]> git.proxmox.com Git - qemu.git/blame - exec.c
FreeBSD ppc_init_cacheline_sizes(): add missing #includes
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
fd052bf6 43#include <signal.h>
53a5960a 44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
bdaf78e0 65static TranslationBlock *tbs;
26a5f13b 66int code_gen_max_blocks;
9fa3e853 67TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 68static int nb_tbs;
eb51d102 69/* any access to the tbs or the page table must use this lock */
c227f099 70spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 71
141ac468
BS
72#if defined(__arm__) || defined(__sparc_v9__)
73/* The prologue must be reachable with a direct jump. ARM and Sparc64
74 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
75 section close to code segment. */
76#define code_gen_section \
77 __attribute__((__section__(".gen_code"))) \
78 __attribute__((aligned (32)))
f8e2af11
SW
79#elif defined(_WIN32)
80/* Maximum alignment for Win32 is 16. */
81#define code_gen_section \
82 __attribute__((aligned (16)))
d03d860b
BS
83#else
84#define code_gen_section \
85 __attribute__((aligned (32)))
86#endif
87
88uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
89static uint8_t *code_gen_buffer;
90static unsigned long code_gen_buffer_size;
26a5f13b 91/* threshold to flush the translated code buffer */
bdaf78e0 92static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
93uint8_t *code_gen_ptr;
94
e2eef170 95#if !defined(CONFIG_USER_ONLY)
9fa3e853 96int phys_ram_fd;
1ccde1cb 97uint8_t *phys_ram_dirty;
74576198 98static int in_migration;
94a6b54f
PB
99
100typedef struct RAMBlock {
101 uint8_t *host;
c227f099
AL
102 ram_addr_t offset;
103 ram_addr_t length;
94a6b54f
PB
104 struct RAMBlock *next;
105} RAMBlock;
106
107static RAMBlock *ram_blocks;
108/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 109 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 110 of this variable will break. */
c227f099 111ram_addr_t last_ram_offset;
e2eef170 112#endif
9fa3e853 113
6a00d601
FB
114CPUState *first_cpu;
115/* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
5fafdf24 117CPUState *cpu_single_env;
2e70f6ef 118/* 0 = Do not count executed instructions.
bf20dc07 119 1 = Precise instruction counting.
2e70f6ef
PB
120 2 = Adaptive rate instruction counting. */
121int use_icount = 0;
122/* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
124int64_t qemu_icount;
6a00d601 125
54936004 126typedef struct PageDesc {
92e873b9 127 /* list of TBs intersecting this ram page */
fd6ce8f6 128 TranslationBlock *first_tb;
9fa3e853
FB
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count;
132 uint8_t *code_bitmap;
133#if defined(CONFIG_USER_ONLY)
134 unsigned long flags;
135#endif
54936004
FB
136} PageDesc;
137
41c1b1c9 138/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
139 while in user mode we want it to be based on virtual addresses. */
140#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
141#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
142# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
143#else
5cd2c5b6 144# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 145#endif
bedb69ea 146#else
5cd2c5b6 147# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 148#endif
54936004 149
5cd2c5b6
RH
150/* Size of the L2 (and L3, etc) page tables. */
151#define L2_BITS 10
54936004
FB
152#define L2_SIZE (1 << L2_BITS)
153
5cd2c5b6
RH
154/* The bits remaining after N lower levels of page tables. */
155#define P_L1_BITS_REM \
156 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157#define V_L1_BITS_REM \
158 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
159
160/* Size of the L1 page table. Avoid silly small sizes. */
161#if P_L1_BITS_REM < 4
162#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
163#else
164#define P_L1_BITS P_L1_BITS_REM
165#endif
166
167#if V_L1_BITS_REM < 4
168#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
169#else
170#define V_L1_BITS V_L1_BITS_REM
171#endif
172
173#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
174#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
175
176#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
177#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
83fb7adf
FB
179unsigned long qemu_real_host_page_size;
180unsigned long qemu_host_page_bits;
181unsigned long qemu_host_page_size;
182unsigned long qemu_host_page_mask;
54936004 183
5cd2c5b6
RH
184/* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186static void *l1_map[V_L1_SIZE];
54936004 187
e2eef170 188#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
189typedef struct PhysPageDesc {
190 /* offset in host memory of the page + io_index in the low bits */
191 ram_addr_t phys_offset;
192 ram_addr_t region_offset;
193} PhysPageDesc;
194
5cd2c5b6
RH
195/* This is a multi-level map on the physical address space.
196 The bottom level has pointers to PhysPageDesc. */
197static void *l1_phys_map[P_L1_SIZE];
6d9a1304 198
e2eef170
PB
199static void io_mem_init(void);
200
33417e70 201/* io memory support */
33417e70
FB
202CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
203CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 204void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 205static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
206static int io_mem_watch;
207#endif
33417e70 208
34865134 209/* log support */
1e8b27ca
JR
210#ifdef WIN32
211static const char *logfilename = "qemu.log";
212#else
d9b630fd 213static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 214#endif
34865134
FB
215FILE *logfile;
216int loglevel;
e735b91c 217static int log_append = 0;
34865134 218
e3db7226 219/* statistics */
b3755a91 220#if !defined(CONFIG_USER_ONLY)
e3db7226 221static int tlb_flush_count;
b3755a91 222#endif
e3db7226
FB
223static int tb_flush_count;
224static int tb_phys_invalidate_count;
225
7cb69cae
FB
226#ifdef _WIN32
227static void map_exec(void *addr, long size)
228{
229 DWORD old_protect;
230 VirtualProtect(addr, size,
231 PAGE_EXECUTE_READWRITE, &old_protect);
232
233}
234#else
235static void map_exec(void *addr, long size)
236{
4369415f 237 unsigned long start, end, page_size;
7cb69cae 238
4369415f 239 page_size = getpagesize();
7cb69cae 240 start = (unsigned long)addr;
4369415f 241 start &= ~(page_size - 1);
7cb69cae
FB
242
243 end = (unsigned long)addr + size;
4369415f
FB
244 end += page_size - 1;
245 end &= ~(page_size - 1);
7cb69cae
FB
246
247 mprotect((void *)start, end - start,
248 PROT_READ | PROT_WRITE | PROT_EXEC);
249}
250#endif
251
b346ff46 252static void page_init(void)
54936004 253{
83fb7adf 254 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 255 TARGET_PAGE_SIZE */
c2b48b69
AL
256#ifdef _WIN32
257 {
258 SYSTEM_INFO system_info;
259
260 GetSystemInfo(&system_info);
261 qemu_real_host_page_size = system_info.dwPageSize;
262 }
263#else
264 qemu_real_host_page_size = getpagesize();
265#endif
83fb7adf
FB
266 if (qemu_host_page_size == 0)
267 qemu_host_page_size = qemu_real_host_page_size;
268 if (qemu_host_page_size < TARGET_PAGE_SIZE)
269 qemu_host_page_size = TARGET_PAGE_SIZE;
270 qemu_host_page_bits = 0;
271 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
272 qemu_host_page_bits++;
273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b
AZ
274
275#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
276 {
50a9569b 277 FILE *f;
50a9569b 278
0776590d 279 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 280
50a9569b
AZ
281 f = fopen("/proc/self/maps", "r");
282 if (f) {
5cd2c5b6
RH
283 mmap_lock();
284
50a9569b 285 do {
5cd2c5b6
RH
286 unsigned long startaddr, endaddr;
287 int n;
288
289 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
290
291 if (n == 2 && h2g_valid(startaddr)) {
292 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
293
294 if (h2g_valid(endaddr)) {
295 endaddr = h2g(endaddr);
296 } else {
297 endaddr = ~0ul;
298 }
299 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
300 }
301 } while (!feof(f));
5cd2c5b6 302
50a9569b 303 fclose(f);
5cd2c5b6 304 mmap_unlock();
50a9569b
AZ
305 }
306 }
307#endif
54936004
FB
308}
309
41c1b1c9 310static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 311{
41c1b1c9
PB
312 PageDesc *pd;
313 void **lp;
314 int i;
315
5cd2c5b6
RH
316#if defined(CONFIG_USER_ONLY)
317 /* We can't use qemu_malloc because it may recurse into a locked mutex.
318 Neither can we record the new pages we reserve while allocating a
319 given page because that may recurse into an unallocated page table
320 entry. Stuff the allocations we do make into a queue and process
321 them after having completed one entire page table allocation. */
322
323 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
324 int reserve_idx = 0;
325
326# define ALLOC(P, SIZE) \
327 do { \
328 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
329 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
330 if (h2g_valid(P)) { \
331 reserve[reserve_idx] = h2g(P); \
332 reserve[reserve_idx + 1] = SIZE; \
333 reserve_idx += 2; \
334 } \
335 } while (0)
336#else
337# define ALLOC(P, SIZE) \
338 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 339#endif
434929bf 340
5cd2c5b6
RH
341 /* Level 1. Always allocated. */
342 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
343
344 /* Level 2..N-1. */
345 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
346 void **p = *lp;
347
348 if (p == NULL) {
349 if (!alloc) {
350 return NULL;
351 }
352 ALLOC(p, sizeof(void *) * L2_SIZE);
353 *lp = p;
17e2377a 354 }
5cd2c5b6
RH
355
356 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
357 }
358
359 pd = *lp;
360 if (pd == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
365 *lp = pd;
54936004 366 }
5cd2c5b6
RH
367
368#undef ALLOC
369#if defined(CONFIG_USER_ONLY)
370 for (i = 0; i < reserve_idx; i += 2) {
371 unsigned long addr = reserve[i];
372 unsigned long len = reserve[i + 1];
373
374 page_set_flags(addr & TARGET_PAGE_MASK,
375 TARGET_PAGE_ALIGN(addr + len),
376 PAGE_RESERVED);
377 }
378#endif
379
380 return pd + (index & (L2_SIZE - 1));
54936004
FB
381}
382
41c1b1c9 383static inline PageDesc *page_find(tb_page_addr_t index)
54936004 384{
5cd2c5b6 385 return page_find_alloc(index, 0);
fd6ce8f6
FB
386}
387
6d9a1304 388#if !defined(CONFIG_USER_ONLY)
c227f099 389static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 390{
e3f4e2a4 391 PhysPageDesc *pd;
5cd2c5b6
RH
392 void **lp;
393 int i;
92e873b9 394
5cd2c5b6
RH
395 /* Level 1. Always allocated. */
396 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 397
5cd2c5b6
RH
398 /* Level 2..N-1. */
399 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
400 void **p = *lp;
401 if (p == NULL) {
402 if (!alloc) {
403 return NULL;
404 }
405 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
406 }
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 408 }
5cd2c5b6 409
e3f4e2a4 410 pd = *lp;
5cd2c5b6 411 if (pd == NULL) {
e3f4e2a4 412 int i;
5cd2c5b6
RH
413
414 if (!alloc) {
108c49b8 415 return NULL;
5cd2c5b6
RH
416 }
417
418 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
419
67c4d23c 420 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
421 pd[i].phys_offset = IO_MEM_UNASSIGNED;
422 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 423 }
92e873b9 424 }
5cd2c5b6
RH
425
426 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
427}
428
c227f099 429static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 430{
108c49b8 431 return phys_page_find_alloc(index, 0);
92e873b9
FB
432}
433
c227f099
AL
434static void tlb_protect_code(ram_addr_t ram_addr);
435static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 436 target_ulong vaddr);
c8a706fe
PB
437#define mmap_lock() do { } while(0)
438#define mmap_unlock() do { } while(0)
9fa3e853 439#endif
fd6ce8f6 440
4369415f
FB
441#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
442
443#if defined(CONFIG_USER_ONLY)
ccbb4d44 444/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
445 user mode. It will change when a dedicated libc will be used */
446#define USE_STATIC_CODE_GEN_BUFFER
447#endif
448
449#ifdef USE_STATIC_CODE_GEN_BUFFER
450static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
451#endif
452
8fcd3692 453static void code_gen_alloc(unsigned long tb_size)
26a5f13b 454{
4369415f
FB
455#ifdef USE_STATIC_CODE_GEN_BUFFER
456 code_gen_buffer = static_code_gen_buffer;
457 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
458 map_exec(code_gen_buffer, code_gen_buffer_size);
459#else
26a5f13b
FB
460 code_gen_buffer_size = tb_size;
461 if (code_gen_buffer_size == 0) {
4369415f
FB
462#if defined(CONFIG_USER_ONLY)
463 /* in user mode, phys_ram_size is not meaningful */
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465#else
ccbb4d44 466 /* XXX: needs adjustments */
94a6b54f 467 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 468#endif
26a5f13b
FB
469 }
470 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
471 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
472 /* The code gen buffer location may have constraints depending on
473 the host cpu and OS */
474#if defined(__linux__)
475 {
476 int flags;
141ac468
BS
477 void *start = NULL;
478
26a5f13b
FB
479 flags = MAP_PRIVATE | MAP_ANONYMOUS;
480#if defined(__x86_64__)
481 flags |= MAP_32BIT;
482 /* Cannot map more than that */
483 if (code_gen_buffer_size > (800 * 1024 * 1024))
484 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
485#elif defined(__sparc_v9__)
486 // Map the buffer below 2G, so we can use direct calls and branches
487 flags |= MAP_FIXED;
488 start = (void *) 0x60000000UL;
489 if (code_gen_buffer_size > (512 * 1024 * 1024))
490 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 491#elif defined(__arm__)
63d41246 492 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
493 flags |= MAP_FIXED;
494 start = (void *) 0x01000000UL;
495 if (code_gen_buffer_size > 16 * 1024 * 1024)
496 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 497#endif
141ac468
BS
498 code_gen_buffer = mmap(start, code_gen_buffer_size,
499 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
500 flags, -1, 0);
501 if (code_gen_buffer == MAP_FAILED) {
502 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
503 exit(1);
504 }
505 }
a167ba50 506#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
507 {
508 int flags;
509 void *addr = NULL;
510 flags = MAP_PRIVATE | MAP_ANONYMOUS;
511#if defined(__x86_64__)
512 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
513 * 0x40000000 is free */
514 flags |= MAP_FIXED;
515 addr = (void *)0x40000000;
516 /* Cannot map more than that */
517 if (code_gen_buffer_size > (800 * 1024 * 1024))
518 code_gen_buffer_size = (800 * 1024 * 1024);
519#endif
520 code_gen_buffer = mmap(addr, code_gen_buffer_size,
521 PROT_WRITE | PROT_READ | PROT_EXEC,
522 flags, -1, 0);
523 if (code_gen_buffer == MAP_FAILED) {
524 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
525 exit(1);
526 }
527 }
26a5f13b
FB
528#else
529 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
530 map_exec(code_gen_buffer, code_gen_buffer_size);
531#endif
4369415f 532#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
533 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
534 code_gen_buffer_max_size = code_gen_buffer_size -
535 code_gen_max_block_size();
536 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
537 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
538}
539
540/* Must be called before using the QEMU cpus. 'tb_size' is the size
541 (in bytes) allocated to the translation buffer. Zero means default
542 size. */
543void cpu_exec_init_all(unsigned long tb_size)
544{
26a5f13b
FB
545 cpu_gen_init();
546 code_gen_alloc(tb_size);
547 code_gen_ptr = code_gen_buffer;
4369415f 548 page_init();
e2eef170 549#if !defined(CONFIG_USER_ONLY)
26a5f13b 550 io_mem_init();
e2eef170 551#endif
26a5f13b
FB
552}
553
9656f324
PB
554#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
555
e59fb374 556static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
557{
558 CPUState *env = opaque;
9656f324 559
3098dba0
AJ
560 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
561 version_id is increased. */
562 env->interrupt_request &= ~0x01;
9656f324
PB
563 tlb_flush(env, 1);
564
565 return 0;
566}
e7f4eff7
JQ
567
568static const VMStateDescription vmstate_cpu_common = {
569 .name = "cpu_common",
570 .version_id = 1,
571 .minimum_version_id = 1,
572 .minimum_version_id_old = 1,
e7f4eff7
JQ
573 .post_load = cpu_common_post_load,
574 .fields = (VMStateField []) {
575 VMSTATE_UINT32(halted, CPUState),
576 VMSTATE_UINT32(interrupt_request, CPUState),
577 VMSTATE_END_OF_LIST()
578 }
579};
9656f324
PB
580#endif
581
950f1472
GC
582CPUState *qemu_get_cpu(int cpu)
583{
584 CPUState *env = first_cpu;
585
586 while (env) {
587 if (env->cpu_index == cpu)
588 break;
589 env = env->next_cpu;
590 }
591
592 return env;
593}
594
6a00d601 595void cpu_exec_init(CPUState *env)
fd6ce8f6 596{
6a00d601
FB
597 CPUState **penv;
598 int cpu_index;
599
c2764719
PB
600#if defined(CONFIG_USER_ONLY)
601 cpu_list_lock();
602#endif
6a00d601
FB
603 env->next_cpu = NULL;
604 penv = &first_cpu;
605 cpu_index = 0;
606 while (*penv != NULL) {
1e9fa730 607 penv = &(*penv)->next_cpu;
6a00d601
FB
608 cpu_index++;
609 }
610 env->cpu_index = cpu_index;
268a362c 611 env->numa_node = 0;
72cf2d4f
BS
612 QTAILQ_INIT(&env->breakpoints);
613 QTAILQ_INIT(&env->watchpoints);
6a00d601 614 *penv = env;
c2764719
PB
615#if defined(CONFIG_USER_ONLY)
616 cpu_list_unlock();
617#endif
b3c7724c 618#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 619 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
620 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
621 cpu_save, cpu_load, env);
622#endif
fd6ce8f6
FB
623}
624
9fa3e853
FB
625static inline void invalidate_page_bitmap(PageDesc *p)
626{
627 if (p->code_bitmap) {
59817ccb 628 qemu_free(p->code_bitmap);
9fa3e853
FB
629 p->code_bitmap = NULL;
630 }
631 p->code_write_count = 0;
632}
633
5cd2c5b6
RH
634/* Set to NULL all the 'first_tb' fields in all PageDescs. */
635
636static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 637{
5cd2c5b6 638 int i;
fd6ce8f6 639
5cd2c5b6
RH
640 if (*lp == NULL) {
641 return;
642 }
643 if (level == 0) {
644 PageDesc *pd = *lp;
645 for (i = 0; i < L2_BITS; ++i) {
646 pd[i].first_tb = NULL;
647 invalidate_page_bitmap(pd + i);
fd6ce8f6 648 }
5cd2c5b6
RH
649 } else {
650 void **pp = *lp;
651 for (i = 0; i < L2_BITS; ++i) {
652 page_flush_tb_1 (level - 1, pp + i);
653 }
654 }
655}
656
657static void page_flush_tb(void)
658{
659 int i;
660 for (i = 0; i < V_L1_SIZE; i++) {
661 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
662 }
663}
664
665/* flush all the translation blocks */
d4e8164f 666/* XXX: tb_flush is currently not thread safe */
6a00d601 667void tb_flush(CPUState *env1)
fd6ce8f6 668{
6a00d601 669 CPUState *env;
0124311e 670#if defined(DEBUG_FLUSH)
ab3d1727
BS
671 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
672 (unsigned long)(code_gen_ptr - code_gen_buffer),
673 nb_tbs, nb_tbs > 0 ?
674 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 675#endif
26a5f13b 676 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
677 cpu_abort(env1, "Internal error: code buffer overflow\n");
678
fd6ce8f6 679 nb_tbs = 0;
3b46e624 680
6a00d601
FB
681 for(env = first_cpu; env != NULL; env = env->next_cpu) {
682 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
683 }
9fa3e853 684
8a8a608f 685 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 686 page_flush_tb();
9fa3e853 687
fd6ce8f6 688 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
689 /* XXX: flush processor icache at this point if cache flush is
690 expensive */
e3db7226 691 tb_flush_count++;
fd6ce8f6
FB
692}
693
694#ifdef DEBUG_TB_CHECK
695
bc98a7ef 696static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
697{
698 TranslationBlock *tb;
699 int i;
700 address &= TARGET_PAGE_MASK;
99773bd4
PB
701 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
702 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
703 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
704 address >= tb->pc + tb->size)) {
0bf9e31a
BS
705 printf("ERROR invalidate: address=" TARGET_FMT_lx
706 " PC=%08lx size=%04x\n",
99773bd4 707 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
708 }
709 }
710 }
711}
712
713/* verify that all the pages have correct rights for code */
714static void tb_page_check(void)
715{
716 TranslationBlock *tb;
717 int i, flags1, flags2;
3b46e624 718
99773bd4
PB
719 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
720 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
721 flags1 = page_get_flags(tb->pc);
722 flags2 = page_get_flags(tb->pc + tb->size - 1);
723 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
724 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 725 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
726 }
727 }
728 }
729}
730
731#endif
732
733/* invalidate one TB */
734static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
735 int next_offset)
736{
737 TranslationBlock *tb1;
738 for(;;) {
739 tb1 = *ptb;
740 if (tb1 == tb) {
741 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
742 break;
743 }
744 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
745 }
746}
747
9fa3e853
FB
748static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
749{
750 TranslationBlock *tb1;
751 unsigned int n1;
752
753 for(;;) {
754 tb1 = *ptb;
755 n1 = (long)tb1 & 3;
756 tb1 = (TranslationBlock *)((long)tb1 & ~3);
757 if (tb1 == tb) {
758 *ptb = tb1->page_next[n1];
759 break;
760 }
761 ptb = &tb1->page_next[n1];
762 }
763}
764
d4e8164f
FB
765static inline void tb_jmp_remove(TranslationBlock *tb, int n)
766{
767 TranslationBlock *tb1, **ptb;
768 unsigned int n1;
769
770 ptb = &tb->jmp_next[n];
771 tb1 = *ptb;
772 if (tb1) {
773 /* find tb(n) in circular list */
774 for(;;) {
775 tb1 = *ptb;
776 n1 = (long)tb1 & 3;
777 tb1 = (TranslationBlock *)((long)tb1 & ~3);
778 if (n1 == n && tb1 == tb)
779 break;
780 if (n1 == 2) {
781 ptb = &tb1->jmp_first;
782 } else {
783 ptb = &tb1->jmp_next[n1];
784 }
785 }
786 /* now we can suppress tb(n) from the list */
787 *ptb = tb->jmp_next[n];
788
789 tb->jmp_next[n] = NULL;
790 }
791}
792
793/* reset the jump entry 'n' of a TB so that it is not chained to
794 another TB */
795static inline void tb_reset_jump(TranslationBlock *tb, int n)
796{
797 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
798}
799
41c1b1c9 800void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 801{
6a00d601 802 CPUState *env;
8a40a180 803 PageDesc *p;
d4e8164f 804 unsigned int h, n1;
41c1b1c9 805 tb_page_addr_t phys_pc;
8a40a180 806 TranslationBlock *tb1, *tb2;
3b46e624 807
8a40a180
FB
808 /* remove the TB from the hash list */
809 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
810 h = tb_phys_hash_func(phys_pc);
5fafdf24 811 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
812 offsetof(TranslationBlock, phys_hash_next));
813
814 /* remove the TB from the page list */
815 if (tb->page_addr[0] != page_addr) {
816 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
817 tb_page_remove(&p->first_tb, tb);
818 invalidate_page_bitmap(p);
819 }
820 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
821 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
822 tb_page_remove(&p->first_tb, tb);
823 invalidate_page_bitmap(p);
824 }
825
36bdbe54 826 tb_invalidated_flag = 1;
59817ccb 827
fd6ce8f6 828 /* remove the TB from the hash list */
8a40a180 829 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
830 for(env = first_cpu; env != NULL; env = env->next_cpu) {
831 if (env->tb_jmp_cache[h] == tb)
832 env->tb_jmp_cache[h] = NULL;
833 }
d4e8164f
FB
834
835 /* suppress this TB from the two jump lists */
836 tb_jmp_remove(tb, 0);
837 tb_jmp_remove(tb, 1);
838
839 /* suppress any remaining jumps to this TB */
840 tb1 = tb->jmp_first;
841 for(;;) {
842 n1 = (long)tb1 & 3;
843 if (n1 == 2)
844 break;
845 tb1 = (TranslationBlock *)((long)tb1 & ~3);
846 tb2 = tb1->jmp_next[n1];
847 tb_reset_jump(tb1, n1);
848 tb1->jmp_next[n1] = NULL;
849 tb1 = tb2;
850 }
851 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 852
e3db7226 853 tb_phys_invalidate_count++;
9fa3e853
FB
854}
855
856static inline void set_bits(uint8_t *tab, int start, int len)
857{
858 int end, mask, end1;
859
860 end = start + len;
861 tab += start >> 3;
862 mask = 0xff << (start & 7);
863 if ((start & ~7) == (end & ~7)) {
864 if (start < end) {
865 mask &= ~(0xff << (end & 7));
866 *tab |= mask;
867 }
868 } else {
869 *tab++ |= mask;
870 start = (start + 8) & ~7;
871 end1 = end & ~7;
872 while (start < end1) {
873 *tab++ = 0xff;
874 start += 8;
875 }
876 if (start < end) {
877 mask = ~(0xff << (end & 7));
878 *tab |= mask;
879 }
880 }
881}
882
883static void build_page_bitmap(PageDesc *p)
884{
885 int n, tb_start, tb_end;
886 TranslationBlock *tb;
3b46e624 887
b2a7081a 888 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
889
890 tb = p->first_tb;
891 while (tb != NULL) {
892 n = (long)tb & 3;
893 tb = (TranslationBlock *)((long)tb & ~3);
894 /* NOTE: this is subtle as a TB may span two physical pages */
895 if (n == 0) {
896 /* NOTE: tb_end may be after the end of the page, but
897 it is not a problem */
898 tb_start = tb->pc & ~TARGET_PAGE_MASK;
899 tb_end = tb_start + tb->size;
900 if (tb_end > TARGET_PAGE_SIZE)
901 tb_end = TARGET_PAGE_SIZE;
902 } else {
903 tb_start = 0;
904 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
905 }
906 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
907 tb = tb->page_next[n];
908 }
909}
910
2e70f6ef
PB
911TranslationBlock *tb_gen_code(CPUState *env,
912 target_ulong pc, target_ulong cs_base,
913 int flags, int cflags)
d720b93d
FB
914{
915 TranslationBlock *tb;
916 uint8_t *tc_ptr;
41c1b1c9
PB
917 tb_page_addr_t phys_pc, phys_page2;
918 target_ulong virt_page2;
d720b93d
FB
919 int code_gen_size;
920
41c1b1c9 921 phys_pc = get_page_addr_code(env, pc);
c27004ec 922 tb = tb_alloc(pc);
d720b93d
FB
923 if (!tb) {
924 /* flush must be done */
925 tb_flush(env);
926 /* cannot fail at this point */
c27004ec 927 tb = tb_alloc(pc);
2e70f6ef
PB
928 /* Don't forget to invalidate previous TB info. */
929 tb_invalidated_flag = 1;
d720b93d
FB
930 }
931 tc_ptr = code_gen_ptr;
932 tb->tc_ptr = tc_ptr;
933 tb->cs_base = cs_base;
934 tb->flags = flags;
935 tb->cflags = cflags;
d07bde88 936 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 937 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 938
d720b93d 939 /* check next page if needed */
c27004ec 940 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 941 phys_page2 = -1;
c27004ec 942 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 943 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 944 }
41c1b1c9 945 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 946 return tb;
d720b93d 947}
3b46e624 948
9fa3e853
FB
949/* invalidate all TBs which intersect with the target physical page
950 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
951 the same physical page. 'is_cpu_write_access' should be true if called
952 from a real cpu write access: the virtual CPU will exit the current
953 TB if code is modified inside this TB. */
41c1b1c9 954void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
955 int is_cpu_write_access)
956{
6b917547 957 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 958 CPUState *env = cpu_single_env;
41c1b1c9 959 tb_page_addr_t tb_start, tb_end;
6b917547
AL
960 PageDesc *p;
961 int n;
962#ifdef TARGET_HAS_PRECISE_SMC
963 int current_tb_not_found = is_cpu_write_access;
964 TranslationBlock *current_tb = NULL;
965 int current_tb_modified = 0;
966 target_ulong current_pc = 0;
967 target_ulong current_cs_base = 0;
968 int current_flags = 0;
969#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
970
971 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 972 if (!p)
9fa3e853 973 return;
5fafdf24 974 if (!p->code_bitmap &&
d720b93d
FB
975 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
976 is_cpu_write_access) {
9fa3e853
FB
977 /* build code bitmap */
978 build_page_bitmap(p);
979 }
980
981 /* we remove all the TBs in the range [start, end[ */
982 /* XXX: see if in some cases it could be faster to invalidate all the code */
983 tb = p->first_tb;
984 while (tb != NULL) {
985 n = (long)tb & 3;
986 tb = (TranslationBlock *)((long)tb & ~3);
987 tb_next = tb->page_next[n];
988 /* NOTE: this is subtle as a TB may span two physical pages */
989 if (n == 0) {
990 /* NOTE: tb_end may be after the end of the page, but
991 it is not a problem */
992 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
993 tb_end = tb_start + tb->size;
994 } else {
995 tb_start = tb->page_addr[1];
996 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
997 }
998 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
999#ifdef TARGET_HAS_PRECISE_SMC
1000 if (current_tb_not_found) {
1001 current_tb_not_found = 0;
1002 current_tb = NULL;
2e70f6ef 1003 if (env->mem_io_pc) {
d720b93d 1004 /* now we have a real cpu fault */
2e70f6ef 1005 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1006 }
1007 }
1008 if (current_tb == tb &&
2e70f6ef 1009 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1010 /* If we are modifying the current TB, we must stop
1011 its execution. We could be more precise by checking
1012 that the modification is after the current PC, but it
1013 would require a specialized function to partially
1014 restore the CPU state */
3b46e624 1015
d720b93d 1016 current_tb_modified = 1;
5fafdf24 1017 cpu_restore_state(current_tb, env,
2e70f6ef 1018 env->mem_io_pc, NULL);
6b917547
AL
1019 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1020 &current_flags);
d720b93d
FB
1021 }
1022#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1023 /* we need to do that to handle the case where a signal
1024 occurs while doing tb_phys_invalidate() */
1025 saved_tb = NULL;
1026 if (env) {
1027 saved_tb = env->current_tb;
1028 env->current_tb = NULL;
1029 }
9fa3e853 1030 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1031 if (env) {
1032 env->current_tb = saved_tb;
1033 if (env->interrupt_request && env->current_tb)
1034 cpu_interrupt(env, env->interrupt_request);
1035 }
9fa3e853
FB
1036 }
1037 tb = tb_next;
1038 }
1039#if !defined(CONFIG_USER_ONLY)
1040 /* if no code remaining, no need to continue to use slow writes */
1041 if (!p->first_tb) {
1042 invalidate_page_bitmap(p);
d720b93d 1043 if (is_cpu_write_access) {
2e70f6ef 1044 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1045 }
1046 }
1047#endif
1048#ifdef TARGET_HAS_PRECISE_SMC
1049 if (current_tb_modified) {
1050 /* we generate a block containing just the instruction
1051 modifying the memory. It will ensure that it cannot modify
1052 itself */
ea1c1802 1053 env->current_tb = NULL;
2e70f6ef 1054 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1055 cpu_resume_from_signal(env, NULL);
9fa3e853 1056 }
fd6ce8f6 1057#endif
9fa3e853 1058}
fd6ce8f6 1059
9fa3e853 1060/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1061static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1062{
1063 PageDesc *p;
1064 int offset, b;
59817ccb 1065#if 0
a4193c8a 1066 if (1) {
93fcfe39
AL
1067 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1068 cpu_single_env->mem_io_vaddr, len,
1069 cpu_single_env->eip,
1070 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1071 }
1072#endif
9fa3e853 1073 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1074 if (!p)
9fa3e853
FB
1075 return;
1076 if (p->code_bitmap) {
1077 offset = start & ~TARGET_PAGE_MASK;
1078 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1079 if (b & ((1 << len) - 1))
1080 goto do_invalidate;
1081 } else {
1082 do_invalidate:
d720b93d 1083 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1084 }
1085}
1086
9fa3e853 1087#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1088static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1089 unsigned long pc, void *puc)
9fa3e853 1090{
6b917547 1091 TranslationBlock *tb;
9fa3e853 1092 PageDesc *p;
6b917547 1093 int n;
d720b93d 1094#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1095 TranslationBlock *current_tb = NULL;
d720b93d 1096 CPUState *env = cpu_single_env;
6b917547
AL
1097 int current_tb_modified = 0;
1098 target_ulong current_pc = 0;
1099 target_ulong current_cs_base = 0;
1100 int current_flags = 0;
d720b93d 1101#endif
9fa3e853
FB
1102
1103 addr &= TARGET_PAGE_MASK;
1104 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1105 if (!p)
9fa3e853
FB
1106 return;
1107 tb = p->first_tb;
d720b93d
FB
1108#ifdef TARGET_HAS_PRECISE_SMC
1109 if (tb && pc != 0) {
1110 current_tb = tb_find_pc(pc);
1111 }
1112#endif
9fa3e853
FB
1113 while (tb != NULL) {
1114 n = (long)tb & 3;
1115 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1116#ifdef TARGET_HAS_PRECISE_SMC
1117 if (current_tb == tb &&
2e70f6ef 1118 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1119 /* If we are modifying the current TB, we must stop
1120 its execution. We could be more precise by checking
1121 that the modification is after the current PC, but it
1122 would require a specialized function to partially
1123 restore the CPU state */
3b46e624 1124
d720b93d
FB
1125 current_tb_modified = 1;
1126 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1127 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1128 &current_flags);
d720b93d
FB
1129 }
1130#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1131 tb_phys_invalidate(tb, addr);
1132 tb = tb->page_next[n];
1133 }
fd6ce8f6 1134 p->first_tb = NULL;
d720b93d
FB
1135#ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb_modified) {
1137 /* we generate a block containing just the instruction
1138 modifying the memory. It will ensure that it cannot modify
1139 itself */
ea1c1802 1140 env->current_tb = NULL;
2e70f6ef 1141 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1142 cpu_resume_from_signal(env, puc);
1143 }
1144#endif
fd6ce8f6 1145}
9fa3e853 1146#endif
fd6ce8f6
FB
1147
1148/* add the tb in the target page and protect it if necessary */
5fafdf24 1149static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1150 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1151{
1152 PageDesc *p;
9fa3e853
FB
1153 TranslationBlock *last_first_tb;
1154
1155 tb->page_addr[n] = page_addr;
5cd2c5b6 1156 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1157 tb->page_next[n] = p->first_tb;
1158 last_first_tb = p->first_tb;
1159 p->first_tb = (TranslationBlock *)((long)tb | n);
1160 invalidate_page_bitmap(p);
fd6ce8f6 1161
107db443 1162#if defined(TARGET_HAS_SMC) || 1
d720b93d 1163
9fa3e853 1164#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1165 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1166 target_ulong addr;
1167 PageDesc *p2;
9fa3e853
FB
1168 int prot;
1169
fd6ce8f6
FB
1170 /* force the host page as non writable (writes will have a
1171 page fault + mprotect overhead) */
53a5960a 1172 page_addr &= qemu_host_page_mask;
fd6ce8f6 1173 prot = 0;
53a5960a
PB
1174 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1175 addr += TARGET_PAGE_SIZE) {
1176
1177 p2 = page_find (addr >> TARGET_PAGE_BITS);
1178 if (!p2)
1179 continue;
1180 prot |= p2->flags;
1181 p2->flags &= ~PAGE_WRITE;
1182 page_get_flags(addr);
1183 }
5fafdf24 1184 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1185 (prot & PAGE_BITS) & ~PAGE_WRITE);
1186#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1187 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1188 page_addr);
fd6ce8f6 1189#endif
fd6ce8f6 1190 }
9fa3e853
FB
1191#else
1192 /* if some code is already present, then the pages are already
1193 protected. So we handle the case where only the first TB is
1194 allocated in a physical page */
1195 if (!last_first_tb) {
6a00d601 1196 tlb_protect_code(page_addr);
9fa3e853
FB
1197 }
1198#endif
d720b93d
FB
1199
1200#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1201}
1202
1203/* Allocate a new translation block. Flush the translation buffer if
1204 too many translation blocks or too much generated code. */
c27004ec 1205TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1206{
1207 TranslationBlock *tb;
fd6ce8f6 1208
26a5f13b
FB
1209 if (nb_tbs >= code_gen_max_blocks ||
1210 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1211 return NULL;
fd6ce8f6
FB
1212 tb = &tbs[nb_tbs++];
1213 tb->pc = pc;
b448f2f3 1214 tb->cflags = 0;
d4e8164f
FB
1215 return tb;
1216}
1217
2e70f6ef
PB
1218void tb_free(TranslationBlock *tb)
1219{
bf20dc07 1220 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1221 Ignore the hard cases and just back up if this TB happens to
1222 be the last one generated. */
1223 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1224 code_gen_ptr = tb->tc_ptr;
1225 nb_tbs--;
1226 }
1227}
1228
9fa3e853
FB
1229/* add a new TB and link it to the physical page tables. phys_page2 is
1230 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1231void tb_link_page(TranslationBlock *tb,
1232 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1233{
9fa3e853
FB
1234 unsigned int h;
1235 TranslationBlock **ptb;
1236
c8a706fe
PB
1237 /* Grab the mmap lock to stop another thread invalidating this TB
1238 before we are done. */
1239 mmap_lock();
9fa3e853
FB
1240 /* add in the physical hash table */
1241 h = tb_phys_hash_func(phys_pc);
1242 ptb = &tb_phys_hash[h];
1243 tb->phys_hash_next = *ptb;
1244 *ptb = tb;
fd6ce8f6
FB
1245
1246 /* add in the page list */
9fa3e853
FB
1247 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1248 if (phys_page2 != -1)
1249 tb_alloc_page(tb, 1, phys_page2);
1250 else
1251 tb->page_addr[1] = -1;
9fa3e853 1252
d4e8164f
FB
1253 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1254 tb->jmp_next[0] = NULL;
1255 tb->jmp_next[1] = NULL;
1256
1257 /* init original jump addresses */
1258 if (tb->tb_next_offset[0] != 0xffff)
1259 tb_reset_jump(tb, 0);
1260 if (tb->tb_next_offset[1] != 0xffff)
1261 tb_reset_jump(tb, 1);
8a40a180
FB
1262
1263#ifdef DEBUG_TB_CHECK
1264 tb_page_check();
1265#endif
c8a706fe 1266 mmap_unlock();
fd6ce8f6
FB
1267}
1268
9fa3e853
FB
1269/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1270 tb[1].tc_ptr. Return NULL if not found */
1271TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1272{
9fa3e853
FB
1273 int m_min, m_max, m;
1274 unsigned long v;
1275 TranslationBlock *tb;
a513fe19
FB
1276
1277 if (nb_tbs <= 0)
1278 return NULL;
1279 if (tc_ptr < (unsigned long)code_gen_buffer ||
1280 tc_ptr >= (unsigned long)code_gen_ptr)
1281 return NULL;
1282 /* binary search (cf Knuth) */
1283 m_min = 0;
1284 m_max = nb_tbs - 1;
1285 while (m_min <= m_max) {
1286 m = (m_min + m_max) >> 1;
1287 tb = &tbs[m];
1288 v = (unsigned long)tb->tc_ptr;
1289 if (v == tc_ptr)
1290 return tb;
1291 else if (tc_ptr < v) {
1292 m_max = m - 1;
1293 } else {
1294 m_min = m + 1;
1295 }
5fafdf24 1296 }
a513fe19
FB
1297 return &tbs[m_max];
1298}
7501267e 1299
ea041c0e
FB
1300static void tb_reset_jump_recursive(TranslationBlock *tb);
1301
1302static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1303{
1304 TranslationBlock *tb1, *tb_next, **ptb;
1305 unsigned int n1;
1306
1307 tb1 = tb->jmp_next[n];
1308 if (tb1 != NULL) {
1309 /* find head of list */
1310 for(;;) {
1311 n1 = (long)tb1 & 3;
1312 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1313 if (n1 == 2)
1314 break;
1315 tb1 = tb1->jmp_next[n1];
1316 }
1317 /* we are now sure now that tb jumps to tb1 */
1318 tb_next = tb1;
1319
1320 /* remove tb from the jmp_first list */
1321 ptb = &tb_next->jmp_first;
1322 for(;;) {
1323 tb1 = *ptb;
1324 n1 = (long)tb1 & 3;
1325 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1326 if (n1 == n && tb1 == tb)
1327 break;
1328 ptb = &tb1->jmp_next[n1];
1329 }
1330 *ptb = tb->jmp_next[n];
1331 tb->jmp_next[n] = NULL;
3b46e624 1332
ea041c0e
FB
1333 /* suppress the jump to next tb in generated code */
1334 tb_reset_jump(tb, n);
1335
0124311e 1336 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1337 tb_reset_jump_recursive(tb_next);
1338 }
1339}
1340
1341static void tb_reset_jump_recursive(TranslationBlock *tb)
1342{
1343 tb_reset_jump_recursive2(tb, 0);
1344 tb_reset_jump_recursive2(tb, 1);
1345}
1346
1fddef4b 1347#if defined(TARGET_HAS_ICE)
94df27fd
PB
1348#if defined(CONFIG_USER_ONLY)
1349static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1350{
1351 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1352}
1353#else
d720b93d
FB
1354static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1355{
c227f099 1356 target_phys_addr_t addr;
9b3c35e0 1357 target_ulong pd;
c227f099 1358 ram_addr_t ram_addr;
c2f07f81 1359 PhysPageDesc *p;
d720b93d 1360
c2f07f81
PB
1361 addr = cpu_get_phys_page_debug(env, pc);
1362 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1363 if (!p) {
1364 pd = IO_MEM_UNASSIGNED;
1365 } else {
1366 pd = p->phys_offset;
1367 }
1368 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1369 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1370}
c27004ec 1371#endif
94df27fd 1372#endif /* TARGET_HAS_ICE */
d720b93d 1373
c527ee8f
PB
1374#if defined(CONFIG_USER_ONLY)
1375void cpu_watchpoint_remove_all(CPUState *env, int mask)
1376
1377{
1378}
1379
1380int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1381 int flags, CPUWatchpoint **watchpoint)
1382{
1383 return -ENOSYS;
1384}
1385#else
6658ffb8 1386/* Add a watchpoint. */
a1d1bb31
AL
1387int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1388 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1389{
b4051334 1390 target_ulong len_mask = ~(len - 1);
c0ce998e 1391 CPUWatchpoint *wp;
6658ffb8 1392
b4051334
AL
1393 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1394 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1395 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1396 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1397 return -EINVAL;
1398 }
a1d1bb31 1399 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1400
1401 wp->vaddr = addr;
b4051334 1402 wp->len_mask = len_mask;
a1d1bb31
AL
1403 wp->flags = flags;
1404
2dc9f411 1405 /* keep all GDB-injected watchpoints in front */
c0ce998e 1406 if (flags & BP_GDB)
72cf2d4f 1407 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1408 else
72cf2d4f 1409 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1410
6658ffb8 1411 tlb_flush_page(env, addr);
a1d1bb31
AL
1412
1413 if (watchpoint)
1414 *watchpoint = wp;
1415 return 0;
6658ffb8
PB
1416}
1417
a1d1bb31
AL
1418/* Remove a specific watchpoint. */
1419int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1420 int flags)
6658ffb8 1421{
b4051334 1422 target_ulong len_mask = ~(len - 1);
a1d1bb31 1423 CPUWatchpoint *wp;
6658ffb8 1424
72cf2d4f 1425 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1426 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1427 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1428 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1429 return 0;
1430 }
1431 }
a1d1bb31 1432 return -ENOENT;
6658ffb8
PB
1433}
1434
a1d1bb31
AL
1435/* Remove a specific watchpoint by reference. */
1436void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1437{
72cf2d4f 1438 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1439
a1d1bb31
AL
1440 tlb_flush_page(env, watchpoint->vaddr);
1441
1442 qemu_free(watchpoint);
1443}
1444
1445/* Remove all matching watchpoints. */
1446void cpu_watchpoint_remove_all(CPUState *env, int mask)
1447{
c0ce998e 1448 CPUWatchpoint *wp, *next;
a1d1bb31 1449
72cf2d4f 1450 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1451 if (wp->flags & mask)
1452 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1453 }
7d03f82f 1454}
c527ee8f 1455#endif
7d03f82f 1456
a1d1bb31
AL
1457/* Add a breakpoint. */
1458int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1459 CPUBreakpoint **breakpoint)
4c3a88a2 1460{
1fddef4b 1461#if defined(TARGET_HAS_ICE)
c0ce998e 1462 CPUBreakpoint *bp;
3b46e624 1463
a1d1bb31 1464 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1465
a1d1bb31
AL
1466 bp->pc = pc;
1467 bp->flags = flags;
1468
2dc9f411 1469 /* keep all GDB-injected breakpoints in front */
c0ce998e 1470 if (flags & BP_GDB)
72cf2d4f 1471 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1472 else
72cf2d4f 1473 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1474
d720b93d 1475 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1476
1477 if (breakpoint)
1478 *breakpoint = bp;
4c3a88a2
FB
1479 return 0;
1480#else
a1d1bb31 1481 return -ENOSYS;
4c3a88a2
FB
1482#endif
1483}
1484
a1d1bb31
AL
1485/* Remove a specific breakpoint. */
1486int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1487{
7d03f82f 1488#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1489 CPUBreakpoint *bp;
1490
72cf2d4f 1491 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1492 if (bp->pc == pc && bp->flags == flags) {
1493 cpu_breakpoint_remove_by_ref(env, bp);
1494 return 0;
1495 }
7d03f82f 1496 }
a1d1bb31
AL
1497 return -ENOENT;
1498#else
1499 return -ENOSYS;
7d03f82f
EI
1500#endif
1501}
1502
a1d1bb31
AL
1503/* Remove a specific breakpoint by reference. */
1504void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1505{
1fddef4b 1506#if defined(TARGET_HAS_ICE)
72cf2d4f 1507 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1508
a1d1bb31
AL
1509 breakpoint_invalidate(env, breakpoint->pc);
1510
1511 qemu_free(breakpoint);
1512#endif
1513}
1514
1515/* Remove all matching breakpoints. */
1516void cpu_breakpoint_remove_all(CPUState *env, int mask)
1517{
1518#if defined(TARGET_HAS_ICE)
c0ce998e 1519 CPUBreakpoint *bp, *next;
a1d1bb31 1520
72cf2d4f 1521 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1522 if (bp->flags & mask)
1523 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1524 }
4c3a88a2
FB
1525#endif
1526}
1527
c33a346e
FB
1528/* enable or disable single step mode. EXCP_DEBUG is returned by the
1529 CPU loop after each instruction */
1530void cpu_single_step(CPUState *env, int enabled)
1531{
1fddef4b 1532#if defined(TARGET_HAS_ICE)
c33a346e
FB
1533 if (env->singlestep_enabled != enabled) {
1534 env->singlestep_enabled = enabled;
e22a25c9
AL
1535 if (kvm_enabled())
1536 kvm_update_guest_debug(env, 0);
1537 else {
ccbb4d44 1538 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1539 /* XXX: only flush what is necessary */
1540 tb_flush(env);
1541 }
c33a346e
FB
1542 }
1543#endif
1544}
1545
34865134
FB
1546/* enable or disable low levels log */
1547void cpu_set_log(int log_flags)
1548{
1549 loglevel = log_flags;
1550 if (loglevel && !logfile) {
11fcfab4 1551 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1552 if (!logfile) {
1553 perror(logfilename);
1554 _exit(1);
1555 }
9fa3e853
FB
1556#if !defined(CONFIG_SOFTMMU)
1557 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1558 {
b55266b5 1559 static char logfile_buf[4096];
9fa3e853
FB
1560 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1561 }
bf65f53f
FN
1562#elif !defined(_WIN32)
1563 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1564 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1565#endif
e735b91c
PB
1566 log_append = 1;
1567 }
1568 if (!loglevel && logfile) {
1569 fclose(logfile);
1570 logfile = NULL;
34865134
FB
1571 }
1572}
1573
1574void cpu_set_log_filename(const char *filename)
1575{
1576 logfilename = strdup(filename);
e735b91c
PB
1577 if (logfile) {
1578 fclose(logfile);
1579 logfile = NULL;
1580 }
1581 cpu_set_log(loglevel);
34865134 1582}
c33a346e 1583
3098dba0 1584static void cpu_unlink_tb(CPUState *env)
ea041c0e 1585{
3098dba0
AJ
1586 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1587 problem and hope the cpu will stop of its own accord. For userspace
1588 emulation this often isn't actually as bad as it sounds. Often
1589 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1590 TranslationBlock *tb;
c227f099 1591 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1592
cab1b4bd 1593 spin_lock(&interrupt_lock);
3098dba0
AJ
1594 tb = env->current_tb;
1595 /* if the cpu is currently executing code, we must unlink it and
1596 all the potentially executing TB */
f76cfe56 1597 if (tb) {
3098dba0
AJ
1598 env->current_tb = NULL;
1599 tb_reset_jump_recursive(tb);
be214e6c 1600 }
cab1b4bd 1601 spin_unlock(&interrupt_lock);
3098dba0
AJ
1602}
1603
1604/* mask must never be zero, except for A20 change call */
1605void cpu_interrupt(CPUState *env, int mask)
1606{
1607 int old_mask;
be214e6c 1608
2e70f6ef 1609 old_mask = env->interrupt_request;
68a79315 1610 env->interrupt_request |= mask;
3098dba0 1611
8edac960
AL
1612#ifndef CONFIG_USER_ONLY
1613 /*
1614 * If called from iothread context, wake the target cpu in
1615 * case its halted.
1616 */
1617 if (!qemu_cpu_self(env)) {
1618 qemu_cpu_kick(env);
1619 return;
1620 }
1621#endif
1622
2e70f6ef 1623 if (use_icount) {
266910c4 1624 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1625#ifndef CONFIG_USER_ONLY
2e70f6ef 1626 if (!can_do_io(env)
be214e6c 1627 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1628 cpu_abort(env, "Raised interrupt while not in I/O function");
1629 }
1630#endif
1631 } else {
3098dba0 1632 cpu_unlink_tb(env);
ea041c0e
FB
1633 }
1634}
1635
b54ad049
FB
1636void cpu_reset_interrupt(CPUState *env, int mask)
1637{
1638 env->interrupt_request &= ~mask;
1639}
1640
3098dba0
AJ
1641void cpu_exit(CPUState *env)
1642{
1643 env->exit_request = 1;
1644 cpu_unlink_tb(env);
1645}
1646
c7cd6a37 1647const CPULogItem cpu_log_items[] = {
5fafdf24 1648 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1649 "show generated host assembly code for each compiled TB" },
1650 { CPU_LOG_TB_IN_ASM, "in_asm",
1651 "show target assembly code for each compiled TB" },
5fafdf24 1652 { CPU_LOG_TB_OP, "op",
57fec1fe 1653 "show micro ops for each compiled TB" },
f193c797 1654 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1655 "show micro ops "
1656#ifdef TARGET_I386
1657 "before eflags optimization and "
f193c797 1658#endif
e01a1157 1659 "after liveness analysis" },
f193c797
FB
1660 { CPU_LOG_INT, "int",
1661 "show interrupts/exceptions in short format" },
1662 { CPU_LOG_EXEC, "exec",
1663 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1664 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1665 "show CPU state before block translation" },
f193c797
FB
1666#ifdef TARGET_I386
1667 { CPU_LOG_PCALL, "pcall",
1668 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1669 { CPU_LOG_RESET, "cpu_reset",
1670 "show CPU state before CPU resets" },
f193c797 1671#endif
8e3a9fd2 1672#ifdef DEBUG_IOPORT
fd872598
FB
1673 { CPU_LOG_IOPORT, "ioport",
1674 "show all i/o ports accesses" },
8e3a9fd2 1675#endif
f193c797
FB
1676 { 0, NULL, NULL },
1677};
1678
f6f3fbca
MT
1679#ifndef CONFIG_USER_ONLY
1680static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1681 = QLIST_HEAD_INITIALIZER(memory_client_list);
1682
1683static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1684 ram_addr_t size,
1685 ram_addr_t phys_offset)
1686{
1687 CPUPhysMemoryClient *client;
1688 QLIST_FOREACH(client, &memory_client_list, list) {
1689 client->set_memory(client, start_addr, size, phys_offset);
1690 }
1691}
1692
1693static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1694 target_phys_addr_t end)
1695{
1696 CPUPhysMemoryClient *client;
1697 QLIST_FOREACH(client, &memory_client_list, list) {
1698 int r = client->sync_dirty_bitmap(client, start, end);
1699 if (r < 0)
1700 return r;
1701 }
1702 return 0;
1703}
1704
1705static int cpu_notify_migration_log(int enable)
1706{
1707 CPUPhysMemoryClient *client;
1708 QLIST_FOREACH(client, &memory_client_list, list) {
1709 int r = client->migration_log(client, enable);
1710 if (r < 0)
1711 return r;
1712 }
1713 return 0;
1714}
1715
5cd2c5b6
RH
1716static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1717 int level, void **lp)
f6f3fbca 1718{
5cd2c5b6 1719 int i;
f6f3fbca 1720
5cd2c5b6
RH
1721 if (*lp == NULL) {
1722 return;
1723 }
1724 if (level == 0) {
1725 PhysPageDesc *pd = *lp;
1726 for (i = 0; i < L2_BITS; ++i) {
1727 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1728 client->set_memory(client, pd[i].region_offset,
1729 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1730 }
5cd2c5b6
RH
1731 }
1732 } else {
1733 void **pp = *lp;
1734 for (i = 0; i < L2_BITS; ++i) {
1735 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1736 }
1737 }
1738}
1739
1740static void phys_page_for_each(CPUPhysMemoryClient *client)
1741{
5cd2c5b6
RH
1742 int i;
1743 for (i = 0; i < P_L1_SIZE; ++i) {
1744 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1745 l1_phys_map + 1);
f6f3fbca 1746 }
f6f3fbca
MT
1747}
1748
1749void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1750{
1751 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1752 phys_page_for_each(client);
1753}
1754
1755void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1756{
1757 QLIST_REMOVE(client, list);
1758}
1759#endif
1760
f193c797
FB
1761static int cmp1(const char *s1, int n, const char *s2)
1762{
1763 if (strlen(s2) != n)
1764 return 0;
1765 return memcmp(s1, s2, n) == 0;
1766}
3b46e624 1767
f193c797
FB
1768/* takes a comma separated list of log masks. Return 0 if error. */
1769int cpu_str_to_log_mask(const char *str)
1770{
c7cd6a37 1771 const CPULogItem *item;
f193c797
FB
1772 int mask;
1773 const char *p, *p1;
1774
1775 p = str;
1776 mask = 0;
1777 for(;;) {
1778 p1 = strchr(p, ',');
1779 if (!p1)
1780 p1 = p + strlen(p);
8e3a9fd2
FB
1781 if(cmp1(p,p1-p,"all")) {
1782 for(item = cpu_log_items; item->mask != 0; item++) {
1783 mask |= item->mask;
1784 }
1785 } else {
f193c797
FB
1786 for(item = cpu_log_items; item->mask != 0; item++) {
1787 if (cmp1(p, p1 - p, item->name))
1788 goto found;
1789 }
1790 return 0;
8e3a9fd2 1791 }
f193c797
FB
1792 found:
1793 mask |= item->mask;
1794 if (*p1 != ',')
1795 break;
1796 p = p1 + 1;
1797 }
1798 return mask;
1799}
ea041c0e 1800
7501267e
FB
1801void cpu_abort(CPUState *env, const char *fmt, ...)
1802{
1803 va_list ap;
493ae1f0 1804 va_list ap2;
7501267e
FB
1805
1806 va_start(ap, fmt);
493ae1f0 1807 va_copy(ap2, ap);
7501267e
FB
1808 fprintf(stderr, "qemu: fatal: ");
1809 vfprintf(stderr, fmt, ap);
1810 fprintf(stderr, "\n");
1811#ifdef TARGET_I386
7fe48483
FB
1812 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1813#else
1814 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1815#endif
93fcfe39
AL
1816 if (qemu_log_enabled()) {
1817 qemu_log("qemu: fatal: ");
1818 qemu_log_vprintf(fmt, ap2);
1819 qemu_log("\n");
f9373291 1820#ifdef TARGET_I386
93fcfe39 1821 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1822#else
93fcfe39 1823 log_cpu_state(env, 0);
f9373291 1824#endif
31b1a7b4 1825 qemu_log_flush();
93fcfe39 1826 qemu_log_close();
924edcae 1827 }
493ae1f0 1828 va_end(ap2);
f9373291 1829 va_end(ap);
fd052bf6
RV
1830#if defined(CONFIG_USER_ONLY)
1831 {
1832 struct sigaction act;
1833 sigfillset(&act.sa_mask);
1834 act.sa_handler = SIG_DFL;
1835 sigaction(SIGABRT, &act, NULL);
1836 }
1837#endif
7501267e
FB
1838 abort();
1839}
1840
c5be9f08
TS
1841CPUState *cpu_copy(CPUState *env)
1842{
01ba9816 1843 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1844 CPUState *next_cpu = new_env->next_cpu;
1845 int cpu_index = new_env->cpu_index;
5a38f081
AL
1846#if defined(TARGET_HAS_ICE)
1847 CPUBreakpoint *bp;
1848 CPUWatchpoint *wp;
1849#endif
1850
c5be9f08 1851 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1852
1853 /* Preserve chaining and index. */
c5be9f08
TS
1854 new_env->next_cpu = next_cpu;
1855 new_env->cpu_index = cpu_index;
5a38f081
AL
1856
1857 /* Clone all break/watchpoints.
1858 Note: Once we support ptrace with hw-debug register access, make sure
1859 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1860 QTAILQ_INIT(&env->breakpoints);
1861 QTAILQ_INIT(&env->watchpoints);
5a38f081 1862#if defined(TARGET_HAS_ICE)
72cf2d4f 1863 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1864 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1865 }
72cf2d4f 1866 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1867 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1868 wp->flags, NULL);
1869 }
1870#endif
1871
c5be9f08
TS
1872 return new_env;
1873}
1874
0124311e
FB
1875#if !defined(CONFIG_USER_ONLY)
1876
5c751e99
EI
1877static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1878{
1879 unsigned int i;
1880
1881 /* Discard jump cache entries for any tb which might potentially
1882 overlap the flushed page. */
1883 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1884 memset (&env->tb_jmp_cache[i], 0,
1885 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1886
1887 i = tb_jmp_cache_hash_page(addr);
1888 memset (&env->tb_jmp_cache[i], 0,
1889 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1890}
1891
08738984
IK
1892static CPUTLBEntry s_cputlb_empty_entry = {
1893 .addr_read = -1,
1894 .addr_write = -1,
1895 .addr_code = -1,
1896 .addend = -1,
1897};
1898
ee8b7021
FB
1899/* NOTE: if flush_global is true, also flush global entries (not
1900 implemented yet) */
1901void tlb_flush(CPUState *env, int flush_global)
33417e70 1902{
33417e70 1903 int i;
0124311e 1904
9fa3e853
FB
1905#if defined(DEBUG_TLB)
1906 printf("tlb_flush:\n");
1907#endif
0124311e
FB
1908 /* must reset current TB so that interrupts cannot modify the
1909 links while we are modifying them */
1910 env->current_tb = NULL;
1911
33417e70 1912 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1913 int mmu_idx;
1914 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1915 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1916 }
33417e70 1917 }
9fa3e853 1918
8a40a180 1919 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1920
e3db7226 1921 tlb_flush_count++;
33417e70
FB
1922}
1923
274da6b2 1924static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1925{
5fafdf24 1926 if (addr == (tlb_entry->addr_read &
84b7b8e7 1927 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1928 addr == (tlb_entry->addr_write &
84b7b8e7 1929 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1930 addr == (tlb_entry->addr_code &
84b7b8e7 1931 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1932 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1933 }
61382a50
FB
1934}
1935
2e12669a 1936void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1937{
8a40a180 1938 int i;
cfde4bd9 1939 int mmu_idx;
0124311e 1940
9fa3e853 1941#if defined(DEBUG_TLB)
108c49b8 1942 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1943#endif
0124311e
FB
1944 /* must reset current TB so that interrupts cannot modify the
1945 links while we are modifying them */
1946 env->current_tb = NULL;
61382a50
FB
1947
1948 addr &= TARGET_PAGE_MASK;
1949 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1950 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1951 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1952
5c751e99 1953 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1954}
1955
9fa3e853
FB
1956/* update the TLBs so that writes to code in the virtual page 'addr'
1957 can be detected */
c227f099 1958static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1959{
5fafdf24 1960 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1961 ram_addr + TARGET_PAGE_SIZE,
1962 CODE_DIRTY_FLAG);
9fa3e853
FB
1963}
1964
9fa3e853 1965/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1966 tested for self modifying code */
c227f099 1967static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1968 target_ulong vaddr)
9fa3e853 1969{
3a7d929e 1970 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1971}
1972
5fafdf24 1973static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1974 unsigned long start, unsigned long length)
1975{
1976 unsigned long addr;
84b7b8e7
FB
1977 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1978 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1979 if ((addr - start) < length) {
0f459d16 1980 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1981 }
1982 }
1983}
1984
5579c7f3 1985/* Note: start and end must be within the same ram block. */
c227f099 1986void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1987 int dirty_flags)
1ccde1cb
FB
1988{
1989 CPUState *env;
4f2ac237 1990 unsigned long length, start1;
0a962c02
FB
1991 int i, mask, len;
1992 uint8_t *p;
1ccde1cb
FB
1993
1994 start &= TARGET_PAGE_MASK;
1995 end = TARGET_PAGE_ALIGN(end);
1996
1997 length = end - start;
1998 if (length == 0)
1999 return;
0a962c02 2000 len = length >> TARGET_PAGE_BITS;
f23db169
FB
2001 mask = ~dirty_flags;
2002 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2003 for(i = 0; i < len; i++)
2004 p[i] &= mask;
2005
1ccde1cb
FB
2006 /* we modify the TLB cache so that the dirty bit will be set again
2007 when accessing the range */
5579c7f3
PB
2008 start1 = (unsigned long)qemu_get_ram_ptr(start);
2009 /* Chek that we don't span multiple blocks - this breaks the
2010 address comparisons below. */
2011 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2012 != (end - 1) - start) {
2013 abort();
2014 }
2015
6a00d601 2016 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2017 int mmu_idx;
2018 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2019 for(i = 0; i < CPU_TLB_SIZE; i++)
2020 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2021 start1, length);
2022 }
6a00d601 2023 }
1ccde1cb
FB
2024}
2025
74576198
AL
2026int cpu_physical_memory_set_dirty_tracking(int enable)
2027{
f6f3fbca 2028 int ret = 0;
74576198 2029 in_migration = enable;
f6f3fbca
MT
2030 ret = cpu_notify_migration_log(!!enable);
2031 return ret;
74576198
AL
2032}
2033
2034int cpu_physical_memory_get_dirty_tracking(void)
2035{
2036 return in_migration;
2037}
2038
c227f099
AL
2039int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2040 target_phys_addr_t end_addr)
2bec46dc 2041{
7b8f3b78 2042 int ret;
151f7749 2043
f6f3fbca 2044 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2045 return ret;
2bec46dc
AL
2046}
2047
3a7d929e
FB
2048static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2049{
c227f099 2050 ram_addr_t ram_addr;
5579c7f3 2051 void *p;
3a7d929e 2052
84b7b8e7 2053 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2054 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2055 + tlb_entry->addend);
2056 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2057 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2058 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2059 }
2060 }
2061}
2062
2063/* update the TLB according to the current state of the dirty bits */
2064void cpu_tlb_update_dirty(CPUState *env)
2065{
2066 int i;
cfde4bd9
IY
2067 int mmu_idx;
2068 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2069 for(i = 0; i < CPU_TLB_SIZE; i++)
2070 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2071 }
3a7d929e
FB
2072}
2073
0f459d16 2074static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2075{
0f459d16
PB
2076 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2077 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2078}
2079
0f459d16
PB
2080/* update the TLB corresponding to virtual page vaddr
2081 so that it is no longer dirty */
2082static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2083{
1ccde1cb 2084 int i;
cfde4bd9 2085 int mmu_idx;
1ccde1cb 2086
0f459d16 2087 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2088 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2089 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2090 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2091}
2092
59817ccb
FB
2093/* add a new TLB entry. At most one entry for a given virtual address
2094 is permitted. Return 0 if OK or 2 if the page could not be mapped
2095 (can only happen in non SOFTMMU mode for I/O pages or pages
2096 conflicting with the host address space). */
5fafdf24 2097int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2098 target_phys_addr_t paddr, int prot,
6ebbf390 2099 int mmu_idx, int is_softmmu)
9fa3e853 2100{
92e873b9 2101 PhysPageDesc *p;
4f2ac237 2102 unsigned long pd;
9fa3e853 2103 unsigned int index;
4f2ac237 2104 target_ulong address;
0f459d16 2105 target_ulong code_address;
c227f099 2106 target_phys_addr_t addend;
9fa3e853 2107 int ret;
84b7b8e7 2108 CPUTLBEntry *te;
a1d1bb31 2109 CPUWatchpoint *wp;
c227f099 2110 target_phys_addr_t iotlb;
9fa3e853 2111
92e873b9 2112 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2113 if (!p) {
2114 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2115 } else {
2116 pd = p->phys_offset;
9fa3e853
FB
2117 }
2118#if defined(DEBUG_TLB)
6ebbf390
JM
2119 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2120 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2121#endif
2122
2123 ret = 0;
0f459d16
PB
2124 address = vaddr;
2125 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2126 /* IO memory case (romd handled later) */
2127 address |= TLB_MMIO;
2128 }
5579c7f3 2129 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2130 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2131 /* Normal RAM. */
2132 iotlb = pd & TARGET_PAGE_MASK;
2133 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2134 iotlb |= IO_MEM_NOTDIRTY;
2135 else
2136 iotlb |= IO_MEM_ROM;
2137 } else {
ccbb4d44 2138 /* IO handlers are currently passed a physical address.
0f459d16
PB
2139 It would be nice to pass an offset from the base address
2140 of that region. This would avoid having to special case RAM,
2141 and avoid full address decoding in every device.
2142 We can't use the high bits of pd for this because
2143 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2144 iotlb = (pd & ~TARGET_PAGE_MASK);
2145 if (p) {
8da3ff18
PB
2146 iotlb += p->region_offset;
2147 } else {
2148 iotlb += paddr;
2149 }
0f459d16
PB
2150 }
2151
2152 code_address = address;
2153 /* Make accesses to pages with watchpoints go via the
2154 watchpoint trap routines. */
72cf2d4f 2155 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2156 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2157 iotlb = io_mem_watch + paddr;
2158 /* TODO: The memory case can be optimized by not trapping
2159 reads of pages with a write breakpoint. */
2160 address |= TLB_MMIO;
6658ffb8 2161 }
0f459d16 2162 }
d79acba4 2163
0f459d16
PB
2164 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2165 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2166 te = &env->tlb_table[mmu_idx][index];
2167 te->addend = addend - vaddr;
2168 if (prot & PAGE_READ) {
2169 te->addr_read = address;
2170 } else {
2171 te->addr_read = -1;
2172 }
5c751e99 2173
0f459d16
PB
2174 if (prot & PAGE_EXEC) {
2175 te->addr_code = code_address;
2176 } else {
2177 te->addr_code = -1;
2178 }
2179 if (prot & PAGE_WRITE) {
2180 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2181 (pd & IO_MEM_ROMD)) {
2182 /* Write access calls the I/O callback. */
2183 te->addr_write = address | TLB_MMIO;
2184 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2185 !cpu_physical_memory_is_dirty(pd)) {
2186 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2187 } else {
0f459d16 2188 te->addr_write = address;
9fa3e853 2189 }
0f459d16
PB
2190 } else {
2191 te->addr_write = -1;
9fa3e853 2192 }
9fa3e853
FB
2193 return ret;
2194}
2195
0124311e
FB
2196#else
2197
ee8b7021 2198void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2199{
2200}
2201
2e12669a 2202void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2203{
2204}
2205
edf8e2af
MW
2206/*
2207 * Walks guest process memory "regions" one by one
2208 * and calls callback function 'fn' for each region.
2209 */
5cd2c5b6
RH
2210
2211struct walk_memory_regions_data
2212{
2213 walk_memory_regions_fn fn;
2214 void *priv;
2215 unsigned long start;
2216 int prot;
2217};
2218
2219static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2220 unsigned long end, int new_prot)
2221{
2222 if (data->start != -1ul) {
2223 int rc = data->fn(data->priv, data->start, end, data->prot);
2224 if (rc != 0) {
2225 return rc;
2226 }
2227 }
2228
2229 data->start = (new_prot ? end : -1ul);
2230 data->prot = new_prot;
2231
2232 return 0;
2233}
2234
2235static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2236 unsigned long base, int level, void **lp)
2237{
2238 unsigned long pa;
2239 int i, rc;
2240
2241 if (*lp == NULL) {
2242 return walk_memory_regions_end(data, base, 0);
2243 }
2244
2245 if (level == 0) {
2246 PageDesc *pd = *lp;
2247 for (i = 0; i < L2_BITS; ++i) {
2248 int prot = pd[i].flags;
2249
2250 pa = base | (i << TARGET_PAGE_BITS);
2251 if (prot != data->prot) {
2252 rc = walk_memory_regions_end(data, pa, prot);
2253 if (rc != 0) {
2254 return rc;
9fa3e853 2255 }
9fa3e853 2256 }
5cd2c5b6
RH
2257 }
2258 } else {
2259 void **pp = *lp;
2260 for (i = 0; i < L2_BITS; ++i) {
2261 pa = base | (i << (TARGET_PAGE_BITS + L2_BITS * level));
2262 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2263 if (rc != 0) {
2264 return rc;
2265 }
2266 }
2267 }
2268
2269 return 0;
2270}
2271
2272int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2273{
2274 struct walk_memory_regions_data data;
2275 unsigned long i;
2276
2277 data.fn = fn;
2278 data.priv = priv;
2279 data.start = -1ul;
2280 data.prot = 0;
2281
2282 for (i = 0; i < V_L1_SIZE; i++) {
2283 int rc = walk_memory_regions_1(&data, i << V_L1_SHIFT,
2284 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2285 if (rc != 0) {
2286 return rc;
9fa3e853 2287 }
33417e70 2288 }
5cd2c5b6
RH
2289
2290 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2291}
2292
2293static int dump_region(void *priv, unsigned long start,
2294 unsigned long end, unsigned long prot)
2295{
2296 FILE *f = (FILE *)priv;
2297
2298 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2299 start, end, end - start,
2300 ((prot & PAGE_READ) ? 'r' : '-'),
2301 ((prot & PAGE_WRITE) ? 'w' : '-'),
2302 ((prot & PAGE_EXEC) ? 'x' : '-'));
2303
2304 return (0);
2305}
2306
2307/* dump memory mappings */
2308void page_dump(FILE *f)
2309{
2310 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2311 "start", "end", "size", "prot");
2312 walk_memory_regions(f, dump_region);
33417e70
FB
2313}
2314
53a5960a 2315int page_get_flags(target_ulong address)
33417e70 2316{
9fa3e853
FB
2317 PageDesc *p;
2318
2319 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2320 if (!p)
9fa3e853
FB
2321 return 0;
2322 return p->flags;
2323}
2324
376a7909
RH
2325/* Modify the flags of a page and invalidate the code if necessary.
2326 The flag PAGE_WRITE_ORG is positioned automatically depending
2327 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2328void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2329{
376a7909
RH
2330 target_ulong addr, len;
2331
2332 /* This function should never be called with addresses outside the
2333 guest address space. If this assert fires, it probably indicates
2334 a missing call to h2g_valid. */
2335#if HOST_LONG_BITS > L1_MAP_ADDR_SPACE_BITS
2336 assert(end < (1ul << L1_MAP_ADDR_SPACE_BITS));
2337#endif
2338 assert(start < end);
9fa3e853
FB
2339
2340 start = start & TARGET_PAGE_MASK;
2341 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2342
2343 if (flags & PAGE_WRITE) {
9fa3e853 2344 flags |= PAGE_WRITE_ORG;
376a7909
RH
2345 }
2346
2347 for (addr = start, len = end - start;
2348 len != 0;
2349 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2350 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2351
2352 /* If the write protection bit is set, then we invalidate
2353 the code inside. */
5fafdf24 2354 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2355 (flags & PAGE_WRITE) &&
2356 p->first_tb) {
d720b93d 2357 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2358 }
2359 p->flags = flags;
2360 }
33417e70
FB
2361}
2362
3d97b40b
TS
2363int page_check_range(target_ulong start, target_ulong len, int flags)
2364{
2365 PageDesc *p;
2366 target_ulong end;
2367 target_ulong addr;
2368
376a7909
RH
2369 /* This function should never be called with addresses outside the
2370 guest address space. If this assert fires, it probably indicates
2371 a missing call to h2g_valid. */
2372#if HOST_LONG_BITS > L1_MAP_ADDR_SPACE_BITS
2373 assert(start < (1ul << L1_MAP_ADDR_SPACE_BITS));
2374#endif
2375
2376 if (start + len - 1 < start) {
2377 /* We've wrapped around. */
55f280c9 2378 return -1;
376a7909 2379 }
55f280c9 2380
3d97b40b
TS
2381 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2382 start = start & TARGET_PAGE_MASK;
2383
376a7909
RH
2384 for (addr = start, len = end - start;
2385 len != 0;
2386 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2387 p = page_find(addr >> TARGET_PAGE_BITS);
2388 if( !p )
2389 return -1;
2390 if( !(p->flags & PAGE_VALID) )
2391 return -1;
2392
dae3270c 2393 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2394 return -1;
dae3270c
FB
2395 if (flags & PAGE_WRITE) {
2396 if (!(p->flags & PAGE_WRITE_ORG))
2397 return -1;
2398 /* unprotect the page if it was put read-only because it
2399 contains translated code */
2400 if (!(p->flags & PAGE_WRITE)) {
2401 if (!page_unprotect(addr, 0, NULL))
2402 return -1;
2403 }
2404 return 0;
2405 }
3d97b40b
TS
2406 }
2407 return 0;
2408}
2409
9fa3e853 2410/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2411 page. Return TRUE if the fault was successfully handled. */
53a5960a 2412int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2413{
2414 unsigned int page_index, prot, pindex;
2415 PageDesc *p, *p1;
53a5960a 2416 target_ulong host_start, host_end, addr;
9fa3e853 2417
c8a706fe
PB
2418 /* Technically this isn't safe inside a signal handler. However we
2419 know this only ever happens in a synchronous SEGV handler, so in
2420 practice it seems to be ok. */
2421 mmap_lock();
2422
83fb7adf 2423 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2424 page_index = host_start >> TARGET_PAGE_BITS;
2425 p1 = page_find(page_index);
c8a706fe
PB
2426 if (!p1) {
2427 mmap_unlock();
9fa3e853 2428 return 0;
c8a706fe 2429 }
83fb7adf 2430 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2431 p = p1;
2432 prot = 0;
2433 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2434 prot |= p->flags;
2435 p++;
2436 }
2437 /* if the page was really writable, then we change its
2438 protection back to writable */
2439 if (prot & PAGE_WRITE_ORG) {
2440 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2441 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2442 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2443 (prot & PAGE_BITS) | PAGE_WRITE);
2444 p1[pindex].flags |= PAGE_WRITE;
2445 /* and since the content will be modified, we must invalidate
2446 the corresponding translated code. */
d720b93d 2447 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2448#ifdef DEBUG_TB_CHECK
2449 tb_invalidate_check(address);
2450#endif
c8a706fe 2451 mmap_unlock();
9fa3e853
FB
2452 return 1;
2453 }
2454 }
c8a706fe 2455 mmap_unlock();
9fa3e853
FB
2456 return 0;
2457}
2458
6a00d601
FB
2459static inline void tlb_set_dirty(CPUState *env,
2460 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2461{
2462}
9fa3e853
FB
2463#endif /* defined(CONFIG_USER_ONLY) */
2464
e2eef170 2465#if !defined(CONFIG_USER_ONLY)
8da3ff18 2466
c04b2b78
PB
2467#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2468typedef struct subpage_t {
2469 target_phys_addr_t base;
2470 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2471 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2472 void *opaque[TARGET_PAGE_SIZE][2][4];
2473 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2474} subpage_t;
2475
c227f099
AL
2476static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2477 ram_addr_t memory, ram_addr_t region_offset);
2478static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2479 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2480#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2481 need_subpage) \
2482 do { \
2483 if (addr > start_addr) \
2484 start_addr2 = 0; \
2485 else { \
2486 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2487 if (start_addr2 > 0) \
2488 need_subpage = 1; \
2489 } \
2490 \
49e9fba2 2491 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2492 end_addr2 = TARGET_PAGE_SIZE - 1; \
2493 else { \
2494 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2495 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2496 need_subpage = 1; \
2497 } \
2498 } while (0)
2499
8f2498f9
MT
2500/* register physical memory.
2501 For RAM, 'size' must be a multiple of the target page size.
2502 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2503 io memory page. The address used when calling the IO function is
2504 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2505 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2506 before calculating this offset. This should not be a problem unless
2507 the low bits of start_addr and region_offset differ. */
c227f099
AL
2508void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2509 ram_addr_t size,
2510 ram_addr_t phys_offset,
2511 ram_addr_t region_offset)
33417e70 2512{
c227f099 2513 target_phys_addr_t addr, end_addr;
92e873b9 2514 PhysPageDesc *p;
9d42037b 2515 CPUState *env;
c227f099 2516 ram_addr_t orig_size = size;
db7b5426 2517 void *subpage;
33417e70 2518
f6f3fbca
MT
2519 cpu_notify_set_memory(start_addr, size, phys_offset);
2520
67c4d23c
PB
2521 if (phys_offset == IO_MEM_UNASSIGNED) {
2522 region_offset = start_addr;
2523 }
8da3ff18 2524 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2525 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2526 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2527 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2528 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2529 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2530 ram_addr_t orig_memory = p->phys_offset;
2531 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2532 int need_subpage = 0;
2533
2534 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2535 need_subpage);
4254fab8 2536 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2537 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2538 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2539 &p->phys_offset, orig_memory,
2540 p->region_offset);
db7b5426
BS
2541 } else {
2542 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2543 >> IO_MEM_SHIFT];
2544 }
8da3ff18
PB
2545 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2546 region_offset);
2547 p->region_offset = 0;
db7b5426
BS
2548 } else {
2549 p->phys_offset = phys_offset;
2550 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2551 (phys_offset & IO_MEM_ROMD))
2552 phys_offset += TARGET_PAGE_SIZE;
2553 }
2554 } else {
2555 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2556 p->phys_offset = phys_offset;
8da3ff18 2557 p->region_offset = region_offset;
db7b5426 2558 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2559 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2560 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2561 } else {
c227f099 2562 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2563 int need_subpage = 0;
2564
2565 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2566 end_addr2, need_subpage);
2567
4254fab8 2568 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2569 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2570 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2571 addr & TARGET_PAGE_MASK);
db7b5426 2572 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2573 phys_offset, region_offset);
2574 p->region_offset = 0;
db7b5426
BS
2575 }
2576 }
2577 }
8da3ff18 2578 region_offset += TARGET_PAGE_SIZE;
33417e70 2579 }
3b46e624 2580
9d42037b
FB
2581 /* since each CPU stores ram addresses in its TLB cache, we must
2582 reset the modified entries */
2583 /* XXX: slow ! */
2584 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2585 tlb_flush(env, 1);
2586 }
33417e70
FB
2587}
2588
ba863458 2589/* XXX: temporary until new memory mapping API */
c227f099 2590ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2591{
2592 PhysPageDesc *p;
2593
2594 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2595 if (!p)
2596 return IO_MEM_UNASSIGNED;
2597 return p->phys_offset;
2598}
2599
c227f099 2600void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2601{
2602 if (kvm_enabled())
2603 kvm_coalesce_mmio_region(addr, size);
2604}
2605
c227f099 2606void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2607{
2608 if (kvm_enabled())
2609 kvm_uncoalesce_mmio_region(addr, size);
2610}
2611
62a2744c
SY
2612void qemu_flush_coalesced_mmio_buffer(void)
2613{
2614 if (kvm_enabled())
2615 kvm_flush_coalesced_mmio_buffer();
2616}
2617
c902760f
MT
2618#if defined(__linux__) && !defined(TARGET_S390X)
2619
2620#include <sys/vfs.h>
2621
2622#define HUGETLBFS_MAGIC 0x958458f6
2623
2624static long gethugepagesize(const char *path)
2625{
2626 struct statfs fs;
2627 int ret;
2628
2629 do {
2630 ret = statfs(path, &fs);
2631 } while (ret != 0 && errno == EINTR);
2632
2633 if (ret != 0) {
2634 perror("statfs");
2635 return 0;
2636 }
2637
2638 if (fs.f_type != HUGETLBFS_MAGIC)
2639 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2640
2641 return fs.f_bsize;
2642}
2643
2644static void *file_ram_alloc(ram_addr_t memory, const char *path)
2645{
2646 char *filename;
2647 void *area;
2648 int fd;
2649#ifdef MAP_POPULATE
2650 int flags;
2651#endif
2652 unsigned long hpagesize;
2653
2654 hpagesize = gethugepagesize(path);
2655 if (!hpagesize) {
2656 return NULL;
2657 }
2658
2659 if (memory < hpagesize) {
2660 return NULL;
2661 }
2662
2663 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2664 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2665 return NULL;
2666 }
2667
2668 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2669 return NULL;
2670 }
2671
2672 fd = mkstemp(filename);
2673 if (fd < 0) {
2674 perror("mkstemp");
2675 free(filename);
2676 return NULL;
2677 }
2678 unlink(filename);
2679 free(filename);
2680
2681 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2682
2683 /*
2684 * ftruncate is not supported by hugetlbfs in older
2685 * hosts, so don't bother bailing out on errors.
2686 * If anything goes wrong with it under other filesystems,
2687 * mmap will fail.
2688 */
2689 if (ftruncate(fd, memory))
2690 perror("ftruncate");
2691
2692#ifdef MAP_POPULATE
2693 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2694 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2695 * to sidestep this quirk.
2696 */
2697 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2698 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2699#else
2700 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2701#endif
2702 if (area == MAP_FAILED) {
2703 perror("file_ram_alloc: can't mmap RAM pages");
2704 close(fd);
2705 return (NULL);
2706 }
2707 return area;
2708}
2709#endif
2710
c227f099 2711ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2712{
2713 RAMBlock *new_block;
2714
94a6b54f
PB
2715 size = TARGET_PAGE_ALIGN(size);
2716 new_block = qemu_malloc(sizeof(*new_block));
2717
c902760f
MT
2718 if (mem_path) {
2719#if defined (__linux__) && !defined(TARGET_S390X)
2720 new_block->host = file_ram_alloc(size, mem_path);
2721 if (!new_block->host)
2722 exit(1);
2723#else
2724 fprintf(stderr, "-mem-path option unsupported\n");
2725 exit(1);
2726#endif
2727 } else {
6b02494d 2728#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2729 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2730 new_block->host = mmap((void*)0x1000000, size,
2731 PROT_EXEC|PROT_READ|PROT_WRITE,
2732 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2733#else
c902760f 2734 new_block->host = qemu_vmalloc(size);
6b02494d 2735#endif
ccb167e9 2736#ifdef MADV_MERGEABLE
c902760f 2737 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2738#endif
c902760f 2739 }
94a6b54f
PB
2740 new_block->offset = last_ram_offset;
2741 new_block->length = size;
2742
2743 new_block->next = ram_blocks;
2744 ram_blocks = new_block;
2745
2746 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2747 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2748 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2749 0xff, size >> TARGET_PAGE_BITS);
2750
2751 last_ram_offset += size;
2752
6f0437e8
JK
2753 if (kvm_enabled())
2754 kvm_setup_guest_memory(new_block->host, size);
2755
94a6b54f
PB
2756 return new_block->offset;
2757}
e9a1ab19 2758
c227f099 2759void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2760{
94a6b54f 2761 /* TODO: implement this. */
e9a1ab19
FB
2762}
2763
dc828ca1 2764/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2765 With the exception of the softmmu code in this file, this should
2766 only be used for local memory (e.g. video ram) that the device owns,
2767 and knows it isn't going to access beyond the end of the block.
2768
2769 It should not be used for general purpose DMA.
2770 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2771 */
c227f099 2772void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2773{
94a6b54f
PB
2774 RAMBlock *prev;
2775 RAMBlock **prevp;
2776 RAMBlock *block;
2777
94a6b54f
PB
2778 prev = NULL;
2779 prevp = &ram_blocks;
2780 block = ram_blocks;
2781 while (block && (block->offset > addr
2782 || block->offset + block->length <= addr)) {
2783 if (prev)
2784 prevp = &prev->next;
2785 prev = block;
2786 block = block->next;
2787 }
2788 if (!block) {
2789 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2790 abort();
2791 }
2792 /* Move this entry to to start of the list. */
2793 if (prev) {
2794 prev->next = block->next;
2795 block->next = *prevp;
2796 *prevp = block;
2797 }
2798 return block->host + (addr - block->offset);
dc828ca1
PB
2799}
2800
5579c7f3
PB
2801/* Some of the softmmu routines need to translate from a host pointer
2802 (typically a TLB entry) back to a ram offset. */
c227f099 2803ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2804{
94a6b54f 2805 RAMBlock *prev;
94a6b54f
PB
2806 RAMBlock *block;
2807 uint8_t *host = ptr;
2808
94a6b54f 2809 prev = NULL;
94a6b54f
PB
2810 block = ram_blocks;
2811 while (block && (block->host > host
2812 || block->host + block->length <= host)) {
94a6b54f
PB
2813 prev = block;
2814 block = block->next;
2815 }
2816 if (!block) {
2817 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2818 abort();
2819 }
2820 return block->offset + (host - block->host);
5579c7f3
PB
2821}
2822
c227f099 2823static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2824{
67d3b957 2825#ifdef DEBUG_UNASSIGNED
ab3d1727 2826 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2827#endif
faed1c2a 2828#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2829 do_unassigned_access(addr, 0, 0, 0, 1);
2830#endif
2831 return 0;
2832}
2833
c227f099 2834static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2835{
2836#ifdef DEBUG_UNASSIGNED
2837 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2838#endif
faed1c2a 2839#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2840 do_unassigned_access(addr, 0, 0, 0, 2);
2841#endif
2842 return 0;
2843}
2844
c227f099 2845static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2846{
2847#ifdef DEBUG_UNASSIGNED
2848 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2849#endif
faed1c2a 2850#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2851 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2852#endif
33417e70
FB
2853 return 0;
2854}
2855
c227f099 2856static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2857{
67d3b957 2858#ifdef DEBUG_UNASSIGNED
ab3d1727 2859 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2860#endif
faed1c2a 2861#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2862 do_unassigned_access(addr, 1, 0, 0, 1);
2863#endif
2864}
2865
c227f099 2866static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2867{
2868#ifdef DEBUG_UNASSIGNED
2869 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2870#endif
faed1c2a 2871#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2872 do_unassigned_access(addr, 1, 0, 0, 2);
2873#endif
2874}
2875
c227f099 2876static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2877{
2878#ifdef DEBUG_UNASSIGNED
2879 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2880#endif
faed1c2a 2881#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2882 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2883#endif
33417e70
FB
2884}
2885
d60efc6b 2886static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2887 unassigned_mem_readb,
e18231a3
BS
2888 unassigned_mem_readw,
2889 unassigned_mem_readl,
33417e70
FB
2890};
2891
d60efc6b 2892static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2893 unassigned_mem_writeb,
e18231a3
BS
2894 unassigned_mem_writew,
2895 unassigned_mem_writel,
33417e70
FB
2896};
2897
c227f099 2898static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2899 uint32_t val)
9fa3e853 2900{
3a7d929e 2901 int dirty_flags;
3a7d929e
FB
2902 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2903 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2904#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2905 tb_invalidate_phys_page_fast(ram_addr, 1);
2906 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2907#endif
3a7d929e 2908 }
5579c7f3 2909 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2910 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2911 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2912 /* we remove the notdirty callback only if the code has been
2913 flushed */
2914 if (dirty_flags == 0xff)
2e70f6ef 2915 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2916}
2917
c227f099 2918static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2919 uint32_t val)
9fa3e853 2920{
3a7d929e 2921 int dirty_flags;
3a7d929e
FB
2922 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2923 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2924#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2925 tb_invalidate_phys_page_fast(ram_addr, 2);
2926 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2927#endif
3a7d929e 2928 }
5579c7f3 2929 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2930 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2931 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2932 /* we remove the notdirty callback only if the code has been
2933 flushed */
2934 if (dirty_flags == 0xff)
2e70f6ef 2935 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2936}
2937
c227f099 2938static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2939 uint32_t val)
9fa3e853 2940{
3a7d929e 2941 int dirty_flags;
3a7d929e
FB
2942 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2943 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2944#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2945 tb_invalidate_phys_page_fast(ram_addr, 4);
2946 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2947#endif
3a7d929e 2948 }
5579c7f3 2949 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2950 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2951 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2952 /* we remove the notdirty callback only if the code has been
2953 flushed */
2954 if (dirty_flags == 0xff)
2e70f6ef 2955 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2956}
2957
d60efc6b 2958static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2959 NULL, /* never used */
2960 NULL, /* never used */
2961 NULL, /* never used */
2962};
2963
d60efc6b 2964static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2965 notdirty_mem_writeb,
2966 notdirty_mem_writew,
2967 notdirty_mem_writel,
2968};
2969
0f459d16 2970/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2971static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2972{
2973 CPUState *env = cpu_single_env;
06d55cc1
AL
2974 target_ulong pc, cs_base;
2975 TranslationBlock *tb;
0f459d16 2976 target_ulong vaddr;
a1d1bb31 2977 CPUWatchpoint *wp;
06d55cc1 2978 int cpu_flags;
0f459d16 2979
06d55cc1
AL
2980 if (env->watchpoint_hit) {
2981 /* We re-entered the check after replacing the TB. Now raise
2982 * the debug interrupt so that is will trigger after the
2983 * current instruction. */
2984 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2985 return;
2986 }
2e70f6ef 2987 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2988 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2989 if ((vaddr == (wp->vaddr & len_mask) ||
2990 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2991 wp->flags |= BP_WATCHPOINT_HIT;
2992 if (!env->watchpoint_hit) {
2993 env->watchpoint_hit = wp;
2994 tb = tb_find_pc(env->mem_io_pc);
2995 if (!tb) {
2996 cpu_abort(env, "check_watchpoint: could not find TB for "
2997 "pc=%p", (void *)env->mem_io_pc);
2998 }
2999 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3000 tb_phys_invalidate(tb, -1);
3001 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3002 env->exception_index = EXCP_DEBUG;
3003 } else {
3004 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3005 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3006 }
3007 cpu_resume_from_signal(env, NULL);
06d55cc1 3008 }
6e140f28
AL
3009 } else {
3010 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3011 }
3012 }
3013}
3014
6658ffb8
PB
3015/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3016 so these check for a hit then pass through to the normal out-of-line
3017 phys routines. */
c227f099 3018static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3019{
b4051334 3020 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3021 return ldub_phys(addr);
3022}
3023
c227f099 3024static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3025{
b4051334 3026 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3027 return lduw_phys(addr);
3028}
3029
c227f099 3030static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3031{
b4051334 3032 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3033 return ldl_phys(addr);
3034}
3035
c227f099 3036static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3037 uint32_t val)
3038{
b4051334 3039 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3040 stb_phys(addr, val);
3041}
3042
c227f099 3043static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3044 uint32_t val)
3045{
b4051334 3046 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3047 stw_phys(addr, val);
3048}
3049
c227f099 3050static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3051 uint32_t val)
3052{
b4051334 3053 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3054 stl_phys(addr, val);
3055}
3056
d60efc6b 3057static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3058 watch_mem_readb,
3059 watch_mem_readw,
3060 watch_mem_readl,
3061};
3062
d60efc6b 3063static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3064 watch_mem_writeb,
3065 watch_mem_writew,
3066 watch_mem_writel,
3067};
6658ffb8 3068
c227f099 3069static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3070 unsigned int len)
3071{
db7b5426
BS
3072 uint32_t ret;
3073 unsigned int idx;
3074
8da3ff18 3075 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3076#if defined(DEBUG_SUBPAGE)
3077 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3078 mmio, len, addr, idx);
3079#endif
8da3ff18
PB
3080 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3081 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
3082
3083 return ret;
3084}
3085
c227f099 3086static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3087 uint32_t value, unsigned int len)
3088{
db7b5426
BS
3089 unsigned int idx;
3090
8da3ff18 3091 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3092#if defined(DEBUG_SUBPAGE)
3093 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3094 mmio, len, addr, idx, value);
3095#endif
8da3ff18
PB
3096 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3097 addr + mmio->region_offset[idx][1][len],
3098 value);
db7b5426
BS
3099}
3100
c227f099 3101static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3102{
3103#if defined(DEBUG_SUBPAGE)
3104 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3105#endif
3106
3107 return subpage_readlen(opaque, addr, 0);
3108}
3109
c227f099 3110static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3111 uint32_t value)
3112{
3113#if defined(DEBUG_SUBPAGE)
3114 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3115#endif
3116 subpage_writelen(opaque, addr, value, 0);
3117}
3118
c227f099 3119static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3120{
3121#if defined(DEBUG_SUBPAGE)
3122 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3123#endif
3124
3125 return subpage_readlen(opaque, addr, 1);
3126}
3127
c227f099 3128static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3129 uint32_t value)
3130{
3131#if defined(DEBUG_SUBPAGE)
3132 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3133#endif
3134 subpage_writelen(opaque, addr, value, 1);
3135}
3136
c227f099 3137static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3138{
3139#if defined(DEBUG_SUBPAGE)
3140 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3141#endif
3142
3143 return subpage_readlen(opaque, addr, 2);
3144}
3145
3146static void subpage_writel (void *opaque,
c227f099 3147 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
3148{
3149#if defined(DEBUG_SUBPAGE)
3150 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3151#endif
3152 subpage_writelen(opaque, addr, value, 2);
3153}
3154
d60efc6b 3155static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3156 &subpage_readb,
3157 &subpage_readw,
3158 &subpage_readl,
3159};
3160
d60efc6b 3161static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3162 &subpage_writeb,
3163 &subpage_writew,
3164 &subpage_writel,
3165};
3166
c227f099
AL
3167static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3168 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3169{
3170 int idx, eidx;
4254fab8 3171 unsigned int i;
db7b5426
BS
3172
3173 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3174 return -1;
3175 idx = SUBPAGE_IDX(start);
3176 eidx = SUBPAGE_IDX(end);
3177#if defined(DEBUG_SUBPAGE)
0bf9e31a 3178 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3179 mmio, start, end, idx, eidx, memory);
3180#endif
3181 memory >>= IO_MEM_SHIFT;
3182 for (; idx <= eidx; idx++) {
4254fab8 3183 for (i = 0; i < 4; i++) {
3ee89922
BS
3184 if (io_mem_read[memory][i]) {
3185 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3186 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 3187 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
3188 }
3189 if (io_mem_write[memory][i]) {
3190 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3191 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 3192 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 3193 }
4254fab8 3194 }
db7b5426
BS
3195 }
3196
3197 return 0;
3198}
3199
c227f099
AL
3200static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3201 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3202{
c227f099 3203 subpage_t *mmio;
db7b5426
BS
3204 int subpage_memory;
3205
c227f099 3206 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3207
3208 mmio->base = base;
1eed09cb 3209 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3210#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3211 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3212 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3213#endif
1eec614b
AL
3214 *phys = subpage_memory | IO_MEM_SUBPAGE;
3215 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3216 region_offset);
db7b5426
BS
3217
3218 return mmio;
3219}
3220
88715657
AL
3221static int get_free_io_mem_idx(void)
3222{
3223 int i;
3224
3225 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3226 if (!io_mem_used[i]) {
3227 io_mem_used[i] = 1;
3228 return i;
3229 }
c6703b47 3230 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3231 return -1;
3232}
3233
33417e70
FB
3234/* mem_read and mem_write are arrays of functions containing the
3235 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3236 2). Functions can be omitted with a NULL function pointer.
3ee89922 3237 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3238 modified. If it is zero, a new io zone is allocated. The return
3239 value can be used with cpu_register_physical_memory(). (-1) is
3240 returned if error. */
1eed09cb 3241static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3242 CPUReadMemoryFunc * const *mem_read,
3243 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3244 void *opaque)
33417e70 3245{
4254fab8 3246 int i, subwidth = 0;
33417e70
FB
3247
3248 if (io_index <= 0) {
88715657
AL
3249 io_index = get_free_io_mem_idx();
3250 if (io_index == -1)
3251 return io_index;
33417e70 3252 } else {
1eed09cb 3253 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3254 if (io_index >= IO_MEM_NB_ENTRIES)
3255 return -1;
3256 }
b5ff1b31 3257
33417e70 3258 for(i = 0;i < 3; i++) {
4254fab8
BS
3259 if (!mem_read[i] || !mem_write[i])
3260 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3261 io_mem_read[io_index][i] = mem_read[i];
3262 io_mem_write[io_index][i] = mem_write[i];
3263 }
a4193c8a 3264 io_mem_opaque[io_index] = opaque;
4254fab8 3265 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3266}
61382a50 3267
d60efc6b
BS
3268int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3269 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3270 void *opaque)
3271{
3272 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3273}
3274
88715657
AL
3275void cpu_unregister_io_memory(int io_table_address)
3276{
3277 int i;
3278 int io_index = io_table_address >> IO_MEM_SHIFT;
3279
3280 for (i=0;i < 3; i++) {
3281 io_mem_read[io_index][i] = unassigned_mem_read[i];
3282 io_mem_write[io_index][i] = unassigned_mem_write[i];
3283 }
3284 io_mem_opaque[io_index] = NULL;
3285 io_mem_used[io_index] = 0;
3286}
3287
e9179ce1
AK
3288static void io_mem_init(void)
3289{
3290 int i;
3291
3292 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3293 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3294 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3295 for (i=0; i<5; i++)
3296 io_mem_used[i] = 1;
3297
3298 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3299 watch_mem_write, NULL);
e9179ce1
AK
3300}
3301
e2eef170
PB
3302#endif /* !defined(CONFIG_USER_ONLY) */
3303
13eb76e0
FB
3304/* physical memory access (slow version, mainly for debug) */
3305#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3306int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3307 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3308{
3309 int l, flags;
3310 target_ulong page;
53a5960a 3311 void * p;
13eb76e0
FB
3312
3313 while (len > 0) {
3314 page = addr & TARGET_PAGE_MASK;
3315 l = (page + TARGET_PAGE_SIZE) - addr;
3316 if (l > len)
3317 l = len;
3318 flags = page_get_flags(page);
3319 if (!(flags & PAGE_VALID))
a68fe89c 3320 return -1;
13eb76e0
FB
3321 if (is_write) {
3322 if (!(flags & PAGE_WRITE))
a68fe89c 3323 return -1;
579a97f7 3324 /* XXX: this code should not depend on lock_user */
72fb7daa 3325 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3326 return -1;
72fb7daa
AJ
3327 memcpy(p, buf, l);
3328 unlock_user(p, addr, l);
13eb76e0
FB
3329 } else {
3330 if (!(flags & PAGE_READ))
a68fe89c 3331 return -1;
579a97f7 3332 /* XXX: this code should not depend on lock_user */
72fb7daa 3333 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3334 return -1;
72fb7daa 3335 memcpy(buf, p, l);
5b257578 3336 unlock_user(p, addr, 0);
13eb76e0
FB
3337 }
3338 len -= l;
3339 buf += l;
3340 addr += l;
3341 }
a68fe89c 3342 return 0;
13eb76e0 3343}
8df1cd07 3344
13eb76e0 3345#else
c227f099 3346void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3347 int len, int is_write)
3348{
3349 int l, io_index;
3350 uint8_t *ptr;
3351 uint32_t val;
c227f099 3352 target_phys_addr_t page;
2e12669a 3353 unsigned long pd;
92e873b9 3354 PhysPageDesc *p;
3b46e624 3355
13eb76e0
FB
3356 while (len > 0) {
3357 page = addr & TARGET_PAGE_MASK;
3358 l = (page + TARGET_PAGE_SIZE) - addr;
3359 if (l > len)
3360 l = len;
92e873b9 3361 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3362 if (!p) {
3363 pd = IO_MEM_UNASSIGNED;
3364 } else {
3365 pd = p->phys_offset;
3366 }
3b46e624 3367
13eb76e0 3368 if (is_write) {
3a7d929e 3369 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3370 target_phys_addr_t addr1 = addr;
13eb76e0 3371 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3372 if (p)
6c2934db 3373 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3374 /* XXX: could force cpu_single_env to NULL to avoid
3375 potential bugs */
6c2934db 3376 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3377 /* 32 bit write access */
c27004ec 3378 val = ldl_p(buf);
6c2934db 3379 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3380 l = 4;
6c2934db 3381 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3382 /* 16 bit write access */
c27004ec 3383 val = lduw_p(buf);
6c2934db 3384 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3385 l = 2;
3386 } else {
1c213d19 3387 /* 8 bit write access */
c27004ec 3388 val = ldub_p(buf);
6c2934db 3389 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3390 l = 1;
3391 }
3392 } else {
b448f2f3
FB
3393 unsigned long addr1;
3394 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3395 /* RAM case */
5579c7f3 3396 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3397 memcpy(ptr, buf, l);
3a7d929e
FB
3398 if (!cpu_physical_memory_is_dirty(addr1)) {
3399 /* invalidate code */
3400 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3401 /* set dirty bit */
5fafdf24 3402 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3403 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3404 }
13eb76e0
FB
3405 }
3406 } else {
5fafdf24 3407 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3408 !(pd & IO_MEM_ROMD)) {
c227f099 3409 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3410 /* I/O case */
3411 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3412 if (p)
6c2934db
AJ
3413 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3414 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3415 /* 32 bit read access */
6c2934db 3416 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3417 stl_p(buf, val);
13eb76e0 3418 l = 4;
6c2934db 3419 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3420 /* 16 bit read access */
6c2934db 3421 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3422 stw_p(buf, val);
13eb76e0
FB
3423 l = 2;
3424 } else {
1c213d19 3425 /* 8 bit read access */
6c2934db 3426 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3427 stb_p(buf, val);
13eb76e0
FB
3428 l = 1;
3429 }
3430 } else {
3431 /* RAM case */
5579c7f3 3432 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3433 (addr & ~TARGET_PAGE_MASK);
3434 memcpy(buf, ptr, l);
3435 }
3436 }
3437 len -= l;
3438 buf += l;
3439 addr += l;
3440 }
3441}
8df1cd07 3442
d0ecd2aa 3443/* used for ROM loading : can write in RAM and ROM */
c227f099 3444void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3445 const uint8_t *buf, int len)
3446{
3447 int l;
3448 uint8_t *ptr;
c227f099 3449 target_phys_addr_t page;
d0ecd2aa
FB
3450 unsigned long pd;
3451 PhysPageDesc *p;
3b46e624 3452
d0ecd2aa
FB
3453 while (len > 0) {
3454 page = addr & TARGET_PAGE_MASK;
3455 l = (page + TARGET_PAGE_SIZE) - addr;
3456 if (l > len)
3457 l = len;
3458 p = phys_page_find(page >> TARGET_PAGE_BITS);
3459 if (!p) {
3460 pd = IO_MEM_UNASSIGNED;
3461 } else {
3462 pd = p->phys_offset;
3463 }
3b46e624 3464
d0ecd2aa 3465 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3466 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3467 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3468 /* do nothing */
3469 } else {
3470 unsigned long addr1;
3471 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3472 /* ROM/RAM case */
5579c7f3 3473 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3474 memcpy(ptr, buf, l);
3475 }
3476 len -= l;
3477 buf += l;
3478 addr += l;
3479 }
3480}
3481
6d16c2f8
AL
3482typedef struct {
3483 void *buffer;
c227f099
AL
3484 target_phys_addr_t addr;
3485 target_phys_addr_t len;
6d16c2f8
AL
3486} BounceBuffer;
3487
3488static BounceBuffer bounce;
3489
ba223c29
AL
3490typedef struct MapClient {
3491 void *opaque;
3492 void (*callback)(void *opaque);
72cf2d4f 3493 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3494} MapClient;
3495
72cf2d4f
BS
3496static QLIST_HEAD(map_client_list, MapClient) map_client_list
3497 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3498
3499void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3500{
3501 MapClient *client = qemu_malloc(sizeof(*client));
3502
3503 client->opaque = opaque;
3504 client->callback = callback;
72cf2d4f 3505 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3506 return client;
3507}
3508
3509void cpu_unregister_map_client(void *_client)
3510{
3511 MapClient *client = (MapClient *)_client;
3512
72cf2d4f 3513 QLIST_REMOVE(client, link);
34d5e948 3514 qemu_free(client);
ba223c29
AL
3515}
3516
3517static void cpu_notify_map_clients(void)
3518{
3519 MapClient *client;
3520
72cf2d4f
BS
3521 while (!QLIST_EMPTY(&map_client_list)) {
3522 client = QLIST_FIRST(&map_client_list);
ba223c29 3523 client->callback(client->opaque);
34d5e948 3524 cpu_unregister_map_client(client);
ba223c29
AL
3525 }
3526}
3527
6d16c2f8
AL
3528/* Map a physical memory region into a host virtual address.
3529 * May map a subset of the requested range, given by and returned in *plen.
3530 * May return NULL if resources needed to perform the mapping are exhausted.
3531 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3532 * Use cpu_register_map_client() to know when retrying the map operation is
3533 * likely to succeed.
6d16c2f8 3534 */
c227f099
AL
3535void *cpu_physical_memory_map(target_phys_addr_t addr,
3536 target_phys_addr_t *plen,
6d16c2f8
AL
3537 int is_write)
3538{
c227f099
AL
3539 target_phys_addr_t len = *plen;
3540 target_phys_addr_t done = 0;
6d16c2f8
AL
3541 int l;
3542 uint8_t *ret = NULL;
3543 uint8_t *ptr;
c227f099 3544 target_phys_addr_t page;
6d16c2f8
AL
3545 unsigned long pd;
3546 PhysPageDesc *p;
3547 unsigned long addr1;
3548
3549 while (len > 0) {
3550 page = addr & TARGET_PAGE_MASK;
3551 l = (page + TARGET_PAGE_SIZE) - addr;
3552 if (l > len)
3553 l = len;
3554 p = phys_page_find(page >> TARGET_PAGE_BITS);
3555 if (!p) {
3556 pd = IO_MEM_UNASSIGNED;
3557 } else {
3558 pd = p->phys_offset;
3559 }
3560
3561 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3562 if (done || bounce.buffer) {
3563 break;
3564 }
3565 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3566 bounce.addr = addr;
3567 bounce.len = l;
3568 if (!is_write) {
3569 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3570 }
3571 ptr = bounce.buffer;
3572 } else {
3573 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3574 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3575 }
3576 if (!done) {
3577 ret = ptr;
3578 } else if (ret + done != ptr) {
3579 break;
3580 }
3581
3582 len -= l;
3583 addr += l;
3584 done += l;
3585 }
3586 *plen = done;
3587 return ret;
3588}
3589
3590/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3591 * Will also mark the memory as dirty if is_write == 1. access_len gives
3592 * the amount of memory that was actually read or written by the caller.
3593 */
c227f099
AL
3594void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3595 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3596{
3597 if (buffer != bounce.buffer) {
3598 if (is_write) {
c227f099 3599 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3600 while (access_len) {
3601 unsigned l;
3602 l = TARGET_PAGE_SIZE;
3603 if (l > access_len)
3604 l = access_len;
3605 if (!cpu_physical_memory_is_dirty(addr1)) {
3606 /* invalidate code */
3607 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3608 /* set dirty bit */
3609 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3610 (0xff & ~CODE_DIRTY_FLAG);
3611 }
3612 addr1 += l;
3613 access_len -= l;
3614 }
3615 }
3616 return;
3617 }
3618 if (is_write) {
3619 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3620 }
f8a83245 3621 qemu_vfree(bounce.buffer);
6d16c2f8 3622 bounce.buffer = NULL;
ba223c29 3623 cpu_notify_map_clients();
6d16c2f8 3624}
d0ecd2aa 3625
8df1cd07 3626/* warning: addr must be aligned */
c227f099 3627uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3628{
3629 int io_index;
3630 uint8_t *ptr;
3631 uint32_t val;
3632 unsigned long pd;
3633 PhysPageDesc *p;
3634
3635 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3636 if (!p) {
3637 pd = IO_MEM_UNASSIGNED;
3638 } else {
3639 pd = p->phys_offset;
3640 }
3b46e624 3641
5fafdf24 3642 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3643 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3644 /* I/O case */
3645 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3646 if (p)
3647 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3648 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3649 } else {
3650 /* RAM case */
5579c7f3 3651 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3652 (addr & ~TARGET_PAGE_MASK);
3653 val = ldl_p(ptr);
3654 }
3655 return val;
3656}
3657
84b7b8e7 3658/* warning: addr must be aligned */
c227f099 3659uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3660{
3661 int io_index;
3662 uint8_t *ptr;
3663 uint64_t val;
3664 unsigned long pd;
3665 PhysPageDesc *p;
3666
3667 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3668 if (!p) {
3669 pd = IO_MEM_UNASSIGNED;
3670 } else {
3671 pd = p->phys_offset;
3672 }
3b46e624 3673
2a4188a3
FB
3674 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3675 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3676 /* I/O case */
3677 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3678 if (p)
3679 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3680#ifdef TARGET_WORDS_BIGENDIAN
3681 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3682 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3683#else
3684 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3685 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3686#endif
3687 } else {
3688 /* RAM case */
5579c7f3 3689 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3690 (addr & ~TARGET_PAGE_MASK);
3691 val = ldq_p(ptr);
3692 }
3693 return val;
3694}
3695
aab33094 3696/* XXX: optimize */
c227f099 3697uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3698{
3699 uint8_t val;
3700 cpu_physical_memory_read(addr, &val, 1);
3701 return val;
3702}
3703
3704/* XXX: optimize */
c227f099 3705uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3706{
3707 uint16_t val;
3708 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3709 return tswap16(val);
3710}
3711
8df1cd07
FB
3712/* warning: addr must be aligned. The ram page is not masked as dirty
3713 and the code inside is not invalidated. It is useful if the dirty
3714 bits are used to track modified PTEs */
c227f099 3715void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3716{
3717 int io_index;
3718 uint8_t *ptr;
3719 unsigned long pd;
3720 PhysPageDesc *p;
3721
3722 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3723 if (!p) {
3724 pd = IO_MEM_UNASSIGNED;
3725 } else {
3726 pd = p->phys_offset;
3727 }
3b46e624 3728
3a7d929e 3729 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3730 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3731 if (p)
3732 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3733 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3734 } else {
74576198 3735 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3736 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3737 stl_p(ptr, val);
74576198
AL
3738
3739 if (unlikely(in_migration)) {
3740 if (!cpu_physical_memory_is_dirty(addr1)) {
3741 /* invalidate code */
3742 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3743 /* set dirty bit */
3744 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3745 (0xff & ~CODE_DIRTY_FLAG);
3746 }
3747 }
8df1cd07
FB
3748 }
3749}
3750
c227f099 3751void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3752{
3753 int io_index;
3754 uint8_t *ptr;
3755 unsigned long pd;
3756 PhysPageDesc *p;
3757
3758 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3759 if (!p) {
3760 pd = IO_MEM_UNASSIGNED;
3761 } else {
3762 pd = p->phys_offset;
3763 }
3b46e624 3764
bc98a7ef
JM
3765 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3766 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3767 if (p)
3768 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3769#ifdef TARGET_WORDS_BIGENDIAN
3770 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3771 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3772#else
3773 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3774 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3775#endif
3776 } else {
5579c7f3 3777 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3778 (addr & ~TARGET_PAGE_MASK);
3779 stq_p(ptr, val);
3780 }
3781}
3782
8df1cd07 3783/* warning: addr must be aligned */
c227f099 3784void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3785{
3786 int io_index;
3787 uint8_t *ptr;
3788 unsigned long pd;
3789 PhysPageDesc *p;
3790
3791 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3792 if (!p) {
3793 pd = IO_MEM_UNASSIGNED;
3794 } else {
3795 pd = p->phys_offset;
3796 }
3b46e624 3797
3a7d929e 3798 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3799 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3800 if (p)
3801 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3802 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3803 } else {
3804 unsigned long addr1;
3805 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3806 /* RAM case */
5579c7f3 3807 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3808 stl_p(ptr, val);
3a7d929e
FB
3809 if (!cpu_physical_memory_is_dirty(addr1)) {
3810 /* invalidate code */
3811 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3812 /* set dirty bit */
f23db169
FB
3813 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3814 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3815 }
8df1cd07
FB
3816 }
3817}
3818
aab33094 3819/* XXX: optimize */
c227f099 3820void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3821{
3822 uint8_t v = val;
3823 cpu_physical_memory_write(addr, &v, 1);
3824}
3825
3826/* XXX: optimize */
c227f099 3827void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3828{
3829 uint16_t v = tswap16(val);
3830 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3831}
3832
3833/* XXX: optimize */
c227f099 3834void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3835{
3836 val = tswap64(val);
3837 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3838}
3839
5e2972fd 3840/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3841int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3842 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3843{
3844 int l;
c227f099 3845 target_phys_addr_t phys_addr;
9b3c35e0 3846 target_ulong page;
13eb76e0
FB
3847
3848 while (len > 0) {
3849 page = addr & TARGET_PAGE_MASK;
3850 phys_addr = cpu_get_phys_page_debug(env, page);
3851 /* if no physical page mapped, return an error */
3852 if (phys_addr == -1)
3853 return -1;
3854 l = (page + TARGET_PAGE_SIZE) - addr;
3855 if (l > len)
3856 l = len;
5e2972fd 3857 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3858 if (is_write)
3859 cpu_physical_memory_write_rom(phys_addr, buf, l);
3860 else
5e2972fd 3861 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3862 len -= l;
3863 buf += l;
3864 addr += l;
3865 }
3866 return 0;
3867}
a68fe89c 3868#endif
13eb76e0 3869
2e70f6ef
PB
3870/* in deterministic execution mode, instructions doing device I/Os
3871 must be at the end of the TB */
3872void cpu_io_recompile(CPUState *env, void *retaddr)
3873{
3874 TranslationBlock *tb;
3875 uint32_t n, cflags;
3876 target_ulong pc, cs_base;
3877 uint64_t flags;
3878
3879 tb = tb_find_pc((unsigned long)retaddr);
3880 if (!tb) {
3881 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3882 retaddr);
3883 }
3884 n = env->icount_decr.u16.low + tb->icount;
3885 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3886 /* Calculate how many instructions had been executed before the fault
bf20dc07 3887 occurred. */
2e70f6ef
PB
3888 n = n - env->icount_decr.u16.low;
3889 /* Generate a new TB ending on the I/O insn. */
3890 n++;
3891 /* On MIPS and SH, delay slot instructions can only be restarted if
3892 they were already the first instruction in the TB. If this is not
bf20dc07 3893 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3894 branch. */
3895#if defined(TARGET_MIPS)
3896 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3897 env->active_tc.PC -= 4;
3898 env->icount_decr.u16.low++;
3899 env->hflags &= ~MIPS_HFLAG_BMASK;
3900 }
3901#elif defined(TARGET_SH4)
3902 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3903 && n > 1) {
3904 env->pc -= 2;
3905 env->icount_decr.u16.low++;
3906 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3907 }
3908#endif
3909 /* This should never happen. */
3910 if (n > CF_COUNT_MASK)
3911 cpu_abort(env, "TB too big during recompile");
3912
3913 cflags = n | CF_LAST_IO;
3914 pc = tb->pc;
3915 cs_base = tb->cs_base;
3916 flags = tb->flags;
3917 tb_phys_invalidate(tb, -1);
3918 /* FIXME: In theory this could raise an exception. In practice
3919 we have already translated the block once so it's probably ok. */
3920 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3921 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3922 the first in the TB) then we end up generating a whole new TB and
3923 repeating the fault, which is horribly inefficient.
3924 Better would be to execute just this insn uncached, or generate a
3925 second new TB. */
3926 cpu_resume_from_signal(env, NULL);
3927}
3928
b3755a91
PB
3929#if !defined(CONFIG_USER_ONLY)
3930
e3db7226
FB
3931void dump_exec_info(FILE *f,
3932 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3933{
3934 int i, target_code_size, max_target_code_size;
3935 int direct_jmp_count, direct_jmp2_count, cross_page;
3936 TranslationBlock *tb;
3b46e624 3937
e3db7226
FB
3938 target_code_size = 0;
3939 max_target_code_size = 0;
3940 cross_page = 0;
3941 direct_jmp_count = 0;
3942 direct_jmp2_count = 0;
3943 for(i = 0; i < nb_tbs; i++) {
3944 tb = &tbs[i];
3945 target_code_size += tb->size;
3946 if (tb->size > max_target_code_size)
3947 max_target_code_size = tb->size;
3948 if (tb->page_addr[1] != -1)
3949 cross_page++;
3950 if (tb->tb_next_offset[0] != 0xffff) {
3951 direct_jmp_count++;
3952 if (tb->tb_next_offset[1] != 0xffff) {
3953 direct_jmp2_count++;
3954 }
3955 }
3956 }
3957 /* XXX: avoid using doubles ? */
57fec1fe 3958 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3959 cpu_fprintf(f, "gen code size %ld/%ld\n",
3960 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3961 cpu_fprintf(f, "TB count %d/%d\n",
3962 nb_tbs, code_gen_max_blocks);
5fafdf24 3963 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3964 nb_tbs ? target_code_size / nb_tbs : 0,
3965 max_target_code_size);
5fafdf24 3966 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3967 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3968 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3969 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3970 cross_page,
e3db7226
FB
3971 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3972 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3973 direct_jmp_count,
e3db7226
FB
3974 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3975 direct_jmp2_count,
3976 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3977 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3978 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3979 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3980 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3981 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3982}
3983
61382a50
FB
3984#define MMUSUFFIX _cmmu
3985#define GETPC() NULL
3986#define env cpu_single_env
b769d8fe 3987#define SOFTMMU_CODE_ACCESS
61382a50
FB
3988
3989#define SHIFT 0
3990#include "softmmu_template.h"
3991
3992#define SHIFT 1
3993#include "softmmu_template.h"
3994
3995#define SHIFT 2
3996#include "softmmu_template.h"
3997
3998#define SHIFT 3
3999#include "softmmu_template.h"
4000
4001#undef env
4002
4003#endif