]> git.proxmox.com Git - qemu.git/blame - exec.c
phys_page_find_alloc: Use correct initial region_offset.
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
fd6ce8f6 60//#define DEBUG_TB_INVALIDATE
66e85a21 61//#define DEBUG_FLUSH
9fa3e853 62//#define DEBUG_TLB
67d3b957 63//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
64
65/* make various TB consistency checks */
5fafdf24
TS
66//#define DEBUG_TB_CHECK
67//#define DEBUG_TLB_CHECK
fd6ce8f6 68
1196be37 69//#define DEBUG_IOPORT
db7b5426 70//#define DEBUG_SUBPAGE
1196be37 71
99773bd4
PB
72#if !defined(CONFIG_USER_ONLY)
73/* TB consistency checks only implemented for usermode emulation. */
74#undef DEBUG_TB_CHECK
75#endif
76
9fa3e853
FB
77#define SMC_BITMAP_USE_THRESHOLD 10
78
bdaf78e0 79static TranslationBlock *tbs;
24ab68ac 80static int code_gen_max_blocks;
9fa3e853 81TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 82static int nb_tbs;
eb51d102 83/* any access to the tbs or the page table must use this lock */
c227f099 84spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 85
141ac468
BS
86#if defined(__arm__) || defined(__sparc_v9__)
87/* The prologue must be reachable with a direct jump. ARM and Sparc64
88 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
89 section close to code segment. */
90#define code_gen_section \
91 __attribute__((__section__(".gen_code"))) \
92 __attribute__((aligned (32)))
f8e2af11
SW
93#elif defined(_WIN32)
94/* Maximum alignment for Win32 is 16. */
95#define code_gen_section \
96 __attribute__((aligned (16)))
d03d860b
BS
97#else
98#define code_gen_section \
99 __attribute__((aligned (32)))
100#endif
101
102uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
103static uint8_t *code_gen_buffer;
104static unsigned long code_gen_buffer_size;
26a5f13b 105/* threshold to flush the translated code buffer */
bdaf78e0 106static unsigned long code_gen_buffer_max_size;
24ab68ac 107static uint8_t *code_gen_ptr;
fd6ce8f6 108
e2eef170 109#if !defined(CONFIG_USER_ONLY)
9fa3e853 110int phys_ram_fd;
74576198 111static int in_migration;
94a6b54f 112
85d59fef 113RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
114
115static MemoryRegion *system_memory;
309cb471 116static MemoryRegion *system_io;
62152b8a 117
e2eef170 118#endif
9fa3e853 119
6a00d601
FB
120CPUState *first_cpu;
121/* current CPU in the current thread. It is only valid inside
122 cpu_exec() */
b3c4bbe5 123DEFINE_TLS(CPUState *,cpu_single_env);
2e70f6ef 124/* 0 = Do not count executed instructions.
bf20dc07 125 1 = Precise instruction counting.
2e70f6ef
PB
126 2 = Adaptive rate instruction counting. */
127int use_icount = 0;
6a00d601 128
54936004 129typedef struct PageDesc {
92e873b9 130 /* list of TBs intersecting this ram page */
fd6ce8f6 131 TranslationBlock *first_tb;
9fa3e853
FB
132 /* in order to optimize self modifying code, we count the number
133 of lookups we do to a given page to use a bitmap */
134 unsigned int code_write_count;
135 uint8_t *code_bitmap;
136#if defined(CONFIG_USER_ONLY)
137 unsigned long flags;
138#endif
54936004
FB
139} PageDesc;
140
41c1b1c9 141/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
142 while in user mode we want it to be based on virtual addresses. */
143#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
144#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
145# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
146#else
5cd2c5b6 147# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 148#endif
bedb69ea 149#else
5cd2c5b6 150# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 151#endif
54936004 152
5cd2c5b6
RH
153/* Size of the L2 (and L3, etc) page tables. */
154#define L2_BITS 10
54936004
FB
155#define L2_SIZE (1 << L2_BITS)
156
5cd2c5b6
RH
157/* The bits remaining after N lower levels of page tables. */
158#define P_L1_BITS_REM \
159 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
160#define V_L1_BITS_REM \
161 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
162
163/* Size of the L1 page table. Avoid silly small sizes. */
164#if P_L1_BITS_REM < 4
165#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
166#else
167#define P_L1_BITS P_L1_BITS_REM
168#endif
169
170#if V_L1_BITS_REM < 4
171#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172#else
173#define V_L1_BITS V_L1_BITS_REM
174#endif
175
176#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
177#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
178
179#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
180#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
181
83fb7adf 182unsigned long qemu_real_host_page_size;
83fb7adf
FB
183unsigned long qemu_host_page_size;
184unsigned long qemu_host_page_mask;
54936004 185
5cd2c5b6
RH
186/* This is a multi-level map on the virtual address space.
187 The bottom level has pointers to PageDesc. */
188static void *l1_map[V_L1_SIZE];
54936004 189
e2eef170 190#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
191typedef struct PhysPageDesc {
192 /* offset in host memory of the page + io_index in the low bits */
193 ram_addr_t phys_offset;
194 ram_addr_t region_offset;
195} PhysPageDesc;
196
5cd2c5b6
RH
197/* This is a multi-level map on the physical address space.
198 The bottom level has pointers to PhysPageDesc. */
199static void *l1_phys_map[P_L1_SIZE];
6d9a1304 200
e2eef170 201static void io_mem_init(void);
62152b8a 202static void memory_map_init(void);
e2eef170 203
33417e70 204/* io memory support */
33417e70
FB
205CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
206CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 207void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 208static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
209static int io_mem_watch;
210#endif
33417e70 211
34865134 212/* log support */
1e8b27ca
JR
213#ifdef WIN32
214static const char *logfilename = "qemu.log";
215#else
d9b630fd 216static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 217#endif
34865134
FB
218FILE *logfile;
219int loglevel;
e735b91c 220static int log_append = 0;
34865134 221
e3db7226 222/* statistics */
b3755a91 223#if !defined(CONFIG_USER_ONLY)
e3db7226 224static int tlb_flush_count;
b3755a91 225#endif
e3db7226
FB
226static int tb_flush_count;
227static int tb_phys_invalidate_count;
228
7cb69cae
FB
229#ifdef _WIN32
230static void map_exec(void *addr, long size)
231{
232 DWORD old_protect;
233 VirtualProtect(addr, size,
234 PAGE_EXECUTE_READWRITE, &old_protect);
235
236}
237#else
238static void map_exec(void *addr, long size)
239{
4369415f 240 unsigned long start, end, page_size;
7cb69cae 241
4369415f 242 page_size = getpagesize();
7cb69cae 243 start = (unsigned long)addr;
4369415f 244 start &= ~(page_size - 1);
7cb69cae
FB
245
246 end = (unsigned long)addr + size;
4369415f
FB
247 end += page_size - 1;
248 end &= ~(page_size - 1);
7cb69cae
FB
249
250 mprotect((void *)start, end - start,
251 PROT_READ | PROT_WRITE | PROT_EXEC);
252}
253#endif
254
b346ff46 255static void page_init(void)
54936004 256{
83fb7adf 257 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 258 TARGET_PAGE_SIZE */
c2b48b69
AL
259#ifdef _WIN32
260 {
261 SYSTEM_INFO system_info;
262
263 GetSystemInfo(&system_info);
264 qemu_real_host_page_size = system_info.dwPageSize;
265 }
266#else
267 qemu_real_host_page_size = getpagesize();
268#endif
83fb7adf
FB
269 if (qemu_host_page_size == 0)
270 qemu_host_page_size = qemu_real_host_page_size;
271 if (qemu_host_page_size < TARGET_PAGE_SIZE)
272 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 274
2e9a5713 275#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 276 {
f01576f1
JL
277#ifdef HAVE_KINFO_GETVMMAP
278 struct kinfo_vmentry *freep;
279 int i, cnt;
280
281 freep = kinfo_getvmmap(getpid(), &cnt);
282 if (freep) {
283 mmap_lock();
284 for (i = 0; i < cnt; i++) {
285 unsigned long startaddr, endaddr;
286
287 startaddr = freep[i].kve_start;
288 endaddr = freep[i].kve_end;
289 if (h2g_valid(startaddr)) {
290 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
291
292 if (h2g_valid(endaddr)) {
293 endaddr = h2g(endaddr);
fd436907 294 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
295 } else {
296#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
297 endaddr = ~0ul;
fd436907 298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
299#endif
300 }
301 }
302 }
303 free(freep);
304 mmap_unlock();
305 }
306#else
50a9569b 307 FILE *f;
50a9569b 308
0776590d 309 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 310
fd436907 311 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 312 if (f) {
5cd2c5b6
RH
313 mmap_lock();
314
50a9569b 315 do {
5cd2c5b6
RH
316 unsigned long startaddr, endaddr;
317 int n;
318
319 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
320
321 if (n == 2 && h2g_valid(startaddr)) {
322 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
323
324 if (h2g_valid(endaddr)) {
325 endaddr = h2g(endaddr);
326 } else {
327 endaddr = ~0ul;
328 }
329 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
330 }
331 } while (!feof(f));
5cd2c5b6 332
50a9569b 333 fclose(f);
5cd2c5b6 334 mmap_unlock();
50a9569b 335 }
f01576f1 336#endif
50a9569b
AZ
337 }
338#endif
54936004
FB
339}
340
41c1b1c9 341static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 342{
41c1b1c9
PB
343 PageDesc *pd;
344 void **lp;
345 int i;
346
5cd2c5b6 347#if defined(CONFIG_USER_ONLY)
7267c094 348 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
349# define ALLOC(P, SIZE) \
350 do { \
351 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
352 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
353 } while (0)
354#else
355# define ALLOC(P, SIZE) \
7267c094 356 do { P = g_malloc0(SIZE); } while (0)
17e2377a 357#endif
434929bf 358
5cd2c5b6
RH
359 /* Level 1. Always allocated. */
360 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
361
362 /* Level 2..N-1. */
363 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
364 void **p = *lp;
365
366 if (p == NULL) {
367 if (!alloc) {
368 return NULL;
369 }
370 ALLOC(p, sizeof(void *) * L2_SIZE);
371 *lp = p;
17e2377a 372 }
5cd2c5b6
RH
373
374 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 }
376
377 pd = *lp;
378 if (pd == NULL) {
379 if (!alloc) {
380 return NULL;
381 }
382 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
383 *lp = pd;
54936004 384 }
5cd2c5b6
RH
385
386#undef ALLOC
5cd2c5b6
RH
387
388 return pd + (index & (L2_SIZE - 1));
54936004
FB
389}
390
41c1b1c9 391static inline PageDesc *page_find(tb_page_addr_t index)
54936004 392{
5cd2c5b6 393 return page_find_alloc(index, 0);
fd6ce8f6
FB
394}
395
6d9a1304 396#if !defined(CONFIG_USER_ONLY)
c227f099 397static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 398{
e3f4e2a4 399 PhysPageDesc *pd;
5cd2c5b6
RH
400 void **lp;
401 int i;
92e873b9 402
5cd2c5b6
RH
403 /* Level 1. Always allocated. */
404 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 405
5cd2c5b6
RH
406 /* Level 2..N-1. */
407 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
408 void **p = *lp;
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
412 }
7267c094 413 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
5cd2c5b6
RH
414 }
415 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 416 }
5cd2c5b6 417
e3f4e2a4 418 pd = *lp;
5cd2c5b6 419 if (pd == NULL) {
e3f4e2a4 420 int i;
5ab97b7f 421 int first_index = index & ~(L2_SIZE - 1);
5cd2c5b6
RH
422
423 if (!alloc) {
108c49b8 424 return NULL;
5cd2c5b6
RH
425 }
426
7267c094 427 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
5cd2c5b6 428
67c4d23c 429 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6 430 pd[i].phys_offset = IO_MEM_UNASSIGNED;
5ab97b7f 431 pd[i].region_offset = (first_index + i) << TARGET_PAGE_BITS;
67c4d23c 432 }
92e873b9 433 }
5cd2c5b6
RH
434
435 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
436}
437
c227f099 438static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 439{
108c49b8 440 return phys_page_find_alloc(index, 0);
92e873b9
FB
441}
442
c227f099
AL
443static void tlb_protect_code(ram_addr_t ram_addr);
444static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 445 target_ulong vaddr);
c8a706fe
PB
446#define mmap_lock() do { } while(0)
447#define mmap_unlock() do { } while(0)
9fa3e853 448#endif
fd6ce8f6 449
4369415f
FB
450#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
451
452#if defined(CONFIG_USER_ONLY)
ccbb4d44 453/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
454 user mode. It will change when a dedicated libc will be used */
455#define USE_STATIC_CODE_GEN_BUFFER
456#endif
457
458#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
459static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
460 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
461#endif
462
8fcd3692 463static void code_gen_alloc(unsigned long tb_size)
26a5f13b 464{
4369415f
FB
465#ifdef USE_STATIC_CODE_GEN_BUFFER
466 code_gen_buffer = static_code_gen_buffer;
467 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
468 map_exec(code_gen_buffer, code_gen_buffer_size);
469#else
26a5f13b
FB
470 code_gen_buffer_size = tb_size;
471 if (code_gen_buffer_size == 0) {
4369415f 472#if defined(CONFIG_USER_ONLY)
4369415f
FB
473 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
474#else
ccbb4d44 475 /* XXX: needs adjustments */
94a6b54f 476 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 477#endif
26a5f13b
FB
478 }
479 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
480 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
481 /* The code gen buffer location may have constraints depending on
482 the host cpu and OS */
483#if defined(__linux__)
484 {
485 int flags;
141ac468
BS
486 void *start = NULL;
487
26a5f13b
FB
488 flags = MAP_PRIVATE | MAP_ANONYMOUS;
489#if defined(__x86_64__)
490 flags |= MAP_32BIT;
491 /* Cannot map more than that */
492 if (code_gen_buffer_size > (800 * 1024 * 1024))
493 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
494#elif defined(__sparc_v9__)
495 // Map the buffer below 2G, so we can use direct calls and branches
496 flags |= MAP_FIXED;
497 start = (void *) 0x60000000UL;
498 if (code_gen_buffer_size > (512 * 1024 * 1024))
499 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 500#elif defined(__arm__)
222f23f5 501 /* Keep the buffer no bigger than 16GB to branch between blocks */
1cb0661e
AZ
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
504#elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
509 }
510 start = (void *)0x90000000UL;
26a5f13b 511#endif
141ac468
BS
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
518 }
519 }
cbb608a5 520#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
521 || defined(__DragonFly__) || defined(__OpenBSD__) \
522 || defined(__NetBSD__)
06e67a82
AL
523 {
524 int flags;
525 void *addr = NULL;
526 flags = MAP_PRIVATE | MAP_ANONYMOUS;
527#if defined(__x86_64__)
528 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
529 * 0x40000000 is free */
530 flags |= MAP_FIXED;
531 addr = (void *)0x40000000;
532 /* Cannot map more than that */
533 if (code_gen_buffer_size > (800 * 1024 * 1024))
534 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
535#elif defined(__sparc_v9__)
536 // Map the buffer below 2G, so we can use direct calls and branches
537 flags |= MAP_FIXED;
538 addr = (void *) 0x60000000UL;
539 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
540 code_gen_buffer_size = (512 * 1024 * 1024);
541 }
06e67a82
AL
542#endif
543 code_gen_buffer = mmap(addr, code_gen_buffer_size,
544 PROT_WRITE | PROT_READ | PROT_EXEC,
545 flags, -1, 0);
546 if (code_gen_buffer == MAP_FAILED) {
547 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
548 exit(1);
549 }
550 }
26a5f13b 551#else
7267c094 552 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
553 map_exec(code_gen_buffer, code_gen_buffer_size);
554#endif
4369415f 555#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 556 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
557 code_gen_buffer_max_size = code_gen_buffer_size -
558 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 559 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 560 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
561}
562
563/* Must be called before using the QEMU cpus. 'tb_size' is the size
564 (in bytes) allocated to the translation buffer. Zero means default
565 size. */
d5ab9713 566void tcg_exec_init(unsigned long tb_size)
26a5f13b 567{
26a5f13b
FB
568 cpu_gen_init();
569 code_gen_alloc(tb_size);
570 code_gen_ptr = code_gen_buffer;
4369415f 571 page_init();
9002ec79
RH
572#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
573 /* There's no guest base to take into account, so go ahead and
574 initialize the prologue now. */
575 tcg_prologue_init(&tcg_ctx);
576#endif
26a5f13b
FB
577}
578
d5ab9713
JK
579bool tcg_enabled(void)
580{
581 return code_gen_buffer != NULL;
582}
583
584void cpu_exec_init_all(void)
585{
586#if !defined(CONFIG_USER_ONLY)
587 memory_map_init();
588 io_mem_init();
589#endif
590}
591
9656f324
PB
592#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
593
e59fb374 594static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
595{
596 CPUState *env = opaque;
9656f324 597
3098dba0
AJ
598 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
599 version_id is increased. */
600 env->interrupt_request &= ~0x01;
9656f324
PB
601 tlb_flush(env, 1);
602
603 return 0;
604}
e7f4eff7
JQ
605
606static const VMStateDescription vmstate_cpu_common = {
607 .name = "cpu_common",
608 .version_id = 1,
609 .minimum_version_id = 1,
610 .minimum_version_id_old = 1,
e7f4eff7
JQ
611 .post_load = cpu_common_post_load,
612 .fields = (VMStateField []) {
613 VMSTATE_UINT32(halted, CPUState),
614 VMSTATE_UINT32(interrupt_request, CPUState),
615 VMSTATE_END_OF_LIST()
616 }
617};
9656f324
PB
618#endif
619
950f1472
GC
620CPUState *qemu_get_cpu(int cpu)
621{
622 CPUState *env = first_cpu;
623
624 while (env) {
625 if (env->cpu_index == cpu)
626 break;
627 env = env->next_cpu;
628 }
629
630 return env;
631}
632
6a00d601 633void cpu_exec_init(CPUState *env)
fd6ce8f6 634{
6a00d601
FB
635 CPUState **penv;
636 int cpu_index;
637
c2764719
PB
638#if defined(CONFIG_USER_ONLY)
639 cpu_list_lock();
640#endif
6a00d601
FB
641 env->next_cpu = NULL;
642 penv = &first_cpu;
643 cpu_index = 0;
644 while (*penv != NULL) {
1e9fa730 645 penv = &(*penv)->next_cpu;
6a00d601
FB
646 cpu_index++;
647 }
648 env->cpu_index = cpu_index;
268a362c 649 env->numa_node = 0;
72cf2d4f
BS
650 QTAILQ_INIT(&env->breakpoints);
651 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
652#ifndef CONFIG_USER_ONLY
653 env->thread_id = qemu_get_thread_id();
654#endif
6a00d601 655 *penv = env;
c2764719
PB
656#if defined(CONFIG_USER_ONLY)
657 cpu_list_unlock();
658#endif
b3c7724c 659#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
660 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
661 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
662 cpu_save, cpu_load, env);
663#endif
fd6ce8f6
FB
664}
665
d1a1eb74
TG
666/* Allocate a new translation block. Flush the translation buffer if
667 too many translation blocks or too much generated code. */
668static TranslationBlock *tb_alloc(target_ulong pc)
669{
670 TranslationBlock *tb;
671
672 if (nb_tbs >= code_gen_max_blocks ||
673 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
674 return NULL;
675 tb = &tbs[nb_tbs++];
676 tb->pc = pc;
677 tb->cflags = 0;
678 return tb;
679}
680
681void tb_free(TranslationBlock *tb)
682{
683 /* In practice this is mostly used for single use temporary TB
684 Ignore the hard cases and just back up if this TB happens to
685 be the last one generated. */
686 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
687 code_gen_ptr = tb->tc_ptr;
688 nb_tbs--;
689 }
690}
691
9fa3e853
FB
692static inline void invalidate_page_bitmap(PageDesc *p)
693{
694 if (p->code_bitmap) {
7267c094 695 g_free(p->code_bitmap);
9fa3e853
FB
696 p->code_bitmap = NULL;
697 }
698 p->code_write_count = 0;
699}
700
5cd2c5b6
RH
701/* Set to NULL all the 'first_tb' fields in all PageDescs. */
702
703static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 704{
5cd2c5b6 705 int i;
fd6ce8f6 706
5cd2c5b6
RH
707 if (*lp == NULL) {
708 return;
709 }
710 if (level == 0) {
711 PageDesc *pd = *lp;
7296abac 712 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
713 pd[i].first_tb = NULL;
714 invalidate_page_bitmap(pd + i);
fd6ce8f6 715 }
5cd2c5b6
RH
716 } else {
717 void **pp = *lp;
7296abac 718 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
719 page_flush_tb_1 (level - 1, pp + i);
720 }
721 }
722}
723
724static void page_flush_tb(void)
725{
726 int i;
727 for (i = 0; i < V_L1_SIZE; i++) {
728 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
729 }
730}
731
732/* flush all the translation blocks */
d4e8164f 733/* XXX: tb_flush is currently not thread safe */
6a00d601 734void tb_flush(CPUState *env1)
fd6ce8f6 735{
6a00d601 736 CPUState *env;
0124311e 737#if defined(DEBUG_FLUSH)
ab3d1727
BS
738 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
739 (unsigned long)(code_gen_ptr - code_gen_buffer),
740 nb_tbs, nb_tbs > 0 ?
741 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 742#endif
26a5f13b 743 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
744 cpu_abort(env1, "Internal error: code buffer overflow\n");
745
fd6ce8f6 746 nb_tbs = 0;
3b46e624 747
6a00d601
FB
748 for(env = first_cpu; env != NULL; env = env->next_cpu) {
749 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
750 }
9fa3e853 751
8a8a608f 752 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 753 page_flush_tb();
9fa3e853 754
fd6ce8f6 755 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
756 /* XXX: flush processor icache at this point if cache flush is
757 expensive */
e3db7226 758 tb_flush_count++;
fd6ce8f6
FB
759}
760
761#ifdef DEBUG_TB_CHECK
762
bc98a7ef 763static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
764{
765 TranslationBlock *tb;
766 int i;
767 address &= TARGET_PAGE_MASK;
99773bd4
PB
768 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
769 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
770 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
771 address >= tb->pc + tb->size)) {
0bf9e31a
BS
772 printf("ERROR invalidate: address=" TARGET_FMT_lx
773 " PC=%08lx size=%04x\n",
99773bd4 774 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
775 }
776 }
777 }
778}
779
780/* verify that all the pages have correct rights for code */
781static void tb_page_check(void)
782{
783 TranslationBlock *tb;
784 int i, flags1, flags2;
3b46e624 785
99773bd4
PB
786 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
787 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
788 flags1 = page_get_flags(tb->pc);
789 flags2 = page_get_flags(tb->pc + tb->size - 1);
790 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
791 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 792 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
793 }
794 }
795 }
796}
797
798#endif
799
800/* invalidate one TB */
801static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
802 int next_offset)
803{
804 TranslationBlock *tb1;
805 for(;;) {
806 tb1 = *ptb;
807 if (tb1 == tb) {
808 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
809 break;
810 }
811 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
812 }
813}
814
9fa3e853
FB
815static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
816{
817 TranslationBlock *tb1;
818 unsigned int n1;
819
820 for(;;) {
821 tb1 = *ptb;
822 n1 = (long)tb1 & 3;
823 tb1 = (TranslationBlock *)((long)tb1 & ~3);
824 if (tb1 == tb) {
825 *ptb = tb1->page_next[n1];
826 break;
827 }
828 ptb = &tb1->page_next[n1];
829 }
830}
831
d4e8164f
FB
832static inline void tb_jmp_remove(TranslationBlock *tb, int n)
833{
834 TranslationBlock *tb1, **ptb;
835 unsigned int n1;
836
837 ptb = &tb->jmp_next[n];
838 tb1 = *ptb;
839 if (tb1) {
840 /* find tb(n) in circular list */
841 for(;;) {
842 tb1 = *ptb;
843 n1 = (long)tb1 & 3;
844 tb1 = (TranslationBlock *)((long)tb1 & ~3);
845 if (n1 == n && tb1 == tb)
846 break;
847 if (n1 == 2) {
848 ptb = &tb1->jmp_first;
849 } else {
850 ptb = &tb1->jmp_next[n1];
851 }
852 }
853 /* now we can suppress tb(n) from the list */
854 *ptb = tb->jmp_next[n];
855
856 tb->jmp_next[n] = NULL;
857 }
858}
859
860/* reset the jump entry 'n' of a TB so that it is not chained to
861 another TB */
862static inline void tb_reset_jump(TranslationBlock *tb, int n)
863{
864 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
865}
866
41c1b1c9 867void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 868{
6a00d601 869 CPUState *env;
8a40a180 870 PageDesc *p;
d4e8164f 871 unsigned int h, n1;
41c1b1c9 872 tb_page_addr_t phys_pc;
8a40a180 873 TranslationBlock *tb1, *tb2;
3b46e624 874
8a40a180
FB
875 /* remove the TB from the hash list */
876 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
877 h = tb_phys_hash_func(phys_pc);
5fafdf24 878 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
879 offsetof(TranslationBlock, phys_hash_next));
880
881 /* remove the TB from the page list */
882 if (tb->page_addr[0] != page_addr) {
883 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
884 tb_page_remove(&p->first_tb, tb);
885 invalidate_page_bitmap(p);
886 }
887 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
888 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
889 tb_page_remove(&p->first_tb, tb);
890 invalidate_page_bitmap(p);
891 }
892
36bdbe54 893 tb_invalidated_flag = 1;
59817ccb 894
fd6ce8f6 895 /* remove the TB from the hash list */
8a40a180 896 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
897 for(env = first_cpu; env != NULL; env = env->next_cpu) {
898 if (env->tb_jmp_cache[h] == tb)
899 env->tb_jmp_cache[h] = NULL;
900 }
d4e8164f
FB
901
902 /* suppress this TB from the two jump lists */
903 tb_jmp_remove(tb, 0);
904 tb_jmp_remove(tb, 1);
905
906 /* suppress any remaining jumps to this TB */
907 tb1 = tb->jmp_first;
908 for(;;) {
909 n1 = (long)tb1 & 3;
910 if (n1 == 2)
911 break;
912 tb1 = (TranslationBlock *)((long)tb1 & ~3);
913 tb2 = tb1->jmp_next[n1];
914 tb_reset_jump(tb1, n1);
915 tb1->jmp_next[n1] = NULL;
916 tb1 = tb2;
917 }
918 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 919
e3db7226 920 tb_phys_invalidate_count++;
9fa3e853
FB
921}
922
923static inline void set_bits(uint8_t *tab, int start, int len)
924{
925 int end, mask, end1;
926
927 end = start + len;
928 tab += start >> 3;
929 mask = 0xff << (start & 7);
930 if ((start & ~7) == (end & ~7)) {
931 if (start < end) {
932 mask &= ~(0xff << (end & 7));
933 *tab |= mask;
934 }
935 } else {
936 *tab++ |= mask;
937 start = (start + 8) & ~7;
938 end1 = end & ~7;
939 while (start < end1) {
940 *tab++ = 0xff;
941 start += 8;
942 }
943 if (start < end) {
944 mask = ~(0xff << (end & 7));
945 *tab |= mask;
946 }
947 }
948}
949
950static void build_page_bitmap(PageDesc *p)
951{
952 int n, tb_start, tb_end;
953 TranslationBlock *tb;
3b46e624 954
7267c094 955 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
956
957 tb = p->first_tb;
958 while (tb != NULL) {
959 n = (long)tb & 3;
960 tb = (TranslationBlock *)((long)tb & ~3);
961 /* NOTE: this is subtle as a TB may span two physical pages */
962 if (n == 0) {
963 /* NOTE: tb_end may be after the end of the page, but
964 it is not a problem */
965 tb_start = tb->pc & ~TARGET_PAGE_MASK;
966 tb_end = tb_start + tb->size;
967 if (tb_end > TARGET_PAGE_SIZE)
968 tb_end = TARGET_PAGE_SIZE;
969 } else {
970 tb_start = 0;
971 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
972 }
973 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
974 tb = tb->page_next[n];
975 }
976}
977
2e70f6ef
PB
978TranslationBlock *tb_gen_code(CPUState *env,
979 target_ulong pc, target_ulong cs_base,
980 int flags, int cflags)
d720b93d
FB
981{
982 TranslationBlock *tb;
983 uint8_t *tc_ptr;
41c1b1c9
PB
984 tb_page_addr_t phys_pc, phys_page2;
985 target_ulong virt_page2;
d720b93d
FB
986 int code_gen_size;
987
41c1b1c9 988 phys_pc = get_page_addr_code(env, pc);
c27004ec 989 tb = tb_alloc(pc);
d720b93d
FB
990 if (!tb) {
991 /* flush must be done */
992 tb_flush(env);
993 /* cannot fail at this point */
c27004ec 994 tb = tb_alloc(pc);
2e70f6ef
PB
995 /* Don't forget to invalidate previous TB info. */
996 tb_invalidated_flag = 1;
d720b93d
FB
997 }
998 tc_ptr = code_gen_ptr;
999 tb->tc_ptr = tc_ptr;
1000 tb->cs_base = cs_base;
1001 tb->flags = flags;
1002 tb->cflags = cflags;
d07bde88 1003 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 1004 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1005
d720b93d 1006 /* check next page if needed */
c27004ec 1007 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1008 phys_page2 = -1;
c27004ec 1009 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1010 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1011 }
41c1b1c9 1012 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1013 return tb;
d720b93d 1014}
3b46e624 1015
9fa3e853
FB
1016/* invalidate all TBs which intersect with the target physical page
1017 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1018 the same physical page. 'is_cpu_write_access' should be true if called
1019 from a real cpu write access: the virtual CPU will exit the current
1020 TB if code is modified inside this TB. */
41c1b1c9 1021void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1022 int is_cpu_write_access)
1023{
6b917547 1024 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1025 CPUState *env = cpu_single_env;
41c1b1c9 1026 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1027 PageDesc *p;
1028 int n;
1029#ifdef TARGET_HAS_PRECISE_SMC
1030 int current_tb_not_found = is_cpu_write_access;
1031 TranslationBlock *current_tb = NULL;
1032 int current_tb_modified = 0;
1033 target_ulong current_pc = 0;
1034 target_ulong current_cs_base = 0;
1035 int current_flags = 0;
1036#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1037
1038 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1039 if (!p)
9fa3e853 1040 return;
5fafdf24 1041 if (!p->code_bitmap &&
d720b93d
FB
1042 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1043 is_cpu_write_access) {
9fa3e853
FB
1044 /* build code bitmap */
1045 build_page_bitmap(p);
1046 }
1047
1048 /* we remove all the TBs in the range [start, end[ */
1049 /* XXX: see if in some cases it could be faster to invalidate all the code */
1050 tb = p->first_tb;
1051 while (tb != NULL) {
1052 n = (long)tb & 3;
1053 tb = (TranslationBlock *)((long)tb & ~3);
1054 tb_next = tb->page_next[n];
1055 /* NOTE: this is subtle as a TB may span two physical pages */
1056 if (n == 0) {
1057 /* NOTE: tb_end may be after the end of the page, but
1058 it is not a problem */
1059 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1060 tb_end = tb_start + tb->size;
1061 } else {
1062 tb_start = tb->page_addr[1];
1063 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1064 }
1065 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1066#ifdef TARGET_HAS_PRECISE_SMC
1067 if (current_tb_not_found) {
1068 current_tb_not_found = 0;
1069 current_tb = NULL;
2e70f6ef 1070 if (env->mem_io_pc) {
d720b93d 1071 /* now we have a real cpu fault */
2e70f6ef 1072 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1073 }
1074 }
1075 if (current_tb == tb &&
2e70f6ef 1076 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1077 /* If we are modifying the current TB, we must stop
1078 its execution. We could be more precise by checking
1079 that the modification is after the current PC, but it
1080 would require a specialized function to partially
1081 restore the CPU state */
3b46e624 1082
d720b93d 1083 current_tb_modified = 1;
618ba8e6 1084 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1085 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1086 &current_flags);
d720b93d
FB
1087 }
1088#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1089 /* we need to do that to handle the case where a signal
1090 occurs while doing tb_phys_invalidate() */
1091 saved_tb = NULL;
1092 if (env) {
1093 saved_tb = env->current_tb;
1094 env->current_tb = NULL;
1095 }
9fa3e853 1096 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1097 if (env) {
1098 env->current_tb = saved_tb;
1099 if (env->interrupt_request && env->current_tb)
1100 cpu_interrupt(env, env->interrupt_request);
1101 }
9fa3e853
FB
1102 }
1103 tb = tb_next;
1104 }
1105#if !defined(CONFIG_USER_ONLY)
1106 /* if no code remaining, no need to continue to use slow writes */
1107 if (!p->first_tb) {
1108 invalidate_page_bitmap(p);
d720b93d 1109 if (is_cpu_write_access) {
2e70f6ef 1110 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1111 }
1112 }
1113#endif
1114#ifdef TARGET_HAS_PRECISE_SMC
1115 if (current_tb_modified) {
1116 /* we generate a block containing just the instruction
1117 modifying the memory. It will ensure that it cannot modify
1118 itself */
ea1c1802 1119 env->current_tb = NULL;
2e70f6ef 1120 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1121 cpu_resume_from_signal(env, NULL);
9fa3e853 1122 }
fd6ce8f6 1123#endif
9fa3e853 1124}
fd6ce8f6 1125
9fa3e853 1126/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1127static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1128{
1129 PageDesc *p;
1130 int offset, b;
59817ccb 1131#if 0
a4193c8a 1132 if (1) {
93fcfe39
AL
1133 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1134 cpu_single_env->mem_io_vaddr, len,
1135 cpu_single_env->eip,
1136 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1137 }
1138#endif
9fa3e853 1139 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1140 if (!p)
9fa3e853
FB
1141 return;
1142 if (p->code_bitmap) {
1143 offset = start & ~TARGET_PAGE_MASK;
1144 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1145 if (b & ((1 << len) - 1))
1146 goto do_invalidate;
1147 } else {
1148 do_invalidate:
d720b93d 1149 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1150 }
1151}
1152
9fa3e853 1153#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1154static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1155 unsigned long pc, void *puc)
9fa3e853 1156{
6b917547 1157 TranslationBlock *tb;
9fa3e853 1158 PageDesc *p;
6b917547 1159 int n;
d720b93d 1160#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1161 TranslationBlock *current_tb = NULL;
d720b93d 1162 CPUState *env = cpu_single_env;
6b917547
AL
1163 int current_tb_modified = 0;
1164 target_ulong current_pc = 0;
1165 target_ulong current_cs_base = 0;
1166 int current_flags = 0;
d720b93d 1167#endif
9fa3e853
FB
1168
1169 addr &= TARGET_PAGE_MASK;
1170 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1171 if (!p)
9fa3e853
FB
1172 return;
1173 tb = p->first_tb;
d720b93d
FB
1174#ifdef TARGET_HAS_PRECISE_SMC
1175 if (tb && pc != 0) {
1176 current_tb = tb_find_pc(pc);
1177 }
1178#endif
9fa3e853
FB
1179 while (tb != NULL) {
1180 n = (long)tb & 3;
1181 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1182#ifdef TARGET_HAS_PRECISE_SMC
1183 if (current_tb == tb &&
2e70f6ef 1184 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1185 /* If we are modifying the current TB, we must stop
1186 its execution. We could be more precise by checking
1187 that the modification is after the current PC, but it
1188 would require a specialized function to partially
1189 restore the CPU state */
3b46e624 1190
d720b93d 1191 current_tb_modified = 1;
618ba8e6 1192 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1193 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1194 &current_flags);
d720b93d
FB
1195 }
1196#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1197 tb_phys_invalidate(tb, addr);
1198 tb = tb->page_next[n];
1199 }
fd6ce8f6 1200 p->first_tb = NULL;
d720b93d
FB
1201#ifdef TARGET_HAS_PRECISE_SMC
1202 if (current_tb_modified) {
1203 /* we generate a block containing just the instruction
1204 modifying the memory. It will ensure that it cannot modify
1205 itself */
ea1c1802 1206 env->current_tb = NULL;
2e70f6ef 1207 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1208 cpu_resume_from_signal(env, puc);
1209 }
1210#endif
fd6ce8f6 1211}
9fa3e853 1212#endif
fd6ce8f6
FB
1213
1214/* add the tb in the target page and protect it if necessary */
5fafdf24 1215static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1216 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1217{
1218 PageDesc *p;
4429ab44
JQ
1219#ifndef CONFIG_USER_ONLY
1220 bool page_already_protected;
1221#endif
9fa3e853
FB
1222
1223 tb->page_addr[n] = page_addr;
5cd2c5b6 1224 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1225 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1226#ifndef CONFIG_USER_ONLY
1227 page_already_protected = p->first_tb != NULL;
1228#endif
9fa3e853
FB
1229 p->first_tb = (TranslationBlock *)((long)tb | n);
1230 invalidate_page_bitmap(p);
fd6ce8f6 1231
107db443 1232#if defined(TARGET_HAS_SMC) || 1
d720b93d 1233
9fa3e853 1234#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1235 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1236 target_ulong addr;
1237 PageDesc *p2;
9fa3e853
FB
1238 int prot;
1239
fd6ce8f6
FB
1240 /* force the host page as non writable (writes will have a
1241 page fault + mprotect overhead) */
53a5960a 1242 page_addr &= qemu_host_page_mask;
fd6ce8f6 1243 prot = 0;
53a5960a
PB
1244 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1245 addr += TARGET_PAGE_SIZE) {
1246
1247 p2 = page_find (addr >> TARGET_PAGE_BITS);
1248 if (!p2)
1249 continue;
1250 prot |= p2->flags;
1251 p2->flags &= ~PAGE_WRITE;
53a5960a 1252 }
5fafdf24 1253 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1254 (prot & PAGE_BITS) & ~PAGE_WRITE);
1255#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1256 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1257 page_addr);
fd6ce8f6 1258#endif
fd6ce8f6 1259 }
9fa3e853
FB
1260#else
1261 /* if some code is already present, then the pages are already
1262 protected. So we handle the case where only the first TB is
1263 allocated in a physical page */
4429ab44 1264 if (!page_already_protected) {
6a00d601 1265 tlb_protect_code(page_addr);
9fa3e853
FB
1266 }
1267#endif
d720b93d
FB
1268
1269#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1270}
1271
9fa3e853
FB
1272/* add a new TB and link it to the physical page tables. phys_page2 is
1273 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1274void tb_link_page(TranslationBlock *tb,
1275 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1276{
9fa3e853
FB
1277 unsigned int h;
1278 TranslationBlock **ptb;
1279
c8a706fe
PB
1280 /* Grab the mmap lock to stop another thread invalidating this TB
1281 before we are done. */
1282 mmap_lock();
9fa3e853
FB
1283 /* add in the physical hash table */
1284 h = tb_phys_hash_func(phys_pc);
1285 ptb = &tb_phys_hash[h];
1286 tb->phys_hash_next = *ptb;
1287 *ptb = tb;
fd6ce8f6
FB
1288
1289 /* add in the page list */
9fa3e853
FB
1290 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1291 if (phys_page2 != -1)
1292 tb_alloc_page(tb, 1, phys_page2);
1293 else
1294 tb->page_addr[1] = -1;
9fa3e853 1295
d4e8164f
FB
1296 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1297 tb->jmp_next[0] = NULL;
1298 tb->jmp_next[1] = NULL;
1299
1300 /* init original jump addresses */
1301 if (tb->tb_next_offset[0] != 0xffff)
1302 tb_reset_jump(tb, 0);
1303 if (tb->tb_next_offset[1] != 0xffff)
1304 tb_reset_jump(tb, 1);
8a40a180
FB
1305
1306#ifdef DEBUG_TB_CHECK
1307 tb_page_check();
1308#endif
c8a706fe 1309 mmap_unlock();
fd6ce8f6
FB
1310}
1311
9fa3e853
FB
1312/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1313 tb[1].tc_ptr. Return NULL if not found */
1314TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1315{
9fa3e853
FB
1316 int m_min, m_max, m;
1317 unsigned long v;
1318 TranslationBlock *tb;
a513fe19
FB
1319
1320 if (nb_tbs <= 0)
1321 return NULL;
1322 if (tc_ptr < (unsigned long)code_gen_buffer ||
1323 tc_ptr >= (unsigned long)code_gen_ptr)
1324 return NULL;
1325 /* binary search (cf Knuth) */
1326 m_min = 0;
1327 m_max = nb_tbs - 1;
1328 while (m_min <= m_max) {
1329 m = (m_min + m_max) >> 1;
1330 tb = &tbs[m];
1331 v = (unsigned long)tb->tc_ptr;
1332 if (v == tc_ptr)
1333 return tb;
1334 else if (tc_ptr < v) {
1335 m_max = m - 1;
1336 } else {
1337 m_min = m + 1;
1338 }
5fafdf24 1339 }
a513fe19
FB
1340 return &tbs[m_max];
1341}
7501267e 1342
ea041c0e
FB
1343static void tb_reset_jump_recursive(TranslationBlock *tb);
1344
1345static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1346{
1347 TranslationBlock *tb1, *tb_next, **ptb;
1348 unsigned int n1;
1349
1350 tb1 = tb->jmp_next[n];
1351 if (tb1 != NULL) {
1352 /* find head of list */
1353 for(;;) {
1354 n1 = (long)tb1 & 3;
1355 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1356 if (n1 == 2)
1357 break;
1358 tb1 = tb1->jmp_next[n1];
1359 }
1360 /* we are now sure now that tb jumps to tb1 */
1361 tb_next = tb1;
1362
1363 /* remove tb from the jmp_first list */
1364 ptb = &tb_next->jmp_first;
1365 for(;;) {
1366 tb1 = *ptb;
1367 n1 = (long)tb1 & 3;
1368 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1369 if (n1 == n && tb1 == tb)
1370 break;
1371 ptb = &tb1->jmp_next[n1];
1372 }
1373 *ptb = tb->jmp_next[n];
1374 tb->jmp_next[n] = NULL;
3b46e624 1375
ea041c0e
FB
1376 /* suppress the jump to next tb in generated code */
1377 tb_reset_jump(tb, n);
1378
0124311e 1379 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1380 tb_reset_jump_recursive(tb_next);
1381 }
1382}
1383
1384static void tb_reset_jump_recursive(TranslationBlock *tb)
1385{
1386 tb_reset_jump_recursive2(tb, 0);
1387 tb_reset_jump_recursive2(tb, 1);
1388}
1389
1fddef4b 1390#if defined(TARGET_HAS_ICE)
94df27fd
PB
1391#if defined(CONFIG_USER_ONLY)
1392static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1393{
1394 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1395}
1396#else
d720b93d
FB
1397static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1398{
c227f099 1399 target_phys_addr_t addr;
9b3c35e0 1400 target_ulong pd;
c227f099 1401 ram_addr_t ram_addr;
c2f07f81 1402 PhysPageDesc *p;
d720b93d 1403
c2f07f81
PB
1404 addr = cpu_get_phys_page_debug(env, pc);
1405 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1406 if (!p) {
1407 pd = IO_MEM_UNASSIGNED;
1408 } else {
1409 pd = p->phys_offset;
1410 }
1411 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1412 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1413}
c27004ec 1414#endif
94df27fd 1415#endif /* TARGET_HAS_ICE */
d720b93d 1416
c527ee8f
PB
1417#if defined(CONFIG_USER_ONLY)
1418void cpu_watchpoint_remove_all(CPUState *env, int mask)
1419
1420{
1421}
1422
1423int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1424 int flags, CPUWatchpoint **watchpoint)
1425{
1426 return -ENOSYS;
1427}
1428#else
6658ffb8 1429/* Add a watchpoint. */
a1d1bb31
AL
1430int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1431 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1432{
b4051334 1433 target_ulong len_mask = ~(len - 1);
c0ce998e 1434 CPUWatchpoint *wp;
6658ffb8 1435
b4051334
AL
1436 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1437 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1438 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1439 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1440 return -EINVAL;
1441 }
7267c094 1442 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1443
1444 wp->vaddr = addr;
b4051334 1445 wp->len_mask = len_mask;
a1d1bb31
AL
1446 wp->flags = flags;
1447
2dc9f411 1448 /* keep all GDB-injected watchpoints in front */
c0ce998e 1449 if (flags & BP_GDB)
72cf2d4f 1450 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1451 else
72cf2d4f 1452 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1453
6658ffb8 1454 tlb_flush_page(env, addr);
a1d1bb31
AL
1455
1456 if (watchpoint)
1457 *watchpoint = wp;
1458 return 0;
6658ffb8
PB
1459}
1460
a1d1bb31
AL
1461/* Remove a specific watchpoint. */
1462int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1463 int flags)
6658ffb8 1464{
b4051334 1465 target_ulong len_mask = ~(len - 1);
a1d1bb31 1466 CPUWatchpoint *wp;
6658ffb8 1467
72cf2d4f 1468 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1469 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1470 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1471 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1472 return 0;
1473 }
1474 }
a1d1bb31 1475 return -ENOENT;
6658ffb8
PB
1476}
1477
a1d1bb31
AL
1478/* Remove a specific watchpoint by reference. */
1479void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1480{
72cf2d4f 1481 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1482
a1d1bb31
AL
1483 tlb_flush_page(env, watchpoint->vaddr);
1484
7267c094 1485 g_free(watchpoint);
a1d1bb31
AL
1486}
1487
1488/* Remove all matching watchpoints. */
1489void cpu_watchpoint_remove_all(CPUState *env, int mask)
1490{
c0ce998e 1491 CPUWatchpoint *wp, *next;
a1d1bb31 1492
72cf2d4f 1493 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1494 if (wp->flags & mask)
1495 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1496 }
7d03f82f 1497}
c527ee8f 1498#endif
7d03f82f 1499
a1d1bb31
AL
1500/* Add a breakpoint. */
1501int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1502 CPUBreakpoint **breakpoint)
4c3a88a2 1503{
1fddef4b 1504#if defined(TARGET_HAS_ICE)
c0ce998e 1505 CPUBreakpoint *bp;
3b46e624 1506
7267c094 1507 bp = g_malloc(sizeof(*bp));
4c3a88a2 1508
a1d1bb31
AL
1509 bp->pc = pc;
1510 bp->flags = flags;
1511
2dc9f411 1512 /* keep all GDB-injected breakpoints in front */
c0ce998e 1513 if (flags & BP_GDB)
72cf2d4f 1514 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1515 else
72cf2d4f 1516 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1517
d720b93d 1518 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1519
1520 if (breakpoint)
1521 *breakpoint = bp;
4c3a88a2
FB
1522 return 0;
1523#else
a1d1bb31 1524 return -ENOSYS;
4c3a88a2
FB
1525#endif
1526}
1527
a1d1bb31
AL
1528/* Remove a specific breakpoint. */
1529int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1530{
7d03f82f 1531#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1532 CPUBreakpoint *bp;
1533
72cf2d4f 1534 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1535 if (bp->pc == pc && bp->flags == flags) {
1536 cpu_breakpoint_remove_by_ref(env, bp);
1537 return 0;
1538 }
7d03f82f 1539 }
a1d1bb31
AL
1540 return -ENOENT;
1541#else
1542 return -ENOSYS;
7d03f82f
EI
1543#endif
1544}
1545
a1d1bb31
AL
1546/* Remove a specific breakpoint by reference. */
1547void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1548{
1fddef4b 1549#if defined(TARGET_HAS_ICE)
72cf2d4f 1550 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1551
a1d1bb31
AL
1552 breakpoint_invalidate(env, breakpoint->pc);
1553
7267c094 1554 g_free(breakpoint);
a1d1bb31
AL
1555#endif
1556}
1557
1558/* Remove all matching breakpoints. */
1559void cpu_breakpoint_remove_all(CPUState *env, int mask)
1560{
1561#if defined(TARGET_HAS_ICE)
c0ce998e 1562 CPUBreakpoint *bp, *next;
a1d1bb31 1563
72cf2d4f 1564 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1565 if (bp->flags & mask)
1566 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1567 }
4c3a88a2
FB
1568#endif
1569}
1570
c33a346e
FB
1571/* enable or disable single step mode. EXCP_DEBUG is returned by the
1572 CPU loop after each instruction */
1573void cpu_single_step(CPUState *env, int enabled)
1574{
1fddef4b 1575#if defined(TARGET_HAS_ICE)
c33a346e
FB
1576 if (env->singlestep_enabled != enabled) {
1577 env->singlestep_enabled = enabled;
e22a25c9
AL
1578 if (kvm_enabled())
1579 kvm_update_guest_debug(env, 0);
1580 else {
ccbb4d44 1581 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1582 /* XXX: only flush what is necessary */
1583 tb_flush(env);
1584 }
c33a346e
FB
1585 }
1586#endif
1587}
1588
34865134
FB
1589/* enable or disable low levels log */
1590void cpu_set_log(int log_flags)
1591{
1592 loglevel = log_flags;
1593 if (loglevel && !logfile) {
11fcfab4 1594 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1595 if (!logfile) {
1596 perror(logfilename);
1597 _exit(1);
1598 }
9fa3e853
FB
1599#if !defined(CONFIG_SOFTMMU)
1600 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1601 {
b55266b5 1602 static char logfile_buf[4096];
9fa3e853
FB
1603 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1604 }
daf767b1
SW
1605#elif defined(_WIN32)
1606 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1607 setvbuf(logfile, NULL, _IONBF, 0);
1608#else
34865134 1609 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1610#endif
e735b91c
PB
1611 log_append = 1;
1612 }
1613 if (!loglevel && logfile) {
1614 fclose(logfile);
1615 logfile = NULL;
34865134
FB
1616 }
1617}
1618
1619void cpu_set_log_filename(const char *filename)
1620{
1621 logfilename = strdup(filename);
e735b91c
PB
1622 if (logfile) {
1623 fclose(logfile);
1624 logfile = NULL;
1625 }
1626 cpu_set_log(loglevel);
34865134 1627}
c33a346e 1628
3098dba0 1629static void cpu_unlink_tb(CPUState *env)
ea041c0e 1630{
3098dba0
AJ
1631 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1632 problem and hope the cpu will stop of its own accord. For userspace
1633 emulation this often isn't actually as bad as it sounds. Often
1634 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1635 TranslationBlock *tb;
c227f099 1636 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1637
cab1b4bd 1638 spin_lock(&interrupt_lock);
3098dba0
AJ
1639 tb = env->current_tb;
1640 /* if the cpu is currently executing code, we must unlink it and
1641 all the potentially executing TB */
f76cfe56 1642 if (tb) {
3098dba0
AJ
1643 env->current_tb = NULL;
1644 tb_reset_jump_recursive(tb);
be214e6c 1645 }
cab1b4bd 1646 spin_unlock(&interrupt_lock);
3098dba0
AJ
1647}
1648
97ffbd8d 1649#ifndef CONFIG_USER_ONLY
3098dba0 1650/* mask must never be zero, except for A20 change call */
ec6959d0 1651static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1652{
1653 int old_mask;
be214e6c 1654
2e70f6ef 1655 old_mask = env->interrupt_request;
68a79315 1656 env->interrupt_request |= mask;
3098dba0 1657
8edac960
AL
1658 /*
1659 * If called from iothread context, wake the target cpu in
1660 * case its halted.
1661 */
b7680cb6 1662 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1663 qemu_cpu_kick(env);
1664 return;
1665 }
8edac960 1666
2e70f6ef 1667 if (use_icount) {
266910c4 1668 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1669 if (!can_do_io(env)
be214e6c 1670 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1671 cpu_abort(env, "Raised interrupt while not in I/O function");
1672 }
2e70f6ef 1673 } else {
3098dba0 1674 cpu_unlink_tb(env);
ea041c0e
FB
1675 }
1676}
1677
ec6959d0
JK
1678CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1679
97ffbd8d
JK
1680#else /* CONFIG_USER_ONLY */
1681
1682void cpu_interrupt(CPUState *env, int mask)
1683{
1684 env->interrupt_request |= mask;
1685 cpu_unlink_tb(env);
1686}
1687#endif /* CONFIG_USER_ONLY */
1688
b54ad049
FB
1689void cpu_reset_interrupt(CPUState *env, int mask)
1690{
1691 env->interrupt_request &= ~mask;
1692}
1693
3098dba0
AJ
1694void cpu_exit(CPUState *env)
1695{
1696 env->exit_request = 1;
1697 cpu_unlink_tb(env);
1698}
1699
c7cd6a37 1700const CPULogItem cpu_log_items[] = {
5fafdf24 1701 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1702 "show generated host assembly code for each compiled TB" },
1703 { CPU_LOG_TB_IN_ASM, "in_asm",
1704 "show target assembly code for each compiled TB" },
5fafdf24 1705 { CPU_LOG_TB_OP, "op",
57fec1fe 1706 "show micro ops for each compiled TB" },
f193c797 1707 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1708 "show micro ops "
1709#ifdef TARGET_I386
1710 "before eflags optimization and "
f193c797 1711#endif
e01a1157 1712 "after liveness analysis" },
f193c797
FB
1713 { CPU_LOG_INT, "int",
1714 "show interrupts/exceptions in short format" },
1715 { CPU_LOG_EXEC, "exec",
1716 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1717 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1718 "show CPU state before block translation" },
f193c797
FB
1719#ifdef TARGET_I386
1720 { CPU_LOG_PCALL, "pcall",
1721 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1722 { CPU_LOG_RESET, "cpu_reset",
1723 "show CPU state before CPU resets" },
f193c797 1724#endif
8e3a9fd2 1725#ifdef DEBUG_IOPORT
fd872598
FB
1726 { CPU_LOG_IOPORT, "ioport",
1727 "show all i/o ports accesses" },
8e3a9fd2 1728#endif
f193c797
FB
1729 { 0, NULL, NULL },
1730};
1731
f6f3fbca
MT
1732#ifndef CONFIG_USER_ONLY
1733static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1734 = QLIST_HEAD_INITIALIZER(memory_client_list);
1735
1736static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26 1737 ram_addr_t size,
0fd542fb
MT
1738 ram_addr_t phys_offset,
1739 bool log_dirty)
f6f3fbca
MT
1740{
1741 CPUPhysMemoryClient *client;
1742 QLIST_FOREACH(client, &memory_client_list, list) {
0fd542fb 1743 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
f6f3fbca
MT
1744 }
1745}
1746
1747static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1748 target_phys_addr_t end)
f6f3fbca
MT
1749{
1750 CPUPhysMemoryClient *client;
1751 QLIST_FOREACH(client, &memory_client_list, list) {
1752 int r = client->sync_dirty_bitmap(client, start, end);
1753 if (r < 0)
1754 return r;
1755 }
1756 return 0;
1757}
1758
1759static int cpu_notify_migration_log(int enable)
1760{
1761 CPUPhysMemoryClient *client;
1762 QLIST_FOREACH(client, &memory_client_list, list) {
1763 int r = client->migration_log(client, enable);
1764 if (r < 0)
1765 return r;
1766 }
1767 return 0;
1768}
1769
2173a75f
AW
1770struct last_map {
1771 target_phys_addr_t start_addr;
1772 ram_addr_t size;
1773 ram_addr_t phys_offset;
1774};
1775
8d4c78e7
AW
1776/* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1777 * address. Each intermediate table provides the next L2_BITs of guest
1778 * physical address space. The number of levels vary based on host and
1779 * guest configuration, making it efficient to build the final guest
1780 * physical address by seeding the L1 offset and shifting and adding in
1781 * each L2 offset as we recurse through them. */
2173a75f
AW
1782static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
1783 void **lp, target_phys_addr_t addr,
1784 struct last_map *map)
f6f3fbca 1785{
5cd2c5b6 1786 int i;
f6f3fbca 1787
5cd2c5b6
RH
1788 if (*lp == NULL) {
1789 return;
1790 }
1791 if (level == 0) {
1792 PhysPageDesc *pd = *lp;
8d4c78e7 1793 addr <<= L2_BITS + TARGET_PAGE_BITS;
7296abac 1794 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1795 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
2173a75f
AW
1796 target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
1797
1798 if (map->size &&
1799 start_addr == map->start_addr + map->size &&
1800 pd[i].phys_offset == map->phys_offset + map->size) {
1801
1802 map->size += TARGET_PAGE_SIZE;
1803 continue;
1804 } else if (map->size) {
1805 client->set_memory(client, map->start_addr,
1806 map->size, map->phys_offset, false);
1807 }
1808
1809 map->start_addr = start_addr;
1810 map->size = TARGET_PAGE_SIZE;
1811 map->phys_offset = pd[i].phys_offset;
f6f3fbca 1812 }
5cd2c5b6
RH
1813 }
1814 } else {
1815 void **pp = *lp;
7296abac 1816 for (i = 0; i < L2_SIZE; ++i) {
8d4c78e7 1817 phys_page_for_each_1(client, level - 1, pp + i,
2173a75f 1818 (addr << L2_BITS) | i, map);
f6f3fbca
MT
1819 }
1820 }
1821}
1822
1823static void phys_page_for_each(CPUPhysMemoryClient *client)
1824{
5cd2c5b6 1825 int i;
2173a75f
AW
1826 struct last_map map = { };
1827
5cd2c5b6
RH
1828 for (i = 0; i < P_L1_SIZE; ++i) {
1829 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
2173a75f
AW
1830 l1_phys_map + i, i, &map);
1831 }
1832 if (map.size) {
1833 client->set_memory(client, map.start_addr, map.size, map.phys_offset,
1834 false);
f6f3fbca 1835 }
f6f3fbca
MT
1836}
1837
1838void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1839{
1840 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1841 phys_page_for_each(client);
1842}
1843
1844void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1845{
1846 QLIST_REMOVE(client, list);
1847}
1848#endif
1849
f193c797
FB
1850static int cmp1(const char *s1, int n, const char *s2)
1851{
1852 if (strlen(s2) != n)
1853 return 0;
1854 return memcmp(s1, s2, n) == 0;
1855}
3b46e624 1856
f193c797
FB
1857/* takes a comma separated list of log masks. Return 0 if error. */
1858int cpu_str_to_log_mask(const char *str)
1859{
c7cd6a37 1860 const CPULogItem *item;
f193c797
FB
1861 int mask;
1862 const char *p, *p1;
1863
1864 p = str;
1865 mask = 0;
1866 for(;;) {
1867 p1 = strchr(p, ',');
1868 if (!p1)
1869 p1 = p + strlen(p);
9742bf26
YT
1870 if(cmp1(p,p1-p,"all")) {
1871 for(item = cpu_log_items; item->mask != 0; item++) {
1872 mask |= item->mask;
1873 }
1874 } else {
1875 for(item = cpu_log_items; item->mask != 0; item++) {
1876 if (cmp1(p, p1 - p, item->name))
1877 goto found;
1878 }
1879 return 0;
f193c797 1880 }
f193c797
FB
1881 found:
1882 mask |= item->mask;
1883 if (*p1 != ',')
1884 break;
1885 p = p1 + 1;
1886 }
1887 return mask;
1888}
ea041c0e 1889
7501267e
FB
1890void cpu_abort(CPUState *env, const char *fmt, ...)
1891{
1892 va_list ap;
493ae1f0 1893 va_list ap2;
7501267e
FB
1894
1895 va_start(ap, fmt);
493ae1f0 1896 va_copy(ap2, ap);
7501267e
FB
1897 fprintf(stderr, "qemu: fatal: ");
1898 vfprintf(stderr, fmt, ap);
1899 fprintf(stderr, "\n");
1900#ifdef TARGET_I386
7fe48483
FB
1901 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1902#else
1903 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1904#endif
93fcfe39
AL
1905 if (qemu_log_enabled()) {
1906 qemu_log("qemu: fatal: ");
1907 qemu_log_vprintf(fmt, ap2);
1908 qemu_log("\n");
f9373291 1909#ifdef TARGET_I386
93fcfe39 1910 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1911#else
93fcfe39 1912 log_cpu_state(env, 0);
f9373291 1913#endif
31b1a7b4 1914 qemu_log_flush();
93fcfe39 1915 qemu_log_close();
924edcae 1916 }
493ae1f0 1917 va_end(ap2);
f9373291 1918 va_end(ap);
fd052bf6
RV
1919#if defined(CONFIG_USER_ONLY)
1920 {
1921 struct sigaction act;
1922 sigfillset(&act.sa_mask);
1923 act.sa_handler = SIG_DFL;
1924 sigaction(SIGABRT, &act, NULL);
1925 }
1926#endif
7501267e
FB
1927 abort();
1928}
1929
c5be9f08
TS
1930CPUState *cpu_copy(CPUState *env)
1931{
01ba9816 1932 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1933 CPUState *next_cpu = new_env->next_cpu;
1934 int cpu_index = new_env->cpu_index;
5a38f081
AL
1935#if defined(TARGET_HAS_ICE)
1936 CPUBreakpoint *bp;
1937 CPUWatchpoint *wp;
1938#endif
1939
c5be9f08 1940 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1941
1942 /* Preserve chaining and index. */
c5be9f08
TS
1943 new_env->next_cpu = next_cpu;
1944 new_env->cpu_index = cpu_index;
5a38f081
AL
1945
1946 /* Clone all break/watchpoints.
1947 Note: Once we support ptrace with hw-debug register access, make sure
1948 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1949 QTAILQ_INIT(&env->breakpoints);
1950 QTAILQ_INIT(&env->watchpoints);
5a38f081 1951#if defined(TARGET_HAS_ICE)
72cf2d4f 1952 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1953 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1954 }
72cf2d4f 1955 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1956 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1957 wp->flags, NULL);
1958 }
1959#endif
1960
c5be9f08
TS
1961 return new_env;
1962}
1963
0124311e
FB
1964#if !defined(CONFIG_USER_ONLY)
1965
5c751e99
EI
1966static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1967{
1968 unsigned int i;
1969
1970 /* Discard jump cache entries for any tb which might potentially
1971 overlap the flushed page. */
1972 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1973 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1974 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1975
1976 i = tb_jmp_cache_hash_page(addr);
1977 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1978 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1979}
1980
08738984
IK
1981static CPUTLBEntry s_cputlb_empty_entry = {
1982 .addr_read = -1,
1983 .addr_write = -1,
1984 .addr_code = -1,
1985 .addend = -1,
1986};
1987
ee8b7021
FB
1988/* NOTE: if flush_global is true, also flush global entries (not
1989 implemented yet) */
1990void tlb_flush(CPUState *env, int flush_global)
33417e70 1991{
33417e70 1992 int i;
0124311e 1993
9fa3e853
FB
1994#if defined(DEBUG_TLB)
1995 printf("tlb_flush:\n");
1996#endif
0124311e
FB
1997 /* must reset current TB so that interrupts cannot modify the
1998 links while we are modifying them */
1999 env->current_tb = NULL;
2000
33417e70 2001 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
2002 int mmu_idx;
2003 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 2004 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 2005 }
33417e70 2006 }
9fa3e853 2007
8a40a180 2008 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 2009
d4c430a8
PB
2010 env->tlb_flush_addr = -1;
2011 env->tlb_flush_mask = 0;
e3db7226 2012 tlb_flush_count++;
33417e70
FB
2013}
2014
274da6b2 2015static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 2016{
5fafdf24 2017 if (addr == (tlb_entry->addr_read &
84b7b8e7 2018 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2019 addr == (tlb_entry->addr_write &
84b7b8e7 2020 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 2021 addr == (tlb_entry->addr_code &
84b7b8e7 2022 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 2023 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 2024 }
61382a50
FB
2025}
2026
2e12669a 2027void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 2028{
8a40a180 2029 int i;
cfde4bd9 2030 int mmu_idx;
0124311e 2031
9fa3e853 2032#if defined(DEBUG_TLB)
108c49b8 2033 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 2034#endif
d4c430a8
PB
2035 /* Check if we need to flush due to large pages. */
2036 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2037#if defined(DEBUG_TLB)
2038 printf("tlb_flush_page: forced full flush ("
2039 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2040 env->tlb_flush_addr, env->tlb_flush_mask);
2041#endif
2042 tlb_flush(env, 1);
2043 return;
2044 }
0124311e
FB
2045 /* must reset current TB so that interrupts cannot modify the
2046 links while we are modifying them */
2047 env->current_tb = NULL;
61382a50
FB
2048
2049 addr &= TARGET_PAGE_MASK;
2050 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2051 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2052 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2053
5c751e99 2054 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2055}
2056
9fa3e853
FB
2057/* update the TLBs so that writes to code in the virtual page 'addr'
2058 can be detected */
c227f099 2059static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2060{
5fafdf24 2061 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2062 ram_addr + TARGET_PAGE_SIZE,
2063 CODE_DIRTY_FLAG);
9fa3e853
FB
2064}
2065
9fa3e853 2066/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2067 tested for self modifying code */
c227f099 2068static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2069 target_ulong vaddr)
9fa3e853 2070{
f7c11b53 2071 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2072}
2073
5fafdf24 2074static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2075 unsigned long start, unsigned long length)
2076{
2077 unsigned long addr;
84b7b8e7
FB
2078 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2079 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2080 if ((addr - start) < length) {
0f459d16 2081 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2082 }
2083 }
2084}
2085
5579c7f3 2086/* Note: start and end must be within the same ram block. */
c227f099 2087void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2088 int dirty_flags)
1ccde1cb
FB
2089{
2090 CPUState *env;
4f2ac237 2091 unsigned long length, start1;
f7c11b53 2092 int i;
1ccde1cb
FB
2093
2094 start &= TARGET_PAGE_MASK;
2095 end = TARGET_PAGE_ALIGN(end);
2096
2097 length = end - start;
2098 if (length == 0)
2099 return;
f7c11b53 2100 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2101
1ccde1cb
FB
2102 /* we modify the TLB cache so that the dirty bit will be set again
2103 when accessing the range */
b2e0a138 2104 start1 = (unsigned long)qemu_safe_ram_ptr(start);
a57d23e4 2105 /* Check that we don't span multiple blocks - this breaks the
5579c7f3 2106 address comparisons below. */
b2e0a138 2107 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2108 != (end - 1) - start) {
2109 abort();
2110 }
2111
6a00d601 2112 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2113 int mmu_idx;
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2115 for(i = 0; i < CPU_TLB_SIZE; i++)
2116 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2117 start1, length);
2118 }
6a00d601 2119 }
1ccde1cb
FB
2120}
2121
74576198
AL
2122int cpu_physical_memory_set_dirty_tracking(int enable)
2123{
f6f3fbca 2124 int ret = 0;
74576198 2125 in_migration = enable;
f6f3fbca
MT
2126 ret = cpu_notify_migration_log(!!enable);
2127 return ret;
74576198
AL
2128}
2129
2130int cpu_physical_memory_get_dirty_tracking(void)
2131{
2132 return in_migration;
2133}
2134
c227f099
AL
2135int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2136 target_phys_addr_t end_addr)
2bec46dc 2137{
7b8f3b78 2138 int ret;
151f7749 2139
f6f3fbca 2140 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2141 return ret;
2bec46dc
AL
2142}
2143
e5896b12
AP
2144int cpu_physical_log_start(target_phys_addr_t start_addr,
2145 ram_addr_t size)
2146{
2147 CPUPhysMemoryClient *client;
2148 QLIST_FOREACH(client, &memory_client_list, list) {
2149 if (client->log_start) {
2150 int r = client->log_start(client, start_addr, size);
2151 if (r < 0) {
2152 return r;
2153 }
2154 }
2155 }
2156 return 0;
2157}
2158
2159int cpu_physical_log_stop(target_phys_addr_t start_addr,
2160 ram_addr_t size)
2161{
2162 CPUPhysMemoryClient *client;
2163 QLIST_FOREACH(client, &memory_client_list, list) {
2164 if (client->log_stop) {
2165 int r = client->log_stop(client, start_addr, size);
2166 if (r < 0) {
2167 return r;
2168 }
2169 }
2170 }
2171 return 0;
2172}
2173
3a7d929e
FB
2174static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2175{
c227f099 2176 ram_addr_t ram_addr;
5579c7f3 2177 void *p;
3a7d929e 2178
84b7b8e7 2179 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2180 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2181 + tlb_entry->addend);
e890261f 2182 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2183 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2184 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2185 }
2186 }
2187}
2188
2189/* update the TLB according to the current state of the dirty bits */
2190void cpu_tlb_update_dirty(CPUState *env)
2191{
2192 int i;
cfde4bd9
IY
2193 int mmu_idx;
2194 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2195 for(i = 0; i < CPU_TLB_SIZE; i++)
2196 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2197 }
3a7d929e
FB
2198}
2199
0f459d16 2200static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2201{
0f459d16
PB
2202 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2203 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2204}
2205
0f459d16
PB
2206/* update the TLB corresponding to virtual page vaddr
2207 so that it is no longer dirty */
2208static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2209{
1ccde1cb 2210 int i;
cfde4bd9 2211 int mmu_idx;
1ccde1cb 2212
0f459d16 2213 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2214 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2215 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2216 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2217}
2218
d4c430a8
PB
2219/* Our TLB does not support large pages, so remember the area covered by
2220 large pages and trigger a full TLB flush if these are invalidated. */
2221static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2222 target_ulong size)
2223{
2224 target_ulong mask = ~(size - 1);
2225
2226 if (env->tlb_flush_addr == (target_ulong)-1) {
2227 env->tlb_flush_addr = vaddr & mask;
2228 env->tlb_flush_mask = mask;
2229 return;
2230 }
2231 /* Extend the existing region to include the new page.
2232 This is a compromise between unnecessary flushes and the cost
2233 of maintaining a full variable size TLB. */
2234 mask &= env->tlb_flush_mask;
2235 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2236 mask <<= 1;
2237 }
2238 env->tlb_flush_addr &= mask;
2239 env->tlb_flush_mask = mask;
2240}
2241
2242/* Add a new TLB entry. At most one entry for a given virtual address
2243 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2244 supplied size is only used by tlb_flush_page. */
2245void tlb_set_page(CPUState *env, target_ulong vaddr,
2246 target_phys_addr_t paddr, int prot,
2247 int mmu_idx, target_ulong size)
9fa3e853 2248{
92e873b9 2249 PhysPageDesc *p;
4f2ac237 2250 unsigned long pd;
9fa3e853 2251 unsigned int index;
4f2ac237 2252 target_ulong address;
0f459d16 2253 target_ulong code_address;
355b1943 2254 unsigned long addend;
84b7b8e7 2255 CPUTLBEntry *te;
a1d1bb31 2256 CPUWatchpoint *wp;
c227f099 2257 target_phys_addr_t iotlb;
9fa3e853 2258
d4c430a8
PB
2259 assert(size >= TARGET_PAGE_SIZE);
2260 if (size != TARGET_PAGE_SIZE) {
2261 tlb_add_large_page(env, vaddr, size);
2262 }
92e873b9 2263 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2264 if (!p) {
2265 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2266 } else {
2267 pd = p->phys_offset;
9fa3e853
FB
2268 }
2269#if defined(DEBUG_TLB)
7fd3f494
SW
2270 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2271 " prot=%x idx=%d pd=0x%08lx\n",
2272 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2273#endif
2274
0f459d16
PB
2275 address = vaddr;
2276 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2277 /* IO memory case (romd handled later) */
2278 address |= TLB_MMIO;
2279 }
5579c7f3 2280 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2281 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2282 /* Normal RAM. */
2283 iotlb = pd & TARGET_PAGE_MASK;
2284 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2285 iotlb |= IO_MEM_NOTDIRTY;
2286 else
2287 iotlb |= IO_MEM_ROM;
2288 } else {
ccbb4d44 2289 /* IO handlers are currently passed a physical address.
0f459d16
PB
2290 It would be nice to pass an offset from the base address
2291 of that region. This would avoid having to special case RAM,
2292 and avoid full address decoding in every device.
2293 We can't use the high bits of pd for this because
2294 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2295 iotlb = (pd & ~TARGET_PAGE_MASK);
2296 if (p) {
8da3ff18
PB
2297 iotlb += p->region_offset;
2298 } else {
2299 iotlb += paddr;
2300 }
0f459d16
PB
2301 }
2302
2303 code_address = address;
2304 /* Make accesses to pages with watchpoints go via the
2305 watchpoint trap routines. */
72cf2d4f 2306 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2307 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2308 /* Avoid trapping reads of pages with a write breakpoint. */
2309 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2310 iotlb = io_mem_watch + paddr;
2311 address |= TLB_MMIO;
2312 break;
2313 }
6658ffb8 2314 }
0f459d16 2315 }
d79acba4 2316
0f459d16
PB
2317 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2318 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2319 te = &env->tlb_table[mmu_idx][index];
2320 te->addend = addend - vaddr;
2321 if (prot & PAGE_READ) {
2322 te->addr_read = address;
2323 } else {
2324 te->addr_read = -1;
2325 }
5c751e99 2326
0f459d16
PB
2327 if (prot & PAGE_EXEC) {
2328 te->addr_code = code_address;
2329 } else {
2330 te->addr_code = -1;
2331 }
2332 if (prot & PAGE_WRITE) {
2333 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2334 (pd & IO_MEM_ROMD)) {
2335 /* Write access calls the I/O callback. */
2336 te->addr_write = address | TLB_MMIO;
2337 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2338 !cpu_physical_memory_is_dirty(pd)) {
2339 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2340 } else {
0f459d16 2341 te->addr_write = address;
9fa3e853 2342 }
0f459d16
PB
2343 } else {
2344 te->addr_write = -1;
9fa3e853 2345 }
9fa3e853
FB
2346}
2347
0124311e
FB
2348#else
2349
ee8b7021 2350void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2351{
2352}
2353
2e12669a 2354void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2355{
2356}
2357
edf8e2af
MW
2358/*
2359 * Walks guest process memory "regions" one by one
2360 * and calls callback function 'fn' for each region.
2361 */
5cd2c5b6
RH
2362
2363struct walk_memory_regions_data
2364{
2365 walk_memory_regions_fn fn;
2366 void *priv;
2367 unsigned long start;
2368 int prot;
2369};
2370
2371static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2372 abi_ulong end, int new_prot)
5cd2c5b6
RH
2373{
2374 if (data->start != -1ul) {
2375 int rc = data->fn(data->priv, data->start, end, data->prot);
2376 if (rc != 0) {
2377 return rc;
2378 }
2379 }
2380
2381 data->start = (new_prot ? end : -1ul);
2382 data->prot = new_prot;
2383
2384 return 0;
2385}
2386
2387static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2388 abi_ulong base, int level, void **lp)
5cd2c5b6 2389{
b480d9b7 2390 abi_ulong pa;
5cd2c5b6
RH
2391 int i, rc;
2392
2393 if (*lp == NULL) {
2394 return walk_memory_regions_end(data, base, 0);
2395 }
2396
2397 if (level == 0) {
2398 PageDesc *pd = *lp;
7296abac 2399 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2400 int prot = pd[i].flags;
2401
2402 pa = base | (i << TARGET_PAGE_BITS);
2403 if (prot != data->prot) {
2404 rc = walk_memory_regions_end(data, pa, prot);
2405 if (rc != 0) {
2406 return rc;
9fa3e853 2407 }
9fa3e853 2408 }
5cd2c5b6
RH
2409 }
2410 } else {
2411 void **pp = *lp;
7296abac 2412 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2413 pa = base | ((abi_ulong)i <<
2414 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2415 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2416 if (rc != 0) {
2417 return rc;
2418 }
2419 }
2420 }
2421
2422 return 0;
2423}
2424
2425int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2426{
2427 struct walk_memory_regions_data data;
2428 unsigned long i;
2429
2430 data.fn = fn;
2431 data.priv = priv;
2432 data.start = -1ul;
2433 data.prot = 0;
2434
2435 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2436 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2437 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2438 if (rc != 0) {
2439 return rc;
9fa3e853 2440 }
33417e70 2441 }
5cd2c5b6
RH
2442
2443 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2444}
2445
b480d9b7
PB
2446static int dump_region(void *priv, abi_ulong start,
2447 abi_ulong end, unsigned long prot)
edf8e2af
MW
2448{
2449 FILE *f = (FILE *)priv;
2450
b480d9b7
PB
2451 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2452 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2453 start, end, end - start,
2454 ((prot & PAGE_READ) ? 'r' : '-'),
2455 ((prot & PAGE_WRITE) ? 'w' : '-'),
2456 ((prot & PAGE_EXEC) ? 'x' : '-'));
2457
2458 return (0);
2459}
2460
2461/* dump memory mappings */
2462void page_dump(FILE *f)
2463{
2464 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2465 "start", "end", "size", "prot");
2466 walk_memory_regions(f, dump_region);
33417e70
FB
2467}
2468
53a5960a 2469int page_get_flags(target_ulong address)
33417e70 2470{
9fa3e853
FB
2471 PageDesc *p;
2472
2473 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2474 if (!p)
9fa3e853
FB
2475 return 0;
2476 return p->flags;
2477}
2478
376a7909
RH
2479/* Modify the flags of a page and invalidate the code if necessary.
2480 The flag PAGE_WRITE_ORG is positioned automatically depending
2481 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2482void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2483{
376a7909
RH
2484 target_ulong addr, len;
2485
2486 /* This function should never be called with addresses outside the
2487 guest address space. If this assert fires, it probably indicates
2488 a missing call to h2g_valid. */
b480d9b7
PB
2489#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2490 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2491#endif
2492 assert(start < end);
9fa3e853
FB
2493
2494 start = start & TARGET_PAGE_MASK;
2495 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2496
2497 if (flags & PAGE_WRITE) {
9fa3e853 2498 flags |= PAGE_WRITE_ORG;
376a7909
RH
2499 }
2500
2501 for (addr = start, len = end - start;
2502 len != 0;
2503 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2504 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2505
2506 /* If the write protection bit is set, then we invalidate
2507 the code inside. */
5fafdf24 2508 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2509 (flags & PAGE_WRITE) &&
2510 p->first_tb) {
d720b93d 2511 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2512 }
2513 p->flags = flags;
2514 }
33417e70
FB
2515}
2516
3d97b40b
TS
2517int page_check_range(target_ulong start, target_ulong len, int flags)
2518{
2519 PageDesc *p;
2520 target_ulong end;
2521 target_ulong addr;
2522
376a7909
RH
2523 /* This function should never be called with addresses outside the
2524 guest address space. If this assert fires, it probably indicates
2525 a missing call to h2g_valid. */
338e9e6c
BS
2526#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2527 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2528#endif
2529
3e0650a9
RH
2530 if (len == 0) {
2531 return 0;
2532 }
376a7909
RH
2533 if (start + len - 1 < start) {
2534 /* We've wrapped around. */
55f280c9 2535 return -1;
376a7909 2536 }
55f280c9 2537
3d97b40b
TS
2538 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2539 start = start & TARGET_PAGE_MASK;
2540
376a7909
RH
2541 for (addr = start, len = end - start;
2542 len != 0;
2543 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2544 p = page_find(addr >> TARGET_PAGE_BITS);
2545 if( !p )
2546 return -1;
2547 if( !(p->flags & PAGE_VALID) )
2548 return -1;
2549
dae3270c 2550 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2551 return -1;
dae3270c
FB
2552 if (flags & PAGE_WRITE) {
2553 if (!(p->flags & PAGE_WRITE_ORG))
2554 return -1;
2555 /* unprotect the page if it was put read-only because it
2556 contains translated code */
2557 if (!(p->flags & PAGE_WRITE)) {
2558 if (!page_unprotect(addr, 0, NULL))
2559 return -1;
2560 }
2561 return 0;
2562 }
3d97b40b
TS
2563 }
2564 return 0;
2565}
2566
9fa3e853 2567/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2568 page. Return TRUE if the fault was successfully handled. */
53a5960a 2569int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2570{
45d679d6
AJ
2571 unsigned int prot;
2572 PageDesc *p;
53a5960a 2573 target_ulong host_start, host_end, addr;
9fa3e853 2574
c8a706fe
PB
2575 /* Technically this isn't safe inside a signal handler. However we
2576 know this only ever happens in a synchronous SEGV handler, so in
2577 practice it seems to be ok. */
2578 mmap_lock();
2579
45d679d6
AJ
2580 p = page_find(address >> TARGET_PAGE_BITS);
2581 if (!p) {
c8a706fe 2582 mmap_unlock();
9fa3e853 2583 return 0;
c8a706fe 2584 }
45d679d6 2585
9fa3e853
FB
2586 /* if the page was really writable, then we change its
2587 protection back to writable */
45d679d6
AJ
2588 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2589 host_start = address & qemu_host_page_mask;
2590 host_end = host_start + qemu_host_page_size;
2591
2592 prot = 0;
2593 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2594 p = page_find(addr >> TARGET_PAGE_BITS);
2595 p->flags |= PAGE_WRITE;
2596 prot |= p->flags;
2597
9fa3e853
FB
2598 /* and since the content will be modified, we must invalidate
2599 the corresponding translated code. */
45d679d6 2600 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2601#ifdef DEBUG_TB_CHECK
45d679d6 2602 tb_invalidate_check(addr);
9fa3e853 2603#endif
9fa3e853 2604 }
45d679d6
AJ
2605 mprotect((void *)g2h(host_start), qemu_host_page_size,
2606 prot & PAGE_BITS);
2607
2608 mmap_unlock();
2609 return 1;
9fa3e853 2610 }
c8a706fe 2611 mmap_unlock();
9fa3e853
FB
2612 return 0;
2613}
2614
6a00d601
FB
2615static inline void tlb_set_dirty(CPUState *env,
2616 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2617{
2618}
9fa3e853
FB
2619#endif /* defined(CONFIG_USER_ONLY) */
2620
e2eef170 2621#if !defined(CONFIG_USER_ONLY)
8da3ff18 2622
c04b2b78
PB
2623#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2624typedef struct subpage_t {
2625 target_phys_addr_t base;
f6405247
RH
2626 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2627 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2628} subpage_t;
2629
c227f099
AL
2630static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2631 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2632static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2633 ram_addr_t orig_memory,
2634 ram_addr_t region_offset);
db7b5426
BS
2635#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2636 need_subpage) \
2637 do { \
2638 if (addr > start_addr) \
2639 start_addr2 = 0; \
2640 else { \
2641 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2642 if (start_addr2 > 0) \
2643 need_subpage = 1; \
2644 } \
2645 \
49e9fba2 2646 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2647 end_addr2 = TARGET_PAGE_SIZE - 1; \
2648 else { \
2649 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2650 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2651 need_subpage = 1; \
2652 } \
2653 } while (0)
2654
8f2498f9
MT
2655/* register physical memory.
2656 For RAM, 'size' must be a multiple of the target page size.
2657 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2658 io memory page. The address used when calling the IO function is
2659 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2660 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2661 before calculating this offset. This should not be a problem unless
2662 the low bits of start_addr and region_offset differ. */
0fd542fb 2663void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
c227f099
AL
2664 ram_addr_t size,
2665 ram_addr_t phys_offset,
0fd542fb
MT
2666 ram_addr_t region_offset,
2667 bool log_dirty)
33417e70 2668{
c227f099 2669 target_phys_addr_t addr, end_addr;
92e873b9 2670 PhysPageDesc *p;
9d42037b 2671 CPUState *env;
c227f099 2672 ram_addr_t orig_size = size;
f6405247 2673 subpage_t *subpage;
33417e70 2674
3b8e6a2d 2675 assert(size);
0fd542fb 2676 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
f6f3fbca 2677
67c4d23c
PB
2678 if (phys_offset == IO_MEM_UNASSIGNED) {
2679 region_offset = start_addr;
2680 }
8da3ff18 2681 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2682 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2683 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2684
2685 addr = start_addr;
2686 do {
db7b5426
BS
2687 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2688 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2689 ram_addr_t orig_memory = p->phys_offset;
2690 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2691 int need_subpage = 0;
2692
2693 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2694 need_subpage);
f6405247 2695 if (need_subpage) {
db7b5426
BS
2696 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2697 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2698 &p->phys_offset, orig_memory,
2699 p->region_offset);
db7b5426
BS
2700 } else {
2701 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2702 >> IO_MEM_SHIFT];
2703 }
8da3ff18
PB
2704 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2705 region_offset);
2706 p->region_offset = 0;
db7b5426
BS
2707 } else {
2708 p->phys_offset = phys_offset;
2709 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2710 (phys_offset & IO_MEM_ROMD))
2711 phys_offset += TARGET_PAGE_SIZE;
2712 }
2713 } else {
2714 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2715 p->phys_offset = phys_offset;
8da3ff18 2716 p->region_offset = region_offset;
db7b5426 2717 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2718 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2719 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2720 } else {
c227f099 2721 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2722 int need_subpage = 0;
2723
2724 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2725 end_addr2, need_subpage);
2726
f6405247 2727 if (need_subpage) {
db7b5426 2728 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2729 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2730 addr & TARGET_PAGE_MASK);
db7b5426 2731 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2732 phys_offset, region_offset);
2733 p->region_offset = 0;
db7b5426
BS
2734 }
2735 }
2736 }
8da3ff18 2737 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2738 addr += TARGET_PAGE_SIZE;
2739 } while (addr != end_addr);
3b46e624 2740
9d42037b
FB
2741 /* since each CPU stores ram addresses in its TLB cache, we must
2742 reset the modified entries */
2743 /* XXX: slow ! */
2744 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2745 tlb_flush(env, 1);
2746 }
33417e70
FB
2747}
2748
ba863458 2749/* XXX: temporary until new memory mapping API */
c227f099 2750ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2751{
2752 PhysPageDesc *p;
2753
2754 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2755 if (!p)
2756 return IO_MEM_UNASSIGNED;
2757 return p->phys_offset;
2758}
2759
c227f099 2760void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2761{
2762 if (kvm_enabled())
2763 kvm_coalesce_mmio_region(addr, size);
2764}
2765
c227f099 2766void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2767{
2768 if (kvm_enabled())
2769 kvm_uncoalesce_mmio_region(addr, size);
2770}
2771
62a2744c
SY
2772void qemu_flush_coalesced_mmio_buffer(void)
2773{
2774 if (kvm_enabled())
2775 kvm_flush_coalesced_mmio_buffer();
2776}
2777
c902760f
MT
2778#if defined(__linux__) && !defined(TARGET_S390X)
2779
2780#include <sys/vfs.h>
2781
2782#define HUGETLBFS_MAGIC 0x958458f6
2783
2784static long gethugepagesize(const char *path)
2785{
2786 struct statfs fs;
2787 int ret;
2788
2789 do {
9742bf26 2790 ret = statfs(path, &fs);
c902760f
MT
2791 } while (ret != 0 && errno == EINTR);
2792
2793 if (ret != 0) {
9742bf26
YT
2794 perror(path);
2795 return 0;
c902760f
MT
2796 }
2797
2798 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2799 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2800
2801 return fs.f_bsize;
2802}
2803
04b16653
AW
2804static void *file_ram_alloc(RAMBlock *block,
2805 ram_addr_t memory,
2806 const char *path)
c902760f
MT
2807{
2808 char *filename;
2809 void *area;
2810 int fd;
2811#ifdef MAP_POPULATE
2812 int flags;
2813#endif
2814 unsigned long hpagesize;
2815
2816 hpagesize = gethugepagesize(path);
2817 if (!hpagesize) {
9742bf26 2818 return NULL;
c902760f
MT
2819 }
2820
2821 if (memory < hpagesize) {
2822 return NULL;
2823 }
2824
2825 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2826 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2827 return NULL;
2828 }
2829
2830 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2831 return NULL;
c902760f
MT
2832 }
2833
2834 fd = mkstemp(filename);
2835 if (fd < 0) {
9742bf26
YT
2836 perror("unable to create backing store for hugepages");
2837 free(filename);
2838 return NULL;
c902760f
MT
2839 }
2840 unlink(filename);
2841 free(filename);
2842
2843 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2844
2845 /*
2846 * ftruncate is not supported by hugetlbfs in older
2847 * hosts, so don't bother bailing out on errors.
2848 * If anything goes wrong with it under other filesystems,
2849 * mmap will fail.
2850 */
2851 if (ftruncate(fd, memory))
9742bf26 2852 perror("ftruncate");
c902760f
MT
2853
2854#ifdef MAP_POPULATE
2855 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2856 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2857 * to sidestep this quirk.
2858 */
2859 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2860 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2861#else
2862 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2863#endif
2864 if (area == MAP_FAILED) {
9742bf26
YT
2865 perror("file_ram_alloc: can't mmap RAM pages");
2866 close(fd);
2867 return (NULL);
c902760f 2868 }
04b16653 2869 block->fd = fd;
c902760f
MT
2870 return area;
2871}
2872#endif
2873
d17b5288 2874static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2875{
2876 RAMBlock *block, *next_block;
3e837b2c 2877 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2878
2879 if (QLIST_EMPTY(&ram_list.blocks))
2880 return 0;
2881
2882 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2883 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2884
2885 end = block->offset + block->length;
2886
2887 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2888 if (next_block->offset >= end) {
2889 next = MIN(next, next_block->offset);
2890 }
2891 }
2892 if (next - end >= size && next - end < mingap) {
3e837b2c 2893 offset = end;
04b16653
AW
2894 mingap = next - end;
2895 }
2896 }
3e837b2c
AW
2897
2898 if (offset == RAM_ADDR_MAX) {
2899 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2900 (uint64_t)size);
2901 abort();
2902 }
2903
04b16653
AW
2904 return offset;
2905}
2906
2907static ram_addr_t last_ram_offset(void)
d17b5288
AW
2908{
2909 RAMBlock *block;
2910 ram_addr_t last = 0;
2911
2912 QLIST_FOREACH(block, &ram_list.blocks, next)
2913 last = MAX(last, block->offset + block->length);
2914
2915 return last;
2916}
2917
84b89d78 2918ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
6977dfe6 2919 ram_addr_t size, void *host)
84b89d78
CM
2920{
2921 RAMBlock *new_block, *block;
2922
2923 size = TARGET_PAGE_ALIGN(size);
7267c094 2924 new_block = g_malloc0(sizeof(*new_block));
84b89d78
CM
2925
2926 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2927 char *id = dev->parent_bus->info->get_dev_path(dev);
2928 if (id) {
2929 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2930 g_free(id);
84b89d78
CM
2931 }
2932 }
2933 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2934
2935 QLIST_FOREACH(block, &ram_list.blocks, next) {
2936 if (!strcmp(block->idstr, new_block->idstr)) {
2937 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2938 new_block->idstr);
2939 abort();
2940 }
2941 }
2942
432d268c 2943 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2944 if (host) {
2945 new_block->host = host;
cd19cfa2 2946 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2947 } else {
2948 if (mem_path) {
c902760f 2949#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2950 new_block->host = file_ram_alloc(new_block, size, mem_path);
2951 if (!new_block->host) {
2952 new_block->host = qemu_vmalloc(size);
e78815a5 2953 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2954 }
c902760f 2955#else
6977dfe6
YT
2956 fprintf(stderr, "-mem-path option unsupported\n");
2957 exit(1);
c902760f 2958#endif
6977dfe6 2959 } else {
6b02494d 2960#if defined(TARGET_S390X) && defined(CONFIG_KVM)
ff83678a
CB
2961 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2962 an system defined value, which is at least 256GB. Larger systems
2963 have larger values. We put the guest between the end of data
2964 segment (system break) and this value. We use 32GB as a base to
2965 have enough room for the system break to grow. */
2966 new_block->host = mmap((void*)0x800000000, size,
6977dfe6 2967 PROT_EXEC|PROT_READ|PROT_WRITE,
ff83678a 2968 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
fb8b2735
AG
2969 if (new_block->host == MAP_FAILED) {
2970 fprintf(stderr, "Allocating RAM failed\n");
2971 abort();
2972 }
6b02494d 2973#else
868bb33f 2974 if (xen_enabled()) {
432d268c
JN
2975 xen_ram_alloc(new_block->offset, size);
2976 } else {
2977 new_block->host = qemu_vmalloc(size);
2978 }
6b02494d 2979#endif
e78815a5 2980 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2981 }
c902760f 2982 }
94a6b54f
PB
2983 new_block->length = size;
2984
f471a17e 2985 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2986
7267c094 2987 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2988 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2989 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2990 0xff, size >> TARGET_PAGE_BITS);
2991
6f0437e8
JK
2992 if (kvm_enabled())
2993 kvm_setup_guest_memory(new_block->host, size);
2994
94a6b54f
PB
2995 return new_block->offset;
2996}
e9a1ab19 2997
6977dfe6
YT
2998ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2999{
3000 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
3001}
3002
1f2e98b6
AW
3003void qemu_ram_free_from_ptr(ram_addr_t addr)
3004{
3005 RAMBlock *block;
3006
3007 QLIST_FOREACH(block, &ram_list.blocks, next) {
3008 if (addr == block->offset) {
3009 QLIST_REMOVE(block, next);
7267c094 3010 g_free(block);
1f2e98b6
AW
3011 return;
3012 }
3013 }
3014}
3015
c227f099 3016void qemu_ram_free(ram_addr_t addr)
e9a1ab19 3017{
04b16653
AW
3018 RAMBlock *block;
3019
3020 QLIST_FOREACH(block, &ram_list.blocks, next) {
3021 if (addr == block->offset) {
3022 QLIST_REMOVE(block, next);
cd19cfa2
HY
3023 if (block->flags & RAM_PREALLOC_MASK) {
3024 ;
3025 } else if (mem_path) {
04b16653
AW
3026#if defined (__linux__) && !defined(TARGET_S390X)
3027 if (block->fd) {
3028 munmap(block->host, block->length);
3029 close(block->fd);
3030 } else {
3031 qemu_vfree(block->host);
3032 }
fd28aa13
JK
3033#else
3034 abort();
04b16653
AW
3035#endif
3036 } else {
3037#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3038 munmap(block->host, block->length);
3039#else
868bb33f 3040 if (xen_enabled()) {
e41d7c69 3041 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
3042 } else {
3043 qemu_vfree(block->host);
3044 }
04b16653
AW
3045#endif
3046 }
7267c094 3047 g_free(block);
04b16653
AW
3048 return;
3049 }
3050 }
3051
e9a1ab19
FB
3052}
3053
cd19cfa2
HY
3054#ifndef _WIN32
3055void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3056{
3057 RAMBlock *block;
3058 ram_addr_t offset;
3059 int flags;
3060 void *area, *vaddr;
3061
3062 QLIST_FOREACH(block, &ram_list.blocks, next) {
3063 offset = addr - block->offset;
3064 if (offset < block->length) {
3065 vaddr = block->host + offset;
3066 if (block->flags & RAM_PREALLOC_MASK) {
3067 ;
3068 } else {
3069 flags = MAP_FIXED;
3070 munmap(vaddr, length);
3071 if (mem_path) {
3072#if defined(__linux__) && !defined(TARGET_S390X)
3073 if (block->fd) {
3074#ifdef MAP_POPULATE
3075 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3076 MAP_PRIVATE;
3077#else
3078 flags |= MAP_PRIVATE;
3079#endif
3080 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3081 flags, block->fd, offset);
3082 } else {
3083 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3084 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3085 flags, -1, 0);
3086 }
fd28aa13
JK
3087#else
3088 abort();
cd19cfa2
HY
3089#endif
3090 } else {
3091#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3092 flags |= MAP_SHARED | MAP_ANONYMOUS;
3093 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3094 flags, -1, 0);
3095#else
3096 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3097 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3098 flags, -1, 0);
3099#endif
3100 }
3101 if (area != vaddr) {
f15fbc4b
AP
3102 fprintf(stderr, "Could not remap addr: "
3103 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
3104 length, addr);
3105 exit(1);
3106 }
3107 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3108 }
3109 return;
3110 }
3111 }
3112}
3113#endif /* !_WIN32 */
3114
dc828ca1 3115/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3116 With the exception of the softmmu code in this file, this should
3117 only be used for local memory (e.g. video ram) that the device owns,
3118 and knows it isn't going to access beyond the end of the block.
3119
3120 It should not be used for general purpose DMA.
3121 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3122 */
c227f099 3123void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3124{
94a6b54f
PB
3125 RAMBlock *block;
3126
f471a17e
AW
3127 QLIST_FOREACH(block, &ram_list.blocks, next) {
3128 if (addr - block->offset < block->length) {
7d82af38
VP
3129 /* Move this entry to to start of the list. */
3130 if (block != QLIST_FIRST(&ram_list.blocks)) {
3131 QLIST_REMOVE(block, next);
3132 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3133 }
868bb33f 3134 if (xen_enabled()) {
432d268c
JN
3135 /* We need to check if the requested address is in the RAM
3136 * because we don't want to map the entire memory in QEMU.
712c2b41 3137 * In that case just map until the end of the page.
432d268c
JN
3138 */
3139 if (block->offset == 0) {
e41d7c69 3140 return xen_map_cache(addr, 0, 0);
432d268c 3141 } else if (block->host == NULL) {
e41d7c69
JK
3142 block->host =
3143 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3144 }
3145 }
f471a17e
AW
3146 return block->host + (addr - block->offset);
3147 }
94a6b54f 3148 }
f471a17e
AW
3149
3150 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3151 abort();
3152
3153 return NULL;
dc828ca1
PB
3154}
3155
b2e0a138
MT
3156/* Return a host pointer to ram allocated with qemu_ram_alloc.
3157 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3158 */
3159void *qemu_safe_ram_ptr(ram_addr_t addr)
3160{
3161 RAMBlock *block;
3162
3163 QLIST_FOREACH(block, &ram_list.blocks, next) {
3164 if (addr - block->offset < block->length) {
868bb33f 3165 if (xen_enabled()) {
432d268c
JN
3166 /* We need to check if the requested address is in the RAM
3167 * because we don't want to map the entire memory in QEMU.
712c2b41 3168 * In that case just map until the end of the page.
432d268c
JN
3169 */
3170 if (block->offset == 0) {
e41d7c69 3171 return xen_map_cache(addr, 0, 0);
432d268c 3172 } else if (block->host == NULL) {
e41d7c69
JK
3173 block->host =
3174 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3175 }
3176 }
b2e0a138
MT
3177 return block->host + (addr - block->offset);
3178 }
3179 }
3180
3181 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3182 abort();
3183
3184 return NULL;
3185}
3186
38bee5dc
SS
3187/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3188 * but takes a size argument */
8ab934f9 3189void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 3190{
8ab934f9
SS
3191 if (*size == 0) {
3192 return NULL;
3193 }
868bb33f 3194 if (xen_enabled()) {
e41d7c69 3195 return xen_map_cache(addr, *size, 1);
868bb33f 3196 } else {
38bee5dc
SS
3197 RAMBlock *block;
3198
3199 QLIST_FOREACH(block, &ram_list.blocks, next) {
3200 if (addr - block->offset < block->length) {
3201 if (addr - block->offset + *size > block->length)
3202 *size = block->length - addr + block->offset;
3203 return block->host + (addr - block->offset);
3204 }
3205 }
3206
3207 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3208 abort();
38bee5dc
SS
3209 }
3210}
3211
050a0ddf
AP
3212void qemu_put_ram_ptr(void *addr)
3213{
3214 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
3215}
3216
e890261f 3217int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3218{
94a6b54f
PB
3219 RAMBlock *block;
3220 uint8_t *host = ptr;
3221
868bb33f 3222 if (xen_enabled()) {
e41d7c69 3223 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
3224 return 0;
3225 }
3226
f471a17e 3227 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
3228 /* This case append when the block is not mapped. */
3229 if (block->host == NULL) {
3230 continue;
3231 }
f471a17e 3232 if (host - block->host < block->length) {
e890261f
MT
3233 *ram_addr = block->offset + (host - block->host);
3234 return 0;
f471a17e 3235 }
94a6b54f 3236 }
432d268c 3237
e890261f
MT
3238 return -1;
3239}
f471a17e 3240
e890261f
MT
3241/* Some of the softmmu routines need to translate from a host pointer
3242 (typically a TLB entry) back to a ram offset. */
3243ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3244{
3245 ram_addr_t ram_addr;
f471a17e 3246
e890261f
MT
3247 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3248 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3249 abort();
3250 }
3251 return ram_addr;
5579c7f3
PB
3252}
3253
c227f099 3254static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 3255{
67d3b957 3256#ifdef DEBUG_UNASSIGNED
ab3d1727 3257 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 3258#endif
5b450407 3259#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3260 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
e18231a3
BS
3261#endif
3262 return 0;
3263}
3264
c227f099 3265static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3266{
3267#ifdef DEBUG_UNASSIGNED
3268 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3269#endif
5b450407 3270#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3271 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
e18231a3
BS
3272#endif
3273 return 0;
3274}
3275
c227f099 3276static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3277{
3278#ifdef DEBUG_UNASSIGNED
3279 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3280#endif
5b450407 3281#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3282 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
67d3b957 3283#endif
33417e70
FB
3284 return 0;
3285}
3286
c227f099 3287static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3288{
67d3b957 3289#ifdef DEBUG_UNASSIGNED
ab3d1727 3290 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3291#endif
5b450407 3292#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3293 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
e18231a3
BS
3294#endif
3295}
3296
c227f099 3297static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3298{
3299#ifdef DEBUG_UNASSIGNED
3300 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3301#endif
5b450407 3302#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3303 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
e18231a3
BS
3304#endif
3305}
3306
c227f099 3307static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3308{
3309#ifdef DEBUG_UNASSIGNED
3310 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3311#endif
5b450407 3312#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3313 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
b4f0a316 3314#endif
33417e70
FB
3315}
3316
d60efc6b 3317static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3318 unassigned_mem_readb,
e18231a3
BS
3319 unassigned_mem_readw,
3320 unassigned_mem_readl,
33417e70
FB
3321};
3322
d60efc6b 3323static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3324 unassigned_mem_writeb,
e18231a3
BS
3325 unassigned_mem_writew,
3326 unassigned_mem_writel,
33417e70
FB
3327};
3328
c227f099 3329static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3330 uint32_t val)
9fa3e853 3331{
3a7d929e 3332 int dirty_flags;
f7c11b53 3333 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3334 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3335#if !defined(CONFIG_USER_ONLY)
3a7d929e 3336 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3337 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3338#endif
3a7d929e 3339 }
5579c7f3 3340 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3341 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3342 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3343 /* we remove the notdirty callback only if the code has been
3344 flushed */
3345 if (dirty_flags == 0xff)
2e70f6ef 3346 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3347}
3348
c227f099 3349static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3350 uint32_t val)
9fa3e853 3351{
3a7d929e 3352 int dirty_flags;
f7c11b53 3353 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3354 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3355#if !defined(CONFIG_USER_ONLY)
3a7d929e 3356 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3357 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3358#endif
3a7d929e 3359 }
5579c7f3 3360 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3361 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3362 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3363 /* we remove the notdirty callback only if the code has been
3364 flushed */
3365 if (dirty_flags == 0xff)
2e70f6ef 3366 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3367}
3368
c227f099 3369static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3370 uint32_t val)
9fa3e853 3371{
3a7d929e 3372 int dirty_flags;
f7c11b53 3373 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3374 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3375#if !defined(CONFIG_USER_ONLY)
3a7d929e 3376 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3377 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3378#endif
3a7d929e 3379 }
5579c7f3 3380 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3381 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3382 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3383 /* we remove the notdirty callback only if the code has been
3384 flushed */
3385 if (dirty_flags == 0xff)
2e70f6ef 3386 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3387}
3388
d60efc6b 3389static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3390 NULL, /* never used */
3391 NULL, /* never used */
3392 NULL, /* never used */
3393};
3394
d60efc6b 3395static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3396 notdirty_mem_writeb,
3397 notdirty_mem_writew,
3398 notdirty_mem_writel,
3399};
3400
0f459d16 3401/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3402static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3403{
3404 CPUState *env = cpu_single_env;
06d55cc1
AL
3405 target_ulong pc, cs_base;
3406 TranslationBlock *tb;
0f459d16 3407 target_ulong vaddr;
a1d1bb31 3408 CPUWatchpoint *wp;
06d55cc1 3409 int cpu_flags;
0f459d16 3410
06d55cc1
AL
3411 if (env->watchpoint_hit) {
3412 /* We re-entered the check after replacing the TB. Now raise
3413 * the debug interrupt so that is will trigger after the
3414 * current instruction. */
3415 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3416 return;
3417 }
2e70f6ef 3418 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3419 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3420 if ((vaddr == (wp->vaddr & len_mask) ||
3421 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3422 wp->flags |= BP_WATCHPOINT_HIT;
3423 if (!env->watchpoint_hit) {
3424 env->watchpoint_hit = wp;
3425 tb = tb_find_pc(env->mem_io_pc);
3426 if (!tb) {
3427 cpu_abort(env, "check_watchpoint: could not find TB for "
3428 "pc=%p", (void *)env->mem_io_pc);
3429 }
618ba8e6 3430 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3431 tb_phys_invalidate(tb, -1);
3432 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3433 env->exception_index = EXCP_DEBUG;
3434 } else {
3435 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3436 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3437 }
3438 cpu_resume_from_signal(env, NULL);
06d55cc1 3439 }
6e140f28
AL
3440 } else {
3441 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3442 }
3443 }
3444}
3445
6658ffb8
PB
3446/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3447 so these check for a hit then pass through to the normal out-of-line
3448 phys routines. */
c227f099 3449static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3450{
b4051334 3451 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3452 return ldub_phys(addr);
3453}
3454
c227f099 3455static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3456{
b4051334 3457 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3458 return lduw_phys(addr);
3459}
3460
c227f099 3461static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3462{
b4051334 3463 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3464 return ldl_phys(addr);
3465}
3466
c227f099 3467static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3468 uint32_t val)
3469{
b4051334 3470 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3471 stb_phys(addr, val);
3472}
3473
c227f099 3474static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3475 uint32_t val)
3476{
b4051334 3477 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3478 stw_phys(addr, val);
3479}
3480
c227f099 3481static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3482 uint32_t val)
3483{
b4051334 3484 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3485 stl_phys(addr, val);
3486}
3487
d60efc6b 3488static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3489 watch_mem_readb,
3490 watch_mem_readw,
3491 watch_mem_readl,
3492};
3493
d60efc6b 3494static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3495 watch_mem_writeb,
3496 watch_mem_writew,
3497 watch_mem_writel,
3498};
6658ffb8 3499
f6405247
RH
3500static inline uint32_t subpage_readlen (subpage_t *mmio,
3501 target_phys_addr_t addr,
3502 unsigned int len)
db7b5426 3503{
f6405247 3504 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3505#if defined(DEBUG_SUBPAGE)
3506 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3507 mmio, len, addr, idx);
3508#endif
db7b5426 3509
f6405247
RH
3510 addr += mmio->region_offset[idx];
3511 idx = mmio->sub_io_index[idx];
3512 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3513}
3514
c227f099 3515static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3516 uint32_t value, unsigned int len)
db7b5426 3517{
f6405247 3518 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3519#if defined(DEBUG_SUBPAGE)
f6405247
RH
3520 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3521 __func__, mmio, len, addr, idx, value);
db7b5426 3522#endif
f6405247
RH
3523
3524 addr += mmio->region_offset[idx];
3525 idx = mmio->sub_io_index[idx];
3526 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3527}
3528
c227f099 3529static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3530{
db7b5426
BS
3531 return subpage_readlen(opaque, addr, 0);
3532}
3533
c227f099 3534static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3535 uint32_t value)
3536{
db7b5426
BS
3537 subpage_writelen(opaque, addr, value, 0);
3538}
3539
c227f099 3540static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3541{
db7b5426
BS
3542 return subpage_readlen(opaque, addr, 1);
3543}
3544
c227f099 3545static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3546 uint32_t value)
3547{
db7b5426
BS
3548 subpage_writelen(opaque, addr, value, 1);
3549}
3550
c227f099 3551static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3552{
db7b5426
BS
3553 return subpage_readlen(opaque, addr, 2);
3554}
3555
f6405247
RH
3556static void subpage_writel (void *opaque, target_phys_addr_t addr,
3557 uint32_t value)
db7b5426 3558{
db7b5426
BS
3559 subpage_writelen(opaque, addr, value, 2);
3560}
3561
d60efc6b 3562static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3563 &subpage_readb,
3564 &subpage_readw,
3565 &subpage_readl,
3566};
3567
d60efc6b 3568static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3569 &subpage_writeb,
3570 &subpage_writew,
3571 &subpage_writel,
3572};
3573
56384e8b
AF
3574static uint32_t subpage_ram_readb(void *opaque, target_phys_addr_t addr)
3575{
3576 ram_addr_t raddr = addr;
3577 void *ptr = qemu_get_ram_ptr(raddr);
3578 return ldub_p(ptr);
3579}
3580
3581static void subpage_ram_writeb(void *opaque, target_phys_addr_t addr,
3582 uint32_t value)
3583{
3584 ram_addr_t raddr = addr;
3585 void *ptr = qemu_get_ram_ptr(raddr);
3586 stb_p(ptr, value);
3587}
3588
3589static uint32_t subpage_ram_readw(void *opaque, target_phys_addr_t addr)
3590{
3591 ram_addr_t raddr = addr;
3592 void *ptr = qemu_get_ram_ptr(raddr);
3593 return lduw_p(ptr);
3594}
3595
3596static void subpage_ram_writew(void *opaque, target_phys_addr_t addr,
3597 uint32_t value)
3598{
3599 ram_addr_t raddr = addr;
3600 void *ptr = qemu_get_ram_ptr(raddr);
3601 stw_p(ptr, value);
3602}
3603
3604static uint32_t subpage_ram_readl(void *opaque, target_phys_addr_t addr)
3605{
3606 ram_addr_t raddr = addr;
3607 void *ptr = qemu_get_ram_ptr(raddr);
3608 return ldl_p(ptr);
3609}
3610
3611static void subpage_ram_writel(void *opaque, target_phys_addr_t addr,
3612 uint32_t value)
3613{
3614 ram_addr_t raddr = addr;
3615 void *ptr = qemu_get_ram_ptr(raddr);
3616 stl_p(ptr, value);
3617}
3618
3619static CPUReadMemoryFunc * const subpage_ram_read[] = {
3620 &subpage_ram_readb,
3621 &subpage_ram_readw,
3622 &subpage_ram_readl,
3623};
3624
3625static CPUWriteMemoryFunc * const subpage_ram_write[] = {
3626 &subpage_ram_writeb,
3627 &subpage_ram_writew,
3628 &subpage_ram_writel,
3629};
3630
c227f099
AL
3631static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3632 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3633{
3634 int idx, eidx;
3635
3636 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3637 return -1;
3638 idx = SUBPAGE_IDX(start);
3639 eidx = SUBPAGE_IDX(end);
3640#if defined(DEBUG_SUBPAGE)
0bf9e31a 3641 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3642 mmio, start, end, idx, eidx, memory);
3643#endif
56384e8b
AF
3644 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
3645 memory = IO_MEM_SUBPAGE_RAM;
3646 }
f6405247 3647 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3648 for (; idx <= eidx; idx++) {
f6405247
RH
3649 mmio->sub_io_index[idx] = memory;
3650 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3651 }
3652
3653 return 0;
3654}
3655
f6405247
RH
3656static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3657 ram_addr_t orig_memory,
3658 ram_addr_t region_offset)
db7b5426 3659{
c227f099 3660 subpage_t *mmio;
db7b5426
BS
3661 int subpage_memory;
3662
7267c094 3663 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3664
3665 mmio->base = base;
2507c12a
AG
3666 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3667 DEVICE_NATIVE_ENDIAN);
db7b5426 3668#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3669 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3670 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3671#endif
1eec614b 3672 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3673 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3674
3675 return mmio;
3676}
3677
88715657
AL
3678static int get_free_io_mem_idx(void)
3679{
3680 int i;
3681
3682 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3683 if (!io_mem_used[i]) {
3684 io_mem_used[i] = 1;
3685 return i;
3686 }
c6703b47 3687 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3688 return -1;
3689}
3690
dd310534
AG
3691/*
3692 * Usually, devices operate in little endian mode. There are devices out
3693 * there that operate in big endian too. Each device gets byte swapped
3694 * mmio if plugged onto a CPU that does the other endianness.
3695 *
3696 * CPU Device swap?
3697 *
3698 * little little no
3699 * little big yes
3700 * big little yes
3701 * big big no
3702 */
3703
3704typedef struct SwapEndianContainer {
3705 CPUReadMemoryFunc *read[3];
3706 CPUWriteMemoryFunc *write[3];
3707 void *opaque;
3708} SwapEndianContainer;
3709
3710static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3711{
3712 uint32_t val;
3713 SwapEndianContainer *c = opaque;
3714 val = c->read[0](c->opaque, addr);
3715 return val;
3716}
3717
3718static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3719{
3720 uint32_t val;
3721 SwapEndianContainer *c = opaque;
3722 val = bswap16(c->read[1](c->opaque, addr));
3723 return val;
3724}
3725
3726static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3727{
3728 uint32_t val;
3729 SwapEndianContainer *c = opaque;
3730 val = bswap32(c->read[2](c->opaque, addr));
3731 return val;
3732}
3733
3734static CPUReadMemoryFunc * const swapendian_readfn[3]={
3735 swapendian_mem_readb,
3736 swapendian_mem_readw,
3737 swapendian_mem_readl
3738};
3739
3740static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3741 uint32_t val)
3742{
3743 SwapEndianContainer *c = opaque;
3744 c->write[0](c->opaque, addr, val);
3745}
3746
3747static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3748 uint32_t val)
3749{
3750 SwapEndianContainer *c = opaque;
3751 c->write[1](c->opaque, addr, bswap16(val));
3752}
3753
3754static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3755 uint32_t val)
3756{
3757 SwapEndianContainer *c = opaque;
3758 c->write[2](c->opaque, addr, bswap32(val));
3759}
3760
3761static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3762 swapendian_mem_writeb,
3763 swapendian_mem_writew,
3764 swapendian_mem_writel
3765};
3766
3767static void swapendian_init(int io_index)
3768{
7267c094 3769 SwapEndianContainer *c = g_malloc(sizeof(SwapEndianContainer));
dd310534
AG
3770 int i;
3771
3772 /* Swap mmio for big endian targets */
3773 c->opaque = io_mem_opaque[io_index];
3774 for (i = 0; i < 3; i++) {
3775 c->read[i] = io_mem_read[io_index][i];
3776 c->write[i] = io_mem_write[io_index][i];
3777
3778 io_mem_read[io_index][i] = swapendian_readfn[i];
3779 io_mem_write[io_index][i] = swapendian_writefn[i];
3780 }
3781 io_mem_opaque[io_index] = c;
3782}
3783
3784static void swapendian_del(int io_index)
3785{
3786 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
7267c094 3787 g_free(io_mem_opaque[io_index]);
dd310534
AG
3788 }
3789}
3790
33417e70
FB
3791/* mem_read and mem_write are arrays of functions containing the
3792 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3793 2). Functions can be omitted with a NULL function pointer.
3ee89922 3794 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3795 modified. If it is zero, a new io zone is allocated. The return
3796 value can be used with cpu_register_physical_memory(). (-1) is
3797 returned if error. */
1eed09cb 3798static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3799 CPUReadMemoryFunc * const *mem_read,
3800 CPUWriteMemoryFunc * const *mem_write,
dd310534 3801 void *opaque, enum device_endian endian)
33417e70 3802{
3cab721d
RH
3803 int i;
3804
33417e70 3805 if (io_index <= 0) {
88715657
AL
3806 io_index = get_free_io_mem_idx();
3807 if (io_index == -1)
3808 return io_index;
33417e70 3809 } else {
1eed09cb 3810 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3811 if (io_index >= IO_MEM_NB_ENTRIES)
3812 return -1;
3813 }
b5ff1b31 3814
3cab721d
RH
3815 for (i = 0; i < 3; ++i) {
3816 io_mem_read[io_index][i]
3817 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3818 }
3819 for (i = 0; i < 3; ++i) {
3820 io_mem_write[io_index][i]
3821 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3822 }
a4193c8a 3823 io_mem_opaque[io_index] = opaque;
f6405247 3824
dd310534
AG
3825 switch (endian) {
3826 case DEVICE_BIG_ENDIAN:
3827#ifndef TARGET_WORDS_BIGENDIAN
3828 swapendian_init(io_index);
3829#endif
3830 break;
3831 case DEVICE_LITTLE_ENDIAN:
3832#ifdef TARGET_WORDS_BIGENDIAN
3833 swapendian_init(io_index);
3834#endif
3835 break;
3836 case DEVICE_NATIVE_ENDIAN:
3837 default:
3838 break;
3839 }
3840
f6405247 3841 return (io_index << IO_MEM_SHIFT);
33417e70 3842}
61382a50 3843
d60efc6b
BS
3844int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3845 CPUWriteMemoryFunc * const *mem_write,
dd310534 3846 void *opaque, enum device_endian endian)
1eed09cb 3847{
2507c12a 3848 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
1eed09cb
AK
3849}
3850
88715657
AL
3851void cpu_unregister_io_memory(int io_table_address)
3852{
3853 int i;
3854 int io_index = io_table_address >> IO_MEM_SHIFT;
3855
dd310534
AG
3856 swapendian_del(io_index);
3857
88715657
AL
3858 for (i=0;i < 3; i++) {
3859 io_mem_read[io_index][i] = unassigned_mem_read[i];
3860 io_mem_write[io_index][i] = unassigned_mem_write[i];
3861 }
3862 io_mem_opaque[io_index] = NULL;
3863 io_mem_used[io_index] = 0;
3864}
3865
e9179ce1
AK
3866static void io_mem_init(void)
3867{
3868 int i;
3869
2507c12a
AG
3870 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3871 unassigned_mem_write, NULL,
3872 DEVICE_NATIVE_ENDIAN);
3873 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3874 unassigned_mem_write, NULL,
3875 DEVICE_NATIVE_ENDIAN);
3876 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3877 notdirty_mem_write, NULL,
3878 DEVICE_NATIVE_ENDIAN);
56384e8b
AF
3879 cpu_register_io_memory_fixed(IO_MEM_SUBPAGE_RAM, subpage_ram_read,
3880 subpage_ram_write, NULL,
3881 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3882 for (i=0; i<5; i++)
3883 io_mem_used[i] = 1;
3884
3885 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2507c12a
AG
3886 watch_mem_write, NULL,
3887 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3888}
3889
62152b8a
AK
3890static void memory_map_init(void)
3891{
7267c094 3892 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3893 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3894 set_system_memory_map(system_memory);
309cb471 3895
7267c094 3896 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3897 memory_region_init(system_io, "io", 65536);
3898 set_system_io_map(system_io);
62152b8a
AK
3899}
3900
3901MemoryRegion *get_system_memory(void)
3902{
3903 return system_memory;
3904}
3905
309cb471
AK
3906MemoryRegion *get_system_io(void)
3907{
3908 return system_io;
3909}
3910
e2eef170
PB
3911#endif /* !defined(CONFIG_USER_ONLY) */
3912
13eb76e0
FB
3913/* physical memory access (slow version, mainly for debug) */
3914#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3915int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3916 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3917{
3918 int l, flags;
3919 target_ulong page;
53a5960a 3920 void * p;
13eb76e0
FB
3921
3922 while (len > 0) {
3923 page = addr & TARGET_PAGE_MASK;
3924 l = (page + TARGET_PAGE_SIZE) - addr;
3925 if (l > len)
3926 l = len;
3927 flags = page_get_flags(page);
3928 if (!(flags & PAGE_VALID))
a68fe89c 3929 return -1;
13eb76e0
FB
3930 if (is_write) {
3931 if (!(flags & PAGE_WRITE))
a68fe89c 3932 return -1;
579a97f7 3933 /* XXX: this code should not depend on lock_user */
72fb7daa 3934 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3935 return -1;
72fb7daa
AJ
3936 memcpy(p, buf, l);
3937 unlock_user(p, addr, l);
13eb76e0
FB
3938 } else {
3939 if (!(flags & PAGE_READ))
a68fe89c 3940 return -1;
579a97f7 3941 /* XXX: this code should not depend on lock_user */
72fb7daa 3942 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3943 return -1;
72fb7daa 3944 memcpy(buf, p, l);
5b257578 3945 unlock_user(p, addr, 0);
13eb76e0
FB
3946 }
3947 len -= l;
3948 buf += l;
3949 addr += l;
3950 }
a68fe89c 3951 return 0;
13eb76e0 3952}
8df1cd07 3953
13eb76e0 3954#else
c227f099 3955void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3956 int len, int is_write)
3957{
3958 int l, io_index;
3959 uint8_t *ptr;
3960 uint32_t val;
c227f099 3961 target_phys_addr_t page;
8ca5692d 3962 ram_addr_t pd;
92e873b9 3963 PhysPageDesc *p;
3b46e624 3964
13eb76e0
FB
3965 while (len > 0) {
3966 page = addr & TARGET_PAGE_MASK;
3967 l = (page + TARGET_PAGE_SIZE) - addr;
3968 if (l > len)
3969 l = len;
92e873b9 3970 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3971 if (!p) {
3972 pd = IO_MEM_UNASSIGNED;
3973 } else {
3974 pd = p->phys_offset;
3975 }
3b46e624 3976
13eb76e0 3977 if (is_write) {
3a7d929e 3978 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3979 target_phys_addr_t addr1 = addr;
13eb76e0 3980 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3981 if (p)
6c2934db 3982 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3983 /* XXX: could force cpu_single_env to NULL to avoid
3984 potential bugs */
6c2934db 3985 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3986 /* 32 bit write access */
c27004ec 3987 val = ldl_p(buf);
6c2934db 3988 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3989 l = 4;
6c2934db 3990 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3991 /* 16 bit write access */
c27004ec 3992 val = lduw_p(buf);
6c2934db 3993 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3994 l = 2;
3995 } else {
1c213d19 3996 /* 8 bit write access */
c27004ec 3997 val = ldub_p(buf);
6c2934db 3998 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3999 l = 1;
4000 }
4001 } else {
8ca5692d 4002 ram_addr_t addr1;
b448f2f3 4003 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 4004 /* RAM case */
5579c7f3 4005 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 4006 memcpy(ptr, buf, l);
3a7d929e
FB
4007 if (!cpu_physical_memory_is_dirty(addr1)) {
4008 /* invalidate code */
4009 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4010 /* set dirty bit */
f7c11b53
YT
4011 cpu_physical_memory_set_dirty_flags(
4012 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4013 }
050a0ddf 4014 qemu_put_ram_ptr(ptr);
13eb76e0
FB
4015 }
4016 } else {
5fafdf24 4017 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4018 !(pd & IO_MEM_ROMD)) {
c227f099 4019 target_phys_addr_t addr1 = addr;
13eb76e0
FB
4020 /* I/O case */
4021 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 4022 if (p)
6c2934db
AJ
4023 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4024 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 4025 /* 32 bit read access */
6c2934db 4026 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 4027 stl_p(buf, val);
13eb76e0 4028 l = 4;
6c2934db 4029 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 4030 /* 16 bit read access */
6c2934db 4031 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 4032 stw_p(buf, val);
13eb76e0
FB
4033 l = 2;
4034 } else {
1c213d19 4035 /* 8 bit read access */
6c2934db 4036 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 4037 stb_p(buf, val);
13eb76e0
FB
4038 l = 1;
4039 }
4040 } else {
4041 /* RAM case */
050a0ddf
AP
4042 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
4043 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
4044 qemu_put_ram_ptr(ptr);
13eb76e0
FB
4045 }
4046 }
4047 len -= l;
4048 buf += l;
4049 addr += l;
4050 }
4051}
8df1cd07 4052
d0ecd2aa 4053/* used for ROM loading : can write in RAM and ROM */
c227f099 4054void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
4055 const uint8_t *buf, int len)
4056{
4057 int l;
4058 uint8_t *ptr;
c227f099 4059 target_phys_addr_t page;
d0ecd2aa
FB
4060 unsigned long pd;
4061 PhysPageDesc *p;
3b46e624 4062
d0ecd2aa
FB
4063 while (len > 0) {
4064 page = addr & TARGET_PAGE_MASK;
4065 l = (page + TARGET_PAGE_SIZE) - addr;
4066 if (l > len)
4067 l = len;
4068 p = phys_page_find(page >> TARGET_PAGE_BITS);
4069 if (!p) {
4070 pd = IO_MEM_UNASSIGNED;
4071 } else {
4072 pd = p->phys_offset;
4073 }
3b46e624 4074
d0ecd2aa 4075 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
4076 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
4077 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
4078 /* do nothing */
4079 } else {
4080 unsigned long addr1;
4081 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4082 /* ROM/RAM case */
5579c7f3 4083 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 4084 memcpy(ptr, buf, l);
050a0ddf 4085 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
4086 }
4087 len -= l;
4088 buf += l;
4089 addr += l;
4090 }
4091}
4092
6d16c2f8
AL
4093typedef struct {
4094 void *buffer;
c227f099
AL
4095 target_phys_addr_t addr;
4096 target_phys_addr_t len;
6d16c2f8
AL
4097} BounceBuffer;
4098
4099static BounceBuffer bounce;
4100
ba223c29
AL
4101typedef struct MapClient {
4102 void *opaque;
4103 void (*callback)(void *opaque);
72cf2d4f 4104 QLIST_ENTRY(MapClient) link;
ba223c29
AL
4105} MapClient;
4106
72cf2d4f
BS
4107static QLIST_HEAD(map_client_list, MapClient) map_client_list
4108 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
4109
4110void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
4111{
7267c094 4112 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
4113
4114 client->opaque = opaque;
4115 client->callback = callback;
72cf2d4f 4116 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
4117 return client;
4118}
4119
4120void cpu_unregister_map_client(void *_client)
4121{
4122 MapClient *client = (MapClient *)_client;
4123
72cf2d4f 4124 QLIST_REMOVE(client, link);
7267c094 4125 g_free(client);
ba223c29
AL
4126}
4127
4128static void cpu_notify_map_clients(void)
4129{
4130 MapClient *client;
4131
72cf2d4f
BS
4132 while (!QLIST_EMPTY(&map_client_list)) {
4133 client = QLIST_FIRST(&map_client_list);
ba223c29 4134 client->callback(client->opaque);
34d5e948 4135 cpu_unregister_map_client(client);
ba223c29
AL
4136 }
4137}
4138
6d16c2f8
AL
4139/* Map a physical memory region into a host virtual address.
4140 * May map a subset of the requested range, given by and returned in *plen.
4141 * May return NULL if resources needed to perform the mapping are exhausted.
4142 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
4143 * Use cpu_register_map_client() to know when retrying the map operation is
4144 * likely to succeed.
6d16c2f8 4145 */
c227f099
AL
4146void *cpu_physical_memory_map(target_phys_addr_t addr,
4147 target_phys_addr_t *plen,
6d16c2f8
AL
4148 int is_write)
4149{
c227f099 4150 target_phys_addr_t len = *plen;
38bee5dc 4151 target_phys_addr_t todo = 0;
6d16c2f8 4152 int l;
c227f099 4153 target_phys_addr_t page;
6d16c2f8
AL
4154 unsigned long pd;
4155 PhysPageDesc *p;
f15fbc4b 4156 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
4157 ram_addr_t rlen;
4158 void *ret;
6d16c2f8
AL
4159
4160 while (len > 0) {
4161 page = addr & TARGET_PAGE_MASK;
4162 l = (page + TARGET_PAGE_SIZE) - addr;
4163 if (l > len)
4164 l = len;
4165 p = phys_page_find(page >> TARGET_PAGE_BITS);
4166 if (!p) {
4167 pd = IO_MEM_UNASSIGNED;
4168 } else {
4169 pd = p->phys_offset;
4170 }
4171
4172 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
38bee5dc 4173 if (todo || bounce.buffer) {
6d16c2f8
AL
4174 break;
4175 }
4176 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4177 bounce.addr = addr;
4178 bounce.len = l;
4179 if (!is_write) {
54f7b4a3 4180 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 4181 }
38bee5dc
SS
4182
4183 *plen = l;
4184 return bounce.buffer;
6d16c2f8 4185 }
8ab934f9
SS
4186 if (!todo) {
4187 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4188 }
6d16c2f8
AL
4189
4190 len -= l;
4191 addr += l;
38bee5dc 4192 todo += l;
6d16c2f8 4193 }
8ab934f9
SS
4194 rlen = todo;
4195 ret = qemu_ram_ptr_length(raddr, &rlen);
4196 *plen = rlen;
4197 return ret;
6d16c2f8
AL
4198}
4199
4200/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4201 * Will also mark the memory as dirty if is_write == 1. access_len gives
4202 * the amount of memory that was actually read or written by the caller.
4203 */
c227f099
AL
4204void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4205 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
4206{
4207 if (buffer != bounce.buffer) {
4208 if (is_write) {
e890261f 4209 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
4210 while (access_len) {
4211 unsigned l;
4212 l = TARGET_PAGE_SIZE;
4213 if (l > access_len)
4214 l = access_len;
4215 if (!cpu_physical_memory_is_dirty(addr1)) {
4216 /* invalidate code */
4217 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4218 /* set dirty bit */
f7c11b53
YT
4219 cpu_physical_memory_set_dirty_flags(
4220 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
4221 }
4222 addr1 += l;
4223 access_len -= l;
4224 }
4225 }
868bb33f 4226 if (xen_enabled()) {
e41d7c69 4227 xen_invalidate_map_cache_entry(buffer);
050a0ddf 4228 }
6d16c2f8
AL
4229 return;
4230 }
4231 if (is_write) {
4232 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4233 }
f8a83245 4234 qemu_vfree(bounce.buffer);
6d16c2f8 4235 bounce.buffer = NULL;
ba223c29 4236 cpu_notify_map_clients();
6d16c2f8 4237}
d0ecd2aa 4238
8df1cd07 4239/* warning: addr must be aligned */
1e78bcc1
AG
4240static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4241 enum device_endian endian)
8df1cd07
FB
4242{
4243 int io_index;
4244 uint8_t *ptr;
4245 uint32_t val;
4246 unsigned long pd;
4247 PhysPageDesc *p;
4248
4249 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4250 if (!p) {
4251 pd = IO_MEM_UNASSIGNED;
4252 } else {
4253 pd = p->phys_offset;
4254 }
3b46e624 4255
5fafdf24 4256 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4257 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
4258 /* I/O case */
4259 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4260 if (p)
4261 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07 4262 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4263#if defined(TARGET_WORDS_BIGENDIAN)
4264 if (endian == DEVICE_LITTLE_ENDIAN) {
4265 val = bswap32(val);
4266 }
4267#else
4268 if (endian == DEVICE_BIG_ENDIAN) {
4269 val = bswap32(val);
4270 }
4271#endif
8df1cd07
FB
4272 } else {
4273 /* RAM case */
5579c7f3 4274 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07 4275 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4276 switch (endian) {
4277 case DEVICE_LITTLE_ENDIAN:
4278 val = ldl_le_p(ptr);
4279 break;
4280 case DEVICE_BIG_ENDIAN:
4281 val = ldl_be_p(ptr);
4282 break;
4283 default:
4284 val = ldl_p(ptr);
4285 break;
4286 }
8df1cd07
FB
4287 }
4288 return val;
4289}
4290
1e78bcc1
AG
4291uint32_t ldl_phys(target_phys_addr_t addr)
4292{
4293 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4294}
4295
4296uint32_t ldl_le_phys(target_phys_addr_t addr)
4297{
4298 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4299}
4300
4301uint32_t ldl_be_phys(target_phys_addr_t addr)
4302{
4303 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4304}
4305
84b7b8e7 4306/* warning: addr must be aligned */
1e78bcc1
AG
4307static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4308 enum device_endian endian)
84b7b8e7
FB
4309{
4310 int io_index;
4311 uint8_t *ptr;
4312 uint64_t val;
4313 unsigned long pd;
4314 PhysPageDesc *p;
4315
4316 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4317 if (!p) {
4318 pd = IO_MEM_UNASSIGNED;
4319 } else {
4320 pd = p->phys_offset;
4321 }
3b46e624 4322
2a4188a3
FB
4323 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4324 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
4325 /* I/O case */
4326 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4327 if (p)
4328 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4329
4330 /* XXX This is broken when device endian != cpu endian.
4331 Fix and add "endian" variable check */
84b7b8e7
FB
4332#ifdef TARGET_WORDS_BIGENDIAN
4333 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4334 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4335#else
4336 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4337 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4338#endif
4339 } else {
4340 /* RAM case */
5579c7f3 4341 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7 4342 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4343 switch (endian) {
4344 case DEVICE_LITTLE_ENDIAN:
4345 val = ldq_le_p(ptr);
4346 break;
4347 case DEVICE_BIG_ENDIAN:
4348 val = ldq_be_p(ptr);
4349 break;
4350 default:
4351 val = ldq_p(ptr);
4352 break;
4353 }
84b7b8e7
FB
4354 }
4355 return val;
4356}
4357
1e78bcc1
AG
4358uint64_t ldq_phys(target_phys_addr_t addr)
4359{
4360 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4361}
4362
4363uint64_t ldq_le_phys(target_phys_addr_t addr)
4364{
4365 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4366}
4367
4368uint64_t ldq_be_phys(target_phys_addr_t addr)
4369{
4370 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4371}
4372
aab33094 4373/* XXX: optimize */
c227f099 4374uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4375{
4376 uint8_t val;
4377 cpu_physical_memory_read(addr, &val, 1);
4378 return val;
4379}
4380
733f0b02 4381/* warning: addr must be aligned */
1e78bcc1
AG
4382static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4383 enum device_endian endian)
aab33094 4384{
733f0b02
MT
4385 int io_index;
4386 uint8_t *ptr;
4387 uint64_t val;
4388 unsigned long pd;
4389 PhysPageDesc *p;
4390
4391 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4392 if (!p) {
4393 pd = IO_MEM_UNASSIGNED;
4394 } else {
4395 pd = p->phys_offset;
4396 }
4397
4398 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4399 !(pd & IO_MEM_ROMD)) {
4400 /* I/O case */
4401 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4402 if (p)
4403 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4404 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4405#if defined(TARGET_WORDS_BIGENDIAN)
4406 if (endian == DEVICE_LITTLE_ENDIAN) {
4407 val = bswap16(val);
4408 }
4409#else
4410 if (endian == DEVICE_BIG_ENDIAN) {
4411 val = bswap16(val);
4412 }
4413#endif
733f0b02
MT
4414 } else {
4415 /* RAM case */
4416 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4417 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4418 switch (endian) {
4419 case DEVICE_LITTLE_ENDIAN:
4420 val = lduw_le_p(ptr);
4421 break;
4422 case DEVICE_BIG_ENDIAN:
4423 val = lduw_be_p(ptr);
4424 break;
4425 default:
4426 val = lduw_p(ptr);
4427 break;
4428 }
733f0b02
MT
4429 }
4430 return val;
aab33094
FB
4431}
4432
1e78bcc1
AG
4433uint32_t lduw_phys(target_phys_addr_t addr)
4434{
4435 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4436}
4437
4438uint32_t lduw_le_phys(target_phys_addr_t addr)
4439{
4440 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4441}
4442
4443uint32_t lduw_be_phys(target_phys_addr_t addr)
4444{
4445 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4446}
4447
8df1cd07
FB
4448/* warning: addr must be aligned. The ram page is not masked as dirty
4449 and the code inside is not invalidated. It is useful if the dirty
4450 bits are used to track modified PTEs */
c227f099 4451void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4452{
4453 int io_index;
4454 uint8_t *ptr;
4455 unsigned long pd;
4456 PhysPageDesc *p;
4457
4458 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4459 if (!p) {
4460 pd = IO_MEM_UNASSIGNED;
4461 } else {
4462 pd = p->phys_offset;
4463 }
3b46e624 4464
3a7d929e 4465 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4466 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4467 if (p)
4468 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4469 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4470 } else {
74576198 4471 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4472 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4473 stl_p(ptr, val);
74576198
AL
4474
4475 if (unlikely(in_migration)) {
4476 if (!cpu_physical_memory_is_dirty(addr1)) {
4477 /* invalidate code */
4478 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4479 /* set dirty bit */
f7c11b53
YT
4480 cpu_physical_memory_set_dirty_flags(
4481 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4482 }
4483 }
8df1cd07
FB
4484 }
4485}
4486
c227f099 4487void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4488{
4489 int io_index;
4490 uint8_t *ptr;
4491 unsigned long pd;
4492 PhysPageDesc *p;
4493
4494 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4495 if (!p) {
4496 pd = IO_MEM_UNASSIGNED;
4497 } else {
4498 pd = p->phys_offset;
4499 }
3b46e624 4500
bc98a7ef
JM
4501 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4502 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4503 if (p)
4504 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
4505#ifdef TARGET_WORDS_BIGENDIAN
4506 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4507 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4508#else
4509 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4510 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4511#endif
4512 } else {
5579c7f3 4513 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4514 (addr & ~TARGET_PAGE_MASK);
4515 stq_p(ptr, val);
4516 }
4517}
4518
8df1cd07 4519/* warning: addr must be aligned */
1e78bcc1
AG
4520static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4521 enum device_endian endian)
8df1cd07
FB
4522{
4523 int io_index;
4524 uint8_t *ptr;
4525 unsigned long pd;
4526 PhysPageDesc *p;
4527
4528 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4529 if (!p) {
4530 pd = IO_MEM_UNASSIGNED;
4531 } else {
4532 pd = p->phys_offset;
4533 }
3b46e624 4534
3a7d929e 4535 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4536 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4537 if (p)
4538 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4539#if defined(TARGET_WORDS_BIGENDIAN)
4540 if (endian == DEVICE_LITTLE_ENDIAN) {
4541 val = bswap32(val);
4542 }
4543#else
4544 if (endian == DEVICE_BIG_ENDIAN) {
4545 val = bswap32(val);
4546 }
4547#endif
8df1cd07
FB
4548 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4549 } else {
4550 unsigned long addr1;
4551 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4552 /* RAM case */
5579c7f3 4553 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4554 switch (endian) {
4555 case DEVICE_LITTLE_ENDIAN:
4556 stl_le_p(ptr, val);
4557 break;
4558 case DEVICE_BIG_ENDIAN:
4559 stl_be_p(ptr, val);
4560 break;
4561 default:
4562 stl_p(ptr, val);
4563 break;
4564 }
3a7d929e
FB
4565 if (!cpu_physical_memory_is_dirty(addr1)) {
4566 /* invalidate code */
4567 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4568 /* set dirty bit */
f7c11b53
YT
4569 cpu_physical_memory_set_dirty_flags(addr1,
4570 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4571 }
8df1cd07
FB
4572 }
4573}
4574
1e78bcc1
AG
4575void stl_phys(target_phys_addr_t addr, uint32_t val)
4576{
4577 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4578}
4579
4580void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4581{
4582 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4583}
4584
4585void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4586{
4587 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4588}
4589
aab33094 4590/* XXX: optimize */
c227f099 4591void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4592{
4593 uint8_t v = val;
4594 cpu_physical_memory_write(addr, &v, 1);
4595}
4596
733f0b02 4597/* warning: addr must be aligned */
1e78bcc1
AG
4598static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4599 enum device_endian endian)
aab33094 4600{
733f0b02
MT
4601 int io_index;
4602 uint8_t *ptr;
4603 unsigned long pd;
4604 PhysPageDesc *p;
4605
4606 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4607 if (!p) {
4608 pd = IO_MEM_UNASSIGNED;
4609 } else {
4610 pd = p->phys_offset;
4611 }
4612
4613 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4614 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4615 if (p)
4616 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4617#if defined(TARGET_WORDS_BIGENDIAN)
4618 if (endian == DEVICE_LITTLE_ENDIAN) {
4619 val = bswap16(val);
4620 }
4621#else
4622 if (endian == DEVICE_BIG_ENDIAN) {
4623 val = bswap16(val);
4624 }
4625#endif
733f0b02
MT
4626 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4627 } else {
4628 unsigned long addr1;
4629 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4630 /* RAM case */
4631 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4632 switch (endian) {
4633 case DEVICE_LITTLE_ENDIAN:
4634 stw_le_p(ptr, val);
4635 break;
4636 case DEVICE_BIG_ENDIAN:
4637 stw_be_p(ptr, val);
4638 break;
4639 default:
4640 stw_p(ptr, val);
4641 break;
4642 }
733f0b02
MT
4643 if (!cpu_physical_memory_is_dirty(addr1)) {
4644 /* invalidate code */
4645 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4646 /* set dirty bit */
4647 cpu_physical_memory_set_dirty_flags(addr1,
4648 (0xff & ~CODE_DIRTY_FLAG));
4649 }
4650 }
aab33094
FB
4651}
4652
1e78bcc1
AG
4653void stw_phys(target_phys_addr_t addr, uint32_t val)
4654{
4655 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4656}
4657
4658void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4659{
4660 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4661}
4662
4663void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4664{
4665 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4666}
4667
aab33094 4668/* XXX: optimize */
c227f099 4669void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4670{
4671 val = tswap64(val);
71d2b725 4672 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4673}
4674
1e78bcc1
AG
4675void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4676{
4677 val = cpu_to_le64(val);
4678 cpu_physical_memory_write(addr, &val, 8);
4679}
4680
4681void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4682{
4683 val = cpu_to_be64(val);
4684 cpu_physical_memory_write(addr, &val, 8);
4685}
4686
5e2972fd 4687/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4688int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4689 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4690{
4691 int l;
c227f099 4692 target_phys_addr_t phys_addr;
9b3c35e0 4693 target_ulong page;
13eb76e0
FB
4694
4695 while (len > 0) {
4696 page = addr & TARGET_PAGE_MASK;
4697 phys_addr = cpu_get_phys_page_debug(env, page);
4698 /* if no physical page mapped, return an error */
4699 if (phys_addr == -1)
4700 return -1;
4701 l = (page + TARGET_PAGE_SIZE) - addr;
4702 if (l > len)
4703 l = len;
5e2972fd 4704 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4705 if (is_write)
4706 cpu_physical_memory_write_rom(phys_addr, buf, l);
4707 else
5e2972fd 4708 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4709 len -= l;
4710 buf += l;
4711 addr += l;
4712 }
4713 return 0;
4714}
a68fe89c 4715#endif
13eb76e0 4716
2e70f6ef
PB
4717/* in deterministic execution mode, instructions doing device I/Os
4718 must be at the end of the TB */
4719void cpu_io_recompile(CPUState *env, void *retaddr)
4720{
4721 TranslationBlock *tb;
4722 uint32_t n, cflags;
4723 target_ulong pc, cs_base;
4724 uint64_t flags;
4725
4726 tb = tb_find_pc((unsigned long)retaddr);
4727 if (!tb) {
4728 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4729 retaddr);
4730 }
4731 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4732 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4733 /* Calculate how many instructions had been executed before the fault
bf20dc07 4734 occurred. */
2e70f6ef
PB
4735 n = n - env->icount_decr.u16.low;
4736 /* Generate a new TB ending on the I/O insn. */
4737 n++;
4738 /* On MIPS and SH, delay slot instructions can only be restarted if
4739 they were already the first instruction in the TB. If this is not
bf20dc07 4740 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4741 branch. */
4742#if defined(TARGET_MIPS)
4743 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4744 env->active_tc.PC -= 4;
4745 env->icount_decr.u16.low++;
4746 env->hflags &= ~MIPS_HFLAG_BMASK;
4747 }
4748#elif defined(TARGET_SH4)
4749 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4750 && n > 1) {
4751 env->pc -= 2;
4752 env->icount_decr.u16.low++;
4753 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4754 }
4755#endif
4756 /* This should never happen. */
4757 if (n > CF_COUNT_MASK)
4758 cpu_abort(env, "TB too big during recompile");
4759
4760 cflags = n | CF_LAST_IO;
4761 pc = tb->pc;
4762 cs_base = tb->cs_base;
4763 flags = tb->flags;
4764 tb_phys_invalidate(tb, -1);
4765 /* FIXME: In theory this could raise an exception. In practice
4766 we have already translated the block once so it's probably ok. */
4767 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4768 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4769 the first in the TB) then we end up generating a whole new TB and
4770 repeating the fault, which is horribly inefficient.
4771 Better would be to execute just this insn uncached, or generate a
4772 second new TB. */
4773 cpu_resume_from_signal(env, NULL);
4774}
4775
b3755a91
PB
4776#if !defined(CONFIG_USER_ONLY)
4777
055403b2 4778void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4779{
4780 int i, target_code_size, max_target_code_size;
4781 int direct_jmp_count, direct_jmp2_count, cross_page;
4782 TranslationBlock *tb;
3b46e624 4783
e3db7226
FB
4784 target_code_size = 0;
4785 max_target_code_size = 0;
4786 cross_page = 0;
4787 direct_jmp_count = 0;
4788 direct_jmp2_count = 0;
4789 for(i = 0; i < nb_tbs; i++) {
4790 tb = &tbs[i];
4791 target_code_size += tb->size;
4792 if (tb->size > max_target_code_size)
4793 max_target_code_size = tb->size;
4794 if (tb->page_addr[1] != -1)
4795 cross_page++;
4796 if (tb->tb_next_offset[0] != 0xffff) {
4797 direct_jmp_count++;
4798 if (tb->tb_next_offset[1] != 0xffff) {
4799 direct_jmp2_count++;
4800 }
4801 }
4802 }
4803 /* XXX: avoid using doubles ? */
57fec1fe 4804 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4805 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4806 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4807 cpu_fprintf(f, "TB count %d/%d\n",
4808 nb_tbs, code_gen_max_blocks);
5fafdf24 4809 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4810 nb_tbs ? target_code_size / nb_tbs : 0,
4811 max_target_code_size);
055403b2 4812 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4813 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4814 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4815 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4816 cross_page,
e3db7226
FB
4817 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4818 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4819 direct_jmp_count,
e3db7226
FB
4820 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4821 direct_jmp2_count,
4822 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4823 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4824 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4825 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4826 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4827 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4828}
4829
61382a50 4830#define MMUSUFFIX _cmmu
3917149d 4831#undef GETPC
61382a50
FB
4832#define GETPC() NULL
4833#define env cpu_single_env
b769d8fe 4834#define SOFTMMU_CODE_ACCESS
61382a50
FB
4835
4836#define SHIFT 0
4837#include "softmmu_template.h"
4838
4839#define SHIFT 1
4840#include "softmmu_template.h"
4841
4842#define SHIFT 2
4843#include "softmmu_template.h"
4844
4845#define SHIFT 3
4846#include "softmmu_template.h"
4847
4848#undef env
4849
4850#endif