]> git.proxmox.com Git - qemu.git/blame - exec.c
Implement multi-level page tables.
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
fd052bf6 43#include <signal.h>
53a5960a 44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
bdaf78e0 65static TranslationBlock *tbs;
26a5f13b 66int code_gen_max_blocks;
9fa3e853 67TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 68static int nb_tbs;
eb51d102 69/* any access to the tbs or the page table must use this lock */
c227f099 70spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 71
141ac468
BS
72#if defined(__arm__) || defined(__sparc_v9__)
73/* The prologue must be reachable with a direct jump. ARM and Sparc64
74 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
75 section close to code segment. */
76#define code_gen_section \
77 __attribute__((__section__(".gen_code"))) \
78 __attribute__((aligned (32)))
f8e2af11
SW
79#elif defined(_WIN32)
80/* Maximum alignment for Win32 is 16. */
81#define code_gen_section \
82 __attribute__((aligned (16)))
d03d860b
BS
83#else
84#define code_gen_section \
85 __attribute__((aligned (32)))
86#endif
87
88uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
89static uint8_t *code_gen_buffer;
90static unsigned long code_gen_buffer_size;
26a5f13b 91/* threshold to flush the translated code buffer */
bdaf78e0 92static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
93uint8_t *code_gen_ptr;
94
e2eef170 95#if !defined(CONFIG_USER_ONLY)
9fa3e853 96int phys_ram_fd;
1ccde1cb 97uint8_t *phys_ram_dirty;
74576198 98static int in_migration;
94a6b54f
PB
99
100typedef struct RAMBlock {
101 uint8_t *host;
c227f099
AL
102 ram_addr_t offset;
103 ram_addr_t length;
94a6b54f
PB
104 struct RAMBlock *next;
105} RAMBlock;
106
107static RAMBlock *ram_blocks;
108/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 109 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 110 of this variable will break. */
c227f099 111ram_addr_t last_ram_offset;
e2eef170 112#endif
9fa3e853 113
6a00d601
FB
114CPUState *first_cpu;
115/* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
5fafdf24 117CPUState *cpu_single_env;
2e70f6ef 118/* 0 = Do not count executed instructions.
bf20dc07 119 1 = Precise instruction counting.
2e70f6ef
PB
120 2 = Adaptive rate instruction counting. */
121int use_icount = 0;
122/* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
124int64_t qemu_icount;
6a00d601 125
54936004 126typedef struct PageDesc {
92e873b9 127 /* list of TBs intersecting this ram page */
fd6ce8f6 128 TranslationBlock *first_tb;
9fa3e853
FB
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count;
132 uint8_t *code_bitmap;
133#if defined(CONFIG_USER_ONLY)
134 unsigned long flags;
135#endif
54936004
FB
136} PageDesc;
137
92e873b9 138typedef struct PhysPageDesc {
0f459d16 139 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
140 ram_addr_t phys_offset;
141 ram_addr_t region_offset;
92e873b9
FB
142} PhysPageDesc;
143
5cd2c5b6
RH
144/* In system mode we want L1_MAP to be based on physical addresses,
145 while in user mode we want it to be based on virtual addresses. */
146#if !defined(CONFIG_USER_ONLY)
147# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
bedb69ea 148#else
5cd2c5b6 149# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 150#endif
54936004 151
5cd2c5b6
RH
152/* Size of the L2 (and L3, etc) page tables. */
153#define L2_BITS 10
54936004
FB
154#define L2_SIZE (1 << L2_BITS)
155
5cd2c5b6
RH
156/* The bits remaining after N lower levels of page tables. */
157#define P_L1_BITS_REM \
158 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
159#define V_L1_BITS_REM \
160 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
161
162/* Size of the L1 page table. Avoid silly small sizes. */
163#if P_L1_BITS_REM < 4
164#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
165#else
166#define P_L1_BITS P_L1_BITS_REM
167#endif
168
169#if V_L1_BITS_REM < 4
170#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171#else
172#define V_L1_BITS V_L1_BITS_REM
173#endif
174
175#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
176#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177
178#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
179#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
180
83fb7adf
FB
181unsigned long qemu_real_host_page_size;
182unsigned long qemu_host_page_bits;
183unsigned long qemu_host_page_size;
184unsigned long qemu_host_page_mask;
54936004 185
5cd2c5b6
RH
186/* This is a multi-level map on the virtual address space.
187 The bottom level has pointers to PageDesc. */
188static void *l1_map[V_L1_SIZE];
54936004 189
e2eef170 190#if !defined(CONFIG_USER_ONLY)
5cd2c5b6
RH
191/* This is a multi-level map on the physical address space.
192 The bottom level has pointers to PhysPageDesc. */
193static void *l1_phys_map[P_L1_SIZE];
6d9a1304 194
e2eef170
PB
195static void io_mem_init(void);
196
33417e70 197/* io memory support */
33417e70
FB
198CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
199CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 200void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 201static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
202static int io_mem_watch;
203#endif
33417e70 204
34865134 205/* log support */
1e8b27ca
JR
206#ifdef WIN32
207static const char *logfilename = "qemu.log";
208#else
d9b630fd 209static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 210#endif
34865134
FB
211FILE *logfile;
212int loglevel;
e735b91c 213static int log_append = 0;
34865134 214
e3db7226
FB
215/* statistics */
216static int tlb_flush_count;
217static int tb_flush_count;
218static int tb_phys_invalidate_count;
219
7cb69cae
FB
220#ifdef _WIN32
221static void map_exec(void *addr, long size)
222{
223 DWORD old_protect;
224 VirtualProtect(addr, size,
225 PAGE_EXECUTE_READWRITE, &old_protect);
226
227}
228#else
229static void map_exec(void *addr, long size)
230{
4369415f 231 unsigned long start, end, page_size;
7cb69cae 232
4369415f 233 page_size = getpagesize();
7cb69cae 234 start = (unsigned long)addr;
4369415f 235 start &= ~(page_size - 1);
7cb69cae
FB
236
237 end = (unsigned long)addr + size;
4369415f
FB
238 end += page_size - 1;
239 end &= ~(page_size - 1);
7cb69cae
FB
240
241 mprotect((void *)start, end - start,
242 PROT_READ | PROT_WRITE | PROT_EXEC);
243}
244#endif
245
b346ff46 246static void page_init(void)
54936004 247{
83fb7adf 248 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 249 TARGET_PAGE_SIZE */
c2b48b69
AL
250#ifdef _WIN32
251 {
252 SYSTEM_INFO system_info;
253
254 GetSystemInfo(&system_info);
255 qemu_real_host_page_size = system_info.dwPageSize;
256 }
257#else
258 qemu_real_host_page_size = getpagesize();
259#endif
83fb7adf
FB
260 if (qemu_host_page_size == 0)
261 qemu_host_page_size = qemu_real_host_page_size;
262 if (qemu_host_page_size < TARGET_PAGE_SIZE)
263 qemu_host_page_size = TARGET_PAGE_SIZE;
264 qemu_host_page_bits = 0;
265 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
266 qemu_host_page_bits++;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b
AZ
268
269#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
270 {
50a9569b 271 FILE *f;
50a9569b 272
0776590d 273 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 274
50a9569b
AZ
275 f = fopen("/proc/self/maps", "r");
276 if (f) {
5cd2c5b6
RH
277 mmap_lock();
278
50a9569b 279 do {
5cd2c5b6
RH
280 unsigned long startaddr, endaddr;
281 int n;
282
283 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
284
285 if (n == 2 && h2g_valid(startaddr)) {
286 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
287
288 if (h2g_valid(endaddr)) {
289 endaddr = h2g(endaddr);
290 } else {
291 endaddr = ~0ul;
292 }
293 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
294 }
295 } while (!feof(f));
5cd2c5b6 296
50a9569b 297 fclose(f);
5cd2c5b6 298 mmap_unlock();
50a9569b
AZ
299 }
300 }
301#endif
54936004
FB
302}
303
5cd2c5b6 304static PageDesc *page_find_alloc(target_ulong index, int alloc)
54936004 305{
5cd2c5b6
RH
306#if defined(CONFIG_USER_ONLY)
307 /* We can't use qemu_malloc because it may recurse into a locked mutex.
308 Neither can we record the new pages we reserve while allocating a
309 given page because that may recurse into an unallocated page table
310 entry. Stuff the allocations we do make into a queue and process
311 them after having completed one entire page table allocation. */
312
313 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
314 int reserve_idx = 0;
315
316# define ALLOC(P, SIZE) \
317 do { \
318 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
319 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
320 if (h2g_valid(P)) { \
321 reserve[reserve_idx] = h2g(P); \
322 reserve[reserve_idx + 1] = SIZE; \
323 reserve_idx += 2; \
324 } \
325 } while (0)
326#else
327# define ALLOC(P, SIZE) \
328 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 329#endif
434929bf 330
5cd2c5b6
RH
331 PageDesc *pd;
332 void **lp;
333 int i;
434929bf 334
5cd2c5b6
RH
335 /* Level 1. Always allocated. */
336 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
337
338 /* Level 2..N-1. */
339 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
340 void **p = *lp;
341
342 if (p == NULL) {
343 if (!alloc) {
344 return NULL;
345 }
346 ALLOC(p, sizeof(void *) * L2_SIZE);
347 *lp = p;
17e2377a 348 }
5cd2c5b6
RH
349
350 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
351 }
352
353 pd = *lp;
354 if (pd == NULL) {
355 if (!alloc) {
356 return NULL;
357 }
358 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
359 *lp = pd;
54936004 360 }
5cd2c5b6
RH
361
362#undef ALLOC
363#if defined(CONFIG_USER_ONLY)
364 for (i = 0; i < reserve_idx; i += 2) {
365 unsigned long addr = reserve[i];
366 unsigned long len = reserve[i + 1];
367
368 page_set_flags(addr & TARGET_PAGE_MASK,
369 TARGET_PAGE_ALIGN(addr + len),
370 PAGE_RESERVED);
371 }
372#endif
373
374 return pd + (index & (L2_SIZE - 1));
54936004
FB
375}
376
00f82b8a 377static inline PageDesc *page_find(target_ulong index)
54936004 378{
5cd2c5b6 379 return page_find_alloc(index, 0);
fd6ce8f6
FB
380}
381
6d9a1304 382#if !defined(CONFIG_USER_ONLY)
c227f099 383static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 384{
e3f4e2a4 385 PhysPageDesc *pd;
5cd2c5b6
RH
386 void **lp;
387 int i;
92e873b9 388
5cd2c5b6
RH
389 /* Level 1. Always allocated. */
390 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 391
5cd2c5b6
RH
392 /* Level 2..N-1. */
393 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
394 void **p = *lp;
395 if (p == NULL) {
396 if (!alloc) {
397 return NULL;
398 }
399 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
400 }
401 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 402 }
5cd2c5b6 403
e3f4e2a4 404 pd = *lp;
5cd2c5b6 405 if (pd == NULL) {
e3f4e2a4 406 int i;
5cd2c5b6
RH
407
408 if (!alloc) {
108c49b8 409 return NULL;
5cd2c5b6
RH
410 }
411
412 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
413
67c4d23c 414 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
415 pd[i].phys_offset = IO_MEM_UNASSIGNED;
416 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 417 }
92e873b9 418 }
5cd2c5b6
RH
419
420 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
421}
422
c227f099 423static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 424{
108c49b8 425 return phys_page_find_alloc(index, 0);
92e873b9
FB
426}
427
c227f099
AL
428static void tlb_protect_code(ram_addr_t ram_addr);
429static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 430 target_ulong vaddr);
c8a706fe
PB
431#define mmap_lock() do { } while(0)
432#define mmap_unlock() do { } while(0)
9fa3e853 433#endif
fd6ce8f6 434
4369415f
FB
435#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
436
437#if defined(CONFIG_USER_ONLY)
ccbb4d44 438/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
439 user mode. It will change when a dedicated libc will be used */
440#define USE_STATIC_CODE_GEN_BUFFER
441#endif
442
443#ifdef USE_STATIC_CODE_GEN_BUFFER
444static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
445#endif
446
8fcd3692 447static void code_gen_alloc(unsigned long tb_size)
26a5f13b 448{
4369415f
FB
449#ifdef USE_STATIC_CODE_GEN_BUFFER
450 code_gen_buffer = static_code_gen_buffer;
451 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
452 map_exec(code_gen_buffer, code_gen_buffer_size);
453#else
26a5f13b
FB
454 code_gen_buffer_size = tb_size;
455 if (code_gen_buffer_size == 0) {
4369415f
FB
456#if defined(CONFIG_USER_ONLY)
457 /* in user mode, phys_ram_size is not meaningful */
458 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
459#else
ccbb4d44 460 /* XXX: needs adjustments */
94a6b54f 461 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 462#endif
26a5f13b
FB
463 }
464 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
465 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
466 /* The code gen buffer location may have constraints depending on
467 the host cpu and OS */
468#if defined(__linux__)
469 {
470 int flags;
141ac468
BS
471 void *start = NULL;
472
26a5f13b
FB
473 flags = MAP_PRIVATE | MAP_ANONYMOUS;
474#if defined(__x86_64__)
475 flags |= MAP_32BIT;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
479#elif defined(__sparc_v9__)
480 // Map the buffer below 2G, so we can use direct calls and branches
481 flags |= MAP_FIXED;
482 start = (void *) 0x60000000UL;
483 if (code_gen_buffer_size > (512 * 1024 * 1024))
484 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 485#elif defined(__arm__)
63d41246 486 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
487 flags |= MAP_FIXED;
488 start = (void *) 0x01000000UL;
489 if (code_gen_buffer_size > 16 * 1024 * 1024)
490 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 491#endif
141ac468
BS
492 code_gen_buffer = mmap(start, code_gen_buffer_size,
493 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
494 flags, -1, 0);
495 if (code_gen_buffer == MAP_FAILED) {
496 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
497 exit(1);
498 }
499 }
a167ba50 500#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
501 {
502 int flags;
503 void *addr = NULL;
504 flags = MAP_PRIVATE | MAP_ANONYMOUS;
505#if defined(__x86_64__)
506 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
507 * 0x40000000 is free */
508 flags |= MAP_FIXED;
509 addr = (void *)0x40000000;
510 /* Cannot map more than that */
511 if (code_gen_buffer_size > (800 * 1024 * 1024))
512 code_gen_buffer_size = (800 * 1024 * 1024);
513#endif
514 code_gen_buffer = mmap(addr, code_gen_buffer_size,
515 PROT_WRITE | PROT_READ | PROT_EXEC,
516 flags, -1, 0);
517 if (code_gen_buffer == MAP_FAILED) {
518 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
519 exit(1);
520 }
521 }
26a5f13b
FB
522#else
523 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
524 map_exec(code_gen_buffer, code_gen_buffer_size);
525#endif
4369415f 526#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
527 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
528 code_gen_buffer_max_size = code_gen_buffer_size -
529 code_gen_max_block_size();
530 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
531 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
532}
533
534/* Must be called before using the QEMU cpus. 'tb_size' is the size
535 (in bytes) allocated to the translation buffer. Zero means default
536 size. */
537void cpu_exec_init_all(unsigned long tb_size)
538{
26a5f13b
FB
539 cpu_gen_init();
540 code_gen_alloc(tb_size);
541 code_gen_ptr = code_gen_buffer;
4369415f 542 page_init();
e2eef170 543#if !defined(CONFIG_USER_ONLY)
26a5f13b 544 io_mem_init();
e2eef170 545#endif
26a5f13b
FB
546}
547
9656f324
PB
548#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
549
e59fb374 550static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
551{
552 CPUState *env = opaque;
9656f324 553
3098dba0
AJ
554 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
555 version_id is increased. */
556 env->interrupt_request &= ~0x01;
9656f324
PB
557 tlb_flush(env, 1);
558
559 return 0;
560}
e7f4eff7
JQ
561
562static const VMStateDescription vmstate_cpu_common = {
563 .name = "cpu_common",
564 .version_id = 1,
565 .minimum_version_id = 1,
566 .minimum_version_id_old = 1,
e7f4eff7
JQ
567 .post_load = cpu_common_post_load,
568 .fields = (VMStateField []) {
569 VMSTATE_UINT32(halted, CPUState),
570 VMSTATE_UINT32(interrupt_request, CPUState),
571 VMSTATE_END_OF_LIST()
572 }
573};
9656f324
PB
574#endif
575
950f1472
GC
576CPUState *qemu_get_cpu(int cpu)
577{
578 CPUState *env = first_cpu;
579
580 while (env) {
581 if (env->cpu_index == cpu)
582 break;
583 env = env->next_cpu;
584 }
585
586 return env;
587}
588
6a00d601 589void cpu_exec_init(CPUState *env)
fd6ce8f6 590{
6a00d601
FB
591 CPUState **penv;
592 int cpu_index;
593
c2764719
PB
594#if defined(CONFIG_USER_ONLY)
595 cpu_list_lock();
596#endif
6a00d601
FB
597 env->next_cpu = NULL;
598 penv = &first_cpu;
599 cpu_index = 0;
600 while (*penv != NULL) {
1e9fa730 601 penv = &(*penv)->next_cpu;
6a00d601
FB
602 cpu_index++;
603 }
604 env->cpu_index = cpu_index;
268a362c 605 env->numa_node = 0;
72cf2d4f
BS
606 QTAILQ_INIT(&env->breakpoints);
607 QTAILQ_INIT(&env->watchpoints);
6a00d601 608 *penv = env;
c2764719
PB
609#if defined(CONFIG_USER_ONLY)
610 cpu_list_unlock();
611#endif
b3c7724c 612#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 613 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
614 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
615 cpu_save, cpu_load, env);
616#endif
fd6ce8f6
FB
617}
618
9fa3e853
FB
619static inline void invalidate_page_bitmap(PageDesc *p)
620{
621 if (p->code_bitmap) {
59817ccb 622 qemu_free(p->code_bitmap);
9fa3e853
FB
623 p->code_bitmap = NULL;
624 }
625 p->code_write_count = 0;
626}
627
5cd2c5b6
RH
628/* Set to NULL all the 'first_tb' fields in all PageDescs. */
629
630static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 631{
5cd2c5b6 632 int i;
fd6ce8f6 633
5cd2c5b6
RH
634 if (*lp == NULL) {
635 return;
636 }
637 if (level == 0) {
638 PageDesc *pd = *lp;
639 for (i = 0; i < L2_BITS; ++i) {
640 pd[i].first_tb = NULL;
641 invalidate_page_bitmap(pd + i);
fd6ce8f6 642 }
5cd2c5b6
RH
643 } else {
644 void **pp = *lp;
645 for (i = 0; i < L2_BITS; ++i) {
646 page_flush_tb_1 (level - 1, pp + i);
647 }
648 }
649}
650
651static void page_flush_tb(void)
652{
653 int i;
654 for (i = 0; i < V_L1_SIZE; i++) {
655 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
656 }
657}
658
659/* flush all the translation blocks */
d4e8164f 660/* XXX: tb_flush is currently not thread safe */
6a00d601 661void tb_flush(CPUState *env1)
fd6ce8f6 662{
6a00d601 663 CPUState *env;
0124311e 664#if defined(DEBUG_FLUSH)
ab3d1727
BS
665 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
666 (unsigned long)(code_gen_ptr - code_gen_buffer),
667 nb_tbs, nb_tbs > 0 ?
668 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 669#endif
26a5f13b 670 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
671 cpu_abort(env1, "Internal error: code buffer overflow\n");
672
fd6ce8f6 673 nb_tbs = 0;
3b46e624 674
6a00d601
FB
675 for(env = first_cpu; env != NULL; env = env->next_cpu) {
676 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
677 }
9fa3e853 678
8a8a608f 679 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 680 page_flush_tb();
9fa3e853 681
fd6ce8f6 682 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
683 /* XXX: flush processor icache at this point if cache flush is
684 expensive */
e3db7226 685 tb_flush_count++;
fd6ce8f6
FB
686}
687
688#ifdef DEBUG_TB_CHECK
689
bc98a7ef 690static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
691{
692 TranslationBlock *tb;
693 int i;
694 address &= TARGET_PAGE_MASK;
99773bd4
PB
695 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
696 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
697 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
698 address >= tb->pc + tb->size)) {
0bf9e31a
BS
699 printf("ERROR invalidate: address=" TARGET_FMT_lx
700 " PC=%08lx size=%04x\n",
99773bd4 701 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
702 }
703 }
704 }
705}
706
707/* verify that all the pages have correct rights for code */
708static void tb_page_check(void)
709{
710 TranslationBlock *tb;
711 int i, flags1, flags2;
3b46e624 712
99773bd4
PB
713 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
714 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
715 flags1 = page_get_flags(tb->pc);
716 flags2 = page_get_flags(tb->pc + tb->size - 1);
717 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
718 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 719 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
720 }
721 }
722 }
723}
724
725#endif
726
727/* invalidate one TB */
728static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
729 int next_offset)
730{
731 TranslationBlock *tb1;
732 for(;;) {
733 tb1 = *ptb;
734 if (tb1 == tb) {
735 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
736 break;
737 }
738 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
739 }
740}
741
9fa3e853
FB
742static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
743{
744 TranslationBlock *tb1;
745 unsigned int n1;
746
747 for(;;) {
748 tb1 = *ptb;
749 n1 = (long)tb1 & 3;
750 tb1 = (TranslationBlock *)((long)tb1 & ~3);
751 if (tb1 == tb) {
752 *ptb = tb1->page_next[n1];
753 break;
754 }
755 ptb = &tb1->page_next[n1];
756 }
757}
758
d4e8164f
FB
759static inline void tb_jmp_remove(TranslationBlock *tb, int n)
760{
761 TranslationBlock *tb1, **ptb;
762 unsigned int n1;
763
764 ptb = &tb->jmp_next[n];
765 tb1 = *ptb;
766 if (tb1) {
767 /* find tb(n) in circular list */
768 for(;;) {
769 tb1 = *ptb;
770 n1 = (long)tb1 & 3;
771 tb1 = (TranslationBlock *)((long)tb1 & ~3);
772 if (n1 == n && tb1 == tb)
773 break;
774 if (n1 == 2) {
775 ptb = &tb1->jmp_first;
776 } else {
777 ptb = &tb1->jmp_next[n1];
778 }
779 }
780 /* now we can suppress tb(n) from the list */
781 *ptb = tb->jmp_next[n];
782
783 tb->jmp_next[n] = NULL;
784 }
785}
786
787/* reset the jump entry 'n' of a TB so that it is not chained to
788 another TB */
789static inline void tb_reset_jump(TranslationBlock *tb, int n)
790{
791 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
792}
793
2e70f6ef 794void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 795{
6a00d601 796 CPUState *env;
8a40a180 797 PageDesc *p;
d4e8164f 798 unsigned int h, n1;
c227f099 799 target_phys_addr_t phys_pc;
8a40a180 800 TranslationBlock *tb1, *tb2;
3b46e624 801
8a40a180
FB
802 /* remove the TB from the hash list */
803 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
804 h = tb_phys_hash_func(phys_pc);
5fafdf24 805 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
806 offsetof(TranslationBlock, phys_hash_next));
807
808 /* remove the TB from the page list */
809 if (tb->page_addr[0] != page_addr) {
810 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
811 tb_page_remove(&p->first_tb, tb);
812 invalidate_page_bitmap(p);
813 }
814 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
815 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
816 tb_page_remove(&p->first_tb, tb);
817 invalidate_page_bitmap(p);
818 }
819
36bdbe54 820 tb_invalidated_flag = 1;
59817ccb 821
fd6ce8f6 822 /* remove the TB from the hash list */
8a40a180 823 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
824 for(env = first_cpu; env != NULL; env = env->next_cpu) {
825 if (env->tb_jmp_cache[h] == tb)
826 env->tb_jmp_cache[h] = NULL;
827 }
d4e8164f
FB
828
829 /* suppress this TB from the two jump lists */
830 tb_jmp_remove(tb, 0);
831 tb_jmp_remove(tb, 1);
832
833 /* suppress any remaining jumps to this TB */
834 tb1 = tb->jmp_first;
835 for(;;) {
836 n1 = (long)tb1 & 3;
837 if (n1 == 2)
838 break;
839 tb1 = (TranslationBlock *)((long)tb1 & ~3);
840 tb2 = tb1->jmp_next[n1];
841 tb_reset_jump(tb1, n1);
842 tb1->jmp_next[n1] = NULL;
843 tb1 = tb2;
844 }
845 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 846
e3db7226 847 tb_phys_invalidate_count++;
9fa3e853
FB
848}
849
850static inline void set_bits(uint8_t *tab, int start, int len)
851{
852 int end, mask, end1;
853
854 end = start + len;
855 tab += start >> 3;
856 mask = 0xff << (start & 7);
857 if ((start & ~7) == (end & ~7)) {
858 if (start < end) {
859 mask &= ~(0xff << (end & 7));
860 *tab |= mask;
861 }
862 } else {
863 *tab++ |= mask;
864 start = (start + 8) & ~7;
865 end1 = end & ~7;
866 while (start < end1) {
867 *tab++ = 0xff;
868 start += 8;
869 }
870 if (start < end) {
871 mask = ~(0xff << (end & 7));
872 *tab |= mask;
873 }
874 }
875}
876
877static void build_page_bitmap(PageDesc *p)
878{
879 int n, tb_start, tb_end;
880 TranslationBlock *tb;
3b46e624 881
b2a7081a 882 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
883
884 tb = p->first_tb;
885 while (tb != NULL) {
886 n = (long)tb & 3;
887 tb = (TranslationBlock *)((long)tb & ~3);
888 /* NOTE: this is subtle as a TB may span two physical pages */
889 if (n == 0) {
890 /* NOTE: tb_end may be after the end of the page, but
891 it is not a problem */
892 tb_start = tb->pc & ~TARGET_PAGE_MASK;
893 tb_end = tb_start + tb->size;
894 if (tb_end > TARGET_PAGE_SIZE)
895 tb_end = TARGET_PAGE_SIZE;
896 } else {
897 tb_start = 0;
898 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
899 }
900 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
901 tb = tb->page_next[n];
902 }
903}
904
2e70f6ef
PB
905TranslationBlock *tb_gen_code(CPUState *env,
906 target_ulong pc, target_ulong cs_base,
907 int flags, int cflags)
d720b93d
FB
908{
909 TranslationBlock *tb;
910 uint8_t *tc_ptr;
911 target_ulong phys_pc, phys_page2, virt_page2;
912 int code_gen_size;
913
c27004ec
FB
914 phys_pc = get_phys_addr_code(env, pc);
915 tb = tb_alloc(pc);
d720b93d
FB
916 if (!tb) {
917 /* flush must be done */
918 tb_flush(env);
919 /* cannot fail at this point */
c27004ec 920 tb = tb_alloc(pc);
2e70f6ef
PB
921 /* Don't forget to invalidate previous TB info. */
922 tb_invalidated_flag = 1;
d720b93d
FB
923 }
924 tc_ptr = code_gen_ptr;
925 tb->tc_ptr = tc_ptr;
926 tb->cs_base = cs_base;
927 tb->flags = flags;
928 tb->cflags = cflags;
d07bde88 929 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 930 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 931
d720b93d 932 /* check next page if needed */
c27004ec 933 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 934 phys_page2 = -1;
c27004ec 935 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
936 phys_page2 = get_phys_addr_code(env, virt_page2);
937 }
938 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 939 return tb;
d720b93d 940}
3b46e624 941
9fa3e853
FB
942/* invalidate all TBs which intersect with the target physical page
943 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
944 the same physical page. 'is_cpu_write_access' should be true if called
945 from a real cpu write access: the virtual CPU will exit the current
946 TB if code is modified inside this TB. */
c227f099 947void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
948 int is_cpu_write_access)
949{
6b917547 950 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 951 CPUState *env = cpu_single_env;
9fa3e853 952 target_ulong tb_start, tb_end;
6b917547
AL
953 PageDesc *p;
954 int n;
955#ifdef TARGET_HAS_PRECISE_SMC
956 int current_tb_not_found = is_cpu_write_access;
957 TranslationBlock *current_tb = NULL;
958 int current_tb_modified = 0;
959 target_ulong current_pc = 0;
960 target_ulong current_cs_base = 0;
961 int current_flags = 0;
962#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
963
964 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 965 if (!p)
9fa3e853 966 return;
5fafdf24 967 if (!p->code_bitmap &&
d720b93d
FB
968 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
969 is_cpu_write_access) {
9fa3e853
FB
970 /* build code bitmap */
971 build_page_bitmap(p);
972 }
973
974 /* we remove all the TBs in the range [start, end[ */
975 /* XXX: see if in some cases it could be faster to invalidate all the code */
976 tb = p->first_tb;
977 while (tb != NULL) {
978 n = (long)tb & 3;
979 tb = (TranslationBlock *)((long)tb & ~3);
980 tb_next = tb->page_next[n];
981 /* NOTE: this is subtle as a TB may span two physical pages */
982 if (n == 0) {
983 /* NOTE: tb_end may be after the end of the page, but
984 it is not a problem */
985 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
986 tb_end = tb_start + tb->size;
987 } else {
988 tb_start = tb->page_addr[1];
989 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
990 }
991 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
992#ifdef TARGET_HAS_PRECISE_SMC
993 if (current_tb_not_found) {
994 current_tb_not_found = 0;
995 current_tb = NULL;
2e70f6ef 996 if (env->mem_io_pc) {
d720b93d 997 /* now we have a real cpu fault */
2e70f6ef 998 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
999 }
1000 }
1001 if (current_tb == tb &&
2e70f6ef 1002 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1003 /* If we are modifying the current TB, we must stop
1004 its execution. We could be more precise by checking
1005 that the modification is after the current PC, but it
1006 would require a specialized function to partially
1007 restore the CPU state */
3b46e624 1008
d720b93d 1009 current_tb_modified = 1;
5fafdf24 1010 cpu_restore_state(current_tb, env,
2e70f6ef 1011 env->mem_io_pc, NULL);
6b917547
AL
1012 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1013 &current_flags);
d720b93d
FB
1014 }
1015#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1016 /* we need to do that to handle the case where a signal
1017 occurs while doing tb_phys_invalidate() */
1018 saved_tb = NULL;
1019 if (env) {
1020 saved_tb = env->current_tb;
1021 env->current_tb = NULL;
1022 }
9fa3e853 1023 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1024 if (env) {
1025 env->current_tb = saved_tb;
1026 if (env->interrupt_request && env->current_tb)
1027 cpu_interrupt(env, env->interrupt_request);
1028 }
9fa3e853
FB
1029 }
1030 tb = tb_next;
1031 }
1032#if !defined(CONFIG_USER_ONLY)
1033 /* if no code remaining, no need to continue to use slow writes */
1034 if (!p->first_tb) {
1035 invalidate_page_bitmap(p);
d720b93d 1036 if (is_cpu_write_access) {
2e70f6ef 1037 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1038 }
1039 }
1040#endif
1041#ifdef TARGET_HAS_PRECISE_SMC
1042 if (current_tb_modified) {
1043 /* we generate a block containing just the instruction
1044 modifying the memory. It will ensure that it cannot modify
1045 itself */
ea1c1802 1046 env->current_tb = NULL;
2e70f6ef 1047 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1048 cpu_resume_from_signal(env, NULL);
9fa3e853 1049 }
fd6ce8f6 1050#endif
9fa3e853 1051}
fd6ce8f6 1052
9fa3e853 1053/* len must be <= 8 and start must be a multiple of len */
c227f099 1054static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1055{
1056 PageDesc *p;
1057 int offset, b;
59817ccb 1058#if 0
a4193c8a 1059 if (1) {
93fcfe39
AL
1060 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1061 cpu_single_env->mem_io_vaddr, len,
1062 cpu_single_env->eip,
1063 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1064 }
1065#endif
9fa3e853 1066 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1067 if (!p)
9fa3e853
FB
1068 return;
1069 if (p->code_bitmap) {
1070 offset = start & ~TARGET_PAGE_MASK;
1071 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1072 if (b & ((1 << len) - 1))
1073 goto do_invalidate;
1074 } else {
1075 do_invalidate:
d720b93d 1076 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1077 }
1078}
1079
9fa3e853 1080#if !defined(CONFIG_SOFTMMU)
c227f099 1081static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1082 unsigned long pc, void *puc)
9fa3e853 1083{
6b917547 1084 TranslationBlock *tb;
9fa3e853 1085 PageDesc *p;
6b917547 1086 int n;
d720b93d 1087#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1088 TranslationBlock *current_tb = NULL;
d720b93d 1089 CPUState *env = cpu_single_env;
6b917547
AL
1090 int current_tb_modified = 0;
1091 target_ulong current_pc = 0;
1092 target_ulong current_cs_base = 0;
1093 int current_flags = 0;
d720b93d 1094#endif
9fa3e853
FB
1095
1096 addr &= TARGET_PAGE_MASK;
1097 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1098 if (!p)
9fa3e853
FB
1099 return;
1100 tb = p->first_tb;
d720b93d
FB
1101#ifdef TARGET_HAS_PRECISE_SMC
1102 if (tb && pc != 0) {
1103 current_tb = tb_find_pc(pc);
1104 }
1105#endif
9fa3e853
FB
1106 while (tb != NULL) {
1107 n = (long)tb & 3;
1108 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1109#ifdef TARGET_HAS_PRECISE_SMC
1110 if (current_tb == tb &&
2e70f6ef 1111 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1112 /* If we are modifying the current TB, we must stop
1113 its execution. We could be more precise by checking
1114 that the modification is after the current PC, but it
1115 would require a specialized function to partially
1116 restore the CPU state */
3b46e624 1117
d720b93d
FB
1118 current_tb_modified = 1;
1119 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1120 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1121 &current_flags);
d720b93d
FB
1122 }
1123#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1124 tb_phys_invalidate(tb, addr);
1125 tb = tb->page_next[n];
1126 }
fd6ce8f6 1127 p->first_tb = NULL;
d720b93d
FB
1128#ifdef TARGET_HAS_PRECISE_SMC
1129 if (current_tb_modified) {
1130 /* we generate a block containing just the instruction
1131 modifying the memory. It will ensure that it cannot modify
1132 itself */
ea1c1802 1133 env->current_tb = NULL;
2e70f6ef 1134 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1135 cpu_resume_from_signal(env, puc);
1136 }
1137#endif
fd6ce8f6 1138}
9fa3e853 1139#endif
fd6ce8f6
FB
1140
1141/* add the tb in the target page and protect it if necessary */
5fafdf24 1142static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1143 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1144{
1145 PageDesc *p;
9fa3e853
FB
1146 TranslationBlock *last_first_tb;
1147
1148 tb->page_addr[n] = page_addr;
5cd2c5b6 1149 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1150 tb->page_next[n] = p->first_tb;
1151 last_first_tb = p->first_tb;
1152 p->first_tb = (TranslationBlock *)((long)tb | n);
1153 invalidate_page_bitmap(p);
fd6ce8f6 1154
107db443 1155#if defined(TARGET_HAS_SMC) || 1
d720b93d 1156
9fa3e853 1157#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1158 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1159 target_ulong addr;
1160 PageDesc *p2;
9fa3e853
FB
1161 int prot;
1162
fd6ce8f6
FB
1163 /* force the host page as non writable (writes will have a
1164 page fault + mprotect overhead) */
53a5960a 1165 page_addr &= qemu_host_page_mask;
fd6ce8f6 1166 prot = 0;
53a5960a
PB
1167 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1168 addr += TARGET_PAGE_SIZE) {
1169
1170 p2 = page_find (addr >> TARGET_PAGE_BITS);
1171 if (!p2)
1172 continue;
1173 prot |= p2->flags;
1174 p2->flags &= ~PAGE_WRITE;
1175 page_get_flags(addr);
1176 }
5fafdf24 1177 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1178 (prot & PAGE_BITS) & ~PAGE_WRITE);
1179#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1180 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1181 page_addr);
fd6ce8f6 1182#endif
fd6ce8f6 1183 }
9fa3e853
FB
1184#else
1185 /* if some code is already present, then the pages are already
1186 protected. So we handle the case where only the first TB is
1187 allocated in a physical page */
1188 if (!last_first_tb) {
6a00d601 1189 tlb_protect_code(page_addr);
9fa3e853
FB
1190 }
1191#endif
d720b93d
FB
1192
1193#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1194}
1195
1196/* Allocate a new translation block. Flush the translation buffer if
1197 too many translation blocks or too much generated code. */
c27004ec 1198TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1199{
1200 TranslationBlock *tb;
fd6ce8f6 1201
26a5f13b
FB
1202 if (nb_tbs >= code_gen_max_blocks ||
1203 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1204 return NULL;
fd6ce8f6
FB
1205 tb = &tbs[nb_tbs++];
1206 tb->pc = pc;
b448f2f3 1207 tb->cflags = 0;
d4e8164f
FB
1208 return tb;
1209}
1210
2e70f6ef
PB
1211void tb_free(TranslationBlock *tb)
1212{
bf20dc07 1213 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1214 Ignore the hard cases and just back up if this TB happens to
1215 be the last one generated. */
1216 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1217 code_gen_ptr = tb->tc_ptr;
1218 nb_tbs--;
1219 }
1220}
1221
9fa3e853
FB
1222/* add a new TB and link it to the physical page tables. phys_page2 is
1223 (-1) to indicate that only one page contains the TB. */
5fafdf24 1224void tb_link_phys(TranslationBlock *tb,
9fa3e853 1225 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1226{
9fa3e853
FB
1227 unsigned int h;
1228 TranslationBlock **ptb;
1229
c8a706fe
PB
1230 /* Grab the mmap lock to stop another thread invalidating this TB
1231 before we are done. */
1232 mmap_lock();
9fa3e853
FB
1233 /* add in the physical hash table */
1234 h = tb_phys_hash_func(phys_pc);
1235 ptb = &tb_phys_hash[h];
1236 tb->phys_hash_next = *ptb;
1237 *ptb = tb;
fd6ce8f6
FB
1238
1239 /* add in the page list */
9fa3e853
FB
1240 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1241 if (phys_page2 != -1)
1242 tb_alloc_page(tb, 1, phys_page2);
1243 else
1244 tb->page_addr[1] = -1;
9fa3e853 1245
d4e8164f
FB
1246 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1247 tb->jmp_next[0] = NULL;
1248 tb->jmp_next[1] = NULL;
1249
1250 /* init original jump addresses */
1251 if (tb->tb_next_offset[0] != 0xffff)
1252 tb_reset_jump(tb, 0);
1253 if (tb->tb_next_offset[1] != 0xffff)
1254 tb_reset_jump(tb, 1);
8a40a180
FB
1255
1256#ifdef DEBUG_TB_CHECK
1257 tb_page_check();
1258#endif
c8a706fe 1259 mmap_unlock();
fd6ce8f6
FB
1260}
1261
9fa3e853
FB
1262/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1263 tb[1].tc_ptr. Return NULL if not found */
1264TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1265{
9fa3e853
FB
1266 int m_min, m_max, m;
1267 unsigned long v;
1268 TranslationBlock *tb;
a513fe19
FB
1269
1270 if (nb_tbs <= 0)
1271 return NULL;
1272 if (tc_ptr < (unsigned long)code_gen_buffer ||
1273 tc_ptr >= (unsigned long)code_gen_ptr)
1274 return NULL;
1275 /* binary search (cf Knuth) */
1276 m_min = 0;
1277 m_max = nb_tbs - 1;
1278 while (m_min <= m_max) {
1279 m = (m_min + m_max) >> 1;
1280 tb = &tbs[m];
1281 v = (unsigned long)tb->tc_ptr;
1282 if (v == tc_ptr)
1283 return tb;
1284 else if (tc_ptr < v) {
1285 m_max = m - 1;
1286 } else {
1287 m_min = m + 1;
1288 }
5fafdf24 1289 }
a513fe19
FB
1290 return &tbs[m_max];
1291}
7501267e 1292
ea041c0e
FB
1293static void tb_reset_jump_recursive(TranslationBlock *tb);
1294
1295static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1296{
1297 TranslationBlock *tb1, *tb_next, **ptb;
1298 unsigned int n1;
1299
1300 tb1 = tb->jmp_next[n];
1301 if (tb1 != NULL) {
1302 /* find head of list */
1303 for(;;) {
1304 n1 = (long)tb1 & 3;
1305 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1306 if (n1 == 2)
1307 break;
1308 tb1 = tb1->jmp_next[n1];
1309 }
1310 /* we are now sure now that tb jumps to tb1 */
1311 tb_next = tb1;
1312
1313 /* remove tb from the jmp_first list */
1314 ptb = &tb_next->jmp_first;
1315 for(;;) {
1316 tb1 = *ptb;
1317 n1 = (long)tb1 & 3;
1318 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1319 if (n1 == n && tb1 == tb)
1320 break;
1321 ptb = &tb1->jmp_next[n1];
1322 }
1323 *ptb = tb->jmp_next[n];
1324 tb->jmp_next[n] = NULL;
3b46e624 1325
ea041c0e
FB
1326 /* suppress the jump to next tb in generated code */
1327 tb_reset_jump(tb, n);
1328
0124311e 1329 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1330 tb_reset_jump_recursive(tb_next);
1331 }
1332}
1333
1334static void tb_reset_jump_recursive(TranslationBlock *tb)
1335{
1336 tb_reset_jump_recursive2(tb, 0);
1337 tb_reset_jump_recursive2(tb, 1);
1338}
1339
1fddef4b 1340#if defined(TARGET_HAS_ICE)
94df27fd
PB
1341#if defined(CONFIG_USER_ONLY)
1342static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1343{
1344 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1345}
1346#else
d720b93d
FB
1347static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1348{
c227f099 1349 target_phys_addr_t addr;
9b3c35e0 1350 target_ulong pd;
c227f099 1351 ram_addr_t ram_addr;
c2f07f81 1352 PhysPageDesc *p;
d720b93d 1353
c2f07f81
PB
1354 addr = cpu_get_phys_page_debug(env, pc);
1355 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1356 if (!p) {
1357 pd = IO_MEM_UNASSIGNED;
1358 } else {
1359 pd = p->phys_offset;
1360 }
1361 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1362 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1363}
c27004ec 1364#endif
94df27fd 1365#endif /* TARGET_HAS_ICE */
d720b93d 1366
c527ee8f
PB
1367#if defined(CONFIG_USER_ONLY)
1368void cpu_watchpoint_remove_all(CPUState *env, int mask)
1369
1370{
1371}
1372
1373int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1374 int flags, CPUWatchpoint **watchpoint)
1375{
1376 return -ENOSYS;
1377}
1378#else
6658ffb8 1379/* Add a watchpoint. */
a1d1bb31
AL
1380int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1381 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1382{
b4051334 1383 target_ulong len_mask = ~(len - 1);
c0ce998e 1384 CPUWatchpoint *wp;
6658ffb8 1385
b4051334
AL
1386 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1387 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1388 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1389 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1390 return -EINVAL;
1391 }
a1d1bb31 1392 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1393
1394 wp->vaddr = addr;
b4051334 1395 wp->len_mask = len_mask;
a1d1bb31
AL
1396 wp->flags = flags;
1397
2dc9f411 1398 /* keep all GDB-injected watchpoints in front */
c0ce998e 1399 if (flags & BP_GDB)
72cf2d4f 1400 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1401 else
72cf2d4f 1402 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1403
6658ffb8 1404 tlb_flush_page(env, addr);
a1d1bb31
AL
1405
1406 if (watchpoint)
1407 *watchpoint = wp;
1408 return 0;
6658ffb8
PB
1409}
1410
a1d1bb31
AL
1411/* Remove a specific watchpoint. */
1412int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1413 int flags)
6658ffb8 1414{
b4051334 1415 target_ulong len_mask = ~(len - 1);
a1d1bb31 1416 CPUWatchpoint *wp;
6658ffb8 1417
72cf2d4f 1418 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1419 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1420 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1421 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1422 return 0;
1423 }
1424 }
a1d1bb31 1425 return -ENOENT;
6658ffb8
PB
1426}
1427
a1d1bb31
AL
1428/* Remove a specific watchpoint by reference. */
1429void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1430{
72cf2d4f 1431 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1432
a1d1bb31
AL
1433 tlb_flush_page(env, watchpoint->vaddr);
1434
1435 qemu_free(watchpoint);
1436}
1437
1438/* Remove all matching watchpoints. */
1439void cpu_watchpoint_remove_all(CPUState *env, int mask)
1440{
c0ce998e 1441 CPUWatchpoint *wp, *next;
a1d1bb31 1442
72cf2d4f 1443 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1444 if (wp->flags & mask)
1445 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1446 }
7d03f82f 1447}
c527ee8f 1448#endif
7d03f82f 1449
a1d1bb31
AL
1450/* Add a breakpoint. */
1451int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1452 CPUBreakpoint **breakpoint)
4c3a88a2 1453{
1fddef4b 1454#if defined(TARGET_HAS_ICE)
c0ce998e 1455 CPUBreakpoint *bp;
3b46e624 1456
a1d1bb31 1457 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1458
a1d1bb31
AL
1459 bp->pc = pc;
1460 bp->flags = flags;
1461
2dc9f411 1462 /* keep all GDB-injected breakpoints in front */
c0ce998e 1463 if (flags & BP_GDB)
72cf2d4f 1464 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1465 else
72cf2d4f 1466 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1467
d720b93d 1468 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1469
1470 if (breakpoint)
1471 *breakpoint = bp;
4c3a88a2
FB
1472 return 0;
1473#else
a1d1bb31 1474 return -ENOSYS;
4c3a88a2
FB
1475#endif
1476}
1477
a1d1bb31
AL
1478/* Remove a specific breakpoint. */
1479int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1480{
7d03f82f 1481#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1482 CPUBreakpoint *bp;
1483
72cf2d4f 1484 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1485 if (bp->pc == pc && bp->flags == flags) {
1486 cpu_breakpoint_remove_by_ref(env, bp);
1487 return 0;
1488 }
7d03f82f 1489 }
a1d1bb31
AL
1490 return -ENOENT;
1491#else
1492 return -ENOSYS;
7d03f82f
EI
1493#endif
1494}
1495
a1d1bb31
AL
1496/* Remove a specific breakpoint by reference. */
1497void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1498{
1fddef4b 1499#if defined(TARGET_HAS_ICE)
72cf2d4f 1500 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1501
a1d1bb31
AL
1502 breakpoint_invalidate(env, breakpoint->pc);
1503
1504 qemu_free(breakpoint);
1505#endif
1506}
1507
1508/* Remove all matching breakpoints. */
1509void cpu_breakpoint_remove_all(CPUState *env, int mask)
1510{
1511#if defined(TARGET_HAS_ICE)
c0ce998e 1512 CPUBreakpoint *bp, *next;
a1d1bb31 1513
72cf2d4f 1514 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1515 if (bp->flags & mask)
1516 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1517 }
4c3a88a2
FB
1518#endif
1519}
1520
c33a346e
FB
1521/* enable or disable single step mode. EXCP_DEBUG is returned by the
1522 CPU loop after each instruction */
1523void cpu_single_step(CPUState *env, int enabled)
1524{
1fddef4b 1525#if defined(TARGET_HAS_ICE)
c33a346e
FB
1526 if (env->singlestep_enabled != enabled) {
1527 env->singlestep_enabled = enabled;
e22a25c9
AL
1528 if (kvm_enabled())
1529 kvm_update_guest_debug(env, 0);
1530 else {
ccbb4d44 1531 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1532 /* XXX: only flush what is necessary */
1533 tb_flush(env);
1534 }
c33a346e
FB
1535 }
1536#endif
1537}
1538
34865134
FB
1539/* enable or disable low levels log */
1540void cpu_set_log(int log_flags)
1541{
1542 loglevel = log_flags;
1543 if (loglevel && !logfile) {
11fcfab4 1544 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1545 if (!logfile) {
1546 perror(logfilename);
1547 _exit(1);
1548 }
9fa3e853
FB
1549#if !defined(CONFIG_SOFTMMU)
1550 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1551 {
b55266b5 1552 static char logfile_buf[4096];
9fa3e853
FB
1553 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1554 }
bf65f53f
FN
1555#elif !defined(_WIN32)
1556 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1557 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1558#endif
e735b91c
PB
1559 log_append = 1;
1560 }
1561 if (!loglevel && logfile) {
1562 fclose(logfile);
1563 logfile = NULL;
34865134
FB
1564 }
1565}
1566
1567void cpu_set_log_filename(const char *filename)
1568{
1569 logfilename = strdup(filename);
e735b91c
PB
1570 if (logfile) {
1571 fclose(logfile);
1572 logfile = NULL;
1573 }
1574 cpu_set_log(loglevel);
34865134 1575}
c33a346e 1576
3098dba0 1577static void cpu_unlink_tb(CPUState *env)
ea041c0e 1578{
3098dba0
AJ
1579 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1580 problem and hope the cpu will stop of its own accord. For userspace
1581 emulation this often isn't actually as bad as it sounds. Often
1582 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1583 TranslationBlock *tb;
c227f099 1584 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1585
cab1b4bd 1586 spin_lock(&interrupt_lock);
3098dba0
AJ
1587 tb = env->current_tb;
1588 /* if the cpu is currently executing code, we must unlink it and
1589 all the potentially executing TB */
f76cfe56 1590 if (tb) {
3098dba0
AJ
1591 env->current_tb = NULL;
1592 tb_reset_jump_recursive(tb);
be214e6c 1593 }
cab1b4bd 1594 spin_unlock(&interrupt_lock);
3098dba0
AJ
1595}
1596
1597/* mask must never be zero, except for A20 change call */
1598void cpu_interrupt(CPUState *env, int mask)
1599{
1600 int old_mask;
be214e6c 1601
2e70f6ef 1602 old_mask = env->interrupt_request;
68a79315 1603 env->interrupt_request |= mask;
3098dba0 1604
8edac960
AL
1605#ifndef CONFIG_USER_ONLY
1606 /*
1607 * If called from iothread context, wake the target cpu in
1608 * case its halted.
1609 */
1610 if (!qemu_cpu_self(env)) {
1611 qemu_cpu_kick(env);
1612 return;
1613 }
1614#endif
1615
2e70f6ef 1616 if (use_icount) {
266910c4 1617 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1618#ifndef CONFIG_USER_ONLY
2e70f6ef 1619 if (!can_do_io(env)
be214e6c 1620 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1621 cpu_abort(env, "Raised interrupt while not in I/O function");
1622 }
1623#endif
1624 } else {
3098dba0 1625 cpu_unlink_tb(env);
ea041c0e
FB
1626 }
1627}
1628
b54ad049
FB
1629void cpu_reset_interrupt(CPUState *env, int mask)
1630{
1631 env->interrupt_request &= ~mask;
1632}
1633
3098dba0
AJ
1634void cpu_exit(CPUState *env)
1635{
1636 env->exit_request = 1;
1637 cpu_unlink_tb(env);
1638}
1639
c7cd6a37 1640const CPULogItem cpu_log_items[] = {
5fafdf24 1641 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1642 "show generated host assembly code for each compiled TB" },
1643 { CPU_LOG_TB_IN_ASM, "in_asm",
1644 "show target assembly code for each compiled TB" },
5fafdf24 1645 { CPU_LOG_TB_OP, "op",
57fec1fe 1646 "show micro ops for each compiled TB" },
f193c797 1647 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1648 "show micro ops "
1649#ifdef TARGET_I386
1650 "before eflags optimization and "
f193c797 1651#endif
e01a1157 1652 "after liveness analysis" },
f193c797
FB
1653 { CPU_LOG_INT, "int",
1654 "show interrupts/exceptions in short format" },
1655 { CPU_LOG_EXEC, "exec",
1656 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1657 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1658 "show CPU state before block translation" },
f193c797
FB
1659#ifdef TARGET_I386
1660 { CPU_LOG_PCALL, "pcall",
1661 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1662 { CPU_LOG_RESET, "cpu_reset",
1663 "show CPU state before CPU resets" },
f193c797 1664#endif
8e3a9fd2 1665#ifdef DEBUG_IOPORT
fd872598
FB
1666 { CPU_LOG_IOPORT, "ioport",
1667 "show all i/o ports accesses" },
8e3a9fd2 1668#endif
f193c797
FB
1669 { 0, NULL, NULL },
1670};
1671
f6f3fbca
MT
1672#ifndef CONFIG_USER_ONLY
1673static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1674 = QLIST_HEAD_INITIALIZER(memory_client_list);
1675
1676static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1677 ram_addr_t size,
1678 ram_addr_t phys_offset)
1679{
1680 CPUPhysMemoryClient *client;
1681 QLIST_FOREACH(client, &memory_client_list, list) {
1682 client->set_memory(client, start_addr, size, phys_offset);
1683 }
1684}
1685
1686static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1687 target_phys_addr_t end)
1688{
1689 CPUPhysMemoryClient *client;
1690 QLIST_FOREACH(client, &memory_client_list, list) {
1691 int r = client->sync_dirty_bitmap(client, start, end);
1692 if (r < 0)
1693 return r;
1694 }
1695 return 0;
1696}
1697
1698static int cpu_notify_migration_log(int enable)
1699{
1700 CPUPhysMemoryClient *client;
1701 QLIST_FOREACH(client, &memory_client_list, list) {
1702 int r = client->migration_log(client, enable);
1703 if (r < 0)
1704 return r;
1705 }
1706 return 0;
1707}
1708
5cd2c5b6
RH
1709static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1710 int level, void **lp)
f6f3fbca 1711{
5cd2c5b6 1712 int i;
f6f3fbca 1713
5cd2c5b6
RH
1714 if (*lp == NULL) {
1715 return;
1716 }
1717 if (level == 0) {
1718 PhysPageDesc *pd = *lp;
1719 for (i = 0; i < L2_BITS; ++i) {
1720 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1721 client->set_memory(client, pd[i].region_offset,
1722 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1723 }
5cd2c5b6
RH
1724 }
1725 } else {
1726 void **pp = *lp;
1727 for (i = 0; i < L2_BITS; ++i) {
1728 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1729 }
1730 }
1731}
1732
1733static void phys_page_for_each(CPUPhysMemoryClient *client)
1734{
5cd2c5b6
RH
1735 int i;
1736 for (i = 0; i < P_L1_SIZE; ++i) {
1737 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1738 l1_phys_map + 1);
f6f3fbca 1739 }
f6f3fbca
MT
1740}
1741
1742void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1743{
1744 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1745 phys_page_for_each(client);
1746}
1747
1748void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1749{
1750 QLIST_REMOVE(client, list);
1751}
1752#endif
1753
f193c797
FB
1754static int cmp1(const char *s1, int n, const char *s2)
1755{
1756 if (strlen(s2) != n)
1757 return 0;
1758 return memcmp(s1, s2, n) == 0;
1759}
3b46e624 1760
f193c797
FB
1761/* takes a comma separated list of log masks. Return 0 if error. */
1762int cpu_str_to_log_mask(const char *str)
1763{
c7cd6a37 1764 const CPULogItem *item;
f193c797
FB
1765 int mask;
1766 const char *p, *p1;
1767
1768 p = str;
1769 mask = 0;
1770 for(;;) {
1771 p1 = strchr(p, ',');
1772 if (!p1)
1773 p1 = p + strlen(p);
8e3a9fd2
FB
1774 if(cmp1(p,p1-p,"all")) {
1775 for(item = cpu_log_items; item->mask != 0; item++) {
1776 mask |= item->mask;
1777 }
1778 } else {
f193c797
FB
1779 for(item = cpu_log_items; item->mask != 0; item++) {
1780 if (cmp1(p, p1 - p, item->name))
1781 goto found;
1782 }
1783 return 0;
8e3a9fd2 1784 }
f193c797
FB
1785 found:
1786 mask |= item->mask;
1787 if (*p1 != ',')
1788 break;
1789 p = p1 + 1;
1790 }
1791 return mask;
1792}
ea041c0e 1793
7501267e
FB
1794void cpu_abort(CPUState *env, const char *fmt, ...)
1795{
1796 va_list ap;
493ae1f0 1797 va_list ap2;
7501267e
FB
1798
1799 va_start(ap, fmt);
493ae1f0 1800 va_copy(ap2, ap);
7501267e
FB
1801 fprintf(stderr, "qemu: fatal: ");
1802 vfprintf(stderr, fmt, ap);
1803 fprintf(stderr, "\n");
1804#ifdef TARGET_I386
7fe48483
FB
1805 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1806#else
1807 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1808#endif
93fcfe39
AL
1809 if (qemu_log_enabled()) {
1810 qemu_log("qemu: fatal: ");
1811 qemu_log_vprintf(fmt, ap2);
1812 qemu_log("\n");
f9373291 1813#ifdef TARGET_I386
93fcfe39 1814 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1815#else
93fcfe39 1816 log_cpu_state(env, 0);
f9373291 1817#endif
31b1a7b4 1818 qemu_log_flush();
93fcfe39 1819 qemu_log_close();
924edcae 1820 }
493ae1f0 1821 va_end(ap2);
f9373291 1822 va_end(ap);
fd052bf6
RV
1823#if defined(CONFIG_USER_ONLY)
1824 {
1825 struct sigaction act;
1826 sigfillset(&act.sa_mask);
1827 act.sa_handler = SIG_DFL;
1828 sigaction(SIGABRT, &act, NULL);
1829 }
1830#endif
7501267e
FB
1831 abort();
1832}
1833
c5be9f08
TS
1834CPUState *cpu_copy(CPUState *env)
1835{
01ba9816 1836 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1837 CPUState *next_cpu = new_env->next_cpu;
1838 int cpu_index = new_env->cpu_index;
5a38f081
AL
1839#if defined(TARGET_HAS_ICE)
1840 CPUBreakpoint *bp;
1841 CPUWatchpoint *wp;
1842#endif
1843
c5be9f08 1844 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1845
1846 /* Preserve chaining and index. */
c5be9f08
TS
1847 new_env->next_cpu = next_cpu;
1848 new_env->cpu_index = cpu_index;
5a38f081
AL
1849
1850 /* Clone all break/watchpoints.
1851 Note: Once we support ptrace with hw-debug register access, make sure
1852 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1853 QTAILQ_INIT(&env->breakpoints);
1854 QTAILQ_INIT(&env->watchpoints);
5a38f081 1855#if defined(TARGET_HAS_ICE)
72cf2d4f 1856 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1857 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1858 }
72cf2d4f 1859 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1860 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1861 wp->flags, NULL);
1862 }
1863#endif
1864
c5be9f08
TS
1865 return new_env;
1866}
1867
0124311e
FB
1868#if !defined(CONFIG_USER_ONLY)
1869
5c751e99
EI
1870static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1871{
1872 unsigned int i;
1873
1874 /* Discard jump cache entries for any tb which might potentially
1875 overlap the flushed page. */
1876 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1877 memset (&env->tb_jmp_cache[i], 0,
1878 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1879
1880 i = tb_jmp_cache_hash_page(addr);
1881 memset (&env->tb_jmp_cache[i], 0,
1882 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1883}
1884
08738984
IK
1885static CPUTLBEntry s_cputlb_empty_entry = {
1886 .addr_read = -1,
1887 .addr_write = -1,
1888 .addr_code = -1,
1889 .addend = -1,
1890};
1891
ee8b7021
FB
1892/* NOTE: if flush_global is true, also flush global entries (not
1893 implemented yet) */
1894void tlb_flush(CPUState *env, int flush_global)
33417e70 1895{
33417e70 1896 int i;
0124311e 1897
9fa3e853
FB
1898#if defined(DEBUG_TLB)
1899 printf("tlb_flush:\n");
1900#endif
0124311e
FB
1901 /* must reset current TB so that interrupts cannot modify the
1902 links while we are modifying them */
1903 env->current_tb = NULL;
1904
33417e70 1905 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1906 int mmu_idx;
1907 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1908 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1909 }
33417e70 1910 }
9fa3e853 1911
8a40a180 1912 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1913
e3db7226 1914 tlb_flush_count++;
33417e70
FB
1915}
1916
274da6b2 1917static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1918{
5fafdf24 1919 if (addr == (tlb_entry->addr_read &
84b7b8e7 1920 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1921 addr == (tlb_entry->addr_write &
84b7b8e7 1922 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1923 addr == (tlb_entry->addr_code &
84b7b8e7 1924 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1925 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1926 }
61382a50
FB
1927}
1928
2e12669a 1929void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1930{
8a40a180 1931 int i;
cfde4bd9 1932 int mmu_idx;
0124311e 1933
9fa3e853 1934#if defined(DEBUG_TLB)
108c49b8 1935 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1936#endif
0124311e
FB
1937 /* must reset current TB so that interrupts cannot modify the
1938 links while we are modifying them */
1939 env->current_tb = NULL;
61382a50
FB
1940
1941 addr &= TARGET_PAGE_MASK;
1942 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1943 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1944 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1945
5c751e99 1946 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1947}
1948
9fa3e853
FB
1949/* update the TLBs so that writes to code in the virtual page 'addr'
1950 can be detected */
c227f099 1951static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1952{
5fafdf24 1953 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1954 ram_addr + TARGET_PAGE_SIZE,
1955 CODE_DIRTY_FLAG);
9fa3e853
FB
1956}
1957
9fa3e853 1958/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1959 tested for self modifying code */
c227f099 1960static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1961 target_ulong vaddr)
9fa3e853 1962{
3a7d929e 1963 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1964}
1965
5fafdf24 1966static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1967 unsigned long start, unsigned long length)
1968{
1969 unsigned long addr;
84b7b8e7
FB
1970 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1971 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1972 if ((addr - start) < length) {
0f459d16 1973 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1974 }
1975 }
1976}
1977
5579c7f3 1978/* Note: start and end must be within the same ram block. */
c227f099 1979void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1980 int dirty_flags)
1ccde1cb
FB
1981{
1982 CPUState *env;
4f2ac237 1983 unsigned long length, start1;
0a962c02
FB
1984 int i, mask, len;
1985 uint8_t *p;
1ccde1cb
FB
1986
1987 start &= TARGET_PAGE_MASK;
1988 end = TARGET_PAGE_ALIGN(end);
1989
1990 length = end - start;
1991 if (length == 0)
1992 return;
0a962c02 1993 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1994 mask = ~dirty_flags;
1995 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1996 for(i = 0; i < len; i++)
1997 p[i] &= mask;
1998
1ccde1cb
FB
1999 /* we modify the TLB cache so that the dirty bit will be set again
2000 when accessing the range */
5579c7f3
PB
2001 start1 = (unsigned long)qemu_get_ram_ptr(start);
2002 /* Chek that we don't span multiple blocks - this breaks the
2003 address comparisons below. */
2004 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2005 != (end - 1) - start) {
2006 abort();
2007 }
2008
6a00d601 2009 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2010 int mmu_idx;
2011 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2012 for(i = 0; i < CPU_TLB_SIZE; i++)
2013 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2014 start1, length);
2015 }
6a00d601 2016 }
1ccde1cb
FB
2017}
2018
74576198
AL
2019int cpu_physical_memory_set_dirty_tracking(int enable)
2020{
f6f3fbca 2021 int ret = 0;
74576198 2022 in_migration = enable;
f6f3fbca
MT
2023 ret = cpu_notify_migration_log(!!enable);
2024 return ret;
74576198
AL
2025}
2026
2027int cpu_physical_memory_get_dirty_tracking(void)
2028{
2029 return in_migration;
2030}
2031
c227f099
AL
2032int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2033 target_phys_addr_t end_addr)
2bec46dc 2034{
7b8f3b78 2035 int ret;
151f7749 2036
f6f3fbca 2037 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2038 return ret;
2bec46dc
AL
2039}
2040
3a7d929e
FB
2041static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2042{
c227f099 2043 ram_addr_t ram_addr;
5579c7f3 2044 void *p;
3a7d929e 2045
84b7b8e7 2046 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2047 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2048 + tlb_entry->addend);
2049 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2050 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2051 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2052 }
2053 }
2054}
2055
2056/* update the TLB according to the current state of the dirty bits */
2057void cpu_tlb_update_dirty(CPUState *env)
2058{
2059 int i;
cfde4bd9
IY
2060 int mmu_idx;
2061 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2062 for(i = 0; i < CPU_TLB_SIZE; i++)
2063 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2064 }
3a7d929e
FB
2065}
2066
0f459d16 2067static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2068{
0f459d16
PB
2069 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2070 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2071}
2072
0f459d16
PB
2073/* update the TLB corresponding to virtual page vaddr
2074 so that it is no longer dirty */
2075static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2076{
1ccde1cb 2077 int i;
cfde4bd9 2078 int mmu_idx;
1ccde1cb 2079
0f459d16 2080 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2081 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2082 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2083 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2084}
2085
59817ccb
FB
2086/* add a new TLB entry. At most one entry for a given virtual address
2087 is permitted. Return 0 if OK or 2 if the page could not be mapped
2088 (can only happen in non SOFTMMU mode for I/O pages or pages
2089 conflicting with the host address space). */
5fafdf24 2090int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2091 target_phys_addr_t paddr, int prot,
6ebbf390 2092 int mmu_idx, int is_softmmu)
9fa3e853 2093{
92e873b9 2094 PhysPageDesc *p;
4f2ac237 2095 unsigned long pd;
9fa3e853 2096 unsigned int index;
4f2ac237 2097 target_ulong address;
0f459d16 2098 target_ulong code_address;
c227f099 2099 target_phys_addr_t addend;
9fa3e853 2100 int ret;
84b7b8e7 2101 CPUTLBEntry *te;
a1d1bb31 2102 CPUWatchpoint *wp;
c227f099 2103 target_phys_addr_t iotlb;
9fa3e853 2104
92e873b9 2105 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2106 if (!p) {
2107 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2108 } else {
2109 pd = p->phys_offset;
9fa3e853
FB
2110 }
2111#if defined(DEBUG_TLB)
6ebbf390
JM
2112 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2113 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2114#endif
2115
2116 ret = 0;
0f459d16
PB
2117 address = vaddr;
2118 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2119 /* IO memory case (romd handled later) */
2120 address |= TLB_MMIO;
2121 }
5579c7f3 2122 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2123 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2124 /* Normal RAM. */
2125 iotlb = pd & TARGET_PAGE_MASK;
2126 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2127 iotlb |= IO_MEM_NOTDIRTY;
2128 else
2129 iotlb |= IO_MEM_ROM;
2130 } else {
ccbb4d44 2131 /* IO handlers are currently passed a physical address.
0f459d16
PB
2132 It would be nice to pass an offset from the base address
2133 of that region. This would avoid having to special case RAM,
2134 and avoid full address decoding in every device.
2135 We can't use the high bits of pd for this because
2136 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2137 iotlb = (pd & ~TARGET_PAGE_MASK);
2138 if (p) {
8da3ff18
PB
2139 iotlb += p->region_offset;
2140 } else {
2141 iotlb += paddr;
2142 }
0f459d16
PB
2143 }
2144
2145 code_address = address;
2146 /* Make accesses to pages with watchpoints go via the
2147 watchpoint trap routines. */
72cf2d4f 2148 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2149 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2150 iotlb = io_mem_watch + paddr;
2151 /* TODO: The memory case can be optimized by not trapping
2152 reads of pages with a write breakpoint. */
2153 address |= TLB_MMIO;
6658ffb8 2154 }
0f459d16 2155 }
d79acba4 2156
0f459d16
PB
2157 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2158 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2159 te = &env->tlb_table[mmu_idx][index];
2160 te->addend = addend - vaddr;
2161 if (prot & PAGE_READ) {
2162 te->addr_read = address;
2163 } else {
2164 te->addr_read = -1;
2165 }
5c751e99 2166
0f459d16
PB
2167 if (prot & PAGE_EXEC) {
2168 te->addr_code = code_address;
2169 } else {
2170 te->addr_code = -1;
2171 }
2172 if (prot & PAGE_WRITE) {
2173 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2174 (pd & IO_MEM_ROMD)) {
2175 /* Write access calls the I/O callback. */
2176 te->addr_write = address | TLB_MMIO;
2177 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2178 !cpu_physical_memory_is_dirty(pd)) {
2179 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2180 } else {
0f459d16 2181 te->addr_write = address;
9fa3e853 2182 }
0f459d16
PB
2183 } else {
2184 te->addr_write = -1;
9fa3e853 2185 }
9fa3e853
FB
2186 return ret;
2187}
2188
0124311e
FB
2189#else
2190
ee8b7021 2191void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2192{
2193}
2194
2e12669a 2195void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2196{
2197}
2198
edf8e2af
MW
2199/*
2200 * Walks guest process memory "regions" one by one
2201 * and calls callback function 'fn' for each region.
2202 */
5cd2c5b6
RH
2203
2204struct walk_memory_regions_data
2205{
2206 walk_memory_regions_fn fn;
2207 void *priv;
2208 unsigned long start;
2209 int prot;
2210};
2211
2212static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2213 unsigned long end, int new_prot)
2214{
2215 if (data->start != -1ul) {
2216 int rc = data->fn(data->priv, data->start, end, data->prot);
2217 if (rc != 0) {
2218 return rc;
2219 }
2220 }
2221
2222 data->start = (new_prot ? end : -1ul);
2223 data->prot = new_prot;
2224
2225 return 0;
2226}
2227
2228static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2229 unsigned long base, int level, void **lp)
2230{
2231 unsigned long pa;
2232 int i, rc;
2233
2234 if (*lp == NULL) {
2235 return walk_memory_regions_end(data, base, 0);
2236 }
2237
2238 if (level == 0) {
2239 PageDesc *pd = *lp;
2240 for (i = 0; i < L2_BITS; ++i) {
2241 int prot = pd[i].flags;
2242
2243 pa = base | (i << TARGET_PAGE_BITS);
2244 if (prot != data->prot) {
2245 rc = walk_memory_regions_end(data, pa, prot);
2246 if (rc != 0) {
2247 return rc;
9fa3e853 2248 }
9fa3e853 2249 }
5cd2c5b6
RH
2250 }
2251 } else {
2252 void **pp = *lp;
2253 for (i = 0; i < L2_BITS; ++i) {
2254 pa = base | (i << (TARGET_PAGE_BITS + L2_BITS * level));
2255 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2256 if (rc != 0) {
2257 return rc;
2258 }
2259 }
2260 }
2261
2262 return 0;
2263}
2264
2265int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2266{
2267 struct walk_memory_regions_data data;
2268 unsigned long i;
2269
2270 data.fn = fn;
2271 data.priv = priv;
2272 data.start = -1ul;
2273 data.prot = 0;
2274
2275 for (i = 0; i < V_L1_SIZE; i++) {
2276 int rc = walk_memory_regions_1(&data, i << V_L1_SHIFT,
2277 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2278 if (rc != 0) {
2279 return rc;
9fa3e853 2280 }
33417e70 2281 }
5cd2c5b6
RH
2282
2283 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2284}
2285
2286static int dump_region(void *priv, unsigned long start,
2287 unsigned long end, unsigned long prot)
2288{
2289 FILE *f = (FILE *)priv;
2290
2291 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2292 start, end, end - start,
2293 ((prot & PAGE_READ) ? 'r' : '-'),
2294 ((prot & PAGE_WRITE) ? 'w' : '-'),
2295 ((prot & PAGE_EXEC) ? 'x' : '-'));
2296
2297 return (0);
2298}
2299
2300/* dump memory mappings */
2301void page_dump(FILE *f)
2302{
2303 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2304 "start", "end", "size", "prot");
2305 walk_memory_regions(f, dump_region);
33417e70
FB
2306}
2307
53a5960a 2308int page_get_flags(target_ulong address)
33417e70 2309{
9fa3e853
FB
2310 PageDesc *p;
2311
2312 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2313 if (!p)
9fa3e853
FB
2314 return 0;
2315 return p->flags;
2316}
2317
2318/* modify the flags of a page and invalidate the code if
ccbb4d44 2319 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2320 depending on PAGE_WRITE */
53a5960a 2321void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2322{
2323 PageDesc *p;
53a5960a 2324 target_ulong addr;
9fa3e853 2325
c8a706fe 2326 /* mmap_lock should already be held. */
9fa3e853
FB
2327 start = start & TARGET_PAGE_MASK;
2328 end = TARGET_PAGE_ALIGN(end);
2329 if (flags & PAGE_WRITE)
2330 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2331 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2332 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2333 /* We may be called for host regions that are outside guest
2334 address space. */
2335 if (!p)
2336 return;
9fa3e853
FB
2337 /* if the write protection is set, then we invalidate the code
2338 inside */
5fafdf24 2339 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2340 (flags & PAGE_WRITE) &&
2341 p->first_tb) {
d720b93d 2342 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2343 }
2344 p->flags = flags;
2345 }
33417e70
FB
2346}
2347
3d97b40b
TS
2348int page_check_range(target_ulong start, target_ulong len, int flags)
2349{
2350 PageDesc *p;
2351 target_ulong end;
2352 target_ulong addr;
2353
55f280c9
AZ
2354 if (start + len < start)
2355 /* we've wrapped around */
2356 return -1;
2357
3d97b40b
TS
2358 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2359 start = start & TARGET_PAGE_MASK;
2360
3d97b40b
TS
2361 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2362 p = page_find(addr >> TARGET_PAGE_BITS);
2363 if( !p )
2364 return -1;
2365 if( !(p->flags & PAGE_VALID) )
2366 return -1;
2367
dae3270c 2368 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2369 return -1;
dae3270c
FB
2370 if (flags & PAGE_WRITE) {
2371 if (!(p->flags & PAGE_WRITE_ORG))
2372 return -1;
2373 /* unprotect the page if it was put read-only because it
2374 contains translated code */
2375 if (!(p->flags & PAGE_WRITE)) {
2376 if (!page_unprotect(addr, 0, NULL))
2377 return -1;
2378 }
2379 return 0;
2380 }
3d97b40b
TS
2381 }
2382 return 0;
2383}
2384
9fa3e853 2385/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2386 page. Return TRUE if the fault was successfully handled. */
53a5960a 2387int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2388{
2389 unsigned int page_index, prot, pindex;
2390 PageDesc *p, *p1;
53a5960a 2391 target_ulong host_start, host_end, addr;
9fa3e853 2392
c8a706fe
PB
2393 /* Technically this isn't safe inside a signal handler. However we
2394 know this only ever happens in a synchronous SEGV handler, so in
2395 practice it seems to be ok. */
2396 mmap_lock();
2397
83fb7adf 2398 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2399 page_index = host_start >> TARGET_PAGE_BITS;
2400 p1 = page_find(page_index);
c8a706fe
PB
2401 if (!p1) {
2402 mmap_unlock();
9fa3e853 2403 return 0;
c8a706fe 2404 }
83fb7adf 2405 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2406 p = p1;
2407 prot = 0;
2408 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2409 prot |= p->flags;
2410 p++;
2411 }
2412 /* if the page was really writable, then we change its
2413 protection back to writable */
2414 if (prot & PAGE_WRITE_ORG) {
2415 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2416 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2417 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2418 (prot & PAGE_BITS) | PAGE_WRITE);
2419 p1[pindex].flags |= PAGE_WRITE;
2420 /* and since the content will be modified, we must invalidate
2421 the corresponding translated code. */
d720b93d 2422 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2423#ifdef DEBUG_TB_CHECK
2424 tb_invalidate_check(address);
2425#endif
c8a706fe 2426 mmap_unlock();
9fa3e853
FB
2427 return 1;
2428 }
2429 }
c8a706fe 2430 mmap_unlock();
9fa3e853
FB
2431 return 0;
2432}
2433
6a00d601
FB
2434static inline void tlb_set_dirty(CPUState *env,
2435 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2436{
2437}
9fa3e853
FB
2438#endif /* defined(CONFIG_USER_ONLY) */
2439
e2eef170 2440#if !defined(CONFIG_USER_ONLY)
8da3ff18 2441
c04b2b78
PB
2442#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2443typedef struct subpage_t {
2444 target_phys_addr_t base;
2445 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2446 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2447 void *opaque[TARGET_PAGE_SIZE][2][4];
2448 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2449} subpage_t;
2450
c227f099
AL
2451static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2452 ram_addr_t memory, ram_addr_t region_offset);
2453static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2454 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2455#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2456 need_subpage) \
2457 do { \
2458 if (addr > start_addr) \
2459 start_addr2 = 0; \
2460 else { \
2461 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2462 if (start_addr2 > 0) \
2463 need_subpage = 1; \
2464 } \
2465 \
49e9fba2 2466 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2467 end_addr2 = TARGET_PAGE_SIZE - 1; \
2468 else { \
2469 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2470 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2471 need_subpage = 1; \
2472 } \
2473 } while (0)
2474
8f2498f9
MT
2475/* register physical memory.
2476 For RAM, 'size' must be a multiple of the target page size.
2477 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2478 io memory page. The address used when calling the IO function is
2479 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2480 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2481 before calculating this offset. This should not be a problem unless
2482 the low bits of start_addr and region_offset differ. */
c227f099
AL
2483void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2484 ram_addr_t size,
2485 ram_addr_t phys_offset,
2486 ram_addr_t region_offset)
33417e70 2487{
c227f099 2488 target_phys_addr_t addr, end_addr;
92e873b9 2489 PhysPageDesc *p;
9d42037b 2490 CPUState *env;
c227f099 2491 ram_addr_t orig_size = size;
db7b5426 2492 void *subpage;
33417e70 2493
f6f3fbca
MT
2494 cpu_notify_set_memory(start_addr, size, phys_offset);
2495
67c4d23c
PB
2496 if (phys_offset == IO_MEM_UNASSIGNED) {
2497 region_offset = start_addr;
2498 }
8da3ff18 2499 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2500 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2501 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2502 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2503 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2504 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2505 ram_addr_t orig_memory = p->phys_offset;
2506 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2507 int need_subpage = 0;
2508
2509 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2510 need_subpage);
4254fab8 2511 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2512 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2513 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2514 &p->phys_offset, orig_memory,
2515 p->region_offset);
db7b5426
BS
2516 } else {
2517 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2518 >> IO_MEM_SHIFT];
2519 }
8da3ff18
PB
2520 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2521 region_offset);
2522 p->region_offset = 0;
db7b5426
BS
2523 } else {
2524 p->phys_offset = phys_offset;
2525 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2526 (phys_offset & IO_MEM_ROMD))
2527 phys_offset += TARGET_PAGE_SIZE;
2528 }
2529 } else {
2530 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2531 p->phys_offset = phys_offset;
8da3ff18 2532 p->region_offset = region_offset;
db7b5426 2533 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2534 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2535 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2536 } else {
c227f099 2537 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2538 int need_subpage = 0;
2539
2540 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2541 end_addr2, need_subpage);
2542
4254fab8 2543 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2544 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2545 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2546 addr & TARGET_PAGE_MASK);
db7b5426 2547 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2548 phys_offset, region_offset);
2549 p->region_offset = 0;
db7b5426
BS
2550 }
2551 }
2552 }
8da3ff18 2553 region_offset += TARGET_PAGE_SIZE;
33417e70 2554 }
3b46e624 2555
9d42037b
FB
2556 /* since each CPU stores ram addresses in its TLB cache, we must
2557 reset the modified entries */
2558 /* XXX: slow ! */
2559 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2560 tlb_flush(env, 1);
2561 }
33417e70
FB
2562}
2563
ba863458 2564/* XXX: temporary until new memory mapping API */
c227f099 2565ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2566{
2567 PhysPageDesc *p;
2568
2569 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2570 if (!p)
2571 return IO_MEM_UNASSIGNED;
2572 return p->phys_offset;
2573}
2574
c227f099 2575void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2576{
2577 if (kvm_enabled())
2578 kvm_coalesce_mmio_region(addr, size);
2579}
2580
c227f099 2581void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2582{
2583 if (kvm_enabled())
2584 kvm_uncoalesce_mmio_region(addr, size);
2585}
2586
62a2744c
SY
2587void qemu_flush_coalesced_mmio_buffer(void)
2588{
2589 if (kvm_enabled())
2590 kvm_flush_coalesced_mmio_buffer();
2591}
2592
c902760f
MT
2593#if defined(__linux__) && !defined(TARGET_S390X)
2594
2595#include <sys/vfs.h>
2596
2597#define HUGETLBFS_MAGIC 0x958458f6
2598
2599static long gethugepagesize(const char *path)
2600{
2601 struct statfs fs;
2602 int ret;
2603
2604 do {
2605 ret = statfs(path, &fs);
2606 } while (ret != 0 && errno == EINTR);
2607
2608 if (ret != 0) {
2609 perror("statfs");
2610 return 0;
2611 }
2612
2613 if (fs.f_type != HUGETLBFS_MAGIC)
2614 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2615
2616 return fs.f_bsize;
2617}
2618
2619static void *file_ram_alloc(ram_addr_t memory, const char *path)
2620{
2621 char *filename;
2622 void *area;
2623 int fd;
2624#ifdef MAP_POPULATE
2625 int flags;
2626#endif
2627 unsigned long hpagesize;
2628
2629 hpagesize = gethugepagesize(path);
2630 if (!hpagesize) {
2631 return NULL;
2632 }
2633
2634 if (memory < hpagesize) {
2635 return NULL;
2636 }
2637
2638 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2639 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2640 return NULL;
2641 }
2642
2643 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2644 return NULL;
2645 }
2646
2647 fd = mkstemp(filename);
2648 if (fd < 0) {
2649 perror("mkstemp");
2650 free(filename);
2651 return NULL;
2652 }
2653 unlink(filename);
2654 free(filename);
2655
2656 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2657
2658 /*
2659 * ftruncate is not supported by hugetlbfs in older
2660 * hosts, so don't bother bailing out on errors.
2661 * If anything goes wrong with it under other filesystems,
2662 * mmap will fail.
2663 */
2664 if (ftruncate(fd, memory))
2665 perror("ftruncate");
2666
2667#ifdef MAP_POPULATE
2668 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2669 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2670 * to sidestep this quirk.
2671 */
2672 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2673 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2674#else
2675 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2676#endif
2677 if (area == MAP_FAILED) {
2678 perror("file_ram_alloc: can't mmap RAM pages");
2679 close(fd);
2680 return (NULL);
2681 }
2682 return area;
2683}
2684#endif
2685
c227f099 2686ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2687{
2688 RAMBlock *new_block;
2689
94a6b54f
PB
2690 size = TARGET_PAGE_ALIGN(size);
2691 new_block = qemu_malloc(sizeof(*new_block));
2692
c902760f
MT
2693 if (mem_path) {
2694#if defined (__linux__) && !defined(TARGET_S390X)
2695 new_block->host = file_ram_alloc(size, mem_path);
2696 if (!new_block->host)
2697 exit(1);
2698#else
2699 fprintf(stderr, "-mem-path option unsupported\n");
2700 exit(1);
2701#endif
2702 } else {
6b02494d 2703#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2704 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2705 new_block->host = mmap((void*)0x1000000, size,
2706 PROT_EXEC|PROT_READ|PROT_WRITE,
2707 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2708#else
c902760f 2709 new_block->host = qemu_vmalloc(size);
6b02494d 2710#endif
ccb167e9 2711#ifdef MADV_MERGEABLE
c902760f 2712 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2713#endif
c902760f 2714 }
94a6b54f
PB
2715 new_block->offset = last_ram_offset;
2716 new_block->length = size;
2717
2718 new_block->next = ram_blocks;
2719 ram_blocks = new_block;
2720
2721 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2722 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2723 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2724 0xff, size >> TARGET_PAGE_BITS);
2725
2726 last_ram_offset += size;
2727
6f0437e8
JK
2728 if (kvm_enabled())
2729 kvm_setup_guest_memory(new_block->host, size);
2730
94a6b54f
PB
2731 return new_block->offset;
2732}
e9a1ab19 2733
c227f099 2734void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2735{
94a6b54f 2736 /* TODO: implement this. */
e9a1ab19
FB
2737}
2738
dc828ca1 2739/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2740 With the exception of the softmmu code in this file, this should
2741 only be used for local memory (e.g. video ram) that the device owns,
2742 and knows it isn't going to access beyond the end of the block.
2743
2744 It should not be used for general purpose DMA.
2745 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2746 */
c227f099 2747void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2748{
94a6b54f
PB
2749 RAMBlock *prev;
2750 RAMBlock **prevp;
2751 RAMBlock *block;
2752
94a6b54f
PB
2753 prev = NULL;
2754 prevp = &ram_blocks;
2755 block = ram_blocks;
2756 while (block && (block->offset > addr
2757 || block->offset + block->length <= addr)) {
2758 if (prev)
2759 prevp = &prev->next;
2760 prev = block;
2761 block = block->next;
2762 }
2763 if (!block) {
2764 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2765 abort();
2766 }
2767 /* Move this entry to to start of the list. */
2768 if (prev) {
2769 prev->next = block->next;
2770 block->next = *prevp;
2771 *prevp = block;
2772 }
2773 return block->host + (addr - block->offset);
dc828ca1
PB
2774}
2775
5579c7f3
PB
2776/* Some of the softmmu routines need to translate from a host pointer
2777 (typically a TLB entry) back to a ram offset. */
c227f099 2778ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2779{
94a6b54f 2780 RAMBlock *prev;
94a6b54f
PB
2781 RAMBlock *block;
2782 uint8_t *host = ptr;
2783
94a6b54f 2784 prev = NULL;
94a6b54f
PB
2785 block = ram_blocks;
2786 while (block && (block->host > host
2787 || block->host + block->length <= host)) {
94a6b54f
PB
2788 prev = block;
2789 block = block->next;
2790 }
2791 if (!block) {
2792 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2793 abort();
2794 }
2795 return block->offset + (host - block->host);
5579c7f3
PB
2796}
2797
c227f099 2798static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2799{
67d3b957 2800#ifdef DEBUG_UNASSIGNED
ab3d1727 2801 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2802#endif
faed1c2a 2803#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2804 do_unassigned_access(addr, 0, 0, 0, 1);
2805#endif
2806 return 0;
2807}
2808
c227f099 2809static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2810{
2811#ifdef DEBUG_UNASSIGNED
2812 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2813#endif
faed1c2a 2814#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2815 do_unassigned_access(addr, 0, 0, 0, 2);
2816#endif
2817 return 0;
2818}
2819
c227f099 2820static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2821{
2822#ifdef DEBUG_UNASSIGNED
2823 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2824#endif
faed1c2a 2825#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2826 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2827#endif
33417e70
FB
2828 return 0;
2829}
2830
c227f099 2831static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2832{
67d3b957 2833#ifdef DEBUG_UNASSIGNED
ab3d1727 2834 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2835#endif
faed1c2a 2836#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2837 do_unassigned_access(addr, 1, 0, 0, 1);
2838#endif
2839}
2840
c227f099 2841static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2842{
2843#ifdef DEBUG_UNASSIGNED
2844 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2845#endif
faed1c2a 2846#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2847 do_unassigned_access(addr, 1, 0, 0, 2);
2848#endif
2849}
2850
c227f099 2851static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2852{
2853#ifdef DEBUG_UNASSIGNED
2854 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2855#endif
faed1c2a 2856#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2857 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2858#endif
33417e70
FB
2859}
2860
d60efc6b 2861static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2862 unassigned_mem_readb,
e18231a3
BS
2863 unassigned_mem_readw,
2864 unassigned_mem_readl,
33417e70
FB
2865};
2866
d60efc6b 2867static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2868 unassigned_mem_writeb,
e18231a3
BS
2869 unassigned_mem_writew,
2870 unassigned_mem_writel,
33417e70
FB
2871};
2872
c227f099 2873static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2874 uint32_t val)
9fa3e853 2875{
3a7d929e 2876 int dirty_flags;
3a7d929e
FB
2877 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2878 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2879#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2880 tb_invalidate_phys_page_fast(ram_addr, 1);
2881 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2882#endif
3a7d929e 2883 }
5579c7f3 2884 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2885 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2886 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2887 /* we remove the notdirty callback only if the code has been
2888 flushed */
2889 if (dirty_flags == 0xff)
2e70f6ef 2890 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2891}
2892
c227f099 2893static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2894 uint32_t val)
9fa3e853 2895{
3a7d929e 2896 int dirty_flags;
3a7d929e
FB
2897 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2898 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2899#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2900 tb_invalidate_phys_page_fast(ram_addr, 2);
2901 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2902#endif
3a7d929e 2903 }
5579c7f3 2904 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2905 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2906 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2907 /* we remove the notdirty callback only if the code has been
2908 flushed */
2909 if (dirty_flags == 0xff)
2e70f6ef 2910 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2911}
2912
c227f099 2913static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2914 uint32_t val)
9fa3e853 2915{
3a7d929e 2916 int dirty_flags;
3a7d929e
FB
2917 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2918 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2919#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2920 tb_invalidate_phys_page_fast(ram_addr, 4);
2921 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2922#endif
3a7d929e 2923 }
5579c7f3 2924 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2925 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2926 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2927 /* we remove the notdirty callback only if the code has been
2928 flushed */
2929 if (dirty_flags == 0xff)
2e70f6ef 2930 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2931}
2932
d60efc6b 2933static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2934 NULL, /* never used */
2935 NULL, /* never used */
2936 NULL, /* never used */
2937};
2938
d60efc6b 2939static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2940 notdirty_mem_writeb,
2941 notdirty_mem_writew,
2942 notdirty_mem_writel,
2943};
2944
0f459d16 2945/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2946static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2947{
2948 CPUState *env = cpu_single_env;
06d55cc1
AL
2949 target_ulong pc, cs_base;
2950 TranslationBlock *tb;
0f459d16 2951 target_ulong vaddr;
a1d1bb31 2952 CPUWatchpoint *wp;
06d55cc1 2953 int cpu_flags;
0f459d16 2954
06d55cc1
AL
2955 if (env->watchpoint_hit) {
2956 /* We re-entered the check after replacing the TB. Now raise
2957 * the debug interrupt so that is will trigger after the
2958 * current instruction. */
2959 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2960 return;
2961 }
2e70f6ef 2962 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2963 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2964 if ((vaddr == (wp->vaddr & len_mask) ||
2965 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2966 wp->flags |= BP_WATCHPOINT_HIT;
2967 if (!env->watchpoint_hit) {
2968 env->watchpoint_hit = wp;
2969 tb = tb_find_pc(env->mem_io_pc);
2970 if (!tb) {
2971 cpu_abort(env, "check_watchpoint: could not find TB for "
2972 "pc=%p", (void *)env->mem_io_pc);
2973 }
2974 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2975 tb_phys_invalidate(tb, -1);
2976 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2977 env->exception_index = EXCP_DEBUG;
2978 } else {
2979 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2980 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2981 }
2982 cpu_resume_from_signal(env, NULL);
06d55cc1 2983 }
6e140f28
AL
2984 } else {
2985 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2986 }
2987 }
2988}
2989
6658ffb8
PB
2990/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2991 so these check for a hit then pass through to the normal out-of-line
2992 phys routines. */
c227f099 2993static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 2994{
b4051334 2995 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2996 return ldub_phys(addr);
2997}
2998
c227f099 2999static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3000{
b4051334 3001 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3002 return lduw_phys(addr);
3003}
3004
c227f099 3005static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3006{
b4051334 3007 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3008 return ldl_phys(addr);
3009}
3010
c227f099 3011static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3012 uint32_t val)
3013{
b4051334 3014 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3015 stb_phys(addr, val);
3016}
3017
c227f099 3018static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3019 uint32_t val)
3020{
b4051334 3021 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3022 stw_phys(addr, val);
3023}
3024
c227f099 3025static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3026 uint32_t val)
3027{
b4051334 3028 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3029 stl_phys(addr, val);
3030}
3031
d60efc6b 3032static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3033 watch_mem_readb,
3034 watch_mem_readw,
3035 watch_mem_readl,
3036};
3037
d60efc6b 3038static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3039 watch_mem_writeb,
3040 watch_mem_writew,
3041 watch_mem_writel,
3042};
6658ffb8 3043
c227f099 3044static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3045 unsigned int len)
3046{
db7b5426
BS
3047 uint32_t ret;
3048 unsigned int idx;
3049
8da3ff18 3050 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3051#if defined(DEBUG_SUBPAGE)
3052 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3053 mmio, len, addr, idx);
3054#endif
8da3ff18
PB
3055 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3056 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
3057
3058 return ret;
3059}
3060
c227f099 3061static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3062 uint32_t value, unsigned int len)
3063{
db7b5426
BS
3064 unsigned int idx;
3065
8da3ff18 3066 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3067#if defined(DEBUG_SUBPAGE)
3068 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3069 mmio, len, addr, idx, value);
3070#endif
8da3ff18
PB
3071 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3072 addr + mmio->region_offset[idx][1][len],
3073 value);
db7b5426
BS
3074}
3075
c227f099 3076static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3077{
3078#if defined(DEBUG_SUBPAGE)
3079 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3080#endif
3081
3082 return subpage_readlen(opaque, addr, 0);
3083}
3084
c227f099 3085static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3086 uint32_t value)
3087{
3088#if defined(DEBUG_SUBPAGE)
3089 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3090#endif
3091 subpage_writelen(opaque, addr, value, 0);
3092}
3093
c227f099 3094static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3095{
3096#if defined(DEBUG_SUBPAGE)
3097 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3098#endif
3099
3100 return subpage_readlen(opaque, addr, 1);
3101}
3102
c227f099 3103static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3104 uint32_t value)
3105{
3106#if defined(DEBUG_SUBPAGE)
3107 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3108#endif
3109 subpage_writelen(opaque, addr, value, 1);
3110}
3111
c227f099 3112static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3113{
3114#if defined(DEBUG_SUBPAGE)
3115 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3116#endif
3117
3118 return subpage_readlen(opaque, addr, 2);
3119}
3120
3121static void subpage_writel (void *opaque,
c227f099 3122 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
3123{
3124#if defined(DEBUG_SUBPAGE)
3125 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3126#endif
3127 subpage_writelen(opaque, addr, value, 2);
3128}
3129
d60efc6b 3130static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3131 &subpage_readb,
3132 &subpage_readw,
3133 &subpage_readl,
3134};
3135
d60efc6b 3136static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3137 &subpage_writeb,
3138 &subpage_writew,
3139 &subpage_writel,
3140};
3141
c227f099
AL
3142static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3143 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3144{
3145 int idx, eidx;
4254fab8 3146 unsigned int i;
db7b5426
BS
3147
3148 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3149 return -1;
3150 idx = SUBPAGE_IDX(start);
3151 eidx = SUBPAGE_IDX(end);
3152#if defined(DEBUG_SUBPAGE)
0bf9e31a 3153 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3154 mmio, start, end, idx, eidx, memory);
3155#endif
3156 memory >>= IO_MEM_SHIFT;
3157 for (; idx <= eidx; idx++) {
4254fab8 3158 for (i = 0; i < 4; i++) {
3ee89922
BS
3159 if (io_mem_read[memory][i]) {
3160 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3161 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 3162 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
3163 }
3164 if (io_mem_write[memory][i]) {
3165 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3166 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 3167 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 3168 }
4254fab8 3169 }
db7b5426
BS
3170 }
3171
3172 return 0;
3173}
3174
c227f099
AL
3175static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3176 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3177{
c227f099 3178 subpage_t *mmio;
db7b5426
BS
3179 int subpage_memory;
3180
c227f099 3181 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3182
3183 mmio->base = base;
1eed09cb 3184 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3185#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3186 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3187 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3188#endif
1eec614b
AL
3189 *phys = subpage_memory | IO_MEM_SUBPAGE;
3190 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3191 region_offset);
db7b5426
BS
3192
3193 return mmio;
3194}
3195
88715657
AL
3196static int get_free_io_mem_idx(void)
3197{
3198 int i;
3199
3200 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3201 if (!io_mem_used[i]) {
3202 io_mem_used[i] = 1;
3203 return i;
3204 }
c6703b47 3205 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3206 return -1;
3207}
3208
33417e70
FB
3209/* mem_read and mem_write are arrays of functions containing the
3210 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3211 2). Functions can be omitted with a NULL function pointer.
3ee89922 3212 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3213 modified. If it is zero, a new io zone is allocated. The return
3214 value can be used with cpu_register_physical_memory(). (-1) is
3215 returned if error. */
1eed09cb 3216static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3217 CPUReadMemoryFunc * const *mem_read,
3218 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3219 void *opaque)
33417e70 3220{
4254fab8 3221 int i, subwidth = 0;
33417e70
FB
3222
3223 if (io_index <= 0) {
88715657
AL
3224 io_index = get_free_io_mem_idx();
3225 if (io_index == -1)
3226 return io_index;
33417e70 3227 } else {
1eed09cb 3228 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3229 if (io_index >= IO_MEM_NB_ENTRIES)
3230 return -1;
3231 }
b5ff1b31 3232
33417e70 3233 for(i = 0;i < 3; i++) {
4254fab8
BS
3234 if (!mem_read[i] || !mem_write[i])
3235 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3236 io_mem_read[io_index][i] = mem_read[i];
3237 io_mem_write[io_index][i] = mem_write[i];
3238 }
a4193c8a 3239 io_mem_opaque[io_index] = opaque;
4254fab8 3240 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3241}
61382a50 3242
d60efc6b
BS
3243int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3244 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3245 void *opaque)
3246{
3247 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3248}
3249
88715657
AL
3250void cpu_unregister_io_memory(int io_table_address)
3251{
3252 int i;
3253 int io_index = io_table_address >> IO_MEM_SHIFT;
3254
3255 for (i=0;i < 3; i++) {
3256 io_mem_read[io_index][i] = unassigned_mem_read[i];
3257 io_mem_write[io_index][i] = unassigned_mem_write[i];
3258 }
3259 io_mem_opaque[io_index] = NULL;
3260 io_mem_used[io_index] = 0;
3261}
3262
e9179ce1
AK
3263static void io_mem_init(void)
3264{
3265 int i;
3266
3267 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3268 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3269 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3270 for (i=0; i<5; i++)
3271 io_mem_used[i] = 1;
3272
3273 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3274 watch_mem_write, NULL);
e9179ce1
AK
3275}
3276
e2eef170
PB
3277#endif /* !defined(CONFIG_USER_ONLY) */
3278
13eb76e0
FB
3279/* physical memory access (slow version, mainly for debug) */
3280#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3281int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3282 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3283{
3284 int l, flags;
3285 target_ulong page;
53a5960a 3286 void * p;
13eb76e0
FB
3287
3288 while (len > 0) {
3289 page = addr & TARGET_PAGE_MASK;
3290 l = (page + TARGET_PAGE_SIZE) - addr;
3291 if (l > len)
3292 l = len;
3293 flags = page_get_flags(page);
3294 if (!(flags & PAGE_VALID))
a68fe89c 3295 return -1;
13eb76e0
FB
3296 if (is_write) {
3297 if (!(flags & PAGE_WRITE))
a68fe89c 3298 return -1;
579a97f7 3299 /* XXX: this code should not depend on lock_user */
72fb7daa 3300 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3301 return -1;
72fb7daa
AJ
3302 memcpy(p, buf, l);
3303 unlock_user(p, addr, l);
13eb76e0
FB
3304 } else {
3305 if (!(flags & PAGE_READ))
a68fe89c 3306 return -1;
579a97f7 3307 /* XXX: this code should not depend on lock_user */
72fb7daa 3308 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3309 return -1;
72fb7daa 3310 memcpy(buf, p, l);
5b257578 3311 unlock_user(p, addr, 0);
13eb76e0
FB
3312 }
3313 len -= l;
3314 buf += l;
3315 addr += l;
3316 }
a68fe89c 3317 return 0;
13eb76e0 3318}
8df1cd07 3319
13eb76e0 3320#else
c227f099 3321void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3322 int len, int is_write)
3323{
3324 int l, io_index;
3325 uint8_t *ptr;
3326 uint32_t val;
c227f099 3327 target_phys_addr_t page;
2e12669a 3328 unsigned long pd;
92e873b9 3329 PhysPageDesc *p;
3b46e624 3330
13eb76e0
FB
3331 while (len > 0) {
3332 page = addr & TARGET_PAGE_MASK;
3333 l = (page + TARGET_PAGE_SIZE) - addr;
3334 if (l > len)
3335 l = len;
92e873b9 3336 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3337 if (!p) {
3338 pd = IO_MEM_UNASSIGNED;
3339 } else {
3340 pd = p->phys_offset;
3341 }
3b46e624 3342
13eb76e0 3343 if (is_write) {
3a7d929e 3344 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3345 target_phys_addr_t addr1 = addr;
13eb76e0 3346 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3347 if (p)
6c2934db 3348 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3349 /* XXX: could force cpu_single_env to NULL to avoid
3350 potential bugs */
6c2934db 3351 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3352 /* 32 bit write access */
c27004ec 3353 val = ldl_p(buf);
6c2934db 3354 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3355 l = 4;
6c2934db 3356 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3357 /* 16 bit write access */
c27004ec 3358 val = lduw_p(buf);
6c2934db 3359 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3360 l = 2;
3361 } else {
1c213d19 3362 /* 8 bit write access */
c27004ec 3363 val = ldub_p(buf);
6c2934db 3364 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3365 l = 1;
3366 }
3367 } else {
b448f2f3
FB
3368 unsigned long addr1;
3369 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3370 /* RAM case */
5579c7f3 3371 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3372 memcpy(ptr, buf, l);
3a7d929e
FB
3373 if (!cpu_physical_memory_is_dirty(addr1)) {
3374 /* invalidate code */
3375 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3376 /* set dirty bit */
5fafdf24 3377 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3378 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3379 }
13eb76e0
FB
3380 }
3381 } else {
5fafdf24 3382 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3383 !(pd & IO_MEM_ROMD)) {
c227f099 3384 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3385 /* I/O case */
3386 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3387 if (p)
6c2934db
AJ
3388 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3389 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3390 /* 32 bit read access */
6c2934db 3391 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3392 stl_p(buf, val);
13eb76e0 3393 l = 4;
6c2934db 3394 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3395 /* 16 bit read access */
6c2934db 3396 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3397 stw_p(buf, val);
13eb76e0
FB
3398 l = 2;
3399 } else {
1c213d19 3400 /* 8 bit read access */
6c2934db 3401 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3402 stb_p(buf, val);
13eb76e0
FB
3403 l = 1;
3404 }
3405 } else {
3406 /* RAM case */
5579c7f3 3407 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3408 (addr & ~TARGET_PAGE_MASK);
3409 memcpy(buf, ptr, l);
3410 }
3411 }
3412 len -= l;
3413 buf += l;
3414 addr += l;
3415 }
3416}
8df1cd07 3417
d0ecd2aa 3418/* used for ROM loading : can write in RAM and ROM */
c227f099 3419void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3420 const uint8_t *buf, int len)
3421{
3422 int l;
3423 uint8_t *ptr;
c227f099 3424 target_phys_addr_t page;
d0ecd2aa
FB
3425 unsigned long pd;
3426 PhysPageDesc *p;
3b46e624 3427
d0ecd2aa
FB
3428 while (len > 0) {
3429 page = addr & TARGET_PAGE_MASK;
3430 l = (page + TARGET_PAGE_SIZE) - addr;
3431 if (l > len)
3432 l = len;
3433 p = phys_page_find(page >> TARGET_PAGE_BITS);
3434 if (!p) {
3435 pd = IO_MEM_UNASSIGNED;
3436 } else {
3437 pd = p->phys_offset;
3438 }
3b46e624 3439
d0ecd2aa 3440 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3441 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3442 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3443 /* do nothing */
3444 } else {
3445 unsigned long addr1;
3446 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3447 /* ROM/RAM case */
5579c7f3 3448 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3449 memcpy(ptr, buf, l);
3450 }
3451 len -= l;
3452 buf += l;
3453 addr += l;
3454 }
3455}
3456
6d16c2f8
AL
3457typedef struct {
3458 void *buffer;
c227f099
AL
3459 target_phys_addr_t addr;
3460 target_phys_addr_t len;
6d16c2f8
AL
3461} BounceBuffer;
3462
3463static BounceBuffer bounce;
3464
ba223c29
AL
3465typedef struct MapClient {
3466 void *opaque;
3467 void (*callback)(void *opaque);
72cf2d4f 3468 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3469} MapClient;
3470
72cf2d4f
BS
3471static QLIST_HEAD(map_client_list, MapClient) map_client_list
3472 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3473
3474void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3475{
3476 MapClient *client = qemu_malloc(sizeof(*client));
3477
3478 client->opaque = opaque;
3479 client->callback = callback;
72cf2d4f 3480 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3481 return client;
3482}
3483
3484void cpu_unregister_map_client(void *_client)
3485{
3486 MapClient *client = (MapClient *)_client;
3487
72cf2d4f 3488 QLIST_REMOVE(client, link);
34d5e948 3489 qemu_free(client);
ba223c29
AL
3490}
3491
3492static void cpu_notify_map_clients(void)
3493{
3494 MapClient *client;
3495
72cf2d4f
BS
3496 while (!QLIST_EMPTY(&map_client_list)) {
3497 client = QLIST_FIRST(&map_client_list);
ba223c29 3498 client->callback(client->opaque);
34d5e948 3499 cpu_unregister_map_client(client);
ba223c29
AL
3500 }
3501}
3502
6d16c2f8
AL
3503/* Map a physical memory region into a host virtual address.
3504 * May map a subset of the requested range, given by and returned in *plen.
3505 * May return NULL if resources needed to perform the mapping are exhausted.
3506 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3507 * Use cpu_register_map_client() to know when retrying the map operation is
3508 * likely to succeed.
6d16c2f8 3509 */
c227f099
AL
3510void *cpu_physical_memory_map(target_phys_addr_t addr,
3511 target_phys_addr_t *plen,
6d16c2f8
AL
3512 int is_write)
3513{
c227f099
AL
3514 target_phys_addr_t len = *plen;
3515 target_phys_addr_t done = 0;
6d16c2f8
AL
3516 int l;
3517 uint8_t *ret = NULL;
3518 uint8_t *ptr;
c227f099 3519 target_phys_addr_t page;
6d16c2f8
AL
3520 unsigned long pd;
3521 PhysPageDesc *p;
3522 unsigned long addr1;
3523
3524 while (len > 0) {
3525 page = addr & TARGET_PAGE_MASK;
3526 l = (page + TARGET_PAGE_SIZE) - addr;
3527 if (l > len)
3528 l = len;
3529 p = phys_page_find(page >> TARGET_PAGE_BITS);
3530 if (!p) {
3531 pd = IO_MEM_UNASSIGNED;
3532 } else {
3533 pd = p->phys_offset;
3534 }
3535
3536 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3537 if (done || bounce.buffer) {
3538 break;
3539 }
3540 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3541 bounce.addr = addr;
3542 bounce.len = l;
3543 if (!is_write) {
3544 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3545 }
3546 ptr = bounce.buffer;
3547 } else {
3548 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3549 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3550 }
3551 if (!done) {
3552 ret = ptr;
3553 } else if (ret + done != ptr) {
3554 break;
3555 }
3556
3557 len -= l;
3558 addr += l;
3559 done += l;
3560 }
3561 *plen = done;
3562 return ret;
3563}
3564
3565/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3566 * Will also mark the memory as dirty if is_write == 1. access_len gives
3567 * the amount of memory that was actually read or written by the caller.
3568 */
c227f099
AL
3569void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3570 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3571{
3572 if (buffer != bounce.buffer) {
3573 if (is_write) {
c227f099 3574 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3575 while (access_len) {
3576 unsigned l;
3577 l = TARGET_PAGE_SIZE;
3578 if (l > access_len)
3579 l = access_len;
3580 if (!cpu_physical_memory_is_dirty(addr1)) {
3581 /* invalidate code */
3582 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3583 /* set dirty bit */
3584 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3585 (0xff & ~CODE_DIRTY_FLAG);
3586 }
3587 addr1 += l;
3588 access_len -= l;
3589 }
3590 }
3591 return;
3592 }
3593 if (is_write) {
3594 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3595 }
f8a83245 3596 qemu_vfree(bounce.buffer);
6d16c2f8 3597 bounce.buffer = NULL;
ba223c29 3598 cpu_notify_map_clients();
6d16c2f8 3599}
d0ecd2aa 3600
8df1cd07 3601/* warning: addr must be aligned */
c227f099 3602uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3603{
3604 int io_index;
3605 uint8_t *ptr;
3606 uint32_t val;
3607 unsigned long pd;
3608 PhysPageDesc *p;
3609
3610 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3611 if (!p) {
3612 pd = IO_MEM_UNASSIGNED;
3613 } else {
3614 pd = p->phys_offset;
3615 }
3b46e624 3616
5fafdf24 3617 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3618 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3619 /* I/O case */
3620 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3621 if (p)
3622 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3623 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3624 } else {
3625 /* RAM case */
5579c7f3 3626 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3627 (addr & ~TARGET_PAGE_MASK);
3628 val = ldl_p(ptr);
3629 }
3630 return val;
3631}
3632
84b7b8e7 3633/* warning: addr must be aligned */
c227f099 3634uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3635{
3636 int io_index;
3637 uint8_t *ptr;
3638 uint64_t val;
3639 unsigned long pd;
3640 PhysPageDesc *p;
3641
3642 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3643 if (!p) {
3644 pd = IO_MEM_UNASSIGNED;
3645 } else {
3646 pd = p->phys_offset;
3647 }
3b46e624 3648
2a4188a3
FB
3649 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3650 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3651 /* I/O case */
3652 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3653 if (p)
3654 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3655#ifdef TARGET_WORDS_BIGENDIAN
3656 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3657 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3658#else
3659 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3660 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3661#endif
3662 } else {
3663 /* RAM case */
5579c7f3 3664 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3665 (addr & ~TARGET_PAGE_MASK);
3666 val = ldq_p(ptr);
3667 }
3668 return val;
3669}
3670
aab33094 3671/* XXX: optimize */
c227f099 3672uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3673{
3674 uint8_t val;
3675 cpu_physical_memory_read(addr, &val, 1);
3676 return val;
3677}
3678
3679/* XXX: optimize */
c227f099 3680uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3681{
3682 uint16_t val;
3683 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3684 return tswap16(val);
3685}
3686
8df1cd07
FB
3687/* warning: addr must be aligned. The ram page is not masked as dirty
3688 and the code inside is not invalidated. It is useful if the dirty
3689 bits are used to track modified PTEs */
c227f099 3690void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3691{
3692 int io_index;
3693 uint8_t *ptr;
3694 unsigned long pd;
3695 PhysPageDesc *p;
3696
3697 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3698 if (!p) {
3699 pd = IO_MEM_UNASSIGNED;
3700 } else {
3701 pd = p->phys_offset;
3702 }
3b46e624 3703
3a7d929e 3704 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3705 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3706 if (p)
3707 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3708 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3709 } else {
74576198 3710 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3711 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3712 stl_p(ptr, val);
74576198
AL
3713
3714 if (unlikely(in_migration)) {
3715 if (!cpu_physical_memory_is_dirty(addr1)) {
3716 /* invalidate code */
3717 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3718 /* set dirty bit */
3719 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3720 (0xff & ~CODE_DIRTY_FLAG);
3721 }
3722 }
8df1cd07
FB
3723 }
3724}
3725
c227f099 3726void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3727{
3728 int io_index;
3729 uint8_t *ptr;
3730 unsigned long pd;
3731 PhysPageDesc *p;
3732
3733 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3734 if (!p) {
3735 pd = IO_MEM_UNASSIGNED;
3736 } else {
3737 pd = p->phys_offset;
3738 }
3b46e624 3739
bc98a7ef
JM
3740 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3741 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3742 if (p)
3743 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3744#ifdef TARGET_WORDS_BIGENDIAN
3745 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3746 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3747#else
3748 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3749 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3750#endif
3751 } else {
5579c7f3 3752 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3753 (addr & ~TARGET_PAGE_MASK);
3754 stq_p(ptr, val);
3755 }
3756}
3757
8df1cd07 3758/* warning: addr must be aligned */
c227f099 3759void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3760{
3761 int io_index;
3762 uint8_t *ptr;
3763 unsigned long pd;
3764 PhysPageDesc *p;
3765
3766 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3767 if (!p) {
3768 pd = IO_MEM_UNASSIGNED;
3769 } else {
3770 pd = p->phys_offset;
3771 }
3b46e624 3772
3a7d929e 3773 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3774 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3775 if (p)
3776 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3777 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3778 } else {
3779 unsigned long addr1;
3780 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3781 /* RAM case */
5579c7f3 3782 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3783 stl_p(ptr, val);
3a7d929e
FB
3784 if (!cpu_physical_memory_is_dirty(addr1)) {
3785 /* invalidate code */
3786 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3787 /* set dirty bit */
f23db169
FB
3788 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3789 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3790 }
8df1cd07
FB
3791 }
3792}
3793
aab33094 3794/* XXX: optimize */
c227f099 3795void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3796{
3797 uint8_t v = val;
3798 cpu_physical_memory_write(addr, &v, 1);
3799}
3800
3801/* XXX: optimize */
c227f099 3802void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3803{
3804 uint16_t v = tswap16(val);
3805 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3806}
3807
3808/* XXX: optimize */
c227f099 3809void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3810{
3811 val = tswap64(val);
3812 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3813}
3814
5e2972fd 3815/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3816int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3817 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3818{
3819 int l;
c227f099 3820 target_phys_addr_t phys_addr;
9b3c35e0 3821 target_ulong page;
13eb76e0
FB
3822
3823 while (len > 0) {
3824 page = addr & TARGET_PAGE_MASK;
3825 phys_addr = cpu_get_phys_page_debug(env, page);
3826 /* if no physical page mapped, return an error */
3827 if (phys_addr == -1)
3828 return -1;
3829 l = (page + TARGET_PAGE_SIZE) - addr;
3830 if (l > len)
3831 l = len;
5e2972fd 3832 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3833 if (is_write)
3834 cpu_physical_memory_write_rom(phys_addr, buf, l);
3835 else
5e2972fd 3836 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3837 len -= l;
3838 buf += l;
3839 addr += l;
3840 }
3841 return 0;
3842}
a68fe89c 3843#endif
13eb76e0 3844
2e70f6ef
PB
3845/* in deterministic execution mode, instructions doing device I/Os
3846 must be at the end of the TB */
3847void cpu_io_recompile(CPUState *env, void *retaddr)
3848{
3849 TranslationBlock *tb;
3850 uint32_t n, cflags;
3851 target_ulong pc, cs_base;
3852 uint64_t flags;
3853
3854 tb = tb_find_pc((unsigned long)retaddr);
3855 if (!tb) {
3856 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3857 retaddr);
3858 }
3859 n = env->icount_decr.u16.low + tb->icount;
3860 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3861 /* Calculate how many instructions had been executed before the fault
bf20dc07 3862 occurred. */
2e70f6ef
PB
3863 n = n - env->icount_decr.u16.low;
3864 /* Generate a new TB ending on the I/O insn. */
3865 n++;
3866 /* On MIPS and SH, delay slot instructions can only be restarted if
3867 they were already the first instruction in the TB. If this is not
bf20dc07 3868 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3869 branch. */
3870#if defined(TARGET_MIPS)
3871 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3872 env->active_tc.PC -= 4;
3873 env->icount_decr.u16.low++;
3874 env->hflags &= ~MIPS_HFLAG_BMASK;
3875 }
3876#elif defined(TARGET_SH4)
3877 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3878 && n > 1) {
3879 env->pc -= 2;
3880 env->icount_decr.u16.low++;
3881 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3882 }
3883#endif
3884 /* This should never happen. */
3885 if (n > CF_COUNT_MASK)
3886 cpu_abort(env, "TB too big during recompile");
3887
3888 cflags = n | CF_LAST_IO;
3889 pc = tb->pc;
3890 cs_base = tb->cs_base;
3891 flags = tb->flags;
3892 tb_phys_invalidate(tb, -1);
3893 /* FIXME: In theory this could raise an exception. In practice
3894 we have already translated the block once so it's probably ok. */
3895 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3896 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3897 the first in the TB) then we end up generating a whole new TB and
3898 repeating the fault, which is horribly inefficient.
3899 Better would be to execute just this insn uncached, or generate a
3900 second new TB. */
3901 cpu_resume_from_signal(env, NULL);
3902}
3903
e3db7226
FB
3904void dump_exec_info(FILE *f,
3905 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3906{
3907 int i, target_code_size, max_target_code_size;
3908 int direct_jmp_count, direct_jmp2_count, cross_page;
3909 TranslationBlock *tb;
3b46e624 3910
e3db7226
FB
3911 target_code_size = 0;
3912 max_target_code_size = 0;
3913 cross_page = 0;
3914 direct_jmp_count = 0;
3915 direct_jmp2_count = 0;
3916 for(i = 0; i < nb_tbs; i++) {
3917 tb = &tbs[i];
3918 target_code_size += tb->size;
3919 if (tb->size > max_target_code_size)
3920 max_target_code_size = tb->size;
3921 if (tb->page_addr[1] != -1)
3922 cross_page++;
3923 if (tb->tb_next_offset[0] != 0xffff) {
3924 direct_jmp_count++;
3925 if (tb->tb_next_offset[1] != 0xffff) {
3926 direct_jmp2_count++;
3927 }
3928 }
3929 }
3930 /* XXX: avoid using doubles ? */
57fec1fe 3931 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3932 cpu_fprintf(f, "gen code size %ld/%ld\n",
3933 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3934 cpu_fprintf(f, "TB count %d/%d\n",
3935 nb_tbs, code_gen_max_blocks);
5fafdf24 3936 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3937 nb_tbs ? target_code_size / nb_tbs : 0,
3938 max_target_code_size);
5fafdf24 3939 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3940 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3941 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3942 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3943 cross_page,
e3db7226
FB
3944 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3945 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3946 direct_jmp_count,
e3db7226
FB
3947 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3948 direct_jmp2_count,
3949 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3950 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3951 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3952 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3953 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3954 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3955}
3956
5fafdf24 3957#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3958
3959#define MMUSUFFIX _cmmu
3960#define GETPC() NULL
3961#define env cpu_single_env
b769d8fe 3962#define SOFTMMU_CODE_ACCESS
61382a50
FB
3963
3964#define SHIFT 0
3965#include "softmmu_template.h"
3966
3967#define SHIFT 1
3968#include "softmmu_template.h"
3969
3970#define SHIFT 2
3971#include "softmmu_template.h"
3972
3973#define SHIFT 3
3974#include "softmmu_template.h"
3975
3976#undef env
3977
3978#endif