]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Add -rtc-td-hack option to fix time drift with RTC on Windows (Gleb Natapov)
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
fad6cb1a 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
54936004 19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
74576198 41#include "osdep.h"
7ba1e619 42#include "kvm.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
45#endif
54936004 46
fd6ce8f6 47//#define DEBUG_TB_INVALIDATE
66e85a21 48//#define DEBUG_FLUSH
9fa3e853 49//#define DEBUG_TLB
67d3b957 50//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
51
52/* make various TB consistency checks */
5fafdf24
TS
53//#define DEBUG_TB_CHECK
54//#define DEBUG_TLB_CHECK
fd6ce8f6 55
1196be37 56//#define DEBUG_IOPORT
db7b5426 57//#define DEBUG_SUBPAGE
1196be37 58
99773bd4
PB
59#if !defined(CONFIG_USER_ONLY)
60/* TB consistency checks only implemented for usermode emulation. */
61#undef DEBUG_TB_CHECK
62#endif
63
9fa3e853
FB
64#define SMC_BITMAP_USE_THRESHOLD 10
65
66#define MMAP_AREA_START 0x00000000
67#define MMAP_AREA_END 0xa8000000
fd6ce8f6 68
108c49b8
FB
69#if defined(TARGET_SPARC64)
70#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
71#elif defined(TARGET_SPARC)
72#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
73#elif defined(TARGET_ALPHA)
74#define TARGET_PHYS_ADDR_SPACE_BITS 42
75#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
76#elif defined(TARGET_PPC64)
77#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
78#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79#define TARGET_PHYS_ADDR_SPACE_BITS 42
80#elif defined(TARGET_I386) && !defined(USE_KQEMU)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
82#else
83/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84#define TARGET_PHYS_ADDR_SPACE_BITS 32
85#endif
86
bdaf78e0 87static TranslationBlock *tbs;
26a5f13b 88int code_gen_max_blocks;
9fa3e853 89TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 90static int nb_tbs;
eb51d102
FB
91/* any access to the tbs or the page table must use this lock */
92spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 93
141ac468
BS
94#if defined(__arm__) || defined(__sparc_v9__)
95/* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
97 section close to code segment. */
98#define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101#else
102#define code_gen_section \
103 __attribute__((aligned (32)))
104#endif
105
106uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
107static uint8_t *code_gen_buffer;
108static unsigned long code_gen_buffer_size;
26a5f13b 109/* threshold to flush the translated code buffer */
bdaf78e0 110static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
111uint8_t *code_gen_ptr;
112
e2eef170 113#if !defined(CONFIG_USER_ONLY)
00f82b8a 114ram_addr_t phys_ram_size;
9fa3e853
FB
115int phys_ram_fd;
116uint8_t *phys_ram_base;
1ccde1cb 117uint8_t *phys_ram_dirty;
74576198 118static int in_migration;
e9a1ab19 119static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 120#endif
9fa3e853 121
6a00d601
FB
122CPUState *first_cpu;
123/* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
5fafdf24 125CPUState *cpu_single_env;
2e70f6ef 126/* 0 = Do not count executed instructions.
bf20dc07 127 1 = Precise instruction counting.
2e70f6ef
PB
128 2 = Adaptive rate instruction counting. */
129int use_icount = 0;
130/* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132int64_t qemu_icount;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
92e873b9 146typedef struct PhysPageDesc {
0f459d16 147 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 148 ram_addr_t phys_offset;
8da3ff18 149 ram_addr_t region_offset;
92e873b9
FB
150} PhysPageDesc;
151
54936004 152#define L2_BITS 10
bedb69ea
JM
153#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
154/* XXX: this is a temporary hack for alpha target.
155 * In the future, this is to be replaced by a multi-level table
156 * to actually be able to handle the complete 64 bits address space.
157 */
158#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
159#else
03875444 160#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 161#endif
54936004
FB
162
163#define L1_SIZE (1 << L1_BITS)
164#define L2_SIZE (1 << L2_BITS)
165
83fb7adf
FB
166unsigned long qemu_real_host_page_size;
167unsigned long qemu_host_page_bits;
168unsigned long qemu_host_page_size;
169unsigned long qemu_host_page_mask;
54936004 170
92e873b9 171/* XXX: for system emulation, it could just be an array */
54936004 172static PageDesc *l1_map[L1_SIZE];
bdaf78e0 173static PhysPageDesc **l1_phys_map;
54936004 174
e2eef170
PB
175#if !defined(CONFIG_USER_ONLY)
176static void io_mem_init(void);
177
33417e70 178/* io memory support */
33417e70
FB
179CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
180CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 181void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 182static int io_mem_nb;
6658ffb8
PB
183static int io_mem_watch;
184#endif
33417e70 185
34865134 186/* log support */
d9b630fd 187static const char *logfilename = "/tmp/qemu.log";
34865134
FB
188FILE *logfile;
189int loglevel;
e735b91c 190static int log_append = 0;
34865134 191
e3db7226
FB
192/* statistics */
193static int tlb_flush_count;
194static int tb_flush_count;
195static int tb_phys_invalidate_count;
196
db7b5426
BS
197#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
198typedef struct subpage_t {
199 target_phys_addr_t base;
3ee89922
BS
200 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
201 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
202 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 203 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
204} subpage_t;
205
7cb69cae
FB
206#ifdef _WIN32
207static void map_exec(void *addr, long size)
208{
209 DWORD old_protect;
210 VirtualProtect(addr, size,
211 PAGE_EXECUTE_READWRITE, &old_protect);
212
213}
214#else
215static void map_exec(void *addr, long size)
216{
4369415f 217 unsigned long start, end, page_size;
7cb69cae 218
4369415f 219 page_size = getpagesize();
7cb69cae 220 start = (unsigned long)addr;
4369415f 221 start &= ~(page_size - 1);
7cb69cae
FB
222
223 end = (unsigned long)addr + size;
4369415f
FB
224 end += page_size - 1;
225 end &= ~(page_size - 1);
7cb69cae
FB
226
227 mprotect((void *)start, end - start,
228 PROT_READ | PROT_WRITE | PROT_EXEC);
229}
230#endif
231
b346ff46 232static void page_init(void)
54936004 233{
83fb7adf 234 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 235 TARGET_PAGE_SIZE */
c2b48b69
AL
236#ifdef _WIN32
237 {
238 SYSTEM_INFO system_info;
239
240 GetSystemInfo(&system_info);
241 qemu_real_host_page_size = system_info.dwPageSize;
242 }
243#else
244 qemu_real_host_page_size = getpagesize();
245#endif
83fb7adf
FB
246 if (qemu_host_page_size == 0)
247 qemu_host_page_size = qemu_real_host_page_size;
248 if (qemu_host_page_size < TARGET_PAGE_SIZE)
249 qemu_host_page_size = TARGET_PAGE_SIZE;
250 qemu_host_page_bits = 0;
251 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
252 qemu_host_page_bits++;
253 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
254 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
255 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
256
257#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
258 {
259 long long startaddr, endaddr;
260 FILE *f;
261 int n;
262
c8a706fe 263 mmap_lock();
0776590d 264 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
265 f = fopen("/proc/self/maps", "r");
266 if (f) {
267 do {
268 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
269 if (n == 2) {
e0b8d65a
BS
270 startaddr = MIN(startaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 endaddr = MIN(endaddr,
273 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 274 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
275 TARGET_PAGE_ALIGN(endaddr),
276 PAGE_RESERVED);
277 }
278 } while (!feof(f));
279 fclose(f);
280 }
c8a706fe 281 mmap_unlock();
50a9569b
AZ
282 }
283#endif
54936004
FB
284}
285
434929bf 286static inline PageDesc **page_l1_map(target_ulong index)
54936004 287{
17e2377a
PB
288#if TARGET_LONG_BITS > 32
289 /* Host memory outside guest VM. For 32-bit targets we have already
290 excluded high addresses. */
d8173e0f 291 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
292 return NULL;
293#endif
434929bf
AL
294 return &l1_map[index >> L2_BITS];
295}
296
297static inline PageDesc *page_find_alloc(target_ulong index)
298{
299 PageDesc **lp, *p;
300 lp = page_l1_map(index);
301 if (!lp)
302 return NULL;
303
54936004
FB
304 p = *lp;
305 if (!p) {
306 /* allocate if not found */
17e2377a 307#if defined(CONFIG_USER_ONLY)
17e2377a
PB
308 size_t len = sizeof(PageDesc) * L2_SIZE;
309 /* Don't use qemu_malloc because it may recurse. */
310 p = mmap(0, len, PROT_READ | PROT_WRITE,
311 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 312 *lp = p;
fb1c2cd7
AJ
313 if (h2g_valid(p)) {
314 unsigned long addr = h2g(p);
17e2377a
PB
315 page_set_flags(addr & TARGET_PAGE_MASK,
316 TARGET_PAGE_ALIGN(addr + len),
317 PAGE_RESERVED);
318 }
319#else
320 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
321 *lp = p;
322#endif
54936004
FB
323 }
324 return p + (index & (L2_SIZE - 1));
325}
326
00f82b8a 327static inline PageDesc *page_find(target_ulong index)
54936004 328{
434929bf
AL
329 PageDesc **lp, *p;
330 lp = page_l1_map(index);
331 if (!lp)
332 return NULL;
54936004 333
434929bf 334 p = *lp;
54936004
FB
335 if (!p)
336 return 0;
fd6ce8f6
FB
337 return p + (index & (L2_SIZE - 1));
338}
339
108c49b8 340static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 341{
108c49b8 342 void **lp, **p;
e3f4e2a4 343 PhysPageDesc *pd;
92e873b9 344
108c49b8
FB
345 p = (void **)l1_phys_map;
346#if TARGET_PHYS_ADDR_SPACE_BITS > 32
347
348#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
349#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
350#endif
351 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
352 p = *lp;
353 if (!p) {
354 /* allocate if not found */
108c49b8
FB
355 if (!alloc)
356 return NULL;
357 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
358 memset(p, 0, sizeof(void *) * L1_SIZE);
359 *lp = p;
360 }
361#endif
362 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
363 pd = *lp;
364 if (!pd) {
365 int i;
108c49b8
FB
366 /* allocate if not found */
367 if (!alloc)
368 return NULL;
e3f4e2a4
PB
369 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
370 *lp = pd;
371 for (i = 0; i < L2_SIZE; i++)
372 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 373 }
e3f4e2a4 374 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
375}
376
108c49b8 377static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 378{
108c49b8 379 return phys_page_find_alloc(index, 0);
92e873b9
FB
380}
381
9fa3e853 382#if !defined(CONFIG_USER_ONLY)
6a00d601 383static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 384static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 385 target_ulong vaddr);
c8a706fe
PB
386#define mmap_lock() do { } while(0)
387#define mmap_unlock() do { } while(0)
9fa3e853 388#endif
fd6ce8f6 389
4369415f
FB
390#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
391
392#if defined(CONFIG_USER_ONLY)
393/* Currently it is not recommanded to allocate big chunks of data in
394 user mode. It will change when a dedicated libc will be used */
395#define USE_STATIC_CODE_GEN_BUFFER
396#endif
397
398#ifdef USE_STATIC_CODE_GEN_BUFFER
399static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
400#endif
401
8fcd3692 402static void code_gen_alloc(unsigned long tb_size)
26a5f13b 403{
4369415f
FB
404#ifdef USE_STATIC_CODE_GEN_BUFFER
405 code_gen_buffer = static_code_gen_buffer;
406 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
407 map_exec(code_gen_buffer, code_gen_buffer_size);
408#else
26a5f13b
FB
409 code_gen_buffer_size = tb_size;
410 if (code_gen_buffer_size == 0) {
4369415f
FB
411#if defined(CONFIG_USER_ONLY)
412 /* in user mode, phys_ram_size is not meaningful */
413 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
414#else
26a5f13b 415 /* XXX: needs ajustments */
174a9a1f 416 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 417#endif
26a5f13b
FB
418 }
419 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
420 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
421 /* The code gen buffer location may have constraints depending on
422 the host cpu and OS */
423#if defined(__linux__)
424 {
425 int flags;
141ac468
BS
426 void *start = NULL;
427
26a5f13b
FB
428 flags = MAP_PRIVATE | MAP_ANONYMOUS;
429#if defined(__x86_64__)
430 flags |= MAP_32BIT;
431 /* Cannot map more than that */
432 if (code_gen_buffer_size > (800 * 1024 * 1024))
433 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
434#elif defined(__sparc_v9__)
435 // Map the buffer below 2G, so we can use direct calls and branches
436 flags |= MAP_FIXED;
437 start = (void *) 0x60000000UL;
438 if (code_gen_buffer_size > (512 * 1024 * 1024))
439 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 440#elif defined(__arm__)
63d41246 441 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
442 flags |= MAP_FIXED;
443 start = (void *) 0x01000000UL;
444 if (code_gen_buffer_size > 16 * 1024 * 1024)
445 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 446#endif
141ac468
BS
447 code_gen_buffer = mmap(start, code_gen_buffer_size,
448 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
449 flags, -1, 0);
450 if (code_gen_buffer == MAP_FAILED) {
451 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
452 exit(1);
453 }
454 }
06e67a82
AL
455#elif defined(__FreeBSD__)
456 {
457 int flags;
458 void *addr = NULL;
459 flags = MAP_PRIVATE | MAP_ANONYMOUS;
460#if defined(__x86_64__)
461 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
462 * 0x40000000 is free */
463 flags |= MAP_FIXED;
464 addr = (void *)0x40000000;
465 /* Cannot map more than that */
466 if (code_gen_buffer_size > (800 * 1024 * 1024))
467 code_gen_buffer_size = (800 * 1024 * 1024);
468#endif
469 code_gen_buffer = mmap(addr, code_gen_buffer_size,
470 PROT_WRITE | PROT_READ | PROT_EXEC,
471 flags, -1, 0);
472 if (code_gen_buffer == MAP_FAILED) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
475 }
476 }
26a5f13b
FB
477#else
478 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
479 if (!code_gen_buffer) {
480 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
481 exit(1);
482 }
483 map_exec(code_gen_buffer, code_gen_buffer_size);
484#endif
4369415f 485#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
486 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
487 code_gen_buffer_max_size = code_gen_buffer_size -
488 code_gen_max_block_size();
489 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
490 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
491}
492
493/* Must be called before using the QEMU cpus. 'tb_size' is the size
494 (in bytes) allocated to the translation buffer. Zero means default
495 size. */
496void cpu_exec_init_all(unsigned long tb_size)
497{
26a5f13b
FB
498 cpu_gen_init();
499 code_gen_alloc(tb_size);
500 code_gen_ptr = code_gen_buffer;
4369415f 501 page_init();
e2eef170 502#if !defined(CONFIG_USER_ONLY)
26a5f13b 503 io_mem_init();
e2eef170 504#endif
26a5f13b
FB
505}
506
9656f324
PB
507#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
508
509#define CPU_COMMON_SAVE_VERSION 1
510
511static void cpu_common_save(QEMUFile *f, void *opaque)
512{
513 CPUState *env = opaque;
514
515 qemu_put_be32s(f, &env->halted);
516 qemu_put_be32s(f, &env->interrupt_request);
517}
518
519static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
520{
521 CPUState *env = opaque;
522
523 if (version_id != CPU_COMMON_SAVE_VERSION)
524 return -EINVAL;
525
526 qemu_get_be32s(f, &env->halted);
75f482ae 527 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
528 tlb_flush(env, 1);
529
530 return 0;
531}
532#endif
533
6a00d601 534void cpu_exec_init(CPUState *env)
fd6ce8f6 535{
6a00d601
FB
536 CPUState **penv;
537 int cpu_index;
538
6a00d601
FB
539 env->next_cpu = NULL;
540 penv = &first_cpu;
541 cpu_index = 0;
542 while (*penv != NULL) {
543 penv = (CPUState **)&(*penv)->next_cpu;
544 cpu_index++;
545 }
546 env->cpu_index = cpu_index;
c0ce998e
AL
547 TAILQ_INIT(&env->breakpoints);
548 TAILQ_INIT(&env->watchpoints);
6a00d601 549 *penv = env;
b3c7724c 550#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
551 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
552 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
553 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
554 cpu_save, cpu_load, env);
555#endif
fd6ce8f6
FB
556}
557
9fa3e853
FB
558static inline void invalidate_page_bitmap(PageDesc *p)
559{
560 if (p->code_bitmap) {
59817ccb 561 qemu_free(p->code_bitmap);
9fa3e853
FB
562 p->code_bitmap = NULL;
563 }
564 p->code_write_count = 0;
565}
566
fd6ce8f6
FB
567/* set to NULL all the 'first_tb' fields in all PageDescs */
568static void page_flush_tb(void)
569{
570 int i, j;
571 PageDesc *p;
572
573 for(i = 0; i < L1_SIZE; i++) {
574 p = l1_map[i];
575 if (p) {
9fa3e853
FB
576 for(j = 0; j < L2_SIZE; j++) {
577 p->first_tb = NULL;
578 invalidate_page_bitmap(p);
579 p++;
580 }
fd6ce8f6
FB
581 }
582 }
583}
584
585/* flush all the translation blocks */
d4e8164f 586/* XXX: tb_flush is currently not thread safe */
6a00d601 587void tb_flush(CPUState *env1)
fd6ce8f6 588{
6a00d601 589 CPUState *env;
0124311e 590#if defined(DEBUG_FLUSH)
ab3d1727
BS
591 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
592 (unsigned long)(code_gen_ptr - code_gen_buffer),
593 nb_tbs, nb_tbs > 0 ?
594 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 595#endif
26a5f13b 596 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
597 cpu_abort(env1, "Internal error: code buffer overflow\n");
598
fd6ce8f6 599 nb_tbs = 0;
3b46e624 600
6a00d601
FB
601 for(env = first_cpu; env != NULL; env = env->next_cpu) {
602 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
603 }
9fa3e853 604
8a8a608f 605 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 606 page_flush_tb();
9fa3e853 607
fd6ce8f6 608 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
609 /* XXX: flush processor icache at this point if cache flush is
610 expensive */
e3db7226 611 tb_flush_count++;
fd6ce8f6
FB
612}
613
614#ifdef DEBUG_TB_CHECK
615
bc98a7ef 616static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
617{
618 TranslationBlock *tb;
619 int i;
620 address &= TARGET_PAGE_MASK;
99773bd4
PB
621 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
622 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
623 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
624 address >= tb->pc + tb->size)) {
625 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 626 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
627 }
628 }
629 }
630}
631
632/* verify that all the pages have correct rights for code */
633static void tb_page_check(void)
634{
635 TranslationBlock *tb;
636 int i, flags1, flags2;
3b46e624 637
99773bd4
PB
638 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
639 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
640 flags1 = page_get_flags(tb->pc);
641 flags2 = page_get_flags(tb->pc + tb->size - 1);
642 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
643 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 644 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
645 }
646 }
647 }
648}
649
bdaf78e0 650static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
651{
652 TranslationBlock *tb1;
653 unsigned int n1;
654
655 /* suppress any remaining jumps to this TB */
656 tb1 = tb->jmp_first;
657 for(;;) {
658 n1 = (long)tb1 & 3;
659 tb1 = (TranslationBlock *)((long)tb1 & ~3);
660 if (n1 == 2)
661 break;
662 tb1 = tb1->jmp_next[n1];
663 }
664 /* check end of list */
665 if (tb1 != tb) {
666 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
667 }
668}
669
fd6ce8f6
FB
670#endif
671
672/* invalidate one TB */
673static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
674 int next_offset)
675{
676 TranslationBlock *tb1;
677 for(;;) {
678 tb1 = *ptb;
679 if (tb1 == tb) {
680 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
681 break;
682 }
683 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
684 }
685}
686
9fa3e853
FB
687static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
688{
689 TranslationBlock *tb1;
690 unsigned int n1;
691
692 for(;;) {
693 tb1 = *ptb;
694 n1 = (long)tb1 & 3;
695 tb1 = (TranslationBlock *)((long)tb1 & ~3);
696 if (tb1 == tb) {
697 *ptb = tb1->page_next[n1];
698 break;
699 }
700 ptb = &tb1->page_next[n1];
701 }
702}
703
d4e8164f
FB
704static inline void tb_jmp_remove(TranslationBlock *tb, int n)
705{
706 TranslationBlock *tb1, **ptb;
707 unsigned int n1;
708
709 ptb = &tb->jmp_next[n];
710 tb1 = *ptb;
711 if (tb1) {
712 /* find tb(n) in circular list */
713 for(;;) {
714 tb1 = *ptb;
715 n1 = (long)tb1 & 3;
716 tb1 = (TranslationBlock *)((long)tb1 & ~3);
717 if (n1 == n && tb1 == tb)
718 break;
719 if (n1 == 2) {
720 ptb = &tb1->jmp_first;
721 } else {
722 ptb = &tb1->jmp_next[n1];
723 }
724 }
725 /* now we can suppress tb(n) from the list */
726 *ptb = tb->jmp_next[n];
727
728 tb->jmp_next[n] = NULL;
729 }
730}
731
732/* reset the jump entry 'n' of a TB so that it is not chained to
733 another TB */
734static inline void tb_reset_jump(TranslationBlock *tb, int n)
735{
736 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
737}
738
2e70f6ef 739void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 740{
6a00d601 741 CPUState *env;
8a40a180 742 PageDesc *p;
d4e8164f 743 unsigned int h, n1;
00f82b8a 744 target_phys_addr_t phys_pc;
8a40a180 745 TranslationBlock *tb1, *tb2;
3b46e624 746
8a40a180
FB
747 /* remove the TB from the hash list */
748 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
749 h = tb_phys_hash_func(phys_pc);
5fafdf24 750 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
751 offsetof(TranslationBlock, phys_hash_next));
752
753 /* remove the TB from the page list */
754 if (tb->page_addr[0] != page_addr) {
755 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
756 tb_page_remove(&p->first_tb, tb);
757 invalidate_page_bitmap(p);
758 }
759 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
760 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
761 tb_page_remove(&p->first_tb, tb);
762 invalidate_page_bitmap(p);
763 }
764
36bdbe54 765 tb_invalidated_flag = 1;
59817ccb 766
fd6ce8f6 767 /* remove the TB from the hash list */
8a40a180 768 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
769 for(env = first_cpu; env != NULL; env = env->next_cpu) {
770 if (env->tb_jmp_cache[h] == tb)
771 env->tb_jmp_cache[h] = NULL;
772 }
d4e8164f
FB
773
774 /* suppress this TB from the two jump lists */
775 tb_jmp_remove(tb, 0);
776 tb_jmp_remove(tb, 1);
777
778 /* suppress any remaining jumps to this TB */
779 tb1 = tb->jmp_first;
780 for(;;) {
781 n1 = (long)tb1 & 3;
782 if (n1 == 2)
783 break;
784 tb1 = (TranslationBlock *)((long)tb1 & ~3);
785 tb2 = tb1->jmp_next[n1];
786 tb_reset_jump(tb1, n1);
787 tb1->jmp_next[n1] = NULL;
788 tb1 = tb2;
789 }
790 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 791
e3db7226 792 tb_phys_invalidate_count++;
9fa3e853
FB
793}
794
795static inline void set_bits(uint8_t *tab, int start, int len)
796{
797 int end, mask, end1;
798
799 end = start + len;
800 tab += start >> 3;
801 mask = 0xff << (start & 7);
802 if ((start & ~7) == (end & ~7)) {
803 if (start < end) {
804 mask &= ~(0xff << (end & 7));
805 *tab |= mask;
806 }
807 } else {
808 *tab++ |= mask;
809 start = (start + 8) & ~7;
810 end1 = end & ~7;
811 while (start < end1) {
812 *tab++ = 0xff;
813 start += 8;
814 }
815 if (start < end) {
816 mask = ~(0xff << (end & 7));
817 *tab |= mask;
818 }
819 }
820}
821
822static void build_page_bitmap(PageDesc *p)
823{
824 int n, tb_start, tb_end;
825 TranslationBlock *tb;
3b46e624 826
b2a7081a 827 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
828 if (!p->code_bitmap)
829 return;
9fa3e853
FB
830
831 tb = p->first_tb;
832 while (tb != NULL) {
833 n = (long)tb & 3;
834 tb = (TranslationBlock *)((long)tb & ~3);
835 /* NOTE: this is subtle as a TB may span two physical pages */
836 if (n == 0) {
837 /* NOTE: tb_end may be after the end of the page, but
838 it is not a problem */
839 tb_start = tb->pc & ~TARGET_PAGE_MASK;
840 tb_end = tb_start + tb->size;
841 if (tb_end > TARGET_PAGE_SIZE)
842 tb_end = TARGET_PAGE_SIZE;
843 } else {
844 tb_start = 0;
845 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
846 }
847 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
848 tb = tb->page_next[n];
849 }
850}
851
2e70f6ef
PB
852TranslationBlock *tb_gen_code(CPUState *env,
853 target_ulong pc, target_ulong cs_base,
854 int flags, int cflags)
d720b93d
FB
855{
856 TranslationBlock *tb;
857 uint8_t *tc_ptr;
858 target_ulong phys_pc, phys_page2, virt_page2;
859 int code_gen_size;
860
c27004ec
FB
861 phys_pc = get_phys_addr_code(env, pc);
862 tb = tb_alloc(pc);
d720b93d
FB
863 if (!tb) {
864 /* flush must be done */
865 tb_flush(env);
866 /* cannot fail at this point */
c27004ec 867 tb = tb_alloc(pc);
2e70f6ef
PB
868 /* Don't forget to invalidate previous TB info. */
869 tb_invalidated_flag = 1;
d720b93d
FB
870 }
871 tc_ptr = code_gen_ptr;
872 tb->tc_ptr = tc_ptr;
873 tb->cs_base = cs_base;
874 tb->flags = flags;
875 tb->cflags = cflags;
d07bde88 876 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 877 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 878
d720b93d 879 /* check next page if needed */
c27004ec 880 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 881 phys_page2 = -1;
c27004ec 882 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
883 phys_page2 = get_phys_addr_code(env, virt_page2);
884 }
885 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 886 return tb;
d720b93d 887}
3b46e624 888
9fa3e853
FB
889/* invalidate all TBs which intersect with the target physical page
890 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
891 the same physical page. 'is_cpu_write_access' should be true if called
892 from a real cpu write access: the virtual CPU will exit the current
893 TB if code is modified inside this TB. */
00f82b8a 894void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
895 int is_cpu_write_access)
896{
6b917547 897 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 898 CPUState *env = cpu_single_env;
9fa3e853 899 target_ulong tb_start, tb_end;
6b917547
AL
900 PageDesc *p;
901 int n;
902#ifdef TARGET_HAS_PRECISE_SMC
903 int current_tb_not_found = is_cpu_write_access;
904 TranslationBlock *current_tb = NULL;
905 int current_tb_modified = 0;
906 target_ulong current_pc = 0;
907 target_ulong current_cs_base = 0;
908 int current_flags = 0;
909#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
910
911 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 912 if (!p)
9fa3e853 913 return;
5fafdf24 914 if (!p->code_bitmap &&
d720b93d
FB
915 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
916 is_cpu_write_access) {
9fa3e853
FB
917 /* build code bitmap */
918 build_page_bitmap(p);
919 }
920
921 /* we remove all the TBs in the range [start, end[ */
922 /* XXX: see if in some cases it could be faster to invalidate all the code */
923 tb = p->first_tb;
924 while (tb != NULL) {
925 n = (long)tb & 3;
926 tb = (TranslationBlock *)((long)tb & ~3);
927 tb_next = tb->page_next[n];
928 /* NOTE: this is subtle as a TB may span two physical pages */
929 if (n == 0) {
930 /* NOTE: tb_end may be after the end of the page, but
931 it is not a problem */
932 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
933 tb_end = tb_start + tb->size;
934 } else {
935 tb_start = tb->page_addr[1];
936 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
937 }
938 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
939#ifdef TARGET_HAS_PRECISE_SMC
940 if (current_tb_not_found) {
941 current_tb_not_found = 0;
942 current_tb = NULL;
2e70f6ef 943 if (env->mem_io_pc) {
d720b93d 944 /* now we have a real cpu fault */
2e70f6ef 945 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
946 }
947 }
948 if (current_tb == tb &&
2e70f6ef 949 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
950 /* If we are modifying the current TB, we must stop
951 its execution. We could be more precise by checking
952 that the modification is after the current PC, but it
953 would require a specialized function to partially
954 restore the CPU state */
3b46e624 955
d720b93d 956 current_tb_modified = 1;
5fafdf24 957 cpu_restore_state(current_tb, env,
2e70f6ef 958 env->mem_io_pc, NULL);
6b917547
AL
959 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
960 &current_flags);
d720b93d
FB
961 }
962#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
963 /* we need to do that to handle the case where a signal
964 occurs while doing tb_phys_invalidate() */
965 saved_tb = NULL;
966 if (env) {
967 saved_tb = env->current_tb;
968 env->current_tb = NULL;
969 }
9fa3e853 970 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
971 if (env) {
972 env->current_tb = saved_tb;
973 if (env->interrupt_request && env->current_tb)
974 cpu_interrupt(env, env->interrupt_request);
975 }
9fa3e853
FB
976 }
977 tb = tb_next;
978 }
979#if !defined(CONFIG_USER_ONLY)
980 /* if no code remaining, no need to continue to use slow writes */
981 if (!p->first_tb) {
982 invalidate_page_bitmap(p);
d720b93d 983 if (is_cpu_write_access) {
2e70f6ef 984 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
985 }
986 }
987#endif
988#ifdef TARGET_HAS_PRECISE_SMC
989 if (current_tb_modified) {
990 /* we generate a block containing just the instruction
991 modifying the memory. It will ensure that it cannot modify
992 itself */
ea1c1802 993 env->current_tb = NULL;
2e70f6ef 994 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 995 cpu_resume_from_signal(env, NULL);
9fa3e853 996 }
fd6ce8f6 997#endif
9fa3e853 998}
fd6ce8f6 999
9fa3e853 1000/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1001static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1002{
1003 PageDesc *p;
1004 int offset, b;
59817ccb 1005#if 0
a4193c8a
FB
1006 if (1) {
1007 if (loglevel) {
5fafdf24 1008 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2e70f6ef 1009 cpu_single_env->mem_io_vaddr, len,
5fafdf24 1010 cpu_single_env->eip,
a4193c8a
FB
1011 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1012 }
59817ccb
FB
1013 }
1014#endif
9fa3e853 1015 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1016 if (!p)
9fa3e853
FB
1017 return;
1018 if (p->code_bitmap) {
1019 offset = start & ~TARGET_PAGE_MASK;
1020 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1021 if (b & ((1 << len) - 1))
1022 goto do_invalidate;
1023 } else {
1024 do_invalidate:
d720b93d 1025 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1026 }
1027}
1028
9fa3e853 1029#if !defined(CONFIG_SOFTMMU)
00f82b8a 1030static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1031 unsigned long pc, void *puc)
9fa3e853 1032{
6b917547 1033 TranslationBlock *tb;
9fa3e853 1034 PageDesc *p;
6b917547 1035 int n;
d720b93d 1036#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1037 TranslationBlock *current_tb = NULL;
d720b93d 1038 CPUState *env = cpu_single_env;
6b917547
AL
1039 int current_tb_modified = 0;
1040 target_ulong current_pc = 0;
1041 target_ulong current_cs_base = 0;
1042 int current_flags = 0;
d720b93d 1043#endif
9fa3e853
FB
1044
1045 addr &= TARGET_PAGE_MASK;
1046 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1047 if (!p)
9fa3e853
FB
1048 return;
1049 tb = p->first_tb;
d720b93d
FB
1050#ifdef TARGET_HAS_PRECISE_SMC
1051 if (tb && pc != 0) {
1052 current_tb = tb_find_pc(pc);
1053 }
1054#endif
9fa3e853
FB
1055 while (tb != NULL) {
1056 n = (long)tb & 3;
1057 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1058#ifdef TARGET_HAS_PRECISE_SMC
1059 if (current_tb == tb &&
2e70f6ef 1060 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1061 /* If we are modifying the current TB, we must stop
1062 its execution. We could be more precise by checking
1063 that the modification is after the current PC, but it
1064 would require a specialized function to partially
1065 restore the CPU state */
3b46e624 1066
d720b93d
FB
1067 current_tb_modified = 1;
1068 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1069 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1070 &current_flags);
d720b93d
FB
1071 }
1072#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1073 tb_phys_invalidate(tb, addr);
1074 tb = tb->page_next[n];
1075 }
fd6ce8f6 1076 p->first_tb = NULL;
d720b93d
FB
1077#ifdef TARGET_HAS_PRECISE_SMC
1078 if (current_tb_modified) {
1079 /* we generate a block containing just the instruction
1080 modifying the memory. It will ensure that it cannot modify
1081 itself */
ea1c1802 1082 env->current_tb = NULL;
2e70f6ef 1083 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1084 cpu_resume_from_signal(env, puc);
1085 }
1086#endif
fd6ce8f6 1087}
9fa3e853 1088#endif
fd6ce8f6
FB
1089
1090/* add the tb in the target page and protect it if necessary */
5fafdf24 1091static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1092 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1093{
1094 PageDesc *p;
9fa3e853
FB
1095 TranslationBlock *last_first_tb;
1096
1097 tb->page_addr[n] = page_addr;
3a7d929e 1098 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1099 tb->page_next[n] = p->first_tb;
1100 last_first_tb = p->first_tb;
1101 p->first_tb = (TranslationBlock *)((long)tb | n);
1102 invalidate_page_bitmap(p);
fd6ce8f6 1103
107db443 1104#if defined(TARGET_HAS_SMC) || 1
d720b93d 1105
9fa3e853 1106#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1107 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1108 target_ulong addr;
1109 PageDesc *p2;
9fa3e853
FB
1110 int prot;
1111
fd6ce8f6
FB
1112 /* force the host page as non writable (writes will have a
1113 page fault + mprotect overhead) */
53a5960a 1114 page_addr &= qemu_host_page_mask;
fd6ce8f6 1115 prot = 0;
53a5960a
PB
1116 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1117 addr += TARGET_PAGE_SIZE) {
1118
1119 p2 = page_find (addr >> TARGET_PAGE_BITS);
1120 if (!p2)
1121 continue;
1122 prot |= p2->flags;
1123 p2->flags &= ~PAGE_WRITE;
1124 page_get_flags(addr);
1125 }
5fafdf24 1126 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1127 (prot & PAGE_BITS) & ~PAGE_WRITE);
1128#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1129 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1130 page_addr);
fd6ce8f6 1131#endif
fd6ce8f6 1132 }
9fa3e853
FB
1133#else
1134 /* if some code is already present, then the pages are already
1135 protected. So we handle the case where only the first TB is
1136 allocated in a physical page */
1137 if (!last_first_tb) {
6a00d601 1138 tlb_protect_code(page_addr);
9fa3e853
FB
1139 }
1140#endif
d720b93d
FB
1141
1142#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1143}
1144
1145/* Allocate a new translation block. Flush the translation buffer if
1146 too many translation blocks or too much generated code. */
c27004ec 1147TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1148{
1149 TranslationBlock *tb;
fd6ce8f6 1150
26a5f13b
FB
1151 if (nb_tbs >= code_gen_max_blocks ||
1152 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1153 return NULL;
fd6ce8f6
FB
1154 tb = &tbs[nb_tbs++];
1155 tb->pc = pc;
b448f2f3 1156 tb->cflags = 0;
d4e8164f
FB
1157 return tb;
1158}
1159
2e70f6ef
PB
1160void tb_free(TranslationBlock *tb)
1161{
bf20dc07 1162 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1163 Ignore the hard cases and just back up if this TB happens to
1164 be the last one generated. */
1165 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1166 code_gen_ptr = tb->tc_ptr;
1167 nb_tbs--;
1168 }
1169}
1170
9fa3e853
FB
1171/* add a new TB and link it to the physical page tables. phys_page2 is
1172 (-1) to indicate that only one page contains the TB. */
5fafdf24 1173void tb_link_phys(TranslationBlock *tb,
9fa3e853 1174 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1175{
9fa3e853
FB
1176 unsigned int h;
1177 TranslationBlock **ptb;
1178
c8a706fe
PB
1179 /* Grab the mmap lock to stop another thread invalidating this TB
1180 before we are done. */
1181 mmap_lock();
9fa3e853
FB
1182 /* add in the physical hash table */
1183 h = tb_phys_hash_func(phys_pc);
1184 ptb = &tb_phys_hash[h];
1185 tb->phys_hash_next = *ptb;
1186 *ptb = tb;
fd6ce8f6
FB
1187
1188 /* add in the page list */
9fa3e853
FB
1189 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1190 if (phys_page2 != -1)
1191 tb_alloc_page(tb, 1, phys_page2);
1192 else
1193 tb->page_addr[1] = -1;
9fa3e853 1194
d4e8164f
FB
1195 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1196 tb->jmp_next[0] = NULL;
1197 tb->jmp_next[1] = NULL;
1198
1199 /* init original jump addresses */
1200 if (tb->tb_next_offset[0] != 0xffff)
1201 tb_reset_jump(tb, 0);
1202 if (tb->tb_next_offset[1] != 0xffff)
1203 tb_reset_jump(tb, 1);
8a40a180
FB
1204
1205#ifdef DEBUG_TB_CHECK
1206 tb_page_check();
1207#endif
c8a706fe 1208 mmap_unlock();
fd6ce8f6
FB
1209}
1210
9fa3e853
FB
1211/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1212 tb[1].tc_ptr. Return NULL if not found */
1213TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1214{
9fa3e853
FB
1215 int m_min, m_max, m;
1216 unsigned long v;
1217 TranslationBlock *tb;
a513fe19
FB
1218
1219 if (nb_tbs <= 0)
1220 return NULL;
1221 if (tc_ptr < (unsigned long)code_gen_buffer ||
1222 tc_ptr >= (unsigned long)code_gen_ptr)
1223 return NULL;
1224 /* binary search (cf Knuth) */
1225 m_min = 0;
1226 m_max = nb_tbs - 1;
1227 while (m_min <= m_max) {
1228 m = (m_min + m_max) >> 1;
1229 tb = &tbs[m];
1230 v = (unsigned long)tb->tc_ptr;
1231 if (v == tc_ptr)
1232 return tb;
1233 else if (tc_ptr < v) {
1234 m_max = m - 1;
1235 } else {
1236 m_min = m + 1;
1237 }
5fafdf24 1238 }
a513fe19
FB
1239 return &tbs[m_max];
1240}
7501267e 1241
ea041c0e
FB
1242static void tb_reset_jump_recursive(TranslationBlock *tb);
1243
1244static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1245{
1246 TranslationBlock *tb1, *tb_next, **ptb;
1247 unsigned int n1;
1248
1249 tb1 = tb->jmp_next[n];
1250 if (tb1 != NULL) {
1251 /* find head of list */
1252 for(;;) {
1253 n1 = (long)tb1 & 3;
1254 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1255 if (n1 == 2)
1256 break;
1257 tb1 = tb1->jmp_next[n1];
1258 }
1259 /* we are now sure now that tb jumps to tb1 */
1260 tb_next = tb1;
1261
1262 /* remove tb from the jmp_first list */
1263 ptb = &tb_next->jmp_first;
1264 for(;;) {
1265 tb1 = *ptb;
1266 n1 = (long)tb1 & 3;
1267 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1268 if (n1 == n && tb1 == tb)
1269 break;
1270 ptb = &tb1->jmp_next[n1];
1271 }
1272 *ptb = tb->jmp_next[n];
1273 tb->jmp_next[n] = NULL;
3b46e624 1274
ea041c0e
FB
1275 /* suppress the jump to next tb in generated code */
1276 tb_reset_jump(tb, n);
1277
0124311e 1278 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1279 tb_reset_jump_recursive(tb_next);
1280 }
1281}
1282
1283static void tb_reset_jump_recursive(TranslationBlock *tb)
1284{
1285 tb_reset_jump_recursive2(tb, 0);
1286 tb_reset_jump_recursive2(tb, 1);
1287}
1288
1fddef4b 1289#if defined(TARGET_HAS_ICE)
d720b93d
FB
1290static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1291{
9b3c35e0
JM
1292 target_phys_addr_t addr;
1293 target_ulong pd;
c2f07f81
PB
1294 ram_addr_t ram_addr;
1295 PhysPageDesc *p;
d720b93d 1296
c2f07f81
PB
1297 addr = cpu_get_phys_page_debug(env, pc);
1298 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1299 if (!p) {
1300 pd = IO_MEM_UNASSIGNED;
1301 } else {
1302 pd = p->phys_offset;
1303 }
1304 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1305 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1306}
c27004ec 1307#endif
d720b93d 1308
6658ffb8 1309/* Add a watchpoint. */
a1d1bb31
AL
1310int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1311 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1312{
b4051334 1313 target_ulong len_mask = ~(len - 1);
c0ce998e 1314 CPUWatchpoint *wp;
6658ffb8 1315
b4051334
AL
1316 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1317 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1318 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1319 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1320 return -EINVAL;
1321 }
a1d1bb31
AL
1322 wp = qemu_malloc(sizeof(*wp));
1323 if (!wp)
426cd5d6 1324 return -ENOMEM;
a1d1bb31
AL
1325
1326 wp->vaddr = addr;
b4051334 1327 wp->len_mask = len_mask;
a1d1bb31
AL
1328 wp->flags = flags;
1329
2dc9f411 1330 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1331 if (flags & BP_GDB)
1332 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1333 else
1334 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1335
6658ffb8 1336 tlb_flush_page(env, addr);
a1d1bb31
AL
1337
1338 if (watchpoint)
1339 *watchpoint = wp;
1340 return 0;
6658ffb8
PB
1341}
1342
a1d1bb31
AL
1343/* Remove a specific watchpoint. */
1344int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1345 int flags)
6658ffb8 1346{
b4051334 1347 target_ulong len_mask = ~(len - 1);
a1d1bb31 1348 CPUWatchpoint *wp;
6658ffb8 1349
c0ce998e 1350 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1351 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1352 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1353 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1354 return 0;
1355 }
1356 }
a1d1bb31 1357 return -ENOENT;
6658ffb8
PB
1358}
1359
a1d1bb31
AL
1360/* Remove a specific watchpoint by reference. */
1361void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1362{
c0ce998e 1363 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1364
a1d1bb31
AL
1365 tlb_flush_page(env, watchpoint->vaddr);
1366
1367 qemu_free(watchpoint);
1368}
1369
1370/* Remove all matching watchpoints. */
1371void cpu_watchpoint_remove_all(CPUState *env, int mask)
1372{
c0ce998e 1373 CPUWatchpoint *wp, *next;
a1d1bb31 1374
c0ce998e 1375 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1376 if (wp->flags & mask)
1377 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1378 }
7d03f82f
EI
1379}
1380
a1d1bb31
AL
1381/* Add a breakpoint. */
1382int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1383 CPUBreakpoint **breakpoint)
4c3a88a2 1384{
1fddef4b 1385#if defined(TARGET_HAS_ICE)
c0ce998e 1386 CPUBreakpoint *bp;
3b46e624 1387
a1d1bb31
AL
1388 bp = qemu_malloc(sizeof(*bp));
1389 if (!bp)
426cd5d6 1390 return -ENOMEM;
4c3a88a2 1391
a1d1bb31
AL
1392 bp->pc = pc;
1393 bp->flags = flags;
1394
2dc9f411 1395 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1396 if (flags & BP_GDB)
1397 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1398 else
1399 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1400
d720b93d 1401 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1402
1403 if (breakpoint)
1404 *breakpoint = bp;
4c3a88a2
FB
1405 return 0;
1406#else
a1d1bb31 1407 return -ENOSYS;
4c3a88a2
FB
1408#endif
1409}
1410
a1d1bb31
AL
1411/* Remove a specific breakpoint. */
1412int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1413{
7d03f82f 1414#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1415 CPUBreakpoint *bp;
1416
c0ce998e 1417 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1418 if (bp->pc == pc && bp->flags == flags) {
1419 cpu_breakpoint_remove_by_ref(env, bp);
1420 return 0;
1421 }
7d03f82f 1422 }
a1d1bb31
AL
1423 return -ENOENT;
1424#else
1425 return -ENOSYS;
7d03f82f
EI
1426#endif
1427}
1428
a1d1bb31
AL
1429/* Remove a specific breakpoint by reference. */
1430void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1431{
1fddef4b 1432#if defined(TARGET_HAS_ICE)
c0ce998e 1433 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1434
a1d1bb31
AL
1435 breakpoint_invalidate(env, breakpoint->pc);
1436
1437 qemu_free(breakpoint);
1438#endif
1439}
1440
1441/* Remove all matching breakpoints. */
1442void cpu_breakpoint_remove_all(CPUState *env, int mask)
1443{
1444#if defined(TARGET_HAS_ICE)
c0ce998e 1445 CPUBreakpoint *bp, *next;
a1d1bb31 1446
c0ce998e 1447 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1448 if (bp->flags & mask)
1449 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1450 }
4c3a88a2
FB
1451#endif
1452}
1453
c33a346e
FB
1454/* enable or disable single step mode. EXCP_DEBUG is returned by the
1455 CPU loop after each instruction */
1456void cpu_single_step(CPUState *env, int enabled)
1457{
1fddef4b 1458#if defined(TARGET_HAS_ICE)
c33a346e
FB
1459 if (env->singlestep_enabled != enabled) {
1460 env->singlestep_enabled = enabled;
1461 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1462 /* XXX: only flush what is necessary */
0124311e 1463 tb_flush(env);
c33a346e
FB
1464 }
1465#endif
1466}
1467
34865134
FB
1468/* enable or disable low levels log */
1469void cpu_set_log(int log_flags)
1470{
1471 loglevel = log_flags;
1472 if (loglevel && !logfile) {
11fcfab4 1473 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1474 if (!logfile) {
1475 perror(logfilename);
1476 _exit(1);
1477 }
9fa3e853
FB
1478#if !defined(CONFIG_SOFTMMU)
1479 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1480 {
b55266b5 1481 static char logfile_buf[4096];
9fa3e853
FB
1482 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1483 }
1484#else
34865134 1485 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1486#endif
e735b91c
PB
1487 log_append = 1;
1488 }
1489 if (!loglevel && logfile) {
1490 fclose(logfile);
1491 logfile = NULL;
34865134
FB
1492 }
1493}
1494
1495void cpu_set_log_filename(const char *filename)
1496{
1497 logfilename = strdup(filename);
e735b91c
PB
1498 if (logfile) {
1499 fclose(logfile);
1500 logfile = NULL;
1501 }
1502 cpu_set_log(loglevel);
34865134 1503}
c33a346e 1504
0124311e 1505/* mask must never be zero, except for A20 change call */
68a79315 1506void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1507{
d5975363 1508#if !defined(USE_NPTL)
ea041c0e 1509 TranslationBlock *tb;
15a51156 1510 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1511#endif
2e70f6ef 1512 int old_mask;
59817ccb 1513
2e70f6ef 1514 old_mask = env->interrupt_request;
d5975363 1515 /* FIXME: This is probably not threadsafe. A different thread could
bf20dc07 1516 be in the middle of a read-modify-write operation. */
68a79315 1517 env->interrupt_request |= mask;
d5975363
PB
1518#if defined(USE_NPTL)
1519 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1520 problem and hope the cpu will stop of its own accord. For userspace
1521 emulation this often isn't actually as bad as it sounds. Often
1522 signals are used primarily to interrupt blocking syscalls. */
1523#else
2e70f6ef 1524 if (use_icount) {
266910c4 1525 env->icount_decr.u16.high = 0xffff;
2e70f6ef
PB
1526#ifndef CONFIG_USER_ONLY
1527 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1528 an async event happened and we need to process it. */
1529 if (!can_do_io(env)
1530 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1531 cpu_abort(env, "Raised interrupt while not in I/O function");
1532 }
1533#endif
1534 } else {
1535 tb = env->current_tb;
1536 /* if the cpu is currently executing code, we must unlink it and
1537 all the potentially executing TB */
1538 if (tb && !testandset(&interrupt_lock)) {
1539 env->current_tb = NULL;
1540 tb_reset_jump_recursive(tb);
1541 resetlock(&interrupt_lock);
1542 }
ea041c0e 1543 }
d5975363 1544#endif
ea041c0e
FB
1545}
1546
b54ad049
FB
1547void cpu_reset_interrupt(CPUState *env, int mask)
1548{
1549 env->interrupt_request &= ~mask;
1550}
1551
c7cd6a37 1552const CPULogItem cpu_log_items[] = {
5fafdf24 1553 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1554 "show generated host assembly code for each compiled TB" },
1555 { CPU_LOG_TB_IN_ASM, "in_asm",
1556 "show target assembly code for each compiled TB" },
5fafdf24 1557 { CPU_LOG_TB_OP, "op",
57fec1fe 1558 "show micro ops for each compiled TB" },
f193c797 1559 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1560 "show micro ops "
1561#ifdef TARGET_I386
1562 "before eflags optimization and "
f193c797 1563#endif
e01a1157 1564 "after liveness analysis" },
f193c797
FB
1565 { CPU_LOG_INT, "int",
1566 "show interrupts/exceptions in short format" },
1567 { CPU_LOG_EXEC, "exec",
1568 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1569 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1570 "show CPU state before block translation" },
f193c797
FB
1571#ifdef TARGET_I386
1572 { CPU_LOG_PCALL, "pcall",
1573 "show protected mode far calls/returns/exceptions" },
1574#endif
8e3a9fd2 1575#ifdef DEBUG_IOPORT
fd872598
FB
1576 { CPU_LOG_IOPORT, "ioport",
1577 "show all i/o ports accesses" },
8e3a9fd2 1578#endif
f193c797
FB
1579 { 0, NULL, NULL },
1580};
1581
1582static int cmp1(const char *s1, int n, const char *s2)
1583{
1584 if (strlen(s2) != n)
1585 return 0;
1586 return memcmp(s1, s2, n) == 0;
1587}
3b46e624 1588
f193c797
FB
1589/* takes a comma separated list of log masks. Return 0 if error. */
1590int cpu_str_to_log_mask(const char *str)
1591{
c7cd6a37 1592 const CPULogItem *item;
f193c797
FB
1593 int mask;
1594 const char *p, *p1;
1595
1596 p = str;
1597 mask = 0;
1598 for(;;) {
1599 p1 = strchr(p, ',');
1600 if (!p1)
1601 p1 = p + strlen(p);
8e3a9fd2
FB
1602 if(cmp1(p,p1-p,"all")) {
1603 for(item = cpu_log_items; item->mask != 0; item++) {
1604 mask |= item->mask;
1605 }
1606 } else {
f193c797
FB
1607 for(item = cpu_log_items; item->mask != 0; item++) {
1608 if (cmp1(p, p1 - p, item->name))
1609 goto found;
1610 }
1611 return 0;
8e3a9fd2 1612 }
f193c797
FB
1613 found:
1614 mask |= item->mask;
1615 if (*p1 != ',')
1616 break;
1617 p = p1 + 1;
1618 }
1619 return mask;
1620}
ea041c0e 1621
7501267e
FB
1622void cpu_abort(CPUState *env, const char *fmt, ...)
1623{
1624 va_list ap;
493ae1f0 1625 va_list ap2;
7501267e
FB
1626
1627 va_start(ap, fmt);
493ae1f0 1628 va_copy(ap2, ap);
7501267e
FB
1629 fprintf(stderr, "qemu: fatal: ");
1630 vfprintf(stderr, fmt, ap);
1631 fprintf(stderr, "\n");
1632#ifdef TARGET_I386
7fe48483
FB
1633 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1634#else
1635 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1636#endif
924edcae 1637 if (logfile) {
f9373291 1638 fprintf(logfile, "qemu: fatal: ");
493ae1f0 1639 vfprintf(logfile, fmt, ap2);
f9373291
JM
1640 fprintf(logfile, "\n");
1641#ifdef TARGET_I386
1642 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1643#else
1644 cpu_dump_state(env, logfile, fprintf, 0);
1645#endif
924edcae
AZ
1646 fflush(logfile);
1647 fclose(logfile);
1648 }
493ae1f0 1649 va_end(ap2);
f9373291 1650 va_end(ap);
7501267e
FB
1651 abort();
1652}
1653
c5be9f08
TS
1654CPUState *cpu_copy(CPUState *env)
1655{
01ba9816 1656 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1657 /* preserve chaining and index */
1658 CPUState *next_cpu = new_env->next_cpu;
1659 int cpu_index = new_env->cpu_index;
1660 memcpy(new_env, env, sizeof(CPUState));
1661 new_env->next_cpu = next_cpu;
1662 new_env->cpu_index = cpu_index;
1663 return new_env;
1664}
1665
0124311e
FB
1666#if !defined(CONFIG_USER_ONLY)
1667
5c751e99
EI
1668static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1669{
1670 unsigned int i;
1671
1672 /* Discard jump cache entries for any tb which might potentially
1673 overlap the flushed page. */
1674 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1675 memset (&env->tb_jmp_cache[i], 0,
1676 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1677
1678 i = tb_jmp_cache_hash_page(addr);
1679 memset (&env->tb_jmp_cache[i], 0,
1680 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1681}
1682
ee8b7021
FB
1683/* NOTE: if flush_global is true, also flush global entries (not
1684 implemented yet) */
1685void tlb_flush(CPUState *env, int flush_global)
33417e70 1686{
33417e70 1687 int i;
0124311e 1688
9fa3e853
FB
1689#if defined(DEBUG_TLB)
1690 printf("tlb_flush:\n");
1691#endif
0124311e
FB
1692 /* must reset current TB so that interrupts cannot modify the
1693 links while we are modifying them */
1694 env->current_tb = NULL;
1695
33417e70 1696 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1697 env->tlb_table[0][i].addr_read = -1;
1698 env->tlb_table[0][i].addr_write = -1;
1699 env->tlb_table[0][i].addr_code = -1;
1700 env->tlb_table[1][i].addr_read = -1;
1701 env->tlb_table[1][i].addr_write = -1;
1702 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1703#if (NB_MMU_MODES >= 3)
1704 env->tlb_table[2][i].addr_read = -1;
1705 env->tlb_table[2][i].addr_write = -1;
1706 env->tlb_table[2][i].addr_code = -1;
1707#if (NB_MMU_MODES == 4)
1708 env->tlb_table[3][i].addr_read = -1;
1709 env->tlb_table[3][i].addr_write = -1;
1710 env->tlb_table[3][i].addr_code = -1;
1711#endif
1712#endif
33417e70 1713 }
9fa3e853 1714
8a40a180 1715 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1716
0a962c02
FB
1717#ifdef USE_KQEMU
1718 if (env->kqemu_enabled) {
1719 kqemu_flush(env, flush_global);
1720 }
9fa3e853 1721#endif
e3db7226 1722 tlb_flush_count++;
33417e70
FB
1723}
1724
274da6b2 1725static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1726{
5fafdf24 1727 if (addr == (tlb_entry->addr_read &
84b7b8e7 1728 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1729 addr == (tlb_entry->addr_write &
84b7b8e7 1730 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1731 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1732 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1733 tlb_entry->addr_read = -1;
1734 tlb_entry->addr_write = -1;
1735 tlb_entry->addr_code = -1;
1736 }
61382a50
FB
1737}
1738
2e12669a 1739void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1740{
8a40a180 1741 int i;
0124311e 1742
9fa3e853 1743#if defined(DEBUG_TLB)
108c49b8 1744 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1745#endif
0124311e
FB
1746 /* must reset current TB so that interrupts cannot modify the
1747 links while we are modifying them */
1748 env->current_tb = NULL;
61382a50
FB
1749
1750 addr &= TARGET_PAGE_MASK;
1751 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1752 tlb_flush_entry(&env->tlb_table[0][i], addr);
1753 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1754#if (NB_MMU_MODES >= 3)
1755 tlb_flush_entry(&env->tlb_table[2][i], addr);
1756#if (NB_MMU_MODES == 4)
1757 tlb_flush_entry(&env->tlb_table[3][i], addr);
1758#endif
1759#endif
0124311e 1760
5c751e99 1761 tlb_flush_jmp_cache(env, addr);
9fa3e853 1762
0a962c02
FB
1763#ifdef USE_KQEMU
1764 if (env->kqemu_enabled) {
1765 kqemu_flush_page(env, addr);
1766 }
1767#endif
9fa3e853
FB
1768}
1769
9fa3e853
FB
1770/* update the TLBs so that writes to code in the virtual page 'addr'
1771 can be detected */
6a00d601 1772static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1773{
5fafdf24 1774 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1775 ram_addr + TARGET_PAGE_SIZE,
1776 CODE_DIRTY_FLAG);
9fa3e853
FB
1777}
1778
9fa3e853 1779/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1780 tested for self modifying code */
5fafdf24 1781static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1782 target_ulong vaddr)
9fa3e853 1783{
3a7d929e 1784 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1785}
1786
5fafdf24 1787static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1788 unsigned long start, unsigned long length)
1789{
1790 unsigned long addr;
84b7b8e7
FB
1791 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1792 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1793 if ((addr - start) < length) {
0f459d16 1794 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1795 }
1796 }
1797}
1798
3a7d929e 1799void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1800 int dirty_flags)
1ccde1cb
FB
1801{
1802 CPUState *env;
4f2ac237 1803 unsigned long length, start1;
0a962c02
FB
1804 int i, mask, len;
1805 uint8_t *p;
1ccde1cb
FB
1806
1807 start &= TARGET_PAGE_MASK;
1808 end = TARGET_PAGE_ALIGN(end);
1809
1810 length = end - start;
1811 if (length == 0)
1812 return;
0a962c02 1813 len = length >> TARGET_PAGE_BITS;
3a7d929e 1814#ifdef USE_KQEMU
6a00d601
FB
1815 /* XXX: should not depend on cpu context */
1816 env = first_cpu;
3a7d929e 1817 if (env->kqemu_enabled) {
f23db169
FB
1818 ram_addr_t addr;
1819 addr = start;
1820 for(i = 0; i < len; i++) {
1821 kqemu_set_notdirty(env, addr);
1822 addr += TARGET_PAGE_SIZE;
1823 }
3a7d929e
FB
1824 }
1825#endif
f23db169
FB
1826 mask = ~dirty_flags;
1827 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1828 for(i = 0; i < len; i++)
1829 p[i] &= mask;
1830
1ccde1cb
FB
1831 /* we modify the TLB cache so that the dirty bit will be set again
1832 when accessing the range */
59817ccb 1833 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1834 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1835 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1836 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1837 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1838 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1839#if (NB_MMU_MODES >= 3)
1840 for(i = 0; i < CPU_TLB_SIZE; i++)
1841 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1842#if (NB_MMU_MODES == 4)
1843 for(i = 0; i < CPU_TLB_SIZE; i++)
1844 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1845#endif
1846#endif
6a00d601 1847 }
1ccde1cb
FB
1848}
1849
74576198
AL
1850int cpu_physical_memory_set_dirty_tracking(int enable)
1851{
1852 in_migration = enable;
1853 return 0;
1854}
1855
1856int cpu_physical_memory_get_dirty_tracking(void)
1857{
1858 return in_migration;
1859}
1860
2bec46dc
AL
1861void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1862{
1863 if (kvm_enabled())
1864 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1865}
1866
3a7d929e
FB
1867static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1868{
1869 ram_addr_t ram_addr;
1870
84b7b8e7 1871 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1872 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1873 tlb_entry->addend - (unsigned long)phys_ram_base;
1874 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1875 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1876 }
1877 }
1878}
1879
1880/* update the TLB according to the current state of the dirty bits */
1881void cpu_tlb_update_dirty(CPUState *env)
1882{
1883 int i;
1884 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1885 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1886 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1887 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1888#if (NB_MMU_MODES >= 3)
1889 for(i = 0; i < CPU_TLB_SIZE; i++)
1890 tlb_update_dirty(&env->tlb_table[2][i]);
1891#if (NB_MMU_MODES == 4)
1892 for(i = 0; i < CPU_TLB_SIZE; i++)
1893 tlb_update_dirty(&env->tlb_table[3][i]);
1894#endif
1895#endif
3a7d929e
FB
1896}
1897
0f459d16 1898static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1899{
0f459d16
PB
1900 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1901 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1902}
1903
0f459d16
PB
1904/* update the TLB corresponding to virtual page vaddr
1905 so that it is no longer dirty */
1906static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1907{
1ccde1cb
FB
1908 int i;
1909
0f459d16 1910 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1911 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1912 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1913 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1914#if (NB_MMU_MODES >= 3)
0f459d16 1915 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1916#if (NB_MMU_MODES == 4)
0f459d16 1917 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1918#endif
1919#endif
9fa3e853
FB
1920}
1921
59817ccb
FB
1922/* add a new TLB entry. At most one entry for a given virtual address
1923 is permitted. Return 0 if OK or 2 if the page could not be mapped
1924 (can only happen in non SOFTMMU mode for I/O pages or pages
1925 conflicting with the host address space). */
5fafdf24
TS
1926int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1927 target_phys_addr_t paddr, int prot,
6ebbf390 1928 int mmu_idx, int is_softmmu)
9fa3e853 1929{
92e873b9 1930 PhysPageDesc *p;
4f2ac237 1931 unsigned long pd;
9fa3e853 1932 unsigned int index;
4f2ac237 1933 target_ulong address;
0f459d16 1934 target_ulong code_address;
108c49b8 1935 target_phys_addr_t addend;
9fa3e853 1936 int ret;
84b7b8e7 1937 CPUTLBEntry *te;
a1d1bb31 1938 CPUWatchpoint *wp;
0f459d16 1939 target_phys_addr_t iotlb;
9fa3e853 1940
92e873b9 1941 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1942 if (!p) {
1943 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1944 } else {
1945 pd = p->phys_offset;
9fa3e853
FB
1946 }
1947#if defined(DEBUG_TLB)
6ebbf390
JM
1948 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1949 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1950#endif
1951
1952 ret = 0;
0f459d16
PB
1953 address = vaddr;
1954 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1955 /* IO memory case (romd handled later) */
1956 address |= TLB_MMIO;
1957 }
1958 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1959 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1960 /* Normal RAM. */
1961 iotlb = pd & TARGET_PAGE_MASK;
1962 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1963 iotlb |= IO_MEM_NOTDIRTY;
1964 else
1965 iotlb |= IO_MEM_ROM;
1966 } else {
1967 /* IO handlers are currently passed a phsical address.
1968 It would be nice to pass an offset from the base address
1969 of that region. This would avoid having to special case RAM,
1970 and avoid full address decoding in every device.
1971 We can't use the high bits of pd for this because
1972 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
1973 iotlb = (pd & ~TARGET_PAGE_MASK);
1974 if (p) {
8da3ff18
PB
1975 iotlb += p->region_offset;
1976 } else {
1977 iotlb += paddr;
1978 }
0f459d16
PB
1979 }
1980
1981 code_address = address;
1982 /* Make accesses to pages with watchpoints go via the
1983 watchpoint trap routines. */
c0ce998e 1984 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 1985 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
1986 iotlb = io_mem_watch + paddr;
1987 /* TODO: The memory case can be optimized by not trapping
1988 reads of pages with a write breakpoint. */
1989 address |= TLB_MMIO;
6658ffb8 1990 }
0f459d16 1991 }
d79acba4 1992
0f459d16
PB
1993 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1994 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1995 te = &env->tlb_table[mmu_idx][index];
1996 te->addend = addend - vaddr;
1997 if (prot & PAGE_READ) {
1998 te->addr_read = address;
1999 } else {
2000 te->addr_read = -1;
2001 }
5c751e99 2002
0f459d16
PB
2003 if (prot & PAGE_EXEC) {
2004 te->addr_code = code_address;
2005 } else {
2006 te->addr_code = -1;
2007 }
2008 if (prot & PAGE_WRITE) {
2009 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2010 (pd & IO_MEM_ROMD)) {
2011 /* Write access calls the I/O callback. */
2012 te->addr_write = address | TLB_MMIO;
2013 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2014 !cpu_physical_memory_is_dirty(pd)) {
2015 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2016 } else {
0f459d16 2017 te->addr_write = address;
9fa3e853 2018 }
0f459d16
PB
2019 } else {
2020 te->addr_write = -1;
9fa3e853 2021 }
9fa3e853
FB
2022 return ret;
2023}
2024
0124311e
FB
2025#else
2026
ee8b7021 2027void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2028{
2029}
2030
2e12669a 2031void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2032{
2033}
2034
5fafdf24
TS
2035int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2036 target_phys_addr_t paddr, int prot,
6ebbf390 2037 int mmu_idx, int is_softmmu)
9fa3e853
FB
2038{
2039 return 0;
2040}
0124311e 2041
9fa3e853
FB
2042/* dump memory mappings */
2043void page_dump(FILE *f)
33417e70 2044{
9fa3e853
FB
2045 unsigned long start, end;
2046 int i, j, prot, prot1;
2047 PageDesc *p;
33417e70 2048
9fa3e853
FB
2049 fprintf(f, "%-8s %-8s %-8s %s\n",
2050 "start", "end", "size", "prot");
2051 start = -1;
2052 end = -1;
2053 prot = 0;
2054 for(i = 0; i <= L1_SIZE; i++) {
2055 if (i < L1_SIZE)
2056 p = l1_map[i];
2057 else
2058 p = NULL;
2059 for(j = 0;j < L2_SIZE; j++) {
2060 if (!p)
2061 prot1 = 0;
2062 else
2063 prot1 = p[j].flags;
2064 if (prot1 != prot) {
2065 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2066 if (start != -1) {
2067 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2068 start, end, end - start,
9fa3e853
FB
2069 prot & PAGE_READ ? 'r' : '-',
2070 prot & PAGE_WRITE ? 'w' : '-',
2071 prot & PAGE_EXEC ? 'x' : '-');
2072 }
2073 if (prot1 != 0)
2074 start = end;
2075 else
2076 start = -1;
2077 prot = prot1;
2078 }
2079 if (!p)
2080 break;
2081 }
33417e70 2082 }
33417e70
FB
2083}
2084
53a5960a 2085int page_get_flags(target_ulong address)
33417e70 2086{
9fa3e853
FB
2087 PageDesc *p;
2088
2089 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2090 if (!p)
9fa3e853
FB
2091 return 0;
2092 return p->flags;
2093}
2094
2095/* modify the flags of a page and invalidate the code if
2096 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2097 depending on PAGE_WRITE */
53a5960a 2098void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2099{
2100 PageDesc *p;
53a5960a 2101 target_ulong addr;
9fa3e853 2102
c8a706fe 2103 /* mmap_lock should already be held. */
9fa3e853
FB
2104 start = start & TARGET_PAGE_MASK;
2105 end = TARGET_PAGE_ALIGN(end);
2106 if (flags & PAGE_WRITE)
2107 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2108 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2109 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2110 /* We may be called for host regions that are outside guest
2111 address space. */
2112 if (!p)
2113 return;
9fa3e853
FB
2114 /* if the write protection is set, then we invalidate the code
2115 inside */
5fafdf24 2116 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2117 (flags & PAGE_WRITE) &&
2118 p->first_tb) {
d720b93d 2119 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2120 }
2121 p->flags = flags;
2122 }
33417e70
FB
2123}
2124
3d97b40b
TS
2125int page_check_range(target_ulong start, target_ulong len, int flags)
2126{
2127 PageDesc *p;
2128 target_ulong end;
2129 target_ulong addr;
2130
55f280c9
AZ
2131 if (start + len < start)
2132 /* we've wrapped around */
2133 return -1;
2134
3d97b40b
TS
2135 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2136 start = start & TARGET_PAGE_MASK;
2137
3d97b40b
TS
2138 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2139 p = page_find(addr >> TARGET_PAGE_BITS);
2140 if( !p )
2141 return -1;
2142 if( !(p->flags & PAGE_VALID) )
2143 return -1;
2144
dae3270c 2145 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2146 return -1;
dae3270c
FB
2147 if (flags & PAGE_WRITE) {
2148 if (!(p->flags & PAGE_WRITE_ORG))
2149 return -1;
2150 /* unprotect the page if it was put read-only because it
2151 contains translated code */
2152 if (!(p->flags & PAGE_WRITE)) {
2153 if (!page_unprotect(addr, 0, NULL))
2154 return -1;
2155 }
2156 return 0;
2157 }
3d97b40b
TS
2158 }
2159 return 0;
2160}
2161
9fa3e853
FB
2162/* called from signal handler: invalidate the code and unprotect the
2163 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2164int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2165{
2166 unsigned int page_index, prot, pindex;
2167 PageDesc *p, *p1;
53a5960a 2168 target_ulong host_start, host_end, addr;
9fa3e853 2169
c8a706fe
PB
2170 /* Technically this isn't safe inside a signal handler. However we
2171 know this only ever happens in a synchronous SEGV handler, so in
2172 practice it seems to be ok. */
2173 mmap_lock();
2174
83fb7adf 2175 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2176 page_index = host_start >> TARGET_PAGE_BITS;
2177 p1 = page_find(page_index);
c8a706fe
PB
2178 if (!p1) {
2179 mmap_unlock();
9fa3e853 2180 return 0;
c8a706fe 2181 }
83fb7adf 2182 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2183 p = p1;
2184 prot = 0;
2185 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2186 prot |= p->flags;
2187 p++;
2188 }
2189 /* if the page was really writable, then we change its
2190 protection back to writable */
2191 if (prot & PAGE_WRITE_ORG) {
2192 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2193 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2194 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2195 (prot & PAGE_BITS) | PAGE_WRITE);
2196 p1[pindex].flags |= PAGE_WRITE;
2197 /* and since the content will be modified, we must invalidate
2198 the corresponding translated code. */
d720b93d 2199 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2200#ifdef DEBUG_TB_CHECK
2201 tb_invalidate_check(address);
2202#endif
c8a706fe 2203 mmap_unlock();
9fa3e853
FB
2204 return 1;
2205 }
2206 }
c8a706fe 2207 mmap_unlock();
9fa3e853
FB
2208 return 0;
2209}
2210
6a00d601
FB
2211static inline void tlb_set_dirty(CPUState *env,
2212 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2213{
2214}
9fa3e853
FB
2215#endif /* defined(CONFIG_USER_ONLY) */
2216
e2eef170 2217#if !defined(CONFIG_USER_ONLY)
8da3ff18 2218
db7b5426 2219static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2220 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2221static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2222 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2223#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2224 need_subpage) \
2225 do { \
2226 if (addr > start_addr) \
2227 start_addr2 = 0; \
2228 else { \
2229 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2230 if (start_addr2 > 0) \
2231 need_subpage = 1; \
2232 } \
2233 \
49e9fba2 2234 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2235 end_addr2 = TARGET_PAGE_SIZE - 1; \
2236 else { \
2237 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2238 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2239 need_subpage = 1; \
2240 } \
2241 } while (0)
2242
33417e70
FB
2243/* register physical memory. 'size' must be a multiple of the target
2244 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2245 io memory page. The address used when calling the IO function is
2246 the offset from the start of the region, plus region_offset. Both
2247 start_region and regon_offset are rounded down to a page boundary
2248 before calculating this offset. This should not be a problem unless
2249 the low bits of start_addr and region_offset differ. */
2250void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2251 ram_addr_t size,
2252 ram_addr_t phys_offset,
2253 ram_addr_t region_offset)
33417e70 2254{
108c49b8 2255 target_phys_addr_t addr, end_addr;
92e873b9 2256 PhysPageDesc *p;
9d42037b 2257 CPUState *env;
00f82b8a 2258 ram_addr_t orig_size = size;
db7b5426 2259 void *subpage;
33417e70 2260
da260249
FB
2261#ifdef USE_KQEMU
2262 /* XXX: should not depend on cpu context */
2263 env = first_cpu;
2264 if (env->kqemu_enabled) {
2265 kqemu_set_phys_mem(start_addr, size, phys_offset);
2266 }
2267#endif
7ba1e619
AL
2268 if (kvm_enabled())
2269 kvm_set_phys_mem(start_addr, size, phys_offset);
2270
8da3ff18 2271 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2272 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2273 end_addr = start_addr + (target_phys_addr_t)size;
2274 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2275 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2276 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2277 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2278 target_phys_addr_t start_addr2, end_addr2;
2279 int need_subpage = 0;
2280
2281 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2282 need_subpage);
4254fab8 2283 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2284 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2285 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2286 &p->phys_offset, orig_memory,
2287 p->region_offset);
db7b5426
BS
2288 } else {
2289 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2290 >> IO_MEM_SHIFT];
2291 }
8da3ff18
PB
2292 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2293 region_offset);
2294 p->region_offset = 0;
db7b5426
BS
2295 } else {
2296 p->phys_offset = phys_offset;
2297 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2298 (phys_offset & IO_MEM_ROMD))
2299 phys_offset += TARGET_PAGE_SIZE;
2300 }
2301 } else {
2302 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2303 p->phys_offset = phys_offset;
8da3ff18 2304 p->region_offset = region_offset;
db7b5426 2305 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2306 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2307 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2308 } else {
db7b5426
BS
2309 target_phys_addr_t start_addr2, end_addr2;
2310 int need_subpage = 0;
2311
2312 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2313 end_addr2, need_subpage);
2314
4254fab8 2315 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2316 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2317 &p->phys_offset, IO_MEM_UNASSIGNED,
2318 0);
db7b5426 2319 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2320 phys_offset, region_offset);
2321 p->region_offset = 0;
db7b5426
BS
2322 }
2323 }
2324 }
8da3ff18 2325 region_offset += TARGET_PAGE_SIZE;
33417e70 2326 }
3b46e624 2327
9d42037b
FB
2328 /* since each CPU stores ram addresses in its TLB cache, we must
2329 reset the modified entries */
2330 /* XXX: slow ! */
2331 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2332 tlb_flush(env, 1);
2333 }
33417e70
FB
2334}
2335
ba863458 2336/* XXX: temporary until new memory mapping API */
00f82b8a 2337ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2338{
2339 PhysPageDesc *p;
2340
2341 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2342 if (!p)
2343 return IO_MEM_UNASSIGNED;
2344 return p->phys_offset;
2345}
2346
f65ed4c1
AL
2347void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2348{
2349 if (kvm_enabled())
2350 kvm_coalesce_mmio_region(addr, size);
2351}
2352
2353void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2354{
2355 if (kvm_enabled())
2356 kvm_uncoalesce_mmio_region(addr, size);
2357}
2358
e9a1ab19 2359/* XXX: better than nothing */
00f82b8a 2360ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2361{
2362 ram_addr_t addr;
7fb4fdcf 2363 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
012a7045 2364 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
ed441467 2365 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2366 abort();
2367 }
2368 addr = phys_ram_alloc_offset;
2369 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2370 return addr;
2371}
2372
2373void qemu_ram_free(ram_addr_t addr)
2374{
2375}
2376
a4193c8a 2377static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2378{
67d3b957 2379#ifdef DEBUG_UNASSIGNED
ab3d1727 2380 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2381#endif
0a6f8a6d 2382#if defined(TARGET_SPARC)
e18231a3
BS
2383 do_unassigned_access(addr, 0, 0, 0, 1);
2384#endif
2385 return 0;
2386}
2387
2388static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2389{
2390#ifdef DEBUG_UNASSIGNED
2391 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2392#endif
0a6f8a6d 2393#if defined(TARGET_SPARC)
e18231a3
BS
2394 do_unassigned_access(addr, 0, 0, 0, 2);
2395#endif
2396 return 0;
2397}
2398
2399static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2400{
2401#ifdef DEBUG_UNASSIGNED
2402 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2403#endif
0a6f8a6d 2404#if defined(TARGET_SPARC)
e18231a3 2405 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2406#endif
33417e70
FB
2407 return 0;
2408}
2409
a4193c8a 2410static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2411{
67d3b957 2412#ifdef DEBUG_UNASSIGNED
ab3d1727 2413 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2414#endif
0a6f8a6d 2415#if defined(TARGET_SPARC)
e18231a3
BS
2416 do_unassigned_access(addr, 1, 0, 0, 1);
2417#endif
2418}
2419
2420static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2421{
2422#ifdef DEBUG_UNASSIGNED
2423 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2424#endif
0a6f8a6d 2425#if defined(TARGET_SPARC)
e18231a3
BS
2426 do_unassigned_access(addr, 1, 0, 0, 2);
2427#endif
2428}
2429
2430static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2431{
2432#ifdef DEBUG_UNASSIGNED
2433 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2434#endif
0a6f8a6d 2435#if defined(TARGET_SPARC)
e18231a3 2436 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2437#endif
33417e70
FB
2438}
2439
2440static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2441 unassigned_mem_readb,
e18231a3
BS
2442 unassigned_mem_readw,
2443 unassigned_mem_readl,
33417e70
FB
2444};
2445
2446static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2447 unassigned_mem_writeb,
e18231a3
BS
2448 unassigned_mem_writew,
2449 unassigned_mem_writel,
33417e70
FB
2450};
2451
0f459d16
PB
2452static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2453 uint32_t val)
9fa3e853 2454{
3a7d929e 2455 int dirty_flags;
3a7d929e
FB
2456 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2457 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2458#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2459 tb_invalidate_phys_page_fast(ram_addr, 1);
2460 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2461#endif
3a7d929e 2462 }
0f459d16 2463 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2464#ifdef USE_KQEMU
2465 if (cpu_single_env->kqemu_enabled &&
2466 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2467 kqemu_modify_page(cpu_single_env, ram_addr);
2468#endif
f23db169
FB
2469 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2470 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2471 /* we remove the notdirty callback only if the code has been
2472 flushed */
2473 if (dirty_flags == 0xff)
2e70f6ef 2474 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2475}
2476
0f459d16
PB
2477static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2478 uint32_t val)
9fa3e853 2479{
3a7d929e 2480 int dirty_flags;
3a7d929e
FB
2481 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2482 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2483#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2484 tb_invalidate_phys_page_fast(ram_addr, 2);
2485 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2486#endif
3a7d929e 2487 }
0f459d16 2488 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2489#ifdef USE_KQEMU
2490 if (cpu_single_env->kqemu_enabled &&
2491 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2492 kqemu_modify_page(cpu_single_env, ram_addr);
2493#endif
f23db169
FB
2494 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2495 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2496 /* we remove the notdirty callback only if the code has been
2497 flushed */
2498 if (dirty_flags == 0xff)
2e70f6ef 2499 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2500}
2501
0f459d16
PB
2502static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2503 uint32_t val)
9fa3e853 2504{
3a7d929e 2505 int dirty_flags;
3a7d929e
FB
2506 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2507 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2508#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2509 tb_invalidate_phys_page_fast(ram_addr, 4);
2510 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2511#endif
3a7d929e 2512 }
0f459d16 2513 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2514#ifdef USE_KQEMU
2515 if (cpu_single_env->kqemu_enabled &&
2516 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2517 kqemu_modify_page(cpu_single_env, ram_addr);
2518#endif
f23db169
FB
2519 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2520 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2521 /* we remove the notdirty callback only if the code has been
2522 flushed */
2523 if (dirty_flags == 0xff)
2e70f6ef 2524 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2525}
2526
3a7d929e 2527static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2528 NULL, /* never used */
2529 NULL, /* never used */
2530 NULL, /* never used */
2531};
2532
1ccde1cb
FB
2533static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2534 notdirty_mem_writeb,
2535 notdirty_mem_writew,
2536 notdirty_mem_writel,
2537};
2538
0f459d16 2539/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2540static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2541{
2542 CPUState *env = cpu_single_env;
06d55cc1
AL
2543 target_ulong pc, cs_base;
2544 TranslationBlock *tb;
0f459d16 2545 target_ulong vaddr;
a1d1bb31 2546 CPUWatchpoint *wp;
06d55cc1 2547 int cpu_flags;
0f459d16 2548
06d55cc1
AL
2549 if (env->watchpoint_hit) {
2550 /* We re-entered the check after replacing the TB. Now raise
2551 * the debug interrupt so that is will trigger after the
2552 * current instruction. */
2553 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2554 return;
2555 }
2e70f6ef 2556 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2557 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2558 if ((vaddr == (wp->vaddr & len_mask) ||
2559 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2560 wp->flags |= BP_WATCHPOINT_HIT;
2561 if (!env->watchpoint_hit) {
2562 env->watchpoint_hit = wp;
2563 tb = tb_find_pc(env->mem_io_pc);
2564 if (!tb) {
2565 cpu_abort(env, "check_watchpoint: could not find TB for "
2566 "pc=%p", (void *)env->mem_io_pc);
2567 }
2568 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2569 tb_phys_invalidate(tb, -1);
2570 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2571 env->exception_index = EXCP_DEBUG;
2572 } else {
2573 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2574 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2575 }
2576 cpu_resume_from_signal(env, NULL);
06d55cc1 2577 }
6e140f28
AL
2578 } else {
2579 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2580 }
2581 }
2582}
2583
6658ffb8
PB
2584/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2585 so these check for a hit then pass through to the normal out-of-line
2586 phys routines. */
2587static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2588{
b4051334 2589 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2590 return ldub_phys(addr);
2591}
2592
2593static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2594{
b4051334 2595 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2596 return lduw_phys(addr);
2597}
2598
2599static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2600{
b4051334 2601 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2602 return ldl_phys(addr);
2603}
2604
6658ffb8
PB
2605static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2606 uint32_t val)
2607{
b4051334 2608 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2609 stb_phys(addr, val);
2610}
2611
2612static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2613 uint32_t val)
2614{
b4051334 2615 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2616 stw_phys(addr, val);
2617}
2618
2619static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2620 uint32_t val)
2621{
b4051334 2622 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2623 stl_phys(addr, val);
2624}
2625
2626static CPUReadMemoryFunc *watch_mem_read[3] = {
2627 watch_mem_readb,
2628 watch_mem_readw,
2629 watch_mem_readl,
2630};
2631
2632static CPUWriteMemoryFunc *watch_mem_write[3] = {
2633 watch_mem_writeb,
2634 watch_mem_writew,
2635 watch_mem_writel,
2636};
6658ffb8 2637
db7b5426
BS
2638static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2639 unsigned int len)
2640{
db7b5426
BS
2641 uint32_t ret;
2642 unsigned int idx;
2643
8da3ff18 2644 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2645#if defined(DEBUG_SUBPAGE)
2646 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2647 mmio, len, addr, idx);
2648#endif
8da3ff18
PB
2649 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2650 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2651
2652 return ret;
2653}
2654
2655static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2656 uint32_t value, unsigned int len)
2657{
db7b5426
BS
2658 unsigned int idx;
2659
8da3ff18 2660 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2661#if defined(DEBUG_SUBPAGE)
2662 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2663 mmio, len, addr, idx, value);
2664#endif
8da3ff18
PB
2665 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2666 addr + mmio->region_offset[idx][1][len],
2667 value);
db7b5426
BS
2668}
2669
2670static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2671{
2672#if defined(DEBUG_SUBPAGE)
2673 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2674#endif
2675
2676 return subpage_readlen(opaque, addr, 0);
2677}
2678
2679static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2680 uint32_t value)
2681{
2682#if defined(DEBUG_SUBPAGE)
2683 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2684#endif
2685 subpage_writelen(opaque, addr, value, 0);
2686}
2687
2688static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2689{
2690#if defined(DEBUG_SUBPAGE)
2691 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2692#endif
2693
2694 return subpage_readlen(opaque, addr, 1);
2695}
2696
2697static void subpage_writew (void *opaque, target_phys_addr_t addr,
2698 uint32_t value)
2699{
2700#if defined(DEBUG_SUBPAGE)
2701 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2702#endif
2703 subpage_writelen(opaque, addr, value, 1);
2704}
2705
2706static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2707{
2708#if defined(DEBUG_SUBPAGE)
2709 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2710#endif
2711
2712 return subpage_readlen(opaque, addr, 2);
2713}
2714
2715static void subpage_writel (void *opaque,
2716 target_phys_addr_t addr, uint32_t value)
2717{
2718#if defined(DEBUG_SUBPAGE)
2719 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2720#endif
2721 subpage_writelen(opaque, addr, value, 2);
2722}
2723
2724static CPUReadMemoryFunc *subpage_read[] = {
2725 &subpage_readb,
2726 &subpage_readw,
2727 &subpage_readl,
2728};
2729
2730static CPUWriteMemoryFunc *subpage_write[] = {
2731 &subpage_writeb,
2732 &subpage_writew,
2733 &subpage_writel,
2734};
2735
2736static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2737 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2738{
2739 int idx, eidx;
4254fab8 2740 unsigned int i;
db7b5426
BS
2741
2742 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2743 return -1;
2744 idx = SUBPAGE_IDX(start);
2745 eidx = SUBPAGE_IDX(end);
2746#if defined(DEBUG_SUBPAGE)
2747 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2748 mmio, start, end, idx, eidx, memory);
2749#endif
2750 memory >>= IO_MEM_SHIFT;
2751 for (; idx <= eidx; idx++) {
4254fab8 2752 for (i = 0; i < 4; i++) {
3ee89922
BS
2753 if (io_mem_read[memory][i]) {
2754 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2755 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2756 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2757 }
2758 if (io_mem_write[memory][i]) {
2759 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2760 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2761 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2762 }
4254fab8 2763 }
db7b5426
BS
2764 }
2765
2766 return 0;
2767}
2768
00f82b8a 2769static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2770 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2771{
2772 subpage_t *mmio;
2773 int subpage_memory;
2774
2775 mmio = qemu_mallocz(sizeof(subpage_t));
2776 if (mmio != NULL) {
2777 mmio->base = base;
2778 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2779#if defined(DEBUG_SUBPAGE)
2780 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2781 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2782#endif
2783 *phys = subpage_memory | IO_MEM_SUBPAGE;
8da3ff18
PB
2784 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2785 region_offset);
db7b5426
BS
2786 }
2787
2788 return mmio;
2789}
2790
33417e70
FB
2791static void io_mem_init(void)
2792{
3a7d929e 2793 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2794 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2795 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2796 io_mem_nb = 5;
2797
0f459d16 2798 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2799 watch_mem_write, NULL);
1ccde1cb 2800 /* alloc dirty bits array */
0a962c02 2801 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2802 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2803}
2804
2805/* mem_read and mem_write are arrays of functions containing the
2806 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2807 2). Functions can be omitted with a NULL function pointer. The
2808 registered functions may be modified dynamically later.
2809 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2810 modified. If it is zero, a new io zone is allocated. The return
2811 value can be used with cpu_register_physical_memory(). (-1) is
2812 returned if error. */
33417e70
FB
2813int cpu_register_io_memory(int io_index,
2814 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2815 CPUWriteMemoryFunc **mem_write,
2816 void *opaque)
33417e70 2817{
4254fab8 2818 int i, subwidth = 0;
33417e70
FB
2819
2820 if (io_index <= 0) {
b5ff1b31 2821 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2822 return -1;
2823 io_index = io_mem_nb++;
2824 } else {
2825 if (io_index >= IO_MEM_NB_ENTRIES)
2826 return -1;
2827 }
b5ff1b31 2828
33417e70 2829 for(i = 0;i < 3; i++) {
4254fab8
BS
2830 if (!mem_read[i] || !mem_write[i])
2831 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2832 io_mem_read[io_index][i] = mem_read[i];
2833 io_mem_write[io_index][i] = mem_write[i];
2834 }
a4193c8a 2835 io_mem_opaque[io_index] = opaque;
4254fab8 2836 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2837}
61382a50 2838
8926b517
FB
2839CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2840{
2841 return io_mem_write[io_index >> IO_MEM_SHIFT];
2842}
2843
2844CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2845{
2846 return io_mem_read[io_index >> IO_MEM_SHIFT];
2847}
2848
e2eef170
PB
2849#endif /* !defined(CONFIG_USER_ONLY) */
2850
13eb76e0
FB
2851/* physical memory access (slow version, mainly for debug) */
2852#if defined(CONFIG_USER_ONLY)
5fafdf24 2853void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2854 int len, int is_write)
2855{
2856 int l, flags;
2857 target_ulong page;
53a5960a 2858 void * p;
13eb76e0
FB
2859
2860 while (len > 0) {
2861 page = addr & TARGET_PAGE_MASK;
2862 l = (page + TARGET_PAGE_SIZE) - addr;
2863 if (l > len)
2864 l = len;
2865 flags = page_get_flags(page);
2866 if (!(flags & PAGE_VALID))
2867 return;
2868 if (is_write) {
2869 if (!(flags & PAGE_WRITE))
2870 return;
579a97f7 2871 /* XXX: this code should not depend on lock_user */
72fb7daa 2872 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2873 /* FIXME - should this return an error rather than just fail? */
2874 return;
72fb7daa
AJ
2875 memcpy(p, buf, l);
2876 unlock_user(p, addr, l);
13eb76e0
FB
2877 } else {
2878 if (!(flags & PAGE_READ))
2879 return;
579a97f7 2880 /* XXX: this code should not depend on lock_user */
72fb7daa 2881 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2882 /* FIXME - should this return an error rather than just fail? */
2883 return;
72fb7daa 2884 memcpy(buf, p, l);
5b257578 2885 unlock_user(p, addr, 0);
13eb76e0
FB
2886 }
2887 len -= l;
2888 buf += l;
2889 addr += l;
2890 }
2891}
8df1cd07 2892
13eb76e0 2893#else
5fafdf24 2894void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2895 int len, int is_write)
2896{
2897 int l, io_index;
2898 uint8_t *ptr;
2899 uint32_t val;
2e12669a
FB
2900 target_phys_addr_t page;
2901 unsigned long pd;
92e873b9 2902 PhysPageDesc *p;
3b46e624 2903
13eb76e0
FB
2904 while (len > 0) {
2905 page = addr & TARGET_PAGE_MASK;
2906 l = (page + TARGET_PAGE_SIZE) - addr;
2907 if (l > len)
2908 l = len;
92e873b9 2909 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2910 if (!p) {
2911 pd = IO_MEM_UNASSIGNED;
2912 } else {
2913 pd = p->phys_offset;
2914 }
3b46e624 2915
13eb76e0 2916 if (is_write) {
3a7d929e 2917 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2918 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
2919 if (p)
2920 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
2921 /* XXX: could force cpu_single_env to NULL to avoid
2922 potential bugs */
13eb76e0 2923 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2924 /* 32 bit write access */
c27004ec 2925 val = ldl_p(buf);
a4193c8a 2926 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2927 l = 4;
2928 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2929 /* 16 bit write access */
c27004ec 2930 val = lduw_p(buf);
a4193c8a 2931 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2932 l = 2;
2933 } else {
1c213d19 2934 /* 8 bit write access */
c27004ec 2935 val = ldub_p(buf);
a4193c8a 2936 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2937 l = 1;
2938 }
2939 } else {
b448f2f3
FB
2940 unsigned long addr1;
2941 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2942 /* RAM case */
b448f2f3 2943 ptr = phys_ram_base + addr1;
13eb76e0 2944 memcpy(ptr, buf, l);
3a7d929e
FB
2945 if (!cpu_physical_memory_is_dirty(addr1)) {
2946 /* invalidate code */
2947 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2948 /* set dirty bit */
5fafdf24 2949 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2950 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2951 }
13eb76e0
FB
2952 }
2953 } else {
5fafdf24 2954 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2955 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2956 /* I/O case */
2957 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
2958 if (p)
2959 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
13eb76e0
FB
2960 if (l >= 4 && ((addr & 3) == 0)) {
2961 /* 32 bit read access */
a4193c8a 2962 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2963 stl_p(buf, val);
13eb76e0
FB
2964 l = 4;
2965 } else if (l >= 2 && ((addr & 1) == 0)) {
2966 /* 16 bit read access */
a4193c8a 2967 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2968 stw_p(buf, val);
13eb76e0
FB
2969 l = 2;
2970 } else {
1c213d19 2971 /* 8 bit read access */
a4193c8a 2972 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2973 stb_p(buf, val);
13eb76e0
FB
2974 l = 1;
2975 }
2976 } else {
2977 /* RAM case */
5fafdf24 2978 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2979 (addr & ~TARGET_PAGE_MASK);
2980 memcpy(buf, ptr, l);
2981 }
2982 }
2983 len -= l;
2984 buf += l;
2985 addr += l;
2986 }
2987}
8df1cd07 2988
d0ecd2aa 2989/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2990void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2991 const uint8_t *buf, int len)
2992{
2993 int l;
2994 uint8_t *ptr;
2995 target_phys_addr_t page;
2996 unsigned long pd;
2997 PhysPageDesc *p;
3b46e624 2998
d0ecd2aa
FB
2999 while (len > 0) {
3000 page = addr & TARGET_PAGE_MASK;
3001 l = (page + TARGET_PAGE_SIZE) - addr;
3002 if (l > len)
3003 l = len;
3004 p = phys_page_find(page >> TARGET_PAGE_BITS);
3005 if (!p) {
3006 pd = IO_MEM_UNASSIGNED;
3007 } else {
3008 pd = p->phys_offset;
3009 }
3b46e624 3010
d0ecd2aa 3011 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3012 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3013 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3014 /* do nothing */
3015 } else {
3016 unsigned long addr1;
3017 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3018 /* ROM/RAM case */
3019 ptr = phys_ram_base + addr1;
3020 memcpy(ptr, buf, l);
3021 }
3022 len -= l;
3023 buf += l;
3024 addr += l;
3025 }
3026}
3027
3028
8df1cd07
FB
3029/* warning: addr must be aligned */
3030uint32_t ldl_phys(target_phys_addr_t addr)
3031{
3032 int io_index;
3033 uint8_t *ptr;
3034 uint32_t val;
3035 unsigned long pd;
3036 PhysPageDesc *p;
3037
3038 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3039 if (!p) {
3040 pd = IO_MEM_UNASSIGNED;
3041 } else {
3042 pd = p->phys_offset;
3043 }
3b46e624 3044
5fafdf24 3045 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3046 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3047 /* I/O case */
3048 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3049 if (p)
3050 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3051 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3052 } else {
3053 /* RAM case */
5fafdf24 3054 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3055 (addr & ~TARGET_PAGE_MASK);
3056 val = ldl_p(ptr);
3057 }
3058 return val;
3059}
3060
84b7b8e7
FB
3061/* warning: addr must be aligned */
3062uint64_t ldq_phys(target_phys_addr_t addr)
3063{
3064 int io_index;
3065 uint8_t *ptr;
3066 uint64_t val;
3067 unsigned long pd;
3068 PhysPageDesc *p;
3069
3070 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3071 if (!p) {
3072 pd = IO_MEM_UNASSIGNED;
3073 } else {
3074 pd = p->phys_offset;
3075 }
3b46e624 3076
2a4188a3
FB
3077 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3078 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3079 /* I/O case */
3080 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3081 if (p)
3082 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3083#ifdef TARGET_WORDS_BIGENDIAN
3084 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3085 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3086#else
3087 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3088 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3089#endif
3090 } else {
3091 /* RAM case */
5fafdf24 3092 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3093 (addr & ~TARGET_PAGE_MASK);
3094 val = ldq_p(ptr);
3095 }
3096 return val;
3097}
3098
aab33094
FB
3099/* XXX: optimize */
3100uint32_t ldub_phys(target_phys_addr_t addr)
3101{
3102 uint8_t val;
3103 cpu_physical_memory_read(addr, &val, 1);
3104 return val;
3105}
3106
3107/* XXX: optimize */
3108uint32_t lduw_phys(target_phys_addr_t addr)
3109{
3110 uint16_t val;
3111 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3112 return tswap16(val);
3113}
3114
8df1cd07
FB
3115/* warning: addr must be aligned. The ram page is not masked as dirty
3116 and the code inside is not invalidated. It is useful if the dirty
3117 bits are used to track modified PTEs */
3118void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3119{
3120 int io_index;
3121 uint8_t *ptr;
3122 unsigned long pd;
3123 PhysPageDesc *p;
3124
3125 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3126 if (!p) {
3127 pd = IO_MEM_UNASSIGNED;
3128 } else {
3129 pd = p->phys_offset;
3130 }
3b46e624 3131
3a7d929e 3132 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3133 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3134 if (p)
3135 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3136 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3137 } else {
74576198
AL
3138 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3139 ptr = phys_ram_base + addr1;
8df1cd07 3140 stl_p(ptr, val);
74576198
AL
3141
3142 if (unlikely(in_migration)) {
3143 if (!cpu_physical_memory_is_dirty(addr1)) {
3144 /* invalidate code */
3145 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3146 /* set dirty bit */
3147 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3148 (0xff & ~CODE_DIRTY_FLAG);
3149 }
3150 }
8df1cd07
FB
3151 }
3152}
3153
bc98a7ef
JM
3154void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3155{
3156 int io_index;
3157 uint8_t *ptr;
3158 unsigned long pd;
3159 PhysPageDesc *p;
3160
3161 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3162 if (!p) {
3163 pd = IO_MEM_UNASSIGNED;
3164 } else {
3165 pd = p->phys_offset;
3166 }
3b46e624 3167
bc98a7ef
JM
3168 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3169 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3170 if (p)
3171 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3172#ifdef TARGET_WORDS_BIGENDIAN
3173 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3174 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3175#else
3176 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3177 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3178#endif
3179 } else {
5fafdf24 3180 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3181 (addr & ~TARGET_PAGE_MASK);
3182 stq_p(ptr, val);
3183 }
3184}
3185
8df1cd07 3186/* warning: addr must be aligned */
8df1cd07
FB
3187void stl_phys(target_phys_addr_t addr, uint32_t val)
3188{
3189 int io_index;
3190 uint8_t *ptr;
3191 unsigned long pd;
3192 PhysPageDesc *p;
3193
3194 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3195 if (!p) {
3196 pd = IO_MEM_UNASSIGNED;
3197 } else {
3198 pd = p->phys_offset;
3199 }
3b46e624 3200
3a7d929e 3201 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3202 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3203 if (p)
3204 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3205 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3206 } else {
3207 unsigned long addr1;
3208 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3209 /* RAM case */
3210 ptr = phys_ram_base + addr1;
3211 stl_p(ptr, val);
3a7d929e
FB
3212 if (!cpu_physical_memory_is_dirty(addr1)) {
3213 /* invalidate code */
3214 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3215 /* set dirty bit */
f23db169
FB
3216 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3217 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3218 }
8df1cd07
FB
3219 }
3220}
3221
aab33094
FB
3222/* XXX: optimize */
3223void stb_phys(target_phys_addr_t addr, uint32_t val)
3224{
3225 uint8_t v = val;
3226 cpu_physical_memory_write(addr, &v, 1);
3227}
3228
3229/* XXX: optimize */
3230void stw_phys(target_phys_addr_t addr, uint32_t val)
3231{
3232 uint16_t v = tswap16(val);
3233 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3234}
3235
3236/* XXX: optimize */
3237void stq_phys(target_phys_addr_t addr, uint64_t val)
3238{
3239 val = tswap64(val);
3240 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3241}
3242
13eb76e0
FB
3243#endif
3244
3245/* virtual memory access for debug */
5fafdf24 3246int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3247 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3248{
3249 int l;
9b3c35e0
JM
3250 target_phys_addr_t phys_addr;
3251 target_ulong page;
13eb76e0
FB
3252
3253 while (len > 0) {
3254 page = addr & TARGET_PAGE_MASK;
3255 phys_addr = cpu_get_phys_page_debug(env, page);
3256 /* if no physical page mapped, return an error */
3257 if (phys_addr == -1)
3258 return -1;
3259 l = (page + TARGET_PAGE_SIZE) - addr;
3260 if (l > len)
3261 l = len;
5fafdf24 3262 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3263 buf, l, is_write);
13eb76e0
FB
3264 len -= l;
3265 buf += l;
3266 addr += l;
3267 }
3268 return 0;
3269}
3270
2e70f6ef
PB
3271/* in deterministic execution mode, instructions doing device I/Os
3272 must be at the end of the TB */
3273void cpu_io_recompile(CPUState *env, void *retaddr)
3274{
3275 TranslationBlock *tb;
3276 uint32_t n, cflags;
3277 target_ulong pc, cs_base;
3278 uint64_t flags;
3279
3280 tb = tb_find_pc((unsigned long)retaddr);
3281 if (!tb) {
3282 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3283 retaddr);
3284 }
3285 n = env->icount_decr.u16.low + tb->icount;
3286 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3287 /* Calculate how many instructions had been executed before the fault
bf20dc07 3288 occurred. */
2e70f6ef
PB
3289 n = n - env->icount_decr.u16.low;
3290 /* Generate a new TB ending on the I/O insn. */
3291 n++;
3292 /* On MIPS and SH, delay slot instructions can only be restarted if
3293 they were already the first instruction in the TB. If this is not
bf20dc07 3294 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3295 branch. */
3296#if defined(TARGET_MIPS)
3297 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3298 env->active_tc.PC -= 4;
3299 env->icount_decr.u16.low++;
3300 env->hflags &= ~MIPS_HFLAG_BMASK;
3301 }
3302#elif defined(TARGET_SH4)
3303 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3304 && n > 1) {
3305 env->pc -= 2;
3306 env->icount_decr.u16.low++;
3307 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3308 }
3309#endif
3310 /* This should never happen. */
3311 if (n > CF_COUNT_MASK)
3312 cpu_abort(env, "TB too big during recompile");
3313
3314 cflags = n | CF_LAST_IO;
3315 pc = tb->pc;
3316 cs_base = tb->cs_base;
3317 flags = tb->flags;
3318 tb_phys_invalidate(tb, -1);
3319 /* FIXME: In theory this could raise an exception. In practice
3320 we have already translated the block once so it's probably ok. */
3321 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3322 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3323 the first in the TB) then we end up generating a whole new TB and
3324 repeating the fault, which is horribly inefficient.
3325 Better would be to execute just this insn uncached, or generate a
3326 second new TB. */
3327 cpu_resume_from_signal(env, NULL);
3328}
3329
e3db7226
FB
3330void dump_exec_info(FILE *f,
3331 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3332{
3333 int i, target_code_size, max_target_code_size;
3334 int direct_jmp_count, direct_jmp2_count, cross_page;
3335 TranslationBlock *tb;
3b46e624 3336
e3db7226
FB
3337 target_code_size = 0;
3338 max_target_code_size = 0;
3339 cross_page = 0;
3340 direct_jmp_count = 0;
3341 direct_jmp2_count = 0;
3342 for(i = 0; i < nb_tbs; i++) {
3343 tb = &tbs[i];
3344 target_code_size += tb->size;
3345 if (tb->size > max_target_code_size)
3346 max_target_code_size = tb->size;
3347 if (tb->page_addr[1] != -1)
3348 cross_page++;
3349 if (tb->tb_next_offset[0] != 0xffff) {
3350 direct_jmp_count++;
3351 if (tb->tb_next_offset[1] != 0xffff) {
3352 direct_jmp2_count++;
3353 }
3354 }
3355 }
3356 /* XXX: avoid using doubles ? */
57fec1fe 3357 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3358 cpu_fprintf(f, "gen code size %ld/%ld\n",
3359 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3360 cpu_fprintf(f, "TB count %d/%d\n",
3361 nb_tbs, code_gen_max_blocks);
5fafdf24 3362 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3363 nb_tbs ? target_code_size / nb_tbs : 0,
3364 max_target_code_size);
5fafdf24 3365 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3366 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3367 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3368 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3369 cross_page,
e3db7226
FB
3370 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3371 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3372 direct_jmp_count,
e3db7226
FB
3373 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3374 direct_jmp2_count,
3375 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3376 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3377 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3378 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3379 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3380 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3381}
3382
5fafdf24 3383#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3384
3385#define MMUSUFFIX _cmmu
3386#define GETPC() NULL
3387#define env cpu_single_env
b769d8fe 3388#define SOFTMMU_CODE_ACCESS
61382a50
FB
3389
3390#define SHIFT 0
3391#include "softmmu_template.h"
3392
3393#define SHIFT 1
3394#include "softmmu_template.h"
3395
3396#define SHIFT 2
3397#include "softmmu_template.h"
3398
3399#define SHIFT 3
3400#include "softmmu_template.h"
3401
3402#undef env
3403
3404#endif