]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Safety net for the cases where disassembler/translator disagree over instruction...
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
fad6cb1a 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
54936004 19 */
67b915a5 20#include "config.h"
d5a8f07c
FB
21#ifdef _WIN32
22#include <windows.h>
23#else
a98d49b1 24#include <sys/types.h>
d5a8f07c
FB
25#include <sys/mman.h>
26#endif
54936004
FB
27#include <stdlib.h>
28#include <stdio.h>
29#include <stdarg.h>
30#include <string.h>
31#include <errno.h>
32#include <unistd.h>
33#include <inttypes.h>
34
6180a181
FB
35#include "cpu.h"
36#include "exec-all.h"
ca10f867 37#include "qemu-common.h"
b67d9a52 38#include "tcg.h"
b3c7724c 39#include "hw/hw.h"
74576198 40#include "osdep.h"
7ba1e619 41#include "kvm.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 74#elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
00f82b8a 75#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 76#elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
00f82b8a 77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
78#else
79/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80#define TARGET_PHYS_ADDR_SPACE_BITS 32
81#endif
82
bdaf78e0 83static TranslationBlock *tbs;
26a5f13b 84int code_gen_max_blocks;
9fa3e853 85TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 86static int nb_tbs;
eb51d102
FB
87/* any access to the tbs or the page table must use this lock */
88spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 89
141ac468
BS
90#if defined(__arm__) || defined(__sparc_v9__)
91/* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
93 section close to code segment. */
94#define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97#else
98#define code_gen_section \
99 __attribute__((aligned (32)))
100#endif
101
102uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
103static uint8_t *code_gen_buffer;
104static unsigned long code_gen_buffer_size;
26a5f13b 105/* threshold to flush the translated code buffer */
bdaf78e0 106static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
107uint8_t *code_gen_ptr;
108
e2eef170 109#if !defined(CONFIG_USER_ONLY)
9fa3e853 110int phys_ram_fd;
1ccde1cb 111uint8_t *phys_ram_dirty;
74576198 112static int in_migration;
94a6b54f
PB
113
114typedef struct RAMBlock {
115 uint8_t *host;
116 ram_addr_t offset;
117 ram_addr_t length;
118 struct RAMBlock *next;
119} RAMBlock;
120
121static RAMBlock *ram_blocks;
122/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
123 then we can no longet assume contiguous ram offsets, and external uses
124 of this variable will break. */
125ram_addr_t last_ram_offset;
e2eef170 126#endif
9fa3e853 127
6a00d601
FB
128CPUState *first_cpu;
129/* current CPU in the current thread. It is only valid inside
130 cpu_exec() */
5fafdf24 131CPUState *cpu_single_env;
2e70f6ef 132/* 0 = Do not count executed instructions.
bf20dc07 133 1 = Precise instruction counting.
2e70f6ef
PB
134 2 = Adaptive rate instruction counting. */
135int use_icount = 0;
136/* Current instruction counter. While executing translated code this may
137 include some instructions that have not yet been executed. */
138int64_t qemu_icount;
6a00d601 139
54936004 140typedef struct PageDesc {
92e873b9 141 /* list of TBs intersecting this ram page */
fd6ce8f6 142 TranslationBlock *first_tb;
9fa3e853
FB
143 /* in order to optimize self modifying code, we count the number
144 of lookups we do to a given page to use a bitmap */
145 unsigned int code_write_count;
146 uint8_t *code_bitmap;
147#if defined(CONFIG_USER_ONLY)
148 unsigned long flags;
149#endif
54936004
FB
150} PageDesc;
151
92e873b9 152typedef struct PhysPageDesc {
0f459d16 153 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 154 ram_addr_t phys_offset;
8da3ff18 155 ram_addr_t region_offset;
92e873b9
FB
156} PhysPageDesc;
157
54936004 158#define L2_BITS 10
bedb69ea
JM
159#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
160/* XXX: this is a temporary hack for alpha target.
161 * In the future, this is to be replaced by a multi-level table
162 * to actually be able to handle the complete 64 bits address space.
163 */
164#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
165#else
03875444 166#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 167#endif
54936004
FB
168
169#define L1_SIZE (1 << L1_BITS)
170#define L2_SIZE (1 << L2_BITS)
171
83fb7adf
FB
172unsigned long qemu_real_host_page_size;
173unsigned long qemu_host_page_bits;
174unsigned long qemu_host_page_size;
175unsigned long qemu_host_page_mask;
54936004 176
92e873b9 177/* XXX: for system emulation, it could just be an array */
54936004 178static PageDesc *l1_map[L1_SIZE];
bdaf78e0 179static PhysPageDesc **l1_phys_map;
54936004 180
e2eef170
PB
181#if !defined(CONFIG_USER_ONLY)
182static void io_mem_init(void);
183
33417e70 184/* io memory support */
33417e70
FB
185CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
186CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 187void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 188static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
189static int io_mem_watch;
190#endif
33417e70 191
34865134 192/* log support */
d9b630fd 193static const char *logfilename = "/tmp/qemu.log";
34865134
FB
194FILE *logfile;
195int loglevel;
e735b91c 196static int log_append = 0;
34865134 197
e3db7226
FB
198/* statistics */
199static int tlb_flush_count;
200static int tb_flush_count;
201static int tb_phys_invalidate_count;
202
db7b5426
BS
203#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
204typedef struct subpage_t {
205 target_phys_addr_t base;
3ee89922
BS
206 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
207 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
208 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 209 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
210} subpage_t;
211
7cb69cae
FB
212#ifdef _WIN32
213static void map_exec(void *addr, long size)
214{
215 DWORD old_protect;
216 VirtualProtect(addr, size,
217 PAGE_EXECUTE_READWRITE, &old_protect);
218
219}
220#else
221static void map_exec(void *addr, long size)
222{
4369415f 223 unsigned long start, end, page_size;
7cb69cae 224
4369415f 225 page_size = getpagesize();
7cb69cae 226 start = (unsigned long)addr;
4369415f 227 start &= ~(page_size - 1);
7cb69cae
FB
228
229 end = (unsigned long)addr + size;
4369415f
FB
230 end += page_size - 1;
231 end &= ~(page_size - 1);
7cb69cae
FB
232
233 mprotect((void *)start, end - start,
234 PROT_READ | PROT_WRITE | PROT_EXEC);
235}
236#endif
237
b346ff46 238static void page_init(void)
54936004 239{
83fb7adf 240 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 241 TARGET_PAGE_SIZE */
c2b48b69
AL
242#ifdef _WIN32
243 {
244 SYSTEM_INFO system_info;
245
246 GetSystemInfo(&system_info);
247 qemu_real_host_page_size = system_info.dwPageSize;
248 }
249#else
250 qemu_real_host_page_size = getpagesize();
251#endif
83fb7adf
FB
252 if (qemu_host_page_size == 0)
253 qemu_host_page_size = qemu_real_host_page_size;
254 if (qemu_host_page_size < TARGET_PAGE_SIZE)
255 qemu_host_page_size = TARGET_PAGE_SIZE;
256 qemu_host_page_bits = 0;
257 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
258 qemu_host_page_bits++;
259 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
262
263#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
264 {
265 long long startaddr, endaddr;
266 FILE *f;
267 int n;
268
c8a706fe 269 mmap_lock();
0776590d 270 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
271 f = fopen("/proc/self/maps", "r");
272 if (f) {
273 do {
274 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
275 if (n == 2) {
e0b8d65a
BS
276 startaddr = MIN(startaddr,
277 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
278 endaddr = MIN(endaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 280 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
281 TARGET_PAGE_ALIGN(endaddr),
282 PAGE_RESERVED);
283 }
284 } while (!feof(f));
285 fclose(f);
286 }
c8a706fe 287 mmap_unlock();
50a9569b
AZ
288 }
289#endif
54936004
FB
290}
291
434929bf 292static inline PageDesc **page_l1_map(target_ulong index)
54936004 293{
17e2377a
PB
294#if TARGET_LONG_BITS > 32
295 /* Host memory outside guest VM. For 32-bit targets we have already
296 excluded high addresses. */
d8173e0f 297 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
298 return NULL;
299#endif
434929bf
AL
300 return &l1_map[index >> L2_BITS];
301}
302
303static inline PageDesc *page_find_alloc(target_ulong index)
304{
305 PageDesc **lp, *p;
306 lp = page_l1_map(index);
307 if (!lp)
308 return NULL;
309
54936004
FB
310 p = *lp;
311 if (!p) {
312 /* allocate if not found */
17e2377a 313#if defined(CONFIG_USER_ONLY)
17e2377a
PB
314 size_t len = sizeof(PageDesc) * L2_SIZE;
315 /* Don't use qemu_malloc because it may recurse. */
316 p = mmap(0, len, PROT_READ | PROT_WRITE,
317 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 318 *lp = p;
fb1c2cd7
AJ
319 if (h2g_valid(p)) {
320 unsigned long addr = h2g(p);
17e2377a
PB
321 page_set_flags(addr & TARGET_PAGE_MASK,
322 TARGET_PAGE_ALIGN(addr + len),
323 PAGE_RESERVED);
324 }
325#else
326 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
327 *lp = p;
328#endif
54936004
FB
329 }
330 return p + (index & (L2_SIZE - 1));
331}
332
00f82b8a 333static inline PageDesc *page_find(target_ulong index)
54936004 334{
434929bf
AL
335 PageDesc **lp, *p;
336 lp = page_l1_map(index);
337 if (!lp)
338 return NULL;
54936004 339
434929bf 340 p = *lp;
54936004
FB
341 if (!p)
342 return 0;
fd6ce8f6
FB
343 return p + (index & (L2_SIZE - 1));
344}
345
108c49b8 346static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 347{
108c49b8 348 void **lp, **p;
e3f4e2a4 349 PhysPageDesc *pd;
92e873b9 350
108c49b8
FB
351 p = (void **)l1_phys_map;
352#if TARGET_PHYS_ADDR_SPACE_BITS > 32
353
354#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
355#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
356#endif
357 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
358 p = *lp;
359 if (!p) {
360 /* allocate if not found */
108c49b8
FB
361 if (!alloc)
362 return NULL;
363 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
364 memset(p, 0, sizeof(void *) * L1_SIZE);
365 *lp = p;
366 }
367#endif
368 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
369 pd = *lp;
370 if (!pd) {
371 int i;
108c49b8
FB
372 /* allocate if not found */
373 if (!alloc)
374 return NULL;
e3f4e2a4
PB
375 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
376 *lp = pd;
67c4d23c 377 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 378 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
379 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
380 }
92e873b9 381 }
e3f4e2a4 382 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
383}
384
108c49b8 385static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 386{
108c49b8 387 return phys_page_find_alloc(index, 0);
92e873b9
FB
388}
389
9fa3e853 390#if !defined(CONFIG_USER_ONLY)
6a00d601 391static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 392static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 393 target_ulong vaddr);
c8a706fe
PB
394#define mmap_lock() do { } while(0)
395#define mmap_unlock() do { } while(0)
9fa3e853 396#endif
fd6ce8f6 397
4369415f
FB
398#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
399
400#if defined(CONFIG_USER_ONLY)
401/* Currently it is not recommanded to allocate big chunks of data in
402 user mode. It will change when a dedicated libc will be used */
403#define USE_STATIC_CODE_GEN_BUFFER
404#endif
405
406#ifdef USE_STATIC_CODE_GEN_BUFFER
407static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
408#endif
409
8fcd3692 410static void code_gen_alloc(unsigned long tb_size)
26a5f13b 411{
4369415f
FB
412#ifdef USE_STATIC_CODE_GEN_BUFFER
413 code_gen_buffer = static_code_gen_buffer;
414 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
415 map_exec(code_gen_buffer, code_gen_buffer_size);
416#else
26a5f13b
FB
417 code_gen_buffer_size = tb_size;
418 if (code_gen_buffer_size == 0) {
4369415f
FB
419#if defined(CONFIG_USER_ONLY)
420 /* in user mode, phys_ram_size is not meaningful */
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422#else
26a5f13b 423 /* XXX: needs ajustments */
94a6b54f 424 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 425#endif
26a5f13b
FB
426 }
427 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
428 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
429 /* The code gen buffer location may have constraints depending on
430 the host cpu and OS */
431#if defined(__linux__)
432 {
433 int flags;
141ac468
BS
434 void *start = NULL;
435
26a5f13b
FB
436 flags = MAP_PRIVATE | MAP_ANONYMOUS;
437#if defined(__x86_64__)
438 flags |= MAP_32BIT;
439 /* Cannot map more than that */
440 if (code_gen_buffer_size > (800 * 1024 * 1024))
441 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
442#elif defined(__sparc_v9__)
443 // Map the buffer below 2G, so we can use direct calls and branches
444 flags |= MAP_FIXED;
445 start = (void *) 0x60000000UL;
446 if (code_gen_buffer_size > (512 * 1024 * 1024))
447 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 448#elif defined(__arm__)
63d41246 449 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
450 flags |= MAP_FIXED;
451 start = (void *) 0x01000000UL;
452 if (code_gen_buffer_size > 16 * 1024 * 1024)
453 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 454#endif
141ac468
BS
455 code_gen_buffer = mmap(start, code_gen_buffer_size,
456 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
457 flags, -1, 0);
458 if (code_gen_buffer == MAP_FAILED) {
459 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
460 exit(1);
461 }
462 }
c5e97233 463#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
464 {
465 int flags;
466 void *addr = NULL;
467 flags = MAP_PRIVATE | MAP_ANONYMOUS;
468#if defined(__x86_64__)
469 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
470 * 0x40000000 is free */
471 flags |= MAP_FIXED;
472 addr = (void *)0x40000000;
473 /* Cannot map more than that */
474 if (code_gen_buffer_size > (800 * 1024 * 1024))
475 code_gen_buffer_size = (800 * 1024 * 1024);
476#endif
477 code_gen_buffer = mmap(addr, code_gen_buffer_size,
478 PROT_WRITE | PROT_READ | PROT_EXEC,
479 flags, -1, 0);
480 if (code_gen_buffer == MAP_FAILED) {
481 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
482 exit(1);
483 }
484 }
26a5f13b
FB
485#else
486 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
487 map_exec(code_gen_buffer, code_gen_buffer_size);
488#endif
4369415f 489#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
490 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
491 code_gen_buffer_max_size = code_gen_buffer_size -
492 code_gen_max_block_size();
493 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
494 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
495}
496
497/* Must be called before using the QEMU cpus. 'tb_size' is the size
498 (in bytes) allocated to the translation buffer. Zero means default
499 size. */
500void cpu_exec_init_all(unsigned long tb_size)
501{
26a5f13b
FB
502 cpu_gen_init();
503 code_gen_alloc(tb_size);
504 code_gen_ptr = code_gen_buffer;
4369415f 505 page_init();
e2eef170 506#if !defined(CONFIG_USER_ONLY)
26a5f13b 507 io_mem_init();
e2eef170 508#endif
26a5f13b
FB
509}
510
9656f324
PB
511#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
512
513#define CPU_COMMON_SAVE_VERSION 1
514
515static void cpu_common_save(QEMUFile *f, void *opaque)
516{
517 CPUState *env = opaque;
518
519 qemu_put_be32s(f, &env->halted);
520 qemu_put_be32s(f, &env->interrupt_request);
521}
522
523static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
524{
525 CPUState *env = opaque;
526
527 if (version_id != CPU_COMMON_SAVE_VERSION)
528 return -EINVAL;
529
530 qemu_get_be32s(f, &env->halted);
75f482ae 531 qemu_get_be32s(f, &env->interrupt_request);
3098dba0
AJ
532 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
533 version_id is increased. */
534 env->interrupt_request &= ~0x01;
9656f324
PB
535 tlb_flush(env, 1);
536
537 return 0;
538}
539#endif
540
6a00d601 541void cpu_exec_init(CPUState *env)
fd6ce8f6 542{
6a00d601
FB
543 CPUState **penv;
544 int cpu_index;
545
c2764719
PB
546#if defined(CONFIG_USER_ONLY)
547 cpu_list_lock();
548#endif
6a00d601
FB
549 env->next_cpu = NULL;
550 penv = &first_cpu;
551 cpu_index = 0;
552 while (*penv != NULL) {
553 penv = (CPUState **)&(*penv)->next_cpu;
554 cpu_index++;
555 }
556 env->cpu_index = cpu_index;
c0ce998e
AL
557 TAILQ_INIT(&env->breakpoints);
558 TAILQ_INIT(&env->watchpoints);
6a00d601 559 *penv = env;
c2764719
PB
560#if defined(CONFIG_USER_ONLY)
561 cpu_list_unlock();
562#endif
b3c7724c 563#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
564 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
565 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
566 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
567 cpu_save, cpu_load, env);
568#endif
fd6ce8f6
FB
569}
570
9fa3e853
FB
571static inline void invalidate_page_bitmap(PageDesc *p)
572{
573 if (p->code_bitmap) {
59817ccb 574 qemu_free(p->code_bitmap);
9fa3e853
FB
575 p->code_bitmap = NULL;
576 }
577 p->code_write_count = 0;
578}
579
fd6ce8f6
FB
580/* set to NULL all the 'first_tb' fields in all PageDescs */
581static void page_flush_tb(void)
582{
583 int i, j;
584 PageDesc *p;
585
586 for(i = 0; i < L1_SIZE; i++) {
587 p = l1_map[i];
588 if (p) {
9fa3e853
FB
589 for(j = 0; j < L2_SIZE; j++) {
590 p->first_tb = NULL;
591 invalidate_page_bitmap(p);
592 p++;
593 }
fd6ce8f6
FB
594 }
595 }
596}
597
598/* flush all the translation blocks */
d4e8164f 599/* XXX: tb_flush is currently not thread safe */
6a00d601 600void tb_flush(CPUState *env1)
fd6ce8f6 601{
6a00d601 602 CPUState *env;
0124311e 603#if defined(DEBUG_FLUSH)
ab3d1727
BS
604 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
605 (unsigned long)(code_gen_ptr - code_gen_buffer),
606 nb_tbs, nb_tbs > 0 ?
607 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 608#endif
26a5f13b 609 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
610 cpu_abort(env1, "Internal error: code buffer overflow\n");
611
fd6ce8f6 612 nb_tbs = 0;
3b46e624 613
6a00d601
FB
614 for(env = first_cpu; env != NULL; env = env->next_cpu) {
615 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
616 }
9fa3e853 617
8a8a608f 618 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 619 page_flush_tb();
9fa3e853 620
fd6ce8f6 621 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
622 /* XXX: flush processor icache at this point if cache flush is
623 expensive */
e3db7226 624 tb_flush_count++;
fd6ce8f6
FB
625}
626
627#ifdef DEBUG_TB_CHECK
628
bc98a7ef 629static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
630{
631 TranslationBlock *tb;
632 int i;
633 address &= TARGET_PAGE_MASK;
99773bd4
PB
634 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
635 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
636 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
637 address >= tb->pc + tb->size)) {
638 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 639 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
640 }
641 }
642 }
643}
644
645/* verify that all the pages have correct rights for code */
646static void tb_page_check(void)
647{
648 TranslationBlock *tb;
649 int i, flags1, flags2;
3b46e624 650
99773bd4
PB
651 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
652 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
653 flags1 = page_get_flags(tb->pc);
654 flags2 = page_get_flags(tb->pc + tb->size - 1);
655 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
656 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 657 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
658 }
659 }
660 }
661}
662
bdaf78e0 663static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
664{
665 TranslationBlock *tb1;
666 unsigned int n1;
667
668 /* suppress any remaining jumps to this TB */
669 tb1 = tb->jmp_first;
670 for(;;) {
671 n1 = (long)tb1 & 3;
672 tb1 = (TranslationBlock *)((long)tb1 & ~3);
673 if (n1 == 2)
674 break;
675 tb1 = tb1->jmp_next[n1];
676 }
677 /* check end of list */
678 if (tb1 != tb) {
679 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
680 }
681}
682
fd6ce8f6
FB
683#endif
684
685/* invalidate one TB */
686static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
687 int next_offset)
688{
689 TranslationBlock *tb1;
690 for(;;) {
691 tb1 = *ptb;
692 if (tb1 == tb) {
693 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
694 break;
695 }
696 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
697 }
698}
699
9fa3e853
FB
700static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
701{
702 TranslationBlock *tb1;
703 unsigned int n1;
704
705 for(;;) {
706 tb1 = *ptb;
707 n1 = (long)tb1 & 3;
708 tb1 = (TranslationBlock *)((long)tb1 & ~3);
709 if (tb1 == tb) {
710 *ptb = tb1->page_next[n1];
711 break;
712 }
713 ptb = &tb1->page_next[n1];
714 }
715}
716
d4e8164f
FB
717static inline void tb_jmp_remove(TranslationBlock *tb, int n)
718{
719 TranslationBlock *tb1, **ptb;
720 unsigned int n1;
721
722 ptb = &tb->jmp_next[n];
723 tb1 = *ptb;
724 if (tb1) {
725 /* find tb(n) in circular list */
726 for(;;) {
727 tb1 = *ptb;
728 n1 = (long)tb1 & 3;
729 tb1 = (TranslationBlock *)((long)tb1 & ~3);
730 if (n1 == n && tb1 == tb)
731 break;
732 if (n1 == 2) {
733 ptb = &tb1->jmp_first;
734 } else {
735 ptb = &tb1->jmp_next[n1];
736 }
737 }
738 /* now we can suppress tb(n) from the list */
739 *ptb = tb->jmp_next[n];
740
741 tb->jmp_next[n] = NULL;
742 }
743}
744
745/* reset the jump entry 'n' of a TB so that it is not chained to
746 another TB */
747static inline void tb_reset_jump(TranslationBlock *tb, int n)
748{
749 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
750}
751
2e70f6ef 752void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 753{
6a00d601 754 CPUState *env;
8a40a180 755 PageDesc *p;
d4e8164f 756 unsigned int h, n1;
00f82b8a 757 target_phys_addr_t phys_pc;
8a40a180 758 TranslationBlock *tb1, *tb2;
3b46e624 759
8a40a180
FB
760 /* remove the TB from the hash list */
761 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
762 h = tb_phys_hash_func(phys_pc);
5fafdf24 763 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
764 offsetof(TranslationBlock, phys_hash_next));
765
766 /* remove the TB from the page list */
767 if (tb->page_addr[0] != page_addr) {
768 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
769 tb_page_remove(&p->first_tb, tb);
770 invalidate_page_bitmap(p);
771 }
772 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
773 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
774 tb_page_remove(&p->first_tb, tb);
775 invalidate_page_bitmap(p);
776 }
777
36bdbe54 778 tb_invalidated_flag = 1;
59817ccb 779
fd6ce8f6 780 /* remove the TB from the hash list */
8a40a180 781 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
782 for(env = first_cpu; env != NULL; env = env->next_cpu) {
783 if (env->tb_jmp_cache[h] == tb)
784 env->tb_jmp_cache[h] = NULL;
785 }
d4e8164f
FB
786
787 /* suppress this TB from the two jump lists */
788 tb_jmp_remove(tb, 0);
789 tb_jmp_remove(tb, 1);
790
791 /* suppress any remaining jumps to this TB */
792 tb1 = tb->jmp_first;
793 for(;;) {
794 n1 = (long)tb1 & 3;
795 if (n1 == 2)
796 break;
797 tb1 = (TranslationBlock *)((long)tb1 & ~3);
798 tb2 = tb1->jmp_next[n1];
799 tb_reset_jump(tb1, n1);
800 tb1->jmp_next[n1] = NULL;
801 tb1 = tb2;
802 }
803 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 804
e3db7226 805 tb_phys_invalidate_count++;
9fa3e853
FB
806}
807
808static inline void set_bits(uint8_t *tab, int start, int len)
809{
810 int end, mask, end1;
811
812 end = start + len;
813 tab += start >> 3;
814 mask = 0xff << (start & 7);
815 if ((start & ~7) == (end & ~7)) {
816 if (start < end) {
817 mask &= ~(0xff << (end & 7));
818 *tab |= mask;
819 }
820 } else {
821 *tab++ |= mask;
822 start = (start + 8) & ~7;
823 end1 = end & ~7;
824 while (start < end1) {
825 *tab++ = 0xff;
826 start += 8;
827 }
828 if (start < end) {
829 mask = ~(0xff << (end & 7));
830 *tab |= mask;
831 }
832 }
833}
834
835static void build_page_bitmap(PageDesc *p)
836{
837 int n, tb_start, tb_end;
838 TranslationBlock *tb;
3b46e624 839
b2a7081a 840 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
841
842 tb = p->first_tb;
843 while (tb != NULL) {
844 n = (long)tb & 3;
845 tb = (TranslationBlock *)((long)tb & ~3);
846 /* NOTE: this is subtle as a TB may span two physical pages */
847 if (n == 0) {
848 /* NOTE: tb_end may be after the end of the page, but
849 it is not a problem */
850 tb_start = tb->pc & ~TARGET_PAGE_MASK;
851 tb_end = tb_start + tb->size;
852 if (tb_end > TARGET_PAGE_SIZE)
853 tb_end = TARGET_PAGE_SIZE;
854 } else {
855 tb_start = 0;
856 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
857 }
858 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
859 tb = tb->page_next[n];
860 }
861}
862
2e70f6ef
PB
863TranslationBlock *tb_gen_code(CPUState *env,
864 target_ulong pc, target_ulong cs_base,
865 int flags, int cflags)
d720b93d
FB
866{
867 TranslationBlock *tb;
868 uint8_t *tc_ptr;
869 target_ulong phys_pc, phys_page2, virt_page2;
870 int code_gen_size;
871
c27004ec
FB
872 phys_pc = get_phys_addr_code(env, pc);
873 tb = tb_alloc(pc);
d720b93d
FB
874 if (!tb) {
875 /* flush must be done */
876 tb_flush(env);
877 /* cannot fail at this point */
c27004ec 878 tb = tb_alloc(pc);
2e70f6ef
PB
879 /* Don't forget to invalidate previous TB info. */
880 tb_invalidated_flag = 1;
d720b93d
FB
881 }
882 tc_ptr = code_gen_ptr;
883 tb->tc_ptr = tc_ptr;
884 tb->cs_base = cs_base;
885 tb->flags = flags;
886 tb->cflags = cflags;
d07bde88 887 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 888 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 889
d720b93d 890 /* check next page if needed */
c27004ec 891 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 892 phys_page2 = -1;
c27004ec 893 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
894 phys_page2 = get_phys_addr_code(env, virt_page2);
895 }
896 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 897 return tb;
d720b93d 898}
3b46e624 899
9fa3e853
FB
900/* invalidate all TBs which intersect with the target physical page
901 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
902 the same physical page. 'is_cpu_write_access' should be true if called
903 from a real cpu write access: the virtual CPU will exit the current
904 TB if code is modified inside this TB. */
00f82b8a 905void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
906 int is_cpu_write_access)
907{
6b917547 908 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 909 CPUState *env = cpu_single_env;
9fa3e853 910 target_ulong tb_start, tb_end;
6b917547
AL
911 PageDesc *p;
912 int n;
913#ifdef TARGET_HAS_PRECISE_SMC
914 int current_tb_not_found = is_cpu_write_access;
915 TranslationBlock *current_tb = NULL;
916 int current_tb_modified = 0;
917 target_ulong current_pc = 0;
918 target_ulong current_cs_base = 0;
919 int current_flags = 0;
920#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
921
922 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 923 if (!p)
9fa3e853 924 return;
5fafdf24 925 if (!p->code_bitmap &&
d720b93d
FB
926 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
927 is_cpu_write_access) {
9fa3e853
FB
928 /* build code bitmap */
929 build_page_bitmap(p);
930 }
931
932 /* we remove all the TBs in the range [start, end[ */
933 /* XXX: see if in some cases it could be faster to invalidate all the code */
934 tb = p->first_tb;
935 while (tb != NULL) {
936 n = (long)tb & 3;
937 tb = (TranslationBlock *)((long)tb & ~3);
938 tb_next = tb->page_next[n];
939 /* NOTE: this is subtle as a TB may span two physical pages */
940 if (n == 0) {
941 /* NOTE: tb_end may be after the end of the page, but
942 it is not a problem */
943 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
944 tb_end = tb_start + tb->size;
945 } else {
946 tb_start = tb->page_addr[1];
947 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
948 }
949 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
950#ifdef TARGET_HAS_PRECISE_SMC
951 if (current_tb_not_found) {
952 current_tb_not_found = 0;
953 current_tb = NULL;
2e70f6ef 954 if (env->mem_io_pc) {
d720b93d 955 /* now we have a real cpu fault */
2e70f6ef 956 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
957 }
958 }
959 if (current_tb == tb &&
2e70f6ef 960 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
961 /* If we are modifying the current TB, we must stop
962 its execution. We could be more precise by checking
963 that the modification is after the current PC, but it
964 would require a specialized function to partially
965 restore the CPU state */
3b46e624 966
d720b93d 967 current_tb_modified = 1;
5fafdf24 968 cpu_restore_state(current_tb, env,
2e70f6ef 969 env->mem_io_pc, NULL);
6b917547
AL
970 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
971 &current_flags);
d720b93d
FB
972 }
973#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
974 /* we need to do that to handle the case where a signal
975 occurs while doing tb_phys_invalidate() */
976 saved_tb = NULL;
977 if (env) {
978 saved_tb = env->current_tb;
979 env->current_tb = NULL;
980 }
9fa3e853 981 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
982 if (env) {
983 env->current_tb = saved_tb;
984 if (env->interrupt_request && env->current_tb)
985 cpu_interrupt(env, env->interrupt_request);
986 }
9fa3e853
FB
987 }
988 tb = tb_next;
989 }
990#if !defined(CONFIG_USER_ONLY)
991 /* if no code remaining, no need to continue to use slow writes */
992 if (!p->first_tb) {
993 invalidate_page_bitmap(p);
d720b93d 994 if (is_cpu_write_access) {
2e70f6ef 995 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
996 }
997 }
998#endif
999#ifdef TARGET_HAS_PRECISE_SMC
1000 if (current_tb_modified) {
1001 /* we generate a block containing just the instruction
1002 modifying the memory. It will ensure that it cannot modify
1003 itself */
ea1c1802 1004 env->current_tb = NULL;
2e70f6ef 1005 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1006 cpu_resume_from_signal(env, NULL);
9fa3e853 1007 }
fd6ce8f6 1008#endif
9fa3e853 1009}
fd6ce8f6 1010
9fa3e853 1011/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1012static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1013{
1014 PageDesc *p;
1015 int offset, b;
59817ccb 1016#if 0
a4193c8a 1017 if (1) {
93fcfe39
AL
1018 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1019 cpu_single_env->mem_io_vaddr, len,
1020 cpu_single_env->eip,
1021 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1022 }
1023#endif
9fa3e853 1024 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1025 if (!p)
9fa3e853
FB
1026 return;
1027 if (p->code_bitmap) {
1028 offset = start & ~TARGET_PAGE_MASK;
1029 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1030 if (b & ((1 << len) - 1))
1031 goto do_invalidate;
1032 } else {
1033 do_invalidate:
d720b93d 1034 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1035 }
1036}
1037
9fa3e853 1038#if !defined(CONFIG_SOFTMMU)
00f82b8a 1039static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1040 unsigned long pc, void *puc)
9fa3e853 1041{
6b917547 1042 TranslationBlock *tb;
9fa3e853 1043 PageDesc *p;
6b917547 1044 int n;
d720b93d 1045#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1046 TranslationBlock *current_tb = NULL;
d720b93d 1047 CPUState *env = cpu_single_env;
6b917547
AL
1048 int current_tb_modified = 0;
1049 target_ulong current_pc = 0;
1050 target_ulong current_cs_base = 0;
1051 int current_flags = 0;
d720b93d 1052#endif
9fa3e853
FB
1053
1054 addr &= TARGET_PAGE_MASK;
1055 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1056 if (!p)
9fa3e853
FB
1057 return;
1058 tb = p->first_tb;
d720b93d
FB
1059#ifdef TARGET_HAS_PRECISE_SMC
1060 if (tb && pc != 0) {
1061 current_tb = tb_find_pc(pc);
1062 }
1063#endif
9fa3e853
FB
1064 while (tb != NULL) {
1065 n = (long)tb & 3;
1066 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1067#ifdef TARGET_HAS_PRECISE_SMC
1068 if (current_tb == tb &&
2e70f6ef 1069 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1070 /* If we are modifying the current TB, we must stop
1071 its execution. We could be more precise by checking
1072 that the modification is after the current PC, but it
1073 would require a specialized function to partially
1074 restore the CPU state */
3b46e624 1075
d720b93d
FB
1076 current_tb_modified = 1;
1077 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1078 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1079 &current_flags);
d720b93d
FB
1080 }
1081#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1082 tb_phys_invalidate(tb, addr);
1083 tb = tb->page_next[n];
1084 }
fd6ce8f6 1085 p->first_tb = NULL;
d720b93d
FB
1086#ifdef TARGET_HAS_PRECISE_SMC
1087 if (current_tb_modified) {
1088 /* we generate a block containing just the instruction
1089 modifying the memory. It will ensure that it cannot modify
1090 itself */
ea1c1802 1091 env->current_tb = NULL;
2e70f6ef 1092 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1093 cpu_resume_from_signal(env, puc);
1094 }
1095#endif
fd6ce8f6 1096}
9fa3e853 1097#endif
fd6ce8f6
FB
1098
1099/* add the tb in the target page and protect it if necessary */
5fafdf24 1100static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1101 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1102{
1103 PageDesc *p;
9fa3e853
FB
1104 TranslationBlock *last_first_tb;
1105
1106 tb->page_addr[n] = page_addr;
3a7d929e 1107 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1108 tb->page_next[n] = p->first_tb;
1109 last_first_tb = p->first_tb;
1110 p->first_tb = (TranslationBlock *)((long)tb | n);
1111 invalidate_page_bitmap(p);
fd6ce8f6 1112
107db443 1113#if defined(TARGET_HAS_SMC) || 1
d720b93d 1114
9fa3e853 1115#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1116 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1117 target_ulong addr;
1118 PageDesc *p2;
9fa3e853
FB
1119 int prot;
1120
fd6ce8f6
FB
1121 /* force the host page as non writable (writes will have a
1122 page fault + mprotect overhead) */
53a5960a 1123 page_addr &= qemu_host_page_mask;
fd6ce8f6 1124 prot = 0;
53a5960a
PB
1125 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1126 addr += TARGET_PAGE_SIZE) {
1127
1128 p2 = page_find (addr >> TARGET_PAGE_BITS);
1129 if (!p2)
1130 continue;
1131 prot |= p2->flags;
1132 p2->flags &= ~PAGE_WRITE;
1133 page_get_flags(addr);
1134 }
5fafdf24 1135 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1136 (prot & PAGE_BITS) & ~PAGE_WRITE);
1137#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1138 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1139 page_addr);
fd6ce8f6 1140#endif
fd6ce8f6 1141 }
9fa3e853
FB
1142#else
1143 /* if some code is already present, then the pages are already
1144 protected. So we handle the case where only the first TB is
1145 allocated in a physical page */
1146 if (!last_first_tb) {
6a00d601 1147 tlb_protect_code(page_addr);
9fa3e853
FB
1148 }
1149#endif
d720b93d
FB
1150
1151#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1152}
1153
1154/* Allocate a new translation block. Flush the translation buffer if
1155 too many translation blocks or too much generated code. */
c27004ec 1156TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1157{
1158 TranslationBlock *tb;
fd6ce8f6 1159
26a5f13b
FB
1160 if (nb_tbs >= code_gen_max_blocks ||
1161 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1162 return NULL;
fd6ce8f6
FB
1163 tb = &tbs[nb_tbs++];
1164 tb->pc = pc;
b448f2f3 1165 tb->cflags = 0;
d4e8164f
FB
1166 return tb;
1167}
1168
2e70f6ef
PB
1169void tb_free(TranslationBlock *tb)
1170{
bf20dc07 1171 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1172 Ignore the hard cases and just back up if this TB happens to
1173 be the last one generated. */
1174 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1175 code_gen_ptr = tb->tc_ptr;
1176 nb_tbs--;
1177 }
1178}
1179
9fa3e853
FB
1180/* add a new TB and link it to the physical page tables. phys_page2 is
1181 (-1) to indicate that only one page contains the TB. */
5fafdf24 1182void tb_link_phys(TranslationBlock *tb,
9fa3e853 1183 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1184{
9fa3e853
FB
1185 unsigned int h;
1186 TranslationBlock **ptb;
1187
c8a706fe
PB
1188 /* Grab the mmap lock to stop another thread invalidating this TB
1189 before we are done. */
1190 mmap_lock();
9fa3e853
FB
1191 /* add in the physical hash table */
1192 h = tb_phys_hash_func(phys_pc);
1193 ptb = &tb_phys_hash[h];
1194 tb->phys_hash_next = *ptb;
1195 *ptb = tb;
fd6ce8f6
FB
1196
1197 /* add in the page list */
9fa3e853
FB
1198 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1199 if (phys_page2 != -1)
1200 tb_alloc_page(tb, 1, phys_page2);
1201 else
1202 tb->page_addr[1] = -1;
9fa3e853 1203
d4e8164f
FB
1204 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1205 tb->jmp_next[0] = NULL;
1206 tb->jmp_next[1] = NULL;
1207
1208 /* init original jump addresses */
1209 if (tb->tb_next_offset[0] != 0xffff)
1210 tb_reset_jump(tb, 0);
1211 if (tb->tb_next_offset[1] != 0xffff)
1212 tb_reset_jump(tb, 1);
8a40a180
FB
1213
1214#ifdef DEBUG_TB_CHECK
1215 tb_page_check();
1216#endif
c8a706fe 1217 mmap_unlock();
fd6ce8f6
FB
1218}
1219
9fa3e853
FB
1220/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1221 tb[1].tc_ptr. Return NULL if not found */
1222TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1223{
9fa3e853
FB
1224 int m_min, m_max, m;
1225 unsigned long v;
1226 TranslationBlock *tb;
a513fe19
FB
1227
1228 if (nb_tbs <= 0)
1229 return NULL;
1230 if (tc_ptr < (unsigned long)code_gen_buffer ||
1231 tc_ptr >= (unsigned long)code_gen_ptr)
1232 return NULL;
1233 /* binary search (cf Knuth) */
1234 m_min = 0;
1235 m_max = nb_tbs - 1;
1236 while (m_min <= m_max) {
1237 m = (m_min + m_max) >> 1;
1238 tb = &tbs[m];
1239 v = (unsigned long)tb->tc_ptr;
1240 if (v == tc_ptr)
1241 return tb;
1242 else if (tc_ptr < v) {
1243 m_max = m - 1;
1244 } else {
1245 m_min = m + 1;
1246 }
5fafdf24 1247 }
a513fe19
FB
1248 return &tbs[m_max];
1249}
7501267e 1250
ea041c0e
FB
1251static void tb_reset_jump_recursive(TranslationBlock *tb);
1252
1253static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1254{
1255 TranslationBlock *tb1, *tb_next, **ptb;
1256 unsigned int n1;
1257
1258 tb1 = tb->jmp_next[n];
1259 if (tb1 != NULL) {
1260 /* find head of list */
1261 for(;;) {
1262 n1 = (long)tb1 & 3;
1263 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1264 if (n1 == 2)
1265 break;
1266 tb1 = tb1->jmp_next[n1];
1267 }
1268 /* we are now sure now that tb jumps to tb1 */
1269 tb_next = tb1;
1270
1271 /* remove tb from the jmp_first list */
1272 ptb = &tb_next->jmp_first;
1273 for(;;) {
1274 tb1 = *ptb;
1275 n1 = (long)tb1 & 3;
1276 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1277 if (n1 == n && tb1 == tb)
1278 break;
1279 ptb = &tb1->jmp_next[n1];
1280 }
1281 *ptb = tb->jmp_next[n];
1282 tb->jmp_next[n] = NULL;
3b46e624 1283
ea041c0e
FB
1284 /* suppress the jump to next tb in generated code */
1285 tb_reset_jump(tb, n);
1286
0124311e 1287 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1288 tb_reset_jump_recursive(tb_next);
1289 }
1290}
1291
1292static void tb_reset_jump_recursive(TranslationBlock *tb)
1293{
1294 tb_reset_jump_recursive2(tb, 0);
1295 tb_reset_jump_recursive2(tb, 1);
1296}
1297
1fddef4b 1298#if defined(TARGET_HAS_ICE)
d720b93d
FB
1299static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1300{
9b3c35e0
JM
1301 target_phys_addr_t addr;
1302 target_ulong pd;
c2f07f81
PB
1303 ram_addr_t ram_addr;
1304 PhysPageDesc *p;
d720b93d 1305
c2f07f81
PB
1306 addr = cpu_get_phys_page_debug(env, pc);
1307 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1308 if (!p) {
1309 pd = IO_MEM_UNASSIGNED;
1310 } else {
1311 pd = p->phys_offset;
1312 }
1313 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1314 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1315}
c27004ec 1316#endif
d720b93d 1317
6658ffb8 1318/* Add a watchpoint. */
a1d1bb31
AL
1319int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1320 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1321{
b4051334 1322 target_ulong len_mask = ~(len - 1);
c0ce998e 1323 CPUWatchpoint *wp;
6658ffb8 1324
b4051334
AL
1325 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1326 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1327 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1328 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1329 return -EINVAL;
1330 }
a1d1bb31 1331 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1332
1333 wp->vaddr = addr;
b4051334 1334 wp->len_mask = len_mask;
a1d1bb31
AL
1335 wp->flags = flags;
1336
2dc9f411 1337 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1338 if (flags & BP_GDB)
1339 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1340 else
1341 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1342
6658ffb8 1343 tlb_flush_page(env, addr);
a1d1bb31
AL
1344
1345 if (watchpoint)
1346 *watchpoint = wp;
1347 return 0;
6658ffb8
PB
1348}
1349
a1d1bb31
AL
1350/* Remove a specific watchpoint. */
1351int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1352 int flags)
6658ffb8 1353{
b4051334 1354 target_ulong len_mask = ~(len - 1);
a1d1bb31 1355 CPUWatchpoint *wp;
6658ffb8 1356
c0ce998e 1357 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1358 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1359 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1360 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1361 return 0;
1362 }
1363 }
a1d1bb31 1364 return -ENOENT;
6658ffb8
PB
1365}
1366
a1d1bb31
AL
1367/* Remove a specific watchpoint by reference. */
1368void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1369{
c0ce998e 1370 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1371
a1d1bb31
AL
1372 tlb_flush_page(env, watchpoint->vaddr);
1373
1374 qemu_free(watchpoint);
1375}
1376
1377/* Remove all matching watchpoints. */
1378void cpu_watchpoint_remove_all(CPUState *env, int mask)
1379{
c0ce998e 1380 CPUWatchpoint *wp, *next;
a1d1bb31 1381
c0ce998e 1382 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1383 if (wp->flags & mask)
1384 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1385 }
7d03f82f
EI
1386}
1387
a1d1bb31
AL
1388/* Add a breakpoint. */
1389int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1390 CPUBreakpoint **breakpoint)
4c3a88a2 1391{
1fddef4b 1392#if defined(TARGET_HAS_ICE)
c0ce998e 1393 CPUBreakpoint *bp;
3b46e624 1394
a1d1bb31 1395 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1396
a1d1bb31
AL
1397 bp->pc = pc;
1398 bp->flags = flags;
1399
2dc9f411 1400 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1401 if (flags & BP_GDB)
1402 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1403 else
1404 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1405
d720b93d 1406 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1407
1408 if (breakpoint)
1409 *breakpoint = bp;
4c3a88a2
FB
1410 return 0;
1411#else
a1d1bb31 1412 return -ENOSYS;
4c3a88a2
FB
1413#endif
1414}
1415
a1d1bb31
AL
1416/* Remove a specific breakpoint. */
1417int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1418{
7d03f82f 1419#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1420 CPUBreakpoint *bp;
1421
c0ce998e 1422 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1423 if (bp->pc == pc && bp->flags == flags) {
1424 cpu_breakpoint_remove_by_ref(env, bp);
1425 return 0;
1426 }
7d03f82f 1427 }
a1d1bb31
AL
1428 return -ENOENT;
1429#else
1430 return -ENOSYS;
7d03f82f
EI
1431#endif
1432}
1433
a1d1bb31
AL
1434/* Remove a specific breakpoint by reference. */
1435void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1436{
1fddef4b 1437#if defined(TARGET_HAS_ICE)
c0ce998e 1438 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1439
a1d1bb31
AL
1440 breakpoint_invalidate(env, breakpoint->pc);
1441
1442 qemu_free(breakpoint);
1443#endif
1444}
1445
1446/* Remove all matching breakpoints. */
1447void cpu_breakpoint_remove_all(CPUState *env, int mask)
1448{
1449#if defined(TARGET_HAS_ICE)
c0ce998e 1450 CPUBreakpoint *bp, *next;
a1d1bb31 1451
c0ce998e 1452 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1453 if (bp->flags & mask)
1454 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1455 }
4c3a88a2
FB
1456#endif
1457}
1458
c33a346e
FB
1459/* enable or disable single step mode. EXCP_DEBUG is returned by the
1460 CPU loop after each instruction */
1461void cpu_single_step(CPUState *env, int enabled)
1462{
1fddef4b 1463#if defined(TARGET_HAS_ICE)
c33a346e
FB
1464 if (env->singlestep_enabled != enabled) {
1465 env->singlestep_enabled = enabled;
e22a25c9
AL
1466 if (kvm_enabled())
1467 kvm_update_guest_debug(env, 0);
1468 else {
1469 /* must flush all the translated code to avoid inconsistancies */
1470 /* XXX: only flush what is necessary */
1471 tb_flush(env);
1472 }
c33a346e
FB
1473 }
1474#endif
1475}
1476
34865134
FB
1477/* enable or disable low levels log */
1478void cpu_set_log(int log_flags)
1479{
1480 loglevel = log_flags;
1481 if (loglevel && !logfile) {
11fcfab4 1482 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1483 if (!logfile) {
1484 perror(logfilename);
1485 _exit(1);
1486 }
9fa3e853
FB
1487#if !defined(CONFIG_SOFTMMU)
1488 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1489 {
b55266b5 1490 static char logfile_buf[4096];
9fa3e853
FB
1491 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1492 }
1493#else
34865134 1494 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1495#endif
e735b91c
PB
1496 log_append = 1;
1497 }
1498 if (!loglevel && logfile) {
1499 fclose(logfile);
1500 logfile = NULL;
34865134
FB
1501 }
1502}
1503
1504void cpu_set_log_filename(const char *filename)
1505{
1506 logfilename = strdup(filename);
e735b91c
PB
1507 if (logfile) {
1508 fclose(logfile);
1509 logfile = NULL;
1510 }
1511 cpu_set_log(loglevel);
34865134 1512}
c33a346e 1513
3098dba0 1514static void cpu_unlink_tb(CPUState *env)
ea041c0e 1515{
3098dba0
AJ
1516#if defined(USE_NPTL)
1517 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1518 problem and hope the cpu will stop of its own accord. For userspace
1519 emulation this often isn't actually as bad as it sounds. Often
1520 signals are used primarily to interrupt blocking syscalls. */
1521#else
ea041c0e 1522 TranslationBlock *tb;
15a51156 1523 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1524
3098dba0
AJ
1525 tb = env->current_tb;
1526 /* if the cpu is currently executing code, we must unlink it and
1527 all the potentially executing TB */
1528 if (tb && !testandset(&interrupt_lock)) {
1529 env->current_tb = NULL;
1530 tb_reset_jump_recursive(tb);
1531 resetlock(&interrupt_lock);
be214e6c 1532 }
3098dba0
AJ
1533#endif
1534}
1535
1536/* mask must never be zero, except for A20 change call */
1537void cpu_interrupt(CPUState *env, int mask)
1538{
1539 int old_mask;
be214e6c 1540
2e70f6ef 1541 old_mask = env->interrupt_request;
68a79315 1542 env->interrupt_request |= mask;
3098dba0 1543
2e70f6ef 1544 if (use_icount) {
266910c4 1545 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1546#ifndef CONFIG_USER_ONLY
2e70f6ef 1547 if (!can_do_io(env)
be214e6c 1548 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1549 cpu_abort(env, "Raised interrupt while not in I/O function");
1550 }
1551#endif
1552 } else {
3098dba0 1553 cpu_unlink_tb(env);
ea041c0e
FB
1554 }
1555}
1556
b54ad049
FB
1557void cpu_reset_interrupt(CPUState *env, int mask)
1558{
1559 env->interrupt_request &= ~mask;
1560}
1561
3098dba0
AJ
1562void cpu_exit(CPUState *env)
1563{
1564 env->exit_request = 1;
1565 cpu_unlink_tb(env);
1566}
1567
c7cd6a37 1568const CPULogItem cpu_log_items[] = {
5fafdf24 1569 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1570 "show generated host assembly code for each compiled TB" },
1571 { CPU_LOG_TB_IN_ASM, "in_asm",
1572 "show target assembly code for each compiled TB" },
5fafdf24 1573 { CPU_LOG_TB_OP, "op",
57fec1fe 1574 "show micro ops for each compiled TB" },
f193c797 1575 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1576 "show micro ops "
1577#ifdef TARGET_I386
1578 "before eflags optimization and "
f193c797 1579#endif
e01a1157 1580 "after liveness analysis" },
f193c797
FB
1581 { CPU_LOG_INT, "int",
1582 "show interrupts/exceptions in short format" },
1583 { CPU_LOG_EXEC, "exec",
1584 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1585 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1586 "show CPU state before block translation" },
f193c797
FB
1587#ifdef TARGET_I386
1588 { CPU_LOG_PCALL, "pcall",
1589 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1590 { CPU_LOG_RESET, "cpu_reset",
1591 "show CPU state before CPU resets" },
f193c797 1592#endif
8e3a9fd2 1593#ifdef DEBUG_IOPORT
fd872598
FB
1594 { CPU_LOG_IOPORT, "ioport",
1595 "show all i/o ports accesses" },
8e3a9fd2 1596#endif
f193c797
FB
1597 { 0, NULL, NULL },
1598};
1599
1600static int cmp1(const char *s1, int n, const char *s2)
1601{
1602 if (strlen(s2) != n)
1603 return 0;
1604 return memcmp(s1, s2, n) == 0;
1605}
3b46e624 1606
f193c797
FB
1607/* takes a comma separated list of log masks. Return 0 if error. */
1608int cpu_str_to_log_mask(const char *str)
1609{
c7cd6a37 1610 const CPULogItem *item;
f193c797
FB
1611 int mask;
1612 const char *p, *p1;
1613
1614 p = str;
1615 mask = 0;
1616 for(;;) {
1617 p1 = strchr(p, ',');
1618 if (!p1)
1619 p1 = p + strlen(p);
8e3a9fd2
FB
1620 if(cmp1(p,p1-p,"all")) {
1621 for(item = cpu_log_items; item->mask != 0; item++) {
1622 mask |= item->mask;
1623 }
1624 } else {
f193c797
FB
1625 for(item = cpu_log_items; item->mask != 0; item++) {
1626 if (cmp1(p, p1 - p, item->name))
1627 goto found;
1628 }
1629 return 0;
8e3a9fd2 1630 }
f193c797
FB
1631 found:
1632 mask |= item->mask;
1633 if (*p1 != ',')
1634 break;
1635 p = p1 + 1;
1636 }
1637 return mask;
1638}
ea041c0e 1639
7501267e
FB
1640void cpu_abort(CPUState *env, const char *fmt, ...)
1641{
1642 va_list ap;
493ae1f0 1643 va_list ap2;
7501267e
FB
1644
1645 va_start(ap, fmt);
493ae1f0 1646 va_copy(ap2, ap);
7501267e
FB
1647 fprintf(stderr, "qemu: fatal: ");
1648 vfprintf(stderr, fmt, ap);
1649 fprintf(stderr, "\n");
1650#ifdef TARGET_I386
7fe48483
FB
1651 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1652#else
1653 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1654#endif
93fcfe39
AL
1655 if (qemu_log_enabled()) {
1656 qemu_log("qemu: fatal: ");
1657 qemu_log_vprintf(fmt, ap2);
1658 qemu_log("\n");
f9373291 1659#ifdef TARGET_I386
93fcfe39 1660 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1661#else
93fcfe39 1662 log_cpu_state(env, 0);
f9373291 1663#endif
31b1a7b4 1664 qemu_log_flush();
93fcfe39 1665 qemu_log_close();
924edcae 1666 }
493ae1f0 1667 va_end(ap2);
f9373291 1668 va_end(ap);
7501267e
FB
1669 abort();
1670}
1671
c5be9f08
TS
1672CPUState *cpu_copy(CPUState *env)
1673{
01ba9816 1674 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1675 CPUState *next_cpu = new_env->next_cpu;
1676 int cpu_index = new_env->cpu_index;
5a38f081
AL
1677#if defined(TARGET_HAS_ICE)
1678 CPUBreakpoint *bp;
1679 CPUWatchpoint *wp;
1680#endif
1681
c5be9f08 1682 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1683
1684 /* Preserve chaining and index. */
c5be9f08
TS
1685 new_env->next_cpu = next_cpu;
1686 new_env->cpu_index = cpu_index;
5a38f081
AL
1687
1688 /* Clone all break/watchpoints.
1689 Note: Once we support ptrace with hw-debug register access, make sure
1690 BP_CPU break/watchpoints are handled correctly on clone. */
1691 TAILQ_INIT(&env->breakpoints);
1692 TAILQ_INIT(&env->watchpoints);
1693#if defined(TARGET_HAS_ICE)
1694 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1695 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1696 }
1697 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1698 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1699 wp->flags, NULL);
1700 }
1701#endif
1702
c5be9f08
TS
1703 return new_env;
1704}
1705
0124311e
FB
1706#if !defined(CONFIG_USER_ONLY)
1707
5c751e99
EI
1708static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1709{
1710 unsigned int i;
1711
1712 /* Discard jump cache entries for any tb which might potentially
1713 overlap the flushed page. */
1714 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1715 memset (&env->tb_jmp_cache[i], 0,
1716 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1717
1718 i = tb_jmp_cache_hash_page(addr);
1719 memset (&env->tb_jmp_cache[i], 0,
1720 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1721}
1722
ee8b7021
FB
1723/* NOTE: if flush_global is true, also flush global entries (not
1724 implemented yet) */
1725void tlb_flush(CPUState *env, int flush_global)
33417e70 1726{
33417e70 1727 int i;
0124311e 1728
9fa3e853
FB
1729#if defined(DEBUG_TLB)
1730 printf("tlb_flush:\n");
1731#endif
0124311e
FB
1732 /* must reset current TB so that interrupts cannot modify the
1733 links while we are modifying them */
1734 env->current_tb = NULL;
1735
33417e70 1736 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1737 env->tlb_table[0][i].addr_read = -1;
1738 env->tlb_table[0][i].addr_write = -1;
1739 env->tlb_table[0][i].addr_code = -1;
1740 env->tlb_table[1][i].addr_read = -1;
1741 env->tlb_table[1][i].addr_write = -1;
1742 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1743#if (NB_MMU_MODES >= 3)
1744 env->tlb_table[2][i].addr_read = -1;
1745 env->tlb_table[2][i].addr_write = -1;
1746 env->tlb_table[2][i].addr_code = -1;
e37e6ee6
AJ
1747#endif
1748#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1749 env->tlb_table[3][i].addr_read = -1;
1750 env->tlb_table[3][i].addr_write = -1;
1751 env->tlb_table[3][i].addr_code = -1;
1752#endif
e37e6ee6
AJ
1753#if (NB_MMU_MODES >= 5)
1754 env->tlb_table[4][i].addr_read = -1;
1755 env->tlb_table[4][i].addr_write = -1;
1756 env->tlb_table[4][i].addr_code = -1;
6fa4cea9 1757#endif
e37e6ee6 1758
33417e70 1759 }
9fa3e853 1760
8a40a180 1761 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1762
640f42e4 1763#ifdef CONFIG_KQEMU
0a962c02
FB
1764 if (env->kqemu_enabled) {
1765 kqemu_flush(env, flush_global);
1766 }
9fa3e853 1767#endif
e3db7226 1768 tlb_flush_count++;
33417e70
FB
1769}
1770
274da6b2 1771static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1772{
5fafdf24 1773 if (addr == (tlb_entry->addr_read &
84b7b8e7 1774 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1775 addr == (tlb_entry->addr_write &
84b7b8e7 1776 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1777 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1778 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1779 tlb_entry->addr_read = -1;
1780 tlb_entry->addr_write = -1;
1781 tlb_entry->addr_code = -1;
1782 }
61382a50
FB
1783}
1784
2e12669a 1785void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1786{
8a40a180 1787 int i;
0124311e 1788
9fa3e853 1789#if defined(DEBUG_TLB)
108c49b8 1790 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1791#endif
0124311e
FB
1792 /* must reset current TB so that interrupts cannot modify the
1793 links while we are modifying them */
1794 env->current_tb = NULL;
61382a50
FB
1795
1796 addr &= TARGET_PAGE_MASK;
1797 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1798 tlb_flush_entry(&env->tlb_table[0][i], addr);
1799 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1800#if (NB_MMU_MODES >= 3)
1801 tlb_flush_entry(&env->tlb_table[2][i], addr);
e37e6ee6
AJ
1802#endif
1803#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1804 tlb_flush_entry(&env->tlb_table[3][i], addr);
1805#endif
e37e6ee6
AJ
1806#if (NB_MMU_MODES >= 5)
1807 tlb_flush_entry(&env->tlb_table[4][i], addr);
6fa4cea9 1808#endif
0124311e 1809
5c751e99 1810 tlb_flush_jmp_cache(env, addr);
9fa3e853 1811
640f42e4 1812#ifdef CONFIG_KQEMU
0a962c02
FB
1813 if (env->kqemu_enabled) {
1814 kqemu_flush_page(env, addr);
1815 }
1816#endif
9fa3e853
FB
1817}
1818
9fa3e853
FB
1819/* update the TLBs so that writes to code in the virtual page 'addr'
1820 can be detected */
6a00d601 1821static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1822{
5fafdf24 1823 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1824 ram_addr + TARGET_PAGE_SIZE,
1825 CODE_DIRTY_FLAG);
9fa3e853
FB
1826}
1827
9fa3e853 1828/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1829 tested for self modifying code */
5fafdf24 1830static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1831 target_ulong vaddr)
9fa3e853 1832{
3a7d929e 1833 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1834}
1835
5fafdf24 1836static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1837 unsigned long start, unsigned long length)
1838{
1839 unsigned long addr;
84b7b8e7
FB
1840 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1841 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1842 if ((addr - start) < length) {
0f459d16 1843 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1844 }
1845 }
1846}
1847
5579c7f3 1848/* Note: start and end must be within the same ram block. */
3a7d929e 1849void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1850 int dirty_flags)
1ccde1cb
FB
1851{
1852 CPUState *env;
4f2ac237 1853 unsigned long length, start1;
0a962c02
FB
1854 int i, mask, len;
1855 uint8_t *p;
1ccde1cb
FB
1856
1857 start &= TARGET_PAGE_MASK;
1858 end = TARGET_PAGE_ALIGN(end);
1859
1860 length = end - start;
1861 if (length == 0)
1862 return;
0a962c02 1863 len = length >> TARGET_PAGE_BITS;
640f42e4 1864#ifdef CONFIG_KQEMU
6a00d601
FB
1865 /* XXX: should not depend on cpu context */
1866 env = first_cpu;
3a7d929e 1867 if (env->kqemu_enabled) {
f23db169
FB
1868 ram_addr_t addr;
1869 addr = start;
1870 for(i = 0; i < len; i++) {
1871 kqemu_set_notdirty(env, addr);
1872 addr += TARGET_PAGE_SIZE;
1873 }
3a7d929e
FB
1874 }
1875#endif
f23db169
FB
1876 mask = ~dirty_flags;
1877 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1878 for(i = 0; i < len; i++)
1879 p[i] &= mask;
1880
1ccde1cb
FB
1881 /* we modify the TLB cache so that the dirty bit will be set again
1882 when accessing the range */
5579c7f3
PB
1883 start1 = (unsigned long)qemu_get_ram_ptr(start);
1884 /* Chek that we don't span multiple blocks - this breaks the
1885 address comparisons below. */
1886 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1887 != (end - 1) - start) {
1888 abort();
1889 }
1890
6a00d601
FB
1891 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1892 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1893 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1894 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1895 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1896#if (NB_MMU_MODES >= 3)
1897 for(i = 0; i < CPU_TLB_SIZE; i++)
1898 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
e37e6ee6
AJ
1899#endif
1900#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1901 for(i = 0; i < CPU_TLB_SIZE; i++)
1902 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1903#endif
e37e6ee6
AJ
1904#if (NB_MMU_MODES >= 5)
1905 for(i = 0; i < CPU_TLB_SIZE; i++)
1906 tlb_reset_dirty_range(&env->tlb_table[4][i], start1, length);
6fa4cea9 1907#endif
6a00d601 1908 }
1ccde1cb
FB
1909}
1910
74576198
AL
1911int cpu_physical_memory_set_dirty_tracking(int enable)
1912{
1913 in_migration = enable;
1914 return 0;
1915}
1916
1917int cpu_physical_memory_get_dirty_tracking(void)
1918{
1919 return in_migration;
1920}
1921
2bec46dc
AL
1922void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1923{
1924 if (kvm_enabled())
1925 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1926}
1927
3a7d929e
FB
1928static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1929{
1930 ram_addr_t ram_addr;
5579c7f3 1931 void *p;
3a7d929e 1932
84b7b8e7 1933 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1934 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1935 + tlb_entry->addend);
1936 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1937 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1938 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1939 }
1940 }
1941}
1942
1943/* update the TLB according to the current state of the dirty bits */
1944void cpu_tlb_update_dirty(CPUState *env)
1945{
1946 int i;
1947 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1948 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1949 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1950 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1951#if (NB_MMU_MODES >= 3)
1952 for(i = 0; i < CPU_TLB_SIZE; i++)
1953 tlb_update_dirty(&env->tlb_table[2][i]);
e37e6ee6
AJ
1954#endif
1955#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1956 for(i = 0; i < CPU_TLB_SIZE; i++)
1957 tlb_update_dirty(&env->tlb_table[3][i]);
1958#endif
e37e6ee6
AJ
1959#if (NB_MMU_MODES >= 5)
1960 for(i = 0; i < CPU_TLB_SIZE; i++)
1961 tlb_update_dirty(&env->tlb_table[4][i]);
6fa4cea9 1962#endif
3a7d929e
FB
1963}
1964
0f459d16 1965static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1966{
0f459d16
PB
1967 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1968 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1969}
1970
0f459d16
PB
1971/* update the TLB corresponding to virtual page vaddr
1972 so that it is no longer dirty */
1973static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1974{
1ccde1cb
FB
1975 int i;
1976
0f459d16 1977 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1978 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1979 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1980 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1981#if (NB_MMU_MODES >= 3)
0f459d16 1982 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
e37e6ee6
AJ
1983#endif
1984#if (NB_MMU_MODES >= 4)
0f459d16 1985 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9 1986#endif
e37e6ee6
AJ
1987#if (NB_MMU_MODES >= 5)
1988 tlb_set_dirty1(&env->tlb_table[4][i], vaddr);
6fa4cea9 1989#endif
9fa3e853
FB
1990}
1991
59817ccb
FB
1992/* add a new TLB entry. At most one entry for a given virtual address
1993 is permitted. Return 0 if OK or 2 if the page could not be mapped
1994 (can only happen in non SOFTMMU mode for I/O pages or pages
1995 conflicting with the host address space). */
5fafdf24
TS
1996int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1997 target_phys_addr_t paddr, int prot,
6ebbf390 1998 int mmu_idx, int is_softmmu)
9fa3e853 1999{
92e873b9 2000 PhysPageDesc *p;
4f2ac237 2001 unsigned long pd;
9fa3e853 2002 unsigned int index;
4f2ac237 2003 target_ulong address;
0f459d16 2004 target_ulong code_address;
108c49b8 2005 target_phys_addr_t addend;
9fa3e853 2006 int ret;
84b7b8e7 2007 CPUTLBEntry *te;
a1d1bb31 2008 CPUWatchpoint *wp;
0f459d16 2009 target_phys_addr_t iotlb;
9fa3e853 2010
92e873b9 2011 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2012 if (!p) {
2013 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2014 } else {
2015 pd = p->phys_offset;
9fa3e853
FB
2016 }
2017#if defined(DEBUG_TLB)
6ebbf390
JM
2018 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2019 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2020#endif
2021
2022 ret = 0;
0f459d16
PB
2023 address = vaddr;
2024 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2025 /* IO memory case (romd handled later) */
2026 address |= TLB_MMIO;
2027 }
5579c7f3 2028 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2029 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2030 /* Normal RAM. */
2031 iotlb = pd & TARGET_PAGE_MASK;
2032 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2033 iotlb |= IO_MEM_NOTDIRTY;
2034 else
2035 iotlb |= IO_MEM_ROM;
2036 } else {
2037 /* IO handlers are currently passed a phsical address.
2038 It would be nice to pass an offset from the base address
2039 of that region. This would avoid having to special case RAM,
2040 and avoid full address decoding in every device.
2041 We can't use the high bits of pd for this because
2042 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2043 iotlb = (pd & ~TARGET_PAGE_MASK);
2044 if (p) {
8da3ff18
PB
2045 iotlb += p->region_offset;
2046 } else {
2047 iotlb += paddr;
2048 }
0f459d16
PB
2049 }
2050
2051 code_address = address;
2052 /* Make accesses to pages with watchpoints go via the
2053 watchpoint trap routines. */
c0ce998e 2054 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2055 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2056 iotlb = io_mem_watch + paddr;
2057 /* TODO: The memory case can be optimized by not trapping
2058 reads of pages with a write breakpoint. */
2059 address |= TLB_MMIO;
6658ffb8 2060 }
0f459d16 2061 }
d79acba4 2062
0f459d16
PB
2063 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2064 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2065 te = &env->tlb_table[mmu_idx][index];
2066 te->addend = addend - vaddr;
2067 if (prot & PAGE_READ) {
2068 te->addr_read = address;
2069 } else {
2070 te->addr_read = -1;
2071 }
5c751e99 2072
0f459d16
PB
2073 if (prot & PAGE_EXEC) {
2074 te->addr_code = code_address;
2075 } else {
2076 te->addr_code = -1;
2077 }
2078 if (prot & PAGE_WRITE) {
2079 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2080 (pd & IO_MEM_ROMD)) {
2081 /* Write access calls the I/O callback. */
2082 te->addr_write = address | TLB_MMIO;
2083 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2084 !cpu_physical_memory_is_dirty(pd)) {
2085 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2086 } else {
0f459d16 2087 te->addr_write = address;
9fa3e853 2088 }
0f459d16
PB
2089 } else {
2090 te->addr_write = -1;
9fa3e853 2091 }
9fa3e853
FB
2092 return ret;
2093}
2094
0124311e
FB
2095#else
2096
ee8b7021 2097void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2098{
2099}
2100
2e12669a 2101void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2102{
2103}
2104
5fafdf24
TS
2105int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2106 target_phys_addr_t paddr, int prot,
6ebbf390 2107 int mmu_idx, int is_softmmu)
9fa3e853
FB
2108{
2109 return 0;
2110}
0124311e 2111
9fa3e853
FB
2112/* dump memory mappings */
2113void page_dump(FILE *f)
33417e70 2114{
9fa3e853
FB
2115 unsigned long start, end;
2116 int i, j, prot, prot1;
2117 PageDesc *p;
33417e70 2118
9fa3e853
FB
2119 fprintf(f, "%-8s %-8s %-8s %s\n",
2120 "start", "end", "size", "prot");
2121 start = -1;
2122 end = -1;
2123 prot = 0;
2124 for(i = 0; i <= L1_SIZE; i++) {
2125 if (i < L1_SIZE)
2126 p = l1_map[i];
2127 else
2128 p = NULL;
2129 for(j = 0;j < L2_SIZE; j++) {
2130 if (!p)
2131 prot1 = 0;
2132 else
2133 prot1 = p[j].flags;
2134 if (prot1 != prot) {
2135 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2136 if (start != -1) {
2137 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2138 start, end, end - start,
9fa3e853
FB
2139 prot & PAGE_READ ? 'r' : '-',
2140 prot & PAGE_WRITE ? 'w' : '-',
2141 prot & PAGE_EXEC ? 'x' : '-');
2142 }
2143 if (prot1 != 0)
2144 start = end;
2145 else
2146 start = -1;
2147 prot = prot1;
2148 }
2149 if (!p)
2150 break;
2151 }
33417e70 2152 }
33417e70
FB
2153}
2154
53a5960a 2155int page_get_flags(target_ulong address)
33417e70 2156{
9fa3e853
FB
2157 PageDesc *p;
2158
2159 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2160 if (!p)
9fa3e853
FB
2161 return 0;
2162 return p->flags;
2163}
2164
2165/* modify the flags of a page and invalidate the code if
2166 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2167 depending on PAGE_WRITE */
53a5960a 2168void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2169{
2170 PageDesc *p;
53a5960a 2171 target_ulong addr;
9fa3e853 2172
c8a706fe 2173 /* mmap_lock should already be held. */
9fa3e853
FB
2174 start = start & TARGET_PAGE_MASK;
2175 end = TARGET_PAGE_ALIGN(end);
2176 if (flags & PAGE_WRITE)
2177 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2178 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2179 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2180 /* We may be called for host regions that are outside guest
2181 address space. */
2182 if (!p)
2183 return;
9fa3e853
FB
2184 /* if the write protection is set, then we invalidate the code
2185 inside */
5fafdf24 2186 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2187 (flags & PAGE_WRITE) &&
2188 p->first_tb) {
d720b93d 2189 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2190 }
2191 p->flags = flags;
2192 }
33417e70
FB
2193}
2194
3d97b40b
TS
2195int page_check_range(target_ulong start, target_ulong len, int flags)
2196{
2197 PageDesc *p;
2198 target_ulong end;
2199 target_ulong addr;
2200
55f280c9
AZ
2201 if (start + len < start)
2202 /* we've wrapped around */
2203 return -1;
2204
3d97b40b
TS
2205 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2206 start = start & TARGET_PAGE_MASK;
2207
3d97b40b
TS
2208 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2209 p = page_find(addr >> TARGET_PAGE_BITS);
2210 if( !p )
2211 return -1;
2212 if( !(p->flags & PAGE_VALID) )
2213 return -1;
2214
dae3270c 2215 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2216 return -1;
dae3270c
FB
2217 if (flags & PAGE_WRITE) {
2218 if (!(p->flags & PAGE_WRITE_ORG))
2219 return -1;
2220 /* unprotect the page if it was put read-only because it
2221 contains translated code */
2222 if (!(p->flags & PAGE_WRITE)) {
2223 if (!page_unprotect(addr, 0, NULL))
2224 return -1;
2225 }
2226 return 0;
2227 }
3d97b40b
TS
2228 }
2229 return 0;
2230}
2231
9fa3e853
FB
2232/* called from signal handler: invalidate the code and unprotect the
2233 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2234int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2235{
2236 unsigned int page_index, prot, pindex;
2237 PageDesc *p, *p1;
53a5960a 2238 target_ulong host_start, host_end, addr;
9fa3e853 2239
c8a706fe
PB
2240 /* Technically this isn't safe inside a signal handler. However we
2241 know this only ever happens in a synchronous SEGV handler, so in
2242 practice it seems to be ok. */
2243 mmap_lock();
2244
83fb7adf 2245 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2246 page_index = host_start >> TARGET_PAGE_BITS;
2247 p1 = page_find(page_index);
c8a706fe
PB
2248 if (!p1) {
2249 mmap_unlock();
9fa3e853 2250 return 0;
c8a706fe 2251 }
83fb7adf 2252 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2253 p = p1;
2254 prot = 0;
2255 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2256 prot |= p->flags;
2257 p++;
2258 }
2259 /* if the page was really writable, then we change its
2260 protection back to writable */
2261 if (prot & PAGE_WRITE_ORG) {
2262 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2263 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2264 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2265 (prot & PAGE_BITS) | PAGE_WRITE);
2266 p1[pindex].flags |= PAGE_WRITE;
2267 /* and since the content will be modified, we must invalidate
2268 the corresponding translated code. */
d720b93d 2269 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2270#ifdef DEBUG_TB_CHECK
2271 tb_invalidate_check(address);
2272#endif
c8a706fe 2273 mmap_unlock();
9fa3e853
FB
2274 return 1;
2275 }
2276 }
c8a706fe 2277 mmap_unlock();
9fa3e853
FB
2278 return 0;
2279}
2280
6a00d601
FB
2281static inline void tlb_set_dirty(CPUState *env,
2282 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2283{
2284}
9fa3e853
FB
2285#endif /* defined(CONFIG_USER_ONLY) */
2286
e2eef170 2287#if !defined(CONFIG_USER_ONLY)
8da3ff18 2288
db7b5426 2289static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2290 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2291static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2292 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2293#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2294 need_subpage) \
2295 do { \
2296 if (addr > start_addr) \
2297 start_addr2 = 0; \
2298 else { \
2299 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2300 if (start_addr2 > 0) \
2301 need_subpage = 1; \
2302 } \
2303 \
49e9fba2 2304 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2305 end_addr2 = TARGET_PAGE_SIZE - 1; \
2306 else { \
2307 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2308 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2309 need_subpage = 1; \
2310 } \
2311 } while (0)
2312
33417e70
FB
2313/* register physical memory. 'size' must be a multiple of the target
2314 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2315 io memory page. The address used when calling the IO function is
2316 the offset from the start of the region, plus region_offset. Both
2317 start_region and regon_offset are rounded down to a page boundary
2318 before calculating this offset. This should not be a problem unless
2319 the low bits of start_addr and region_offset differ. */
2320void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2321 ram_addr_t size,
2322 ram_addr_t phys_offset,
2323 ram_addr_t region_offset)
33417e70 2324{
108c49b8 2325 target_phys_addr_t addr, end_addr;
92e873b9 2326 PhysPageDesc *p;
9d42037b 2327 CPUState *env;
00f82b8a 2328 ram_addr_t orig_size = size;
db7b5426 2329 void *subpage;
33417e70 2330
640f42e4 2331#ifdef CONFIG_KQEMU
da260249
FB
2332 /* XXX: should not depend on cpu context */
2333 env = first_cpu;
2334 if (env->kqemu_enabled) {
2335 kqemu_set_phys_mem(start_addr, size, phys_offset);
2336 }
2337#endif
7ba1e619
AL
2338 if (kvm_enabled())
2339 kvm_set_phys_mem(start_addr, size, phys_offset);
2340
67c4d23c
PB
2341 if (phys_offset == IO_MEM_UNASSIGNED) {
2342 region_offset = start_addr;
2343 }
8da3ff18 2344 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2345 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2346 end_addr = start_addr + (target_phys_addr_t)size;
2347 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2348 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2349 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2350 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2351 target_phys_addr_t start_addr2, end_addr2;
2352 int need_subpage = 0;
2353
2354 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2355 need_subpage);
4254fab8 2356 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2357 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2358 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2359 &p->phys_offset, orig_memory,
2360 p->region_offset);
db7b5426
BS
2361 } else {
2362 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2363 >> IO_MEM_SHIFT];
2364 }
8da3ff18
PB
2365 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2366 region_offset);
2367 p->region_offset = 0;
db7b5426
BS
2368 } else {
2369 p->phys_offset = phys_offset;
2370 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2371 (phys_offset & IO_MEM_ROMD))
2372 phys_offset += TARGET_PAGE_SIZE;
2373 }
2374 } else {
2375 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2376 p->phys_offset = phys_offset;
8da3ff18 2377 p->region_offset = region_offset;
db7b5426 2378 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2379 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2380 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2381 } else {
db7b5426
BS
2382 target_phys_addr_t start_addr2, end_addr2;
2383 int need_subpage = 0;
2384
2385 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2386 end_addr2, need_subpage);
2387
4254fab8 2388 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2389 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2390 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2391 addr & TARGET_PAGE_MASK);
db7b5426 2392 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2393 phys_offset, region_offset);
2394 p->region_offset = 0;
db7b5426
BS
2395 }
2396 }
2397 }
8da3ff18 2398 region_offset += TARGET_PAGE_SIZE;
33417e70 2399 }
3b46e624 2400
9d42037b
FB
2401 /* since each CPU stores ram addresses in its TLB cache, we must
2402 reset the modified entries */
2403 /* XXX: slow ! */
2404 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2405 tlb_flush(env, 1);
2406 }
33417e70
FB
2407}
2408
ba863458 2409/* XXX: temporary until new memory mapping API */
00f82b8a 2410ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2411{
2412 PhysPageDesc *p;
2413
2414 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2415 if (!p)
2416 return IO_MEM_UNASSIGNED;
2417 return p->phys_offset;
2418}
2419
f65ed4c1
AL
2420void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2421{
2422 if (kvm_enabled())
2423 kvm_coalesce_mmio_region(addr, size);
2424}
2425
2426void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2427{
2428 if (kvm_enabled())
2429 kvm_uncoalesce_mmio_region(addr, size);
2430}
2431
640f42e4 2432#ifdef CONFIG_KQEMU
e9a1ab19 2433/* XXX: better than nothing */
94a6b54f 2434static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2435{
2436 ram_addr_t addr;
94a6b54f 2437 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
012a7045 2438 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
94a6b54f 2439 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
e9a1ab19
FB
2440 abort();
2441 }
94a6b54f
PB
2442 addr = last_ram_offset;
2443 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
e9a1ab19
FB
2444 return addr;
2445}
94a6b54f
PB
2446#endif
2447
2448ram_addr_t qemu_ram_alloc(ram_addr_t size)
2449{
2450 RAMBlock *new_block;
2451
640f42e4 2452#ifdef CONFIG_KQEMU
94a6b54f
PB
2453 if (kqemu_phys_ram_base) {
2454 return kqemu_ram_alloc(size);
2455 }
2456#endif
2457
2458 size = TARGET_PAGE_ALIGN(size);
2459 new_block = qemu_malloc(sizeof(*new_block));
2460
2461 new_block->host = qemu_vmalloc(size);
2462 new_block->offset = last_ram_offset;
2463 new_block->length = size;
2464
2465 new_block->next = ram_blocks;
2466 ram_blocks = new_block;
2467
2468 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2469 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2470 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2471 0xff, size >> TARGET_PAGE_BITS);
2472
2473 last_ram_offset += size;
2474
2475 return new_block->offset;
2476}
e9a1ab19
FB
2477
2478void qemu_ram_free(ram_addr_t addr)
2479{
94a6b54f 2480 /* TODO: implement this. */
e9a1ab19
FB
2481}
2482
dc828ca1 2483/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2484 With the exception of the softmmu code in this file, this should
2485 only be used for local memory (e.g. video ram) that the device owns,
2486 and knows it isn't going to access beyond the end of the block.
2487
2488 It should not be used for general purpose DMA.
2489 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2490 */
dc828ca1
PB
2491void *qemu_get_ram_ptr(ram_addr_t addr)
2492{
94a6b54f
PB
2493 RAMBlock *prev;
2494 RAMBlock **prevp;
2495 RAMBlock *block;
2496
640f42e4 2497#ifdef CONFIG_KQEMU
94a6b54f
PB
2498 if (kqemu_phys_ram_base) {
2499 return kqemu_phys_ram_base + addr;
2500 }
2501#endif
2502
2503 prev = NULL;
2504 prevp = &ram_blocks;
2505 block = ram_blocks;
2506 while (block && (block->offset > addr
2507 || block->offset + block->length <= addr)) {
2508 if (prev)
2509 prevp = &prev->next;
2510 prev = block;
2511 block = block->next;
2512 }
2513 if (!block) {
2514 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2515 abort();
2516 }
2517 /* Move this entry to to start of the list. */
2518 if (prev) {
2519 prev->next = block->next;
2520 block->next = *prevp;
2521 *prevp = block;
2522 }
2523 return block->host + (addr - block->offset);
dc828ca1
PB
2524}
2525
5579c7f3
PB
2526/* Some of the softmmu routines need to translate from a host pointer
2527 (typically a TLB entry) back to a ram offset. */
2528ram_addr_t qemu_ram_addr_from_host(void *ptr)
2529{
94a6b54f
PB
2530 RAMBlock *prev;
2531 RAMBlock **prevp;
2532 RAMBlock *block;
2533 uint8_t *host = ptr;
2534
640f42e4 2535#ifdef CONFIG_KQEMU
94a6b54f
PB
2536 if (kqemu_phys_ram_base) {
2537 return host - kqemu_phys_ram_base;
2538 }
2539#endif
2540
2541 prev = NULL;
2542 prevp = &ram_blocks;
2543 block = ram_blocks;
2544 while (block && (block->host > host
2545 || block->host + block->length <= host)) {
2546 if (prev)
2547 prevp = &prev->next;
2548 prev = block;
2549 block = block->next;
2550 }
2551 if (!block) {
2552 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2553 abort();
2554 }
2555 return block->offset + (host - block->host);
5579c7f3
PB
2556}
2557
a4193c8a 2558static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2559{
67d3b957 2560#ifdef DEBUG_UNASSIGNED
ab3d1727 2561 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2562#endif
0a6f8a6d 2563#if defined(TARGET_SPARC)
e18231a3
BS
2564 do_unassigned_access(addr, 0, 0, 0, 1);
2565#endif
2566 return 0;
2567}
2568
2569static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2570{
2571#ifdef DEBUG_UNASSIGNED
2572 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2573#endif
0a6f8a6d 2574#if defined(TARGET_SPARC)
e18231a3
BS
2575 do_unassigned_access(addr, 0, 0, 0, 2);
2576#endif
2577 return 0;
2578}
2579
2580static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2581{
2582#ifdef DEBUG_UNASSIGNED
2583 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2584#endif
0a6f8a6d 2585#if defined(TARGET_SPARC)
e18231a3 2586 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2587#endif
33417e70
FB
2588 return 0;
2589}
2590
a4193c8a 2591static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2592{
67d3b957 2593#ifdef DEBUG_UNASSIGNED
ab3d1727 2594 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2595#endif
0a6f8a6d 2596#if defined(TARGET_SPARC)
e18231a3
BS
2597 do_unassigned_access(addr, 1, 0, 0, 1);
2598#endif
2599}
2600
2601static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2602{
2603#ifdef DEBUG_UNASSIGNED
2604 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2605#endif
0a6f8a6d 2606#if defined(TARGET_SPARC)
e18231a3
BS
2607 do_unassigned_access(addr, 1, 0, 0, 2);
2608#endif
2609}
2610
2611static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2612{
2613#ifdef DEBUG_UNASSIGNED
2614 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2615#endif
0a6f8a6d 2616#if defined(TARGET_SPARC)
e18231a3 2617 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2618#endif
33417e70
FB
2619}
2620
2621static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2622 unassigned_mem_readb,
e18231a3
BS
2623 unassigned_mem_readw,
2624 unassigned_mem_readl,
33417e70
FB
2625};
2626
2627static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2628 unassigned_mem_writeb,
e18231a3
BS
2629 unassigned_mem_writew,
2630 unassigned_mem_writel,
33417e70
FB
2631};
2632
0f459d16
PB
2633static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2634 uint32_t val)
9fa3e853 2635{
3a7d929e 2636 int dirty_flags;
3a7d929e
FB
2637 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2638 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2639#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2640 tb_invalidate_phys_page_fast(ram_addr, 1);
2641 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2642#endif
3a7d929e 2643 }
5579c7f3 2644 stb_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2645#ifdef CONFIG_KQEMU
f32fc648
FB
2646 if (cpu_single_env->kqemu_enabled &&
2647 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2648 kqemu_modify_page(cpu_single_env, ram_addr);
2649#endif
f23db169
FB
2650 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2651 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2652 /* we remove the notdirty callback only if the code has been
2653 flushed */
2654 if (dirty_flags == 0xff)
2e70f6ef 2655 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2656}
2657
0f459d16
PB
2658static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2659 uint32_t val)
9fa3e853 2660{
3a7d929e 2661 int dirty_flags;
3a7d929e
FB
2662 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2663 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2664#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2665 tb_invalidate_phys_page_fast(ram_addr, 2);
2666 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2667#endif
3a7d929e 2668 }
5579c7f3 2669 stw_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2670#ifdef CONFIG_KQEMU
f32fc648
FB
2671 if (cpu_single_env->kqemu_enabled &&
2672 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2673 kqemu_modify_page(cpu_single_env, ram_addr);
2674#endif
f23db169
FB
2675 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2676 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2677 /* we remove the notdirty callback only if the code has been
2678 flushed */
2679 if (dirty_flags == 0xff)
2e70f6ef 2680 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2681}
2682
0f459d16
PB
2683static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2684 uint32_t val)
9fa3e853 2685{
3a7d929e 2686 int dirty_flags;
3a7d929e
FB
2687 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2688 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2689#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2690 tb_invalidate_phys_page_fast(ram_addr, 4);
2691 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2692#endif
3a7d929e 2693 }
5579c7f3 2694 stl_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2695#ifdef CONFIG_KQEMU
f32fc648
FB
2696 if (cpu_single_env->kqemu_enabled &&
2697 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2698 kqemu_modify_page(cpu_single_env, ram_addr);
2699#endif
f23db169
FB
2700 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2701 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2702 /* we remove the notdirty callback only if the code has been
2703 flushed */
2704 if (dirty_flags == 0xff)
2e70f6ef 2705 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2706}
2707
3a7d929e 2708static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2709 NULL, /* never used */
2710 NULL, /* never used */
2711 NULL, /* never used */
2712};
2713
1ccde1cb
FB
2714static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2715 notdirty_mem_writeb,
2716 notdirty_mem_writew,
2717 notdirty_mem_writel,
2718};
2719
0f459d16 2720/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2721static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2722{
2723 CPUState *env = cpu_single_env;
06d55cc1
AL
2724 target_ulong pc, cs_base;
2725 TranslationBlock *tb;
0f459d16 2726 target_ulong vaddr;
a1d1bb31 2727 CPUWatchpoint *wp;
06d55cc1 2728 int cpu_flags;
0f459d16 2729
06d55cc1
AL
2730 if (env->watchpoint_hit) {
2731 /* We re-entered the check after replacing the TB. Now raise
2732 * the debug interrupt so that is will trigger after the
2733 * current instruction. */
2734 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2735 return;
2736 }
2e70f6ef 2737 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2738 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2739 if ((vaddr == (wp->vaddr & len_mask) ||
2740 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2741 wp->flags |= BP_WATCHPOINT_HIT;
2742 if (!env->watchpoint_hit) {
2743 env->watchpoint_hit = wp;
2744 tb = tb_find_pc(env->mem_io_pc);
2745 if (!tb) {
2746 cpu_abort(env, "check_watchpoint: could not find TB for "
2747 "pc=%p", (void *)env->mem_io_pc);
2748 }
2749 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2750 tb_phys_invalidate(tb, -1);
2751 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2752 env->exception_index = EXCP_DEBUG;
2753 } else {
2754 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2755 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2756 }
2757 cpu_resume_from_signal(env, NULL);
06d55cc1 2758 }
6e140f28
AL
2759 } else {
2760 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2761 }
2762 }
2763}
2764
6658ffb8
PB
2765/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2766 so these check for a hit then pass through to the normal out-of-line
2767 phys routines. */
2768static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2769{
b4051334 2770 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2771 return ldub_phys(addr);
2772}
2773
2774static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2775{
b4051334 2776 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2777 return lduw_phys(addr);
2778}
2779
2780static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2781{
b4051334 2782 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2783 return ldl_phys(addr);
2784}
2785
6658ffb8
PB
2786static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2787 uint32_t val)
2788{
b4051334 2789 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2790 stb_phys(addr, val);
2791}
2792
2793static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2794 uint32_t val)
2795{
b4051334 2796 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2797 stw_phys(addr, val);
2798}
2799
2800static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2801 uint32_t val)
2802{
b4051334 2803 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2804 stl_phys(addr, val);
2805}
2806
2807static CPUReadMemoryFunc *watch_mem_read[3] = {
2808 watch_mem_readb,
2809 watch_mem_readw,
2810 watch_mem_readl,
2811};
2812
2813static CPUWriteMemoryFunc *watch_mem_write[3] = {
2814 watch_mem_writeb,
2815 watch_mem_writew,
2816 watch_mem_writel,
2817};
6658ffb8 2818
db7b5426
BS
2819static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2820 unsigned int len)
2821{
db7b5426
BS
2822 uint32_t ret;
2823 unsigned int idx;
2824
8da3ff18 2825 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2826#if defined(DEBUG_SUBPAGE)
2827 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2828 mmio, len, addr, idx);
2829#endif
8da3ff18
PB
2830 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2831 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2832
2833 return ret;
2834}
2835
2836static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2837 uint32_t value, unsigned int len)
2838{
db7b5426
BS
2839 unsigned int idx;
2840
8da3ff18 2841 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2842#if defined(DEBUG_SUBPAGE)
2843 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2844 mmio, len, addr, idx, value);
2845#endif
8da3ff18
PB
2846 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2847 addr + mmio->region_offset[idx][1][len],
2848 value);
db7b5426
BS
2849}
2850
2851static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2852{
2853#if defined(DEBUG_SUBPAGE)
2854 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2855#endif
2856
2857 return subpage_readlen(opaque, addr, 0);
2858}
2859
2860static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2861 uint32_t value)
2862{
2863#if defined(DEBUG_SUBPAGE)
2864 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2865#endif
2866 subpage_writelen(opaque, addr, value, 0);
2867}
2868
2869static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2870{
2871#if defined(DEBUG_SUBPAGE)
2872 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2873#endif
2874
2875 return subpage_readlen(opaque, addr, 1);
2876}
2877
2878static void subpage_writew (void *opaque, target_phys_addr_t addr,
2879 uint32_t value)
2880{
2881#if defined(DEBUG_SUBPAGE)
2882 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2883#endif
2884 subpage_writelen(opaque, addr, value, 1);
2885}
2886
2887static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2888{
2889#if defined(DEBUG_SUBPAGE)
2890 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2891#endif
2892
2893 return subpage_readlen(opaque, addr, 2);
2894}
2895
2896static void subpage_writel (void *opaque,
2897 target_phys_addr_t addr, uint32_t value)
2898{
2899#if defined(DEBUG_SUBPAGE)
2900 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2901#endif
2902 subpage_writelen(opaque, addr, value, 2);
2903}
2904
2905static CPUReadMemoryFunc *subpage_read[] = {
2906 &subpage_readb,
2907 &subpage_readw,
2908 &subpage_readl,
2909};
2910
2911static CPUWriteMemoryFunc *subpage_write[] = {
2912 &subpage_writeb,
2913 &subpage_writew,
2914 &subpage_writel,
2915};
2916
2917static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2918 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2919{
2920 int idx, eidx;
4254fab8 2921 unsigned int i;
db7b5426
BS
2922
2923 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2924 return -1;
2925 idx = SUBPAGE_IDX(start);
2926 eidx = SUBPAGE_IDX(end);
2927#if defined(DEBUG_SUBPAGE)
2928 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2929 mmio, start, end, idx, eidx, memory);
2930#endif
2931 memory >>= IO_MEM_SHIFT;
2932 for (; idx <= eidx; idx++) {
4254fab8 2933 for (i = 0; i < 4; i++) {
3ee89922
BS
2934 if (io_mem_read[memory][i]) {
2935 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2936 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2937 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2938 }
2939 if (io_mem_write[memory][i]) {
2940 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2941 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2942 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2943 }
4254fab8 2944 }
db7b5426
BS
2945 }
2946
2947 return 0;
2948}
2949
00f82b8a 2950static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2951 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2952{
2953 subpage_t *mmio;
2954 int subpage_memory;
2955
2956 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2957
2958 mmio->base = base;
2959 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
db7b5426 2960#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2961 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2962 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2963#endif
1eec614b
AL
2964 *phys = subpage_memory | IO_MEM_SUBPAGE;
2965 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2966 region_offset);
db7b5426
BS
2967
2968 return mmio;
2969}
2970
88715657
AL
2971static int get_free_io_mem_idx(void)
2972{
2973 int i;
2974
2975 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2976 if (!io_mem_used[i]) {
2977 io_mem_used[i] = 1;
2978 return i;
2979 }
2980
2981 return -1;
2982}
2983
33417e70
FB
2984static void io_mem_init(void)
2985{
88715657
AL
2986 int i;
2987
3a7d929e 2988 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2989 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2990 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
88715657
AL
2991 for (i=0; i<5; i++)
2992 io_mem_used[i] = 1;
1ccde1cb 2993
0f459d16 2994 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2995 watch_mem_write, NULL);
640f42e4 2996#ifdef CONFIG_KQEMU
94a6b54f
PB
2997 if (kqemu_phys_ram_base) {
2998 /* alloc dirty bits array */
2999 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3000 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3001 }
3002#endif
33417e70
FB
3003}
3004
3005/* mem_read and mem_write are arrays of functions containing the
3006 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
3007 2). Functions can be omitted with a NULL function pointer. The
3008 registered functions may be modified dynamically later.
3009 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3010 modified. If it is zero, a new io zone is allocated. The return
3011 value can be used with cpu_register_physical_memory(). (-1) is
3012 returned if error. */
33417e70
FB
3013int cpu_register_io_memory(int io_index,
3014 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
3015 CPUWriteMemoryFunc **mem_write,
3016 void *opaque)
33417e70 3017{
4254fab8 3018 int i, subwidth = 0;
33417e70
FB
3019
3020 if (io_index <= 0) {
88715657
AL
3021 io_index = get_free_io_mem_idx();
3022 if (io_index == -1)
3023 return io_index;
33417e70
FB
3024 } else {
3025 if (io_index >= IO_MEM_NB_ENTRIES)
3026 return -1;
3027 }
b5ff1b31 3028
33417e70 3029 for(i = 0;i < 3; i++) {
4254fab8
BS
3030 if (!mem_read[i] || !mem_write[i])
3031 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3032 io_mem_read[io_index][i] = mem_read[i];
3033 io_mem_write[io_index][i] = mem_write[i];
3034 }
a4193c8a 3035 io_mem_opaque[io_index] = opaque;
4254fab8 3036 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3037}
61382a50 3038
88715657
AL
3039void cpu_unregister_io_memory(int io_table_address)
3040{
3041 int i;
3042 int io_index = io_table_address >> IO_MEM_SHIFT;
3043
3044 for (i=0;i < 3; i++) {
3045 io_mem_read[io_index][i] = unassigned_mem_read[i];
3046 io_mem_write[io_index][i] = unassigned_mem_write[i];
3047 }
3048 io_mem_opaque[io_index] = NULL;
3049 io_mem_used[io_index] = 0;
3050}
3051
8926b517
FB
3052CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
3053{
3054 return io_mem_write[io_index >> IO_MEM_SHIFT];
3055}
3056
3057CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
3058{
3059 return io_mem_read[io_index >> IO_MEM_SHIFT];
3060}
3061
e2eef170
PB
3062#endif /* !defined(CONFIG_USER_ONLY) */
3063
13eb76e0
FB
3064/* physical memory access (slow version, mainly for debug) */
3065#if defined(CONFIG_USER_ONLY)
5fafdf24 3066void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3067 int len, int is_write)
3068{
3069 int l, flags;
3070 target_ulong page;
53a5960a 3071 void * p;
13eb76e0
FB
3072
3073 while (len > 0) {
3074 page = addr & TARGET_PAGE_MASK;
3075 l = (page + TARGET_PAGE_SIZE) - addr;
3076 if (l > len)
3077 l = len;
3078 flags = page_get_flags(page);
3079 if (!(flags & PAGE_VALID))
3080 return;
3081 if (is_write) {
3082 if (!(flags & PAGE_WRITE))
3083 return;
579a97f7 3084 /* XXX: this code should not depend on lock_user */
72fb7daa 3085 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3086 /* FIXME - should this return an error rather than just fail? */
3087 return;
72fb7daa
AJ
3088 memcpy(p, buf, l);
3089 unlock_user(p, addr, l);
13eb76e0
FB
3090 } else {
3091 if (!(flags & PAGE_READ))
3092 return;
579a97f7 3093 /* XXX: this code should not depend on lock_user */
72fb7daa 3094 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3095 /* FIXME - should this return an error rather than just fail? */
3096 return;
72fb7daa 3097 memcpy(buf, p, l);
5b257578 3098 unlock_user(p, addr, 0);
13eb76e0
FB
3099 }
3100 len -= l;
3101 buf += l;
3102 addr += l;
3103 }
3104}
8df1cd07 3105
13eb76e0 3106#else
5fafdf24 3107void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3108 int len, int is_write)
3109{
3110 int l, io_index;
3111 uint8_t *ptr;
3112 uint32_t val;
2e12669a
FB
3113 target_phys_addr_t page;
3114 unsigned long pd;
92e873b9 3115 PhysPageDesc *p;
3b46e624 3116
13eb76e0
FB
3117 while (len > 0) {
3118 page = addr & TARGET_PAGE_MASK;
3119 l = (page + TARGET_PAGE_SIZE) - addr;
3120 if (l > len)
3121 l = len;
92e873b9 3122 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3123 if (!p) {
3124 pd = IO_MEM_UNASSIGNED;
3125 } else {
3126 pd = p->phys_offset;
3127 }
3b46e624 3128
13eb76e0 3129 if (is_write) {
3a7d929e 3130 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 3131 target_phys_addr_t addr1 = addr;
13eb76e0 3132 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3133 if (p)
6c2934db 3134 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3135 /* XXX: could force cpu_single_env to NULL to avoid
3136 potential bugs */
6c2934db 3137 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3138 /* 32 bit write access */
c27004ec 3139 val = ldl_p(buf);
6c2934db 3140 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3141 l = 4;
6c2934db 3142 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3143 /* 16 bit write access */
c27004ec 3144 val = lduw_p(buf);
6c2934db 3145 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3146 l = 2;
3147 } else {
1c213d19 3148 /* 8 bit write access */
c27004ec 3149 val = ldub_p(buf);
6c2934db 3150 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3151 l = 1;
3152 }
3153 } else {
b448f2f3
FB
3154 unsigned long addr1;
3155 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3156 /* RAM case */
5579c7f3 3157 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3158 memcpy(ptr, buf, l);
3a7d929e
FB
3159 if (!cpu_physical_memory_is_dirty(addr1)) {
3160 /* invalidate code */
3161 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3162 /* set dirty bit */
5fafdf24 3163 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3164 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3165 }
13eb76e0
FB
3166 }
3167 } else {
5fafdf24 3168 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3169 !(pd & IO_MEM_ROMD)) {
6c2934db 3170 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3171 /* I/O case */
3172 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3173 if (p)
6c2934db
AJ
3174 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3175 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3176 /* 32 bit read access */
6c2934db 3177 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3178 stl_p(buf, val);
13eb76e0 3179 l = 4;
6c2934db 3180 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3181 /* 16 bit read access */
6c2934db 3182 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3183 stw_p(buf, val);
13eb76e0
FB
3184 l = 2;
3185 } else {
1c213d19 3186 /* 8 bit read access */
6c2934db 3187 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3188 stb_p(buf, val);
13eb76e0
FB
3189 l = 1;
3190 }
3191 } else {
3192 /* RAM case */
5579c7f3 3193 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3194 (addr & ~TARGET_PAGE_MASK);
3195 memcpy(buf, ptr, l);
3196 }
3197 }
3198 len -= l;
3199 buf += l;
3200 addr += l;
3201 }
3202}
8df1cd07 3203
d0ecd2aa 3204/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3205void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3206 const uint8_t *buf, int len)
3207{
3208 int l;
3209 uint8_t *ptr;
3210 target_phys_addr_t page;
3211 unsigned long pd;
3212 PhysPageDesc *p;
3b46e624 3213
d0ecd2aa
FB
3214 while (len > 0) {
3215 page = addr & TARGET_PAGE_MASK;
3216 l = (page + TARGET_PAGE_SIZE) - addr;
3217 if (l > len)
3218 l = len;
3219 p = phys_page_find(page >> TARGET_PAGE_BITS);
3220 if (!p) {
3221 pd = IO_MEM_UNASSIGNED;
3222 } else {
3223 pd = p->phys_offset;
3224 }
3b46e624 3225
d0ecd2aa 3226 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3227 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3228 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3229 /* do nothing */
3230 } else {
3231 unsigned long addr1;
3232 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3233 /* ROM/RAM case */
5579c7f3 3234 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3235 memcpy(ptr, buf, l);
3236 }
3237 len -= l;
3238 buf += l;
3239 addr += l;
3240 }
3241}
3242
6d16c2f8
AL
3243typedef struct {
3244 void *buffer;
3245 target_phys_addr_t addr;
3246 target_phys_addr_t len;
3247} BounceBuffer;
3248
3249static BounceBuffer bounce;
3250
ba223c29
AL
3251typedef struct MapClient {
3252 void *opaque;
3253 void (*callback)(void *opaque);
3254 LIST_ENTRY(MapClient) link;
3255} MapClient;
3256
3257static LIST_HEAD(map_client_list, MapClient) map_client_list
3258 = LIST_HEAD_INITIALIZER(map_client_list);
3259
3260void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3261{
3262 MapClient *client = qemu_malloc(sizeof(*client));
3263
3264 client->opaque = opaque;
3265 client->callback = callback;
3266 LIST_INSERT_HEAD(&map_client_list, client, link);
3267 return client;
3268}
3269
3270void cpu_unregister_map_client(void *_client)
3271{
3272 MapClient *client = (MapClient *)_client;
3273
3274 LIST_REMOVE(client, link);
3275}
3276
3277static void cpu_notify_map_clients(void)
3278{
3279 MapClient *client;
3280
3281 while (!LIST_EMPTY(&map_client_list)) {
3282 client = LIST_FIRST(&map_client_list);
3283 client->callback(client->opaque);
3284 LIST_REMOVE(client, link);
3285 }
3286}
3287
6d16c2f8
AL
3288/* Map a physical memory region into a host virtual address.
3289 * May map a subset of the requested range, given by and returned in *plen.
3290 * May return NULL if resources needed to perform the mapping are exhausted.
3291 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3292 * Use cpu_register_map_client() to know when retrying the map operation is
3293 * likely to succeed.
6d16c2f8
AL
3294 */
3295void *cpu_physical_memory_map(target_phys_addr_t addr,
3296 target_phys_addr_t *plen,
3297 int is_write)
3298{
3299 target_phys_addr_t len = *plen;
3300 target_phys_addr_t done = 0;
3301 int l;
3302 uint8_t *ret = NULL;
3303 uint8_t *ptr;
3304 target_phys_addr_t page;
3305 unsigned long pd;
3306 PhysPageDesc *p;
3307 unsigned long addr1;
3308
3309 while (len > 0) {
3310 page = addr & TARGET_PAGE_MASK;
3311 l = (page + TARGET_PAGE_SIZE) - addr;
3312 if (l > len)
3313 l = len;
3314 p = phys_page_find(page >> TARGET_PAGE_BITS);
3315 if (!p) {
3316 pd = IO_MEM_UNASSIGNED;
3317 } else {
3318 pd = p->phys_offset;
3319 }
3320
3321 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3322 if (done || bounce.buffer) {
3323 break;
3324 }
3325 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3326 bounce.addr = addr;
3327 bounce.len = l;
3328 if (!is_write) {
3329 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3330 }
3331 ptr = bounce.buffer;
3332 } else {
3333 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3334 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3335 }
3336 if (!done) {
3337 ret = ptr;
3338 } else if (ret + done != ptr) {
3339 break;
3340 }
3341
3342 len -= l;
3343 addr += l;
3344 done += l;
3345 }
3346 *plen = done;
3347 return ret;
3348}
3349
3350/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3351 * Will also mark the memory as dirty if is_write == 1. access_len gives
3352 * the amount of memory that was actually read or written by the caller.
3353 */
3354void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3355 int is_write, target_phys_addr_t access_len)
3356{
3357 if (buffer != bounce.buffer) {
3358 if (is_write) {
5579c7f3 3359 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3360 while (access_len) {
3361 unsigned l;
3362 l = TARGET_PAGE_SIZE;
3363 if (l > access_len)
3364 l = access_len;
3365 if (!cpu_physical_memory_is_dirty(addr1)) {
3366 /* invalidate code */
3367 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3368 /* set dirty bit */
3369 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3370 (0xff & ~CODE_DIRTY_FLAG);
3371 }
3372 addr1 += l;
3373 access_len -= l;
3374 }
3375 }
3376 return;
3377 }
3378 if (is_write) {
3379 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3380 }
3381 qemu_free(bounce.buffer);
3382 bounce.buffer = NULL;
ba223c29 3383 cpu_notify_map_clients();
6d16c2f8 3384}
d0ecd2aa 3385
8df1cd07
FB
3386/* warning: addr must be aligned */
3387uint32_t ldl_phys(target_phys_addr_t addr)
3388{
3389 int io_index;
3390 uint8_t *ptr;
3391 uint32_t val;
3392 unsigned long pd;
3393 PhysPageDesc *p;
3394
3395 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3396 if (!p) {
3397 pd = IO_MEM_UNASSIGNED;
3398 } else {
3399 pd = p->phys_offset;
3400 }
3b46e624 3401
5fafdf24 3402 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3403 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3404 /* I/O case */
3405 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3406 if (p)
3407 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3408 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3409 } else {
3410 /* RAM case */
5579c7f3 3411 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3412 (addr & ~TARGET_PAGE_MASK);
3413 val = ldl_p(ptr);
3414 }
3415 return val;
3416}
3417
84b7b8e7
FB
3418/* warning: addr must be aligned */
3419uint64_t ldq_phys(target_phys_addr_t addr)
3420{
3421 int io_index;
3422 uint8_t *ptr;
3423 uint64_t val;
3424 unsigned long pd;
3425 PhysPageDesc *p;
3426
3427 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3428 if (!p) {
3429 pd = IO_MEM_UNASSIGNED;
3430 } else {
3431 pd = p->phys_offset;
3432 }
3b46e624 3433
2a4188a3
FB
3434 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3435 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3436 /* I/O case */
3437 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3438 if (p)
3439 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3440#ifdef TARGET_WORDS_BIGENDIAN
3441 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3442 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3443#else
3444 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3445 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3446#endif
3447 } else {
3448 /* RAM case */
5579c7f3 3449 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3450 (addr & ~TARGET_PAGE_MASK);
3451 val = ldq_p(ptr);
3452 }
3453 return val;
3454}
3455
aab33094
FB
3456/* XXX: optimize */
3457uint32_t ldub_phys(target_phys_addr_t addr)
3458{
3459 uint8_t val;
3460 cpu_physical_memory_read(addr, &val, 1);
3461 return val;
3462}
3463
3464/* XXX: optimize */
3465uint32_t lduw_phys(target_phys_addr_t addr)
3466{
3467 uint16_t val;
3468 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3469 return tswap16(val);
3470}
3471
8df1cd07
FB
3472/* warning: addr must be aligned. The ram page is not masked as dirty
3473 and the code inside is not invalidated. It is useful if the dirty
3474 bits are used to track modified PTEs */
3475void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3476{
3477 int io_index;
3478 uint8_t *ptr;
3479 unsigned long pd;
3480 PhysPageDesc *p;
3481
3482 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3483 if (!p) {
3484 pd = IO_MEM_UNASSIGNED;
3485 } else {
3486 pd = p->phys_offset;
3487 }
3b46e624 3488
3a7d929e 3489 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3490 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3491 if (p)
3492 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3493 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3494 } else {
74576198 3495 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3496 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3497 stl_p(ptr, val);
74576198
AL
3498
3499 if (unlikely(in_migration)) {
3500 if (!cpu_physical_memory_is_dirty(addr1)) {
3501 /* invalidate code */
3502 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3503 /* set dirty bit */
3504 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3505 (0xff & ~CODE_DIRTY_FLAG);
3506 }
3507 }
8df1cd07
FB
3508 }
3509}
3510
bc98a7ef
JM
3511void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3512{
3513 int io_index;
3514 uint8_t *ptr;
3515 unsigned long pd;
3516 PhysPageDesc *p;
3517
3518 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3519 if (!p) {
3520 pd = IO_MEM_UNASSIGNED;
3521 } else {
3522 pd = p->phys_offset;
3523 }
3b46e624 3524
bc98a7ef
JM
3525 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3526 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3527 if (p)
3528 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3529#ifdef TARGET_WORDS_BIGENDIAN
3530 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3531 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3532#else
3533 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3534 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3535#endif
3536 } else {
5579c7f3 3537 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3538 (addr & ~TARGET_PAGE_MASK);
3539 stq_p(ptr, val);
3540 }
3541}
3542
8df1cd07 3543/* warning: addr must be aligned */
8df1cd07
FB
3544void stl_phys(target_phys_addr_t addr, uint32_t val)
3545{
3546 int io_index;
3547 uint8_t *ptr;
3548 unsigned long pd;
3549 PhysPageDesc *p;
3550
3551 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3552 if (!p) {
3553 pd = IO_MEM_UNASSIGNED;
3554 } else {
3555 pd = p->phys_offset;
3556 }
3b46e624 3557
3a7d929e 3558 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3559 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3560 if (p)
3561 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3562 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3563 } else {
3564 unsigned long addr1;
3565 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3566 /* RAM case */
5579c7f3 3567 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3568 stl_p(ptr, val);
3a7d929e
FB
3569 if (!cpu_physical_memory_is_dirty(addr1)) {
3570 /* invalidate code */
3571 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3572 /* set dirty bit */
f23db169
FB
3573 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3574 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3575 }
8df1cd07
FB
3576 }
3577}
3578
aab33094
FB
3579/* XXX: optimize */
3580void stb_phys(target_phys_addr_t addr, uint32_t val)
3581{
3582 uint8_t v = val;
3583 cpu_physical_memory_write(addr, &v, 1);
3584}
3585
3586/* XXX: optimize */
3587void stw_phys(target_phys_addr_t addr, uint32_t val)
3588{
3589 uint16_t v = tswap16(val);
3590 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3591}
3592
3593/* XXX: optimize */
3594void stq_phys(target_phys_addr_t addr, uint64_t val)
3595{
3596 val = tswap64(val);
3597 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3598}
3599
13eb76e0
FB
3600#endif
3601
5e2972fd 3602/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3603int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3604 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3605{
3606 int l;
9b3c35e0
JM
3607 target_phys_addr_t phys_addr;
3608 target_ulong page;
13eb76e0
FB
3609
3610 while (len > 0) {
3611 page = addr & TARGET_PAGE_MASK;
3612 phys_addr = cpu_get_phys_page_debug(env, page);
3613 /* if no physical page mapped, return an error */
3614 if (phys_addr == -1)
3615 return -1;
3616 l = (page + TARGET_PAGE_SIZE) - addr;
3617 if (l > len)
3618 l = len;
5e2972fd
AL
3619 phys_addr += (addr & ~TARGET_PAGE_MASK);
3620#if !defined(CONFIG_USER_ONLY)
3621 if (is_write)
3622 cpu_physical_memory_write_rom(phys_addr, buf, l);
3623 else
3624#endif
3625 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3626 len -= l;
3627 buf += l;
3628 addr += l;
3629 }
3630 return 0;
3631}
3632
2e70f6ef
PB
3633/* in deterministic execution mode, instructions doing device I/Os
3634 must be at the end of the TB */
3635void cpu_io_recompile(CPUState *env, void *retaddr)
3636{
3637 TranslationBlock *tb;
3638 uint32_t n, cflags;
3639 target_ulong pc, cs_base;
3640 uint64_t flags;
3641
3642 tb = tb_find_pc((unsigned long)retaddr);
3643 if (!tb) {
3644 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3645 retaddr);
3646 }
3647 n = env->icount_decr.u16.low + tb->icount;
3648 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3649 /* Calculate how many instructions had been executed before the fault
bf20dc07 3650 occurred. */
2e70f6ef
PB
3651 n = n - env->icount_decr.u16.low;
3652 /* Generate a new TB ending on the I/O insn. */
3653 n++;
3654 /* On MIPS and SH, delay slot instructions can only be restarted if
3655 they were already the first instruction in the TB. If this is not
bf20dc07 3656 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3657 branch. */
3658#if defined(TARGET_MIPS)
3659 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3660 env->active_tc.PC -= 4;
3661 env->icount_decr.u16.low++;
3662 env->hflags &= ~MIPS_HFLAG_BMASK;
3663 }
3664#elif defined(TARGET_SH4)
3665 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3666 && n > 1) {
3667 env->pc -= 2;
3668 env->icount_decr.u16.low++;
3669 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3670 }
3671#endif
3672 /* This should never happen. */
3673 if (n > CF_COUNT_MASK)
3674 cpu_abort(env, "TB too big during recompile");
3675
3676 cflags = n | CF_LAST_IO;
3677 pc = tb->pc;
3678 cs_base = tb->cs_base;
3679 flags = tb->flags;
3680 tb_phys_invalidate(tb, -1);
3681 /* FIXME: In theory this could raise an exception. In practice
3682 we have already translated the block once so it's probably ok. */
3683 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3684 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3685 the first in the TB) then we end up generating a whole new TB and
3686 repeating the fault, which is horribly inefficient.
3687 Better would be to execute just this insn uncached, or generate a
3688 second new TB. */
3689 cpu_resume_from_signal(env, NULL);
3690}
3691
e3db7226
FB
3692void dump_exec_info(FILE *f,
3693 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3694{
3695 int i, target_code_size, max_target_code_size;
3696 int direct_jmp_count, direct_jmp2_count, cross_page;
3697 TranslationBlock *tb;
3b46e624 3698
e3db7226
FB
3699 target_code_size = 0;
3700 max_target_code_size = 0;
3701 cross_page = 0;
3702 direct_jmp_count = 0;
3703 direct_jmp2_count = 0;
3704 for(i = 0; i < nb_tbs; i++) {
3705 tb = &tbs[i];
3706 target_code_size += tb->size;
3707 if (tb->size > max_target_code_size)
3708 max_target_code_size = tb->size;
3709 if (tb->page_addr[1] != -1)
3710 cross_page++;
3711 if (tb->tb_next_offset[0] != 0xffff) {
3712 direct_jmp_count++;
3713 if (tb->tb_next_offset[1] != 0xffff) {
3714 direct_jmp2_count++;
3715 }
3716 }
3717 }
3718 /* XXX: avoid using doubles ? */
57fec1fe 3719 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3720 cpu_fprintf(f, "gen code size %ld/%ld\n",
3721 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3722 cpu_fprintf(f, "TB count %d/%d\n",
3723 nb_tbs, code_gen_max_blocks);
5fafdf24 3724 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3725 nb_tbs ? target_code_size / nb_tbs : 0,
3726 max_target_code_size);
5fafdf24 3727 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3728 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3729 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3730 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3731 cross_page,
e3db7226
FB
3732 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3733 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3734 direct_jmp_count,
e3db7226
FB
3735 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3736 direct_jmp2_count,
3737 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3738 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3739 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3740 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3741 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3742 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3743}
3744
5fafdf24 3745#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3746
3747#define MMUSUFFIX _cmmu
3748#define GETPC() NULL
3749#define env cpu_single_env
b769d8fe 3750#define SOFTMMU_CODE_ACCESS
61382a50
FB
3751
3752#define SHIFT 0
3753#include "softmmu_template.h"
3754
3755#define SHIFT 1
3756#include "softmmu_template.h"
3757
3758#define SHIFT 2
3759#include "softmmu_template.h"
3760
3761#define SHIFT 3
3762#include "softmmu_template.h"
3763
3764#undef env
3765
3766#endif