 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4315 env->active_tc.PC -= 4;
4316 env->icount_decr.u16.low++;
4317 env->hflags &= ~MIPS_HFLAG_BMASK;
4318 }
4319#elif defined(TARGET_SH4)
4320 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4321 && n > 1) {
4322 env->pc -= 2;
4323 env->icount_decr.u16.low++;
4324 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4325 }
4326#endif
4327 /* This should never happen. */
4328 if (n > CF_COUNT_MASK)
4329 cpu_abort(env, "TB too big during recompile");
4330
4331 cflags = n | CF_LAST_IO;
4332 pc = tb->pc;
4333 cs_base = tb->cs_base;
4334 flags = tb->flags;
4335 tb_phys_invalidate(tb, -1);
4336 /* FIXME: In theory this could raise an exception. In practice
4337 we have already translated the block once so it's probably ok. */
4338 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4339 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4340 the first in the TB) then we end up generating a whole new TB and
4341 repeating the fault, which is horribly inefficient.
4342 Better would be to execute just this insn uncached, or generate a
4343 second new TB. */
4344 cpu_resume_from_signal(env, NULL);
4345}
4346
b3755a91
PB
4347#if !defined(CONFIG_USER_ONLY)
4348
055403b2 4349void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4350{
4351 int i, target_code_size, max_target_code_size;
4352 int direct_jmp_count, direct_jmp2_count, cross_page;
4353 TranslationBlock *tb;
3b46e624 4354
e3db7226
FB
4355 target_code_size = 0;
4356 max_target_code_size = 0;
4357 cross_page = 0;
4358 direct_jmp_count = 0;
4359 direct_jmp2_count = 0;
4360 for(i = 0; i < nb_tbs; i++) {
4361 tb = &tbs[i];
4362 target_code_size += tb->size;
4363 if (tb->size > max_target_code_size)
4364 max_target_code_size = tb->size;
4365 if (tb->page_addr[1] != -1)
4366 cross_page++;
4367 if (tb->tb_next_offset[0] != 0xffff) {
4368 direct_jmp_count++;
4369 if (tb->tb_next_offset[1] != 0xffff) {
4370 direct_jmp2_count++;
4371 }
4372 }
4373 }
4374 /* XXX: avoid using doubles ? */
57fec1fe 4375 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4376 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4377 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4378 cpu_fprintf(f, "TB count %d/%d\n",
4379 nb_tbs, code_gen_max_blocks);
5fafdf24 4380 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4381 nb_tbs ? target_code_size / nb_tbs : 0,
4382 max_target_code_size);
055403b2 4383 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4384 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4385 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4386 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4387 cross_page,
e3db7226
FB
4388 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4389 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4390 direct_jmp_count,
e3db7226
FB
4391 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4392 direct_jmp2_count,
4393 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4394 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4395 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4396 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4397 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4398 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4399}
4400
61382a50
FB
4401#define MMUSUFFIX _cmmu
4402#define GETPC() NULL
4403#define env cpu_single_env
b769d8fe 4404#define SOFTMMU_CODE_ACCESS
61382a50
FB
4405
4406#define SHIFT 0
4407#include "softmmu_template.h"
4408
4409#define SHIFT 1
4410#include "softmmu_template.h"
4411
4412#define SHIFT 2
4413#include "softmmu_template.h"
4414
4415#define SHIFT 3
4416#include "softmmu_template.h"
4417
4418#undef env
4419
4420#endif