]> git.proxmox.com Git - qemu.git/blame - exec.c
Remove l1_phys_map from userspace emulation
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
fd052bf6 43#include <signal.h>
53a5960a 44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 74#elif defined(TARGET_X86_64)
00f82b8a 75#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 76#elif defined(TARGET_I386)
00f82b8a 77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 78#else
108c49b8
FB
79#define TARGET_PHYS_ADDR_SPACE_BITS 32
80#endif
81
bdaf78e0 82static TranslationBlock *tbs;
26a5f13b 83int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
110uint8_t *code_gen_ptr;
111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
1ccde1cb 114uint8_t *phys_ram_dirty;
74576198 115static int in_migration;
94a6b54f
PB
116
117typedef struct RAMBlock {
118 uint8_t *host;
c227f099
AL
119 ram_addr_t offset;
120 ram_addr_t length;
94a6b54f
PB
121 struct RAMBlock *next;
122} RAMBlock;
123
124static RAMBlock *ram_blocks;
125/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 126 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 127 of this variable will break. */
c227f099 128ram_addr_t last_ram_offset;
e2eef170 129#endif
9fa3e853 130
6a00d601
FB
131CPUState *first_cpu;
132/* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
5fafdf24 134CPUState *cpu_single_env;
2e70f6ef 135/* 0 = Do not count executed instructions.
bf20dc07 136 1 = Precise instruction counting.
2e70f6ef
PB
137 2 = Adaptive rate instruction counting. */
138int use_icount = 0;
139/* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141int64_t qemu_icount;
6a00d601 142
54936004 143typedef struct PageDesc {
92e873b9 144 /* list of TBs intersecting this ram page */
fd6ce8f6 145 TranslationBlock *first_tb;
9fa3e853
FB
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150#if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152#endif
54936004
FB
153} PageDesc;
154
92e873b9 155typedef struct PhysPageDesc {
0f459d16 156 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
92e873b9
FB
159} PhysPageDesc;
160
54936004 161#define L2_BITS 10
bedb69ea
JM
162#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163/* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168#else
03875444 169#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 170#endif
54936004
FB
171
172#define L1_SIZE (1 << L1_BITS)
173#define L2_SIZE (1 << L2_BITS)
174
83fb7adf
FB
175unsigned long qemu_real_host_page_size;
176unsigned long qemu_host_page_bits;
177unsigned long qemu_host_page_size;
178unsigned long qemu_host_page_mask;
54936004 179
92e873b9 180/* XXX: for system emulation, it could just be an array */
54936004
FB
181static PageDesc *l1_map[L1_SIZE];
182
e2eef170 183#if !defined(CONFIG_USER_ONLY)
6d9a1304
PB
184static PhysPageDesc **l1_phys_map;
185
e2eef170
PB
186static void io_mem_init(void);
187
33417e70 188/* io memory support */
33417e70
FB
189CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
190CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 191void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 192static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
193static int io_mem_watch;
194#endif
33417e70 195
34865134 196/* log support */
1e8b27ca
JR
197#ifdef WIN32
198static const char *logfilename = "qemu.log";
199#else
d9b630fd 200static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 201#endif
34865134
FB
202FILE *logfile;
203int loglevel;
e735b91c 204static int log_append = 0;
34865134 205
e3db7226
FB
206/* statistics */
207static int tlb_flush_count;
208static int tb_flush_count;
209static int tb_phys_invalidate_count;
210
db7b5426 211#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
c227f099
AL
212typedef struct subpage_t {
213 target_phys_addr_t base;
d60efc6b
BS
214 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
215 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
3ee89922 216 void *opaque[TARGET_PAGE_SIZE][2][4];
c227f099
AL
217 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
218} subpage_t;
db7b5426 219
7cb69cae
FB
220#ifdef _WIN32
221static void map_exec(void *addr, long size)
222{
223 DWORD old_protect;
224 VirtualProtect(addr, size,
225 PAGE_EXECUTE_READWRITE, &old_protect);
226
227}
228#else
229static void map_exec(void *addr, long size)
230{
4369415f 231 unsigned long start, end, page_size;
7cb69cae 232
4369415f 233 page_size = getpagesize();
7cb69cae 234 start = (unsigned long)addr;
4369415f 235 start &= ~(page_size - 1);
7cb69cae
FB
236
237 end = (unsigned long)addr + size;
4369415f
FB
238 end += page_size - 1;
239 end &= ~(page_size - 1);
7cb69cae
FB
240
241 mprotect((void *)start, end - start,
242 PROT_READ | PROT_WRITE | PROT_EXEC);
243}
244#endif
245
b346ff46 246static void page_init(void)
54936004 247{
83fb7adf 248 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 249 TARGET_PAGE_SIZE */
c2b48b69
AL
250#ifdef _WIN32
251 {
252 SYSTEM_INFO system_info;
253
254 GetSystemInfo(&system_info);
255 qemu_real_host_page_size = system_info.dwPageSize;
256 }
257#else
258 qemu_real_host_page_size = getpagesize();
259#endif
83fb7adf
FB
260 if (qemu_host_page_size == 0)
261 qemu_host_page_size = qemu_real_host_page_size;
262 if (qemu_host_page_size < TARGET_PAGE_SIZE)
263 qemu_host_page_size = TARGET_PAGE_SIZE;
264 qemu_host_page_bits = 0;
265 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
266 qemu_host_page_bits++;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
6d9a1304 268#if !defined(CONFIG_USER_ONLY)
108c49b8
FB
269 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
270 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
6d9a1304 271#endif
50a9569b
AZ
272
273#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
274 {
275 long long startaddr, endaddr;
276 FILE *f;
277 int n;
278
c8a706fe 279 mmap_lock();
0776590d 280 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
281 f = fopen("/proc/self/maps", "r");
282 if (f) {
283 do {
284 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
285 if (n == 2) {
e0b8d65a
BS
286 startaddr = MIN(startaddr,
287 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
288 endaddr = MIN(endaddr,
289 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 290 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
291 TARGET_PAGE_ALIGN(endaddr),
292 PAGE_RESERVED);
293 }
294 } while (!feof(f));
295 fclose(f);
296 }
c8a706fe 297 mmap_unlock();
50a9569b
AZ
298 }
299#endif
54936004
FB
300}
301
434929bf 302static inline PageDesc **page_l1_map(target_ulong index)
54936004 303{
17e2377a
PB
304#if TARGET_LONG_BITS > 32
305 /* Host memory outside guest VM. For 32-bit targets we have already
306 excluded high addresses. */
d8173e0f 307 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
308 return NULL;
309#endif
434929bf
AL
310 return &l1_map[index >> L2_BITS];
311}
312
313static inline PageDesc *page_find_alloc(target_ulong index)
314{
315 PageDesc **lp, *p;
316 lp = page_l1_map(index);
317 if (!lp)
318 return NULL;
319
54936004
FB
320 p = *lp;
321 if (!p) {
322 /* allocate if not found */
17e2377a 323#if defined(CONFIG_USER_ONLY)
17e2377a
PB
324 size_t len = sizeof(PageDesc) * L2_SIZE;
325 /* Don't use qemu_malloc because it may recurse. */
660f11be 326 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 327 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 328 *lp = p;
fb1c2cd7
AJ
329 if (h2g_valid(p)) {
330 unsigned long addr = h2g(p);
17e2377a
PB
331 page_set_flags(addr & TARGET_PAGE_MASK,
332 TARGET_PAGE_ALIGN(addr + len),
333 PAGE_RESERVED);
334 }
335#else
336 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
337 *lp = p;
338#endif
54936004
FB
339 }
340 return p + (index & (L2_SIZE - 1));
341}
342
00f82b8a 343static inline PageDesc *page_find(target_ulong index)
54936004 344{
434929bf
AL
345 PageDesc **lp, *p;
346 lp = page_l1_map(index);
347 if (!lp)
348 return NULL;
54936004 349
434929bf 350 p = *lp;
660f11be
BS
351 if (!p) {
352 return NULL;
353 }
fd6ce8f6
FB
354 return p + (index & (L2_SIZE - 1));
355}
356
6d9a1304 357#if !defined(CONFIG_USER_ONLY)
c227f099 358static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 359{
108c49b8 360 void **lp, **p;
e3f4e2a4 361 PhysPageDesc *pd;
92e873b9 362
108c49b8
FB
363 p = (void **)l1_phys_map;
364#if TARGET_PHYS_ADDR_SPACE_BITS > 32
365
366#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
367#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
368#endif
369 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
370 p = *lp;
371 if (!p) {
372 /* allocate if not found */
108c49b8
FB
373 if (!alloc)
374 return NULL;
375 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
376 memset(p, 0, sizeof(void *) * L1_SIZE);
377 *lp = p;
378 }
379#endif
380 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
381 pd = *lp;
382 if (!pd) {
383 int i;
108c49b8
FB
384 /* allocate if not found */
385 if (!alloc)
386 return NULL;
e3f4e2a4
PB
387 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
388 *lp = pd;
67c4d23c 389 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 390 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
391 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
392 }
92e873b9 393 }
e3f4e2a4 394 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
395}
396
c227f099 397static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 398{
108c49b8 399 return phys_page_find_alloc(index, 0);
92e873b9
FB
400}
401
c227f099
AL
402static void tlb_protect_code(ram_addr_t ram_addr);
403static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 404 target_ulong vaddr);
c8a706fe
PB
405#define mmap_lock() do { } while(0)
406#define mmap_unlock() do { } while(0)
9fa3e853 407#endif
fd6ce8f6 408
4369415f
FB
409#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
410
411#if defined(CONFIG_USER_ONLY)
ccbb4d44 412/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
413 user mode. It will change when a dedicated libc will be used */
414#define USE_STATIC_CODE_GEN_BUFFER
415#endif
416
417#ifdef USE_STATIC_CODE_GEN_BUFFER
418static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
419#endif
420
8fcd3692 421static void code_gen_alloc(unsigned long tb_size)
26a5f13b 422{
4369415f
FB
423#ifdef USE_STATIC_CODE_GEN_BUFFER
424 code_gen_buffer = static_code_gen_buffer;
425 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
426 map_exec(code_gen_buffer, code_gen_buffer_size);
427#else
26a5f13b
FB
428 code_gen_buffer_size = tb_size;
429 if (code_gen_buffer_size == 0) {
4369415f
FB
430#if defined(CONFIG_USER_ONLY)
431 /* in user mode, phys_ram_size is not meaningful */
432 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
433#else
ccbb4d44 434 /* XXX: needs adjustments */
94a6b54f 435 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 436#endif
26a5f13b
FB
437 }
438 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
439 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
440 /* The code gen buffer location may have constraints depending on
441 the host cpu and OS */
442#if defined(__linux__)
443 {
444 int flags;
141ac468
BS
445 void *start = NULL;
446
26a5f13b
FB
447 flags = MAP_PRIVATE | MAP_ANONYMOUS;
448#if defined(__x86_64__)
449 flags |= MAP_32BIT;
450 /* Cannot map more than that */
451 if (code_gen_buffer_size > (800 * 1024 * 1024))
452 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
453#elif defined(__sparc_v9__)
454 // Map the buffer below 2G, so we can use direct calls and branches
455 flags |= MAP_FIXED;
456 start = (void *) 0x60000000UL;
457 if (code_gen_buffer_size > (512 * 1024 * 1024))
458 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 459#elif defined(__arm__)
63d41246 460 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
461 flags |= MAP_FIXED;
462 start = (void *) 0x01000000UL;
463 if (code_gen_buffer_size > 16 * 1024 * 1024)
464 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 465#endif
141ac468
BS
466 code_gen_buffer = mmap(start, code_gen_buffer_size,
467 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
468 flags, -1, 0);
469 if (code_gen_buffer == MAP_FAILED) {
470 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
471 exit(1);
472 }
473 }
a167ba50 474#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
475 {
476 int flags;
477 void *addr = NULL;
478 flags = MAP_PRIVATE | MAP_ANONYMOUS;
479#if defined(__x86_64__)
480 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
481 * 0x40000000 is free */
482 flags |= MAP_FIXED;
483 addr = (void *)0x40000000;
484 /* Cannot map more than that */
485 if (code_gen_buffer_size > (800 * 1024 * 1024))
486 code_gen_buffer_size = (800 * 1024 * 1024);
487#endif
488 code_gen_buffer = mmap(addr, code_gen_buffer_size,
489 PROT_WRITE | PROT_READ | PROT_EXEC,
490 flags, -1, 0);
491 if (code_gen_buffer == MAP_FAILED) {
492 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
493 exit(1);
494 }
495 }
26a5f13b
FB
496#else
497 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
498 map_exec(code_gen_buffer, code_gen_buffer_size);
499#endif
4369415f 500#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
501 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
502 code_gen_buffer_max_size = code_gen_buffer_size -
503 code_gen_max_block_size();
504 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
505 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
506}
507
508/* Must be called before using the QEMU cpus. 'tb_size' is the size
509 (in bytes) allocated to the translation buffer. Zero means default
510 size. */
511void cpu_exec_init_all(unsigned long tb_size)
512{
26a5f13b
FB
513 cpu_gen_init();
514 code_gen_alloc(tb_size);
515 code_gen_ptr = code_gen_buffer;
4369415f 516 page_init();
e2eef170 517#if !defined(CONFIG_USER_ONLY)
26a5f13b 518 io_mem_init();
e2eef170 519#endif
26a5f13b
FB
520}
521
9656f324
PB
522#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
523
d4bfa4d7 524static void cpu_common_pre_save(void *opaque)
9656f324 525{
d4bfa4d7 526 CPUState *env = opaque;
9656f324 527
4c0960c0 528 cpu_synchronize_state(env);
9656f324
PB
529}
530
e7f4eff7 531static int cpu_common_pre_load(void *opaque)
9656f324
PB
532{
533 CPUState *env = opaque;
534
4c0960c0 535 cpu_synchronize_state(env);
e7f4eff7
JQ
536 return 0;
537}
538
e59fb374 539static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
540{
541 CPUState *env = opaque;
9656f324 542
3098dba0
AJ
543 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
544 version_id is increased. */
545 env->interrupt_request &= ~0x01;
9656f324
PB
546 tlb_flush(env, 1);
547
548 return 0;
549}
e7f4eff7
JQ
550
551static const VMStateDescription vmstate_cpu_common = {
552 .name = "cpu_common",
553 .version_id = 1,
554 .minimum_version_id = 1,
555 .minimum_version_id_old = 1,
556 .pre_save = cpu_common_pre_save,
557 .pre_load = cpu_common_pre_load,
558 .post_load = cpu_common_post_load,
559 .fields = (VMStateField []) {
560 VMSTATE_UINT32(halted, CPUState),
561 VMSTATE_UINT32(interrupt_request, CPUState),
562 VMSTATE_END_OF_LIST()
563 }
564};
9656f324
PB
565#endif
566
950f1472
GC
567CPUState *qemu_get_cpu(int cpu)
568{
569 CPUState *env = first_cpu;
570
571 while (env) {
572 if (env->cpu_index == cpu)
573 break;
574 env = env->next_cpu;
575 }
576
577 return env;
578}
579
6a00d601 580void cpu_exec_init(CPUState *env)
fd6ce8f6 581{
6a00d601
FB
582 CPUState **penv;
583 int cpu_index;
584
c2764719
PB
585#if defined(CONFIG_USER_ONLY)
586 cpu_list_lock();
587#endif
6a00d601
FB
588 env->next_cpu = NULL;
589 penv = &first_cpu;
590 cpu_index = 0;
591 while (*penv != NULL) {
1e9fa730 592 penv = &(*penv)->next_cpu;
6a00d601
FB
593 cpu_index++;
594 }
595 env->cpu_index = cpu_index;
268a362c 596 env->numa_node = 0;
72cf2d4f
BS
597 QTAILQ_INIT(&env->breakpoints);
598 QTAILQ_INIT(&env->watchpoints);
6a00d601 599 *penv = env;
c2764719
PB
600#if defined(CONFIG_USER_ONLY)
601 cpu_list_unlock();
602#endif
b3c7724c 603#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 604 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
605 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
606 cpu_save, cpu_load, env);
607#endif
fd6ce8f6
FB
608}
609
9fa3e853
FB
610static inline void invalidate_page_bitmap(PageDesc *p)
611{
612 if (p->code_bitmap) {
59817ccb 613 qemu_free(p->code_bitmap);
9fa3e853
FB
614 p->code_bitmap = NULL;
615 }
616 p->code_write_count = 0;
617}
618
fd6ce8f6
FB
619/* set to NULL all the 'first_tb' fields in all PageDescs */
620static void page_flush_tb(void)
621{
622 int i, j;
623 PageDesc *p;
624
625 for(i = 0; i < L1_SIZE; i++) {
626 p = l1_map[i];
627 if (p) {
9fa3e853
FB
628 for(j = 0; j < L2_SIZE; j++) {
629 p->first_tb = NULL;
630 invalidate_page_bitmap(p);
631 p++;
632 }
fd6ce8f6
FB
633 }
634 }
635}
636
637/* flush all the translation blocks */
d4e8164f 638/* XXX: tb_flush is currently not thread safe */
6a00d601 639void tb_flush(CPUState *env1)
fd6ce8f6 640{
6a00d601 641 CPUState *env;
0124311e 642#if defined(DEBUG_FLUSH)
ab3d1727
BS
643 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
644 (unsigned long)(code_gen_ptr - code_gen_buffer),
645 nb_tbs, nb_tbs > 0 ?
646 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 647#endif
26a5f13b 648 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
649 cpu_abort(env1, "Internal error: code buffer overflow\n");
650
fd6ce8f6 651 nb_tbs = 0;
3b46e624 652
6a00d601
FB
653 for(env = first_cpu; env != NULL; env = env->next_cpu) {
654 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
655 }
9fa3e853 656
8a8a608f 657 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 658 page_flush_tb();
9fa3e853 659
fd6ce8f6 660 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
661 /* XXX: flush processor icache at this point if cache flush is
662 expensive */
e3db7226 663 tb_flush_count++;
fd6ce8f6
FB
664}
665
666#ifdef DEBUG_TB_CHECK
667
bc98a7ef 668static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
669{
670 TranslationBlock *tb;
671 int i;
672 address &= TARGET_PAGE_MASK;
99773bd4
PB
673 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
674 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
675 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
676 address >= tb->pc + tb->size)) {
0bf9e31a
BS
677 printf("ERROR invalidate: address=" TARGET_FMT_lx
678 " PC=%08lx size=%04x\n",
99773bd4 679 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
680 }
681 }
682 }
683}
684
685/* verify that all the pages have correct rights for code */
686static void tb_page_check(void)
687{
688 TranslationBlock *tb;
689 int i, flags1, flags2;
3b46e624 690
99773bd4
PB
691 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
692 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
693 flags1 = page_get_flags(tb->pc);
694 flags2 = page_get_flags(tb->pc + tb->size - 1);
695 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
696 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 697 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
698 }
699 }
700 }
701}
702
703#endif
704
705/* invalidate one TB */
706static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
707 int next_offset)
708{
709 TranslationBlock *tb1;
710 for(;;) {
711 tb1 = *ptb;
712 if (tb1 == tb) {
713 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
714 break;
715 }
716 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
717 }
718}
719
9fa3e853
FB
720static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
721{
722 TranslationBlock *tb1;
723 unsigned int n1;
724
725 for(;;) {
726 tb1 = *ptb;
727 n1 = (long)tb1 & 3;
728 tb1 = (TranslationBlock *)((long)tb1 & ~3);
729 if (tb1 == tb) {
730 *ptb = tb1->page_next[n1];
731 break;
732 }
733 ptb = &tb1->page_next[n1];
734 }
735}
736
d4e8164f
FB
737static inline void tb_jmp_remove(TranslationBlock *tb, int n)
738{
739 TranslationBlock *tb1, **ptb;
740 unsigned int n1;
741
742 ptb = &tb->jmp_next[n];
743 tb1 = *ptb;
744 if (tb1) {
745 /* find tb(n) in circular list */
746 for(;;) {
747 tb1 = *ptb;
748 n1 = (long)tb1 & 3;
749 tb1 = (TranslationBlock *)((long)tb1 & ~3);
750 if (n1 == n && tb1 == tb)
751 break;
752 if (n1 == 2) {
753 ptb = &tb1->jmp_first;
754 } else {
755 ptb = &tb1->jmp_next[n1];
756 }
757 }
758 /* now we can suppress tb(n) from the list */
759 *ptb = tb->jmp_next[n];
760
761 tb->jmp_next[n] = NULL;
762 }
763}
764
765/* reset the jump entry 'n' of a TB so that it is not chained to
766 another TB */
767static inline void tb_reset_jump(TranslationBlock *tb, int n)
768{
769 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
770}
771
2e70f6ef 772void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 773{
6a00d601 774 CPUState *env;
8a40a180 775 PageDesc *p;
d4e8164f 776 unsigned int h, n1;
c227f099 777 target_phys_addr_t phys_pc;
8a40a180 778 TranslationBlock *tb1, *tb2;
3b46e624 779
8a40a180
FB
780 /* remove the TB from the hash list */
781 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
782 h = tb_phys_hash_func(phys_pc);
5fafdf24 783 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
784 offsetof(TranslationBlock, phys_hash_next));
785
786 /* remove the TB from the page list */
787 if (tb->page_addr[0] != page_addr) {
788 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
789 tb_page_remove(&p->first_tb, tb);
790 invalidate_page_bitmap(p);
791 }
792 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
793 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
794 tb_page_remove(&p->first_tb, tb);
795 invalidate_page_bitmap(p);
796 }
797
36bdbe54 798 tb_invalidated_flag = 1;
59817ccb 799
fd6ce8f6 800 /* remove the TB from the hash list */
8a40a180 801 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
802 for(env = first_cpu; env != NULL; env = env->next_cpu) {
803 if (env->tb_jmp_cache[h] == tb)
804 env->tb_jmp_cache[h] = NULL;
805 }
d4e8164f
FB
806
807 /* suppress this TB from the two jump lists */
808 tb_jmp_remove(tb, 0);
809 tb_jmp_remove(tb, 1);
810
811 /* suppress any remaining jumps to this TB */
812 tb1 = tb->jmp_first;
813 for(;;) {
814 n1 = (long)tb1 & 3;
815 if (n1 == 2)
816 break;
817 tb1 = (TranslationBlock *)((long)tb1 & ~3);
818 tb2 = tb1->jmp_next[n1];
819 tb_reset_jump(tb1, n1);
820 tb1->jmp_next[n1] = NULL;
821 tb1 = tb2;
822 }
823 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 824
e3db7226 825 tb_phys_invalidate_count++;
9fa3e853
FB
826}
827
828static inline void set_bits(uint8_t *tab, int start, int len)
829{
830 int end, mask, end1;
831
832 end = start + len;
833 tab += start >> 3;
834 mask = 0xff << (start & 7);
835 if ((start & ~7) == (end & ~7)) {
836 if (start < end) {
837 mask &= ~(0xff << (end & 7));
838 *tab |= mask;
839 }
840 } else {
841 *tab++ |= mask;
842 start = (start + 8) & ~7;
843 end1 = end & ~7;
844 while (start < end1) {
845 *tab++ = 0xff;
846 start += 8;
847 }
848 if (start < end) {
849 mask = ~(0xff << (end & 7));
850 *tab |= mask;
851 }
852 }
853}
854
855static void build_page_bitmap(PageDesc *p)
856{
857 int n, tb_start, tb_end;
858 TranslationBlock *tb;
3b46e624 859
b2a7081a 860 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
861
862 tb = p->first_tb;
863 while (tb != NULL) {
864 n = (long)tb & 3;
865 tb = (TranslationBlock *)((long)tb & ~3);
866 /* NOTE: this is subtle as a TB may span two physical pages */
867 if (n == 0) {
868 /* NOTE: tb_end may be after the end of the page, but
869 it is not a problem */
870 tb_start = tb->pc & ~TARGET_PAGE_MASK;
871 tb_end = tb_start + tb->size;
872 if (tb_end > TARGET_PAGE_SIZE)
873 tb_end = TARGET_PAGE_SIZE;
874 } else {
875 tb_start = 0;
876 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
877 }
878 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
879 tb = tb->page_next[n];
880 }
881}
882
2e70f6ef
PB
883TranslationBlock *tb_gen_code(CPUState *env,
884 target_ulong pc, target_ulong cs_base,
885 int flags, int cflags)
d720b93d
FB
886{
887 TranslationBlock *tb;
888 uint8_t *tc_ptr;
889 target_ulong phys_pc, phys_page2, virt_page2;
890 int code_gen_size;
891
c27004ec
FB
892 phys_pc = get_phys_addr_code(env, pc);
893 tb = tb_alloc(pc);
d720b93d
FB
894 if (!tb) {
895 /* flush must be done */
896 tb_flush(env);
897 /* cannot fail at this point */
c27004ec 898 tb = tb_alloc(pc);
2e70f6ef
PB
899 /* Don't forget to invalidate previous TB info. */
900 tb_invalidated_flag = 1;
d720b93d
FB
901 }
902 tc_ptr = code_gen_ptr;
903 tb->tc_ptr = tc_ptr;
904 tb->cs_base = cs_base;
905 tb->flags = flags;
906 tb->cflags = cflags;
d07bde88 907 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 908 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 909
d720b93d 910 /* check next page if needed */
c27004ec 911 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 912 phys_page2 = -1;
c27004ec 913 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
914 phys_page2 = get_phys_addr_code(env, virt_page2);
915 }
916 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 917 return tb;
d720b93d 918}
3b46e624 919
9fa3e853
FB
920/* invalidate all TBs which intersect with the target physical page
921 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
922 the same physical page. 'is_cpu_write_access' should be true if called
923 from a real cpu write access: the virtual CPU will exit the current
924 TB if code is modified inside this TB. */
c227f099 925void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
926 int is_cpu_write_access)
927{
6b917547 928 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 929 CPUState *env = cpu_single_env;
9fa3e853 930 target_ulong tb_start, tb_end;
6b917547
AL
931 PageDesc *p;
932 int n;
933#ifdef TARGET_HAS_PRECISE_SMC
934 int current_tb_not_found = is_cpu_write_access;
935 TranslationBlock *current_tb = NULL;
936 int current_tb_modified = 0;
937 target_ulong current_pc = 0;
938 target_ulong current_cs_base = 0;
939 int current_flags = 0;
940#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
941
942 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 943 if (!p)
9fa3e853 944 return;
5fafdf24 945 if (!p->code_bitmap &&
d720b93d
FB
946 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
947 is_cpu_write_access) {
9fa3e853
FB
948 /* build code bitmap */
949 build_page_bitmap(p);
950 }
951
952 /* we remove all the TBs in the range [start, end[ */
953 /* XXX: see if in some cases it could be faster to invalidate all the code */
954 tb = p->first_tb;
955 while (tb != NULL) {
956 n = (long)tb & 3;
957 tb = (TranslationBlock *)((long)tb & ~3);
958 tb_next = tb->page_next[n];
959 /* NOTE: this is subtle as a TB may span two physical pages */
960 if (n == 0) {
961 /* NOTE: tb_end may be after the end of the page, but
962 it is not a problem */
963 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
964 tb_end = tb_start + tb->size;
965 } else {
966 tb_start = tb->page_addr[1];
967 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
968 }
969 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
970#ifdef TARGET_HAS_PRECISE_SMC
971 if (current_tb_not_found) {
972 current_tb_not_found = 0;
973 current_tb = NULL;
2e70f6ef 974 if (env->mem_io_pc) {
d720b93d 975 /* now we have a real cpu fault */
2e70f6ef 976 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
977 }
978 }
979 if (current_tb == tb &&
2e70f6ef 980 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
981 /* If we are modifying the current TB, we must stop
982 its execution. We could be more precise by checking
983 that the modification is after the current PC, but it
984 would require a specialized function to partially
985 restore the CPU state */
3b46e624 986
d720b93d 987 current_tb_modified = 1;
5fafdf24 988 cpu_restore_state(current_tb, env,
2e70f6ef 989 env->mem_io_pc, NULL);
6b917547
AL
990 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
991 &current_flags);
d720b93d
FB
992 }
993#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
994 /* we need to do that to handle the case where a signal
995 occurs while doing tb_phys_invalidate() */
996 saved_tb = NULL;
997 if (env) {
998 saved_tb = env->current_tb;
999 env->current_tb = NULL;
1000 }
9fa3e853 1001 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1002 if (env) {
1003 env->current_tb = saved_tb;
1004 if (env->interrupt_request && env->current_tb)
1005 cpu_interrupt(env, env->interrupt_request);
1006 }
9fa3e853
FB
1007 }
1008 tb = tb_next;
1009 }
1010#if !defined(CONFIG_USER_ONLY)
1011 /* if no code remaining, no need to continue to use slow writes */
1012 if (!p->first_tb) {
1013 invalidate_page_bitmap(p);
d720b93d 1014 if (is_cpu_write_access) {
2e70f6ef 1015 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1016 }
1017 }
1018#endif
1019#ifdef TARGET_HAS_PRECISE_SMC
1020 if (current_tb_modified) {
1021 /* we generate a block containing just the instruction
1022 modifying the memory. It will ensure that it cannot modify
1023 itself */
ea1c1802 1024 env->current_tb = NULL;
2e70f6ef 1025 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1026 cpu_resume_from_signal(env, NULL);
9fa3e853 1027 }
fd6ce8f6 1028#endif
9fa3e853 1029}
fd6ce8f6 1030
9fa3e853 1031/* len must be <= 8 and start must be a multiple of len */
c227f099 1032static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1033{
1034 PageDesc *p;
1035 int offset, b;
59817ccb 1036#if 0
a4193c8a 1037 if (1) {
93fcfe39
AL
1038 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1039 cpu_single_env->mem_io_vaddr, len,
1040 cpu_single_env->eip,
1041 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1042 }
1043#endif
9fa3e853 1044 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1045 if (!p)
9fa3e853
FB
1046 return;
1047 if (p->code_bitmap) {
1048 offset = start & ~TARGET_PAGE_MASK;
1049 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1050 if (b & ((1 << len) - 1))
1051 goto do_invalidate;
1052 } else {
1053 do_invalidate:
d720b93d 1054 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1055 }
1056}
1057
9fa3e853 1058#if !defined(CONFIG_SOFTMMU)
c227f099 1059static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1060 unsigned long pc, void *puc)
9fa3e853 1061{
6b917547 1062 TranslationBlock *tb;
9fa3e853 1063 PageDesc *p;
6b917547 1064 int n;
d720b93d 1065#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1066 TranslationBlock *current_tb = NULL;
d720b93d 1067 CPUState *env = cpu_single_env;
6b917547
AL
1068 int current_tb_modified = 0;
1069 target_ulong current_pc = 0;
1070 target_ulong current_cs_base = 0;
1071 int current_flags = 0;
d720b93d 1072#endif
9fa3e853
FB
1073
1074 addr &= TARGET_PAGE_MASK;
1075 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1076 if (!p)
9fa3e853
FB
1077 return;
1078 tb = p->first_tb;
d720b93d
FB
1079#ifdef TARGET_HAS_PRECISE_SMC
1080 if (tb && pc != 0) {
1081 current_tb = tb_find_pc(pc);
1082 }
1083#endif
9fa3e853
FB
1084 while (tb != NULL) {
1085 n = (long)tb & 3;
1086 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1087#ifdef TARGET_HAS_PRECISE_SMC
1088 if (current_tb == tb &&
2e70f6ef 1089 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1090 /* If we are modifying the current TB, we must stop
1091 its execution. We could be more precise by checking
1092 that the modification is after the current PC, but it
1093 would require a specialized function to partially
1094 restore the CPU state */
3b46e624 1095
d720b93d
FB
1096 current_tb_modified = 1;
1097 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1098 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1099 &current_flags);
d720b93d
FB
1100 }
1101#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1102 tb_phys_invalidate(tb, addr);
1103 tb = tb->page_next[n];
1104 }
fd6ce8f6 1105 p->first_tb = NULL;
d720b93d
FB
1106#ifdef TARGET_HAS_PRECISE_SMC
1107 if (current_tb_modified) {
1108 /* we generate a block containing just the instruction
1109 modifying the memory. It will ensure that it cannot modify
1110 itself */
ea1c1802 1111 env->current_tb = NULL;
2e70f6ef 1112 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1113 cpu_resume_from_signal(env, puc);
1114 }
1115#endif
fd6ce8f6 1116}
9fa3e853 1117#endif
fd6ce8f6
FB
1118
1119/* add the tb in the target page and protect it if necessary */
5fafdf24 1120static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1121 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1122{
1123 PageDesc *p;
9fa3e853
FB
1124 TranslationBlock *last_first_tb;
1125
1126 tb->page_addr[n] = page_addr;
3a7d929e 1127 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1128 tb->page_next[n] = p->first_tb;
1129 last_first_tb = p->first_tb;
1130 p->first_tb = (TranslationBlock *)((long)tb | n);
1131 invalidate_page_bitmap(p);
fd6ce8f6 1132
107db443 1133#if defined(TARGET_HAS_SMC) || 1
d720b93d 1134
9fa3e853 1135#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1136 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1137 target_ulong addr;
1138 PageDesc *p2;
9fa3e853
FB
1139 int prot;
1140
fd6ce8f6
FB
1141 /* force the host page as non writable (writes will have a
1142 page fault + mprotect overhead) */
53a5960a 1143 page_addr &= qemu_host_page_mask;
fd6ce8f6 1144 prot = 0;
53a5960a
PB
1145 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1146 addr += TARGET_PAGE_SIZE) {
1147
1148 p2 = page_find (addr >> TARGET_PAGE_BITS);
1149 if (!p2)
1150 continue;
1151 prot |= p2->flags;
1152 p2->flags &= ~PAGE_WRITE;
1153 page_get_flags(addr);
1154 }
5fafdf24 1155 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1156 (prot & PAGE_BITS) & ~PAGE_WRITE);
1157#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1158 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1159 page_addr);
fd6ce8f6 1160#endif
fd6ce8f6 1161 }
9fa3e853
FB
1162#else
1163 /* if some code is already present, then the pages are already
1164 protected. So we handle the case where only the first TB is
1165 allocated in a physical page */
1166 if (!last_first_tb) {
6a00d601 1167 tlb_protect_code(page_addr);
9fa3e853
FB
1168 }
1169#endif
d720b93d
FB
1170
1171#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1172}
1173
1174/* Allocate a new translation block. Flush the translation buffer if
1175 too many translation blocks or too much generated code. */
c27004ec 1176TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1177{
1178 TranslationBlock *tb;
fd6ce8f6 1179
26a5f13b
FB
1180 if (nb_tbs >= code_gen_max_blocks ||
1181 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1182 return NULL;
fd6ce8f6
FB
1183 tb = &tbs[nb_tbs++];
1184 tb->pc = pc;
b448f2f3 1185 tb->cflags = 0;
d4e8164f
FB
1186 return tb;
1187}
1188
2e70f6ef
PB
1189void tb_free(TranslationBlock *tb)
1190{
bf20dc07 1191 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1192 Ignore the hard cases and just back up if this TB happens to
1193 be the last one generated. */
1194 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1195 code_gen_ptr = tb->tc_ptr;
1196 nb_tbs--;
1197 }
1198}
1199
9fa3e853
FB
1200/* add a new TB and link it to the physical page tables. phys_page2 is
1201 (-1) to indicate that only one page contains the TB. */
5fafdf24 1202void tb_link_phys(TranslationBlock *tb,
9fa3e853 1203 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1204{
9fa3e853
FB
1205 unsigned int h;
1206 TranslationBlock **ptb;
1207
c8a706fe
PB
1208 /* Grab the mmap lock to stop another thread invalidating this TB
1209 before we are done. */
1210 mmap_lock();
9fa3e853
FB
1211 /* add in the physical hash table */
1212 h = tb_phys_hash_func(phys_pc);
1213 ptb = &tb_phys_hash[h];
1214 tb->phys_hash_next = *ptb;
1215 *ptb = tb;
fd6ce8f6
FB
1216
1217 /* add in the page list */
9fa3e853
FB
1218 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1219 if (phys_page2 != -1)
1220 tb_alloc_page(tb, 1, phys_page2);
1221 else
1222 tb->page_addr[1] = -1;
9fa3e853 1223
d4e8164f
FB
1224 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1225 tb->jmp_next[0] = NULL;
1226 tb->jmp_next[1] = NULL;
1227
1228 /* init original jump addresses */
1229 if (tb->tb_next_offset[0] != 0xffff)
1230 tb_reset_jump(tb, 0);
1231 if (tb->tb_next_offset[1] != 0xffff)
1232 tb_reset_jump(tb, 1);
8a40a180
FB
1233
1234#ifdef DEBUG_TB_CHECK
1235 tb_page_check();
1236#endif
c8a706fe 1237 mmap_unlock();
fd6ce8f6
FB
1238}
1239
9fa3e853
FB
1240/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1241 tb[1].tc_ptr. Return NULL if not found */
1242TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1243{
9fa3e853
FB
1244 int m_min, m_max, m;
1245 unsigned long v;
1246 TranslationBlock *tb;
a513fe19
FB
1247
1248 if (nb_tbs <= 0)
1249 return NULL;
1250 if (tc_ptr < (unsigned long)code_gen_buffer ||
1251 tc_ptr >= (unsigned long)code_gen_ptr)
1252 return NULL;
1253 /* binary search (cf Knuth) */
1254 m_min = 0;
1255 m_max = nb_tbs - 1;
1256 while (m_min <= m_max) {
1257 m = (m_min + m_max) >> 1;
1258 tb = &tbs[m];
1259 v = (unsigned long)tb->tc_ptr;
1260 if (v == tc_ptr)
1261 return tb;
1262 else if (tc_ptr < v) {
1263 m_max = m - 1;
1264 } else {
1265 m_min = m + 1;
1266 }
5fafdf24 1267 }
a513fe19
FB
1268 return &tbs[m_max];
1269}
7501267e 1270
ea041c0e
FB
1271static void tb_reset_jump_recursive(TranslationBlock *tb);
1272
1273static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1274{
1275 TranslationBlock *tb1, *tb_next, **ptb;
1276 unsigned int n1;
1277
1278 tb1 = tb->jmp_next[n];
1279 if (tb1 != NULL) {
1280 /* find head of list */
1281 for(;;) {
1282 n1 = (long)tb1 & 3;
1283 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1284 if (n1 == 2)
1285 break;
1286 tb1 = tb1->jmp_next[n1];
1287 }
1288 /* we are now sure now that tb jumps to tb1 */
1289 tb_next = tb1;
1290
1291 /* remove tb from the jmp_first list */
1292 ptb = &tb_next->jmp_first;
1293 for(;;) {
1294 tb1 = *ptb;
1295 n1 = (long)tb1 & 3;
1296 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1297 if (n1 == n && tb1 == tb)
1298 break;
1299 ptb = &tb1->jmp_next[n1];
1300 }
1301 *ptb = tb->jmp_next[n];
1302 tb->jmp_next[n] = NULL;
3b46e624 1303
ea041c0e
FB
1304 /* suppress the jump to next tb in generated code */
1305 tb_reset_jump(tb, n);
1306
0124311e 1307 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1308 tb_reset_jump_recursive(tb_next);
1309 }
1310}
1311
1312static void tb_reset_jump_recursive(TranslationBlock *tb)
1313{
1314 tb_reset_jump_recursive2(tb, 0);
1315 tb_reset_jump_recursive2(tb, 1);
1316}
1317
1fddef4b 1318#if defined(TARGET_HAS_ICE)
94df27fd
PB
1319#if defined(CONFIG_USER_ONLY)
1320static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1321{
1322 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1323}
1324#else
d720b93d
FB
1325static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1326{
c227f099 1327 target_phys_addr_t addr;
9b3c35e0 1328 target_ulong pd;
c227f099 1329 ram_addr_t ram_addr;
c2f07f81 1330 PhysPageDesc *p;
d720b93d 1331
c2f07f81
PB
1332 addr = cpu_get_phys_page_debug(env, pc);
1333 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1334 if (!p) {
1335 pd = IO_MEM_UNASSIGNED;
1336 } else {
1337 pd = p->phys_offset;
1338 }
1339 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1340 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1341}
c27004ec 1342#endif
94df27fd 1343#endif /* TARGET_HAS_ICE */
d720b93d 1344
6658ffb8 1345/* Add a watchpoint. */
a1d1bb31
AL
1346int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1347 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1348{
b4051334 1349 target_ulong len_mask = ~(len - 1);
c0ce998e 1350 CPUWatchpoint *wp;
6658ffb8 1351
b4051334
AL
1352 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1353 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1354 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1355 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1356 return -EINVAL;
1357 }
a1d1bb31 1358 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1359
1360 wp->vaddr = addr;
b4051334 1361 wp->len_mask = len_mask;
a1d1bb31
AL
1362 wp->flags = flags;
1363
2dc9f411 1364 /* keep all GDB-injected watchpoints in front */
c0ce998e 1365 if (flags & BP_GDB)
72cf2d4f 1366 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1367 else
72cf2d4f 1368 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1369
6658ffb8 1370 tlb_flush_page(env, addr);
a1d1bb31
AL
1371
1372 if (watchpoint)
1373 *watchpoint = wp;
1374 return 0;
6658ffb8
PB
1375}
1376
a1d1bb31
AL
1377/* Remove a specific watchpoint. */
1378int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1379 int flags)
6658ffb8 1380{
b4051334 1381 target_ulong len_mask = ~(len - 1);
a1d1bb31 1382 CPUWatchpoint *wp;
6658ffb8 1383
72cf2d4f 1384 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1385 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1386 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1387 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1388 return 0;
1389 }
1390 }
a1d1bb31 1391 return -ENOENT;
6658ffb8
PB
1392}
1393
a1d1bb31
AL
1394/* Remove a specific watchpoint by reference. */
1395void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1396{
72cf2d4f 1397 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1398
a1d1bb31
AL
1399 tlb_flush_page(env, watchpoint->vaddr);
1400
1401 qemu_free(watchpoint);
1402}
1403
1404/* Remove all matching watchpoints. */
1405void cpu_watchpoint_remove_all(CPUState *env, int mask)
1406{
c0ce998e 1407 CPUWatchpoint *wp, *next;
a1d1bb31 1408
72cf2d4f 1409 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1410 if (wp->flags & mask)
1411 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1412 }
7d03f82f
EI
1413}
1414
a1d1bb31
AL
1415/* Add a breakpoint. */
1416int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1417 CPUBreakpoint **breakpoint)
4c3a88a2 1418{
1fddef4b 1419#if defined(TARGET_HAS_ICE)
c0ce998e 1420 CPUBreakpoint *bp;
3b46e624 1421
a1d1bb31 1422 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1423
a1d1bb31
AL
1424 bp->pc = pc;
1425 bp->flags = flags;
1426
2dc9f411 1427 /* keep all GDB-injected breakpoints in front */
c0ce998e 1428 if (flags & BP_GDB)
72cf2d4f 1429 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1430 else
72cf2d4f 1431 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1432
d720b93d 1433 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1434
1435 if (breakpoint)
1436 *breakpoint = bp;
4c3a88a2
FB
1437 return 0;
1438#else
a1d1bb31 1439 return -ENOSYS;
4c3a88a2
FB
1440#endif
1441}
1442
a1d1bb31
AL
1443/* Remove a specific breakpoint. */
1444int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1445{
7d03f82f 1446#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1447 CPUBreakpoint *bp;
1448
72cf2d4f 1449 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1450 if (bp->pc == pc && bp->flags == flags) {
1451 cpu_breakpoint_remove_by_ref(env, bp);
1452 return 0;
1453 }
7d03f82f 1454 }
a1d1bb31
AL
1455 return -ENOENT;
1456#else
1457 return -ENOSYS;
7d03f82f
EI
1458#endif
1459}
1460
a1d1bb31
AL
1461/* Remove a specific breakpoint by reference. */
1462void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1463{
1fddef4b 1464#if defined(TARGET_HAS_ICE)
72cf2d4f 1465 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1466
a1d1bb31
AL
1467 breakpoint_invalidate(env, breakpoint->pc);
1468
1469 qemu_free(breakpoint);
1470#endif
1471}
1472
1473/* Remove all matching breakpoints. */
1474void cpu_breakpoint_remove_all(CPUState *env, int mask)
1475{
1476#if defined(TARGET_HAS_ICE)
c0ce998e 1477 CPUBreakpoint *bp, *next;
a1d1bb31 1478
72cf2d4f 1479 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1480 if (bp->flags & mask)
1481 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1482 }
4c3a88a2
FB
1483#endif
1484}
1485
c33a346e
FB
1486/* enable or disable single step mode. EXCP_DEBUG is returned by the
1487 CPU loop after each instruction */
1488void cpu_single_step(CPUState *env, int enabled)
1489{
1fddef4b 1490#if defined(TARGET_HAS_ICE)
c33a346e
FB
1491 if (env->singlestep_enabled != enabled) {
1492 env->singlestep_enabled = enabled;
e22a25c9
AL
1493 if (kvm_enabled())
1494 kvm_update_guest_debug(env, 0);
1495 else {
ccbb4d44 1496 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1497 /* XXX: only flush what is necessary */
1498 tb_flush(env);
1499 }
c33a346e
FB
1500 }
1501#endif
1502}
1503
34865134
FB
1504/* enable or disable low levels log */
1505void cpu_set_log(int log_flags)
1506{
1507 loglevel = log_flags;
1508 if (loglevel && !logfile) {
11fcfab4 1509 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1510 if (!logfile) {
1511 perror(logfilename);
1512 _exit(1);
1513 }
9fa3e853
FB
1514#if !defined(CONFIG_SOFTMMU)
1515 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1516 {
b55266b5 1517 static char logfile_buf[4096];
9fa3e853
FB
1518 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1519 }
bf65f53f
FN
1520#elif !defined(_WIN32)
1521 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1522 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1523#endif
e735b91c
PB
1524 log_append = 1;
1525 }
1526 if (!loglevel && logfile) {
1527 fclose(logfile);
1528 logfile = NULL;
34865134
FB
1529 }
1530}
1531
1532void cpu_set_log_filename(const char *filename)
1533{
1534 logfilename = strdup(filename);
e735b91c
PB
1535 if (logfile) {
1536 fclose(logfile);
1537 logfile = NULL;
1538 }
1539 cpu_set_log(loglevel);
34865134 1540}
c33a346e 1541
3098dba0 1542static void cpu_unlink_tb(CPUState *env)
ea041c0e 1543{
3098dba0
AJ
1544 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1545 problem and hope the cpu will stop of its own accord. For userspace
1546 emulation this often isn't actually as bad as it sounds. Often
1547 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1548 TranslationBlock *tb;
c227f099 1549 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1550
cab1b4bd 1551 spin_lock(&interrupt_lock);
3098dba0
AJ
1552 tb = env->current_tb;
1553 /* if the cpu is currently executing code, we must unlink it and
1554 all the potentially executing TB */
f76cfe56 1555 if (tb) {
3098dba0
AJ
1556 env->current_tb = NULL;
1557 tb_reset_jump_recursive(tb);
be214e6c 1558 }
cab1b4bd 1559 spin_unlock(&interrupt_lock);
3098dba0
AJ
1560}
1561
1562/* mask must never be zero, except for A20 change call */
1563void cpu_interrupt(CPUState *env, int mask)
1564{
1565 int old_mask;
be214e6c 1566
2e70f6ef 1567 old_mask = env->interrupt_request;
68a79315 1568 env->interrupt_request |= mask;
3098dba0 1569
8edac960
AL
1570#ifndef CONFIG_USER_ONLY
1571 /*
1572 * If called from iothread context, wake the target cpu in
1573 * case its halted.
1574 */
1575 if (!qemu_cpu_self(env)) {
1576 qemu_cpu_kick(env);
1577 return;
1578 }
1579#endif
1580
2e70f6ef 1581 if (use_icount) {
266910c4 1582 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1583#ifndef CONFIG_USER_ONLY
2e70f6ef 1584 if (!can_do_io(env)
be214e6c 1585 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1586 cpu_abort(env, "Raised interrupt while not in I/O function");
1587 }
1588#endif
1589 } else {
3098dba0 1590 cpu_unlink_tb(env);
ea041c0e
FB
1591 }
1592}
1593
b54ad049
FB
1594void cpu_reset_interrupt(CPUState *env, int mask)
1595{
1596 env->interrupt_request &= ~mask;
1597}
1598
3098dba0
AJ
1599void cpu_exit(CPUState *env)
1600{
1601 env->exit_request = 1;
1602 cpu_unlink_tb(env);
1603}
1604
c7cd6a37 1605const CPULogItem cpu_log_items[] = {
5fafdf24 1606 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1607 "show generated host assembly code for each compiled TB" },
1608 { CPU_LOG_TB_IN_ASM, "in_asm",
1609 "show target assembly code for each compiled TB" },
5fafdf24 1610 { CPU_LOG_TB_OP, "op",
57fec1fe 1611 "show micro ops for each compiled TB" },
f193c797 1612 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1613 "show micro ops "
1614#ifdef TARGET_I386
1615 "before eflags optimization and "
f193c797 1616#endif
e01a1157 1617 "after liveness analysis" },
f193c797
FB
1618 { CPU_LOG_INT, "int",
1619 "show interrupts/exceptions in short format" },
1620 { CPU_LOG_EXEC, "exec",
1621 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1622 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1623 "show CPU state before block translation" },
f193c797
FB
1624#ifdef TARGET_I386
1625 { CPU_LOG_PCALL, "pcall",
1626 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1627 { CPU_LOG_RESET, "cpu_reset",
1628 "show CPU state before CPU resets" },
f193c797 1629#endif
8e3a9fd2 1630#ifdef DEBUG_IOPORT
fd872598
FB
1631 { CPU_LOG_IOPORT, "ioport",
1632 "show all i/o ports accesses" },
8e3a9fd2 1633#endif
f193c797
FB
1634 { 0, NULL, NULL },
1635};
1636
f6f3fbca
MT
1637#ifndef CONFIG_USER_ONLY
1638static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1639 = QLIST_HEAD_INITIALIZER(memory_client_list);
1640
1641static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1642 ram_addr_t size,
1643 ram_addr_t phys_offset)
1644{
1645 CPUPhysMemoryClient *client;
1646 QLIST_FOREACH(client, &memory_client_list, list) {
1647 client->set_memory(client, start_addr, size, phys_offset);
1648 }
1649}
1650
1651static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1652 target_phys_addr_t end)
1653{
1654 CPUPhysMemoryClient *client;
1655 QLIST_FOREACH(client, &memory_client_list, list) {
1656 int r = client->sync_dirty_bitmap(client, start, end);
1657 if (r < 0)
1658 return r;
1659 }
1660 return 0;
1661}
1662
1663static int cpu_notify_migration_log(int enable)
1664{
1665 CPUPhysMemoryClient *client;
1666 QLIST_FOREACH(client, &memory_client_list, list) {
1667 int r = client->migration_log(client, enable);
1668 if (r < 0)
1669 return r;
1670 }
1671 return 0;
1672}
1673
1674static void phys_page_for_each_in_l1_map(PhysPageDesc **phys_map,
1675 CPUPhysMemoryClient *client)
1676{
1677 PhysPageDesc *pd;
1678 int l1, l2;
1679
1680 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1681 pd = phys_map[l1];
1682 if (!pd) {
1683 continue;
1684 }
1685 for (l2 = 0; l2 < L2_SIZE; ++l2) {
1686 if (pd[l2].phys_offset == IO_MEM_UNASSIGNED) {
1687 continue;
1688 }
1689 client->set_memory(client, pd[l2].region_offset,
1690 TARGET_PAGE_SIZE, pd[l2].phys_offset);
1691 }
1692 }
1693}
1694
1695static void phys_page_for_each(CPUPhysMemoryClient *client)
1696{
1697#if TARGET_PHYS_ADDR_SPACE_BITS > 32
1698
1699#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
1700#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
1701#endif
1702 void **phys_map = (void **)l1_phys_map;
1703 int l1;
1704 if (!l1_phys_map) {
1705 return;
1706 }
1707 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1708 if (phys_map[l1]) {
1709 phys_page_for_each_in_l1_map(phys_map[l1], client);
1710 }
1711 }
1712#else
1713 if (!l1_phys_map) {
1714 return;
1715 }
1716 phys_page_for_each_in_l1_map(l1_phys_map, client);
1717#endif
1718}
1719
1720void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1721{
1722 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1723 phys_page_for_each(client);
1724}
1725
1726void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1727{
1728 QLIST_REMOVE(client, list);
1729}
1730#endif
1731
f193c797
FB
1732static int cmp1(const char *s1, int n, const char *s2)
1733{
1734 if (strlen(s2) != n)
1735 return 0;
1736 return memcmp(s1, s2, n) == 0;
1737}
3b46e624 1738
f193c797
FB
1739/* takes a comma separated list of log masks. Return 0 if error. */
1740int cpu_str_to_log_mask(const char *str)
1741{
c7cd6a37 1742 const CPULogItem *item;
f193c797
FB
1743 int mask;
1744 const char *p, *p1;
1745
1746 p = str;
1747 mask = 0;
1748 for(;;) {
1749 p1 = strchr(p, ',');
1750 if (!p1)
1751 p1 = p + strlen(p);
8e3a9fd2
FB
1752 if(cmp1(p,p1-p,"all")) {
1753 for(item = cpu_log_items; item->mask != 0; item++) {
1754 mask |= item->mask;
1755 }
1756 } else {
f193c797
FB
1757 for(item = cpu_log_items; item->mask != 0; item++) {
1758 if (cmp1(p, p1 - p, item->name))
1759 goto found;
1760 }
1761 return 0;
8e3a9fd2 1762 }
f193c797
FB
1763 found:
1764 mask |= item->mask;
1765 if (*p1 != ',')
1766 break;
1767 p = p1 + 1;
1768 }
1769 return mask;
1770}
ea041c0e 1771
7501267e
FB
1772void cpu_abort(CPUState *env, const char *fmt, ...)
1773{
1774 va_list ap;
493ae1f0 1775 va_list ap2;
7501267e
FB
1776
1777 va_start(ap, fmt);
493ae1f0 1778 va_copy(ap2, ap);
7501267e
FB
1779 fprintf(stderr, "qemu: fatal: ");
1780 vfprintf(stderr, fmt, ap);
1781 fprintf(stderr, "\n");
1782#ifdef TARGET_I386
7fe48483
FB
1783 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1784#else
1785 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1786#endif
93fcfe39
AL
1787 if (qemu_log_enabled()) {
1788 qemu_log("qemu: fatal: ");
1789 qemu_log_vprintf(fmt, ap2);
1790 qemu_log("\n");
f9373291 1791#ifdef TARGET_I386
93fcfe39 1792 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1793#else
93fcfe39 1794 log_cpu_state(env, 0);
f9373291 1795#endif
31b1a7b4 1796 qemu_log_flush();
93fcfe39 1797 qemu_log_close();
924edcae 1798 }
493ae1f0 1799 va_end(ap2);
f9373291 1800 va_end(ap);
fd052bf6
RV
1801#if defined(CONFIG_USER_ONLY)
1802 {
1803 struct sigaction act;
1804 sigfillset(&act.sa_mask);
1805 act.sa_handler = SIG_DFL;
1806 sigaction(SIGABRT, &act, NULL);
1807 }
1808#endif
7501267e
FB
1809 abort();
1810}
1811
c5be9f08
TS
1812CPUState *cpu_copy(CPUState *env)
1813{
01ba9816 1814 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1815 CPUState *next_cpu = new_env->next_cpu;
1816 int cpu_index = new_env->cpu_index;
5a38f081
AL
1817#if defined(TARGET_HAS_ICE)
1818 CPUBreakpoint *bp;
1819 CPUWatchpoint *wp;
1820#endif
1821
c5be9f08 1822 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1823
1824 /* Preserve chaining and index. */
c5be9f08
TS
1825 new_env->next_cpu = next_cpu;
1826 new_env->cpu_index = cpu_index;
5a38f081
AL
1827
1828 /* Clone all break/watchpoints.
1829 Note: Once we support ptrace with hw-debug register access, make sure
1830 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1831 QTAILQ_INIT(&env->breakpoints);
1832 QTAILQ_INIT(&env->watchpoints);
5a38f081 1833#if defined(TARGET_HAS_ICE)
72cf2d4f 1834 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1835 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1836 }
72cf2d4f 1837 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1838 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1839 wp->flags, NULL);
1840 }
1841#endif
1842
c5be9f08
TS
1843 return new_env;
1844}
1845
0124311e
FB
1846#if !defined(CONFIG_USER_ONLY)
1847
5c751e99
EI
1848static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1849{
1850 unsigned int i;
1851
1852 /* Discard jump cache entries for any tb which might potentially
1853 overlap the flushed page. */
1854 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1855 memset (&env->tb_jmp_cache[i], 0,
1856 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1857
1858 i = tb_jmp_cache_hash_page(addr);
1859 memset (&env->tb_jmp_cache[i], 0,
1860 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1861}
1862
08738984
IK
1863static CPUTLBEntry s_cputlb_empty_entry = {
1864 .addr_read = -1,
1865 .addr_write = -1,
1866 .addr_code = -1,
1867 .addend = -1,
1868};
1869
ee8b7021
FB
1870/* NOTE: if flush_global is true, also flush global entries (not
1871 implemented yet) */
1872void tlb_flush(CPUState *env, int flush_global)
33417e70 1873{
33417e70 1874 int i;
0124311e 1875
9fa3e853
FB
1876#if defined(DEBUG_TLB)
1877 printf("tlb_flush:\n");
1878#endif
0124311e
FB
1879 /* must reset current TB so that interrupts cannot modify the
1880 links while we are modifying them */
1881 env->current_tb = NULL;
1882
33417e70 1883 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1884 int mmu_idx;
1885 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1886 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1887 }
33417e70 1888 }
9fa3e853 1889
8a40a180 1890 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1891
e3db7226 1892 tlb_flush_count++;
33417e70
FB
1893}
1894
274da6b2 1895static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1896{
5fafdf24 1897 if (addr == (tlb_entry->addr_read &
84b7b8e7 1898 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1899 addr == (tlb_entry->addr_write &
84b7b8e7 1900 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1901 addr == (tlb_entry->addr_code &
84b7b8e7 1902 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1903 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1904 }
61382a50
FB
1905}
1906
2e12669a 1907void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1908{
8a40a180 1909 int i;
cfde4bd9 1910 int mmu_idx;
0124311e 1911
9fa3e853 1912#if defined(DEBUG_TLB)
108c49b8 1913 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1914#endif
0124311e
FB
1915 /* must reset current TB so that interrupts cannot modify the
1916 links while we are modifying them */
1917 env->current_tb = NULL;
61382a50
FB
1918
1919 addr &= TARGET_PAGE_MASK;
1920 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1921 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1922 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1923
5c751e99 1924 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1925}
1926
9fa3e853
FB
1927/* update the TLBs so that writes to code in the virtual page 'addr'
1928 can be detected */
c227f099 1929static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1930{
5fafdf24 1931 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1932 ram_addr + TARGET_PAGE_SIZE,
1933 CODE_DIRTY_FLAG);
9fa3e853
FB
1934}
1935
9fa3e853 1936/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1937 tested for self modifying code */
c227f099 1938static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1939 target_ulong vaddr)
9fa3e853 1940{
3a7d929e 1941 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1942}
1943
5fafdf24 1944static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1945 unsigned long start, unsigned long length)
1946{
1947 unsigned long addr;
84b7b8e7
FB
1948 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1949 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1950 if ((addr - start) < length) {
0f459d16 1951 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1952 }
1953 }
1954}
1955
5579c7f3 1956/* Note: start and end must be within the same ram block. */
c227f099 1957void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1958 int dirty_flags)
1ccde1cb
FB
1959{
1960 CPUState *env;
4f2ac237 1961 unsigned long length, start1;
0a962c02
FB
1962 int i, mask, len;
1963 uint8_t *p;
1ccde1cb
FB
1964
1965 start &= TARGET_PAGE_MASK;
1966 end = TARGET_PAGE_ALIGN(end);
1967
1968 length = end - start;
1969 if (length == 0)
1970 return;
0a962c02 1971 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1972 mask = ~dirty_flags;
1973 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1974 for(i = 0; i < len; i++)
1975 p[i] &= mask;
1976
1ccde1cb
FB
1977 /* we modify the TLB cache so that the dirty bit will be set again
1978 when accessing the range */
5579c7f3
PB
1979 start1 = (unsigned long)qemu_get_ram_ptr(start);
1980 /* Chek that we don't span multiple blocks - this breaks the
1981 address comparisons below. */
1982 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1983 != (end - 1) - start) {
1984 abort();
1985 }
1986
6a00d601 1987 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1988 int mmu_idx;
1989 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1990 for(i = 0; i < CPU_TLB_SIZE; i++)
1991 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1992 start1, length);
1993 }
6a00d601 1994 }
1ccde1cb
FB
1995}
1996
74576198
AL
1997int cpu_physical_memory_set_dirty_tracking(int enable)
1998{
f6f3fbca 1999 int ret = 0;
74576198 2000 in_migration = enable;
f6f3fbca
MT
2001 ret = cpu_notify_migration_log(!!enable);
2002 return ret;
74576198
AL
2003}
2004
2005int cpu_physical_memory_get_dirty_tracking(void)
2006{
2007 return in_migration;
2008}
2009
c227f099
AL
2010int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2011 target_phys_addr_t end_addr)
2bec46dc 2012{
7b8f3b78 2013 int ret;
151f7749 2014
f6f3fbca 2015 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2016 return ret;
2bec46dc
AL
2017}
2018
3a7d929e
FB
2019static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2020{
c227f099 2021 ram_addr_t ram_addr;
5579c7f3 2022 void *p;
3a7d929e 2023
84b7b8e7 2024 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2025 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2026 + tlb_entry->addend);
2027 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2028 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2029 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2030 }
2031 }
2032}
2033
2034/* update the TLB according to the current state of the dirty bits */
2035void cpu_tlb_update_dirty(CPUState *env)
2036{
2037 int i;
cfde4bd9
IY
2038 int mmu_idx;
2039 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2040 for(i = 0; i < CPU_TLB_SIZE; i++)
2041 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2042 }
3a7d929e
FB
2043}
2044
0f459d16 2045static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2046{
0f459d16
PB
2047 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2048 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2049}
2050
0f459d16
PB
2051/* update the TLB corresponding to virtual page vaddr
2052 so that it is no longer dirty */
2053static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2054{
1ccde1cb 2055 int i;
cfde4bd9 2056 int mmu_idx;
1ccde1cb 2057
0f459d16 2058 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2059 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2060 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2061 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2062}
2063
59817ccb
FB
2064/* add a new TLB entry. At most one entry for a given virtual address
2065 is permitted. Return 0 if OK or 2 if the page could not be mapped
2066 (can only happen in non SOFTMMU mode for I/O pages or pages
2067 conflicting with the host address space). */
5fafdf24 2068int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2069 target_phys_addr_t paddr, int prot,
6ebbf390 2070 int mmu_idx, int is_softmmu)
9fa3e853 2071{
92e873b9 2072 PhysPageDesc *p;
4f2ac237 2073 unsigned long pd;
9fa3e853 2074 unsigned int index;
4f2ac237 2075 target_ulong address;
0f459d16 2076 target_ulong code_address;
c227f099 2077 target_phys_addr_t addend;
9fa3e853 2078 int ret;
84b7b8e7 2079 CPUTLBEntry *te;
a1d1bb31 2080 CPUWatchpoint *wp;
c227f099 2081 target_phys_addr_t iotlb;
9fa3e853 2082
92e873b9 2083 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2084 if (!p) {
2085 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2086 } else {
2087 pd = p->phys_offset;
9fa3e853
FB
2088 }
2089#if defined(DEBUG_TLB)
6ebbf390
JM
2090 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2091 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2092#endif
2093
2094 ret = 0;
0f459d16
PB
2095 address = vaddr;
2096 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2097 /* IO memory case (romd handled later) */
2098 address |= TLB_MMIO;
2099 }
5579c7f3 2100 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2101 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2102 /* Normal RAM. */
2103 iotlb = pd & TARGET_PAGE_MASK;
2104 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2105 iotlb |= IO_MEM_NOTDIRTY;
2106 else
2107 iotlb |= IO_MEM_ROM;
2108 } else {
ccbb4d44 2109 /* IO handlers are currently passed a physical address.
0f459d16
PB
2110 It would be nice to pass an offset from the base address
2111 of that region. This would avoid having to special case RAM,
2112 and avoid full address decoding in every device.
2113 We can't use the high bits of pd for this because
2114 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2115 iotlb = (pd & ~TARGET_PAGE_MASK);
2116 if (p) {
8da3ff18
PB
2117 iotlb += p->region_offset;
2118 } else {
2119 iotlb += paddr;
2120 }
0f459d16
PB
2121 }
2122
2123 code_address = address;
2124 /* Make accesses to pages with watchpoints go via the
2125 watchpoint trap routines. */
72cf2d4f 2126 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2127 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2128 iotlb = io_mem_watch + paddr;
2129 /* TODO: The memory case can be optimized by not trapping
2130 reads of pages with a write breakpoint. */
2131 address |= TLB_MMIO;
6658ffb8 2132 }
0f459d16 2133 }
d79acba4 2134
0f459d16
PB
2135 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2136 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2137 te = &env->tlb_table[mmu_idx][index];
2138 te->addend = addend - vaddr;
2139 if (prot & PAGE_READ) {
2140 te->addr_read = address;
2141 } else {
2142 te->addr_read = -1;
2143 }
5c751e99 2144
0f459d16
PB
2145 if (prot & PAGE_EXEC) {
2146 te->addr_code = code_address;
2147 } else {
2148 te->addr_code = -1;
2149 }
2150 if (prot & PAGE_WRITE) {
2151 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2152 (pd & IO_MEM_ROMD)) {
2153 /* Write access calls the I/O callback. */
2154 te->addr_write = address | TLB_MMIO;
2155 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2156 !cpu_physical_memory_is_dirty(pd)) {
2157 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2158 } else {
0f459d16 2159 te->addr_write = address;
9fa3e853 2160 }
0f459d16
PB
2161 } else {
2162 te->addr_write = -1;
9fa3e853 2163 }
9fa3e853
FB
2164 return ret;
2165}
2166
0124311e
FB
2167#else
2168
ee8b7021 2169void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2170{
2171}
2172
2e12669a 2173void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2174{
2175}
2176
5fafdf24 2177int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2178 target_phys_addr_t paddr, int prot,
6ebbf390 2179 int mmu_idx, int is_softmmu)
9fa3e853
FB
2180{
2181 return 0;
2182}
0124311e 2183
edf8e2af
MW
2184/*
2185 * Walks guest process memory "regions" one by one
2186 * and calls callback function 'fn' for each region.
2187 */
2188int walk_memory_regions(void *priv,
2189 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2190{
9fa3e853 2191 unsigned long start, end;
edf8e2af 2192 PageDesc *p = NULL;
9fa3e853 2193 int i, j, prot, prot1;
edf8e2af 2194 int rc = 0;
33417e70 2195
edf8e2af 2196 start = end = -1;
9fa3e853 2197 prot = 0;
edf8e2af
MW
2198
2199 for (i = 0; i <= L1_SIZE; i++) {
2200 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2201 for (j = 0; j < L2_SIZE; j++) {
2202 prot1 = (p == NULL) ? 0 : p[j].flags;
2203 /*
2204 * "region" is one continuous chunk of memory
2205 * that has same protection flags set.
2206 */
9fa3e853
FB
2207 if (prot1 != prot) {
2208 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2209 if (start != -1) {
edf8e2af
MW
2210 rc = (*fn)(priv, start, end, prot);
2211 /* callback can stop iteration by returning != 0 */
2212 if (rc != 0)
2213 return (rc);
9fa3e853
FB
2214 }
2215 if (prot1 != 0)
2216 start = end;
2217 else
2218 start = -1;
2219 prot = prot1;
2220 }
edf8e2af 2221 if (p == NULL)
9fa3e853
FB
2222 break;
2223 }
33417e70 2224 }
edf8e2af
MW
2225 return (rc);
2226}
2227
2228static int dump_region(void *priv, unsigned long start,
2229 unsigned long end, unsigned long prot)
2230{
2231 FILE *f = (FILE *)priv;
2232
2233 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2234 start, end, end - start,
2235 ((prot & PAGE_READ) ? 'r' : '-'),
2236 ((prot & PAGE_WRITE) ? 'w' : '-'),
2237 ((prot & PAGE_EXEC) ? 'x' : '-'));
2238
2239 return (0);
2240}
2241
2242/* dump memory mappings */
2243void page_dump(FILE *f)
2244{
2245 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2246 "start", "end", "size", "prot");
2247 walk_memory_regions(f, dump_region);
33417e70
FB
2248}
2249
53a5960a 2250int page_get_flags(target_ulong address)
33417e70 2251{
9fa3e853
FB
2252 PageDesc *p;
2253
2254 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2255 if (!p)
9fa3e853
FB
2256 return 0;
2257 return p->flags;
2258}
2259
2260/* modify the flags of a page and invalidate the code if
ccbb4d44 2261 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2262 depending on PAGE_WRITE */
53a5960a 2263void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2264{
2265 PageDesc *p;
53a5960a 2266 target_ulong addr;
9fa3e853 2267
c8a706fe 2268 /* mmap_lock should already be held. */
9fa3e853
FB
2269 start = start & TARGET_PAGE_MASK;
2270 end = TARGET_PAGE_ALIGN(end);
2271 if (flags & PAGE_WRITE)
2272 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2273 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2274 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2275 /* We may be called for host regions that are outside guest
2276 address space. */
2277 if (!p)
2278 return;
9fa3e853
FB
2279 /* if the write protection is set, then we invalidate the code
2280 inside */
5fafdf24 2281 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2282 (flags & PAGE_WRITE) &&
2283 p->first_tb) {
d720b93d 2284 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2285 }
2286 p->flags = flags;
2287 }
33417e70
FB
2288}
2289
3d97b40b
TS
2290int page_check_range(target_ulong start, target_ulong len, int flags)
2291{
2292 PageDesc *p;
2293 target_ulong end;
2294 target_ulong addr;
2295
55f280c9
AZ
2296 if (start + len < start)
2297 /* we've wrapped around */
2298 return -1;
2299
3d97b40b
TS
2300 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2301 start = start & TARGET_PAGE_MASK;
2302
3d97b40b
TS
2303 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2304 p = page_find(addr >> TARGET_PAGE_BITS);
2305 if( !p )
2306 return -1;
2307 if( !(p->flags & PAGE_VALID) )
2308 return -1;
2309
dae3270c 2310 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2311 return -1;
dae3270c
FB
2312 if (flags & PAGE_WRITE) {
2313 if (!(p->flags & PAGE_WRITE_ORG))
2314 return -1;
2315 /* unprotect the page if it was put read-only because it
2316 contains translated code */
2317 if (!(p->flags & PAGE_WRITE)) {
2318 if (!page_unprotect(addr, 0, NULL))
2319 return -1;
2320 }
2321 return 0;
2322 }
3d97b40b
TS
2323 }
2324 return 0;
2325}
2326
9fa3e853 2327/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2328 page. Return TRUE if the fault was successfully handled. */
53a5960a 2329int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2330{
2331 unsigned int page_index, prot, pindex;
2332 PageDesc *p, *p1;
53a5960a 2333 target_ulong host_start, host_end, addr;
9fa3e853 2334
c8a706fe
PB
2335 /* Technically this isn't safe inside a signal handler. However we
2336 know this only ever happens in a synchronous SEGV handler, so in
2337 practice it seems to be ok. */
2338 mmap_lock();
2339
83fb7adf 2340 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2341 page_index = host_start >> TARGET_PAGE_BITS;
2342 p1 = page_find(page_index);
c8a706fe
PB
2343 if (!p1) {
2344 mmap_unlock();
9fa3e853 2345 return 0;
c8a706fe 2346 }
83fb7adf 2347 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2348 p = p1;
2349 prot = 0;
2350 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2351 prot |= p->flags;
2352 p++;
2353 }
2354 /* if the page was really writable, then we change its
2355 protection back to writable */
2356 if (prot & PAGE_WRITE_ORG) {
2357 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2358 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2359 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2360 (prot & PAGE_BITS) | PAGE_WRITE);
2361 p1[pindex].flags |= PAGE_WRITE;
2362 /* and since the content will be modified, we must invalidate
2363 the corresponding translated code. */
d720b93d 2364 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2365#ifdef DEBUG_TB_CHECK
2366 tb_invalidate_check(address);
2367#endif
c8a706fe 2368 mmap_unlock();
9fa3e853
FB
2369 return 1;
2370 }
2371 }
c8a706fe 2372 mmap_unlock();
9fa3e853
FB
2373 return 0;
2374}
2375
6a00d601
FB
2376static inline void tlb_set_dirty(CPUState *env,
2377 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2378{
2379}
9fa3e853
FB
2380#endif /* defined(CONFIG_USER_ONLY) */
2381
e2eef170 2382#if !defined(CONFIG_USER_ONLY)
8da3ff18 2383
c227f099
AL
2384static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2385 ram_addr_t memory, ram_addr_t region_offset);
2386static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2387 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2388#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2389 need_subpage) \
2390 do { \
2391 if (addr > start_addr) \
2392 start_addr2 = 0; \
2393 else { \
2394 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2395 if (start_addr2 > 0) \
2396 need_subpage = 1; \
2397 } \
2398 \
49e9fba2 2399 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2400 end_addr2 = TARGET_PAGE_SIZE - 1; \
2401 else { \
2402 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2403 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2404 need_subpage = 1; \
2405 } \
2406 } while (0)
2407
8f2498f9
MT
2408/* register physical memory.
2409 For RAM, 'size' must be a multiple of the target page size.
2410 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2411 io memory page. The address used when calling the IO function is
2412 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2413 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2414 before calculating this offset. This should not be a problem unless
2415 the low bits of start_addr and region_offset differ. */
c227f099
AL
2416void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2417 ram_addr_t size,
2418 ram_addr_t phys_offset,
2419 ram_addr_t region_offset)
33417e70 2420{
c227f099 2421 target_phys_addr_t addr, end_addr;
92e873b9 2422 PhysPageDesc *p;
9d42037b 2423 CPUState *env;
c227f099 2424 ram_addr_t orig_size = size;
db7b5426 2425 void *subpage;
33417e70 2426
f6f3fbca
MT
2427 cpu_notify_set_memory(start_addr, size, phys_offset);
2428
67c4d23c
PB
2429 if (phys_offset == IO_MEM_UNASSIGNED) {
2430 region_offset = start_addr;
2431 }
8da3ff18 2432 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2433 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2434 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2435 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2436 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2437 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2438 ram_addr_t orig_memory = p->phys_offset;
2439 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2440 int need_subpage = 0;
2441
2442 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2443 need_subpage);
4254fab8 2444 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2445 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2446 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2447 &p->phys_offset, orig_memory,
2448 p->region_offset);
db7b5426
BS
2449 } else {
2450 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2451 >> IO_MEM_SHIFT];
2452 }
8da3ff18
PB
2453 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2454 region_offset);
2455 p->region_offset = 0;
db7b5426
BS
2456 } else {
2457 p->phys_offset = phys_offset;
2458 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2459 (phys_offset & IO_MEM_ROMD))
2460 phys_offset += TARGET_PAGE_SIZE;
2461 }
2462 } else {
2463 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2464 p->phys_offset = phys_offset;
8da3ff18 2465 p->region_offset = region_offset;
db7b5426 2466 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2467 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2468 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2469 } else {
c227f099 2470 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2471 int need_subpage = 0;
2472
2473 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2474 end_addr2, need_subpage);
2475
4254fab8 2476 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2477 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2478 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2479 addr & TARGET_PAGE_MASK);
db7b5426 2480 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2481 phys_offset, region_offset);
2482 p->region_offset = 0;
db7b5426
BS
2483 }
2484 }
2485 }
8da3ff18 2486 region_offset += TARGET_PAGE_SIZE;
33417e70 2487 }
3b46e624 2488
9d42037b
FB
2489 /* since each CPU stores ram addresses in its TLB cache, we must
2490 reset the modified entries */
2491 /* XXX: slow ! */
2492 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2493 tlb_flush(env, 1);
2494 }
33417e70
FB
2495}
2496
ba863458 2497/* XXX: temporary until new memory mapping API */
c227f099 2498ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2499{
2500 PhysPageDesc *p;
2501
2502 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2503 if (!p)
2504 return IO_MEM_UNASSIGNED;
2505 return p->phys_offset;
2506}
2507
c227f099 2508void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2509{
2510 if (kvm_enabled())
2511 kvm_coalesce_mmio_region(addr, size);
2512}
2513
c227f099 2514void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2515{
2516 if (kvm_enabled())
2517 kvm_uncoalesce_mmio_region(addr, size);
2518}
2519
62a2744c
SY
2520void qemu_flush_coalesced_mmio_buffer(void)
2521{
2522 if (kvm_enabled())
2523 kvm_flush_coalesced_mmio_buffer();
2524}
2525
c227f099 2526ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2527{
2528 RAMBlock *new_block;
2529
94a6b54f
PB
2530 size = TARGET_PAGE_ALIGN(size);
2531 new_block = qemu_malloc(sizeof(*new_block));
2532
6b02494d
AG
2533#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2534 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2535 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2536 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2537#else
94a6b54f 2538 new_block->host = qemu_vmalloc(size);
6b02494d 2539#endif
ccb167e9
IE
2540#ifdef MADV_MERGEABLE
2541 madvise(new_block->host, size, MADV_MERGEABLE);
2542#endif
94a6b54f
PB
2543 new_block->offset = last_ram_offset;
2544 new_block->length = size;
2545
2546 new_block->next = ram_blocks;
2547 ram_blocks = new_block;
2548
2549 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2550 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2551 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2552 0xff, size >> TARGET_PAGE_BITS);
2553
2554 last_ram_offset += size;
2555
6f0437e8
JK
2556 if (kvm_enabled())
2557 kvm_setup_guest_memory(new_block->host, size);
2558
94a6b54f
PB
2559 return new_block->offset;
2560}
e9a1ab19 2561
c227f099 2562void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2563{
94a6b54f 2564 /* TODO: implement this. */
e9a1ab19
FB
2565}
2566
dc828ca1 2567/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2568 With the exception of the softmmu code in this file, this should
2569 only be used for local memory (e.g. video ram) that the device owns,
2570 and knows it isn't going to access beyond the end of the block.
2571
2572 It should not be used for general purpose DMA.
2573 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2574 */
c227f099 2575void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2576{
94a6b54f
PB
2577 RAMBlock *prev;
2578 RAMBlock **prevp;
2579 RAMBlock *block;
2580
94a6b54f
PB
2581 prev = NULL;
2582 prevp = &ram_blocks;
2583 block = ram_blocks;
2584 while (block && (block->offset > addr
2585 || block->offset + block->length <= addr)) {
2586 if (prev)
2587 prevp = &prev->next;
2588 prev = block;
2589 block = block->next;
2590 }
2591 if (!block) {
2592 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2593 abort();
2594 }
2595 /* Move this entry to to start of the list. */
2596 if (prev) {
2597 prev->next = block->next;
2598 block->next = *prevp;
2599 *prevp = block;
2600 }
2601 return block->host + (addr - block->offset);
dc828ca1
PB
2602}
2603
5579c7f3
PB
2604/* Some of the softmmu routines need to translate from a host pointer
2605 (typically a TLB entry) back to a ram offset. */
c227f099 2606ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2607{
94a6b54f 2608 RAMBlock *prev;
94a6b54f
PB
2609 RAMBlock *block;
2610 uint8_t *host = ptr;
2611
94a6b54f 2612 prev = NULL;
94a6b54f
PB
2613 block = ram_blocks;
2614 while (block && (block->host > host
2615 || block->host + block->length <= host)) {
94a6b54f
PB
2616 prev = block;
2617 block = block->next;
2618 }
2619 if (!block) {
2620 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2621 abort();
2622 }
2623 return block->offset + (host - block->host);
5579c7f3
PB
2624}
2625
c227f099 2626static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2627{
67d3b957 2628#ifdef DEBUG_UNASSIGNED
ab3d1727 2629 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2630#endif
faed1c2a 2631#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2632 do_unassigned_access(addr, 0, 0, 0, 1);
2633#endif
2634 return 0;
2635}
2636
c227f099 2637static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2638{
2639#ifdef DEBUG_UNASSIGNED
2640 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2641#endif
faed1c2a 2642#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2643 do_unassigned_access(addr, 0, 0, 0, 2);
2644#endif
2645 return 0;
2646}
2647
c227f099 2648static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2649{
2650#ifdef DEBUG_UNASSIGNED
2651 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2652#endif
faed1c2a 2653#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2654 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2655#endif
33417e70
FB
2656 return 0;
2657}
2658
c227f099 2659static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2660{
67d3b957 2661#ifdef DEBUG_UNASSIGNED
ab3d1727 2662 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2663#endif
faed1c2a 2664#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2665 do_unassigned_access(addr, 1, 0, 0, 1);
2666#endif
2667}
2668
c227f099 2669static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2670{
2671#ifdef DEBUG_UNASSIGNED
2672 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2673#endif
faed1c2a 2674#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2675 do_unassigned_access(addr, 1, 0, 0, 2);
2676#endif
2677}
2678
c227f099 2679static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2680{
2681#ifdef DEBUG_UNASSIGNED
2682 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2683#endif
faed1c2a 2684#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2685 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2686#endif
33417e70
FB
2687}
2688
d60efc6b 2689static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2690 unassigned_mem_readb,
e18231a3
BS
2691 unassigned_mem_readw,
2692 unassigned_mem_readl,
33417e70
FB
2693};
2694
d60efc6b 2695static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2696 unassigned_mem_writeb,
e18231a3
BS
2697 unassigned_mem_writew,
2698 unassigned_mem_writel,
33417e70
FB
2699};
2700
c227f099 2701static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2702 uint32_t val)
9fa3e853 2703{
3a7d929e 2704 int dirty_flags;
3a7d929e
FB
2705 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2706 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2707#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2708 tb_invalidate_phys_page_fast(ram_addr, 1);
2709 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2710#endif
3a7d929e 2711 }
5579c7f3 2712 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2713 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2714 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2715 /* we remove the notdirty callback only if the code has been
2716 flushed */
2717 if (dirty_flags == 0xff)
2e70f6ef 2718 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2719}
2720
c227f099 2721static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2722 uint32_t val)
9fa3e853 2723{
3a7d929e 2724 int dirty_flags;
3a7d929e
FB
2725 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2726 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2727#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2728 tb_invalidate_phys_page_fast(ram_addr, 2);
2729 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2730#endif
3a7d929e 2731 }
5579c7f3 2732 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2733 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2734 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2735 /* we remove the notdirty callback only if the code has been
2736 flushed */
2737 if (dirty_flags == 0xff)
2e70f6ef 2738 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2739}
2740
c227f099 2741static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2742 uint32_t val)
9fa3e853 2743{
3a7d929e 2744 int dirty_flags;
3a7d929e
FB
2745 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2746 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2747#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2748 tb_invalidate_phys_page_fast(ram_addr, 4);
2749 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2750#endif
3a7d929e 2751 }
5579c7f3 2752 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2753 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2754 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2755 /* we remove the notdirty callback only if the code has been
2756 flushed */
2757 if (dirty_flags == 0xff)
2e70f6ef 2758 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2759}
2760
d60efc6b 2761static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2762 NULL, /* never used */
2763 NULL, /* never used */
2764 NULL, /* never used */
2765};
2766
d60efc6b 2767static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2768 notdirty_mem_writeb,
2769 notdirty_mem_writew,
2770 notdirty_mem_writel,
2771};
2772
0f459d16 2773/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2774static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2775{
2776 CPUState *env = cpu_single_env;
06d55cc1
AL
2777 target_ulong pc, cs_base;
2778 TranslationBlock *tb;
0f459d16 2779 target_ulong vaddr;
a1d1bb31 2780 CPUWatchpoint *wp;
06d55cc1 2781 int cpu_flags;
0f459d16 2782
06d55cc1
AL
2783 if (env->watchpoint_hit) {
2784 /* We re-entered the check after replacing the TB. Now raise
2785 * the debug interrupt so that is will trigger after the
2786 * current instruction. */
2787 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2788 return;
2789 }
2e70f6ef 2790 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2791 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2792 if ((vaddr == (wp->vaddr & len_mask) ||
2793 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2794 wp->flags |= BP_WATCHPOINT_HIT;
2795 if (!env->watchpoint_hit) {
2796 env->watchpoint_hit = wp;
2797 tb = tb_find_pc(env->mem_io_pc);
2798 if (!tb) {
2799 cpu_abort(env, "check_watchpoint: could not find TB for "
2800 "pc=%p", (void *)env->mem_io_pc);
2801 }
2802 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2803 tb_phys_invalidate(tb, -1);
2804 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2805 env->exception_index = EXCP_DEBUG;
2806 } else {
2807 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2808 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2809 }
2810 cpu_resume_from_signal(env, NULL);
06d55cc1 2811 }
6e140f28
AL
2812 } else {
2813 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2814 }
2815 }
2816}
2817
6658ffb8
PB
2818/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2819 so these check for a hit then pass through to the normal out-of-line
2820 phys routines. */
c227f099 2821static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 2822{
b4051334 2823 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2824 return ldub_phys(addr);
2825}
2826
c227f099 2827static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 2828{
b4051334 2829 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2830 return lduw_phys(addr);
2831}
2832
c227f099 2833static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 2834{
b4051334 2835 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2836 return ldl_phys(addr);
2837}
2838
c227f099 2839static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2840 uint32_t val)
2841{
b4051334 2842 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2843 stb_phys(addr, val);
2844}
2845
c227f099 2846static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2847 uint32_t val)
2848{
b4051334 2849 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2850 stw_phys(addr, val);
2851}
2852
c227f099 2853static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2854 uint32_t val)
2855{
b4051334 2856 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2857 stl_phys(addr, val);
2858}
2859
d60efc6b 2860static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2861 watch_mem_readb,
2862 watch_mem_readw,
2863 watch_mem_readl,
2864};
2865
d60efc6b 2866static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2867 watch_mem_writeb,
2868 watch_mem_writew,
2869 watch_mem_writel,
2870};
6658ffb8 2871
c227f099 2872static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2873 unsigned int len)
2874{
db7b5426
BS
2875 uint32_t ret;
2876 unsigned int idx;
2877
8da3ff18 2878 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2879#if defined(DEBUG_SUBPAGE)
2880 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2881 mmio, len, addr, idx);
2882#endif
8da3ff18
PB
2883 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2884 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2885
2886 return ret;
2887}
2888
c227f099 2889static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2890 uint32_t value, unsigned int len)
2891{
db7b5426
BS
2892 unsigned int idx;
2893
8da3ff18 2894 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2895#if defined(DEBUG_SUBPAGE)
2896 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2897 mmio, len, addr, idx, value);
2898#endif
8da3ff18
PB
2899 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2900 addr + mmio->region_offset[idx][1][len],
2901 value);
db7b5426
BS
2902}
2903
c227f099 2904static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2905{
2906#if defined(DEBUG_SUBPAGE)
2907 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2908#endif
2909
2910 return subpage_readlen(opaque, addr, 0);
2911}
2912
c227f099 2913static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2914 uint32_t value)
2915{
2916#if defined(DEBUG_SUBPAGE)
2917 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2918#endif
2919 subpage_writelen(opaque, addr, value, 0);
2920}
2921
c227f099 2922static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2923{
2924#if defined(DEBUG_SUBPAGE)
2925 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2926#endif
2927
2928 return subpage_readlen(opaque, addr, 1);
2929}
2930
c227f099 2931static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2932 uint32_t value)
2933{
2934#if defined(DEBUG_SUBPAGE)
2935 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2936#endif
2937 subpage_writelen(opaque, addr, value, 1);
2938}
2939
c227f099 2940static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2941{
2942#if defined(DEBUG_SUBPAGE)
2943 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2944#endif
2945
2946 return subpage_readlen(opaque, addr, 2);
2947}
2948
2949static void subpage_writel (void *opaque,
c227f099 2950 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
2951{
2952#if defined(DEBUG_SUBPAGE)
2953 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2954#endif
2955 subpage_writelen(opaque, addr, value, 2);
2956}
2957
d60efc6b 2958static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2959 &subpage_readb,
2960 &subpage_readw,
2961 &subpage_readl,
2962};
2963
d60efc6b 2964static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2965 &subpage_writeb,
2966 &subpage_writew,
2967 &subpage_writel,
2968};
2969
c227f099
AL
2970static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2971 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2972{
2973 int idx, eidx;
4254fab8 2974 unsigned int i;
db7b5426
BS
2975
2976 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2977 return -1;
2978 idx = SUBPAGE_IDX(start);
2979 eidx = SUBPAGE_IDX(end);
2980#if defined(DEBUG_SUBPAGE)
0bf9e31a 2981 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2982 mmio, start, end, idx, eidx, memory);
2983#endif
2984 memory >>= IO_MEM_SHIFT;
2985 for (; idx <= eidx; idx++) {
4254fab8 2986 for (i = 0; i < 4; i++) {
3ee89922
BS
2987 if (io_mem_read[memory][i]) {
2988 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2989 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2990 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2991 }
2992 if (io_mem_write[memory][i]) {
2993 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2994 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2995 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2996 }
4254fab8 2997 }
db7b5426
BS
2998 }
2999
3000 return 0;
3001}
3002
c227f099
AL
3003static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3004 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3005{
c227f099 3006 subpage_t *mmio;
db7b5426
BS
3007 int subpage_memory;
3008
c227f099 3009 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3010
3011 mmio->base = base;
1eed09cb 3012 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3013#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3014 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3015 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3016#endif
1eec614b
AL
3017 *phys = subpage_memory | IO_MEM_SUBPAGE;
3018 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3019 region_offset);
db7b5426
BS
3020
3021 return mmio;
3022}
3023
88715657
AL
3024static int get_free_io_mem_idx(void)
3025{
3026 int i;
3027
3028 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3029 if (!io_mem_used[i]) {
3030 io_mem_used[i] = 1;
3031 return i;
3032 }
c6703b47 3033 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3034 return -1;
3035}
3036
33417e70
FB
3037/* mem_read and mem_write are arrays of functions containing the
3038 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3039 2). Functions can be omitted with a NULL function pointer.
3ee89922 3040 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3041 modified. If it is zero, a new io zone is allocated. The return
3042 value can be used with cpu_register_physical_memory(). (-1) is
3043 returned if error. */
1eed09cb 3044static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3045 CPUReadMemoryFunc * const *mem_read,
3046 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3047 void *opaque)
33417e70 3048{
4254fab8 3049 int i, subwidth = 0;
33417e70
FB
3050
3051 if (io_index <= 0) {
88715657
AL
3052 io_index = get_free_io_mem_idx();
3053 if (io_index == -1)
3054 return io_index;
33417e70 3055 } else {
1eed09cb 3056 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3057 if (io_index >= IO_MEM_NB_ENTRIES)
3058 return -1;
3059 }
b5ff1b31 3060
33417e70 3061 for(i = 0;i < 3; i++) {
4254fab8
BS
3062 if (!mem_read[i] || !mem_write[i])
3063 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3064 io_mem_read[io_index][i] = mem_read[i];
3065 io_mem_write[io_index][i] = mem_write[i];
3066 }
a4193c8a 3067 io_mem_opaque[io_index] = opaque;
4254fab8 3068 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3069}
61382a50 3070
d60efc6b
BS
3071int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3072 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3073 void *opaque)
3074{
3075 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3076}
3077
88715657
AL
3078void cpu_unregister_io_memory(int io_table_address)
3079{
3080 int i;
3081 int io_index = io_table_address >> IO_MEM_SHIFT;
3082
3083 for (i=0;i < 3; i++) {
3084 io_mem_read[io_index][i] = unassigned_mem_read[i];
3085 io_mem_write[io_index][i] = unassigned_mem_write[i];
3086 }
3087 io_mem_opaque[io_index] = NULL;
3088 io_mem_used[io_index] = 0;
3089}
3090
e9179ce1
AK
3091static void io_mem_init(void)
3092{
3093 int i;
3094
3095 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3096 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3097 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3098 for (i=0; i<5; i++)
3099 io_mem_used[i] = 1;
3100
3101 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3102 watch_mem_write, NULL);
e9179ce1
AK
3103}
3104
e2eef170
PB
3105#endif /* !defined(CONFIG_USER_ONLY) */
3106
13eb76e0
FB
3107/* physical memory access (slow version, mainly for debug) */
3108#if defined(CONFIG_USER_ONLY)
c227f099 3109void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3110 int len, int is_write)
3111{
3112 int l, flags;
3113 target_ulong page;
53a5960a 3114 void * p;
13eb76e0
FB
3115
3116 while (len > 0) {
3117 page = addr & TARGET_PAGE_MASK;
3118 l = (page + TARGET_PAGE_SIZE) - addr;
3119 if (l > len)
3120 l = len;
3121 flags = page_get_flags(page);
3122 if (!(flags & PAGE_VALID))
3123 return;
3124 if (is_write) {
3125 if (!(flags & PAGE_WRITE))
3126 return;
579a97f7 3127 /* XXX: this code should not depend on lock_user */
72fb7daa 3128 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3129 /* FIXME - should this return an error rather than just fail? */
3130 return;
72fb7daa
AJ
3131 memcpy(p, buf, l);
3132 unlock_user(p, addr, l);
13eb76e0
FB
3133 } else {
3134 if (!(flags & PAGE_READ))
3135 return;
579a97f7 3136 /* XXX: this code should not depend on lock_user */
72fb7daa 3137 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3138 /* FIXME - should this return an error rather than just fail? */
3139 return;
72fb7daa 3140 memcpy(buf, p, l);
5b257578 3141 unlock_user(p, addr, 0);
13eb76e0
FB
3142 }
3143 len -= l;
3144 buf += l;
3145 addr += l;
3146 }
3147}
8df1cd07 3148
13eb76e0 3149#else
c227f099 3150void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3151 int len, int is_write)
3152{
3153 int l, io_index;
3154 uint8_t *ptr;
3155 uint32_t val;
c227f099 3156 target_phys_addr_t page;
2e12669a 3157 unsigned long pd;
92e873b9 3158 PhysPageDesc *p;
3b46e624 3159
13eb76e0
FB
3160 while (len > 0) {
3161 page = addr & TARGET_PAGE_MASK;
3162 l = (page + TARGET_PAGE_SIZE) - addr;
3163 if (l > len)
3164 l = len;
92e873b9 3165 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3166 if (!p) {
3167 pd = IO_MEM_UNASSIGNED;
3168 } else {
3169 pd = p->phys_offset;
3170 }
3b46e624 3171
13eb76e0 3172 if (is_write) {
3a7d929e 3173 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3174 target_phys_addr_t addr1 = addr;
13eb76e0 3175 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3176 if (p)
6c2934db 3177 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3178 /* XXX: could force cpu_single_env to NULL to avoid
3179 potential bugs */
6c2934db 3180 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3181 /* 32 bit write access */
c27004ec 3182 val = ldl_p(buf);
6c2934db 3183 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3184 l = 4;
6c2934db 3185 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3186 /* 16 bit write access */
c27004ec 3187 val = lduw_p(buf);
6c2934db 3188 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3189 l = 2;
3190 } else {
1c213d19 3191 /* 8 bit write access */
c27004ec 3192 val = ldub_p(buf);
6c2934db 3193 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3194 l = 1;
3195 }
3196 } else {
b448f2f3
FB
3197 unsigned long addr1;
3198 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3199 /* RAM case */
5579c7f3 3200 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3201 memcpy(ptr, buf, l);
3a7d929e
FB
3202 if (!cpu_physical_memory_is_dirty(addr1)) {
3203 /* invalidate code */
3204 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3205 /* set dirty bit */
5fafdf24 3206 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3207 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3208 }
13eb76e0
FB
3209 }
3210 } else {
5fafdf24 3211 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3212 !(pd & IO_MEM_ROMD)) {
c227f099 3213 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3214 /* I/O case */
3215 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3216 if (p)
6c2934db
AJ
3217 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3218 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3219 /* 32 bit read access */
6c2934db 3220 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3221 stl_p(buf, val);
13eb76e0 3222 l = 4;
6c2934db 3223 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3224 /* 16 bit read access */
6c2934db 3225 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3226 stw_p(buf, val);
13eb76e0
FB
3227 l = 2;
3228 } else {
1c213d19 3229 /* 8 bit read access */
6c2934db 3230 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3231 stb_p(buf, val);
13eb76e0
FB
3232 l = 1;
3233 }
3234 } else {
3235 /* RAM case */
5579c7f3 3236 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3237 (addr & ~TARGET_PAGE_MASK);
3238 memcpy(buf, ptr, l);
3239 }
3240 }
3241 len -= l;
3242 buf += l;
3243 addr += l;
3244 }
3245}
8df1cd07 3246
d0ecd2aa 3247/* used for ROM loading : can write in RAM and ROM */
c227f099 3248void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3249 const uint8_t *buf, int len)
3250{
3251 int l;
3252 uint8_t *ptr;
c227f099 3253 target_phys_addr_t page;
d0ecd2aa
FB
3254 unsigned long pd;
3255 PhysPageDesc *p;
3b46e624 3256
d0ecd2aa
FB
3257 while (len > 0) {
3258 page = addr & TARGET_PAGE_MASK;
3259 l = (page + TARGET_PAGE_SIZE) - addr;
3260 if (l > len)
3261 l = len;
3262 p = phys_page_find(page >> TARGET_PAGE_BITS);
3263 if (!p) {
3264 pd = IO_MEM_UNASSIGNED;
3265 } else {
3266 pd = p->phys_offset;
3267 }
3b46e624 3268
d0ecd2aa 3269 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3270 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3271 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3272 /* do nothing */
3273 } else {
3274 unsigned long addr1;
3275 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3276 /* ROM/RAM case */
5579c7f3 3277 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3278 memcpy(ptr, buf, l);
3279 }
3280 len -= l;
3281 buf += l;
3282 addr += l;
3283 }
3284}
3285
6d16c2f8
AL
3286typedef struct {
3287 void *buffer;
c227f099
AL
3288 target_phys_addr_t addr;
3289 target_phys_addr_t len;
6d16c2f8
AL
3290} BounceBuffer;
3291
3292static BounceBuffer bounce;
3293
ba223c29
AL
3294typedef struct MapClient {
3295 void *opaque;
3296 void (*callback)(void *opaque);
72cf2d4f 3297 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3298} MapClient;
3299
72cf2d4f
BS
3300static QLIST_HEAD(map_client_list, MapClient) map_client_list
3301 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3302
3303void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3304{
3305 MapClient *client = qemu_malloc(sizeof(*client));
3306
3307 client->opaque = opaque;
3308 client->callback = callback;
72cf2d4f 3309 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3310 return client;
3311}
3312
3313void cpu_unregister_map_client(void *_client)
3314{
3315 MapClient *client = (MapClient *)_client;
3316
72cf2d4f 3317 QLIST_REMOVE(client, link);
34d5e948 3318 qemu_free(client);
ba223c29
AL
3319}
3320
3321static void cpu_notify_map_clients(void)
3322{
3323 MapClient *client;
3324
72cf2d4f
BS
3325 while (!QLIST_EMPTY(&map_client_list)) {
3326 client = QLIST_FIRST(&map_client_list);
ba223c29 3327 client->callback(client->opaque);
34d5e948 3328 cpu_unregister_map_client(client);
ba223c29
AL
3329 }
3330}
3331
6d16c2f8
AL
3332/* Map a physical memory region into a host virtual address.
3333 * May map a subset of the requested range, given by and returned in *plen.
3334 * May return NULL if resources needed to perform the mapping are exhausted.
3335 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3336 * Use cpu_register_map_client() to know when retrying the map operation is
3337 * likely to succeed.
6d16c2f8 3338 */
c227f099
AL
3339void *cpu_physical_memory_map(target_phys_addr_t addr,
3340 target_phys_addr_t *plen,
6d16c2f8
AL
3341 int is_write)
3342{
c227f099
AL
3343 target_phys_addr_t len = *plen;
3344 target_phys_addr_t done = 0;
6d16c2f8
AL
3345 int l;
3346 uint8_t *ret = NULL;
3347 uint8_t *ptr;
c227f099 3348 target_phys_addr_t page;
6d16c2f8
AL
3349 unsigned long pd;
3350 PhysPageDesc *p;
3351 unsigned long addr1;
3352
3353 while (len > 0) {
3354 page = addr & TARGET_PAGE_MASK;
3355 l = (page + TARGET_PAGE_SIZE) - addr;
3356 if (l > len)
3357 l = len;
3358 p = phys_page_find(page >> TARGET_PAGE_BITS);
3359 if (!p) {
3360 pd = IO_MEM_UNASSIGNED;
3361 } else {
3362 pd = p->phys_offset;
3363 }
3364
3365 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3366 if (done || bounce.buffer) {
3367 break;
3368 }
3369 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3370 bounce.addr = addr;
3371 bounce.len = l;
3372 if (!is_write) {
3373 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3374 }
3375 ptr = bounce.buffer;
3376 } else {
3377 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3378 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3379 }
3380 if (!done) {
3381 ret = ptr;
3382 } else if (ret + done != ptr) {
3383 break;
3384 }
3385
3386 len -= l;
3387 addr += l;
3388 done += l;
3389 }
3390 *plen = done;
3391 return ret;
3392}
3393
3394/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3395 * Will also mark the memory as dirty if is_write == 1. access_len gives
3396 * the amount of memory that was actually read or written by the caller.
3397 */
c227f099
AL
3398void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3399 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3400{
3401 if (buffer != bounce.buffer) {
3402 if (is_write) {
c227f099 3403 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3404 while (access_len) {
3405 unsigned l;
3406 l = TARGET_PAGE_SIZE;
3407 if (l > access_len)
3408 l = access_len;
3409 if (!cpu_physical_memory_is_dirty(addr1)) {
3410 /* invalidate code */
3411 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3412 /* set dirty bit */
3413 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3414 (0xff & ~CODE_DIRTY_FLAG);
3415 }
3416 addr1 += l;
3417 access_len -= l;
3418 }
3419 }
3420 return;
3421 }
3422 if (is_write) {
3423 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3424 }
f8a83245 3425 qemu_vfree(bounce.buffer);
6d16c2f8 3426 bounce.buffer = NULL;
ba223c29 3427 cpu_notify_map_clients();
6d16c2f8 3428}
d0ecd2aa 3429
8df1cd07 3430/* warning: addr must be aligned */
c227f099 3431uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3432{
3433 int io_index;
3434 uint8_t *ptr;
3435 uint32_t val;
3436 unsigned long pd;
3437 PhysPageDesc *p;
3438
3439 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3440 if (!p) {
3441 pd = IO_MEM_UNASSIGNED;
3442 } else {
3443 pd = p->phys_offset;
3444 }
3b46e624 3445
5fafdf24 3446 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3447 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3448 /* I/O case */
3449 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3450 if (p)
3451 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3452 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3453 } else {
3454 /* RAM case */
5579c7f3 3455 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3456 (addr & ~TARGET_PAGE_MASK);
3457 val = ldl_p(ptr);
3458 }
3459 return val;
3460}
3461
84b7b8e7 3462/* warning: addr must be aligned */
c227f099 3463uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3464{
3465 int io_index;
3466 uint8_t *ptr;
3467 uint64_t val;
3468 unsigned long pd;
3469 PhysPageDesc *p;
3470
3471 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3472 if (!p) {
3473 pd = IO_MEM_UNASSIGNED;
3474 } else {
3475 pd = p->phys_offset;
3476 }
3b46e624 3477
2a4188a3
FB
3478 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3479 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3480 /* I/O case */
3481 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3482 if (p)
3483 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3484#ifdef TARGET_WORDS_BIGENDIAN
3485 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3486 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3487#else
3488 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3489 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3490#endif
3491 } else {
3492 /* RAM case */
5579c7f3 3493 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3494 (addr & ~TARGET_PAGE_MASK);
3495 val = ldq_p(ptr);
3496 }
3497 return val;
3498}
3499
aab33094 3500/* XXX: optimize */
c227f099 3501uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3502{
3503 uint8_t val;
3504 cpu_physical_memory_read(addr, &val, 1);
3505 return val;
3506}
3507
3508/* XXX: optimize */
c227f099 3509uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3510{
3511 uint16_t val;
3512 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3513 return tswap16(val);
3514}
3515
8df1cd07
FB
3516/* warning: addr must be aligned. The ram page is not masked as dirty
3517 and the code inside is not invalidated. It is useful if the dirty
3518 bits are used to track modified PTEs */
c227f099 3519void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3520{
3521 int io_index;
3522 uint8_t *ptr;
3523 unsigned long pd;
3524 PhysPageDesc *p;
3525
3526 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3527 if (!p) {
3528 pd = IO_MEM_UNASSIGNED;
3529 } else {
3530 pd = p->phys_offset;
3531 }
3b46e624 3532
3a7d929e 3533 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3534 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3535 if (p)
3536 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3537 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3538 } else {
74576198 3539 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3540 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3541 stl_p(ptr, val);
74576198
AL
3542
3543 if (unlikely(in_migration)) {
3544 if (!cpu_physical_memory_is_dirty(addr1)) {
3545 /* invalidate code */
3546 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3547 /* set dirty bit */
3548 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3549 (0xff & ~CODE_DIRTY_FLAG);
3550 }
3551 }
8df1cd07
FB
3552 }
3553}
3554
c227f099 3555void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3556{
3557 int io_index;
3558 uint8_t *ptr;
3559 unsigned long pd;
3560 PhysPageDesc *p;
3561
3562 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3563 if (!p) {
3564 pd = IO_MEM_UNASSIGNED;
3565 } else {
3566 pd = p->phys_offset;
3567 }
3b46e624 3568
bc98a7ef
JM
3569 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3570 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3571 if (p)
3572 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3573#ifdef TARGET_WORDS_BIGENDIAN
3574 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3575 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3576#else
3577 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3578 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3579#endif
3580 } else {
5579c7f3 3581 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3582 (addr & ~TARGET_PAGE_MASK);
3583 stq_p(ptr, val);
3584 }
3585}
3586
8df1cd07 3587/* warning: addr must be aligned */
c227f099 3588void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3589{
3590 int io_index;
3591 uint8_t *ptr;
3592 unsigned long pd;
3593 PhysPageDesc *p;
3594
3595 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3596 if (!p) {
3597 pd = IO_MEM_UNASSIGNED;
3598 } else {
3599 pd = p->phys_offset;
3600 }
3b46e624 3601
3a7d929e 3602 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3603 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3604 if (p)
3605 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3606 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3607 } else {
3608 unsigned long addr1;
3609 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3610 /* RAM case */
5579c7f3 3611 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3612 stl_p(ptr, val);
3a7d929e
FB
3613 if (!cpu_physical_memory_is_dirty(addr1)) {
3614 /* invalidate code */
3615 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3616 /* set dirty bit */
f23db169
FB
3617 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3618 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3619 }
8df1cd07
FB
3620 }
3621}
3622
aab33094 3623/* XXX: optimize */
c227f099 3624void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3625{
3626 uint8_t v = val;
3627 cpu_physical_memory_write(addr, &v, 1);
3628}
3629
3630/* XXX: optimize */
c227f099 3631void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3632{
3633 uint16_t v = tswap16(val);
3634 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3635}
3636
3637/* XXX: optimize */
c227f099 3638void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3639{
3640 val = tswap64(val);
3641 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3642}
3643
13eb76e0
FB
3644#endif
3645
5e2972fd 3646/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3647int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3648 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3649{
3650 int l;
c227f099 3651 target_phys_addr_t phys_addr;
9b3c35e0 3652 target_ulong page;
13eb76e0
FB
3653
3654 while (len > 0) {
3655 page = addr & TARGET_PAGE_MASK;
3656 phys_addr = cpu_get_phys_page_debug(env, page);
3657 /* if no physical page mapped, return an error */
3658 if (phys_addr == -1)
3659 return -1;
3660 l = (page + TARGET_PAGE_SIZE) - addr;
3661 if (l > len)
3662 l = len;
5e2972fd
AL
3663 phys_addr += (addr & ~TARGET_PAGE_MASK);
3664#if !defined(CONFIG_USER_ONLY)
3665 if (is_write)
3666 cpu_physical_memory_write_rom(phys_addr, buf, l);
3667 else
3668#endif
3669 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3670 len -= l;
3671 buf += l;
3672 addr += l;
3673 }
3674 return 0;
3675}
3676
2e70f6ef
PB
3677/* in deterministic execution mode, instructions doing device I/Os
3678 must be at the end of the TB */
3679void cpu_io_recompile(CPUState *env, void *retaddr)
3680{
3681 TranslationBlock *tb;
3682 uint32_t n, cflags;
3683 target_ulong pc, cs_base;
3684 uint64_t flags;
3685
3686 tb = tb_find_pc((unsigned long)retaddr);
3687 if (!tb) {
3688 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3689 retaddr);
3690 }
3691 n = env->icount_decr.u16.low + tb->icount;
3692 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3693 /* Calculate how many instructions had been executed before the fault
bf20dc07 3694 occurred. */
2e70f6ef
PB
3695 n = n - env->icount_decr.u16.low;
3696 /* Generate a new TB ending on the I/O insn. */
3697 n++;
3698 /* On MIPS and SH, delay slot instructions can only be restarted if
3699 they were already the first instruction in the TB. If this is not
bf20dc07 3700 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3701 branch. */
3702#if defined(TARGET_MIPS)
3703 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3704 env->active_tc.PC -= 4;
3705 env->icount_decr.u16.low++;
3706 env->hflags &= ~MIPS_HFLAG_BMASK;
3707 }
3708#elif defined(TARGET_SH4)
3709 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3710 && n > 1) {
3711 env->pc -= 2;
3712 env->icount_decr.u16.low++;
3713 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3714 }
3715#endif
3716 /* This should never happen. */
3717 if (n > CF_COUNT_MASK)
3718 cpu_abort(env, "TB too big during recompile");
3719
3720 cflags = n | CF_LAST_IO;
3721 pc = tb->pc;
3722 cs_base = tb->cs_base;
3723 flags = tb->flags;
3724 tb_phys_invalidate(tb, -1);
3725 /* FIXME: In theory this could raise an exception. In practice
3726 we have already translated the block once so it's probably ok. */
3727 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3728 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3729 the first in the TB) then we end up generating a whole new TB and
3730 repeating the fault, which is horribly inefficient.
3731 Better would be to execute just this insn uncached, or generate a
3732 second new TB. */
3733 cpu_resume_from_signal(env, NULL);
3734}
3735
e3db7226
FB
3736void dump_exec_info(FILE *f,
3737 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3738{
3739 int i, target_code_size, max_target_code_size;
3740 int direct_jmp_count, direct_jmp2_count, cross_page;
3741 TranslationBlock *tb;
3b46e624 3742
e3db7226
FB
3743 target_code_size = 0;
3744 max_target_code_size = 0;
3745 cross_page = 0;
3746 direct_jmp_count = 0;
3747 direct_jmp2_count = 0;
3748 for(i = 0; i < nb_tbs; i++) {
3749 tb = &tbs[i];
3750 target_code_size += tb->size;
3751 if (tb->size > max_target_code_size)
3752 max_target_code_size = tb->size;
3753 if (tb->page_addr[1] != -1)
3754 cross_page++;
3755 if (tb->tb_next_offset[0] != 0xffff) {
3756 direct_jmp_count++;
3757 if (tb->tb_next_offset[1] != 0xffff) {
3758 direct_jmp2_count++;
3759 }
3760 }
3761 }
3762 /* XXX: avoid using doubles ? */
57fec1fe 3763 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3764 cpu_fprintf(f, "gen code size %ld/%ld\n",
3765 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3766 cpu_fprintf(f, "TB count %d/%d\n",
3767 nb_tbs, code_gen_max_blocks);
5fafdf24 3768 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3769 nb_tbs ? target_code_size / nb_tbs : 0,
3770 max_target_code_size);
5fafdf24 3771 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3772 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3773 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3774 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3775 cross_page,
e3db7226
FB
3776 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3777 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3778 direct_jmp_count,
e3db7226
FB
3779 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3780 direct_jmp2_count,
3781 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3782 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3783 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3784 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3785 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3786 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3787}
3788
5fafdf24 3789#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3790
3791#define MMUSUFFIX _cmmu
3792#define GETPC() NULL
3793#define env cpu_single_env
b769d8fe 3794#define SOFTMMU_CODE_ACCESS
61382a50
FB
3795
3796#define SHIFT 0
3797#include "softmmu_template.h"
3798
3799#define SHIFT 1
3800#include "softmmu_template.h"
3801
3802#define SHIFT 2
3803#include "softmmu_template.h"
3804
3805#define SHIFT 3
3806#include "softmmu_template.h"
3807
3808#undef env
3809
3810#endif