]> git.proxmox.com Git - qemu.git/blame - exec.c
memory: introduce memory_region_name()
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
67d95c15
AK
60#define WANT_EXEC_OBSOLETE
61#include "exec-obsolete.h"
62
fd6ce8f6 63//#define DEBUG_TB_INVALIDATE
66e85a21 64//#define DEBUG_FLUSH
9fa3e853 65//#define DEBUG_TLB
67d3b957 66//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
67
68/* make various TB consistency checks */
5fafdf24
TS
69//#define DEBUG_TB_CHECK
70//#define DEBUG_TLB_CHECK
fd6ce8f6 71
1196be37 72//#define DEBUG_IOPORT
db7b5426 73//#define DEBUG_SUBPAGE
1196be37 74
99773bd4
PB
75#if !defined(CONFIG_USER_ONLY)
76/* TB consistency checks only implemented for usermode emulation. */
77#undef DEBUG_TB_CHECK
78#endif
79
9fa3e853
FB
80#define SMC_BITMAP_USE_THRESHOLD 10
81
bdaf78e0 82static TranslationBlock *tbs;
24ab68ac 83static int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
24ab68ac 110static uint8_t *code_gen_ptr;
fd6ce8f6 111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
74576198 114static int in_migration;
94a6b54f 115
85d59fef 116RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
117
118static MemoryRegion *system_memory;
309cb471 119static MemoryRegion *system_io;
62152b8a 120
e2eef170 121#endif
9fa3e853 122
6a00d601
FB
123CPUState *first_cpu;
124/* current CPU in the current thread. It is only valid inside
125 cpu_exec() */
b3c4bbe5 126DEFINE_TLS(CPUState *,cpu_single_env);
2e70f6ef 127/* 0 = Do not count executed instructions.
bf20dc07 128 1 = Precise instruction counting.
2e70f6ef
PB
129 2 = Adaptive rate instruction counting. */
130int use_icount = 0;
6a00d601 131
54936004 132typedef struct PageDesc {
92e873b9 133 /* list of TBs intersecting this ram page */
fd6ce8f6 134 TranslationBlock *first_tb;
9fa3e853
FB
135 /* in order to optimize self modifying code, we count the number
136 of lookups we do to a given page to use a bitmap */
137 unsigned int code_write_count;
138 uint8_t *code_bitmap;
139#if defined(CONFIG_USER_ONLY)
140 unsigned long flags;
141#endif
54936004
FB
142} PageDesc;
143
41c1b1c9 144/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
145 while in user mode we want it to be based on virtual addresses. */
146#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
147#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
148# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
149#else
5cd2c5b6 150# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 151#endif
bedb69ea 152#else
5cd2c5b6 153# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 154#endif
54936004 155
5cd2c5b6
RH
156/* Size of the L2 (and L3, etc) page tables. */
157#define L2_BITS 10
54936004
FB
158#define L2_SIZE (1 << L2_BITS)
159
5cd2c5b6
RH
160/* The bits remaining after N lower levels of page tables. */
161#define P_L1_BITS_REM \
162 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
163#define V_L1_BITS_REM \
164 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
165
166/* Size of the L1 page table. Avoid silly small sizes. */
167#if P_L1_BITS_REM < 4
168#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
169#else
170#define P_L1_BITS P_L1_BITS_REM
171#endif
172
173#if V_L1_BITS_REM < 4
174#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
175#else
176#define V_L1_BITS V_L1_BITS_REM
177#endif
178
179#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
180#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
181
182#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
183#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
184
83fb7adf 185unsigned long qemu_real_host_page_size;
83fb7adf
FB
186unsigned long qemu_host_page_size;
187unsigned long qemu_host_page_mask;
54936004 188
5cd2c5b6
RH
189/* This is a multi-level map on the virtual address space.
190 The bottom level has pointers to PageDesc. */
191static void *l1_map[V_L1_SIZE];
54936004 192
e2eef170 193#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
194typedef struct PhysPageDesc {
195 /* offset in host memory of the page + io_index in the low bits */
196 ram_addr_t phys_offset;
197 ram_addr_t region_offset;
198} PhysPageDesc;
199
5cd2c5b6
RH
200/* This is a multi-level map on the physical address space.
201 The bottom level has pointers to PhysPageDesc. */
202static void *l1_phys_map[P_L1_SIZE];
6d9a1304 203
e2eef170 204static void io_mem_init(void);
62152b8a 205static void memory_map_init(void);
e2eef170 206
33417e70 207/* io memory support */
33417e70
FB
208CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
209CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 210void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 211static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
212static int io_mem_watch;
213#endif
33417e70 214
34865134 215/* log support */
1e8b27ca
JR
216#ifdef WIN32
217static const char *logfilename = "qemu.log";
218#else
d9b630fd 219static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 220#endif
34865134
FB
221FILE *logfile;
222int loglevel;
e735b91c 223static int log_append = 0;
34865134 224
e3db7226 225/* statistics */
b3755a91 226#if !defined(CONFIG_USER_ONLY)
e3db7226 227static int tlb_flush_count;
b3755a91 228#endif
e3db7226
FB
229static int tb_flush_count;
230static int tb_phys_invalidate_count;
231
7cb69cae
FB
232#ifdef _WIN32
233static void map_exec(void *addr, long size)
234{
235 DWORD old_protect;
236 VirtualProtect(addr, size,
237 PAGE_EXECUTE_READWRITE, &old_protect);
238
239}
240#else
241static void map_exec(void *addr, long size)
242{
4369415f 243 unsigned long start, end, page_size;
7cb69cae 244
4369415f 245 page_size = getpagesize();
7cb69cae 246 start = (unsigned long)addr;
4369415f 247 start &= ~(page_size - 1);
7cb69cae
FB
248
249 end = (unsigned long)addr + size;
4369415f
FB
250 end += page_size - 1;
251 end &= ~(page_size - 1);
7cb69cae
FB
252
253 mprotect((void *)start, end - start,
254 PROT_READ | PROT_WRITE | PROT_EXEC);
255}
256#endif
257
b346ff46 258static void page_init(void)
54936004 259{
83fb7adf 260 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 261 TARGET_PAGE_SIZE */
c2b48b69
AL
262#ifdef _WIN32
263 {
264 SYSTEM_INFO system_info;
265
266 GetSystemInfo(&system_info);
267 qemu_real_host_page_size = system_info.dwPageSize;
268 }
269#else
270 qemu_real_host_page_size = getpagesize();
271#endif
83fb7adf
FB
272 if (qemu_host_page_size == 0)
273 qemu_host_page_size = qemu_real_host_page_size;
274 if (qemu_host_page_size < TARGET_PAGE_SIZE)
275 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 276 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 277
2e9a5713 278#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 279 {
f01576f1
JL
280#ifdef HAVE_KINFO_GETVMMAP
281 struct kinfo_vmentry *freep;
282 int i, cnt;
283
284 freep = kinfo_getvmmap(getpid(), &cnt);
285 if (freep) {
286 mmap_lock();
287 for (i = 0; i < cnt; i++) {
288 unsigned long startaddr, endaddr;
289
290 startaddr = freep[i].kve_start;
291 endaddr = freep[i].kve_end;
292 if (h2g_valid(startaddr)) {
293 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
294
295 if (h2g_valid(endaddr)) {
296 endaddr = h2g(endaddr);
fd436907 297 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
298 } else {
299#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
300 endaddr = ~0ul;
fd436907 301 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
302#endif
303 }
304 }
305 }
306 free(freep);
307 mmap_unlock();
308 }
309#else
50a9569b 310 FILE *f;
50a9569b 311
0776590d 312 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 313
fd436907 314 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 315 if (f) {
5cd2c5b6
RH
316 mmap_lock();
317
50a9569b 318 do {
5cd2c5b6
RH
319 unsigned long startaddr, endaddr;
320 int n;
321
322 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
323
324 if (n == 2 && h2g_valid(startaddr)) {
325 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
326
327 if (h2g_valid(endaddr)) {
328 endaddr = h2g(endaddr);
329 } else {
330 endaddr = ~0ul;
331 }
332 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
333 }
334 } while (!feof(f));
5cd2c5b6 335
50a9569b 336 fclose(f);
5cd2c5b6 337 mmap_unlock();
50a9569b 338 }
f01576f1 339#endif
50a9569b
AZ
340 }
341#endif
54936004
FB
342}
343
41c1b1c9 344static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 345{
41c1b1c9
PB
346 PageDesc *pd;
347 void **lp;
348 int i;
349
5cd2c5b6 350#if defined(CONFIG_USER_ONLY)
7267c094 351 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
352# define ALLOC(P, SIZE) \
353 do { \
354 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
355 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
356 } while (0)
357#else
358# define ALLOC(P, SIZE) \
7267c094 359 do { P = g_malloc0(SIZE); } while (0)
17e2377a 360#endif
434929bf 361
5cd2c5b6
RH
362 /* Level 1. Always allocated. */
363 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
364
365 /* Level 2..N-1. */
366 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
367 void **p = *lp;
368
369 if (p == NULL) {
370 if (!alloc) {
371 return NULL;
372 }
373 ALLOC(p, sizeof(void *) * L2_SIZE);
374 *lp = p;
17e2377a 375 }
5cd2c5b6
RH
376
377 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
378 }
379
380 pd = *lp;
381 if (pd == NULL) {
382 if (!alloc) {
383 return NULL;
384 }
385 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
386 *lp = pd;
54936004 387 }
5cd2c5b6
RH
388
389#undef ALLOC
5cd2c5b6
RH
390
391 return pd + (index & (L2_SIZE - 1));
54936004
FB
392}
393
41c1b1c9 394static inline PageDesc *page_find(tb_page_addr_t index)
54936004 395{
5cd2c5b6 396 return page_find_alloc(index, 0);
fd6ce8f6
FB
397}
398
6d9a1304 399#if !defined(CONFIG_USER_ONLY)
c227f099 400static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 401{
e3f4e2a4 402 PhysPageDesc *pd;
5cd2c5b6
RH
403 void **lp;
404 int i;
92e873b9 405
5cd2c5b6
RH
406 /* Level 1. Always allocated. */
407 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 408
5cd2c5b6
RH
409 /* Level 2..N-1. */
410 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
411 void **p = *lp;
412 if (p == NULL) {
413 if (!alloc) {
414 return NULL;
415 }
7267c094 416 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
5cd2c5b6
RH
417 }
418 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 419 }
5cd2c5b6 420
e3f4e2a4 421 pd = *lp;
5cd2c5b6 422 if (pd == NULL) {
e3f4e2a4 423 int i;
5ab97b7f 424 int first_index = index & ~(L2_SIZE - 1);
5cd2c5b6
RH
425
426 if (!alloc) {
108c49b8 427 return NULL;
5cd2c5b6
RH
428 }
429
7267c094 430 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
5cd2c5b6 431
67c4d23c 432 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6 433 pd[i].phys_offset = IO_MEM_UNASSIGNED;
5ab97b7f 434 pd[i].region_offset = (first_index + i) << TARGET_PAGE_BITS;
67c4d23c 435 }
92e873b9 436 }
5cd2c5b6
RH
437
438 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
439}
440
c227f099 441static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 442{
108c49b8 443 return phys_page_find_alloc(index, 0);
92e873b9
FB
444}
445
c227f099
AL
446static void tlb_protect_code(ram_addr_t ram_addr);
447static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 448 target_ulong vaddr);
c8a706fe
PB
449#define mmap_lock() do { } while(0)
450#define mmap_unlock() do { } while(0)
9fa3e853 451#endif
fd6ce8f6 452
4369415f
FB
453#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
454
455#if defined(CONFIG_USER_ONLY)
ccbb4d44 456/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
457 user mode. It will change when a dedicated libc will be used */
458#define USE_STATIC_CODE_GEN_BUFFER
459#endif
460
461#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
462static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
463 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
464#endif
465
8fcd3692 466static void code_gen_alloc(unsigned long tb_size)
26a5f13b 467{
4369415f
FB
468#ifdef USE_STATIC_CODE_GEN_BUFFER
469 code_gen_buffer = static_code_gen_buffer;
470 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
471 map_exec(code_gen_buffer, code_gen_buffer_size);
472#else
26a5f13b
FB
473 code_gen_buffer_size = tb_size;
474 if (code_gen_buffer_size == 0) {
4369415f 475#if defined(CONFIG_USER_ONLY)
4369415f
FB
476 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
477#else
ccbb4d44 478 /* XXX: needs adjustments */
94a6b54f 479 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 480#endif
26a5f13b
FB
481 }
482 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
483 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
484 /* The code gen buffer location may have constraints depending on
485 the host cpu and OS */
486#if defined(__linux__)
487 {
488 int flags;
141ac468
BS
489 void *start = NULL;
490
26a5f13b
FB
491 flags = MAP_PRIVATE | MAP_ANONYMOUS;
492#if defined(__x86_64__)
493 flags |= MAP_32BIT;
494 /* Cannot map more than that */
495 if (code_gen_buffer_size > (800 * 1024 * 1024))
496 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
497#elif defined(__sparc_v9__)
498 // Map the buffer below 2G, so we can use direct calls and branches
499 flags |= MAP_FIXED;
500 start = (void *) 0x60000000UL;
501 if (code_gen_buffer_size > (512 * 1024 * 1024))
502 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 503#elif defined(__arm__)
222f23f5 504 /* Keep the buffer no bigger than 16GB to branch between blocks */
1cb0661e
AZ
505 if (code_gen_buffer_size > 16 * 1024 * 1024)
506 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
507#elif defined(__s390x__)
508 /* Map the buffer so that we can use direct calls and branches. */
509 /* We have a +- 4GB range on the branches; leave some slop. */
510 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
511 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
512 }
513 start = (void *)0x90000000UL;
26a5f13b 514#endif
141ac468
BS
515 code_gen_buffer = mmap(start, code_gen_buffer_size,
516 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
517 flags, -1, 0);
518 if (code_gen_buffer == MAP_FAILED) {
519 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
520 exit(1);
521 }
522 }
cbb608a5 523#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
524 || defined(__DragonFly__) || defined(__OpenBSD__) \
525 || defined(__NetBSD__)
06e67a82
AL
526 {
527 int flags;
528 void *addr = NULL;
529 flags = MAP_PRIVATE | MAP_ANONYMOUS;
530#if defined(__x86_64__)
531 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
532 * 0x40000000 is free */
533 flags |= MAP_FIXED;
534 addr = (void *)0x40000000;
535 /* Cannot map more than that */
536 if (code_gen_buffer_size > (800 * 1024 * 1024))
537 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
538#elif defined(__sparc_v9__)
539 // Map the buffer below 2G, so we can use direct calls and branches
540 flags |= MAP_FIXED;
541 addr = (void *) 0x60000000UL;
542 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
543 code_gen_buffer_size = (512 * 1024 * 1024);
544 }
06e67a82
AL
545#endif
546 code_gen_buffer = mmap(addr, code_gen_buffer_size,
547 PROT_WRITE | PROT_READ | PROT_EXEC,
548 flags, -1, 0);
549 if (code_gen_buffer == MAP_FAILED) {
550 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
551 exit(1);
552 }
553 }
26a5f13b 554#else
7267c094 555 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
556 map_exec(code_gen_buffer, code_gen_buffer_size);
557#endif
4369415f 558#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 559 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
560 code_gen_buffer_max_size = code_gen_buffer_size -
561 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 562 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 563 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
564}
565
566/* Must be called before using the QEMU cpus. 'tb_size' is the size
567 (in bytes) allocated to the translation buffer. Zero means default
568 size. */
d5ab9713 569void tcg_exec_init(unsigned long tb_size)
26a5f13b 570{
26a5f13b
FB
571 cpu_gen_init();
572 code_gen_alloc(tb_size);
573 code_gen_ptr = code_gen_buffer;
4369415f 574 page_init();
9002ec79
RH
575#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
576 /* There's no guest base to take into account, so go ahead and
577 initialize the prologue now. */
578 tcg_prologue_init(&tcg_ctx);
579#endif
26a5f13b
FB
580}
581
d5ab9713
JK
582bool tcg_enabled(void)
583{
584 return code_gen_buffer != NULL;
585}
586
587void cpu_exec_init_all(void)
588{
589#if !defined(CONFIG_USER_ONLY)
590 memory_map_init();
591 io_mem_init();
592#endif
593}
594
9656f324
PB
595#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
596
e59fb374 597static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
598{
599 CPUState *env = opaque;
9656f324 600
3098dba0
AJ
601 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
602 version_id is increased. */
603 env->interrupt_request &= ~0x01;
9656f324
PB
604 tlb_flush(env, 1);
605
606 return 0;
607}
e7f4eff7
JQ
608
609static const VMStateDescription vmstate_cpu_common = {
610 .name = "cpu_common",
611 .version_id = 1,
612 .minimum_version_id = 1,
613 .minimum_version_id_old = 1,
e7f4eff7
JQ
614 .post_load = cpu_common_post_load,
615 .fields = (VMStateField []) {
616 VMSTATE_UINT32(halted, CPUState),
617 VMSTATE_UINT32(interrupt_request, CPUState),
618 VMSTATE_END_OF_LIST()
619 }
620};
9656f324
PB
621#endif
622
950f1472
GC
623CPUState *qemu_get_cpu(int cpu)
624{
625 CPUState *env = first_cpu;
626
627 while (env) {
628 if (env->cpu_index == cpu)
629 break;
630 env = env->next_cpu;
631 }
632
633 return env;
634}
635
6a00d601 636void cpu_exec_init(CPUState *env)
fd6ce8f6 637{
6a00d601
FB
638 CPUState **penv;
639 int cpu_index;
640
c2764719
PB
641#if defined(CONFIG_USER_ONLY)
642 cpu_list_lock();
643#endif
6a00d601
FB
644 env->next_cpu = NULL;
645 penv = &first_cpu;
646 cpu_index = 0;
647 while (*penv != NULL) {
1e9fa730 648 penv = &(*penv)->next_cpu;
6a00d601
FB
649 cpu_index++;
650 }
651 env->cpu_index = cpu_index;
268a362c 652 env->numa_node = 0;
72cf2d4f
BS
653 QTAILQ_INIT(&env->breakpoints);
654 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
655#ifndef CONFIG_USER_ONLY
656 env->thread_id = qemu_get_thread_id();
657#endif
6a00d601 658 *penv = env;
c2764719
PB
659#if defined(CONFIG_USER_ONLY)
660 cpu_list_unlock();
661#endif
b3c7724c 662#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
663 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
664 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
665 cpu_save, cpu_load, env);
666#endif
fd6ce8f6
FB
667}
668
d1a1eb74
TG
669/* Allocate a new translation block. Flush the translation buffer if
670 too many translation blocks or too much generated code. */
671static TranslationBlock *tb_alloc(target_ulong pc)
672{
673 TranslationBlock *tb;
674
675 if (nb_tbs >= code_gen_max_blocks ||
676 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
677 return NULL;
678 tb = &tbs[nb_tbs++];
679 tb->pc = pc;
680 tb->cflags = 0;
681 return tb;
682}
683
684void tb_free(TranslationBlock *tb)
685{
686 /* In practice this is mostly used for single use temporary TB
687 Ignore the hard cases and just back up if this TB happens to
688 be the last one generated. */
689 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
690 code_gen_ptr = tb->tc_ptr;
691 nb_tbs--;
692 }
693}
694
9fa3e853
FB
695static inline void invalidate_page_bitmap(PageDesc *p)
696{
697 if (p->code_bitmap) {
7267c094 698 g_free(p->code_bitmap);
9fa3e853
FB
699 p->code_bitmap = NULL;
700 }
701 p->code_write_count = 0;
702}
703
5cd2c5b6
RH
704/* Set to NULL all the 'first_tb' fields in all PageDescs. */
705
706static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 707{
5cd2c5b6 708 int i;
fd6ce8f6 709
5cd2c5b6
RH
710 if (*lp == NULL) {
711 return;
712 }
713 if (level == 0) {
714 PageDesc *pd = *lp;
7296abac 715 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
716 pd[i].first_tb = NULL;
717 invalidate_page_bitmap(pd + i);
fd6ce8f6 718 }
5cd2c5b6
RH
719 } else {
720 void **pp = *lp;
7296abac 721 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
722 page_flush_tb_1 (level - 1, pp + i);
723 }
724 }
725}
726
727static void page_flush_tb(void)
728{
729 int i;
730 for (i = 0; i < V_L1_SIZE; i++) {
731 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
732 }
733}
734
735/* flush all the translation blocks */
d4e8164f 736/* XXX: tb_flush is currently not thread safe */
6a00d601 737void tb_flush(CPUState *env1)
fd6ce8f6 738{
6a00d601 739 CPUState *env;
0124311e 740#if defined(DEBUG_FLUSH)
ab3d1727
BS
741 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
742 (unsigned long)(code_gen_ptr - code_gen_buffer),
743 nb_tbs, nb_tbs > 0 ?
744 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 745#endif
26a5f13b 746 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
747 cpu_abort(env1, "Internal error: code buffer overflow\n");
748
fd6ce8f6 749 nb_tbs = 0;
3b46e624 750
6a00d601
FB
751 for(env = first_cpu; env != NULL; env = env->next_cpu) {
752 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
753 }
9fa3e853 754
8a8a608f 755 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 756 page_flush_tb();
9fa3e853 757
fd6ce8f6 758 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
759 /* XXX: flush processor icache at this point if cache flush is
760 expensive */
e3db7226 761 tb_flush_count++;
fd6ce8f6
FB
762}
763
764#ifdef DEBUG_TB_CHECK
765
bc98a7ef 766static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
767{
768 TranslationBlock *tb;
769 int i;
770 address &= TARGET_PAGE_MASK;
99773bd4
PB
771 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
772 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
773 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
774 address >= tb->pc + tb->size)) {
0bf9e31a
BS
775 printf("ERROR invalidate: address=" TARGET_FMT_lx
776 " PC=%08lx size=%04x\n",
99773bd4 777 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
778 }
779 }
780 }
781}
782
783/* verify that all the pages have correct rights for code */
784static void tb_page_check(void)
785{
786 TranslationBlock *tb;
787 int i, flags1, flags2;
3b46e624 788
99773bd4
PB
789 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
790 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
791 flags1 = page_get_flags(tb->pc);
792 flags2 = page_get_flags(tb->pc + tb->size - 1);
793 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
794 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 795 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
796 }
797 }
798 }
799}
800
801#endif
802
803/* invalidate one TB */
804static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
805 int next_offset)
806{
807 TranslationBlock *tb1;
808 for(;;) {
809 tb1 = *ptb;
810 if (tb1 == tb) {
811 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
812 break;
813 }
814 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
815 }
816}
817
9fa3e853
FB
818static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
819{
820 TranslationBlock *tb1;
821 unsigned int n1;
822
823 for(;;) {
824 tb1 = *ptb;
825 n1 = (long)tb1 & 3;
826 tb1 = (TranslationBlock *)((long)tb1 & ~3);
827 if (tb1 == tb) {
828 *ptb = tb1->page_next[n1];
829 break;
830 }
831 ptb = &tb1->page_next[n1];
832 }
833}
834
d4e8164f
FB
835static inline void tb_jmp_remove(TranslationBlock *tb, int n)
836{
837 TranslationBlock *tb1, **ptb;
838 unsigned int n1;
839
840 ptb = &tb->jmp_next[n];
841 tb1 = *ptb;
842 if (tb1) {
843 /* find tb(n) in circular list */
844 for(;;) {
845 tb1 = *ptb;
846 n1 = (long)tb1 & 3;
847 tb1 = (TranslationBlock *)((long)tb1 & ~3);
848 if (n1 == n && tb1 == tb)
849 break;
850 if (n1 == 2) {
851 ptb = &tb1->jmp_first;
852 } else {
853 ptb = &tb1->jmp_next[n1];
854 }
855 }
856 /* now we can suppress tb(n) from the list */
857 *ptb = tb->jmp_next[n];
858
859 tb->jmp_next[n] = NULL;
860 }
861}
862
863/* reset the jump entry 'n' of a TB so that it is not chained to
864 another TB */
865static inline void tb_reset_jump(TranslationBlock *tb, int n)
866{
867 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
868}
869
41c1b1c9 870void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 871{
6a00d601 872 CPUState *env;
8a40a180 873 PageDesc *p;
d4e8164f 874 unsigned int h, n1;
41c1b1c9 875 tb_page_addr_t phys_pc;
8a40a180 876 TranslationBlock *tb1, *tb2;
3b46e624 877
8a40a180
FB
878 /* remove the TB from the hash list */
879 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
880 h = tb_phys_hash_func(phys_pc);
5fafdf24 881 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
882 offsetof(TranslationBlock, phys_hash_next));
883
884 /* remove the TB from the page list */
885 if (tb->page_addr[0] != page_addr) {
886 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
887 tb_page_remove(&p->first_tb, tb);
888 invalidate_page_bitmap(p);
889 }
890 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
891 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
892 tb_page_remove(&p->first_tb, tb);
893 invalidate_page_bitmap(p);
894 }
895
36bdbe54 896 tb_invalidated_flag = 1;
59817ccb 897
fd6ce8f6 898 /* remove the TB from the hash list */
8a40a180 899 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
900 for(env = first_cpu; env != NULL; env = env->next_cpu) {
901 if (env->tb_jmp_cache[h] == tb)
902 env->tb_jmp_cache[h] = NULL;
903 }
d4e8164f
FB
904
905 /* suppress this TB from the two jump lists */
906 tb_jmp_remove(tb, 0);
907 tb_jmp_remove(tb, 1);
908
909 /* suppress any remaining jumps to this TB */
910 tb1 = tb->jmp_first;
911 for(;;) {
912 n1 = (long)tb1 & 3;
913 if (n1 == 2)
914 break;
915 tb1 = (TranslationBlock *)((long)tb1 & ~3);
916 tb2 = tb1->jmp_next[n1];
917 tb_reset_jump(tb1, n1);
918 tb1->jmp_next[n1] = NULL;
919 tb1 = tb2;
920 }
921 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 922
e3db7226 923 tb_phys_invalidate_count++;
9fa3e853
FB
924}
925
926static inline void set_bits(uint8_t *tab, int start, int len)
927{
928 int end, mask, end1;
929
930 end = start + len;
931 tab += start >> 3;
932 mask = 0xff << (start & 7);
933 if ((start & ~7) == (end & ~7)) {
934 if (start < end) {
935 mask &= ~(0xff << (end & 7));
936 *tab |= mask;
937 }
938 } else {
939 *tab++ |= mask;
940 start = (start + 8) & ~7;
941 end1 = end & ~7;
942 while (start < end1) {
943 *tab++ = 0xff;
944 start += 8;
945 }
946 if (start < end) {
947 mask = ~(0xff << (end & 7));
948 *tab |= mask;
949 }
950 }
951}
952
953static void build_page_bitmap(PageDesc *p)
954{
955 int n, tb_start, tb_end;
956 TranslationBlock *tb;
3b46e624 957
7267c094 958 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
959
960 tb = p->first_tb;
961 while (tb != NULL) {
962 n = (long)tb & 3;
963 tb = (TranslationBlock *)((long)tb & ~3);
964 /* NOTE: this is subtle as a TB may span two physical pages */
965 if (n == 0) {
966 /* NOTE: tb_end may be after the end of the page, but
967 it is not a problem */
968 tb_start = tb->pc & ~TARGET_PAGE_MASK;
969 tb_end = tb_start + tb->size;
970 if (tb_end > TARGET_PAGE_SIZE)
971 tb_end = TARGET_PAGE_SIZE;
972 } else {
973 tb_start = 0;
974 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
975 }
976 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
977 tb = tb->page_next[n];
978 }
979}
980
2e70f6ef
PB
981TranslationBlock *tb_gen_code(CPUState *env,
982 target_ulong pc, target_ulong cs_base,
983 int flags, int cflags)
d720b93d
FB
984{
985 TranslationBlock *tb;
986 uint8_t *tc_ptr;
41c1b1c9
PB
987 tb_page_addr_t phys_pc, phys_page2;
988 target_ulong virt_page2;
d720b93d
FB
989 int code_gen_size;
990
41c1b1c9 991 phys_pc = get_page_addr_code(env, pc);
c27004ec 992 tb = tb_alloc(pc);
d720b93d
FB
993 if (!tb) {
994 /* flush must be done */
995 tb_flush(env);
996 /* cannot fail at this point */
c27004ec 997 tb = tb_alloc(pc);
2e70f6ef
PB
998 /* Don't forget to invalidate previous TB info. */
999 tb_invalidated_flag = 1;
d720b93d
FB
1000 }
1001 tc_ptr = code_gen_ptr;
1002 tb->tc_ptr = tc_ptr;
1003 tb->cs_base = cs_base;
1004 tb->flags = flags;
1005 tb->cflags = cflags;
d07bde88 1006 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 1007 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1008
d720b93d 1009 /* check next page if needed */
c27004ec 1010 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1011 phys_page2 = -1;
c27004ec 1012 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1013 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1014 }
41c1b1c9 1015 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1016 return tb;
d720b93d 1017}
3b46e624 1018
9fa3e853
FB
1019/* invalidate all TBs which intersect with the target physical page
1020 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1021 the same physical page. 'is_cpu_write_access' should be true if called
1022 from a real cpu write access: the virtual CPU will exit the current
1023 TB if code is modified inside this TB. */
41c1b1c9 1024void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1025 int is_cpu_write_access)
1026{
6b917547 1027 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1028 CPUState *env = cpu_single_env;
41c1b1c9 1029 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1030 PageDesc *p;
1031 int n;
1032#ifdef TARGET_HAS_PRECISE_SMC
1033 int current_tb_not_found = is_cpu_write_access;
1034 TranslationBlock *current_tb = NULL;
1035 int current_tb_modified = 0;
1036 target_ulong current_pc = 0;
1037 target_ulong current_cs_base = 0;
1038 int current_flags = 0;
1039#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1040
1041 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1042 if (!p)
9fa3e853 1043 return;
5fafdf24 1044 if (!p->code_bitmap &&
d720b93d
FB
1045 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1046 is_cpu_write_access) {
9fa3e853
FB
1047 /* build code bitmap */
1048 build_page_bitmap(p);
1049 }
1050
1051 /* we remove all the TBs in the range [start, end[ */
1052 /* XXX: see if in some cases it could be faster to invalidate all the code */
1053 tb = p->first_tb;
1054 while (tb != NULL) {
1055 n = (long)tb & 3;
1056 tb = (TranslationBlock *)((long)tb & ~3);
1057 tb_next = tb->page_next[n];
1058 /* NOTE: this is subtle as a TB may span two physical pages */
1059 if (n == 0) {
1060 /* NOTE: tb_end may be after the end of the page, but
1061 it is not a problem */
1062 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1063 tb_end = tb_start + tb->size;
1064 } else {
1065 tb_start = tb->page_addr[1];
1066 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1067 }
1068 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1069#ifdef TARGET_HAS_PRECISE_SMC
1070 if (current_tb_not_found) {
1071 current_tb_not_found = 0;
1072 current_tb = NULL;
2e70f6ef 1073 if (env->mem_io_pc) {
d720b93d 1074 /* now we have a real cpu fault */
2e70f6ef 1075 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1076 }
1077 }
1078 if (current_tb == tb &&
2e70f6ef 1079 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1080 /* If we are modifying the current TB, we must stop
1081 its execution. We could be more precise by checking
1082 that the modification is after the current PC, but it
1083 would require a specialized function to partially
1084 restore the CPU state */
3b46e624 1085
d720b93d 1086 current_tb_modified = 1;
618ba8e6 1087 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1088 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1089 &current_flags);
d720b93d
FB
1090 }
1091#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1092 /* we need to do that to handle the case where a signal
1093 occurs while doing tb_phys_invalidate() */
1094 saved_tb = NULL;
1095 if (env) {
1096 saved_tb = env->current_tb;
1097 env->current_tb = NULL;
1098 }
9fa3e853 1099 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1100 if (env) {
1101 env->current_tb = saved_tb;
1102 if (env->interrupt_request && env->current_tb)
1103 cpu_interrupt(env, env->interrupt_request);
1104 }
9fa3e853
FB
1105 }
1106 tb = tb_next;
1107 }
1108#if !defined(CONFIG_USER_ONLY)
1109 /* if no code remaining, no need to continue to use slow writes */
1110 if (!p->first_tb) {
1111 invalidate_page_bitmap(p);
d720b93d 1112 if (is_cpu_write_access) {
2e70f6ef 1113 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1114 }
1115 }
1116#endif
1117#ifdef TARGET_HAS_PRECISE_SMC
1118 if (current_tb_modified) {
1119 /* we generate a block containing just the instruction
1120 modifying the memory. It will ensure that it cannot modify
1121 itself */
ea1c1802 1122 env->current_tb = NULL;
2e70f6ef 1123 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1124 cpu_resume_from_signal(env, NULL);
9fa3e853 1125 }
fd6ce8f6 1126#endif
9fa3e853 1127}
fd6ce8f6 1128
9fa3e853 1129/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1130static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1131{
1132 PageDesc *p;
1133 int offset, b;
59817ccb 1134#if 0
a4193c8a 1135 if (1) {
93fcfe39
AL
1136 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1137 cpu_single_env->mem_io_vaddr, len,
1138 cpu_single_env->eip,
1139 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1140 }
1141#endif
9fa3e853 1142 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1143 if (!p)
9fa3e853
FB
1144 return;
1145 if (p->code_bitmap) {
1146 offset = start & ~TARGET_PAGE_MASK;
1147 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1148 if (b & ((1 << len) - 1))
1149 goto do_invalidate;
1150 } else {
1151 do_invalidate:
d720b93d 1152 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1153 }
1154}
1155
9fa3e853 1156#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1157static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1158 unsigned long pc, void *puc)
9fa3e853 1159{
6b917547 1160 TranslationBlock *tb;
9fa3e853 1161 PageDesc *p;
6b917547 1162 int n;
d720b93d 1163#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1164 TranslationBlock *current_tb = NULL;
d720b93d 1165 CPUState *env = cpu_single_env;
6b917547
AL
1166 int current_tb_modified = 0;
1167 target_ulong current_pc = 0;
1168 target_ulong current_cs_base = 0;
1169 int current_flags = 0;
d720b93d 1170#endif
9fa3e853
FB
1171
1172 addr &= TARGET_PAGE_MASK;
1173 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1174 if (!p)
9fa3e853
FB
1175 return;
1176 tb = p->first_tb;
d720b93d
FB
1177#ifdef TARGET_HAS_PRECISE_SMC
1178 if (tb && pc != 0) {
1179 current_tb = tb_find_pc(pc);
1180 }
1181#endif
9fa3e853
FB
1182 while (tb != NULL) {
1183 n = (long)tb & 3;
1184 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1185#ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb == tb &&
2e70f6ef 1187 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1188 /* If we are modifying the current TB, we must stop
1189 its execution. We could be more precise by checking
1190 that the modification is after the current PC, but it
1191 would require a specialized function to partially
1192 restore the CPU state */
3b46e624 1193
d720b93d 1194 current_tb_modified = 1;
618ba8e6 1195 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1196 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1197 &current_flags);
d720b93d
FB
1198 }
1199#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1200 tb_phys_invalidate(tb, addr);
1201 tb = tb->page_next[n];
1202 }
fd6ce8f6 1203 p->first_tb = NULL;
d720b93d
FB
1204#ifdef TARGET_HAS_PRECISE_SMC
1205 if (current_tb_modified) {
1206 /* we generate a block containing just the instruction
1207 modifying the memory. It will ensure that it cannot modify
1208 itself */
ea1c1802 1209 env->current_tb = NULL;
2e70f6ef 1210 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1211 cpu_resume_from_signal(env, puc);
1212 }
1213#endif
fd6ce8f6 1214}
9fa3e853 1215#endif
fd6ce8f6
FB
1216
1217/* add the tb in the target page and protect it if necessary */
5fafdf24 1218static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1219 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1220{
1221 PageDesc *p;
4429ab44
JQ
1222#ifndef CONFIG_USER_ONLY
1223 bool page_already_protected;
1224#endif
9fa3e853
FB
1225
1226 tb->page_addr[n] = page_addr;
5cd2c5b6 1227 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1228 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1229#ifndef CONFIG_USER_ONLY
1230 page_already_protected = p->first_tb != NULL;
1231#endif
9fa3e853
FB
1232 p->first_tb = (TranslationBlock *)((long)tb | n);
1233 invalidate_page_bitmap(p);
fd6ce8f6 1234
107db443 1235#if defined(TARGET_HAS_SMC) || 1
d720b93d 1236
9fa3e853 1237#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1238 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1239 target_ulong addr;
1240 PageDesc *p2;
9fa3e853
FB
1241 int prot;
1242
fd6ce8f6
FB
1243 /* force the host page as non writable (writes will have a
1244 page fault + mprotect overhead) */
53a5960a 1245 page_addr &= qemu_host_page_mask;
fd6ce8f6 1246 prot = 0;
53a5960a
PB
1247 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1248 addr += TARGET_PAGE_SIZE) {
1249
1250 p2 = page_find (addr >> TARGET_PAGE_BITS);
1251 if (!p2)
1252 continue;
1253 prot |= p2->flags;
1254 p2->flags &= ~PAGE_WRITE;
53a5960a 1255 }
5fafdf24 1256 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1257 (prot & PAGE_BITS) & ~PAGE_WRITE);
1258#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1259 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1260 page_addr);
fd6ce8f6 1261#endif
fd6ce8f6 1262 }
9fa3e853
FB
1263#else
1264 /* if some code is already present, then the pages are already
1265 protected. So we handle the case where only the first TB is
1266 allocated in a physical page */
4429ab44 1267 if (!page_already_protected) {
6a00d601 1268 tlb_protect_code(page_addr);
9fa3e853
FB
1269 }
1270#endif
d720b93d
FB
1271
1272#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1273}
1274
9fa3e853
FB
1275/* add a new TB and link it to the physical page tables. phys_page2 is
1276 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1277void tb_link_page(TranslationBlock *tb,
1278 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1279{
9fa3e853
FB
1280 unsigned int h;
1281 TranslationBlock **ptb;
1282
c8a706fe
PB
1283 /* Grab the mmap lock to stop another thread invalidating this TB
1284 before we are done. */
1285 mmap_lock();
9fa3e853
FB
1286 /* add in the physical hash table */
1287 h = tb_phys_hash_func(phys_pc);
1288 ptb = &tb_phys_hash[h];
1289 tb->phys_hash_next = *ptb;
1290 *ptb = tb;
fd6ce8f6
FB
1291
1292 /* add in the page list */
9fa3e853
FB
1293 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1294 if (phys_page2 != -1)
1295 tb_alloc_page(tb, 1, phys_page2);
1296 else
1297 tb->page_addr[1] = -1;
9fa3e853 1298
d4e8164f
FB
1299 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1300 tb->jmp_next[0] = NULL;
1301 tb->jmp_next[1] = NULL;
1302
1303 /* init original jump addresses */
1304 if (tb->tb_next_offset[0] != 0xffff)
1305 tb_reset_jump(tb, 0);
1306 if (tb->tb_next_offset[1] != 0xffff)
1307 tb_reset_jump(tb, 1);
8a40a180
FB
1308
1309#ifdef DEBUG_TB_CHECK
1310 tb_page_check();
1311#endif
c8a706fe 1312 mmap_unlock();
fd6ce8f6
FB
1313}
1314
9fa3e853
FB
1315/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1316 tb[1].tc_ptr. Return NULL if not found */
1317TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1318{
9fa3e853
FB
1319 int m_min, m_max, m;
1320 unsigned long v;
1321 TranslationBlock *tb;
a513fe19
FB
1322
1323 if (nb_tbs <= 0)
1324 return NULL;
1325 if (tc_ptr < (unsigned long)code_gen_buffer ||
1326 tc_ptr >= (unsigned long)code_gen_ptr)
1327 return NULL;
1328 /* binary search (cf Knuth) */
1329 m_min = 0;
1330 m_max = nb_tbs - 1;
1331 while (m_min <= m_max) {
1332 m = (m_min + m_max) >> 1;
1333 tb = &tbs[m];
1334 v = (unsigned long)tb->tc_ptr;
1335 if (v == tc_ptr)
1336 return tb;
1337 else if (tc_ptr < v) {
1338 m_max = m - 1;
1339 } else {
1340 m_min = m + 1;
1341 }
5fafdf24 1342 }
a513fe19
FB
1343 return &tbs[m_max];
1344}
7501267e 1345
ea041c0e
FB
1346static void tb_reset_jump_recursive(TranslationBlock *tb);
1347
1348static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1349{
1350 TranslationBlock *tb1, *tb_next, **ptb;
1351 unsigned int n1;
1352
1353 tb1 = tb->jmp_next[n];
1354 if (tb1 != NULL) {
1355 /* find head of list */
1356 for(;;) {
1357 n1 = (long)tb1 & 3;
1358 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1359 if (n1 == 2)
1360 break;
1361 tb1 = tb1->jmp_next[n1];
1362 }
1363 /* we are now sure now that tb jumps to tb1 */
1364 tb_next = tb1;
1365
1366 /* remove tb from the jmp_first list */
1367 ptb = &tb_next->jmp_first;
1368 for(;;) {
1369 tb1 = *ptb;
1370 n1 = (long)tb1 & 3;
1371 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1372 if (n1 == n && tb1 == tb)
1373 break;
1374 ptb = &tb1->jmp_next[n1];
1375 }
1376 *ptb = tb->jmp_next[n];
1377 tb->jmp_next[n] = NULL;
3b46e624 1378
ea041c0e
FB
1379 /* suppress the jump to next tb in generated code */
1380 tb_reset_jump(tb, n);
1381
0124311e 1382 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1383 tb_reset_jump_recursive(tb_next);
1384 }
1385}
1386
1387static void tb_reset_jump_recursive(TranslationBlock *tb)
1388{
1389 tb_reset_jump_recursive2(tb, 0);
1390 tb_reset_jump_recursive2(tb, 1);
1391}
1392
1fddef4b 1393#if defined(TARGET_HAS_ICE)
94df27fd
PB
1394#if defined(CONFIG_USER_ONLY)
1395static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1396{
1397 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1398}
1399#else
d720b93d
FB
1400static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1401{
c227f099 1402 target_phys_addr_t addr;
9b3c35e0 1403 target_ulong pd;
c227f099 1404 ram_addr_t ram_addr;
c2f07f81 1405 PhysPageDesc *p;
d720b93d 1406
c2f07f81
PB
1407 addr = cpu_get_phys_page_debug(env, pc);
1408 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1409 if (!p) {
1410 pd = IO_MEM_UNASSIGNED;
1411 } else {
1412 pd = p->phys_offset;
1413 }
1414 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1415 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1416}
c27004ec 1417#endif
94df27fd 1418#endif /* TARGET_HAS_ICE */
d720b93d 1419
c527ee8f
PB
1420#if defined(CONFIG_USER_ONLY)
1421void cpu_watchpoint_remove_all(CPUState *env, int mask)
1422
1423{
1424}
1425
1426int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1427 int flags, CPUWatchpoint **watchpoint)
1428{
1429 return -ENOSYS;
1430}
1431#else
6658ffb8 1432/* Add a watchpoint. */
a1d1bb31
AL
1433int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1434 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1435{
b4051334 1436 target_ulong len_mask = ~(len - 1);
c0ce998e 1437 CPUWatchpoint *wp;
6658ffb8 1438
b4051334
AL
1439 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1440 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1443 return -EINVAL;
1444 }
7267c094 1445 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1446
1447 wp->vaddr = addr;
b4051334 1448 wp->len_mask = len_mask;
a1d1bb31
AL
1449 wp->flags = flags;
1450
2dc9f411 1451 /* keep all GDB-injected watchpoints in front */
c0ce998e 1452 if (flags & BP_GDB)
72cf2d4f 1453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1454 else
72cf2d4f 1455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1456
6658ffb8 1457 tlb_flush_page(env, addr);
a1d1bb31
AL
1458
1459 if (watchpoint)
1460 *watchpoint = wp;
1461 return 0;
6658ffb8
PB
1462}
1463
a1d1bb31
AL
1464/* Remove a specific watchpoint. */
1465int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1466 int flags)
6658ffb8 1467{
b4051334 1468 target_ulong len_mask = ~(len - 1);
a1d1bb31 1469 CPUWatchpoint *wp;
6658ffb8 1470
72cf2d4f 1471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1472 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1474 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1475 return 0;
1476 }
1477 }
a1d1bb31 1478 return -ENOENT;
6658ffb8
PB
1479}
1480
a1d1bb31
AL
1481/* Remove a specific watchpoint by reference. */
1482void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1483{
72cf2d4f 1484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1485
a1d1bb31
AL
1486 tlb_flush_page(env, watchpoint->vaddr);
1487
7267c094 1488 g_free(watchpoint);
a1d1bb31
AL
1489}
1490
1491/* Remove all matching watchpoints. */
1492void cpu_watchpoint_remove_all(CPUState *env, int mask)
1493{
c0ce998e 1494 CPUWatchpoint *wp, *next;
a1d1bb31 1495
72cf2d4f 1496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1497 if (wp->flags & mask)
1498 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1499 }
7d03f82f 1500}
c527ee8f 1501#endif
7d03f82f 1502
a1d1bb31
AL
1503/* Add a breakpoint. */
1504int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1505 CPUBreakpoint **breakpoint)
4c3a88a2 1506{
1fddef4b 1507#if defined(TARGET_HAS_ICE)
c0ce998e 1508 CPUBreakpoint *bp;
3b46e624 1509
7267c094 1510 bp = g_malloc(sizeof(*bp));
4c3a88a2 1511
a1d1bb31
AL
1512 bp->pc = pc;
1513 bp->flags = flags;
1514
2dc9f411 1515 /* keep all GDB-injected breakpoints in front */
c0ce998e 1516 if (flags & BP_GDB)
72cf2d4f 1517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1518 else
72cf2d4f 1519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1520
d720b93d 1521 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1522
1523 if (breakpoint)
1524 *breakpoint = bp;
4c3a88a2
FB
1525 return 0;
1526#else
a1d1bb31 1527 return -ENOSYS;
4c3a88a2
FB
1528#endif
1529}
1530
a1d1bb31
AL
1531/* Remove a specific breakpoint. */
1532int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1533{
7d03f82f 1534#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1535 CPUBreakpoint *bp;
1536
72cf2d4f 1537 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1538 if (bp->pc == pc && bp->flags == flags) {
1539 cpu_breakpoint_remove_by_ref(env, bp);
1540 return 0;
1541 }
7d03f82f 1542 }
a1d1bb31
AL
1543 return -ENOENT;
1544#else
1545 return -ENOSYS;
7d03f82f
EI
1546#endif
1547}
1548
a1d1bb31
AL
1549/* Remove a specific breakpoint by reference. */
1550void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1551{
1fddef4b 1552#if defined(TARGET_HAS_ICE)
72cf2d4f 1553 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1554
a1d1bb31
AL
1555 breakpoint_invalidate(env, breakpoint->pc);
1556
7267c094 1557 g_free(breakpoint);
a1d1bb31
AL
1558#endif
1559}
1560
1561/* Remove all matching breakpoints. */
1562void cpu_breakpoint_remove_all(CPUState *env, int mask)
1563{
1564#if defined(TARGET_HAS_ICE)
c0ce998e 1565 CPUBreakpoint *bp, *next;
a1d1bb31 1566
72cf2d4f 1567 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1568 if (bp->flags & mask)
1569 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1570 }
4c3a88a2
FB
1571#endif
1572}
1573
c33a346e
FB
1574/* enable or disable single step mode. EXCP_DEBUG is returned by the
1575 CPU loop after each instruction */
1576void cpu_single_step(CPUState *env, int enabled)
1577{
1fddef4b 1578#if defined(TARGET_HAS_ICE)
c33a346e
FB
1579 if (env->singlestep_enabled != enabled) {
1580 env->singlestep_enabled = enabled;
e22a25c9
AL
1581 if (kvm_enabled())
1582 kvm_update_guest_debug(env, 0);
1583 else {
ccbb4d44 1584 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1585 /* XXX: only flush what is necessary */
1586 tb_flush(env);
1587 }
c33a346e
FB
1588 }
1589#endif
1590}
1591
34865134
FB
1592/* enable or disable low levels log */
1593void cpu_set_log(int log_flags)
1594{
1595 loglevel = log_flags;
1596 if (loglevel && !logfile) {
11fcfab4 1597 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1598 if (!logfile) {
1599 perror(logfilename);
1600 _exit(1);
1601 }
9fa3e853
FB
1602#if !defined(CONFIG_SOFTMMU)
1603 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1604 {
b55266b5 1605 static char logfile_buf[4096];
9fa3e853
FB
1606 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1607 }
daf767b1
SW
1608#elif defined(_WIN32)
1609 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1610 setvbuf(logfile, NULL, _IONBF, 0);
1611#else
34865134 1612 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1613#endif
e735b91c
PB
1614 log_append = 1;
1615 }
1616 if (!loglevel && logfile) {
1617 fclose(logfile);
1618 logfile = NULL;
34865134
FB
1619 }
1620}
1621
1622void cpu_set_log_filename(const char *filename)
1623{
1624 logfilename = strdup(filename);
e735b91c
PB
1625 if (logfile) {
1626 fclose(logfile);
1627 logfile = NULL;
1628 }
1629 cpu_set_log(loglevel);
34865134 1630}
c33a346e 1631
3098dba0 1632static void cpu_unlink_tb(CPUState *env)
ea041c0e 1633{
3098dba0
AJ
1634 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1635 problem and hope the cpu will stop of its own accord. For userspace
1636 emulation this often isn't actually as bad as it sounds. Often
1637 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1638 TranslationBlock *tb;
c227f099 1639 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1640
cab1b4bd 1641 spin_lock(&interrupt_lock);
3098dba0
AJ
1642 tb = env->current_tb;
1643 /* if the cpu is currently executing code, we must unlink it and
1644 all the potentially executing TB */
f76cfe56 1645 if (tb) {
3098dba0
AJ
1646 env->current_tb = NULL;
1647 tb_reset_jump_recursive(tb);
be214e6c 1648 }
cab1b4bd 1649 spin_unlock(&interrupt_lock);
3098dba0
AJ
1650}
1651
97ffbd8d 1652#ifndef CONFIG_USER_ONLY
3098dba0 1653/* mask must never be zero, except for A20 change call */
ec6959d0 1654static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1655{
1656 int old_mask;
be214e6c 1657
2e70f6ef 1658 old_mask = env->interrupt_request;
68a79315 1659 env->interrupt_request |= mask;
3098dba0 1660
8edac960
AL
1661 /*
1662 * If called from iothread context, wake the target cpu in
1663 * case its halted.
1664 */
b7680cb6 1665 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1666 qemu_cpu_kick(env);
1667 return;
1668 }
8edac960 1669
2e70f6ef 1670 if (use_icount) {
266910c4 1671 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1672 if (!can_do_io(env)
be214e6c 1673 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1674 cpu_abort(env, "Raised interrupt while not in I/O function");
1675 }
2e70f6ef 1676 } else {
3098dba0 1677 cpu_unlink_tb(env);
ea041c0e
FB
1678 }
1679}
1680
ec6959d0
JK
1681CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1682
97ffbd8d
JK
1683#else /* CONFIG_USER_ONLY */
1684
1685void cpu_interrupt(CPUState *env, int mask)
1686{
1687 env->interrupt_request |= mask;
1688 cpu_unlink_tb(env);
1689}
1690#endif /* CONFIG_USER_ONLY */
1691
b54ad049
FB
1692void cpu_reset_interrupt(CPUState *env, int mask)
1693{
1694 env->interrupt_request &= ~mask;
1695}
1696
3098dba0
AJ
1697void cpu_exit(CPUState *env)
1698{
1699 env->exit_request = 1;
1700 cpu_unlink_tb(env);
1701}
1702
c7cd6a37 1703const CPULogItem cpu_log_items[] = {
5fafdf24 1704 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1705 "show generated host assembly code for each compiled TB" },
1706 { CPU_LOG_TB_IN_ASM, "in_asm",
1707 "show target assembly code for each compiled TB" },
5fafdf24 1708 { CPU_LOG_TB_OP, "op",
57fec1fe 1709 "show micro ops for each compiled TB" },
f193c797 1710 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1711 "show micro ops "
1712#ifdef TARGET_I386
1713 "before eflags optimization and "
f193c797 1714#endif
e01a1157 1715 "after liveness analysis" },
f193c797
FB
1716 { CPU_LOG_INT, "int",
1717 "show interrupts/exceptions in short format" },
1718 { CPU_LOG_EXEC, "exec",
1719 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1720 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1721 "show CPU state before block translation" },
f193c797
FB
1722#ifdef TARGET_I386
1723 { CPU_LOG_PCALL, "pcall",
1724 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1725 { CPU_LOG_RESET, "cpu_reset",
1726 "show CPU state before CPU resets" },
f193c797 1727#endif
8e3a9fd2 1728#ifdef DEBUG_IOPORT
fd872598
FB
1729 { CPU_LOG_IOPORT, "ioport",
1730 "show all i/o ports accesses" },
8e3a9fd2 1731#endif
f193c797
FB
1732 { 0, NULL, NULL },
1733};
1734
1735static int cmp1(const char *s1, int n, const char *s2)
1736{
1737 if (strlen(s2) != n)
1738 return 0;
1739 return memcmp(s1, s2, n) == 0;
1740}
3b46e624 1741
f193c797
FB
1742/* takes a comma separated list of log masks. Return 0 if error. */
1743int cpu_str_to_log_mask(const char *str)
1744{
c7cd6a37 1745 const CPULogItem *item;
f193c797
FB
1746 int mask;
1747 const char *p, *p1;
1748
1749 p = str;
1750 mask = 0;
1751 for(;;) {
1752 p1 = strchr(p, ',');
1753 if (!p1)
1754 p1 = p + strlen(p);
9742bf26
YT
1755 if(cmp1(p,p1-p,"all")) {
1756 for(item = cpu_log_items; item->mask != 0; item++) {
1757 mask |= item->mask;
1758 }
1759 } else {
1760 for(item = cpu_log_items; item->mask != 0; item++) {
1761 if (cmp1(p, p1 - p, item->name))
1762 goto found;
1763 }
1764 return 0;
f193c797 1765 }
f193c797
FB
1766 found:
1767 mask |= item->mask;
1768 if (*p1 != ',')
1769 break;
1770 p = p1 + 1;
1771 }
1772 return mask;
1773}
ea041c0e 1774
7501267e
FB
1775void cpu_abort(CPUState *env, const char *fmt, ...)
1776{
1777 va_list ap;
493ae1f0 1778 va_list ap2;
7501267e
FB
1779
1780 va_start(ap, fmt);
493ae1f0 1781 va_copy(ap2, ap);
7501267e
FB
1782 fprintf(stderr, "qemu: fatal: ");
1783 vfprintf(stderr, fmt, ap);
1784 fprintf(stderr, "\n");
1785#ifdef TARGET_I386
7fe48483
FB
1786 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1787#else
1788 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1789#endif
93fcfe39
AL
1790 if (qemu_log_enabled()) {
1791 qemu_log("qemu: fatal: ");
1792 qemu_log_vprintf(fmt, ap2);
1793 qemu_log("\n");
f9373291 1794#ifdef TARGET_I386
93fcfe39 1795 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1796#else
93fcfe39 1797 log_cpu_state(env, 0);
f9373291 1798#endif
31b1a7b4 1799 qemu_log_flush();
93fcfe39 1800 qemu_log_close();
924edcae 1801 }
493ae1f0 1802 va_end(ap2);
f9373291 1803 va_end(ap);
fd052bf6
RV
1804#if defined(CONFIG_USER_ONLY)
1805 {
1806 struct sigaction act;
1807 sigfillset(&act.sa_mask);
1808 act.sa_handler = SIG_DFL;
1809 sigaction(SIGABRT, &act, NULL);
1810 }
1811#endif
7501267e
FB
1812 abort();
1813}
1814
c5be9f08
TS
1815CPUState *cpu_copy(CPUState *env)
1816{
01ba9816 1817 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1818 CPUState *next_cpu = new_env->next_cpu;
1819 int cpu_index = new_env->cpu_index;
5a38f081
AL
1820#if defined(TARGET_HAS_ICE)
1821 CPUBreakpoint *bp;
1822 CPUWatchpoint *wp;
1823#endif
1824
c5be9f08 1825 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1826
1827 /* Preserve chaining and index. */
c5be9f08
TS
1828 new_env->next_cpu = next_cpu;
1829 new_env->cpu_index = cpu_index;
5a38f081
AL
1830
1831 /* Clone all break/watchpoints.
1832 Note: Once we support ptrace with hw-debug register access, make sure
1833 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1834 QTAILQ_INIT(&env->breakpoints);
1835 QTAILQ_INIT(&env->watchpoints);
5a38f081 1836#if defined(TARGET_HAS_ICE)
72cf2d4f 1837 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1838 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1839 }
72cf2d4f 1840 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1841 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1842 wp->flags, NULL);
1843 }
1844#endif
1845
c5be9f08
TS
1846 return new_env;
1847}
1848
0124311e
FB
1849#if !defined(CONFIG_USER_ONLY)
1850
5c751e99
EI
1851static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1852{
1853 unsigned int i;
1854
1855 /* Discard jump cache entries for any tb which might potentially
1856 overlap the flushed page. */
1857 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1858 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1859 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1860
1861 i = tb_jmp_cache_hash_page(addr);
1862 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1863 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1864}
1865
08738984
IK
1866static CPUTLBEntry s_cputlb_empty_entry = {
1867 .addr_read = -1,
1868 .addr_write = -1,
1869 .addr_code = -1,
1870 .addend = -1,
1871};
1872
ee8b7021
FB
1873/* NOTE: if flush_global is true, also flush global entries (not
1874 implemented yet) */
1875void tlb_flush(CPUState *env, int flush_global)
33417e70 1876{
33417e70 1877 int i;
0124311e 1878
9fa3e853
FB
1879#if defined(DEBUG_TLB)
1880 printf("tlb_flush:\n");
1881#endif
0124311e
FB
1882 /* must reset current TB so that interrupts cannot modify the
1883 links while we are modifying them */
1884 env->current_tb = NULL;
1885
33417e70 1886 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1887 int mmu_idx;
1888 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1889 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1890 }
33417e70 1891 }
9fa3e853 1892
8a40a180 1893 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1894
d4c430a8
PB
1895 env->tlb_flush_addr = -1;
1896 env->tlb_flush_mask = 0;
e3db7226 1897 tlb_flush_count++;
33417e70
FB
1898}
1899
274da6b2 1900static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1901{
5fafdf24 1902 if (addr == (tlb_entry->addr_read &
84b7b8e7 1903 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1904 addr == (tlb_entry->addr_write &
84b7b8e7 1905 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1906 addr == (tlb_entry->addr_code &
84b7b8e7 1907 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1908 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1909 }
61382a50
FB
1910}
1911
2e12669a 1912void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1913{
8a40a180 1914 int i;
cfde4bd9 1915 int mmu_idx;
0124311e 1916
9fa3e853 1917#if defined(DEBUG_TLB)
108c49b8 1918 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1919#endif
d4c430a8
PB
1920 /* Check if we need to flush due to large pages. */
1921 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1922#if defined(DEBUG_TLB)
1923 printf("tlb_flush_page: forced full flush ("
1924 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1925 env->tlb_flush_addr, env->tlb_flush_mask);
1926#endif
1927 tlb_flush(env, 1);
1928 return;
1929 }
0124311e
FB
1930 /* must reset current TB so that interrupts cannot modify the
1931 links while we are modifying them */
1932 env->current_tb = NULL;
61382a50
FB
1933
1934 addr &= TARGET_PAGE_MASK;
1935 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1936 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1937 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1938
5c751e99 1939 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1940}
1941
9fa3e853
FB
1942/* update the TLBs so that writes to code in the virtual page 'addr'
1943 can be detected */
c227f099 1944static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1945{
5fafdf24 1946 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1947 ram_addr + TARGET_PAGE_SIZE,
1948 CODE_DIRTY_FLAG);
9fa3e853
FB
1949}
1950
9fa3e853 1951/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1952 tested for self modifying code */
c227f099 1953static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1954 target_ulong vaddr)
9fa3e853 1955{
f7c11b53 1956 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
1957}
1958
5fafdf24 1959static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1960 unsigned long start, unsigned long length)
1961{
1962 unsigned long addr;
84b7b8e7
FB
1963 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1964 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1965 if ((addr - start) < length) {
0f459d16 1966 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1967 }
1968 }
1969}
1970
5579c7f3 1971/* Note: start and end must be within the same ram block. */
c227f099 1972void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1973 int dirty_flags)
1ccde1cb
FB
1974{
1975 CPUState *env;
4f2ac237 1976 unsigned long length, start1;
f7c11b53 1977 int i;
1ccde1cb
FB
1978
1979 start &= TARGET_PAGE_MASK;
1980 end = TARGET_PAGE_ALIGN(end);
1981
1982 length = end - start;
1983 if (length == 0)
1984 return;
f7c11b53 1985 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 1986
1ccde1cb
FB
1987 /* we modify the TLB cache so that the dirty bit will be set again
1988 when accessing the range */
b2e0a138 1989 start1 = (unsigned long)qemu_safe_ram_ptr(start);
a57d23e4 1990 /* Check that we don't span multiple blocks - this breaks the
5579c7f3 1991 address comparisons below. */
b2e0a138 1992 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
1993 != (end - 1) - start) {
1994 abort();
1995 }
1996
6a00d601 1997 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1998 int mmu_idx;
1999 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2000 for(i = 0; i < CPU_TLB_SIZE; i++)
2001 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2002 start1, length);
2003 }
6a00d601 2004 }
1ccde1cb
FB
2005}
2006
74576198
AL
2007int cpu_physical_memory_set_dirty_tracking(int enable)
2008{
f6f3fbca 2009 int ret = 0;
74576198 2010 in_migration = enable;
dcd97e33
AK
2011 if (enable) {
2012 memory_global_dirty_log_start();
2013 } else {
2014 memory_global_dirty_log_stop();
2015 }
f6f3fbca 2016 return ret;
74576198
AL
2017}
2018
2019int cpu_physical_memory_get_dirty_tracking(void)
2020{
2021 return in_migration;
2022}
2023
3a7d929e
FB
2024static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2025{
c227f099 2026 ram_addr_t ram_addr;
5579c7f3 2027 void *p;
3a7d929e 2028
84b7b8e7 2029 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2030 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2031 + tlb_entry->addend);
e890261f 2032 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2033 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2034 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2035 }
2036 }
2037}
2038
2039/* update the TLB according to the current state of the dirty bits */
2040void cpu_tlb_update_dirty(CPUState *env)
2041{
2042 int i;
cfde4bd9
IY
2043 int mmu_idx;
2044 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2045 for(i = 0; i < CPU_TLB_SIZE; i++)
2046 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2047 }
3a7d929e
FB
2048}
2049
0f459d16 2050static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2051{
0f459d16
PB
2052 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2053 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2054}
2055
0f459d16
PB
2056/* update the TLB corresponding to virtual page vaddr
2057 so that it is no longer dirty */
2058static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2059{
1ccde1cb 2060 int i;
cfde4bd9 2061 int mmu_idx;
1ccde1cb 2062
0f459d16 2063 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2064 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2065 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2066 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2067}
2068
d4c430a8
PB
2069/* Our TLB does not support large pages, so remember the area covered by
2070 large pages and trigger a full TLB flush if these are invalidated. */
2071static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2072 target_ulong size)
2073{
2074 target_ulong mask = ~(size - 1);
2075
2076 if (env->tlb_flush_addr == (target_ulong)-1) {
2077 env->tlb_flush_addr = vaddr & mask;
2078 env->tlb_flush_mask = mask;
2079 return;
2080 }
2081 /* Extend the existing region to include the new page.
2082 This is a compromise between unnecessary flushes and the cost
2083 of maintaining a full variable size TLB. */
2084 mask &= env->tlb_flush_mask;
2085 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2086 mask <<= 1;
2087 }
2088 env->tlb_flush_addr &= mask;
2089 env->tlb_flush_mask = mask;
2090}
2091
2092/* Add a new TLB entry. At most one entry for a given virtual address
2093 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2094 supplied size is only used by tlb_flush_page. */
2095void tlb_set_page(CPUState *env, target_ulong vaddr,
2096 target_phys_addr_t paddr, int prot,
2097 int mmu_idx, target_ulong size)
9fa3e853 2098{
92e873b9 2099 PhysPageDesc *p;
4f2ac237 2100 unsigned long pd;
9fa3e853 2101 unsigned int index;
4f2ac237 2102 target_ulong address;
0f459d16 2103 target_ulong code_address;
355b1943 2104 unsigned long addend;
84b7b8e7 2105 CPUTLBEntry *te;
a1d1bb31 2106 CPUWatchpoint *wp;
c227f099 2107 target_phys_addr_t iotlb;
9fa3e853 2108
d4c430a8
PB
2109 assert(size >= TARGET_PAGE_SIZE);
2110 if (size != TARGET_PAGE_SIZE) {
2111 tlb_add_large_page(env, vaddr, size);
2112 }
92e873b9 2113 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2114 if (!p) {
2115 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2116 } else {
2117 pd = p->phys_offset;
9fa3e853
FB
2118 }
2119#if defined(DEBUG_TLB)
7fd3f494
SW
2120 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2121 " prot=%x idx=%d pd=0x%08lx\n",
2122 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2123#endif
2124
0f459d16
PB
2125 address = vaddr;
2126 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2127 /* IO memory case (romd handled later) */
2128 address |= TLB_MMIO;
2129 }
5579c7f3 2130 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2131 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2132 /* Normal RAM. */
2133 iotlb = pd & TARGET_PAGE_MASK;
2134 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2135 iotlb |= IO_MEM_NOTDIRTY;
2136 else
2137 iotlb |= IO_MEM_ROM;
2138 } else {
ccbb4d44 2139 /* IO handlers are currently passed a physical address.
0f459d16
PB
2140 It would be nice to pass an offset from the base address
2141 of that region. This would avoid having to special case RAM,
2142 and avoid full address decoding in every device.
2143 We can't use the high bits of pd for this because
2144 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2145 iotlb = (pd & ~TARGET_PAGE_MASK);
2146 if (p) {
8da3ff18
PB
2147 iotlb += p->region_offset;
2148 } else {
2149 iotlb += paddr;
2150 }
0f459d16
PB
2151 }
2152
2153 code_address = address;
2154 /* Make accesses to pages with watchpoints go via the
2155 watchpoint trap routines. */
72cf2d4f 2156 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2157 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2158 /* Avoid trapping reads of pages with a write breakpoint. */
2159 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2160 iotlb = io_mem_watch + paddr;
2161 address |= TLB_MMIO;
2162 break;
2163 }
6658ffb8 2164 }
0f459d16 2165 }
d79acba4 2166
0f459d16
PB
2167 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2168 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2169 te = &env->tlb_table[mmu_idx][index];
2170 te->addend = addend - vaddr;
2171 if (prot & PAGE_READ) {
2172 te->addr_read = address;
2173 } else {
2174 te->addr_read = -1;
2175 }
5c751e99 2176
0f459d16
PB
2177 if (prot & PAGE_EXEC) {
2178 te->addr_code = code_address;
2179 } else {
2180 te->addr_code = -1;
2181 }
2182 if (prot & PAGE_WRITE) {
2183 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2184 (pd & IO_MEM_ROMD)) {
2185 /* Write access calls the I/O callback. */
2186 te->addr_write = address | TLB_MMIO;
2187 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2188 !cpu_physical_memory_is_dirty(pd)) {
2189 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2190 } else {
0f459d16 2191 te->addr_write = address;
9fa3e853 2192 }
0f459d16
PB
2193 } else {
2194 te->addr_write = -1;
9fa3e853 2195 }
9fa3e853
FB
2196}
2197
0124311e
FB
2198#else
2199
ee8b7021 2200void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2201{
2202}
2203
2e12669a 2204void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2205{
2206}
2207
edf8e2af
MW
2208/*
2209 * Walks guest process memory "regions" one by one
2210 * and calls callback function 'fn' for each region.
2211 */
5cd2c5b6
RH
2212
2213struct walk_memory_regions_data
2214{
2215 walk_memory_regions_fn fn;
2216 void *priv;
2217 unsigned long start;
2218 int prot;
2219};
2220
2221static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2222 abi_ulong end, int new_prot)
5cd2c5b6
RH
2223{
2224 if (data->start != -1ul) {
2225 int rc = data->fn(data->priv, data->start, end, data->prot);
2226 if (rc != 0) {
2227 return rc;
2228 }
2229 }
2230
2231 data->start = (new_prot ? end : -1ul);
2232 data->prot = new_prot;
2233
2234 return 0;
2235}
2236
2237static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2238 abi_ulong base, int level, void **lp)
5cd2c5b6 2239{
b480d9b7 2240 abi_ulong pa;
5cd2c5b6
RH
2241 int i, rc;
2242
2243 if (*lp == NULL) {
2244 return walk_memory_regions_end(data, base, 0);
2245 }
2246
2247 if (level == 0) {
2248 PageDesc *pd = *lp;
7296abac 2249 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2250 int prot = pd[i].flags;
2251
2252 pa = base | (i << TARGET_PAGE_BITS);
2253 if (prot != data->prot) {
2254 rc = walk_memory_regions_end(data, pa, prot);
2255 if (rc != 0) {
2256 return rc;
9fa3e853 2257 }
9fa3e853 2258 }
5cd2c5b6
RH
2259 }
2260 } else {
2261 void **pp = *lp;
7296abac 2262 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2263 pa = base | ((abi_ulong)i <<
2264 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2265 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2266 if (rc != 0) {
2267 return rc;
2268 }
2269 }
2270 }
2271
2272 return 0;
2273}
2274
2275int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2276{
2277 struct walk_memory_regions_data data;
2278 unsigned long i;
2279
2280 data.fn = fn;
2281 data.priv = priv;
2282 data.start = -1ul;
2283 data.prot = 0;
2284
2285 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2286 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2287 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2288 if (rc != 0) {
2289 return rc;
9fa3e853 2290 }
33417e70 2291 }
5cd2c5b6
RH
2292
2293 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2294}
2295
b480d9b7
PB
2296static int dump_region(void *priv, abi_ulong start,
2297 abi_ulong end, unsigned long prot)
edf8e2af
MW
2298{
2299 FILE *f = (FILE *)priv;
2300
b480d9b7
PB
2301 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2302 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2303 start, end, end - start,
2304 ((prot & PAGE_READ) ? 'r' : '-'),
2305 ((prot & PAGE_WRITE) ? 'w' : '-'),
2306 ((prot & PAGE_EXEC) ? 'x' : '-'));
2307
2308 return (0);
2309}
2310
2311/* dump memory mappings */
2312void page_dump(FILE *f)
2313{
2314 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2315 "start", "end", "size", "prot");
2316 walk_memory_regions(f, dump_region);
33417e70
FB
2317}
2318
53a5960a 2319int page_get_flags(target_ulong address)
33417e70 2320{
9fa3e853
FB
2321 PageDesc *p;
2322
2323 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2324 if (!p)
9fa3e853
FB
2325 return 0;
2326 return p->flags;
2327}
2328
376a7909
RH
2329/* Modify the flags of a page and invalidate the code if necessary.
2330 The flag PAGE_WRITE_ORG is positioned automatically depending
2331 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2332void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2333{
376a7909
RH
2334 target_ulong addr, len;
2335
2336 /* This function should never be called with addresses outside the
2337 guest address space. If this assert fires, it probably indicates
2338 a missing call to h2g_valid. */
b480d9b7
PB
2339#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2340 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2341#endif
2342 assert(start < end);
9fa3e853
FB
2343
2344 start = start & TARGET_PAGE_MASK;
2345 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2346
2347 if (flags & PAGE_WRITE) {
9fa3e853 2348 flags |= PAGE_WRITE_ORG;
376a7909
RH
2349 }
2350
2351 for (addr = start, len = end - start;
2352 len != 0;
2353 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2354 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2355
2356 /* If the write protection bit is set, then we invalidate
2357 the code inside. */
5fafdf24 2358 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2359 (flags & PAGE_WRITE) &&
2360 p->first_tb) {
d720b93d 2361 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2362 }
2363 p->flags = flags;
2364 }
33417e70
FB
2365}
2366
3d97b40b
TS
2367int page_check_range(target_ulong start, target_ulong len, int flags)
2368{
2369 PageDesc *p;
2370 target_ulong end;
2371 target_ulong addr;
2372
376a7909
RH
2373 /* This function should never be called with addresses outside the
2374 guest address space. If this assert fires, it probably indicates
2375 a missing call to h2g_valid. */
338e9e6c
BS
2376#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2377 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2378#endif
2379
3e0650a9
RH
2380 if (len == 0) {
2381 return 0;
2382 }
376a7909
RH
2383 if (start + len - 1 < start) {
2384 /* We've wrapped around. */
55f280c9 2385 return -1;
376a7909 2386 }
55f280c9 2387
3d97b40b
TS
2388 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2389 start = start & TARGET_PAGE_MASK;
2390
376a7909
RH
2391 for (addr = start, len = end - start;
2392 len != 0;
2393 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2394 p = page_find(addr >> TARGET_PAGE_BITS);
2395 if( !p )
2396 return -1;
2397 if( !(p->flags & PAGE_VALID) )
2398 return -1;
2399
dae3270c 2400 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2401 return -1;
dae3270c
FB
2402 if (flags & PAGE_WRITE) {
2403 if (!(p->flags & PAGE_WRITE_ORG))
2404 return -1;
2405 /* unprotect the page if it was put read-only because it
2406 contains translated code */
2407 if (!(p->flags & PAGE_WRITE)) {
2408 if (!page_unprotect(addr, 0, NULL))
2409 return -1;
2410 }
2411 return 0;
2412 }
3d97b40b
TS
2413 }
2414 return 0;
2415}
2416
9fa3e853 2417/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2418 page. Return TRUE if the fault was successfully handled. */
53a5960a 2419int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2420{
45d679d6
AJ
2421 unsigned int prot;
2422 PageDesc *p;
53a5960a 2423 target_ulong host_start, host_end, addr;
9fa3e853 2424
c8a706fe
PB
2425 /* Technically this isn't safe inside a signal handler. However we
2426 know this only ever happens in a synchronous SEGV handler, so in
2427 practice it seems to be ok. */
2428 mmap_lock();
2429
45d679d6
AJ
2430 p = page_find(address >> TARGET_PAGE_BITS);
2431 if (!p) {
c8a706fe 2432 mmap_unlock();
9fa3e853 2433 return 0;
c8a706fe 2434 }
45d679d6 2435
9fa3e853
FB
2436 /* if the page was really writable, then we change its
2437 protection back to writable */
45d679d6
AJ
2438 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2439 host_start = address & qemu_host_page_mask;
2440 host_end = host_start + qemu_host_page_size;
2441
2442 prot = 0;
2443 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2444 p = page_find(addr >> TARGET_PAGE_BITS);
2445 p->flags |= PAGE_WRITE;
2446 prot |= p->flags;
2447
9fa3e853
FB
2448 /* and since the content will be modified, we must invalidate
2449 the corresponding translated code. */
45d679d6 2450 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2451#ifdef DEBUG_TB_CHECK
45d679d6 2452 tb_invalidate_check(addr);
9fa3e853 2453#endif
9fa3e853 2454 }
45d679d6
AJ
2455 mprotect((void *)g2h(host_start), qemu_host_page_size,
2456 prot & PAGE_BITS);
2457
2458 mmap_unlock();
2459 return 1;
9fa3e853 2460 }
c8a706fe 2461 mmap_unlock();
9fa3e853
FB
2462 return 0;
2463}
2464
6a00d601
FB
2465static inline void tlb_set_dirty(CPUState *env,
2466 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2467{
2468}
9fa3e853
FB
2469#endif /* defined(CONFIG_USER_ONLY) */
2470
e2eef170 2471#if !defined(CONFIG_USER_ONLY)
8da3ff18 2472
c04b2b78
PB
2473#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2474typedef struct subpage_t {
2475 target_phys_addr_t base;
f6405247
RH
2476 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2477 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2478} subpage_t;
2479
c227f099
AL
2480static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2481 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2482static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2483 ram_addr_t orig_memory,
2484 ram_addr_t region_offset);
db7b5426
BS
2485#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2486 need_subpage) \
2487 do { \
2488 if (addr > start_addr) \
2489 start_addr2 = 0; \
2490 else { \
2491 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2492 if (start_addr2 > 0) \
2493 need_subpage = 1; \
2494 } \
2495 \
49e9fba2 2496 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2497 end_addr2 = TARGET_PAGE_SIZE - 1; \
2498 else { \
2499 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2500 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2501 need_subpage = 1; \
2502 } \
2503 } while (0)
2504
8f2498f9
MT
2505/* register physical memory.
2506 For RAM, 'size' must be a multiple of the target page size.
2507 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2508 io memory page. The address used when calling the IO function is
2509 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2510 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2511 before calculating this offset. This should not be a problem unless
2512 the low bits of start_addr and region_offset differ. */
0fd542fb 2513void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
c227f099
AL
2514 ram_addr_t size,
2515 ram_addr_t phys_offset,
0fd542fb
MT
2516 ram_addr_t region_offset,
2517 bool log_dirty)
33417e70 2518{
c227f099 2519 target_phys_addr_t addr, end_addr;
92e873b9 2520 PhysPageDesc *p;
9d42037b 2521 CPUState *env;
c227f099 2522 ram_addr_t orig_size = size;
f6405247 2523 subpage_t *subpage;
33417e70 2524
3b8e6a2d 2525 assert(size);
f6f3fbca 2526
67c4d23c
PB
2527 if (phys_offset == IO_MEM_UNASSIGNED) {
2528 region_offset = start_addr;
2529 }
8da3ff18 2530 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2531 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2532 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2533
2534 addr = start_addr;
2535 do {
db7b5426
BS
2536 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2537 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2538 ram_addr_t orig_memory = p->phys_offset;
2539 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2540 int need_subpage = 0;
2541
2542 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2543 need_subpage);
f6405247 2544 if (need_subpage) {
db7b5426
BS
2545 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2546 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2547 &p->phys_offset, orig_memory,
2548 p->region_offset);
db7b5426
BS
2549 } else {
2550 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2551 >> IO_MEM_SHIFT];
2552 }
8da3ff18
PB
2553 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2554 region_offset);
2555 p->region_offset = 0;
db7b5426
BS
2556 } else {
2557 p->phys_offset = phys_offset;
2558 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2559 (phys_offset & IO_MEM_ROMD))
2560 phys_offset += TARGET_PAGE_SIZE;
2561 }
2562 } else {
2563 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2564 p->phys_offset = phys_offset;
8da3ff18 2565 p->region_offset = region_offset;
db7b5426 2566 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2567 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2568 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2569 } else {
c227f099 2570 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2571 int need_subpage = 0;
2572
2573 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2574 end_addr2, need_subpage);
2575
f6405247 2576 if (need_subpage) {
db7b5426 2577 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2578 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2579 addr & TARGET_PAGE_MASK);
db7b5426 2580 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2581 phys_offset, region_offset);
2582 p->region_offset = 0;
db7b5426
BS
2583 }
2584 }
2585 }
8da3ff18 2586 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2587 addr += TARGET_PAGE_SIZE;
2588 } while (addr != end_addr);
3b46e624 2589
9d42037b
FB
2590 /* since each CPU stores ram addresses in its TLB cache, we must
2591 reset the modified entries */
2592 /* XXX: slow ! */
2593 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2594 tlb_flush(env, 1);
2595 }
33417e70
FB
2596}
2597
c227f099 2598void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2599{
2600 if (kvm_enabled())
2601 kvm_coalesce_mmio_region(addr, size);
2602}
2603
c227f099 2604void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2605{
2606 if (kvm_enabled())
2607 kvm_uncoalesce_mmio_region(addr, size);
2608}
2609
62a2744c
SY
2610void qemu_flush_coalesced_mmio_buffer(void)
2611{
2612 if (kvm_enabled())
2613 kvm_flush_coalesced_mmio_buffer();
2614}
2615
c902760f
MT
2616#if defined(__linux__) && !defined(TARGET_S390X)
2617
2618#include <sys/vfs.h>
2619
2620#define HUGETLBFS_MAGIC 0x958458f6
2621
2622static long gethugepagesize(const char *path)
2623{
2624 struct statfs fs;
2625 int ret;
2626
2627 do {
9742bf26 2628 ret = statfs(path, &fs);
c902760f
MT
2629 } while (ret != 0 && errno == EINTR);
2630
2631 if (ret != 0) {
9742bf26
YT
2632 perror(path);
2633 return 0;
c902760f
MT
2634 }
2635
2636 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2637 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2638
2639 return fs.f_bsize;
2640}
2641
04b16653
AW
2642static void *file_ram_alloc(RAMBlock *block,
2643 ram_addr_t memory,
2644 const char *path)
c902760f
MT
2645{
2646 char *filename;
2647 void *area;
2648 int fd;
2649#ifdef MAP_POPULATE
2650 int flags;
2651#endif
2652 unsigned long hpagesize;
2653
2654 hpagesize = gethugepagesize(path);
2655 if (!hpagesize) {
9742bf26 2656 return NULL;
c902760f
MT
2657 }
2658
2659 if (memory < hpagesize) {
2660 return NULL;
2661 }
2662
2663 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2664 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2665 return NULL;
2666 }
2667
2668 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2669 return NULL;
c902760f
MT
2670 }
2671
2672 fd = mkstemp(filename);
2673 if (fd < 0) {
9742bf26
YT
2674 perror("unable to create backing store for hugepages");
2675 free(filename);
2676 return NULL;
c902760f
MT
2677 }
2678 unlink(filename);
2679 free(filename);
2680
2681 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2682
2683 /*
2684 * ftruncate is not supported by hugetlbfs in older
2685 * hosts, so don't bother bailing out on errors.
2686 * If anything goes wrong with it under other filesystems,
2687 * mmap will fail.
2688 */
2689 if (ftruncate(fd, memory))
9742bf26 2690 perror("ftruncate");
c902760f
MT
2691
2692#ifdef MAP_POPULATE
2693 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2694 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2695 * to sidestep this quirk.
2696 */
2697 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2698 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2699#else
2700 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2701#endif
2702 if (area == MAP_FAILED) {
9742bf26
YT
2703 perror("file_ram_alloc: can't mmap RAM pages");
2704 close(fd);
2705 return (NULL);
c902760f 2706 }
04b16653 2707 block->fd = fd;
c902760f
MT
2708 return area;
2709}
2710#endif
2711
d17b5288 2712static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2713{
2714 RAMBlock *block, *next_block;
3e837b2c 2715 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2716
2717 if (QLIST_EMPTY(&ram_list.blocks))
2718 return 0;
2719
2720 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2721 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2722
2723 end = block->offset + block->length;
2724
2725 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2726 if (next_block->offset >= end) {
2727 next = MIN(next, next_block->offset);
2728 }
2729 }
2730 if (next - end >= size && next - end < mingap) {
3e837b2c 2731 offset = end;
04b16653
AW
2732 mingap = next - end;
2733 }
2734 }
3e837b2c
AW
2735
2736 if (offset == RAM_ADDR_MAX) {
2737 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2738 (uint64_t)size);
2739 abort();
2740 }
2741
04b16653
AW
2742 return offset;
2743}
2744
2745static ram_addr_t last_ram_offset(void)
d17b5288
AW
2746{
2747 RAMBlock *block;
2748 ram_addr_t last = 0;
2749
2750 QLIST_FOREACH(block, &ram_list.blocks, next)
2751 last = MAX(last, block->offset + block->length);
2752
2753 return last;
2754}
2755
84b89d78 2756ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
fce537d4
AK
2757 ram_addr_t size, void *host,
2758 MemoryRegion *mr)
84b89d78
CM
2759{
2760 RAMBlock *new_block, *block;
2761
2762 size = TARGET_PAGE_ALIGN(size);
7267c094 2763 new_block = g_malloc0(sizeof(*new_block));
84b89d78
CM
2764
2765 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2766 char *id = dev->parent_bus->info->get_dev_path(dev);
2767 if (id) {
2768 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2769 g_free(id);
84b89d78
CM
2770 }
2771 }
2772 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2773
2774 QLIST_FOREACH(block, &ram_list.blocks, next) {
2775 if (!strcmp(block->idstr, new_block->idstr)) {
2776 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2777 new_block->idstr);
2778 abort();
2779 }
2780 }
2781
432d268c 2782 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2783 if (host) {
2784 new_block->host = host;
cd19cfa2 2785 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2786 } else {
2787 if (mem_path) {
c902760f 2788#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2789 new_block->host = file_ram_alloc(new_block, size, mem_path);
2790 if (!new_block->host) {
2791 new_block->host = qemu_vmalloc(size);
e78815a5 2792 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2793 }
c902760f 2794#else
6977dfe6
YT
2795 fprintf(stderr, "-mem-path option unsupported\n");
2796 exit(1);
c902760f 2797#endif
6977dfe6 2798 } else {
6b02494d 2799#if defined(TARGET_S390X) && defined(CONFIG_KVM)
ff83678a
CB
2800 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2801 an system defined value, which is at least 256GB. Larger systems
2802 have larger values. We put the guest between the end of data
2803 segment (system break) and this value. We use 32GB as a base to
2804 have enough room for the system break to grow. */
2805 new_block->host = mmap((void*)0x800000000, size,
6977dfe6 2806 PROT_EXEC|PROT_READ|PROT_WRITE,
ff83678a 2807 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
fb8b2735
AG
2808 if (new_block->host == MAP_FAILED) {
2809 fprintf(stderr, "Allocating RAM failed\n");
2810 abort();
2811 }
6b02494d 2812#else
868bb33f 2813 if (xen_enabled()) {
fce537d4 2814 xen_ram_alloc(new_block->offset, size, mr);
432d268c
JN
2815 } else {
2816 new_block->host = qemu_vmalloc(size);
2817 }
6b02494d 2818#endif
e78815a5 2819 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2820 }
c902760f 2821 }
94a6b54f
PB
2822 new_block->length = size;
2823
f471a17e 2824 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2825
7267c094 2826 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2827 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2828 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2829 0xff, size >> TARGET_PAGE_BITS);
2830
6f0437e8
JK
2831 if (kvm_enabled())
2832 kvm_setup_guest_memory(new_block->host, size);
2833
94a6b54f
PB
2834 return new_block->offset;
2835}
e9a1ab19 2836
fce537d4
AK
2837ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size,
2838 MemoryRegion *mr)
6977dfe6 2839{
fce537d4 2840 return qemu_ram_alloc_from_ptr(dev, name, size, NULL, mr);
6977dfe6
YT
2841}
2842
1f2e98b6
AW
2843void qemu_ram_free_from_ptr(ram_addr_t addr)
2844{
2845 RAMBlock *block;
2846
2847 QLIST_FOREACH(block, &ram_list.blocks, next) {
2848 if (addr == block->offset) {
2849 QLIST_REMOVE(block, next);
7267c094 2850 g_free(block);
1f2e98b6
AW
2851 return;
2852 }
2853 }
2854}
2855
c227f099 2856void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2857{
04b16653
AW
2858 RAMBlock *block;
2859
2860 QLIST_FOREACH(block, &ram_list.blocks, next) {
2861 if (addr == block->offset) {
2862 QLIST_REMOVE(block, next);
cd19cfa2
HY
2863 if (block->flags & RAM_PREALLOC_MASK) {
2864 ;
2865 } else if (mem_path) {
04b16653
AW
2866#if defined (__linux__) && !defined(TARGET_S390X)
2867 if (block->fd) {
2868 munmap(block->host, block->length);
2869 close(block->fd);
2870 } else {
2871 qemu_vfree(block->host);
2872 }
fd28aa13
JK
2873#else
2874 abort();
04b16653
AW
2875#endif
2876 } else {
2877#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2878 munmap(block->host, block->length);
2879#else
868bb33f 2880 if (xen_enabled()) {
e41d7c69 2881 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
2882 } else {
2883 qemu_vfree(block->host);
2884 }
04b16653
AW
2885#endif
2886 }
7267c094 2887 g_free(block);
04b16653
AW
2888 return;
2889 }
2890 }
2891
e9a1ab19
FB
2892}
2893
cd19cfa2
HY
2894#ifndef _WIN32
2895void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2896{
2897 RAMBlock *block;
2898 ram_addr_t offset;
2899 int flags;
2900 void *area, *vaddr;
2901
2902 QLIST_FOREACH(block, &ram_list.blocks, next) {
2903 offset = addr - block->offset;
2904 if (offset < block->length) {
2905 vaddr = block->host + offset;
2906 if (block->flags & RAM_PREALLOC_MASK) {
2907 ;
2908 } else {
2909 flags = MAP_FIXED;
2910 munmap(vaddr, length);
2911 if (mem_path) {
2912#if defined(__linux__) && !defined(TARGET_S390X)
2913 if (block->fd) {
2914#ifdef MAP_POPULATE
2915 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2916 MAP_PRIVATE;
2917#else
2918 flags |= MAP_PRIVATE;
2919#endif
2920 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2921 flags, block->fd, offset);
2922 } else {
2923 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2924 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2925 flags, -1, 0);
2926 }
fd28aa13
JK
2927#else
2928 abort();
cd19cfa2
HY
2929#endif
2930 } else {
2931#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2932 flags |= MAP_SHARED | MAP_ANONYMOUS;
2933 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2934 flags, -1, 0);
2935#else
2936 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2937 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2938 flags, -1, 0);
2939#endif
2940 }
2941 if (area != vaddr) {
f15fbc4b
AP
2942 fprintf(stderr, "Could not remap addr: "
2943 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2944 length, addr);
2945 exit(1);
2946 }
2947 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
2948 }
2949 return;
2950 }
2951 }
2952}
2953#endif /* !_WIN32 */
2954
dc828ca1 2955/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2956 With the exception of the softmmu code in this file, this should
2957 only be used for local memory (e.g. video ram) that the device owns,
2958 and knows it isn't going to access beyond the end of the block.
2959
2960 It should not be used for general purpose DMA.
2961 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2962 */
c227f099 2963void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2964{
94a6b54f
PB
2965 RAMBlock *block;
2966
f471a17e
AW
2967 QLIST_FOREACH(block, &ram_list.blocks, next) {
2968 if (addr - block->offset < block->length) {
7d82af38
VP
2969 /* Move this entry to to start of the list. */
2970 if (block != QLIST_FIRST(&ram_list.blocks)) {
2971 QLIST_REMOVE(block, next);
2972 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2973 }
868bb33f 2974 if (xen_enabled()) {
432d268c
JN
2975 /* We need to check if the requested address is in the RAM
2976 * because we don't want to map the entire memory in QEMU.
712c2b41 2977 * In that case just map until the end of the page.
432d268c
JN
2978 */
2979 if (block->offset == 0) {
e41d7c69 2980 return xen_map_cache(addr, 0, 0);
432d268c 2981 } else if (block->host == NULL) {
e41d7c69
JK
2982 block->host =
2983 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
2984 }
2985 }
f471a17e
AW
2986 return block->host + (addr - block->offset);
2987 }
94a6b54f 2988 }
f471a17e
AW
2989
2990 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2991 abort();
2992
2993 return NULL;
dc828ca1
PB
2994}
2995
b2e0a138
MT
2996/* Return a host pointer to ram allocated with qemu_ram_alloc.
2997 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2998 */
2999void *qemu_safe_ram_ptr(ram_addr_t addr)
3000{
3001 RAMBlock *block;
3002
3003 QLIST_FOREACH(block, &ram_list.blocks, next) {
3004 if (addr - block->offset < block->length) {
868bb33f 3005 if (xen_enabled()) {
432d268c
JN
3006 /* We need to check if the requested address is in the RAM
3007 * because we don't want to map the entire memory in QEMU.
712c2b41 3008 * In that case just map until the end of the page.
432d268c
JN
3009 */
3010 if (block->offset == 0) {
e41d7c69 3011 return xen_map_cache(addr, 0, 0);
432d268c 3012 } else if (block->host == NULL) {
e41d7c69
JK
3013 block->host =
3014 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
3015 }
3016 }
b2e0a138
MT
3017 return block->host + (addr - block->offset);
3018 }
3019 }
3020
3021 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3022 abort();
3023
3024 return NULL;
3025}
3026
38bee5dc
SS
3027/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3028 * but takes a size argument */
8ab934f9 3029void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 3030{
8ab934f9
SS
3031 if (*size == 0) {
3032 return NULL;
3033 }
868bb33f 3034 if (xen_enabled()) {
e41d7c69 3035 return xen_map_cache(addr, *size, 1);
868bb33f 3036 } else {
38bee5dc
SS
3037 RAMBlock *block;
3038
3039 QLIST_FOREACH(block, &ram_list.blocks, next) {
3040 if (addr - block->offset < block->length) {
3041 if (addr - block->offset + *size > block->length)
3042 *size = block->length - addr + block->offset;
3043 return block->host + (addr - block->offset);
3044 }
3045 }
3046
3047 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3048 abort();
38bee5dc
SS
3049 }
3050}
3051
050a0ddf
AP
3052void qemu_put_ram_ptr(void *addr)
3053{
3054 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
3055}
3056
e890261f 3057int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3058{
94a6b54f
PB
3059 RAMBlock *block;
3060 uint8_t *host = ptr;
3061
868bb33f 3062 if (xen_enabled()) {
e41d7c69 3063 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
3064 return 0;
3065 }
3066
f471a17e 3067 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
3068 /* This case append when the block is not mapped. */
3069 if (block->host == NULL) {
3070 continue;
3071 }
f471a17e 3072 if (host - block->host < block->length) {
e890261f
MT
3073 *ram_addr = block->offset + (host - block->host);
3074 return 0;
f471a17e 3075 }
94a6b54f 3076 }
432d268c 3077
e890261f
MT
3078 return -1;
3079}
f471a17e 3080
e890261f
MT
3081/* Some of the softmmu routines need to translate from a host pointer
3082 (typically a TLB entry) back to a ram offset. */
3083ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3084{
3085 ram_addr_t ram_addr;
f471a17e 3086
e890261f
MT
3087 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3088 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3089 abort();
3090 }
3091 return ram_addr;
5579c7f3
PB
3092}
3093
c227f099 3094static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 3095{
67d3b957 3096#ifdef DEBUG_UNASSIGNED
ab3d1727 3097 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 3098#endif
5b450407 3099#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3100 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
e18231a3
BS
3101#endif
3102 return 0;
3103}
3104
c227f099 3105static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3106{
3107#ifdef DEBUG_UNASSIGNED
3108 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3109#endif
5b450407 3110#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3111 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
e18231a3
BS
3112#endif
3113 return 0;
3114}
3115
c227f099 3116static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3117{
3118#ifdef DEBUG_UNASSIGNED
3119 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3120#endif
5b450407 3121#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3122 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
67d3b957 3123#endif
33417e70
FB
3124 return 0;
3125}
3126
c227f099 3127static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3128{
67d3b957 3129#ifdef DEBUG_UNASSIGNED
ab3d1727 3130 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3131#endif
5b450407 3132#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3133 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
e18231a3
BS
3134#endif
3135}
3136
c227f099 3137static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3138{
3139#ifdef DEBUG_UNASSIGNED
3140 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3141#endif
5b450407 3142#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3143 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
e18231a3
BS
3144#endif
3145}
3146
c227f099 3147static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3148{
3149#ifdef DEBUG_UNASSIGNED
3150 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3151#endif
5b450407 3152#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
b14ef7c9 3153 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
b4f0a316 3154#endif
33417e70
FB
3155}
3156
d60efc6b 3157static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3158 unassigned_mem_readb,
e18231a3
BS
3159 unassigned_mem_readw,
3160 unassigned_mem_readl,
33417e70
FB
3161};
3162
d60efc6b 3163static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3164 unassigned_mem_writeb,
e18231a3
BS
3165 unassigned_mem_writew,
3166 unassigned_mem_writel,
33417e70
FB
3167};
3168
c227f099 3169static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3170 uint32_t val)
9fa3e853 3171{
3a7d929e 3172 int dirty_flags;
f7c11b53 3173 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3174 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3175#if !defined(CONFIG_USER_ONLY)
3a7d929e 3176 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3177 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3178#endif
3a7d929e 3179 }
5579c7f3 3180 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3181 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3182 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3183 /* we remove the notdirty callback only if the code has been
3184 flushed */
3185 if (dirty_flags == 0xff)
2e70f6ef 3186 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3187}
3188
c227f099 3189static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3190 uint32_t val)
9fa3e853 3191{
3a7d929e 3192 int dirty_flags;
f7c11b53 3193 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3194 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3195#if !defined(CONFIG_USER_ONLY)
3a7d929e 3196 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3197 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3198#endif
3a7d929e 3199 }
5579c7f3 3200 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3201 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3202 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3203 /* we remove the notdirty callback only if the code has been
3204 flushed */
3205 if (dirty_flags == 0xff)
2e70f6ef 3206 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3207}
3208
c227f099 3209static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3210 uint32_t val)
9fa3e853 3211{
3a7d929e 3212 int dirty_flags;
f7c11b53 3213 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3214 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3215#if !defined(CONFIG_USER_ONLY)
3a7d929e 3216 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3217 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3218#endif
3a7d929e 3219 }
5579c7f3 3220 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3221 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3222 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3223 /* we remove the notdirty callback only if the code has been
3224 flushed */
3225 if (dirty_flags == 0xff)
2e70f6ef 3226 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3227}
3228
d60efc6b 3229static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3230 NULL, /* never used */
3231 NULL, /* never used */
3232 NULL, /* never used */
3233};
3234
d60efc6b 3235static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3236 notdirty_mem_writeb,
3237 notdirty_mem_writew,
3238 notdirty_mem_writel,
3239};
3240
0f459d16 3241/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3242static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3243{
3244 CPUState *env = cpu_single_env;
06d55cc1
AL
3245 target_ulong pc, cs_base;
3246 TranslationBlock *tb;
0f459d16 3247 target_ulong vaddr;
a1d1bb31 3248 CPUWatchpoint *wp;
06d55cc1 3249 int cpu_flags;
0f459d16 3250
06d55cc1
AL
3251 if (env->watchpoint_hit) {
3252 /* We re-entered the check after replacing the TB. Now raise
3253 * the debug interrupt so that is will trigger after the
3254 * current instruction. */
3255 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3256 return;
3257 }
2e70f6ef 3258 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3259 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3260 if ((vaddr == (wp->vaddr & len_mask) ||
3261 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3262 wp->flags |= BP_WATCHPOINT_HIT;
3263 if (!env->watchpoint_hit) {
3264 env->watchpoint_hit = wp;
3265 tb = tb_find_pc(env->mem_io_pc);
3266 if (!tb) {
3267 cpu_abort(env, "check_watchpoint: could not find TB for "
3268 "pc=%p", (void *)env->mem_io_pc);
3269 }
618ba8e6 3270 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3271 tb_phys_invalidate(tb, -1);
3272 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3273 env->exception_index = EXCP_DEBUG;
3274 } else {
3275 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3276 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3277 }
3278 cpu_resume_from_signal(env, NULL);
06d55cc1 3279 }
6e140f28
AL
3280 } else {
3281 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3282 }
3283 }
3284}
3285
6658ffb8
PB
3286/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3287 so these check for a hit then pass through to the normal out-of-line
3288 phys routines. */
c227f099 3289static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3290{
b4051334 3291 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3292 return ldub_phys(addr);
3293}
3294
c227f099 3295static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3296{
b4051334 3297 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3298 return lduw_phys(addr);
3299}
3300
c227f099 3301static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3302{
b4051334 3303 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3304 return ldl_phys(addr);
3305}
3306
c227f099 3307static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3308 uint32_t val)
3309{
b4051334 3310 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3311 stb_phys(addr, val);
3312}
3313
c227f099 3314static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3315 uint32_t val)
3316{
b4051334 3317 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3318 stw_phys(addr, val);
3319}
3320
c227f099 3321static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3322 uint32_t val)
3323{
b4051334 3324 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3325 stl_phys(addr, val);
3326}
3327
d60efc6b 3328static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3329 watch_mem_readb,
3330 watch_mem_readw,
3331 watch_mem_readl,
3332};
3333
d60efc6b 3334static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3335 watch_mem_writeb,
3336 watch_mem_writew,
3337 watch_mem_writel,
3338};
6658ffb8 3339
f6405247
RH
3340static inline uint32_t subpage_readlen (subpage_t *mmio,
3341 target_phys_addr_t addr,
3342 unsigned int len)
db7b5426 3343{
f6405247 3344 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3345#if defined(DEBUG_SUBPAGE)
3346 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3347 mmio, len, addr, idx);
3348#endif
db7b5426 3349
f6405247
RH
3350 addr += mmio->region_offset[idx];
3351 idx = mmio->sub_io_index[idx];
3352 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3353}
3354
c227f099 3355static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3356 uint32_t value, unsigned int len)
db7b5426 3357{
f6405247 3358 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3359#if defined(DEBUG_SUBPAGE)
f6405247
RH
3360 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3361 __func__, mmio, len, addr, idx, value);
db7b5426 3362#endif
f6405247
RH
3363
3364 addr += mmio->region_offset[idx];
3365 idx = mmio->sub_io_index[idx];
3366 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3367}
3368
c227f099 3369static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3370{
db7b5426
BS
3371 return subpage_readlen(opaque, addr, 0);
3372}
3373
c227f099 3374static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3375 uint32_t value)
3376{
db7b5426
BS
3377 subpage_writelen(opaque, addr, value, 0);
3378}
3379
c227f099 3380static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3381{
db7b5426
BS
3382 return subpage_readlen(opaque, addr, 1);
3383}
3384
c227f099 3385static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3386 uint32_t value)
3387{
db7b5426
BS
3388 subpage_writelen(opaque, addr, value, 1);
3389}
3390
c227f099 3391static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3392{
db7b5426
BS
3393 return subpage_readlen(opaque, addr, 2);
3394}
3395
f6405247
RH
3396static void subpage_writel (void *opaque, target_phys_addr_t addr,
3397 uint32_t value)
db7b5426 3398{
db7b5426
BS
3399 subpage_writelen(opaque, addr, value, 2);
3400}
3401
d60efc6b 3402static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3403 &subpage_readb,
3404 &subpage_readw,
3405 &subpage_readl,
3406};
3407
d60efc6b 3408static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3409 &subpage_writeb,
3410 &subpage_writew,
3411 &subpage_writel,
3412};
3413
56384e8b
AF
3414static uint32_t subpage_ram_readb(void *opaque, target_phys_addr_t addr)
3415{
3416 ram_addr_t raddr = addr;
3417 void *ptr = qemu_get_ram_ptr(raddr);
3418 return ldub_p(ptr);
3419}
3420
3421static void subpage_ram_writeb(void *opaque, target_phys_addr_t addr,
3422 uint32_t value)
3423{
3424 ram_addr_t raddr = addr;
3425 void *ptr = qemu_get_ram_ptr(raddr);
3426 stb_p(ptr, value);
3427}
3428
3429static uint32_t subpage_ram_readw(void *opaque, target_phys_addr_t addr)
3430{
3431 ram_addr_t raddr = addr;
3432 void *ptr = qemu_get_ram_ptr(raddr);
3433 return lduw_p(ptr);
3434}
3435
3436static void subpage_ram_writew(void *opaque, target_phys_addr_t addr,
3437 uint32_t value)
3438{
3439 ram_addr_t raddr = addr;
3440 void *ptr = qemu_get_ram_ptr(raddr);
3441 stw_p(ptr, value);
3442}
3443
3444static uint32_t subpage_ram_readl(void *opaque, target_phys_addr_t addr)
3445{
3446 ram_addr_t raddr = addr;
3447 void *ptr = qemu_get_ram_ptr(raddr);
3448 return ldl_p(ptr);
3449}
3450
3451static void subpage_ram_writel(void *opaque, target_phys_addr_t addr,
3452 uint32_t value)
3453{
3454 ram_addr_t raddr = addr;
3455 void *ptr = qemu_get_ram_ptr(raddr);
3456 stl_p(ptr, value);
3457}
3458
3459static CPUReadMemoryFunc * const subpage_ram_read[] = {
3460 &subpage_ram_readb,
3461 &subpage_ram_readw,
3462 &subpage_ram_readl,
3463};
3464
3465static CPUWriteMemoryFunc * const subpage_ram_write[] = {
3466 &subpage_ram_writeb,
3467 &subpage_ram_writew,
3468 &subpage_ram_writel,
3469};
3470
c227f099
AL
3471static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3472 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3473{
3474 int idx, eidx;
3475
3476 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3477 return -1;
3478 idx = SUBPAGE_IDX(start);
3479 eidx = SUBPAGE_IDX(end);
3480#if defined(DEBUG_SUBPAGE)
0bf9e31a 3481 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3482 mmio, start, end, idx, eidx, memory);
3483#endif
56384e8b
AF
3484 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
3485 memory = IO_MEM_SUBPAGE_RAM;
3486 }
f6405247 3487 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3488 for (; idx <= eidx; idx++) {
f6405247
RH
3489 mmio->sub_io_index[idx] = memory;
3490 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3491 }
3492
3493 return 0;
3494}
3495
f6405247
RH
3496static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3497 ram_addr_t orig_memory,
3498 ram_addr_t region_offset)
db7b5426 3499{
c227f099 3500 subpage_t *mmio;
db7b5426
BS
3501 int subpage_memory;
3502
7267c094 3503 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3504
3505 mmio->base = base;
2507c12a
AG
3506 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3507 DEVICE_NATIVE_ENDIAN);
db7b5426 3508#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3509 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3510 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3511#endif
1eec614b 3512 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3513 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3514
3515 return mmio;
3516}
3517
88715657
AL
3518static int get_free_io_mem_idx(void)
3519{
3520 int i;
3521
3522 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3523 if (!io_mem_used[i]) {
3524 io_mem_used[i] = 1;
3525 return i;
3526 }
c6703b47 3527 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3528 return -1;
3529}
3530
dd310534
AG
3531/*
3532 * Usually, devices operate in little endian mode. There are devices out
3533 * there that operate in big endian too. Each device gets byte swapped
3534 * mmio if plugged onto a CPU that does the other endianness.
3535 *
3536 * CPU Device swap?
3537 *
3538 * little little no
3539 * little big yes
3540 * big little yes
3541 * big big no
3542 */
3543
3544typedef struct SwapEndianContainer {
3545 CPUReadMemoryFunc *read[3];
3546 CPUWriteMemoryFunc *write[3];
3547 void *opaque;
3548} SwapEndianContainer;
3549
3550static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3551{
3552 uint32_t val;
3553 SwapEndianContainer *c = opaque;
3554 val = c->read[0](c->opaque, addr);
3555 return val;
3556}
3557
3558static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3559{
3560 uint32_t val;
3561 SwapEndianContainer *c = opaque;
3562 val = bswap16(c->read[1](c->opaque, addr));
3563 return val;
3564}
3565
3566static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3567{
3568 uint32_t val;
3569 SwapEndianContainer *c = opaque;
3570 val = bswap32(c->read[2](c->opaque, addr));
3571 return val;
3572}
3573
3574static CPUReadMemoryFunc * const swapendian_readfn[3]={
3575 swapendian_mem_readb,
3576 swapendian_mem_readw,
3577 swapendian_mem_readl
3578};
3579
3580static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3581 uint32_t val)
3582{
3583 SwapEndianContainer *c = opaque;
3584 c->write[0](c->opaque, addr, val);
3585}
3586
3587static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3588 uint32_t val)
3589{
3590 SwapEndianContainer *c = opaque;
3591 c->write[1](c->opaque, addr, bswap16(val));
3592}
3593
3594static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3595 uint32_t val)
3596{
3597 SwapEndianContainer *c = opaque;
3598 c->write[2](c->opaque, addr, bswap32(val));
3599}
3600
3601static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3602 swapendian_mem_writeb,
3603 swapendian_mem_writew,
3604 swapendian_mem_writel
3605};
3606
3607static void swapendian_init(int io_index)
3608{
7267c094 3609 SwapEndianContainer *c = g_malloc(sizeof(SwapEndianContainer));
dd310534
AG
3610 int i;
3611
3612 /* Swap mmio for big endian targets */
3613 c->opaque = io_mem_opaque[io_index];
3614 for (i = 0; i < 3; i++) {
3615 c->read[i] = io_mem_read[io_index][i];
3616 c->write[i] = io_mem_write[io_index][i];
3617
3618 io_mem_read[io_index][i] = swapendian_readfn[i];
3619 io_mem_write[io_index][i] = swapendian_writefn[i];
3620 }
3621 io_mem_opaque[io_index] = c;
3622}
3623
3624static void swapendian_del(int io_index)
3625{
3626 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
7267c094 3627 g_free(io_mem_opaque[io_index]);
dd310534
AG
3628 }
3629}
3630
33417e70
FB
3631/* mem_read and mem_write are arrays of functions containing the
3632 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3633 2). Functions can be omitted with a NULL function pointer.
3ee89922 3634 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3635 modified. If it is zero, a new io zone is allocated. The return
3636 value can be used with cpu_register_physical_memory(). (-1) is
3637 returned if error. */
1eed09cb 3638static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3639 CPUReadMemoryFunc * const *mem_read,
3640 CPUWriteMemoryFunc * const *mem_write,
dd310534 3641 void *opaque, enum device_endian endian)
33417e70 3642{
3cab721d
RH
3643 int i;
3644
33417e70 3645 if (io_index <= 0) {
88715657
AL
3646 io_index = get_free_io_mem_idx();
3647 if (io_index == -1)
3648 return io_index;
33417e70 3649 } else {
1eed09cb 3650 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3651 if (io_index >= IO_MEM_NB_ENTRIES)
3652 return -1;
3653 }
b5ff1b31 3654
3cab721d
RH
3655 for (i = 0; i < 3; ++i) {
3656 io_mem_read[io_index][i]
3657 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3658 }
3659 for (i = 0; i < 3; ++i) {
3660 io_mem_write[io_index][i]
3661 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3662 }
a4193c8a 3663 io_mem_opaque[io_index] = opaque;
f6405247 3664
dd310534
AG
3665 switch (endian) {
3666 case DEVICE_BIG_ENDIAN:
3667#ifndef TARGET_WORDS_BIGENDIAN
3668 swapendian_init(io_index);
3669#endif
3670 break;
3671 case DEVICE_LITTLE_ENDIAN:
3672#ifdef TARGET_WORDS_BIGENDIAN
3673 swapendian_init(io_index);
3674#endif
3675 break;
3676 case DEVICE_NATIVE_ENDIAN:
3677 default:
3678 break;
3679 }
3680
f6405247 3681 return (io_index << IO_MEM_SHIFT);
33417e70 3682}
61382a50 3683
d60efc6b
BS
3684int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3685 CPUWriteMemoryFunc * const *mem_write,
dd310534 3686 void *opaque, enum device_endian endian)
1eed09cb 3687{
2507c12a 3688 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
1eed09cb
AK
3689}
3690
88715657
AL
3691void cpu_unregister_io_memory(int io_table_address)
3692{
3693 int i;
3694 int io_index = io_table_address >> IO_MEM_SHIFT;
3695
dd310534
AG
3696 swapendian_del(io_index);
3697
88715657
AL
3698 for (i=0;i < 3; i++) {
3699 io_mem_read[io_index][i] = unassigned_mem_read[i];
3700 io_mem_write[io_index][i] = unassigned_mem_write[i];
3701 }
3702 io_mem_opaque[io_index] = NULL;
3703 io_mem_used[io_index] = 0;
3704}
3705
e9179ce1
AK
3706static void io_mem_init(void)
3707{
3708 int i;
3709
2507c12a
AG
3710 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3711 unassigned_mem_write, NULL,
3712 DEVICE_NATIVE_ENDIAN);
3713 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3714 unassigned_mem_write, NULL,
3715 DEVICE_NATIVE_ENDIAN);
3716 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3717 notdirty_mem_write, NULL,
3718 DEVICE_NATIVE_ENDIAN);
56384e8b
AF
3719 cpu_register_io_memory_fixed(IO_MEM_SUBPAGE_RAM, subpage_ram_read,
3720 subpage_ram_write, NULL,
3721 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3722 for (i=0; i<5; i++)
3723 io_mem_used[i] = 1;
3724
3725 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2507c12a
AG
3726 watch_mem_write, NULL,
3727 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3728}
3729
62152b8a
AK
3730static void memory_map_init(void)
3731{
7267c094 3732 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3733 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3734 set_system_memory_map(system_memory);
309cb471 3735
7267c094 3736 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3737 memory_region_init(system_io, "io", 65536);
3738 set_system_io_map(system_io);
62152b8a
AK
3739}
3740
3741MemoryRegion *get_system_memory(void)
3742{
3743 return system_memory;
3744}
3745
309cb471
AK
3746MemoryRegion *get_system_io(void)
3747{
3748 return system_io;
3749}
3750
e2eef170
PB
3751#endif /* !defined(CONFIG_USER_ONLY) */
3752
13eb76e0
FB
3753/* physical memory access (slow version, mainly for debug) */
3754#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3755int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3756 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3757{
3758 int l, flags;
3759 target_ulong page;
53a5960a 3760 void * p;
13eb76e0
FB
3761
3762 while (len > 0) {
3763 page = addr & TARGET_PAGE_MASK;
3764 l = (page + TARGET_PAGE_SIZE) - addr;
3765 if (l > len)
3766 l = len;
3767 flags = page_get_flags(page);
3768 if (!(flags & PAGE_VALID))
a68fe89c 3769 return -1;
13eb76e0
FB
3770 if (is_write) {
3771 if (!(flags & PAGE_WRITE))
a68fe89c 3772 return -1;
579a97f7 3773 /* XXX: this code should not depend on lock_user */
72fb7daa 3774 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3775 return -1;
72fb7daa
AJ
3776 memcpy(p, buf, l);
3777 unlock_user(p, addr, l);
13eb76e0
FB
3778 } else {
3779 if (!(flags & PAGE_READ))
a68fe89c 3780 return -1;
579a97f7 3781 /* XXX: this code should not depend on lock_user */
72fb7daa 3782 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3783 return -1;
72fb7daa 3784 memcpy(buf, p, l);
5b257578 3785 unlock_user(p, addr, 0);
13eb76e0
FB
3786 }
3787 len -= l;
3788 buf += l;
3789 addr += l;
3790 }
a68fe89c 3791 return 0;
13eb76e0 3792}
8df1cd07 3793
13eb76e0 3794#else
c227f099 3795void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3796 int len, int is_write)
3797{
3798 int l, io_index;
3799 uint8_t *ptr;
3800 uint32_t val;
c227f099 3801 target_phys_addr_t page;
8ca5692d 3802 ram_addr_t pd;
92e873b9 3803 PhysPageDesc *p;
3b46e624 3804
13eb76e0
FB
3805 while (len > 0) {
3806 page = addr & TARGET_PAGE_MASK;
3807 l = (page + TARGET_PAGE_SIZE) - addr;
3808 if (l > len)
3809 l = len;
92e873b9 3810 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3811 if (!p) {
3812 pd = IO_MEM_UNASSIGNED;
3813 } else {
3814 pd = p->phys_offset;
3815 }
3b46e624 3816
13eb76e0 3817 if (is_write) {
3a7d929e 3818 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3819 target_phys_addr_t addr1 = addr;
13eb76e0 3820 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3821 if (p)
6c2934db 3822 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3823 /* XXX: could force cpu_single_env to NULL to avoid
3824 potential bugs */
6c2934db 3825 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3826 /* 32 bit write access */
c27004ec 3827 val = ldl_p(buf);
6c2934db 3828 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3829 l = 4;
6c2934db 3830 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3831 /* 16 bit write access */
c27004ec 3832 val = lduw_p(buf);
6c2934db 3833 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3834 l = 2;
3835 } else {
1c213d19 3836 /* 8 bit write access */
c27004ec 3837 val = ldub_p(buf);
6c2934db 3838 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3839 l = 1;
3840 }
3841 } else {
8ca5692d 3842 ram_addr_t addr1;
b448f2f3 3843 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3844 /* RAM case */
5579c7f3 3845 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3846 memcpy(ptr, buf, l);
3a7d929e
FB
3847 if (!cpu_physical_memory_is_dirty(addr1)) {
3848 /* invalidate code */
3849 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3850 /* set dirty bit */
f7c11b53
YT
3851 cpu_physical_memory_set_dirty_flags(
3852 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3853 }
050a0ddf 3854 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3855 }
3856 } else {
5fafdf24 3857 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3858 !(pd & IO_MEM_ROMD)) {
c227f099 3859 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3860 /* I/O case */
3861 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3862 if (p)
6c2934db
AJ
3863 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3864 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3865 /* 32 bit read access */
6c2934db 3866 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3867 stl_p(buf, val);
13eb76e0 3868 l = 4;
6c2934db 3869 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3870 /* 16 bit read access */
6c2934db 3871 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3872 stw_p(buf, val);
13eb76e0
FB
3873 l = 2;
3874 } else {
1c213d19 3875 /* 8 bit read access */
6c2934db 3876 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3877 stb_p(buf, val);
13eb76e0
FB
3878 l = 1;
3879 }
3880 } else {
3881 /* RAM case */
050a0ddf
AP
3882 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3883 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3884 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3885 }
3886 }
3887 len -= l;
3888 buf += l;
3889 addr += l;
3890 }
3891}
8df1cd07 3892
d0ecd2aa 3893/* used for ROM loading : can write in RAM and ROM */
c227f099 3894void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3895 const uint8_t *buf, int len)
3896{
3897 int l;
3898 uint8_t *ptr;
c227f099 3899 target_phys_addr_t page;
d0ecd2aa
FB
3900 unsigned long pd;
3901 PhysPageDesc *p;
3b46e624 3902
d0ecd2aa
FB
3903 while (len > 0) {
3904 page = addr & TARGET_PAGE_MASK;
3905 l = (page + TARGET_PAGE_SIZE) - addr;
3906 if (l > len)
3907 l = len;
3908 p = phys_page_find(page >> TARGET_PAGE_BITS);
3909 if (!p) {
3910 pd = IO_MEM_UNASSIGNED;
3911 } else {
3912 pd = p->phys_offset;
3913 }
3b46e624 3914
d0ecd2aa 3915 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3916 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3917 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3918 /* do nothing */
3919 } else {
3920 unsigned long addr1;
3921 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3922 /* ROM/RAM case */
5579c7f3 3923 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 3924 memcpy(ptr, buf, l);
050a0ddf 3925 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
3926 }
3927 len -= l;
3928 buf += l;
3929 addr += l;
3930 }
3931}
3932
6d16c2f8
AL
3933typedef struct {
3934 void *buffer;
c227f099
AL
3935 target_phys_addr_t addr;
3936 target_phys_addr_t len;
6d16c2f8
AL
3937} BounceBuffer;
3938
3939static BounceBuffer bounce;
3940
ba223c29
AL
3941typedef struct MapClient {
3942 void *opaque;
3943 void (*callback)(void *opaque);
72cf2d4f 3944 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3945} MapClient;
3946
72cf2d4f
BS
3947static QLIST_HEAD(map_client_list, MapClient) map_client_list
3948 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3949
3950void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3951{
7267c094 3952 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
3953
3954 client->opaque = opaque;
3955 client->callback = callback;
72cf2d4f 3956 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3957 return client;
3958}
3959
3960void cpu_unregister_map_client(void *_client)
3961{
3962 MapClient *client = (MapClient *)_client;
3963
72cf2d4f 3964 QLIST_REMOVE(client, link);
7267c094 3965 g_free(client);
ba223c29
AL
3966}
3967
3968static void cpu_notify_map_clients(void)
3969{
3970 MapClient *client;
3971
72cf2d4f
BS
3972 while (!QLIST_EMPTY(&map_client_list)) {
3973 client = QLIST_FIRST(&map_client_list);
ba223c29 3974 client->callback(client->opaque);
34d5e948 3975 cpu_unregister_map_client(client);
ba223c29
AL
3976 }
3977}
3978
6d16c2f8
AL
3979/* Map a physical memory region into a host virtual address.
3980 * May map a subset of the requested range, given by and returned in *plen.
3981 * May return NULL if resources needed to perform the mapping are exhausted.
3982 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3983 * Use cpu_register_map_client() to know when retrying the map operation is
3984 * likely to succeed.
6d16c2f8 3985 */
c227f099
AL
3986void *cpu_physical_memory_map(target_phys_addr_t addr,
3987 target_phys_addr_t *plen,
6d16c2f8
AL
3988 int is_write)
3989{
c227f099 3990 target_phys_addr_t len = *plen;
38bee5dc 3991 target_phys_addr_t todo = 0;
6d16c2f8 3992 int l;
c227f099 3993 target_phys_addr_t page;
6d16c2f8
AL
3994 unsigned long pd;
3995 PhysPageDesc *p;
f15fbc4b 3996 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
3997 ram_addr_t rlen;
3998 void *ret;
6d16c2f8
AL
3999
4000 while (len > 0) {
4001 page = addr & TARGET_PAGE_MASK;
4002 l = (page + TARGET_PAGE_SIZE) - addr;
4003 if (l > len)
4004 l = len;
4005 p = phys_page_find(page >> TARGET_PAGE_BITS);
4006 if (!p) {
4007 pd = IO_MEM_UNASSIGNED;
4008 } else {
4009 pd = p->phys_offset;
4010 }
4011
4012 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
38bee5dc 4013 if (todo || bounce.buffer) {
6d16c2f8
AL
4014 break;
4015 }
4016 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4017 bounce.addr = addr;
4018 bounce.len = l;
4019 if (!is_write) {
54f7b4a3 4020 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 4021 }
38bee5dc
SS
4022
4023 *plen = l;
4024 return bounce.buffer;
6d16c2f8 4025 }
8ab934f9
SS
4026 if (!todo) {
4027 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4028 }
6d16c2f8
AL
4029
4030 len -= l;
4031 addr += l;
38bee5dc 4032 todo += l;
6d16c2f8 4033 }
8ab934f9
SS
4034 rlen = todo;
4035 ret = qemu_ram_ptr_length(raddr, &rlen);
4036 *plen = rlen;
4037 return ret;
6d16c2f8
AL
4038}
4039
4040/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4041 * Will also mark the memory as dirty if is_write == 1. access_len gives
4042 * the amount of memory that was actually read or written by the caller.
4043 */
c227f099
AL
4044void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4045 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
4046{
4047 if (buffer != bounce.buffer) {
4048 if (is_write) {
e890261f 4049 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
4050 while (access_len) {
4051 unsigned l;
4052 l = TARGET_PAGE_SIZE;
4053 if (l > access_len)
4054 l = access_len;
4055 if (!cpu_physical_memory_is_dirty(addr1)) {
4056 /* invalidate code */
4057 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4058 /* set dirty bit */
f7c11b53
YT
4059 cpu_physical_memory_set_dirty_flags(
4060 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
4061 }
4062 addr1 += l;
4063 access_len -= l;
4064 }
4065 }
868bb33f 4066 if (xen_enabled()) {
e41d7c69 4067 xen_invalidate_map_cache_entry(buffer);
050a0ddf 4068 }
6d16c2f8
AL
4069 return;
4070 }
4071 if (is_write) {
4072 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4073 }
f8a83245 4074 qemu_vfree(bounce.buffer);
6d16c2f8 4075 bounce.buffer = NULL;
ba223c29 4076 cpu_notify_map_clients();
6d16c2f8 4077}
d0ecd2aa 4078
8df1cd07 4079/* warning: addr must be aligned */
1e78bcc1
AG
4080static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4081 enum device_endian endian)
8df1cd07
FB
4082{
4083 int io_index;
4084 uint8_t *ptr;
4085 uint32_t val;
4086 unsigned long pd;
4087 PhysPageDesc *p;
4088
4089 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4090 if (!p) {
4091 pd = IO_MEM_UNASSIGNED;
4092 } else {
4093 pd = p->phys_offset;
4094 }
3b46e624 4095
5fafdf24 4096 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4097 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
4098 /* I/O case */
4099 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4100 if (p)
4101 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07 4102 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4103#if defined(TARGET_WORDS_BIGENDIAN)
4104 if (endian == DEVICE_LITTLE_ENDIAN) {
4105 val = bswap32(val);
4106 }
4107#else
4108 if (endian == DEVICE_BIG_ENDIAN) {
4109 val = bswap32(val);
4110 }
4111#endif
8df1cd07
FB
4112 } else {
4113 /* RAM case */
5579c7f3 4114 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07 4115 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4116 switch (endian) {
4117 case DEVICE_LITTLE_ENDIAN:
4118 val = ldl_le_p(ptr);
4119 break;
4120 case DEVICE_BIG_ENDIAN:
4121 val = ldl_be_p(ptr);
4122 break;
4123 default:
4124 val = ldl_p(ptr);
4125 break;
4126 }
8df1cd07
FB
4127 }
4128 return val;
4129}
4130
1e78bcc1
AG
4131uint32_t ldl_phys(target_phys_addr_t addr)
4132{
4133 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4134}
4135
4136uint32_t ldl_le_phys(target_phys_addr_t addr)
4137{
4138 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4139}
4140
4141uint32_t ldl_be_phys(target_phys_addr_t addr)
4142{
4143 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4144}
4145
84b7b8e7 4146/* warning: addr must be aligned */
1e78bcc1
AG
4147static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4148 enum device_endian endian)
84b7b8e7
FB
4149{
4150 int io_index;
4151 uint8_t *ptr;
4152 uint64_t val;
4153 unsigned long pd;
4154 PhysPageDesc *p;
4155
4156 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4157 if (!p) {
4158 pd = IO_MEM_UNASSIGNED;
4159 } else {
4160 pd = p->phys_offset;
4161 }
3b46e624 4162
2a4188a3
FB
4163 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4164 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
4165 /* I/O case */
4166 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4167 if (p)
4168 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4169
4170 /* XXX This is broken when device endian != cpu endian.
4171 Fix and add "endian" variable check */
84b7b8e7
FB
4172#ifdef TARGET_WORDS_BIGENDIAN
4173 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4174 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4175#else
4176 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4177 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4178#endif
4179 } else {
4180 /* RAM case */
5579c7f3 4181 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7 4182 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4183 switch (endian) {
4184 case DEVICE_LITTLE_ENDIAN:
4185 val = ldq_le_p(ptr);
4186 break;
4187 case DEVICE_BIG_ENDIAN:
4188 val = ldq_be_p(ptr);
4189 break;
4190 default:
4191 val = ldq_p(ptr);
4192 break;
4193 }
84b7b8e7
FB
4194 }
4195 return val;
4196}
4197
1e78bcc1
AG
4198uint64_t ldq_phys(target_phys_addr_t addr)
4199{
4200 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4201}
4202
4203uint64_t ldq_le_phys(target_phys_addr_t addr)
4204{
4205 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4206}
4207
4208uint64_t ldq_be_phys(target_phys_addr_t addr)
4209{
4210 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4211}
4212
aab33094 4213/* XXX: optimize */
c227f099 4214uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4215{
4216 uint8_t val;
4217 cpu_physical_memory_read(addr, &val, 1);
4218 return val;
4219}
4220
733f0b02 4221/* warning: addr must be aligned */
1e78bcc1
AG
4222static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4223 enum device_endian endian)
aab33094 4224{
733f0b02
MT
4225 int io_index;
4226 uint8_t *ptr;
4227 uint64_t val;
4228 unsigned long pd;
4229 PhysPageDesc *p;
4230
4231 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4232 if (!p) {
4233 pd = IO_MEM_UNASSIGNED;
4234 } else {
4235 pd = p->phys_offset;
4236 }
4237
4238 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4239 !(pd & IO_MEM_ROMD)) {
4240 /* I/O case */
4241 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4242 if (p)
4243 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4244 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
1e78bcc1
AG
4245#if defined(TARGET_WORDS_BIGENDIAN)
4246 if (endian == DEVICE_LITTLE_ENDIAN) {
4247 val = bswap16(val);
4248 }
4249#else
4250 if (endian == DEVICE_BIG_ENDIAN) {
4251 val = bswap16(val);
4252 }
4253#endif
733f0b02
MT
4254 } else {
4255 /* RAM case */
4256 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4257 (addr & ~TARGET_PAGE_MASK);
1e78bcc1
AG
4258 switch (endian) {
4259 case DEVICE_LITTLE_ENDIAN:
4260 val = lduw_le_p(ptr);
4261 break;
4262 case DEVICE_BIG_ENDIAN:
4263 val = lduw_be_p(ptr);
4264 break;
4265 default:
4266 val = lduw_p(ptr);
4267 break;
4268 }
733f0b02
MT
4269 }
4270 return val;
aab33094
FB
4271}
4272
1e78bcc1
AG
4273uint32_t lduw_phys(target_phys_addr_t addr)
4274{
4275 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4276}
4277
4278uint32_t lduw_le_phys(target_phys_addr_t addr)
4279{
4280 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4281}
4282
4283uint32_t lduw_be_phys(target_phys_addr_t addr)
4284{
4285 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4286}
4287
8df1cd07
FB
4288/* warning: addr must be aligned. The ram page is not masked as dirty
4289 and the code inside is not invalidated. It is useful if the dirty
4290 bits are used to track modified PTEs */
c227f099 4291void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4292{
4293 int io_index;
4294 uint8_t *ptr;
4295 unsigned long pd;
4296 PhysPageDesc *p;
4297
4298 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4299 if (!p) {
4300 pd = IO_MEM_UNASSIGNED;
4301 } else {
4302 pd = p->phys_offset;
4303 }
3b46e624 4304
3a7d929e 4305 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4306 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4307 if (p)
4308 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4309 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4310 } else {
74576198 4311 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4312 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4313 stl_p(ptr, val);
74576198
AL
4314
4315 if (unlikely(in_migration)) {
4316 if (!cpu_physical_memory_is_dirty(addr1)) {
4317 /* invalidate code */
4318 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4319 /* set dirty bit */
f7c11b53
YT
4320 cpu_physical_memory_set_dirty_flags(
4321 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4322 }
4323 }
8df1cd07
FB
4324 }
4325}
4326
c227f099 4327void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4328{
4329 int io_index;
4330 uint8_t *ptr;
4331 unsigned long pd;
4332 PhysPageDesc *p;
4333
4334 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4335 if (!p) {
4336 pd = IO_MEM_UNASSIGNED;
4337 } else {
4338 pd = p->phys_offset;
4339 }
3b46e624 4340
bc98a7ef
JM
4341 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4342 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4343 if (p)
4344 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
4345#ifdef TARGET_WORDS_BIGENDIAN
4346 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4347 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4348#else
4349 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4350 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4351#endif
4352 } else {
5579c7f3 4353 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4354 (addr & ~TARGET_PAGE_MASK);
4355 stq_p(ptr, val);
4356 }
4357}
4358
8df1cd07 4359/* warning: addr must be aligned */
1e78bcc1
AG
4360static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4361 enum device_endian endian)
8df1cd07
FB
4362{
4363 int io_index;
4364 uint8_t *ptr;
4365 unsigned long pd;
4366 PhysPageDesc *p;
4367
4368 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4369 if (!p) {
4370 pd = IO_MEM_UNASSIGNED;
4371 } else {
4372 pd = p->phys_offset;
4373 }
3b46e624 4374
3a7d929e 4375 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4376 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4377 if (p)
4378 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4379#if defined(TARGET_WORDS_BIGENDIAN)
4380 if (endian == DEVICE_LITTLE_ENDIAN) {
4381 val = bswap32(val);
4382 }
4383#else
4384 if (endian == DEVICE_BIG_ENDIAN) {
4385 val = bswap32(val);
4386 }
4387#endif
8df1cd07
FB
4388 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4389 } else {
4390 unsigned long addr1;
4391 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4392 /* RAM case */
5579c7f3 4393 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4394 switch (endian) {
4395 case DEVICE_LITTLE_ENDIAN:
4396 stl_le_p(ptr, val);
4397 break;
4398 case DEVICE_BIG_ENDIAN:
4399 stl_be_p(ptr, val);
4400 break;
4401 default:
4402 stl_p(ptr, val);
4403 break;
4404 }
3a7d929e
FB
4405 if (!cpu_physical_memory_is_dirty(addr1)) {
4406 /* invalidate code */
4407 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4408 /* set dirty bit */
f7c11b53
YT
4409 cpu_physical_memory_set_dirty_flags(addr1,
4410 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4411 }
8df1cd07
FB
4412 }
4413}
4414
1e78bcc1
AG
4415void stl_phys(target_phys_addr_t addr, uint32_t val)
4416{
4417 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4418}
4419
4420void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4421{
4422 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4423}
4424
4425void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4426{
4427 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4428}
4429
aab33094 4430/* XXX: optimize */
c227f099 4431void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4432{
4433 uint8_t v = val;
4434 cpu_physical_memory_write(addr, &v, 1);
4435}
4436
733f0b02 4437/* warning: addr must be aligned */
1e78bcc1
AG
4438static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4439 enum device_endian endian)
aab33094 4440{
733f0b02
MT
4441 int io_index;
4442 uint8_t *ptr;
4443 unsigned long pd;
4444 PhysPageDesc *p;
4445
4446 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4447 if (!p) {
4448 pd = IO_MEM_UNASSIGNED;
4449 } else {
4450 pd = p->phys_offset;
4451 }
4452
4453 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4454 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4455 if (p)
4456 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
1e78bcc1
AG
4457#if defined(TARGET_WORDS_BIGENDIAN)
4458 if (endian == DEVICE_LITTLE_ENDIAN) {
4459 val = bswap16(val);
4460 }
4461#else
4462 if (endian == DEVICE_BIG_ENDIAN) {
4463 val = bswap16(val);
4464 }
4465#endif
733f0b02
MT
4466 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4467 } else {
4468 unsigned long addr1;
4469 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4470 /* RAM case */
4471 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4472 switch (endian) {
4473 case DEVICE_LITTLE_ENDIAN:
4474 stw_le_p(ptr, val);
4475 break;
4476 case DEVICE_BIG_ENDIAN:
4477 stw_be_p(ptr, val);
4478 break;
4479 default:
4480 stw_p(ptr, val);
4481 break;
4482 }
733f0b02
MT
4483 if (!cpu_physical_memory_is_dirty(addr1)) {
4484 /* invalidate code */
4485 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4486 /* set dirty bit */
4487 cpu_physical_memory_set_dirty_flags(addr1,
4488 (0xff & ~CODE_DIRTY_FLAG));
4489 }
4490 }
aab33094
FB
4491}
4492
1e78bcc1
AG
4493void stw_phys(target_phys_addr_t addr, uint32_t val)
4494{
4495 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4496}
4497
4498void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4499{
4500 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4501}
4502
4503void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4504{
4505 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4506}
4507
aab33094 4508/* XXX: optimize */
c227f099 4509void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4510{
4511 val = tswap64(val);
71d2b725 4512 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4513}
4514
1e78bcc1
AG
4515void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4516{
4517 val = cpu_to_le64(val);
4518 cpu_physical_memory_write(addr, &val, 8);
4519}
4520
4521void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4522{
4523 val = cpu_to_be64(val);
4524 cpu_physical_memory_write(addr, &val, 8);
4525}
4526
5e2972fd 4527/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4528int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4529 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4530{
4531 int l;
c227f099 4532 target_phys_addr_t phys_addr;
9b3c35e0 4533 target_ulong page;
13eb76e0
FB
4534
4535 while (len > 0) {
4536 page = addr & TARGET_PAGE_MASK;
4537 phys_addr = cpu_get_phys_page_debug(env, page);
4538 /* if no physical page mapped, return an error */
4539 if (phys_addr == -1)
4540 return -1;
4541 l = (page + TARGET_PAGE_SIZE) - addr;
4542 if (l > len)
4543 l = len;
5e2972fd 4544 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4545 if (is_write)
4546 cpu_physical_memory_write_rom(phys_addr, buf, l);
4547 else
5e2972fd 4548 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4549 len -= l;
4550 buf += l;
4551 addr += l;
4552 }
4553 return 0;
4554}
a68fe89c 4555#endif
13eb76e0 4556
2e70f6ef
PB
4557/* in deterministic execution mode, instructions doing device I/Os
4558 must be at the end of the TB */
4559void cpu_io_recompile(CPUState *env, void *retaddr)
4560{
4561 TranslationBlock *tb;
4562 uint32_t n, cflags;
4563 target_ulong pc, cs_base;
4564 uint64_t flags;
4565
4566 tb = tb_find_pc((unsigned long)retaddr);
4567 if (!tb) {
4568 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4569 retaddr);
4570 }
4571 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4572 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4573 /* Calculate how many instructions had been executed before the fault
bf20dc07 4574 occurred. */
2e70f6ef
PB
4575 n = n - env->icount_decr.u16.low;
4576 /* Generate a new TB ending on the I/O insn. */
4577 n++;
4578 /* On MIPS and SH, delay slot instructions can only be restarted if
4579 they were already the first instruction in the TB. If this is not
bf20dc07 4580 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4581 branch. */
4582#if defined(TARGET_MIPS)
4583 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4584 env->active_tc.PC -= 4;
4585 env->icount_decr.u16.low++;
4586 env->hflags &= ~MIPS_HFLAG_BMASK;
4587 }
4588#elif defined(TARGET_SH4)
4589 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4590 && n > 1) {
4591 env->pc -= 2;
4592 env->icount_decr.u16.low++;
4593 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4594 }
4595#endif
4596 /* This should never happen. */
4597 if (n > CF_COUNT_MASK)
4598 cpu_abort(env, "TB too big during recompile");
4599
4600 cflags = n | CF_LAST_IO;
4601 pc = tb->pc;
4602 cs_base = tb->cs_base;
4603 flags = tb->flags;
4604 tb_phys_invalidate(tb, -1);
4605 /* FIXME: In theory this could raise an exception. In practice
4606 we have already translated the block once so it's probably ok. */
4607 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4608 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4609 the first in the TB) then we end up generating a whole new TB and
4610 repeating the fault, which is horribly inefficient.
4611 Better would be to execute just this insn uncached, or generate a
4612 second new TB. */
4613 cpu_resume_from_signal(env, NULL);
4614}
4615
b3755a91
PB
4616#if !defined(CONFIG_USER_ONLY)
4617
055403b2 4618void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4619{
4620 int i, target_code_size, max_target_code_size;
4621 int direct_jmp_count, direct_jmp2_count, cross_page;
4622 TranslationBlock *tb;
3b46e624 4623
e3db7226
FB
4624 target_code_size = 0;
4625 max_target_code_size = 0;
4626 cross_page = 0;
4627 direct_jmp_count = 0;
4628 direct_jmp2_count = 0;
4629 for(i = 0; i < nb_tbs; i++) {
4630 tb = &tbs[i];
4631 target_code_size += tb->size;
4632 if (tb->size > max_target_code_size)
4633 max_target_code_size = tb->size;
4634 if (tb->page_addr[1] != -1)
4635 cross_page++;
4636 if (tb->tb_next_offset[0] != 0xffff) {
4637 direct_jmp_count++;
4638 if (tb->tb_next_offset[1] != 0xffff) {
4639 direct_jmp2_count++;
4640 }
4641 }
4642 }
4643 /* XXX: avoid using doubles ? */
57fec1fe 4644 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4645 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4646 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4647 cpu_fprintf(f, "TB count %d/%d\n",
4648 nb_tbs, code_gen_max_blocks);
5fafdf24 4649 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4650 nb_tbs ? target_code_size / nb_tbs : 0,
4651 max_target_code_size);
055403b2 4652 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4653 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4654 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4655 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4656 cross_page,
e3db7226
FB
4657 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4658 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4659 direct_jmp_count,
e3db7226
FB
4660 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4661 direct_jmp2_count,
4662 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4663 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4664 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4665 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4666 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4667 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4668}
4669
61382a50 4670#define MMUSUFFIX _cmmu
3917149d 4671#undef GETPC
61382a50
FB
4672#define GETPC() NULL
4673#define env cpu_single_env
b769d8fe 4674#define SOFTMMU_CODE_ACCESS
61382a50
FB
4675
4676#define SHIFT 0
4677#include "softmmu_template.h"
4678
4679#define SHIFT 1
4680#include "softmmu_template.h"
4681
4682#define SHIFT 2
4683#include "softmmu_template.h"
4684
4685#define SHIFT 3
4686#include "softmmu_template.h"
4687
4688#undef env
4689
4690#endif