]> git.proxmox.com Git - qemu.git/blame - exec.c
alpha-linux-user: Fix sigprocmask.
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
29e922b6 41#include "qemu-timer.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
fd052bf6 44#include <signal.h>
f01576f1
JL
45#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46#include <sys/param.h>
47#if __FreeBSD_version >= 700104
48#define HAVE_KINFO_GETVMMAP
49#define sigqueue sigqueue_freebsd /* avoid redefinition */
50#include <sys/time.h>
51#include <sys/proc.h>
52#include <machine/profile.h>
53#define _KERNEL
54#include <sys/user.h>
55#undef _KERNEL
56#undef sigqueue
57#include <libutil.h>
58#endif
59#endif
53a5960a 60#endif
54936004 61
fd6ce8f6 62//#define DEBUG_TB_INVALIDATE
66e85a21 63//#define DEBUG_FLUSH
9fa3e853 64//#define DEBUG_TLB
67d3b957 65//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
66
67/* make various TB consistency checks */
5fafdf24
TS
68//#define DEBUG_TB_CHECK
69//#define DEBUG_TLB_CHECK
fd6ce8f6 70
1196be37 71//#define DEBUG_IOPORT
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
99773bd4
PB
74#if !defined(CONFIG_USER_ONLY)
75/* TB consistency checks only implemented for usermode emulation. */
76#undef DEBUG_TB_CHECK
77#endif
78
9fa3e853
FB
79#define SMC_BITMAP_USE_THRESHOLD 10
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
41c1b1c9 154/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
155 while in user mode we want it to be based on virtual addresses. */
156#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
157#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159#else
5cd2c5b6 160# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 161#endif
bedb69ea 162#else
5cd2c5b6 163# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 164#endif
54936004 165
5cd2c5b6
RH
166/* Size of the L2 (and L3, etc) page tables. */
167#define L2_BITS 10
54936004
FB
168#define L2_SIZE (1 << L2_BITS)
169
5cd2c5b6
RH
170/* The bits remaining after N lower levels of page tables. */
171#define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173#define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176/* Size of the L1 page table. Avoid silly small sizes. */
177#if P_L1_BITS_REM < 4
178#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179#else
180#define P_L1_BITS P_L1_BITS_REM
181#endif
182
183#if V_L1_BITS_REM < 4
184#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185#else
186#define V_L1_BITS V_L1_BITS_REM
187#endif
188
189#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
83fb7adf
FB
195unsigned long qemu_real_host_page_size;
196unsigned long qemu_host_page_bits;
197unsigned long qemu_host_page_size;
198unsigned long qemu_host_page_mask;
54936004 199
5cd2c5b6
RH
200/* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202static void *l1_map[V_L1_SIZE];
54936004 203
e2eef170 204#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
205typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209} PhysPageDesc;
210
5cd2c5b6
RH
211/* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213static void *l1_phys_map[P_L1_SIZE];
6d9a1304 214
e2eef170
PB
215static void io_mem_init(void);
216
33417e70 217/* io memory support */
33417e70
FB
218CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 220void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 221static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
222static int io_mem_watch;
223#endif
33417e70 224
34865134 225/* log support */
1e8b27ca
JR
226#ifdef WIN32
227static const char *logfilename = "qemu.log";
228#else
d9b630fd 229static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 230#endif
34865134
FB
231FILE *logfile;
232int loglevel;
e735b91c 233static int log_append = 0;
34865134 234
e3db7226 235/* statistics */
b3755a91 236#if !defined(CONFIG_USER_ONLY)
e3db7226 237static int tlb_flush_count;
b3755a91 238#endif
e3db7226
FB
239static int tb_flush_count;
240static int tb_phys_invalidate_count;
241
7cb69cae
FB
242#ifdef _WIN32
243static void map_exec(void *addr, long size)
244{
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249}
250#else
251static void map_exec(void *addr, long size)
252{
4369415f 253 unsigned long start, end, page_size;
7cb69cae 254
4369415f 255 page_size = getpagesize();
7cb69cae 256 start = (unsigned long)addr;
4369415f 257 start &= ~(page_size - 1);
7cb69cae
FB
258
259 end = (unsigned long)addr + size;
4369415f
FB
260 end += page_size - 1;
261 end &= ~(page_size - 1);
7cb69cae
FB
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265}
266#endif
267
b346ff46 268static void page_init(void)
54936004 269{
83fb7adf 270 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 271 TARGET_PAGE_SIZE */
c2b48b69
AL
272#ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279#else
280 qemu_real_host_page_size = getpagesize();
281#endif
83fb7adf
FB
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 290
2e9a5713 291#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 292 {
f01576f1
JL
293#ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
fd436907 310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
311 } else {
312#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
fd436907 314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
315#endif
316 }
317 }
318 }
319 free(freep);
320 mmap_unlock();
321 }
322#else
50a9569b 323 FILE *f;
50a9569b 324
0776590d 325 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 326
fd436907 327 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 328 if (f) {
5cd2c5b6
RH
329 mmap_lock();
330
50a9569b 331 do {
5cd2c5b6
RH
332 unsigned long startaddr, endaddr;
333 int n;
334
335 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
336
337 if (n == 2 && h2g_valid(startaddr)) {
338 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
339
340 if (h2g_valid(endaddr)) {
341 endaddr = h2g(endaddr);
342 } else {
343 endaddr = ~0ul;
344 }
345 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
346 }
347 } while (!feof(f));
5cd2c5b6 348
50a9569b 349 fclose(f);
5cd2c5b6 350 mmap_unlock();
50a9569b 351 }
f01576f1 352#endif
50a9569b
AZ
353 }
354#endif
54936004
FB
355}
356
41c1b1c9 357static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 358{
41c1b1c9
PB
359 PageDesc *pd;
360 void **lp;
361 int i;
362
5cd2c5b6 363#if defined(CONFIG_USER_ONLY)
2e9a5713 364 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
365# define ALLOC(P, SIZE) \
366 do { \
367 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
368 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
369 } while (0)
370#else
371# define ALLOC(P, SIZE) \
372 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 373#endif
434929bf 374
5cd2c5b6
RH
375 /* Level 1. Always allocated. */
376 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
377
378 /* Level 2..N-1. */
379 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
380 void **p = *lp;
381
382 if (p == NULL) {
383 if (!alloc) {
384 return NULL;
385 }
386 ALLOC(p, sizeof(void *) * L2_SIZE);
387 *lp = p;
17e2377a 388 }
5cd2c5b6
RH
389
390 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
391 }
392
393 pd = *lp;
394 if (pd == NULL) {
395 if (!alloc) {
396 return NULL;
397 }
398 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
399 *lp = pd;
54936004 400 }
5cd2c5b6
RH
401
402#undef ALLOC
5cd2c5b6
RH
403
404 return pd + (index & (L2_SIZE - 1));
54936004
FB
405}
406
41c1b1c9 407static inline PageDesc *page_find(tb_page_addr_t index)
54936004 408{
5cd2c5b6 409 return page_find_alloc(index, 0);
fd6ce8f6
FB
410}
411
6d9a1304 412#if !defined(CONFIG_USER_ONLY)
c227f099 413static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 414{
e3f4e2a4 415 PhysPageDesc *pd;
5cd2c5b6
RH
416 void **lp;
417 int i;
92e873b9 418
5cd2c5b6
RH
419 /* Level 1. Always allocated. */
420 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 421
5cd2c5b6
RH
422 /* Level 2..N-1. */
423 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
424 void **p = *lp;
425 if (p == NULL) {
426 if (!alloc) {
427 return NULL;
428 }
429 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
430 }
431 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 432 }
5cd2c5b6 433
e3f4e2a4 434 pd = *lp;
5cd2c5b6 435 if (pd == NULL) {
e3f4e2a4 436 int i;
5cd2c5b6
RH
437
438 if (!alloc) {
108c49b8 439 return NULL;
5cd2c5b6
RH
440 }
441
442 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
443
67c4d23c 444 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
445 pd[i].phys_offset = IO_MEM_UNASSIGNED;
446 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 447 }
92e873b9 448 }
5cd2c5b6
RH
449
450 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
451}
452
c227f099 453static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 454{
108c49b8 455 return phys_page_find_alloc(index, 0);
92e873b9
FB
456}
457
c227f099
AL
458static void tlb_protect_code(ram_addr_t ram_addr);
459static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 460 target_ulong vaddr);
c8a706fe
PB
461#define mmap_lock() do { } while(0)
462#define mmap_unlock() do { } while(0)
9fa3e853 463#endif
fd6ce8f6 464
4369415f
FB
465#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
466
467#if defined(CONFIG_USER_ONLY)
ccbb4d44 468/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
469 user mode. It will change when a dedicated libc will be used */
470#define USE_STATIC_CODE_GEN_BUFFER
471#endif
472
473#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
474static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
475 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
476#endif
477
8fcd3692 478static void code_gen_alloc(unsigned long tb_size)
26a5f13b 479{
4369415f
FB
480#ifdef USE_STATIC_CODE_GEN_BUFFER
481 code_gen_buffer = static_code_gen_buffer;
482 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
483 map_exec(code_gen_buffer, code_gen_buffer_size);
484#else
26a5f13b
FB
485 code_gen_buffer_size = tb_size;
486 if (code_gen_buffer_size == 0) {
4369415f
FB
487#if defined(CONFIG_USER_ONLY)
488 /* in user mode, phys_ram_size is not meaningful */
489 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
490#else
ccbb4d44 491 /* XXX: needs adjustments */
94a6b54f 492 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 493#endif
26a5f13b
FB
494 }
495 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
496 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
497 /* The code gen buffer location may have constraints depending on
498 the host cpu and OS */
499#if defined(__linux__)
500 {
501 int flags;
141ac468
BS
502 void *start = NULL;
503
26a5f13b
FB
504 flags = MAP_PRIVATE | MAP_ANONYMOUS;
505#if defined(__x86_64__)
506 flags |= MAP_32BIT;
507 /* Cannot map more than that */
508 if (code_gen_buffer_size > (800 * 1024 * 1024))
509 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
510#elif defined(__sparc_v9__)
511 // Map the buffer below 2G, so we can use direct calls and branches
512 flags |= MAP_FIXED;
513 start = (void *) 0x60000000UL;
514 if (code_gen_buffer_size > (512 * 1024 * 1024))
515 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 516#elif defined(__arm__)
63d41246 517 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
518 flags |= MAP_FIXED;
519 start = (void *) 0x01000000UL;
520 if (code_gen_buffer_size > 16 * 1024 * 1024)
521 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 522#endif
141ac468
BS
523 code_gen_buffer = mmap(start, code_gen_buffer_size,
524 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
525 flags, -1, 0);
526 if (code_gen_buffer == MAP_FAILED) {
527 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
528 exit(1);
529 }
530 }
a167ba50 531#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
532 {
533 int flags;
534 void *addr = NULL;
535 flags = MAP_PRIVATE | MAP_ANONYMOUS;
536#if defined(__x86_64__)
537 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
538 * 0x40000000 is free */
539 flags |= MAP_FIXED;
540 addr = (void *)0x40000000;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544#endif
545 code_gen_buffer = mmap(addr, code_gen_buffer_size,
546 PROT_WRITE | PROT_READ | PROT_EXEC,
547 flags, -1, 0);
548 if (code_gen_buffer == MAP_FAILED) {
549 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
550 exit(1);
551 }
552 }
26a5f13b
FB
553#else
554 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
555 map_exec(code_gen_buffer, code_gen_buffer_size);
556#endif
4369415f 557#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
558 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
559 code_gen_buffer_max_size = code_gen_buffer_size -
560 code_gen_max_block_size();
561 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
562 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
563}
564
565/* Must be called before using the QEMU cpus. 'tb_size' is the size
566 (in bytes) allocated to the translation buffer. Zero means default
567 size. */
568void cpu_exec_init_all(unsigned long tb_size)
569{
26a5f13b
FB
570 cpu_gen_init();
571 code_gen_alloc(tb_size);
572 code_gen_ptr = code_gen_buffer;
4369415f 573 page_init();
e2eef170 574#if !defined(CONFIG_USER_ONLY)
26a5f13b 575 io_mem_init();
e2eef170 576#endif
26a5f13b
FB
577}
578
9656f324
PB
579#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
580
e59fb374 581static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
582{
583 CPUState *env = opaque;
9656f324 584
3098dba0
AJ
585 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
586 version_id is increased. */
587 env->interrupt_request &= ~0x01;
9656f324
PB
588 tlb_flush(env, 1);
589
590 return 0;
591}
e7f4eff7
JQ
592
593static const VMStateDescription vmstate_cpu_common = {
594 .name = "cpu_common",
595 .version_id = 1,
596 .minimum_version_id = 1,
597 .minimum_version_id_old = 1,
e7f4eff7
JQ
598 .post_load = cpu_common_post_load,
599 .fields = (VMStateField []) {
600 VMSTATE_UINT32(halted, CPUState),
601 VMSTATE_UINT32(interrupt_request, CPUState),
602 VMSTATE_END_OF_LIST()
603 }
604};
9656f324
PB
605#endif
606
950f1472
GC
607CPUState *qemu_get_cpu(int cpu)
608{
609 CPUState *env = first_cpu;
610
611 while (env) {
612 if (env->cpu_index == cpu)
613 break;
614 env = env->next_cpu;
615 }
616
617 return env;
618}
619
6a00d601 620void cpu_exec_init(CPUState *env)
fd6ce8f6 621{
6a00d601
FB
622 CPUState **penv;
623 int cpu_index;
624
c2764719
PB
625#if defined(CONFIG_USER_ONLY)
626 cpu_list_lock();
627#endif
6a00d601
FB
628 env->next_cpu = NULL;
629 penv = &first_cpu;
630 cpu_index = 0;
631 while (*penv != NULL) {
1e9fa730 632 penv = &(*penv)->next_cpu;
6a00d601
FB
633 cpu_index++;
634 }
635 env->cpu_index = cpu_index;
268a362c 636 env->numa_node = 0;
72cf2d4f
BS
637 QTAILQ_INIT(&env->breakpoints);
638 QTAILQ_INIT(&env->watchpoints);
6a00d601 639 *penv = env;
c2764719
PB
640#if defined(CONFIG_USER_ONLY)
641 cpu_list_unlock();
642#endif
b3c7724c 643#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 644 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
645 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
646 cpu_save, cpu_load, env);
647#endif
fd6ce8f6
FB
648}
649
9fa3e853
FB
650static inline void invalidate_page_bitmap(PageDesc *p)
651{
652 if (p->code_bitmap) {
59817ccb 653 qemu_free(p->code_bitmap);
9fa3e853
FB
654 p->code_bitmap = NULL;
655 }
656 p->code_write_count = 0;
657}
658
5cd2c5b6
RH
659/* Set to NULL all the 'first_tb' fields in all PageDescs. */
660
661static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 662{
5cd2c5b6 663 int i;
fd6ce8f6 664
5cd2c5b6
RH
665 if (*lp == NULL) {
666 return;
667 }
668 if (level == 0) {
669 PageDesc *pd = *lp;
7296abac 670 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
671 pd[i].first_tb = NULL;
672 invalidate_page_bitmap(pd + i);
fd6ce8f6 673 }
5cd2c5b6
RH
674 } else {
675 void **pp = *lp;
7296abac 676 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
677 page_flush_tb_1 (level - 1, pp + i);
678 }
679 }
680}
681
682static void page_flush_tb(void)
683{
684 int i;
685 for (i = 0; i < V_L1_SIZE; i++) {
686 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
687 }
688}
689
690/* flush all the translation blocks */
d4e8164f 691/* XXX: tb_flush is currently not thread safe */
6a00d601 692void tb_flush(CPUState *env1)
fd6ce8f6 693{
6a00d601 694 CPUState *env;
0124311e 695#if defined(DEBUG_FLUSH)
ab3d1727
BS
696 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
697 (unsigned long)(code_gen_ptr - code_gen_buffer),
698 nb_tbs, nb_tbs > 0 ?
699 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 700#endif
26a5f13b 701 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
702 cpu_abort(env1, "Internal error: code buffer overflow\n");
703
fd6ce8f6 704 nb_tbs = 0;
3b46e624 705
6a00d601
FB
706 for(env = first_cpu; env != NULL; env = env->next_cpu) {
707 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
708 }
9fa3e853 709
8a8a608f 710 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 711 page_flush_tb();
9fa3e853 712
fd6ce8f6 713 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
714 /* XXX: flush processor icache at this point if cache flush is
715 expensive */
e3db7226 716 tb_flush_count++;
fd6ce8f6
FB
717}
718
719#ifdef DEBUG_TB_CHECK
720
bc98a7ef 721static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
722{
723 TranslationBlock *tb;
724 int i;
725 address &= TARGET_PAGE_MASK;
99773bd4
PB
726 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
727 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
728 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
729 address >= tb->pc + tb->size)) {
0bf9e31a
BS
730 printf("ERROR invalidate: address=" TARGET_FMT_lx
731 " PC=%08lx size=%04x\n",
99773bd4 732 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
733 }
734 }
735 }
736}
737
738/* verify that all the pages have correct rights for code */
739static void tb_page_check(void)
740{
741 TranslationBlock *tb;
742 int i, flags1, flags2;
3b46e624 743
99773bd4
PB
744 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
745 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
746 flags1 = page_get_flags(tb->pc);
747 flags2 = page_get_flags(tb->pc + tb->size - 1);
748 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
749 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 750 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
751 }
752 }
753 }
754}
755
756#endif
757
758/* invalidate one TB */
759static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
760 int next_offset)
761{
762 TranslationBlock *tb1;
763 for(;;) {
764 tb1 = *ptb;
765 if (tb1 == tb) {
766 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
767 break;
768 }
769 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
770 }
771}
772
9fa3e853
FB
773static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
774{
775 TranslationBlock *tb1;
776 unsigned int n1;
777
778 for(;;) {
779 tb1 = *ptb;
780 n1 = (long)tb1 & 3;
781 tb1 = (TranslationBlock *)((long)tb1 & ~3);
782 if (tb1 == tb) {
783 *ptb = tb1->page_next[n1];
784 break;
785 }
786 ptb = &tb1->page_next[n1];
787 }
788}
789
d4e8164f
FB
790static inline void tb_jmp_remove(TranslationBlock *tb, int n)
791{
792 TranslationBlock *tb1, **ptb;
793 unsigned int n1;
794
795 ptb = &tb->jmp_next[n];
796 tb1 = *ptb;
797 if (tb1) {
798 /* find tb(n) in circular list */
799 for(;;) {
800 tb1 = *ptb;
801 n1 = (long)tb1 & 3;
802 tb1 = (TranslationBlock *)((long)tb1 & ~3);
803 if (n1 == n && tb1 == tb)
804 break;
805 if (n1 == 2) {
806 ptb = &tb1->jmp_first;
807 } else {
808 ptb = &tb1->jmp_next[n1];
809 }
810 }
811 /* now we can suppress tb(n) from the list */
812 *ptb = tb->jmp_next[n];
813
814 tb->jmp_next[n] = NULL;
815 }
816}
817
818/* reset the jump entry 'n' of a TB so that it is not chained to
819 another TB */
820static inline void tb_reset_jump(TranslationBlock *tb, int n)
821{
822 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
823}
824
41c1b1c9 825void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 826{
6a00d601 827 CPUState *env;
8a40a180 828 PageDesc *p;
d4e8164f 829 unsigned int h, n1;
41c1b1c9 830 tb_page_addr_t phys_pc;
8a40a180 831 TranslationBlock *tb1, *tb2;
3b46e624 832
8a40a180
FB
833 /* remove the TB from the hash list */
834 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
835 h = tb_phys_hash_func(phys_pc);
5fafdf24 836 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
837 offsetof(TranslationBlock, phys_hash_next));
838
839 /* remove the TB from the page list */
840 if (tb->page_addr[0] != page_addr) {
841 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
842 tb_page_remove(&p->first_tb, tb);
843 invalidate_page_bitmap(p);
844 }
845 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
846 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
847 tb_page_remove(&p->first_tb, tb);
848 invalidate_page_bitmap(p);
849 }
850
36bdbe54 851 tb_invalidated_flag = 1;
59817ccb 852
fd6ce8f6 853 /* remove the TB from the hash list */
8a40a180 854 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
855 for(env = first_cpu; env != NULL; env = env->next_cpu) {
856 if (env->tb_jmp_cache[h] == tb)
857 env->tb_jmp_cache[h] = NULL;
858 }
d4e8164f
FB
859
860 /* suppress this TB from the two jump lists */
861 tb_jmp_remove(tb, 0);
862 tb_jmp_remove(tb, 1);
863
864 /* suppress any remaining jumps to this TB */
865 tb1 = tb->jmp_first;
866 for(;;) {
867 n1 = (long)tb1 & 3;
868 if (n1 == 2)
869 break;
870 tb1 = (TranslationBlock *)((long)tb1 & ~3);
871 tb2 = tb1->jmp_next[n1];
872 tb_reset_jump(tb1, n1);
873 tb1->jmp_next[n1] = NULL;
874 tb1 = tb2;
875 }
876 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 877
e3db7226 878 tb_phys_invalidate_count++;
9fa3e853
FB
879}
880
881static inline void set_bits(uint8_t *tab, int start, int len)
882{
883 int end, mask, end1;
884
885 end = start + len;
886 tab += start >> 3;
887 mask = 0xff << (start & 7);
888 if ((start & ~7) == (end & ~7)) {
889 if (start < end) {
890 mask &= ~(0xff << (end & 7));
891 *tab |= mask;
892 }
893 } else {
894 *tab++ |= mask;
895 start = (start + 8) & ~7;
896 end1 = end & ~7;
897 while (start < end1) {
898 *tab++ = 0xff;
899 start += 8;
900 }
901 if (start < end) {
902 mask = ~(0xff << (end & 7));
903 *tab |= mask;
904 }
905 }
906}
907
908static void build_page_bitmap(PageDesc *p)
909{
910 int n, tb_start, tb_end;
911 TranslationBlock *tb;
3b46e624 912
b2a7081a 913 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
914
915 tb = p->first_tb;
916 while (tb != NULL) {
917 n = (long)tb & 3;
918 tb = (TranslationBlock *)((long)tb & ~3);
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->pc & ~TARGET_PAGE_MASK;
924 tb_end = tb_start + tb->size;
925 if (tb_end > TARGET_PAGE_SIZE)
926 tb_end = TARGET_PAGE_SIZE;
927 } else {
928 tb_start = 0;
929 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
930 }
931 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
932 tb = tb->page_next[n];
933 }
934}
935
2e70f6ef
PB
936TranslationBlock *tb_gen_code(CPUState *env,
937 target_ulong pc, target_ulong cs_base,
938 int flags, int cflags)
d720b93d
FB
939{
940 TranslationBlock *tb;
941 uint8_t *tc_ptr;
41c1b1c9
PB
942 tb_page_addr_t phys_pc, phys_page2;
943 target_ulong virt_page2;
d720b93d
FB
944 int code_gen_size;
945
41c1b1c9 946 phys_pc = get_page_addr_code(env, pc);
c27004ec 947 tb = tb_alloc(pc);
d720b93d
FB
948 if (!tb) {
949 /* flush must be done */
950 tb_flush(env);
951 /* cannot fail at this point */
c27004ec 952 tb = tb_alloc(pc);
2e70f6ef
PB
953 /* Don't forget to invalidate previous TB info. */
954 tb_invalidated_flag = 1;
d720b93d
FB
955 }
956 tc_ptr = code_gen_ptr;
957 tb->tc_ptr = tc_ptr;
958 tb->cs_base = cs_base;
959 tb->flags = flags;
960 tb->cflags = cflags;
d07bde88 961 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 962 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 963
d720b93d 964 /* check next page if needed */
c27004ec 965 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 966 phys_page2 = -1;
c27004ec 967 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 968 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 969 }
41c1b1c9 970 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 971 return tb;
d720b93d 972}
3b46e624 973
9fa3e853
FB
974/* invalidate all TBs which intersect with the target physical page
975 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
976 the same physical page. 'is_cpu_write_access' should be true if called
977 from a real cpu write access: the virtual CPU will exit the current
978 TB if code is modified inside this TB. */
41c1b1c9 979void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
980 int is_cpu_write_access)
981{
6b917547 982 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 983 CPUState *env = cpu_single_env;
41c1b1c9 984 tb_page_addr_t tb_start, tb_end;
6b917547
AL
985 PageDesc *p;
986 int n;
987#ifdef TARGET_HAS_PRECISE_SMC
988 int current_tb_not_found = is_cpu_write_access;
989 TranslationBlock *current_tb = NULL;
990 int current_tb_modified = 0;
991 target_ulong current_pc = 0;
992 target_ulong current_cs_base = 0;
993 int current_flags = 0;
994#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
995
996 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 997 if (!p)
9fa3e853 998 return;
5fafdf24 999 if (!p->code_bitmap &&
d720b93d
FB
1000 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1001 is_cpu_write_access) {
9fa3e853
FB
1002 /* build code bitmap */
1003 build_page_bitmap(p);
1004 }
1005
1006 /* we remove all the TBs in the range [start, end[ */
1007 /* XXX: see if in some cases it could be faster to invalidate all the code */
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (long)tb & 3;
1011 tb = (TranslationBlock *)((long)tb & ~3);
1012 tb_next = tb->page_next[n];
1013 /* NOTE: this is subtle as a TB may span two physical pages */
1014 if (n == 0) {
1015 /* NOTE: tb_end may be after the end of the page, but
1016 it is not a problem */
1017 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1018 tb_end = tb_start + tb->size;
1019 } else {
1020 tb_start = tb->page_addr[1];
1021 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1022 }
1023 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1024#ifdef TARGET_HAS_PRECISE_SMC
1025 if (current_tb_not_found) {
1026 current_tb_not_found = 0;
1027 current_tb = NULL;
2e70f6ef 1028 if (env->mem_io_pc) {
d720b93d 1029 /* now we have a real cpu fault */
2e70f6ef 1030 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1031 }
1032 }
1033 if (current_tb == tb &&
2e70f6ef 1034 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1035 /* If we are modifying the current TB, we must stop
1036 its execution. We could be more precise by checking
1037 that the modification is after the current PC, but it
1038 would require a specialized function to partially
1039 restore the CPU state */
3b46e624 1040
d720b93d 1041 current_tb_modified = 1;
5fafdf24 1042 cpu_restore_state(current_tb, env,
2e70f6ef 1043 env->mem_io_pc, NULL);
6b917547
AL
1044 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1045 &current_flags);
d720b93d
FB
1046 }
1047#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1048 /* we need to do that to handle the case where a signal
1049 occurs while doing tb_phys_invalidate() */
1050 saved_tb = NULL;
1051 if (env) {
1052 saved_tb = env->current_tb;
1053 env->current_tb = NULL;
1054 }
9fa3e853 1055 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1056 if (env) {
1057 env->current_tb = saved_tb;
1058 if (env->interrupt_request && env->current_tb)
1059 cpu_interrupt(env, env->interrupt_request);
1060 }
9fa3e853
FB
1061 }
1062 tb = tb_next;
1063 }
1064#if !defined(CONFIG_USER_ONLY)
1065 /* if no code remaining, no need to continue to use slow writes */
1066 if (!p->first_tb) {
1067 invalidate_page_bitmap(p);
d720b93d 1068 if (is_cpu_write_access) {
2e70f6ef 1069 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1070 }
1071 }
1072#endif
1073#ifdef TARGET_HAS_PRECISE_SMC
1074 if (current_tb_modified) {
1075 /* we generate a block containing just the instruction
1076 modifying the memory. It will ensure that it cannot modify
1077 itself */
ea1c1802 1078 env->current_tb = NULL;
2e70f6ef 1079 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1080 cpu_resume_from_signal(env, NULL);
9fa3e853 1081 }
fd6ce8f6 1082#endif
9fa3e853 1083}
fd6ce8f6 1084
9fa3e853 1085/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1086static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1087{
1088 PageDesc *p;
1089 int offset, b;
59817ccb 1090#if 0
a4193c8a 1091 if (1) {
93fcfe39
AL
1092 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1093 cpu_single_env->mem_io_vaddr, len,
1094 cpu_single_env->eip,
1095 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1096 }
1097#endif
9fa3e853 1098 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1099 if (!p)
9fa3e853
FB
1100 return;
1101 if (p->code_bitmap) {
1102 offset = start & ~TARGET_PAGE_MASK;
1103 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1104 if (b & ((1 << len) - 1))
1105 goto do_invalidate;
1106 } else {
1107 do_invalidate:
d720b93d 1108 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1109 }
1110}
1111
9fa3e853 1112#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1113static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1114 unsigned long pc, void *puc)
9fa3e853 1115{
6b917547 1116 TranslationBlock *tb;
9fa3e853 1117 PageDesc *p;
6b917547 1118 int n;
d720b93d 1119#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1120 TranslationBlock *current_tb = NULL;
d720b93d 1121 CPUState *env = cpu_single_env;
6b917547
AL
1122 int current_tb_modified = 0;
1123 target_ulong current_pc = 0;
1124 target_ulong current_cs_base = 0;
1125 int current_flags = 0;
d720b93d 1126#endif
9fa3e853
FB
1127
1128 addr &= TARGET_PAGE_MASK;
1129 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1130 if (!p)
9fa3e853
FB
1131 return;
1132 tb = p->first_tb;
d720b93d
FB
1133#ifdef TARGET_HAS_PRECISE_SMC
1134 if (tb && pc != 0) {
1135 current_tb = tb_find_pc(pc);
1136 }
1137#endif
9fa3e853
FB
1138 while (tb != NULL) {
1139 n = (long)tb & 3;
1140 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1141#ifdef TARGET_HAS_PRECISE_SMC
1142 if (current_tb == tb &&
2e70f6ef 1143 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1144 /* If we are modifying the current TB, we must stop
1145 its execution. We could be more precise by checking
1146 that the modification is after the current PC, but it
1147 would require a specialized function to partially
1148 restore the CPU state */
3b46e624 1149
d720b93d
FB
1150 current_tb_modified = 1;
1151 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1152 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1153 &current_flags);
d720b93d
FB
1154 }
1155#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1156 tb_phys_invalidate(tb, addr);
1157 tb = tb->page_next[n];
1158 }
fd6ce8f6 1159 p->first_tb = NULL;
d720b93d
FB
1160#ifdef TARGET_HAS_PRECISE_SMC
1161 if (current_tb_modified) {
1162 /* we generate a block containing just the instruction
1163 modifying the memory. It will ensure that it cannot modify
1164 itself */
ea1c1802 1165 env->current_tb = NULL;
2e70f6ef 1166 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1167 cpu_resume_from_signal(env, puc);
1168 }
1169#endif
fd6ce8f6 1170}
9fa3e853 1171#endif
fd6ce8f6
FB
1172
1173/* add the tb in the target page and protect it if necessary */
5fafdf24 1174static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1175 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1176{
1177 PageDesc *p;
9fa3e853
FB
1178 TranslationBlock *last_first_tb;
1179
1180 tb->page_addr[n] = page_addr;
5cd2c5b6 1181 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1182 tb->page_next[n] = p->first_tb;
1183 last_first_tb = p->first_tb;
1184 p->first_tb = (TranslationBlock *)((long)tb | n);
1185 invalidate_page_bitmap(p);
fd6ce8f6 1186
107db443 1187#if defined(TARGET_HAS_SMC) || 1
d720b93d 1188
9fa3e853 1189#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1190 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1191 target_ulong addr;
1192 PageDesc *p2;
9fa3e853
FB
1193 int prot;
1194
fd6ce8f6
FB
1195 /* force the host page as non writable (writes will have a
1196 page fault + mprotect overhead) */
53a5960a 1197 page_addr &= qemu_host_page_mask;
fd6ce8f6 1198 prot = 0;
53a5960a
PB
1199 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1200 addr += TARGET_PAGE_SIZE) {
1201
1202 p2 = page_find (addr >> TARGET_PAGE_BITS);
1203 if (!p2)
1204 continue;
1205 prot |= p2->flags;
1206 p2->flags &= ~PAGE_WRITE;
53a5960a 1207 }
5fafdf24 1208 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1209 (prot & PAGE_BITS) & ~PAGE_WRITE);
1210#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1211 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1212 page_addr);
fd6ce8f6 1213#endif
fd6ce8f6 1214 }
9fa3e853
FB
1215#else
1216 /* if some code is already present, then the pages are already
1217 protected. So we handle the case where only the first TB is
1218 allocated in a physical page */
1219 if (!last_first_tb) {
6a00d601 1220 tlb_protect_code(page_addr);
9fa3e853
FB
1221 }
1222#endif
d720b93d
FB
1223
1224#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1225}
1226
1227/* Allocate a new translation block. Flush the translation buffer if
1228 too many translation blocks or too much generated code. */
c27004ec 1229TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1230{
1231 TranslationBlock *tb;
fd6ce8f6 1232
26a5f13b
FB
1233 if (nb_tbs >= code_gen_max_blocks ||
1234 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1235 return NULL;
fd6ce8f6
FB
1236 tb = &tbs[nb_tbs++];
1237 tb->pc = pc;
b448f2f3 1238 tb->cflags = 0;
d4e8164f
FB
1239 return tb;
1240}
1241
2e70f6ef
PB
1242void tb_free(TranslationBlock *tb)
1243{
bf20dc07 1244 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1245 Ignore the hard cases and just back up if this TB happens to
1246 be the last one generated. */
1247 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1248 code_gen_ptr = tb->tc_ptr;
1249 nb_tbs--;
1250 }
1251}
1252
9fa3e853
FB
1253/* add a new TB and link it to the physical page tables. phys_page2 is
1254 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1255void tb_link_page(TranslationBlock *tb,
1256 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1257{
9fa3e853
FB
1258 unsigned int h;
1259 TranslationBlock **ptb;
1260
c8a706fe
PB
1261 /* Grab the mmap lock to stop another thread invalidating this TB
1262 before we are done. */
1263 mmap_lock();
9fa3e853
FB
1264 /* add in the physical hash table */
1265 h = tb_phys_hash_func(phys_pc);
1266 ptb = &tb_phys_hash[h];
1267 tb->phys_hash_next = *ptb;
1268 *ptb = tb;
fd6ce8f6
FB
1269
1270 /* add in the page list */
9fa3e853
FB
1271 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1272 if (phys_page2 != -1)
1273 tb_alloc_page(tb, 1, phys_page2);
1274 else
1275 tb->page_addr[1] = -1;
9fa3e853 1276
d4e8164f
FB
1277 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1278 tb->jmp_next[0] = NULL;
1279 tb->jmp_next[1] = NULL;
1280
1281 /* init original jump addresses */
1282 if (tb->tb_next_offset[0] != 0xffff)
1283 tb_reset_jump(tb, 0);
1284 if (tb->tb_next_offset[1] != 0xffff)
1285 tb_reset_jump(tb, 1);
8a40a180
FB
1286
1287#ifdef DEBUG_TB_CHECK
1288 tb_page_check();
1289#endif
c8a706fe 1290 mmap_unlock();
fd6ce8f6
FB
1291}
1292
9fa3e853
FB
1293/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1294 tb[1].tc_ptr. Return NULL if not found */
1295TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1296{
9fa3e853
FB
1297 int m_min, m_max, m;
1298 unsigned long v;
1299 TranslationBlock *tb;
a513fe19
FB
1300
1301 if (nb_tbs <= 0)
1302 return NULL;
1303 if (tc_ptr < (unsigned long)code_gen_buffer ||
1304 tc_ptr >= (unsigned long)code_gen_ptr)
1305 return NULL;
1306 /* binary search (cf Knuth) */
1307 m_min = 0;
1308 m_max = nb_tbs - 1;
1309 while (m_min <= m_max) {
1310 m = (m_min + m_max) >> 1;
1311 tb = &tbs[m];
1312 v = (unsigned long)tb->tc_ptr;
1313 if (v == tc_ptr)
1314 return tb;
1315 else if (tc_ptr < v) {
1316 m_max = m - 1;
1317 } else {
1318 m_min = m + 1;
1319 }
5fafdf24 1320 }
a513fe19
FB
1321 return &tbs[m_max];
1322}
7501267e 1323
ea041c0e
FB
1324static void tb_reset_jump_recursive(TranslationBlock *tb);
1325
1326static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1327{
1328 TranslationBlock *tb1, *tb_next, **ptb;
1329 unsigned int n1;
1330
1331 tb1 = tb->jmp_next[n];
1332 if (tb1 != NULL) {
1333 /* find head of list */
1334 for(;;) {
1335 n1 = (long)tb1 & 3;
1336 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1337 if (n1 == 2)
1338 break;
1339 tb1 = tb1->jmp_next[n1];
1340 }
1341 /* we are now sure now that tb jumps to tb1 */
1342 tb_next = tb1;
1343
1344 /* remove tb from the jmp_first list */
1345 ptb = &tb_next->jmp_first;
1346 for(;;) {
1347 tb1 = *ptb;
1348 n1 = (long)tb1 & 3;
1349 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1350 if (n1 == n && tb1 == tb)
1351 break;
1352 ptb = &tb1->jmp_next[n1];
1353 }
1354 *ptb = tb->jmp_next[n];
1355 tb->jmp_next[n] = NULL;
3b46e624 1356
ea041c0e
FB
1357 /* suppress the jump to next tb in generated code */
1358 tb_reset_jump(tb, n);
1359
0124311e 1360 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1361 tb_reset_jump_recursive(tb_next);
1362 }
1363}
1364
1365static void tb_reset_jump_recursive(TranslationBlock *tb)
1366{
1367 tb_reset_jump_recursive2(tb, 0);
1368 tb_reset_jump_recursive2(tb, 1);
1369}
1370
1fddef4b 1371#if defined(TARGET_HAS_ICE)
94df27fd
PB
1372#if defined(CONFIG_USER_ONLY)
1373static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1374{
1375 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1376}
1377#else
d720b93d
FB
1378static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1379{
c227f099 1380 target_phys_addr_t addr;
9b3c35e0 1381 target_ulong pd;
c227f099 1382 ram_addr_t ram_addr;
c2f07f81 1383 PhysPageDesc *p;
d720b93d 1384
c2f07f81
PB
1385 addr = cpu_get_phys_page_debug(env, pc);
1386 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1387 if (!p) {
1388 pd = IO_MEM_UNASSIGNED;
1389 } else {
1390 pd = p->phys_offset;
1391 }
1392 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1393 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1394}
c27004ec 1395#endif
94df27fd 1396#endif /* TARGET_HAS_ICE */
d720b93d 1397
c527ee8f
PB
1398#if defined(CONFIG_USER_ONLY)
1399void cpu_watchpoint_remove_all(CPUState *env, int mask)
1400
1401{
1402}
1403
1404int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1405 int flags, CPUWatchpoint **watchpoint)
1406{
1407 return -ENOSYS;
1408}
1409#else
6658ffb8 1410/* Add a watchpoint. */
a1d1bb31
AL
1411int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1412 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1413{
b4051334 1414 target_ulong len_mask = ~(len - 1);
c0ce998e 1415 CPUWatchpoint *wp;
6658ffb8 1416
b4051334
AL
1417 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1418 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1419 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1420 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1421 return -EINVAL;
1422 }
a1d1bb31 1423 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1424
1425 wp->vaddr = addr;
b4051334 1426 wp->len_mask = len_mask;
a1d1bb31
AL
1427 wp->flags = flags;
1428
2dc9f411 1429 /* keep all GDB-injected watchpoints in front */
c0ce998e 1430 if (flags & BP_GDB)
72cf2d4f 1431 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1432 else
72cf2d4f 1433 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1434
6658ffb8 1435 tlb_flush_page(env, addr);
a1d1bb31
AL
1436
1437 if (watchpoint)
1438 *watchpoint = wp;
1439 return 0;
6658ffb8
PB
1440}
1441
a1d1bb31
AL
1442/* Remove a specific watchpoint. */
1443int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1444 int flags)
6658ffb8 1445{
b4051334 1446 target_ulong len_mask = ~(len - 1);
a1d1bb31 1447 CPUWatchpoint *wp;
6658ffb8 1448
72cf2d4f 1449 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1450 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1451 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1452 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1453 return 0;
1454 }
1455 }
a1d1bb31 1456 return -ENOENT;
6658ffb8
PB
1457}
1458
a1d1bb31
AL
1459/* Remove a specific watchpoint by reference. */
1460void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1461{
72cf2d4f 1462 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1463
a1d1bb31
AL
1464 tlb_flush_page(env, watchpoint->vaddr);
1465
1466 qemu_free(watchpoint);
1467}
1468
1469/* Remove all matching watchpoints. */
1470void cpu_watchpoint_remove_all(CPUState *env, int mask)
1471{
c0ce998e 1472 CPUWatchpoint *wp, *next;
a1d1bb31 1473
72cf2d4f 1474 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1475 if (wp->flags & mask)
1476 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1477 }
7d03f82f 1478}
c527ee8f 1479#endif
7d03f82f 1480
a1d1bb31
AL
1481/* Add a breakpoint. */
1482int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1483 CPUBreakpoint **breakpoint)
4c3a88a2 1484{
1fddef4b 1485#if defined(TARGET_HAS_ICE)
c0ce998e 1486 CPUBreakpoint *bp;
3b46e624 1487
a1d1bb31 1488 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1489
a1d1bb31
AL
1490 bp->pc = pc;
1491 bp->flags = flags;
1492
2dc9f411 1493 /* keep all GDB-injected breakpoints in front */
c0ce998e 1494 if (flags & BP_GDB)
72cf2d4f 1495 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1496 else
72cf2d4f 1497 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1498
d720b93d 1499 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1500
1501 if (breakpoint)
1502 *breakpoint = bp;
4c3a88a2
FB
1503 return 0;
1504#else
a1d1bb31 1505 return -ENOSYS;
4c3a88a2
FB
1506#endif
1507}
1508
a1d1bb31
AL
1509/* Remove a specific breakpoint. */
1510int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1511{
7d03f82f 1512#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1513 CPUBreakpoint *bp;
1514
72cf2d4f 1515 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1516 if (bp->pc == pc && bp->flags == flags) {
1517 cpu_breakpoint_remove_by_ref(env, bp);
1518 return 0;
1519 }
7d03f82f 1520 }
a1d1bb31
AL
1521 return -ENOENT;
1522#else
1523 return -ENOSYS;
7d03f82f
EI
1524#endif
1525}
1526
a1d1bb31
AL
1527/* Remove a specific breakpoint by reference. */
1528void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1529{
1fddef4b 1530#if defined(TARGET_HAS_ICE)
72cf2d4f 1531 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1532
a1d1bb31
AL
1533 breakpoint_invalidate(env, breakpoint->pc);
1534
1535 qemu_free(breakpoint);
1536#endif
1537}
1538
1539/* Remove all matching breakpoints. */
1540void cpu_breakpoint_remove_all(CPUState *env, int mask)
1541{
1542#if defined(TARGET_HAS_ICE)
c0ce998e 1543 CPUBreakpoint *bp, *next;
a1d1bb31 1544
72cf2d4f 1545 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1546 if (bp->flags & mask)
1547 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1548 }
4c3a88a2
FB
1549#endif
1550}
1551
c33a346e
FB
1552/* enable or disable single step mode. EXCP_DEBUG is returned by the
1553 CPU loop after each instruction */
1554void cpu_single_step(CPUState *env, int enabled)
1555{
1fddef4b 1556#if defined(TARGET_HAS_ICE)
c33a346e
FB
1557 if (env->singlestep_enabled != enabled) {
1558 env->singlestep_enabled = enabled;
e22a25c9
AL
1559 if (kvm_enabled())
1560 kvm_update_guest_debug(env, 0);
1561 else {
ccbb4d44 1562 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1563 /* XXX: only flush what is necessary */
1564 tb_flush(env);
1565 }
c33a346e
FB
1566 }
1567#endif
1568}
1569
34865134
FB
1570/* enable or disable low levels log */
1571void cpu_set_log(int log_flags)
1572{
1573 loglevel = log_flags;
1574 if (loglevel && !logfile) {
11fcfab4 1575 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1576 if (!logfile) {
1577 perror(logfilename);
1578 _exit(1);
1579 }
9fa3e853
FB
1580#if !defined(CONFIG_SOFTMMU)
1581 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1582 {
b55266b5 1583 static char logfile_buf[4096];
9fa3e853
FB
1584 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1585 }
bf65f53f
FN
1586#elif !defined(_WIN32)
1587 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1588 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1589#endif
e735b91c
PB
1590 log_append = 1;
1591 }
1592 if (!loglevel && logfile) {
1593 fclose(logfile);
1594 logfile = NULL;
34865134
FB
1595 }
1596}
1597
1598void cpu_set_log_filename(const char *filename)
1599{
1600 logfilename = strdup(filename);
e735b91c
PB
1601 if (logfile) {
1602 fclose(logfile);
1603 logfile = NULL;
1604 }
1605 cpu_set_log(loglevel);
34865134 1606}
c33a346e 1607
3098dba0 1608static void cpu_unlink_tb(CPUState *env)
ea041c0e 1609{
3098dba0
AJ
1610 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1611 problem and hope the cpu will stop of its own accord. For userspace
1612 emulation this often isn't actually as bad as it sounds. Often
1613 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1614 TranslationBlock *tb;
c227f099 1615 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1616
cab1b4bd 1617 spin_lock(&interrupt_lock);
3098dba0
AJ
1618 tb = env->current_tb;
1619 /* if the cpu is currently executing code, we must unlink it and
1620 all the potentially executing TB */
f76cfe56 1621 if (tb) {
3098dba0
AJ
1622 env->current_tb = NULL;
1623 tb_reset_jump_recursive(tb);
be214e6c 1624 }
cab1b4bd 1625 spin_unlock(&interrupt_lock);
3098dba0
AJ
1626}
1627
1628/* mask must never be zero, except for A20 change call */
1629void cpu_interrupt(CPUState *env, int mask)
1630{
1631 int old_mask;
be214e6c 1632
2e70f6ef 1633 old_mask = env->interrupt_request;
68a79315 1634 env->interrupt_request |= mask;
3098dba0 1635
8edac960
AL
1636#ifndef CONFIG_USER_ONLY
1637 /*
1638 * If called from iothread context, wake the target cpu in
1639 * case its halted.
1640 */
1641 if (!qemu_cpu_self(env)) {
1642 qemu_cpu_kick(env);
1643 return;
1644 }
1645#endif
1646
2e70f6ef 1647 if (use_icount) {
266910c4 1648 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1649#ifndef CONFIG_USER_ONLY
2e70f6ef 1650 if (!can_do_io(env)
be214e6c 1651 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1652 cpu_abort(env, "Raised interrupt while not in I/O function");
1653 }
1654#endif
1655 } else {
3098dba0 1656 cpu_unlink_tb(env);
ea041c0e
FB
1657 }
1658}
1659
b54ad049
FB
1660void cpu_reset_interrupt(CPUState *env, int mask)
1661{
1662 env->interrupt_request &= ~mask;
1663}
1664
3098dba0
AJ
1665void cpu_exit(CPUState *env)
1666{
1667 env->exit_request = 1;
1668 cpu_unlink_tb(env);
1669}
1670
c7cd6a37 1671const CPULogItem cpu_log_items[] = {
5fafdf24 1672 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1673 "show generated host assembly code for each compiled TB" },
1674 { CPU_LOG_TB_IN_ASM, "in_asm",
1675 "show target assembly code for each compiled TB" },
5fafdf24 1676 { CPU_LOG_TB_OP, "op",
57fec1fe 1677 "show micro ops for each compiled TB" },
f193c797 1678 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1679 "show micro ops "
1680#ifdef TARGET_I386
1681 "before eflags optimization and "
f193c797 1682#endif
e01a1157 1683 "after liveness analysis" },
f193c797
FB
1684 { CPU_LOG_INT, "int",
1685 "show interrupts/exceptions in short format" },
1686 { CPU_LOG_EXEC, "exec",
1687 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1688 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1689 "show CPU state before block translation" },
f193c797
FB
1690#ifdef TARGET_I386
1691 { CPU_LOG_PCALL, "pcall",
1692 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1693 { CPU_LOG_RESET, "cpu_reset",
1694 "show CPU state before CPU resets" },
f193c797 1695#endif
8e3a9fd2 1696#ifdef DEBUG_IOPORT
fd872598
FB
1697 { CPU_LOG_IOPORT, "ioport",
1698 "show all i/o ports accesses" },
8e3a9fd2 1699#endif
f193c797
FB
1700 { 0, NULL, NULL },
1701};
1702
f6f3fbca
MT
1703#ifndef CONFIG_USER_ONLY
1704static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1705 = QLIST_HEAD_INITIALIZER(memory_client_list);
1706
1707static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1708 ram_addr_t size,
1709 ram_addr_t phys_offset)
1710{
1711 CPUPhysMemoryClient *client;
1712 QLIST_FOREACH(client, &memory_client_list, list) {
1713 client->set_memory(client, start_addr, size, phys_offset);
1714 }
1715}
1716
1717static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1718 target_phys_addr_t end)
1719{
1720 CPUPhysMemoryClient *client;
1721 QLIST_FOREACH(client, &memory_client_list, list) {
1722 int r = client->sync_dirty_bitmap(client, start, end);
1723 if (r < 0)
1724 return r;
1725 }
1726 return 0;
1727}
1728
1729static int cpu_notify_migration_log(int enable)
1730{
1731 CPUPhysMemoryClient *client;
1732 QLIST_FOREACH(client, &memory_client_list, list) {
1733 int r = client->migration_log(client, enable);
1734 if (r < 0)
1735 return r;
1736 }
1737 return 0;
1738}
1739
5cd2c5b6
RH
1740static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1741 int level, void **lp)
f6f3fbca 1742{
5cd2c5b6 1743 int i;
f6f3fbca 1744
5cd2c5b6
RH
1745 if (*lp == NULL) {
1746 return;
1747 }
1748 if (level == 0) {
1749 PhysPageDesc *pd = *lp;
7296abac 1750 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1751 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1752 client->set_memory(client, pd[i].region_offset,
1753 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1754 }
5cd2c5b6
RH
1755 }
1756 } else {
1757 void **pp = *lp;
7296abac 1758 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1759 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1760 }
1761 }
1762}
1763
1764static void phys_page_for_each(CPUPhysMemoryClient *client)
1765{
5cd2c5b6
RH
1766 int i;
1767 for (i = 0; i < P_L1_SIZE; ++i) {
1768 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1769 l1_phys_map + 1);
f6f3fbca 1770 }
f6f3fbca
MT
1771}
1772
1773void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1774{
1775 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1776 phys_page_for_each(client);
1777}
1778
1779void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1780{
1781 QLIST_REMOVE(client, list);
1782}
1783#endif
1784
f193c797
FB
1785static int cmp1(const char *s1, int n, const char *s2)
1786{
1787 if (strlen(s2) != n)
1788 return 0;
1789 return memcmp(s1, s2, n) == 0;
1790}
3b46e624 1791
f193c797
FB
1792/* takes a comma separated list of log masks. Return 0 if error. */
1793int cpu_str_to_log_mask(const char *str)
1794{
c7cd6a37 1795 const CPULogItem *item;
f193c797
FB
1796 int mask;
1797 const char *p, *p1;
1798
1799 p = str;
1800 mask = 0;
1801 for(;;) {
1802 p1 = strchr(p, ',');
1803 if (!p1)
1804 p1 = p + strlen(p);
8e3a9fd2
FB
1805 if(cmp1(p,p1-p,"all")) {
1806 for(item = cpu_log_items; item->mask != 0; item++) {
1807 mask |= item->mask;
1808 }
1809 } else {
f193c797
FB
1810 for(item = cpu_log_items; item->mask != 0; item++) {
1811 if (cmp1(p, p1 - p, item->name))
1812 goto found;
1813 }
1814 return 0;
8e3a9fd2 1815 }
f193c797
FB
1816 found:
1817 mask |= item->mask;
1818 if (*p1 != ',')
1819 break;
1820 p = p1 + 1;
1821 }
1822 return mask;
1823}
ea041c0e 1824
7501267e
FB
1825void cpu_abort(CPUState *env, const char *fmt, ...)
1826{
1827 va_list ap;
493ae1f0 1828 va_list ap2;
7501267e
FB
1829
1830 va_start(ap, fmt);
493ae1f0 1831 va_copy(ap2, ap);
7501267e
FB
1832 fprintf(stderr, "qemu: fatal: ");
1833 vfprintf(stderr, fmt, ap);
1834 fprintf(stderr, "\n");
1835#ifdef TARGET_I386
7fe48483
FB
1836 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1837#else
1838 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1839#endif
93fcfe39
AL
1840 if (qemu_log_enabled()) {
1841 qemu_log("qemu: fatal: ");
1842 qemu_log_vprintf(fmt, ap2);
1843 qemu_log("\n");
f9373291 1844#ifdef TARGET_I386
93fcfe39 1845 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1846#else
93fcfe39 1847 log_cpu_state(env, 0);
f9373291 1848#endif
31b1a7b4 1849 qemu_log_flush();
93fcfe39 1850 qemu_log_close();
924edcae 1851 }
493ae1f0 1852 va_end(ap2);
f9373291 1853 va_end(ap);
fd052bf6
RV
1854#if defined(CONFIG_USER_ONLY)
1855 {
1856 struct sigaction act;
1857 sigfillset(&act.sa_mask);
1858 act.sa_handler = SIG_DFL;
1859 sigaction(SIGABRT, &act, NULL);
1860 }
1861#endif
7501267e
FB
1862 abort();
1863}
1864
c5be9f08
TS
1865CPUState *cpu_copy(CPUState *env)
1866{
01ba9816 1867 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1868 CPUState *next_cpu = new_env->next_cpu;
1869 int cpu_index = new_env->cpu_index;
5a38f081
AL
1870#if defined(TARGET_HAS_ICE)
1871 CPUBreakpoint *bp;
1872 CPUWatchpoint *wp;
1873#endif
1874
c5be9f08 1875 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1876
1877 /* Preserve chaining and index. */
c5be9f08
TS
1878 new_env->next_cpu = next_cpu;
1879 new_env->cpu_index = cpu_index;
5a38f081
AL
1880
1881 /* Clone all break/watchpoints.
1882 Note: Once we support ptrace with hw-debug register access, make sure
1883 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1884 QTAILQ_INIT(&env->breakpoints);
1885 QTAILQ_INIT(&env->watchpoints);
5a38f081 1886#if defined(TARGET_HAS_ICE)
72cf2d4f 1887 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1888 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1889 }
72cf2d4f 1890 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1891 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1892 wp->flags, NULL);
1893 }
1894#endif
1895
c5be9f08
TS
1896 return new_env;
1897}
1898
0124311e
FB
1899#if !defined(CONFIG_USER_ONLY)
1900
5c751e99
EI
1901static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1902{
1903 unsigned int i;
1904
1905 /* Discard jump cache entries for any tb which might potentially
1906 overlap the flushed page. */
1907 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1908 memset (&env->tb_jmp_cache[i], 0,
1909 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1910
1911 i = tb_jmp_cache_hash_page(addr);
1912 memset (&env->tb_jmp_cache[i], 0,
1913 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1914}
1915
08738984
IK
1916static CPUTLBEntry s_cputlb_empty_entry = {
1917 .addr_read = -1,
1918 .addr_write = -1,
1919 .addr_code = -1,
1920 .addend = -1,
1921};
1922
ee8b7021
FB
1923/* NOTE: if flush_global is true, also flush global entries (not
1924 implemented yet) */
1925void tlb_flush(CPUState *env, int flush_global)
33417e70 1926{
33417e70 1927 int i;
0124311e 1928
9fa3e853
FB
1929#if defined(DEBUG_TLB)
1930 printf("tlb_flush:\n");
1931#endif
0124311e
FB
1932 /* must reset current TB so that interrupts cannot modify the
1933 links while we are modifying them */
1934 env->current_tb = NULL;
1935
33417e70 1936 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1937 int mmu_idx;
1938 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1939 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1940 }
33417e70 1941 }
9fa3e853 1942
8a40a180 1943 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1944
d4c430a8
PB
1945 env->tlb_flush_addr = -1;
1946 env->tlb_flush_mask = 0;
e3db7226 1947 tlb_flush_count++;
33417e70
FB
1948}
1949
274da6b2 1950static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1951{
5fafdf24 1952 if (addr == (tlb_entry->addr_read &
84b7b8e7 1953 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1954 addr == (tlb_entry->addr_write &
84b7b8e7 1955 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1956 addr == (tlb_entry->addr_code &
84b7b8e7 1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1958 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1959 }
61382a50
FB
1960}
1961
2e12669a 1962void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1963{
8a40a180 1964 int i;
cfde4bd9 1965 int mmu_idx;
0124311e 1966
9fa3e853 1967#if defined(DEBUG_TLB)
108c49b8 1968 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1969#endif
d4c430a8
PB
1970 /* Check if we need to flush due to large pages. */
1971 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1972#if defined(DEBUG_TLB)
1973 printf("tlb_flush_page: forced full flush ("
1974 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1975 env->tlb_flush_addr, env->tlb_flush_mask);
1976#endif
1977 tlb_flush(env, 1);
1978 return;
1979 }
0124311e
FB
1980 /* must reset current TB so that interrupts cannot modify the
1981 links while we are modifying them */
1982 env->current_tb = NULL;
61382a50
FB
1983
1984 addr &= TARGET_PAGE_MASK;
1985 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1986 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1987 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1988
5c751e99 1989 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1990}
1991
9fa3e853
FB
1992/* update the TLBs so that writes to code in the virtual page 'addr'
1993 can be detected */
c227f099 1994static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1995{
5fafdf24 1996 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1997 ram_addr + TARGET_PAGE_SIZE,
1998 CODE_DIRTY_FLAG);
9fa3e853
FB
1999}
2000
9fa3e853 2001/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2002 tested for self modifying code */
c227f099 2003static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2004 target_ulong vaddr)
9fa3e853 2005{
f7c11b53 2006 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2007}
2008
5fafdf24 2009static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2010 unsigned long start, unsigned long length)
2011{
2012 unsigned long addr;
84b7b8e7
FB
2013 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2014 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2015 if ((addr - start) < length) {
0f459d16 2016 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2017 }
2018 }
2019}
2020
5579c7f3 2021/* Note: start and end must be within the same ram block. */
c227f099 2022void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2023 int dirty_flags)
1ccde1cb
FB
2024{
2025 CPUState *env;
4f2ac237 2026 unsigned long length, start1;
f7c11b53 2027 int i;
1ccde1cb
FB
2028
2029 start &= TARGET_PAGE_MASK;
2030 end = TARGET_PAGE_ALIGN(end);
2031
2032 length = end - start;
2033 if (length == 0)
2034 return;
f7c11b53 2035 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2036
1ccde1cb
FB
2037 /* we modify the TLB cache so that the dirty bit will be set again
2038 when accessing the range */
5579c7f3
PB
2039 start1 = (unsigned long)qemu_get_ram_ptr(start);
2040 /* Chek that we don't span multiple blocks - this breaks the
2041 address comparisons below. */
2042 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2043 != (end - 1) - start) {
2044 abort();
2045 }
2046
6a00d601 2047 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2048 int mmu_idx;
2049 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2050 for(i = 0; i < CPU_TLB_SIZE; i++)
2051 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2052 start1, length);
2053 }
6a00d601 2054 }
1ccde1cb
FB
2055}
2056
74576198
AL
2057int cpu_physical_memory_set_dirty_tracking(int enable)
2058{
f6f3fbca 2059 int ret = 0;
74576198 2060 in_migration = enable;
f6f3fbca
MT
2061 ret = cpu_notify_migration_log(!!enable);
2062 return ret;
74576198
AL
2063}
2064
2065int cpu_physical_memory_get_dirty_tracking(void)
2066{
2067 return in_migration;
2068}
2069
c227f099
AL
2070int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2071 target_phys_addr_t end_addr)
2bec46dc 2072{
7b8f3b78 2073 int ret;
151f7749 2074
f6f3fbca 2075 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2076 return ret;
2bec46dc
AL
2077}
2078
3a7d929e
FB
2079static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2080{
c227f099 2081 ram_addr_t ram_addr;
5579c7f3 2082 void *p;
3a7d929e 2083
84b7b8e7 2084 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2085 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2086 + tlb_entry->addend);
2087 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2088 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2089 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2090 }
2091 }
2092}
2093
2094/* update the TLB according to the current state of the dirty bits */
2095void cpu_tlb_update_dirty(CPUState *env)
2096{
2097 int i;
cfde4bd9
IY
2098 int mmu_idx;
2099 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2100 for(i = 0; i < CPU_TLB_SIZE; i++)
2101 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2102 }
3a7d929e
FB
2103}
2104
0f459d16 2105static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2106{
0f459d16
PB
2107 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2108 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2109}
2110
0f459d16
PB
2111/* update the TLB corresponding to virtual page vaddr
2112 so that it is no longer dirty */
2113static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2114{
1ccde1cb 2115 int i;
cfde4bd9 2116 int mmu_idx;
1ccde1cb 2117
0f459d16 2118 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2119 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2120 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2121 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2122}
2123
d4c430a8
PB
2124/* Our TLB does not support large pages, so remember the area covered by
2125 large pages and trigger a full TLB flush if these are invalidated. */
2126static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2127 target_ulong size)
2128{
2129 target_ulong mask = ~(size - 1);
2130
2131 if (env->tlb_flush_addr == (target_ulong)-1) {
2132 env->tlb_flush_addr = vaddr & mask;
2133 env->tlb_flush_mask = mask;
2134 return;
2135 }
2136 /* Extend the existing region to include the new page.
2137 This is a compromise between unnecessary flushes and the cost
2138 of maintaining a full variable size TLB. */
2139 mask &= env->tlb_flush_mask;
2140 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2141 mask <<= 1;
2142 }
2143 env->tlb_flush_addr &= mask;
2144 env->tlb_flush_mask = mask;
2145}
2146
2147/* Add a new TLB entry. At most one entry for a given virtual address
2148 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2149 supplied size is only used by tlb_flush_page. */
2150void tlb_set_page(CPUState *env, target_ulong vaddr,
2151 target_phys_addr_t paddr, int prot,
2152 int mmu_idx, target_ulong size)
9fa3e853 2153{
92e873b9 2154 PhysPageDesc *p;
4f2ac237 2155 unsigned long pd;
9fa3e853 2156 unsigned int index;
4f2ac237 2157 target_ulong address;
0f459d16 2158 target_ulong code_address;
355b1943 2159 unsigned long addend;
84b7b8e7 2160 CPUTLBEntry *te;
a1d1bb31 2161 CPUWatchpoint *wp;
c227f099 2162 target_phys_addr_t iotlb;
9fa3e853 2163
d4c430a8
PB
2164 assert(size >= TARGET_PAGE_SIZE);
2165 if (size != TARGET_PAGE_SIZE) {
2166 tlb_add_large_page(env, vaddr, size);
2167 }
92e873b9 2168 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2169 if (!p) {
2170 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2171 } else {
2172 pd = p->phys_offset;
9fa3e853
FB
2173 }
2174#if defined(DEBUG_TLB)
6ebbf390
JM
2175 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2176 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2177#endif
2178
0f459d16
PB
2179 address = vaddr;
2180 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2181 /* IO memory case (romd handled later) */
2182 address |= TLB_MMIO;
2183 }
5579c7f3 2184 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2185 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2186 /* Normal RAM. */
2187 iotlb = pd & TARGET_PAGE_MASK;
2188 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2189 iotlb |= IO_MEM_NOTDIRTY;
2190 else
2191 iotlb |= IO_MEM_ROM;
2192 } else {
ccbb4d44 2193 /* IO handlers are currently passed a physical address.
0f459d16
PB
2194 It would be nice to pass an offset from the base address
2195 of that region. This would avoid having to special case RAM,
2196 and avoid full address decoding in every device.
2197 We can't use the high bits of pd for this because
2198 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2199 iotlb = (pd & ~TARGET_PAGE_MASK);
2200 if (p) {
8da3ff18
PB
2201 iotlb += p->region_offset;
2202 } else {
2203 iotlb += paddr;
2204 }
0f459d16
PB
2205 }
2206
2207 code_address = address;
2208 /* Make accesses to pages with watchpoints go via the
2209 watchpoint trap routines. */
72cf2d4f 2210 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2211 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2212 iotlb = io_mem_watch + paddr;
2213 /* TODO: The memory case can be optimized by not trapping
2214 reads of pages with a write breakpoint. */
2215 address |= TLB_MMIO;
6658ffb8 2216 }
0f459d16 2217 }
d79acba4 2218
0f459d16
PB
2219 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2220 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2221 te = &env->tlb_table[mmu_idx][index];
2222 te->addend = addend - vaddr;
2223 if (prot & PAGE_READ) {
2224 te->addr_read = address;
2225 } else {
2226 te->addr_read = -1;
2227 }
5c751e99 2228
0f459d16
PB
2229 if (prot & PAGE_EXEC) {
2230 te->addr_code = code_address;
2231 } else {
2232 te->addr_code = -1;
2233 }
2234 if (prot & PAGE_WRITE) {
2235 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2236 (pd & IO_MEM_ROMD)) {
2237 /* Write access calls the I/O callback. */
2238 te->addr_write = address | TLB_MMIO;
2239 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2240 !cpu_physical_memory_is_dirty(pd)) {
2241 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2242 } else {
0f459d16 2243 te->addr_write = address;
9fa3e853 2244 }
0f459d16
PB
2245 } else {
2246 te->addr_write = -1;
9fa3e853 2247 }
9fa3e853
FB
2248}
2249
0124311e
FB
2250#else
2251
ee8b7021 2252void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2253{
2254}
2255
2e12669a 2256void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2257{
2258}
2259
edf8e2af
MW
2260/*
2261 * Walks guest process memory "regions" one by one
2262 * and calls callback function 'fn' for each region.
2263 */
5cd2c5b6
RH
2264
2265struct walk_memory_regions_data
2266{
2267 walk_memory_regions_fn fn;
2268 void *priv;
2269 unsigned long start;
2270 int prot;
2271};
2272
2273static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2274 abi_ulong end, int new_prot)
5cd2c5b6
RH
2275{
2276 if (data->start != -1ul) {
2277 int rc = data->fn(data->priv, data->start, end, data->prot);
2278 if (rc != 0) {
2279 return rc;
2280 }
2281 }
2282
2283 data->start = (new_prot ? end : -1ul);
2284 data->prot = new_prot;
2285
2286 return 0;
2287}
2288
2289static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2290 abi_ulong base, int level, void **lp)
5cd2c5b6 2291{
b480d9b7 2292 abi_ulong pa;
5cd2c5b6
RH
2293 int i, rc;
2294
2295 if (*lp == NULL) {
2296 return walk_memory_regions_end(data, base, 0);
2297 }
2298
2299 if (level == 0) {
2300 PageDesc *pd = *lp;
7296abac 2301 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2302 int prot = pd[i].flags;
2303
2304 pa = base | (i << TARGET_PAGE_BITS);
2305 if (prot != data->prot) {
2306 rc = walk_memory_regions_end(data, pa, prot);
2307 if (rc != 0) {
2308 return rc;
9fa3e853 2309 }
9fa3e853 2310 }
5cd2c5b6
RH
2311 }
2312 } else {
2313 void **pp = *lp;
7296abac 2314 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2315 pa = base | ((abi_ulong)i <<
2316 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2317 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2318 if (rc != 0) {
2319 return rc;
2320 }
2321 }
2322 }
2323
2324 return 0;
2325}
2326
2327int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2328{
2329 struct walk_memory_regions_data data;
2330 unsigned long i;
2331
2332 data.fn = fn;
2333 data.priv = priv;
2334 data.start = -1ul;
2335 data.prot = 0;
2336
2337 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2338 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2339 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2340 if (rc != 0) {
2341 return rc;
9fa3e853 2342 }
33417e70 2343 }
5cd2c5b6
RH
2344
2345 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2346}
2347
b480d9b7
PB
2348static int dump_region(void *priv, abi_ulong start,
2349 abi_ulong end, unsigned long prot)
edf8e2af
MW
2350{
2351 FILE *f = (FILE *)priv;
2352
b480d9b7
PB
2353 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2354 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2355 start, end, end - start,
2356 ((prot & PAGE_READ) ? 'r' : '-'),
2357 ((prot & PAGE_WRITE) ? 'w' : '-'),
2358 ((prot & PAGE_EXEC) ? 'x' : '-'));
2359
2360 return (0);
2361}
2362
2363/* dump memory mappings */
2364void page_dump(FILE *f)
2365{
2366 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2367 "start", "end", "size", "prot");
2368 walk_memory_regions(f, dump_region);
33417e70
FB
2369}
2370
53a5960a 2371int page_get_flags(target_ulong address)
33417e70 2372{
9fa3e853
FB
2373 PageDesc *p;
2374
2375 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2376 if (!p)
9fa3e853
FB
2377 return 0;
2378 return p->flags;
2379}
2380
376a7909
RH
2381/* Modify the flags of a page and invalidate the code if necessary.
2382 The flag PAGE_WRITE_ORG is positioned automatically depending
2383 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2384void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2385{
376a7909
RH
2386 target_ulong addr, len;
2387
2388 /* This function should never be called with addresses outside the
2389 guest address space. If this assert fires, it probably indicates
2390 a missing call to h2g_valid. */
b480d9b7
PB
2391#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2392 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2393#endif
2394 assert(start < end);
9fa3e853
FB
2395
2396 start = start & TARGET_PAGE_MASK;
2397 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2398
2399 if (flags & PAGE_WRITE) {
9fa3e853 2400 flags |= PAGE_WRITE_ORG;
376a7909
RH
2401 }
2402
2403 for (addr = start, len = end - start;
2404 len != 0;
2405 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2406 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2407
2408 /* If the write protection bit is set, then we invalidate
2409 the code inside. */
5fafdf24 2410 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2411 (flags & PAGE_WRITE) &&
2412 p->first_tb) {
d720b93d 2413 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2414 }
2415 p->flags = flags;
2416 }
33417e70
FB
2417}
2418
3d97b40b
TS
2419int page_check_range(target_ulong start, target_ulong len, int flags)
2420{
2421 PageDesc *p;
2422 target_ulong end;
2423 target_ulong addr;
2424
376a7909
RH
2425 /* This function should never be called with addresses outside the
2426 guest address space. If this assert fires, it probably indicates
2427 a missing call to h2g_valid. */
338e9e6c
BS
2428#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2429 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2430#endif
2431
3e0650a9
RH
2432 if (len == 0) {
2433 return 0;
2434 }
376a7909
RH
2435 if (start + len - 1 < start) {
2436 /* We've wrapped around. */
55f280c9 2437 return -1;
376a7909 2438 }
55f280c9 2439
3d97b40b
TS
2440 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2441 start = start & TARGET_PAGE_MASK;
2442
376a7909
RH
2443 for (addr = start, len = end - start;
2444 len != 0;
2445 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2446 p = page_find(addr >> TARGET_PAGE_BITS);
2447 if( !p )
2448 return -1;
2449 if( !(p->flags & PAGE_VALID) )
2450 return -1;
2451
dae3270c 2452 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2453 return -1;
dae3270c
FB
2454 if (flags & PAGE_WRITE) {
2455 if (!(p->flags & PAGE_WRITE_ORG))
2456 return -1;
2457 /* unprotect the page if it was put read-only because it
2458 contains translated code */
2459 if (!(p->flags & PAGE_WRITE)) {
2460 if (!page_unprotect(addr, 0, NULL))
2461 return -1;
2462 }
2463 return 0;
2464 }
3d97b40b
TS
2465 }
2466 return 0;
2467}
2468
9fa3e853 2469/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2470 page. Return TRUE if the fault was successfully handled. */
53a5960a 2471int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2472{
45d679d6
AJ
2473 unsigned int prot;
2474 PageDesc *p;
53a5960a 2475 target_ulong host_start, host_end, addr;
9fa3e853 2476
c8a706fe
PB
2477 /* Technically this isn't safe inside a signal handler. However we
2478 know this only ever happens in a synchronous SEGV handler, so in
2479 practice it seems to be ok. */
2480 mmap_lock();
2481
45d679d6
AJ
2482 p = page_find(address >> TARGET_PAGE_BITS);
2483 if (!p) {
c8a706fe 2484 mmap_unlock();
9fa3e853 2485 return 0;
c8a706fe 2486 }
45d679d6 2487
9fa3e853
FB
2488 /* if the page was really writable, then we change its
2489 protection back to writable */
45d679d6
AJ
2490 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2491 host_start = address & qemu_host_page_mask;
2492 host_end = host_start + qemu_host_page_size;
2493
2494 prot = 0;
2495 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2496 p = page_find(addr >> TARGET_PAGE_BITS);
2497 p->flags |= PAGE_WRITE;
2498 prot |= p->flags;
2499
9fa3e853
FB
2500 /* and since the content will be modified, we must invalidate
2501 the corresponding translated code. */
45d679d6 2502 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2503#ifdef DEBUG_TB_CHECK
45d679d6 2504 tb_invalidate_check(addr);
9fa3e853 2505#endif
9fa3e853 2506 }
45d679d6
AJ
2507 mprotect((void *)g2h(host_start), qemu_host_page_size,
2508 prot & PAGE_BITS);
2509
2510 mmap_unlock();
2511 return 1;
9fa3e853 2512 }
c8a706fe 2513 mmap_unlock();
9fa3e853
FB
2514 return 0;
2515}
2516
6a00d601
FB
2517static inline void tlb_set_dirty(CPUState *env,
2518 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2519{
2520}
9fa3e853
FB
2521#endif /* defined(CONFIG_USER_ONLY) */
2522
e2eef170 2523#if !defined(CONFIG_USER_ONLY)
8da3ff18 2524
c04b2b78
PB
2525#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2526typedef struct subpage_t {
2527 target_phys_addr_t base;
f6405247
RH
2528 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2529 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2530} subpage_t;
2531
c227f099
AL
2532static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2533 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2534static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2535 ram_addr_t orig_memory,
2536 ram_addr_t region_offset);
db7b5426
BS
2537#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2538 need_subpage) \
2539 do { \
2540 if (addr > start_addr) \
2541 start_addr2 = 0; \
2542 else { \
2543 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2544 if (start_addr2 > 0) \
2545 need_subpage = 1; \
2546 } \
2547 \
49e9fba2 2548 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2549 end_addr2 = TARGET_PAGE_SIZE - 1; \
2550 else { \
2551 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2552 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2553 need_subpage = 1; \
2554 } \
2555 } while (0)
2556
8f2498f9
MT
2557/* register physical memory.
2558 For RAM, 'size' must be a multiple of the target page size.
2559 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2560 io memory page. The address used when calling the IO function is
2561 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2562 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2563 before calculating this offset. This should not be a problem unless
2564 the low bits of start_addr and region_offset differ. */
c227f099
AL
2565void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2566 ram_addr_t size,
2567 ram_addr_t phys_offset,
2568 ram_addr_t region_offset)
33417e70 2569{
c227f099 2570 target_phys_addr_t addr, end_addr;
92e873b9 2571 PhysPageDesc *p;
9d42037b 2572 CPUState *env;
c227f099 2573 ram_addr_t orig_size = size;
f6405247 2574 subpage_t *subpage;
33417e70 2575
f6f3fbca
MT
2576 cpu_notify_set_memory(start_addr, size, phys_offset);
2577
67c4d23c
PB
2578 if (phys_offset == IO_MEM_UNASSIGNED) {
2579 region_offset = start_addr;
2580 }
8da3ff18 2581 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2582 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2583 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2584 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2585 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2586 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2587 ram_addr_t orig_memory = p->phys_offset;
2588 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2589 int need_subpage = 0;
2590
2591 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2592 need_subpage);
f6405247 2593 if (need_subpage) {
db7b5426
BS
2594 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2595 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2596 &p->phys_offset, orig_memory,
2597 p->region_offset);
db7b5426
BS
2598 } else {
2599 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2600 >> IO_MEM_SHIFT];
2601 }
8da3ff18
PB
2602 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2603 region_offset);
2604 p->region_offset = 0;
db7b5426
BS
2605 } else {
2606 p->phys_offset = phys_offset;
2607 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2608 (phys_offset & IO_MEM_ROMD))
2609 phys_offset += TARGET_PAGE_SIZE;
2610 }
2611 } else {
2612 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2613 p->phys_offset = phys_offset;
8da3ff18 2614 p->region_offset = region_offset;
db7b5426 2615 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2616 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2617 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2618 } else {
c227f099 2619 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2620 int need_subpage = 0;
2621
2622 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2623 end_addr2, need_subpage);
2624
f6405247 2625 if (need_subpage) {
db7b5426 2626 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2627 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2628 addr & TARGET_PAGE_MASK);
db7b5426 2629 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2630 phys_offset, region_offset);
2631 p->region_offset = 0;
db7b5426
BS
2632 }
2633 }
2634 }
8da3ff18 2635 region_offset += TARGET_PAGE_SIZE;
33417e70 2636 }
3b46e624 2637
9d42037b
FB
2638 /* since each CPU stores ram addresses in its TLB cache, we must
2639 reset the modified entries */
2640 /* XXX: slow ! */
2641 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2642 tlb_flush(env, 1);
2643 }
33417e70
FB
2644}
2645
ba863458 2646/* XXX: temporary until new memory mapping API */
c227f099 2647ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2648{
2649 PhysPageDesc *p;
2650
2651 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2652 if (!p)
2653 return IO_MEM_UNASSIGNED;
2654 return p->phys_offset;
2655}
2656
c227f099 2657void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2658{
2659 if (kvm_enabled())
2660 kvm_coalesce_mmio_region(addr, size);
2661}
2662
c227f099 2663void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2664{
2665 if (kvm_enabled())
2666 kvm_uncoalesce_mmio_region(addr, size);
2667}
2668
62a2744c
SY
2669void qemu_flush_coalesced_mmio_buffer(void)
2670{
2671 if (kvm_enabled())
2672 kvm_flush_coalesced_mmio_buffer();
2673}
2674
c902760f
MT
2675#if defined(__linux__) && !defined(TARGET_S390X)
2676
2677#include <sys/vfs.h>
2678
2679#define HUGETLBFS_MAGIC 0x958458f6
2680
2681static long gethugepagesize(const char *path)
2682{
2683 struct statfs fs;
2684 int ret;
2685
2686 do {
2687 ret = statfs(path, &fs);
2688 } while (ret != 0 && errno == EINTR);
2689
2690 if (ret != 0) {
6adc0549 2691 perror(path);
c902760f
MT
2692 return 0;
2693 }
2694
2695 if (fs.f_type != HUGETLBFS_MAGIC)
2696 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2697
2698 return fs.f_bsize;
2699}
2700
2701static void *file_ram_alloc(ram_addr_t memory, const char *path)
2702{
2703 char *filename;
2704 void *area;
2705 int fd;
2706#ifdef MAP_POPULATE
2707 int flags;
2708#endif
2709 unsigned long hpagesize;
2710
2711 hpagesize = gethugepagesize(path);
2712 if (!hpagesize) {
2713 return NULL;
2714 }
2715
2716 if (memory < hpagesize) {
2717 return NULL;
2718 }
2719
2720 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2721 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2722 return NULL;
2723 }
2724
2725 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2726 return NULL;
2727 }
2728
2729 fd = mkstemp(filename);
2730 if (fd < 0) {
6adc0549 2731 perror("unable to create backing store for hugepages");
c902760f
MT
2732 free(filename);
2733 return NULL;
2734 }
2735 unlink(filename);
2736 free(filename);
2737
2738 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2739
2740 /*
2741 * ftruncate is not supported by hugetlbfs in older
2742 * hosts, so don't bother bailing out on errors.
2743 * If anything goes wrong with it under other filesystems,
2744 * mmap will fail.
2745 */
2746 if (ftruncate(fd, memory))
2747 perror("ftruncate");
2748
2749#ifdef MAP_POPULATE
2750 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2751 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2752 * to sidestep this quirk.
2753 */
2754 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2755 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2756#else
2757 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2758#endif
2759 if (area == MAP_FAILED) {
2760 perror("file_ram_alloc: can't mmap RAM pages");
2761 close(fd);
2762 return (NULL);
2763 }
2764 return area;
2765}
2766#endif
2767
c227f099 2768ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2769{
2770 RAMBlock *new_block;
2771
94a6b54f
PB
2772 size = TARGET_PAGE_ALIGN(size);
2773 new_block = qemu_malloc(sizeof(*new_block));
2774
c902760f
MT
2775 if (mem_path) {
2776#if defined (__linux__) && !defined(TARGET_S390X)
2777 new_block->host = file_ram_alloc(size, mem_path);
618a568d
MT
2778 if (!new_block->host) {
2779 new_block->host = qemu_vmalloc(size);
2780#ifdef MADV_MERGEABLE
2781 madvise(new_block->host, size, MADV_MERGEABLE);
2782#endif
2783 }
c902760f
MT
2784#else
2785 fprintf(stderr, "-mem-path option unsupported\n");
2786 exit(1);
2787#endif
2788 } else {
6b02494d 2789#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2790 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2791 new_block->host = mmap((void*)0x1000000, size,
2792 PROT_EXEC|PROT_READ|PROT_WRITE,
2793 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2794#else
c902760f 2795 new_block->host = qemu_vmalloc(size);
6b02494d 2796#endif
ccb167e9 2797#ifdef MADV_MERGEABLE
c902760f 2798 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2799#endif
c902760f 2800 }
94a6b54f
PB
2801 new_block->offset = last_ram_offset;
2802 new_block->length = size;
2803
2804 new_block->next = ram_blocks;
2805 ram_blocks = new_block;
2806
2807 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2808 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2809 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2810 0xff, size >> TARGET_PAGE_BITS);
2811
2812 last_ram_offset += size;
2813
6f0437e8
JK
2814 if (kvm_enabled())
2815 kvm_setup_guest_memory(new_block->host, size);
2816
94a6b54f
PB
2817 return new_block->offset;
2818}
e9a1ab19 2819
c227f099 2820void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2821{
94a6b54f 2822 /* TODO: implement this. */
e9a1ab19
FB
2823}
2824
dc828ca1 2825/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2826 With the exception of the softmmu code in this file, this should
2827 only be used for local memory (e.g. video ram) that the device owns,
2828 and knows it isn't going to access beyond the end of the block.
2829
2830 It should not be used for general purpose DMA.
2831 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2832 */
c227f099 2833void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2834{
94a6b54f
PB
2835 RAMBlock *prev;
2836 RAMBlock **prevp;
2837 RAMBlock *block;
2838
94a6b54f
PB
2839 prev = NULL;
2840 prevp = &ram_blocks;
2841 block = ram_blocks;
2842 while (block && (block->offset > addr
2843 || block->offset + block->length <= addr)) {
2844 if (prev)
2845 prevp = &prev->next;
2846 prev = block;
2847 block = block->next;
2848 }
2849 if (!block) {
2850 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2851 abort();
2852 }
2853 /* Move this entry to to start of the list. */
2854 if (prev) {
2855 prev->next = block->next;
2856 block->next = *prevp;
2857 *prevp = block;
2858 }
2859 return block->host + (addr - block->offset);
dc828ca1
PB
2860}
2861
5579c7f3
PB
2862/* Some of the softmmu routines need to translate from a host pointer
2863 (typically a TLB entry) back to a ram offset. */
c227f099 2864ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2865{
94a6b54f
PB
2866 RAMBlock *block;
2867 uint8_t *host = ptr;
2868
94a6b54f
PB
2869 block = ram_blocks;
2870 while (block && (block->host > host
2871 || block->host + block->length <= host)) {
94a6b54f
PB
2872 block = block->next;
2873 }
2874 if (!block) {
2875 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2876 abort();
2877 }
2878 return block->offset + (host - block->host);
5579c7f3
PB
2879}
2880
c227f099 2881static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2882{
67d3b957 2883#ifdef DEBUG_UNASSIGNED
ab3d1727 2884 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2885#endif
faed1c2a 2886#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2887 do_unassigned_access(addr, 0, 0, 0, 1);
2888#endif
2889 return 0;
2890}
2891
c227f099 2892static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2893{
2894#ifdef DEBUG_UNASSIGNED
2895 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2896#endif
faed1c2a 2897#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2898 do_unassigned_access(addr, 0, 0, 0, 2);
2899#endif
2900 return 0;
2901}
2902
c227f099 2903static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2904{
2905#ifdef DEBUG_UNASSIGNED
2906 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2907#endif
faed1c2a 2908#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2909 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2910#endif
33417e70
FB
2911 return 0;
2912}
2913
c227f099 2914static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2915{
67d3b957 2916#ifdef DEBUG_UNASSIGNED
ab3d1727 2917 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2918#endif
faed1c2a 2919#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2920 do_unassigned_access(addr, 1, 0, 0, 1);
2921#endif
2922}
2923
c227f099 2924static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2925{
2926#ifdef DEBUG_UNASSIGNED
2927 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2928#endif
faed1c2a 2929#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2930 do_unassigned_access(addr, 1, 0, 0, 2);
2931#endif
2932}
2933
c227f099 2934static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2935{
2936#ifdef DEBUG_UNASSIGNED
2937 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2938#endif
faed1c2a 2939#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2940 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2941#endif
33417e70
FB
2942}
2943
d60efc6b 2944static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2945 unassigned_mem_readb,
e18231a3
BS
2946 unassigned_mem_readw,
2947 unassigned_mem_readl,
33417e70
FB
2948};
2949
d60efc6b 2950static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2951 unassigned_mem_writeb,
e18231a3
BS
2952 unassigned_mem_writew,
2953 unassigned_mem_writel,
33417e70
FB
2954};
2955
c227f099 2956static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2957 uint32_t val)
9fa3e853 2958{
3a7d929e 2959 int dirty_flags;
f7c11b53 2960 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2961 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2962#if !defined(CONFIG_USER_ONLY)
3a7d929e 2963 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 2964 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2965#endif
3a7d929e 2966 }
5579c7f3 2967 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2968 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2969 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2970 /* we remove the notdirty callback only if the code has been
2971 flushed */
2972 if (dirty_flags == 0xff)
2e70f6ef 2973 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2974}
2975
c227f099 2976static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2977 uint32_t val)
9fa3e853 2978{
3a7d929e 2979 int dirty_flags;
f7c11b53 2980 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2981 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2982#if !defined(CONFIG_USER_ONLY)
3a7d929e 2983 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 2984 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2985#endif
3a7d929e 2986 }
5579c7f3 2987 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2988 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2989 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2990 /* we remove the notdirty callback only if the code has been
2991 flushed */
2992 if (dirty_flags == 0xff)
2e70f6ef 2993 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2994}
2995
c227f099 2996static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2997 uint32_t val)
9fa3e853 2998{
3a7d929e 2999 int dirty_flags;
f7c11b53 3000 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3001 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3002#if !defined(CONFIG_USER_ONLY)
3a7d929e 3003 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3004 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3005#endif
3a7d929e 3006 }
5579c7f3 3007 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3008 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3009 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3010 /* we remove the notdirty callback only if the code has been
3011 flushed */
3012 if (dirty_flags == 0xff)
2e70f6ef 3013 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3014}
3015
d60efc6b 3016static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3017 NULL, /* never used */
3018 NULL, /* never used */
3019 NULL, /* never used */
3020};
3021
d60efc6b 3022static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3023 notdirty_mem_writeb,
3024 notdirty_mem_writew,
3025 notdirty_mem_writel,
3026};
3027
0f459d16 3028/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3029static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3030{
3031 CPUState *env = cpu_single_env;
06d55cc1
AL
3032 target_ulong pc, cs_base;
3033 TranslationBlock *tb;
0f459d16 3034 target_ulong vaddr;
a1d1bb31 3035 CPUWatchpoint *wp;
06d55cc1 3036 int cpu_flags;
0f459d16 3037
06d55cc1
AL
3038 if (env->watchpoint_hit) {
3039 /* We re-entered the check after replacing the TB. Now raise
3040 * the debug interrupt so that is will trigger after the
3041 * current instruction. */
3042 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3043 return;
3044 }
2e70f6ef 3045 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3046 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3047 if ((vaddr == (wp->vaddr & len_mask) ||
3048 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3049 wp->flags |= BP_WATCHPOINT_HIT;
3050 if (!env->watchpoint_hit) {
3051 env->watchpoint_hit = wp;
3052 tb = tb_find_pc(env->mem_io_pc);
3053 if (!tb) {
3054 cpu_abort(env, "check_watchpoint: could not find TB for "
3055 "pc=%p", (void *)env->mem_io_pc);
3056 }
3057 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3058 tb_phys_invalidate(tb, -1);
3059 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3060 env->exception_index = EXCP_DEBUG;
3061 } else {
3062 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3063 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3064 }
3065 cpu_resume_from_signal(env, NULL);
06d55cc1 3066 }
6e140f28
AL
3067 } else {
3068 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3069 }
3070 }
3071}
3072
6658ffb8
PB
3073/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3074 so these check for a hit then pass through to the normal out-of-line
3075 phys routines. */
c227f099 3076static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3077{
b4051334 3078 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3079 return ldub_phys(addr);
3080}
3081
c227f099 3082static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3083{
b4051334 3084 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3085 return lduw_phys(addr);
3086}
3087
c227f099 3088static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3089{
b4051334 3090 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3091 return ldl_phys(addr);
3092}
3093
c227f099 3094static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3095 uint32_t val)
3096{
b4051334 3097 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3098 stb_phys(addr, val);
3099}
3100
c227f099 3101static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3102 uint32_t val)
3103{
b4051334 3104 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3105 stw_phys(addr, val);
3106}
3107
c227f099 3108static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3109 uint32_t val)
3110{
b4051334 3111 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3112 stl_phys(addr, val);
3113}
3114
d60efc6b 3115static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3116 watch_mem_readb,
3117 watch_mem_readw,
3118 watch_mem_readl,
3119};
3120
d60efc6b 3121static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3122 watch_mem_writeb,
3123 watch_mem_writew,
3124 watch_mem_writel,
3125};
6658ffb8 3126
f6405247
RH
3127static inline uint32_t subpage_readlen (subpage_t *mmio,
3128 target_phys_addr_t addr,
3129 unsigned int len)
db7b5426 3130{
f6405247 3131 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3132#if defined(DEBUG_SUBPAGE)
3133 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3134 mmio, len, addr, idx);
3135#endif
db7b5426 3136
f6405247
RH
3137 addr += mmio->region_offset[idx];
3138 idx = mmio->sub_io_index[idx];
3139 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3140}
3141
c227f099 3142static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3143 uint32_t value, unsigned int len)
db7b5426 3144{
f6405247 3145 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3146#if defined(DEBUG_SUBPAGE)
f6405247
RH
3147 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3148 __func__, mmio, len, addr, idx, value);
db7b5426 3149#endif
f6405247
RH
3150
3151 addr += mmio->region_offset[idx];
3152 idx = mmio->sub_io_index[idx];
3153 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3154}
3155
c227f099 3156static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3157{
db7b5426
BS
3158 return subpage_readlen(opaque, addr, 0);
3159}
3160
c227f099 3161static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3162 uint32_t value)
3163{
db7b5426
BS
3164 subpage_writelen(opaque, addr, value, 0);
3165}
3166
c227f099 3167static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3168{
db7b5426
BS
3169 return subpage_readlen(opaque, addr, 1);
3170}
3171
c227f099 3172static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3173 uint32_t value)
3174{
db7b5426
BS
3175 subpage_writelen(opaque, addr, value, 1);
3176}
3177
c227f099 3178static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3179{
db7b5426
BS
3180 return subpage_readlen(opaque, addr, 2);
3181}
3182
f6405247
RH
3183static void subpage_writel (void *opaque, target_phys_addr_t addr,
3184 uint32_t value)
db7b5426 3185{
db7b5426
BS
3186 subpage_writelen(opaque, addr, value, 2);
3187}
3188
d60efc6b 3189static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3190 &subpage_readb,
3191 &subpage_readw,
3192 &subpage_readl,
3193};
3194
d60efc6b 3195static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3196 &subpage_writeb,
3197 &subpage_writew,
3198 &subpage_writel,
3199};
3200
c227f099
AL
3201static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3202 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3203{
3204 int idx, eidx;
3205
3206 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3207 return -1;
3208 idx = SUBPAGE_IDX(start);
3209 eidx = SUBPAGE_IDX(end);
3210#if defined(DEBUG_SUBPAGE)
0bf9e31a 3211 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3212 mmio, start, end, idx, eidx, memory);
3213#endif
f6405247 3214 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3215 for (; idx <= eidx; idx++) {
f6405247
RH
3216 mmio->sub_io_index[idx] = memory;
3217 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3218 }
3219
3220 return 0;
3221}
3222
f6405247
RH
3223static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3224 ram_addr_t orig_memory,
3225 ram_addr_t region_offset)
db7b5426 3226{
c227f099 3227 subpage_t *mmio;
db7b5426
BS
3228 int subpage_memory;
3229
c227f099 3230 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3231
3232 mmio->base = base;
1eed09cb 3233 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3234#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3235 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3236 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3237#endif
1eec614b 3238 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3239 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3240
3241 return mmio;
3242}
3243
88715657
AL
3244static int get_free_io_mem_idx(void)
3245{
3246 int i;
3247
3248 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3249 if (!io_mem_used[i]) {
3250 io_mem_used[i] = 1;
3251 return i;
3252 }
c6703b47 3253 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3254 return -1;
3255}
3256
33417e70
FB
3257/* mem_read and mem_write are arrays of functions containing the
3258 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3259 2). Functions can be omitted with a NULL function pointer.
3ee89922 3260 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3261 modified. If it is zero, a new io zone is allocated. The return
3262 value can be used with cpu_register_physical_memory(). (-1) is
3263 returned if error. */
1eed09cb 3264static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3265 CPUReadMemoryFunc * const *mem_read,
3266 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3267 void *opaque)
33417e70 3268{
3cab721d
RH
3269 int i;
3270
33417e70 3271 if (io_index <= 0) {
88715657
AL
3272 io_index = get_free_io_mem_idx();
3273 if (io_index == -1)
3274 return io_index;
33417e70 3275 } else {
1eed09cb 3276 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3277 if (io_index >= IO_MEM_NB_ENTRIES)
3278 return -1;
3279 }
b5ff1b31 3280
3cab721d
RH
3281 for (i = 0; i < 3; ++i) {
3282 io_mem_read[io_index][i]
3283 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3284 }
3285 for (i = 0; i < 3; ++i) {
3286 io_mem_write[io_index][i]
3287 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3288 }
a4193c8a 3289 io_mem_opaque[io_index] = opaque;
f6405247
RH
3290
3291 return (io_index << IO_MEM_SHIFT);
33417e70 3292}
61382a50 3293
d60efc6b
BS
3294int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3295 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3296 void *opaque)
3297{
3298 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3299}
3300
88715657
AL
3301void cpu_unregister_io_memory(int io_table_address)
3302{
3303 int i;
3304 int io_index = io_table_address >> IO_MEM_SHIFT;
3305
3306 for (i=0;i < 3; i++) {
3307 io_mem_read[io_index][i] = unassigned_mem_read[i];
3308 io_mem_write[io_index][i] = unassigned_mem_write[i];
3309 }
3310 io_mem_opaque[io_index] = NULL;
3311 io_mem_used[io_index] = 0;
3312}
3313
e9179ce1
AK
3314static void io_mem_init(void)
3315{
3316 int i;
3317
3318 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3319 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3320 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3321 for (i=0; i<5; i++)
3322 io_mem_used[i] = 1;
3323
3324 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3325 watch_mem_write, NULL);
e9179ce1
AK
3326}
3327
e2eef170
PB
3328#endif /* !defined(CONFIG_USER_ONLY) */
3329
13eb76e0
FB
3330/* physical memory access (slow version, mainly for debug) */
3331#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3332int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3333 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3334{
3335 int l, flags;
3336 target_ulong page;
53a5960a 3337 void * p;
13eb76e0
FB
3338
3339 while (len > 0) {
3340 page = addr & TARGET_PAGE_MASK;
3341 l = (page + TARGET_PAGE_SIZE) - addr;
3342 if (l > len)
3343 l = len;
3344 flags = page_get_flags(page);
3345 if (!(flags & PAGE_VALID))
a68fe89c 3346 return -1;
13eb76e0
FB
3347 if (is_write) {
3348 if (!(flags & PAGE_WRITE))
a68fe89c 3349 return -1;
579a97f7 3350 /* XXX: this code should not depend on lock_user */
72fb7daa 3351 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3352 return -1;
72fb7daa
AJ
3353 memcpy(p, buf, l);
3354 unlock_user(p, addr, l);
13eb76e0
FB
3355 } else {
3356 if (!(flags & PAGE_READ))
a68fe89c 3357 return -1;
579a97f7 3358 /* XXX: this code should not depend on lock_user */
72fb7daa 3359 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3360 return -1;
72fb7daa 3361 memcpy(buf, p, l);
5b257578 3362 unlock_user(p, addr, 0);
13eb76e0
FB
3363 }
3364 len -= l;
3365 buf += l;
3366 addr += l;
3367 }
a68fe89c 3368 return 0;
13eb76e0 3369}
8df1cd07 3370
13eb76e0 3371#else
c227f099 3372void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3373 int len, int is_write)
3374{
3375 int l, io_index;
3376 uint8_t *ptr;
3377 uint32_t val;
c227f099 3378 target_phys_addr_t page;
2e12669a 3379 unsigned long pd;
92e873b9 3380 PhysPageDesc *p;
3b46e624 3381
13eb76e0
FB
3382 while (len > 0) {
3383 page = addr & TARGET_PAGE_MASK;
3384 l = (page + TARGET_PAGE_SIZE) - addr;
3385 if (l > len)
3386 l = len;
92e873b9 3387 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3388 if (!p) {
3389 pd = IO_MEM_UNASSIGNED;
3390 } else {
3391 pd = p->phys_offset;
3392 }
3b46e624 3393
13eb76e0 3394 if (is_write) {
3a7d929e 3395 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3396 target_phys_addr_t addr1 = addr;
13eb76e0 3397 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3398 if (p)
6c2934db 3399 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3400 /* XXX: could force cpu_single_env to NULL to avoid
3401 potential bugs */
6c2934db 3402 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3403 /* 32 bit write access */
c27004ec 3404 val = ldl_p(buf);
6c2934db 3405 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3406 l = 4;
6c2934db 3407 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3408 /* 16 bit write access */
c27004ec 3409 val = lduw_p(buf);
6c2934db 3410 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3411 l = 2;
3412 } else {
1c213d19 3413 /* 8 bit write access */
c27004ec 3414 val = ldub_p(buf);
6c2934db 3415 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3416 l = 1;
3417 }
3418 } else {
b448f2f3
FB
3419 unsigned long addr1;
3420 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3421 /* RAM case */
5579c7f3 3422 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3423 memcpy(ptr, buf, l);
3a7d929e
FB
3424 if (!cpu_physical_memory_is_dirty(addr1)) {
3425 /* invalidate code */
3426 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3427 /* set dirty bit */
f7c11b53
YT
3428 cpu_physical_memory_set_dirty_flags(
3429 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3430 }
13eb76e0
FB
3431 }
3432 } else {
5fafdf24 3433 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3434 !(pd & IO_MEM_ROMD)) {
c227f099 3435 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3436 /* I/O case */
3437 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3438 if (p)
6c2934db
AJ
3439 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3440 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3441 /* 32 bit read access */
6c2934db 3442 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3443 stl_p(buf, val);
13eb76e0 3444 l = 4;
6c2934db 3445 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3446 /* 16 bit read access */
6c2934db 3447 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3448 stw_p(buf, val);
13eb76e0
FB
3449 l = 2;
3450 } else {
1c213d19 3451 /* 8 bit read access */
6c2934db 3452 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3453 stb_p(buf, val);
13eb76e0
FB
3454 l = 1;
3455 }
3456 } else {
3457 /* RAM case */
5579c7f3 3458 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3459 (addr & ~TARGET_PAGE_MASK);
3460 memcpy(buf, ptr, l);
3461 }
3462 }
3463 len -= l;
3464 buf += l;
3465 addr += l;
3466 }
3467}
8df1cd07 3468
d0ecd2aa 3469/* used for ROM loading : can write in RAM and ROM */
c227f099 3470void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3471 const uint8_t *buf, int len)
3472{
3473 int l;
3474 uint8_t *ptr;
c227f099 3475 target_phys_addr_t page;
d0ecd2aa
FB
3476 unsigned long pd;
3477 PhysPageDesc *p;
3b46e624 3478
d0ecd2aa
FB
3479 while (len > 0) {
3480 page = addr & TARGET_PAGE_MASK;
3481 l = (page + TARGET_PAGE_SIZE) - addr;
3482 if (l > len)
3483 l = len;
3484 p = phys_page_find(page >> TARGET_PAGE_BITS);
3485 if (!p) {
3486 pd = IO_MEM_UNASSIGNED;
3487 } else {
3488 pd = p->phys_offset;
3489 }
3b46e624 3490
d0ecd2aa 3491 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3492 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3493 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3494 /* do nothing */
3495 } else {
3496 unsigned long addr1;
3497 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3498 /* ROM/RAM case */
5579c7f3 3499 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3500 memcpy(ptr, buf, l);
3501 }
3502 len -= l;
3503 buf += l;
3504 addr += l;
3505 }
3506}
3507
6d16c2f8
AL
3508typedef struct {
3509 void *buffer;
c227f099
AL
3510 target_phys_addr_t addr;
3511 target_phys_addr_t len;
6d16c2f8
AL
3512} BounceBuffer;
3513
3514static BounceBuffer bounce;
3515
ba223c29
AL
3516typedef struct MapClient {
3517 void *opaque;
3518 void (*callback)(void *opaque);
72cf2d4f 3519 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3520} MapClient;
3521
72cf2d4f
BS
3522static QLIST_HEAD(map_client_list, MapClient) map_client_list
3523 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3524
3525void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3526{
3527 MapClient *client = qemu_malloc(sizeof(*client));
3528
3529 client->opaque = opaque;
3530 client->callback = callback;
72cf2d4f 3531 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3532 return client;
3533}
3534
3535void cpu_unregister_map_client(void *_client)
3536{
3537 MapClient *client = (MapClient *)_client;
3538
72cf2d4f 3539 QLIST_REMOVE(client, link);
34d5e948 3540 qemu_free(client);
ba223c29
AL
3541}
3542
3543static void cpu_notify_map_clients(void)
3544{
3545 MapClient *client;
3546
72cf2d4f
BS
3547 while (!QLIST_EMPTY(&map_client_list)) {
3548 client = QLIST_FIRST(&map_client_list);
ba223c29 3549 client->callback(client->opaque);
34d5e948 3550 cpu_unregister_map_client(client);
ba223c29
AL
3551 }
3552}
3553
6d16c2f8
AL
3554/* Map a physical memory region into a host virtual address.
3555 * May map a subset of the requested range, given by and returned in *plen.
3556 * May return NULL if resources needed to perform the mapping are exhausted.
3557 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3558 * Use cpu_register_map_client() to know when retrying the map operation is
3559 * likely to succeed.
6d16c2f8 3560 */
c227f099
AL
3561void *cpu_physical_memory_map(target_phys_addr_t addr,
3562 target_phys_addr_t *plen,
6d16c2f8
AL
3563 int is_write)
3564{
c227f099
AL
3565 target_phys_addr_t len = *plen;
3566 target_phys_addr_t done = 0;
6d16c2f8
AL
3567 int l;
3568 uint8_t *ret = NULL;
3569 uint8_t *ptr;
c227f099 3570 target_phys_addr_t page;
6d16c2f8
AL
3571 unsigned long pd;
3572 PhysPageDesc *p;
3573 unsigned long addr1;
3574
3575 while (len > 0) {
3576 page = addr & TARGET_PAGE_MASK;
3577 l = (page + TARGET_PAGE_SIZE) - addr;
3578 if (l > len)
3579 l = len;
3580 p = phys_page_find(page >> TARGET_PAGE_BITS);
3581 if (!p) {
3582 pd = IO_MEM_UNASSIGNED;
3583 } else {
3584 pd = p->phys_offset;
3585 }
3586
3587 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3588 if (done || bounce.buffer) {
3589 break;
3590 }
3591 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3592 bounce.addr = addr;
3593 bounce.len = l;
3594 if (!is_write) {
3595 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3596 }
3597 ptr = bounce.buffer;
3598 } else {
3599 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3600 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3601 }
3602 if (!done) {
3603 ret = ptr;
3604 } else if (ret + done != ptr) {
3605 break;
3606 }
3607
3608 len -= l;
3609 addr += l;
3610 done += l;
3611 }
3612 *plen = done;
3613 return ret;
3614}
3615
3616/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3617 * Will also mark the memory as dirty if is_write == 1. access_len gives
3618 * the amount of memory that was actually read or written by the caller.
3619 */
c227f099
AL
3620void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3621 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3622{
3623 if (buffer != bounce.buffer) {
3624 if (is_write) {
c227f099 3625 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3626 while (access_len) {
3627 unsigned l;
3628 l = TARGET_PAGE_SIZE;
3629 if (l > access_len)
3630 l = access_len;
3631 if (!cpu_physical_memory_is_dirty(addr1)) {
3632 /* invalidate code */
3633 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3634 /* set dirty bit */
f7c11b53
YT
3635 cpu_physical_memory_set_dirty_flags(
3636 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3637 }
3638 addr1 += l;
3639 access_len -= l;
3640 }
3641 }
3642 return;
3643 }
3644 if (is_write) {
3645 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3646 }
f8a83245 3647 qemu_vfree(bounce.buffer);
6d16c2f8 3648 bounce.buffer = NULL;
ba223c29 3649 cpu_notify_map_clients();
6d16c2f8 3650}
d0ecd2aa 3651
8df1cd07 3652/* warning: addr must be aligned */
c227f099 3653uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3654{
3655 int io_index;
3656 uint8_t *ptr;
3657 uint32_t val;
3658 unsigned long pd;
3659 PhysPageDesc *p;
3660
3661 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3662 if (!p) {
3663 pd = IO_MEM_UNASSIGNED;
3664 } else {
3665 pd = p->phys_offset;
3666 }
3b46e624 3667
5fafdf24 3668 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3669 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3670 /* I/O case */
3671 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3672 if (p)
3673 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3674 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3675 } else {
3676 /* RAM case */
5579c7f3 3677 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3678 (addr & ~TARGET_PAGE_MASK);
3679 val = ldl_p(ptr);
3680 }
3681 return val;
3682}
3683
84b7b8e7 3684/* warning: addr must be aligned */
c227f099 3685uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3686{
3687 int io_index;
3688 uint8_t *ptr;
3689 uint64_t val;
3690 unsigned long pd;
3691 PhysPageDesc *p;
3692
3693 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3694 if (!p) {
3695 pd = IO_MEM_UNASSIGNED;
3696 } else {
3697 pd = p->phys_offset;
3698 }
3b46e624 3699
2a4188a3
FB
3700 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3701 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3702 /* I/O case */
3703 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3704 if (p)
3705 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3706#ifdef TARGET_WORDS_BIGENDIAN
3707 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3708 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3709#else
3710 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3711 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3712#endif
3713 } else {
3714 /* RAM case */
5579c7f3 3715 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3716 (addr & ~TARGET_PAGE_MASK);
3717 val = ldq_p(ptr);
3718 }
3719 return val;
3720}
3721
aab33094 3722/* XXX: optimize */
c227f099 3723uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3724{
3725 uint8_t val;
3726 cpu_physical_memory_read(addr, &val, 1);
3727 return val;
3728}
3729
733f0b02 3730/* warning: addr must be aligned */
c227f099 3731uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 3732{
733f0b02
MT
3733 int io_index;
3734 uint8_t *ptr;
3735 uint64_t val;
3736 unsigned long pd;
3737 PhysPageDesc *p;
3738
3739 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3740 if (!p) {
3741 pd = IO_MEM_UNASSIGNED;
3742 } else {
3743 pd = p->phys_offset;
3744 }
3745
3746 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3747 !(pd & IO_MEM_ROMD)) {
3748 /* I/O case */
3749 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3750 if (p)
3751 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3752 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3753 } else {
3754 /* RAM case */
3755 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3756 (addr & ~TARGET_PAGE_MASK);
3757 val = lduw_p(ptr);
3758 }
3759 return val;
aab33094
FB
3760}
3761
8df1cd07
FB
3762/* warning: addr must be aligned. The ram page is not masked as dirty
3763 and the code inside is not invalidated. It is useful if the dirty
3764 bits are used to track modified PTEs */
c227f099 3765void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3766{
3767 int io_index;
3768 uint8_t *ptr;
3769 unsigned long pd;
3770 PhysPageDesc *p;
3771
3772 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3773 if (!p) {
3774 pd = IO_MEM_UNASSIGNED;
3775 } else {
3776 pd = p->phys_offset;
3777 }
3b46e624 3778
3a7d929e 3779 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3780 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3781 if (p)
3782 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3783 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3784 } else {
74576198 3785 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3786 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3787 stl_p(ptr, val);
74576198
AL
3788
3789 if (unlikely(in_migration)) {
3790 if (!cpu_physical_memory_is_dirty(addr1)) {
3791 /* invalidate code */
3792 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3793 /* set dirty bit */
f7c11b53
YT
3794 cpu_physical_memory_set_dirty_flags(
3795 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3796 }
3797 }
8df1cd07
FB
3798 }
3799}
3800
c227f099 3801void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3802{
3803 int io_index;
3804 uint8_t *ptr;
3805 unsigned long pd;
3806 PhysPageDesc *p;
3807
3808 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3809 if (!p) {
3810 pd = IO_MEM_UNASSIGNED;
3811 } else {
3812 pd = p->phys_offset;
3813 }
3b46e624 3814
bc98a7ef
JM
3815 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3816 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3817 if (p)
3818 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3819#ifdef TARGET_WORDS_BIGENDIAN
3820 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3821 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3822#else
3823 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3824 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3825#endif
3826 } else {
5579c7f3 3827 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3828 (addr & ~TARGET_PAGE_MASK);
3829 stq_p(ptr, val);
3830 }
3831}
3832
8df1cd07 3833/* warning: addr must be aligned */
c227f099 3834void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3835{
3836 int io_index;
3837 uint8_t *ptr;
3838 unsigned long pd;
3839 PhysPageDesc *p;
3840
3841 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3842 if (!p) {
3843 pd = IO_MEM_UNASSIGNED;
3844 } else {
3845 pd = p->phys_offset;
3846 }
3b46e624 3847
3a7d929e 3848 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3849 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3850 if (p)
3851 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3852 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3853 } else {
3854 unsigned long addr1;
3855 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3856 /* RAM case */
5579c7f3 3857 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3858 stl_p(ptr, val);
3a7d929e
FB
3859 if (!cpu_physical_memory_is_dirty(addr1)) {
3860 /* invalidate code */
3861 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3862 /* set dirty bit */
f7c11b53
YT
3863 cpu_physical_memory_set_dirty_flags(addr1,
3864 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3865 }
8df1cd07
FB
3866 }
3867}
3868
aab33094 3869/* XXX: optimize */
c227f099 3870void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3871{
3872 uint8_t v = val;
3873 cpu_physical_memory_write(addr, &v, 1);
3874}
3875
733f0b02 3876/* warning: addr must be aligned */
c227f099 3877void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 3878{
733f0b02
MT
3879 int io_index;
3880 uint8_t *ptr;
3881 unsigned long pd;
3882 PhysPageDesc *p;
3883
3884 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3885 if (!p) {
3886 pd = IO_MEM_UNASSIGNED;
3887 } else {
3888 pd = p->phys_offset;
3889 }
3890
3891 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3892 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3893 if (p)
3894 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3895 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3896 } else {
3897 unsigned long addr1;
3898 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3899 /* RAM case */
3900 ptr = qemu_get_ram_ptr(addr1);
3901 stw_p(ptr, val);
3902 if (!cpu_physical_memory_is_dirty(addr1)) {
3903 /* invalidate code */
3904 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
3905 /* set dirty bit */
3906 cpu_physical_memory_set_dirty_flags(addr1,
3907 (0xff & ~CODE_DIRTY_FLAG));
3908 }
3909 }
aab33094
FB
3910}
3911
3912/* XXX: optimize */
c227f099 3913void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3914{
3915 val = tswap64(val);
3916 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3917}
3918
5e2972fd 3919/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3920int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3921 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3922{
3923 int l;
c227f099 3924 target_phys_addr_t phys_addr;
9b3c35e0 3925 target_ulong page;
13eb76e0
FB
3926
3927 while (len > 0) {
3928 page = addr & TARGET_PAGE_MASK;
3929 phys_addr = cpu_get_phys_page_debug(env, page);
3930 /* if no physical page mapped, return an error */
3931 if (phys_addr == -1)
3932 return -1;
3933 l = (page + TARGET_PAGE_SIZE) - addr;
3934 if (l > len)
3935 l = len;
5e2972fd 3936 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3937 if (is_write)
3938 cpu_physical_memory_write_rom(phys_addr, buf, l);
3939 else
5e2972fd 3940 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3941 len -= l;
3942 buf += l;
3943 addr += l;
3944 }
3945 return 0;
3946}
a68fe89c 3947#endif
13eb76e0 3948
2e70f6ef
PB
3949/* in deterministic execution mode, instructions doing device I/Os
3950 must be at the end of the TB */
3951void cpu_io_recompile(CPUState *env, void *retaddr)
3952{
3953 TranslationBlock *tb;
3954 uint32_t n, cflags;
3955 target_ulong pc, cs_base;
3956 uint64_t flags;
3957
3958 tb = tb_find_pc((unsigned long)retaddr);
3959 if (!tb) {
3960 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3961 retaddr);
3962 }
3963 n = env->icount_decr.u16.low + tb->icount;
3964 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3965 /* Calculate how many instructions had been executed before the fault
bf20dc07 3966 occurred. */
2e70f6ef
PB
3967 n = n - env->icount_decr.u16.low;
3968 /* Generate a new TB ending on the I/O insn. */
3969 n++;
3970 /* On MIPS and SH, delay slot instructions can only be restarted if
3971 they were already the first instruction in the TB. If this is not
bf20dc07 3972 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3973 branch. */
3974#if defined(TARGET_MIPS)
3975 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3976 env->active_tc.PC -= 4;
3977 env->icount_decr.u16.low++;
3978 env->hflags &= ~MIPS_HFLAG_BMASK;
3979 }
3980#elif defined(TARGET_SH4)
3981 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3982 && n > 1) {
3983 env->pc -= 2;
3984 env->icount_decr.u16.low++;
3985 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3986 }
3987#endif
3988 /* This should never happen. */
3989 if (n > CF_COUNT_MASK)
3990 cpu_abort(env, "TB too big during recompile");
3991
3992 cflags = n | CF_LAST_IO;
3993 pc = tb->pc;
3994 cs_base = tb->cs_base;
3995 flags = tb->flags;
3996 tb_phys_invalidate(tb, -1);
3997 /* FIXME: In theory this could raise an exception. In practice
3998 we have already translated the block once so it's probably ok. */
3999 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4000 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4001 the first in the TB) then we end up generating a whole new TB and
4002 repeating the fault, which is horribly inefficient.
4003 Better would be to execute just this insn uncached, or generate a
4004 second new TB. */
4005 cpu_resume_from_signal(env, NULL);
4006}
4007
b3755a91
PB
4008#if !defined(CONFIG_USER_ONLY)
4009
e3db7226
FB
4010void dump_exec_info(FILE *f,
4011 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4012{
4013 int i, target_code_size, max_target_code_size;
4014 int direct_jmp_count, direct_jmp2_count, cross_page;
4015 TranslationBlock *tb;
3b46e624 4016
e3db7226
FB
4017 target_code_size = 0;
4018 max_target_code_size = 0;
4019 cross_page = 0;
4020 direct_jmp_count = 0;
4021 direct_jmp2_count = 0;
4022 for(i = 0; i < nb_tbs; i++) {
4023 tb = &tbs[i];
4024 target_code_size += tb->size;
4025 if (tb->size > max_target_code_size)
4026 max_target_code_size = tb->size;
4027 if (tb->page_addr[1] != -1)
4028 cross_page++;
4029 if (tb->tb_next_offset[0] != 0xffff) {
4030 direct_jmp_count++;
4031 if (tb->tb_next_offset[1] != 0xffff) {
4032 direct_jmp2_count++;
4033 }
4034 }
4035 }
4036 /* XXX: avoid using doubles ? */
57fec1fe 4037 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
4038 cpu_fprintf(f, "gen code size %ld/%ld\n",
4039 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4040 cpu_fprintf(f, "TB count %d/%d\n",
4041 nb_tbs, code_gen_max_blocks);
5fafdf24 4042 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4043 nb_tbs ? target_code_size / nb_tbs : 0,
4044 max_target_code_size);
5fafdf24 4045 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4046 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4047 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4048 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4049 cross_page,
e3db7226
FB
4050 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4051 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4052 direct_jmp_count,
e3db7226
FB
4053 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4054 direct_jmp2_count,
4055 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4056 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4057 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4058 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4059 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4060 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4061}
4062
61382a50
FB
4063#define MMUSUFFIX _cmmu
4064#define GETPC() NULL
4065#define env cpu_single_env
b769d8fe 4066#define SOFTMMU_CODE_ACCESS
61382a50
FB
4067
4068#define SHIFT 0
4069#include "softmmu_template.h"
4070
4071#define SHIFT 1
4072#include "softmmu_template.h"
4073
4074#define SHIFT 2
4075#include "softmmu_template.h"
4076
4077#define SHIFT 3
4078#include "softmmu_template.h"
4079
4080#undef env
4081
4082#endif