]> git.proxmox.com Git - qemu.git/blame - exec.c
exec: simplify destruction of the phys map
[qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
1de7afc9 32#include "qemu/osdep.h"
9c17d615 33#include "sysemu/kvm.h"
0d09e41a 34#include "hw/xen/xen.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
022c62cb 37#include "exec/memory.h"
9c17d615 38#include "sysemu/dma.h"
022c62cb 39#include "exec/address-spaces.h"
53a5960a
PB
40#if defined(CONFIG_USER_ONLY)
41#include <qemu.h>
432d268c 42#else /* !CONFIG_USER_ONLY */
9c17d615 43#include "sysemu/xen-mapcache.h"
6506e4f9 44#include "trace.h"
53a5960a 45#endif
0d6d3c87 46#include "exec/cpu-all.h"
54936004 47
022c62cb 48#include "exec/cputlb.h"
5b6dd868 49#include "translate-all.h"
0cac1b66 50
022c62cb 51#include "exec/memory-internal.h"
67d95c15 52
db7b5426 53//#define DEBUG_SUBPAGE
1196be37 54
e2eef170 55#if !defined(CONFIG_USER_ONLY)
9fa3e853 56int phys_ram_fd;
74576198 57static int in_migration;
94a6b54f 58
a3161038 59RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
60
61static MemoryRegion *system_memory;
309cb471 62static MemoryRegion *system_io;
62152b8a 63
f6790af6
AK
64AddressSpace address_space_io;
65AddressSpace address_space_memory;
2673a5da 66
0844e007 67MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 68static MemoryRegion io_mem_unassigned;
0e0df1e2 69
e2eef170 70#endif
9fa3e853 71
9349b4f9 72CPUArchState *first_cpu;
6a00d601
FB
73/* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
9349b4f9 75DEFINE_TLS(CPUArchState *,cpu_single_env);
2e70f6ef 76/* 0 = Do not count executed instructions.
bf20dc07 77 1 = Precise instruction counting.
2e70f6ef 78 2 = Adaptive rate instruction counting. */
5708fc66 79int use_icount;
6a00d601 80
e2eef170 81#if !defined(CONFIG_USER_ONLY)
4346ae3e 82
1db8abb1
PB
83typedef struct PhysPageEntry PhysPageEntry;
84
85struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89};
90
91struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
94 */
95 PhysPageEntry phys_map;
96 MemoryListener listener;
acc9d80b 97 AddressSpace *as;
1db8abb1
PB
98};
99
90260c6c
JK
100#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101typedef struct subpage_t {
102 MemoryRegion iomem;
acc9d80b 103 AddressSpace *as;
90260c6c
JK
104 hwaddr base;
105 uint16_t sub_section[TARGET_PAGE_SIZE];
106} subpage_t;
107
5312bd8b
AK
108static MemoryRegionSection *phys_sections;
109static unsigned phys_sections_nb, phys_sections_nb_alloc;
110static uint16_t phys_section_unassigned;
aa102231
AK
111static uint16_t phys_section_notdirty;
112static uint16_t phys_section_rom;
113static uint16_t phys_section_watch;
5312bd8b 114
d6f2ea22
AK
115/* Simple allocator for PhysPageEntry nodes */
116static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
117static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
118
07f07b31 119#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
d6f2ea22 120
e2eef170 121static void io_mem_init(void);
62152b8a 122static void memory_map_init(void);
8b9c99d9 123static void *qemu_safe_ram_ptr(ram_addr_t addr);
e2eef170 124
1ec9b909 125static MemoryRegion io_mem_watch;
6658ffb8 126#endif
fd6ce8f6 127
6d9a1304 128#if !defined(CONFIG_USER_ONLY)
d6f2ea22 129
f7bf5461 130static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 131{
f7bf5461 132 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
d6f2ea22
AK
133 typedef PhysPageEntry Node[L2_SIZE];
134 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
f7bf5461
AK
135 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
136 phys_map_nodes_nb + nodes);
d6f2ea22
AK
137 phys_map_nodes = g_renew(Node, phys_map_nodes,
138 phys_map_nodes_nb_alloc);
139 }
f7bf5461
AK
140}
141
142static uint16_t phys_map_node_alloc(void)
143{
144 unsigned i;
145 uint16_t ret;
146
147 ret = phys_map_nodes_nb++;
148 assert(ret != PHYS_MAP_NODE_NIL);
149 assert(ret != phys_map_nodes_nb_alloc);
d6f2ea22 150 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 151 phys_map_nodes[ret][i].is_leaf = 0;
c19e8800 152 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 153 }
f7bf5461 154 return ret;
d6f2ea22
AK
155}
156
a8170e5e
AK
157static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
158 hwaddr *nb, uint16_t leaf,
2999097b 159 int level)
f7bf5461
AK
160{
161 PhysPageEntry *p;
162 int i;
a8170e5e 163 hwaddr step = (hwaddr)1 << (level * L2_BITS);
108c49b8 164
07f07b31 165 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
c19e8800
AK
166 lp->ptr = phys_map_node_alloc();
167 p = phys_map_nodes[lp->ptr];
f7bf5461
AK
168 if (level == 0) {
169 for (i = 0; i < L2_SIZE; i++) {
07f07b31 170 p[i].is_leaf = 1;
c19e8800 171 p[i].ptr = phys_section_unassigned;
4346ae3e 172 }
67c4d23c 173 }
f7bf5461 174 } else {
c19e8800 175 p = phys_map_nodes[lp->ptr];
92e873b9 176 }
2999097b 177 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
f7bf5461 178
2999097b 179 while (*nb && lp < &p[L2_SIZE]) {
07f07b31
AK
180 if ((*index & (step - 1)) == 0 && *nb >= step) {
181 lp->is_leaf = true;
c19e8800 182 lp->ptr = leaf;
07f07b31
AK
183 *index += step;
184 *nb -= step;
2999097b
AK
185 } else {
186 phys_page_set_level(lp, index, nb, leaf, level - 1);
187 }
188 ++lp;
f7bf5461
AK
189 }
190}
191
ac1970fb 192static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 193 hwaddr index, hwaddr nb,
2999097b 194 uint16_t leaf)
f7bf5461 195{
2999097b 196 /* Wildly overreserve - it doesn't matter much. */
07f07b31 197 phys_map_node_reserve(3 * P_L2_LEVELS);
5cd2c5b6 198
ac1970fb 199 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
200}
201
149f54b5 202static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
92e873b9 203{
ac1970fb 204 PhysPageEntry lp = d->phys_map;
31ab2b4a
AK
205 PhysPageEntry *p;
206 int i;
f1f6e3b8 207
07f07b31 208 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
c19e8800 209 if (lp.ptr == PHYS_MAP_NODE_NIL) {
fd298934 210 return &phys_sections[phys_section_unassigned];
31ab2b4a 211 }
c19e8800 212 p = phys_map_nodes[lp.ptr];
31ab2b4a 213 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
5312bd8b 214 }
fd298934 215 return &phys_sections[lp.ptr];
f3705d53
AK
216}
217
e5548617
BS
218bool memory_region_is_unassigned(MemoryRegion *mr)
219{
2a8e7499 220 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 221 && mr != &io_mem_watch;
fd6ce8f6 222}
149f54b5 223
9f029603 224static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
90260c6c
JK
225 hwaddr addr,
226 bool resolve_subpage)
9f029603 227{
90260c6c
JK
228 MemoryRegionSection *section;
229 subpage_t *subpage;
230
231 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
232 if (resolve_subpage && section->mr->subpage) {
233 subpage = container_of(section->mr, subpage_t, iomem);
234 section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
235 }
236 return section;
9f029603
JK
237}
238
90260c6c
JK
239static MemoryRegionSection *
240address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
241 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
242{
243 MemoryRegionSection *section;
244 Int128 diff;
245
90260c6c 246 section = address_space_lookup_region(as, addr, resolve_subpage);
149f54b5
PB
247 /* Compute offset within MemoryRegionSection */
248 addr -= section->offset_within_address_space;
249
250 /* Compute offset within MemoryRegion */
251 *xlat = addr + section->offset_within_region;
252
253 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 254 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
255 return section;
256}
90260c6c 257
5c8a00ce
PB
258MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
259 hwaddr *xlat, hwaddr *plen,
260 bool is_write)
90260c6c 261{
30951157
AK
262 IOMMUTLBEntry iotlb;
263 MemoryRegionSection *section;
264 MemoryRegion *mr;
265 hwaddr len = *plen;
266
267 for (;;) {
268 section = address_space_translate_internal(as, addr, &addr, plen, true);
269 mr = section->mr;
270
271 if (!mr->iommu_ops) {
272 break;
273 }
274
275 iotlb = mr->iommu_ops->translate(mr, addr);
276 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
277 | (addr & iotlb.addr_mask));
278 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
279 if (!(iotlb.perm & (1 << is_write))) {
280 mr = &io_mem_unassigned;
281 break;
282 }
283
284 as = iotlb.target_as;
285 }
286
287 *plen = len;
288 *xlat = addr;
289 return mr;
90260c6c
JK
290}
291
292MemoryRegionSection *
293address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
294 hwaddr *plen)
295{
30951157
AK
296 MemoryRegionSection *section;
297 section = address_space_translate_internal(as, addr, xlat, plen, false);
298
299 assert(!section->mr->iommu_ops);
300 return section;
90260c6c 301}
5b6dd868 302#endif
fd6ce8f6 303
5b6dd868 304void cpu_exec_init_all(void)
fdbb84d1 305{
5b6dd868 306#if !defined(CONFIG_USER_ONLY)
b2a8658e 307 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
308 memory_map_init();
309 io_mem_init();
fdbb84d1 310#endif
5b6dd868 311}
fdbb84d1 312
b170fce3 313#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
314
315static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 316{
259186a7 317 CPUState *cpu = opaque;
a513fe19 318
5b6dd868
BS
319 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
320 version_id is increased. */
259186a7
AF
321 cpu->interrupt_request &= ~0x01;
322 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
323
324 return 0;
a513fe19 325}
7501267e 326
1a1562f5 327const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
328 .name = "cpu_common",
329 .version_id = 1,
330 .minimum_version_id = 1,
331 .minimum_version_id_old = 1,
332 .post_load = cpu_common_post_load,
333 .fields = (VMStateField []) {
259186a7
AF
334 VMSTATE_UINT32(halted, CPUState),
335 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
336 VMSTATE_END_OF_LIST()
337 }
338};
1a1562f5 339
5b6dd868 340#endif
ea041c0e 341
38d8f5c8 342CPUState *qemu_get_cpu(int index)
ea041c0e 343{
5b6dd868 344 CPUArchState *env = first_cpu;
38d8f5c8 345 CPUState *cpu = NULL;
ea041c0e 346
5b6dd868 347 while (env) {
55e5c285
AF
348 cpu = ENV_GET_CPU(env);
349 if (cpu->cpu_index == index) {
5b6dd868 350 break;
55e5c285 351 }
5b6dd868 352 env = env->next_cpu;
ea041c0e 353 }
5b6dd868 354
d76fddae 355 return env ? cpu : NULL;
ea041c0e
FB
356}
357
d6b9e0d6
MT
358void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
359{
360 CPUArchState *env = first_cpu;
361
362 while (env) {
363 func(ENV_GET_CPU(env), data);
364 env = env->next_cpu;
365 }
366}
367
5b6dd868 368void cpu_exec_init(CPUArchState *env)
ea041c0e 369{
5b6dd868 370 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 371 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868
BS
372 CPUArchState **penv;
373 int cpu_index;
374
375#if defined(CONFIG_USER_ONLY)
376 cpu_list_lock();
377#endif
378 env->next_cpu = NULL;
379 penv = &first_cpu;
380 cpu_index = 0;
381 while (*penv != NULL) {
382 penv = &(*penv)->next_cpu;
383 cpu_index++;
384 }
55e5c285 385 cpu->cpu_index = cpu_index;
1b1ed8dc 386 cpu->numa_node = 0;
5b6dd868
BS
387 QTAILQ_INIT(&env->breakpoints);
388 QTAILQ_INIT(&env->watchpoints);
389#ifndef CONFIG_USER_ONLY
390 cpu->thread_id = qemu_get_thread_id();
391#endif
392 *penv = env;
393#if defined(CONFIG_USER_ONLY)
394 cpu_list_unlock();
395#endif
259186a7 396 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
5b6dd868 397#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
398 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
399 cpu_save, cpu_load, env);
b170fce3 400 assert(cc->vmsd == NULL);
5b6dd868 401#endif
b170fce3
AF
402 if (cc->vmsd != NULL) {
403 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
404 }
ea041c0e
FB
405}
406
1fddef4b 407#if defined(TARGET_HAS_ICE)
94df27fd 408#if defined(CONFIG_USER_ONLY)
9349b4f9 409static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
94df27fd
PB
410{
411 tb_invalidate_phys_page_range(pc, pc + 1, 0);
412}
413#else
1e7855a5
MF
414static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
415{
9d70c4b7
MF
416 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
417 (pc & ~TARGET_PAGE_MASK));
1e7855a5 418}
c27004ec 419#endif
94df27fd 420#endif /* TARGET_HAS_ICE */
d720b93d 421
c527ee8f 422#if defined(CONFIG_USER_ONLY)
9349b4f9 423void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
424
425{
426}
427
9349b4f9 428int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
429 int flags, CPUWatchpoint **watchpoint)
430{
431 return -ENOSYS;
432}
433#else
6658ffb8 434/* Add a watchpoint. */
9349b4f9 435int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 436 int flags, CPUWatchpoint **watchpoint)
6658ffb8 437{
b4051334 438 target_ulong len_mask = ~(len - 1);
c0ce998e 439 CPUWatchpoint *wp;
6658ffb8 440
b4051334 441 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
442 if ((len & (len - 1)) || (addr & ~len_mask) ||
443 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
444 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
445 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
446 return -EINVAL;
447 }
7267c094 448 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
449
450 wp->vaddr = addr;
b4051334 451 wp->len_mask = len_mask;
a1d1bb31
AL
452 wp->flags = flags;
453
2dc9f411 454 /* keep all GDB-injected watchpoints in front */
c0ce998e 455 if (flags & BP_GDB)
72cf2d4f 456 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 457 else
72cf2d4f 458 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 459
6658ffb8 460 tlb_flush_page(env, addr);
a1d1bb31
AL
461
462 if (watchpoint)
463 *watchpoint = wp;
464 return 0;
6658ffb8
PB
465}
466
a1d1bb31 467/* Remove a specific watchpoint. */
9349b4f9 468int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 469 int flags)
6658ffb8 470{
b4051334 471 target_ulong len_mask = ~(len - 1);
a1d1bb31 472 CPUWatchpoint *wp;
6658ffb8 473
72cf2d4f 474 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 475 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 476 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 477 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
478 return 0;
479 }
480 }
a1d1bb31 481 return -ENOENT;
6658ffb8
PB
482}
483
a1d1bb31 484/* Remove a specific watchpoint by reference. */
9349b4f9 485void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 486{
72cf2d4f 487 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 488
a1d1bb31
AL
489 tlb_flush_page(env, watchpoint->vaddr);
490
7267c094 491 g_free(watchpoint);
a1d1bb31
AL
492}
493
494/* Remove all matching watchpoints. */
9349b4f9 495void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 496{
c0ce998e 497 CPUWatchpoint *wp, *next;
a1d1bb31 498
72cf2d4f 499 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
500 if (wp->flags & mask)
501 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 502 }
7d03f82f 503}
c527ee8f 504#endif
7d03f82f 505
a1d1bb31 506/* Add a breakpoint. */
9349b4f9 507int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 508 CPUBreakpoint **breakpoint)
4c3a88a2 509{
1fddef4b 510#if defined(TARGET_HAS_ICE)
c0ce998e 511 CPUBreakpoint *bp;
3b46e624 512
7267c094 513 bp = g_malloc(sizeof(*bp));
4c3a88a2 514
a1d1bb31
AL
515 bp->pc = pc;
516 bp->flags = flags;
517
2dc9f411 518 /* keep all GDB-injected breakpoints in front */
c0ce998e 519 if (flags & BP_GDB)
72cf2d4f 520 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 521 else
72cf2d4f 522 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 523
d720b93d 524 breakpoint_invalidate(env, pc);
a1d1bb31
AL
525
526 if (breakpoint)
527 *breakpoint = bp;
4c3a88a2
FB
528 return 0;
529#else
a1d1bb31 530 return -ENOSYS;
4c3a88a2
FB
531#endif
532}
533
a1d1bb31 534/* Remove a specific breakpoint. */
9349b4f9 535int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 536{
7d03f82f 537#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
538 CPUBreakpoint *bp;
539
72cf2d4f 540 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
541 if (bp->pc == pc && bp->flags == flags) {
542 cpu_breakpoint_remove_by_ref(env, bp);
543 return 0;
544 }
7d03f82f 545 }
a1d1bb31
AL
546 return -ENOENT;
547#else
548 return -ENOSYS;
7d03f82f
EI
549#endif
550}
551
a1d1bb31 552/* Remove a specific breakpoint by reference. */
9349b4f9 553void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 554{
1fddef4b 555#if defined(TARGET_HAS_ICE)
72cf2d4f 556 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 557
a1d1bb31
AL
558 breakpoint_invalidate(env, breakpoint->pc);
559
7267c094 560 g_free(breakpoint);
a1d1bb31
AL
561#endif
562}
563
564/* Remove all matching breakpoints. */
9349b4f9 565void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
566{
567#if defined(TARGET_HAS_ICE)
c0ce998e 568 CPUBreakpoint *bp, *next;
a1d1bb31 569
72cf2d4f 570 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
571 if (bp->flags & mask)
572 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 573 }
4c3a88a2
FB
574#endif
575}
576
c33a346e
FB
577/* enable or disable single step mode. EXCP_DEBUG is returned by the
578 CPU loop after each instruction */
9349b4f9 579void cpu_single_step(CPUArchState *env, int enabled)
c33a346e 580{
1fddef4b 581#if defined(TARGET_HAS_ICE)
c33a346e
FB
582 if (env->singlestep_enabled != enabled) {
583 env->singlestep_enabled = enabled;
e22a25c9
AL
584 if (kvm_enabled())
585 kvm_update_guest_debug(env, 0);
586 else {
ccbb4d44 587 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
588 /* XXX: only flush what is necessary */
589 tb_flush(env);
590 }
c33a346e
FB
591 }
592#endif
593}
594
9349b4f9 595void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 596{
878096ee 597 CPUState *cpu = ENV_GET_CPU(env);
7501267e 598 va_list ap;
493ae1f0 599 va_list ap2;
7501267e
FB
600
601 va_start(ap, fmt);
493ae1f0 602 va_copy(ap2, ap);
7501267e
FB
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
878096ee 606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
6fd2a026 611 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 612 qemu_log_flush();
93fcfe39 613 qemu_log_close();
924edcae 614 }
493ae1f0 615 va_end(ap2);
f9373291 616 va_end(ap);
fd052bf6
RV
617#if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624#endif
7501267e
FB
625 abort();
626}
627
9349b4f9 628CPUArchState *cpu_copy(CPUArchState *env)
c5be9f08 629{
9349b4f9
AF
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 CPUArchState *next_cpu = new_env->next_cpu;
5a38f081
AL
632#if defined(TARGET_HAS_ICE)
633 CPUBreakpoint *bp;
634 CPUWatchpoint *wp;
635#endif
636
9349b4f9 637 memcpy(new_env, env, sizeof(CPUArchState));
5a38f081 638
55e5c285 639 /* Preserve chaining. */
c5be9f08 640 new_env->next_cpu = next_cpu;
5a38f081
AL
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
5a38f081 647#if defined(TARGET_HAS_ICE)
72cf2d4f 648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
72cf2d4f 651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655#endif
656
c5be9f08
TS
657 return new_env;
658}
659
0124311e 660#if !defined(CONFIG_USER_ONLY)
d24981d3
JQ
661static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663{
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677}
678
5579c7f3 679/* Note: start and end must be within the same ram block. */
c227f099 680void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 681 int dirty_flags)
1ccde1cb 682{
d24981d3 683 uintptr_t length;
1ccde1cb
FB
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
f7c11b53 691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 692
d24981d3
JQ
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
5579c7f3 695 }
1ccde1cb
FB
696}
697
8b9c99d9 698static int cpu_physical_memory_set_dirty_tracking(int enable)
74576198 699{
f6f3fbca 700 int ret = 0;
74576198 701 in_migration = enable;
f6f3fbca 702 return ret;
74576198
AL
703}
704
a8170e5e 705hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
e5548617 711{
a8170e5e 712 hwaddr iotlb;
e5548617
BS
713 CPUWatchpoint *wp;
714
cc5bea60 715 if (memory_region_is_ram(section->mr)) {
e5548617
BS
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 718 + xlat;
e5548617
BS
719 if (!section->readonly) {
720 iotlb |= phys_section_notdirty;
721 } else {
722 iotlb |= phys_section_rom;
723 }
724 } else {
e5548617 725 iotlb = section - phys_sections;
149f54b5 726 iotlb += xlat;
e5548617
BS
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = phys_section_watch + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743}
9fa3e853
FB
744#endif /* defined(CONFIG_USER_ONLY) */
745
e2eef170 746#if !defined(CONFIG_USER_ONLY)
8da3ff18 747
c227f099 748static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 749 uint16_t section);
acc9d80b 750static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 751
5312bd8b
AK
752static uint16_t phys_section_add(MemoryRegionSection *section)
753{
68f3f65b
PB
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
757 */
758 assert(phys_sections_nb < TARGET_PAGE_SIZE);
759
5312bd8b
AK
760 if (phys_sections_nb == phys_sections_nb_alloc) {
761 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
762 phys_sections = g_renew(MemoryRegionSection, phys_sections,
763 phys_sections_nb_alloc);
764 }
765 phys_sections[phys_sections_nb] = *section;
766 return phys_sections_nb++;
767}
768
058bc4b5
PB
769static void phys_section_destroy(MemoryRegion *mr)
770{
771 if (mr->subpage) {
772 subpage_t *subpage = container_of(mr, subpage_t, iomem);
773 memory_region_destroy(&subpage->iomem);
774 g_free(subpage);
775 }
776}
777
5312bd8b
AK
778static void phys_sections_clear(void)
779{
058bc4b5
PB
780 while (phys_sections_nb > 0) {
781 MemoryRegionSection *section = &phys_sections[--phys_sections_nb];
782 phys_section_destroy(section->mr);
783 }
b7e95164 784 phys_map_nodes_nb = 0;
5312bd8b
AK
785}
786
ac1970fb 787static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
788{
789 subpage_t *subpage;
a8170e5e 790 hwaddr base = section->offset_within_address_space
0f0cb164 791 & TARGET_PAGE_MASK;
ac1970fb 792 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
0f0cb164
AK
793 MemoryRegionSection subsection = {
794 .offset_within_address_space = base,
052e87b0 795 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 796 };
a8170e5e 797 hwaddr start, end;
0f0cb164 798
f3705d53 799 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 800
f3705d53 801 if (!(existing->mr->subpage)) {
acc9d80b 802 subpage = subpage_init(d->as, base);
0f0cb164 803 subsection.mr = &subpage->iomem;
ac1970fb 804 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
2999097b 805 phys_section_add(&subsection));
0f0cb164 806 } else {
f3705d53 807 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
808 }
809 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 810 end = start + int128_get64(section->size) - 1;
0f0cb164
AK
811 subpage_register(subpage, start, end, phys_section_add(section));
812}
813
814
052e87b0
PB
815static void register_multipage(AddressSpaceDispatch *d,
816 MemoryRegionSection *section)
33417e70 817{
a8170e5e 818 hwaddr start_addr = section->offset_within_address_space;
5312bd8b 819 uint16_t section_index = phys_section_add(section);
052e87b0
PB
820 uint64_t num_pages = int128_get64(int128_rshift(section->size,
821 TARGET_PAGE_BITS));
dd81124b 822
733d5ef5
PB
823 assert(num_pages);
824 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
825}
826
ac1970fb 827static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 828{
ac1970fb 829 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
99b9cc06 830 MemoryRegionSection now = *section, remain = *section;
052e87b0 831 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 832
733d5ef5
PB
833 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
834 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
835 - now.offset_within_address_space;
836
052e87b0 837 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 838 register_subpage(d, &now);
733d5ef5 839 } else {
052e87b0 840 now.size = int128_zero();
733d5ef5 841 }
052e87b0
PB
842 while (int128_ne(remain.size, now.size)) {
843 remain.size = int128_sub(remain.size, now.size);
844 remain.offset_within_address_space += int128_get64(now.size);
845 remain.offset_within_region += int128_get64(now.size);
69b67646 846 now = remain;
052e87b0 847 if (int128_lt(remain.size, page_size)) {
733d5ef5
PB
848 register_subpage(d, &now);
849 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
052e87b0 850 now.size = page_size;
ac1970fb 851 register_subpage(d, &now);
69b67646 852 } else {
052e87b0 853 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 854 register_multipage(d, &now);
69b67646 855 }
0f0cb164
AK
856 }
857}
858
62a2744c
SY
859void qemu_flush_coalesced_mmio_buffer(void)
860{
861 if (kvm_enabled())
862 kvm_flush_coalesced_mmio_buffer();
863}
864
b2a8658e
UD
865void qemu_mutex_lock_ramlist(void)
866{
867 qemu_mutex_lock(&ram_list.mutex);
868}
869
870void qemu_mutex_unlock_ramlist(void)
871{
872 qemu_mutex_unlock(&ram_list.mutex);
873}
874
c902760f
MT
875#if defined(__linux__) && !defined(TARGET_S390X)
876
877#include <sys/vfs.h>
878
879#define HUGETLBFS_MAGIC 0x958458f6
880
881static long gethugepagesize(const char *path)
882{
883 struct statfs fs;
884 int ret;
885
886 do {
9742bf26 887 ret = statfs(path, &fs);
c902760f
MT
888 } while (ret != 0 && errno == EINTR);
889
890 if (ret != 0) {
9742bf26
YT
891 perror(path);
892 return 0;
c902760f
MT
893 }
894
895 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 896 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
897
898 return fs.f_bsize;
899}
900
04b16653
AW
901static void *file_ram_alloc(RAMBlock *block,
902 ram_addr_t memory,
903 const char *path)
c902760f
MT
904{
905 char *filename;
8ca761f6
PF
906 char *sanitized_name;
907 char *c;
c902760f
MT
908 void *area;
909 int fd;
910#ifdef MAP_POPULATE
911 int flags;
912#endif
913 unsigned long hpagesize;
914
915 hpagesize = gethugepagesize(path);
916 if (!hpagesize) {
9742bf26 917 return NULL;
c902760f
MT
918 }
919
920 if (memory < hpagesize) {
921 return NULL;
922 }
923
924 if (kvm_enabled() && !kvm_has_sync_mmu()) {
925 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
926 return NULL;
927 }
928
8ca761f6
PF
929 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
930 sanitized_name = g_strdup(block->mr->name);
931 for (c = sanitized_name; *c != '\0'; c++) {
932 if (*c == '/')
933 *c = '_';
934 }
935
936 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
937 sanitized_name);
938 g_free(sanitized_name);
c902760f
MT
939
940 fd = mkstemp(filename);
941 if (fd < 0) {
9742bf26 942 perror("unable to create backing store for hugepages");
e4ada482 943 g_free(filename);
9742bf26 944 return NULL;
c902760f
MT
945 }
946 unlink(filename);
e4ada482 947 g_free(filename);
c902760f
MT
948
949 memory = (memory+hpagesize-1) & ~(hpagesize-1);
950
951 /*
952 * ftruncate is not supported by hugetlbfs in older
953 * hosts, so don't bother bailing out on errors.
954 * If anything goes wrong with it under other filesystems,
955 * mmap will fail.
956 */
957 if (ftruncate(fd, memory))
9742bf26 958 perror("ftruncate");
c902760f
MT
959
960#ifdef MAP_POPULATE
961 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
962 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
963 * to sidestep this quirk.
964 */
965 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
966 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
967#else
968 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
969#endif
970 if (area == MAP_FAILED) {
9742bf26
YT
971 perror("file_ram_alloc: can't mmap RAM pages");
972 close(fd);
973 return (NULL);
c902760f 974 }
04b16653 975 block->fd = fd;
c902760f
MT
976 return area;
977}
978#endif
979
d17b5288 980static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
981{
982 RAMBlock *block, *next_block;
3e837b2c 983 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 984
49cd9ac6
SH
985 assert(size != 0); /* it would hand out same offset multiple times */
986
a3161038 987 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
988 return 0;
989
a3161038 990 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 991 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
992
993 end = block->offset + block->length;
994
a3161038 995 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
996 if (next_block->offset >= end) {
997 next = MIN(next, next_block->offset);
998 }
999 }
1000 if (next - end >= size && next - end < mingap) {
3e837b2c 1001 offset = end;
04b16653
AW
1002 mingap = next - end;
1003 }
1004 }
3e837b2c
AW
1005
1006 if (offset == RAM_ADDR_MAX) {
1007 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1008 (uint64_t)size);
1009 abort();
1010 }
1011
04b16653
AW
1012 return offset;
1013}
1014
652d7ec2 1015ram_addr_t last_ram_offset(void)
d17b5288
AW
1016{
1017 RAMBlock *block;
1018 ram_addr_t last = 0;
1019
a3161038 1020 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1021 last = MAX(last, block->offset + block->length);
1022
1023 return last;
1024}
1025
ddb97f1d
JB
1026static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1027{
1028 int ret;
1029 QemuOpts *machine_opts;
1030
1031 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1032 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1033 if (machine_opts &&
1034 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1035 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1036 if (ret) {
1037 perror("qemu_madvise");
1038 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1039 "but dump_guest_core=off specified\n");
1040 }
1041 }
1042}
1043
c5705a77 1044void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1045{
1046 RAMBlock *new_block, *block;
1047
c5705a77 1048 new_block = NULL;
a3161038 1049 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1050 if (block->offset == addr) {
1051 new_block = block;
1052 break;
1053 }
1054 }
1055 assert(new_block);
1056 assert(!new_block->idstr[0]);
84b89d78 1057
09e5ab63
AL
1058 if (dev) {
1059 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1060 if (id) {
1061 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1062 g_free(id);
84b89d78
CM
1063 }
1064 }
1065 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1066
b2a8658e
UD
1067 /* This assumes the iothread lock is taken here too. */
1068 qemu_mutex_lock_ramlist();
a3161038 1069 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1070 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1071 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1072 new_block->idstr);
1073 abort();
1074 }
1075 }
b2a8658e 1076 qemu_mutex_unlock_ramlist();
c5705a77
AK
1077}
1078
8490fc78
LC
1079static int memory_try_enable_merging(void *addr, size_t len)
1080{
1081 QemuOpts *opts;
1082
1083 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1084 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1085 /* disabled by the user */
1086 return 0;
1087 }
1088
1089 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1090}
1091
c5705a77
AK
1092ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1093 MemoryRegion *mr)
1094{
abb26d63 1095 RAMBlock *block, *new_block;
c5705a77
AK
1096
1097 size = TARGET_PAGE_ALIGN(size);
1098 new_block = g_malloc0(sizeof(*new_block));
84b89d78 1099
b2a8658e
UD
1100 /* This assumes the iothread lock is taken here too. */
1101 qemu_mutex_lock_ramlist();
7c637366 1102 new_block->mr = mr;
432d268c 1103 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1104 if (host) {
1105 new_block->host = host;
cd19cfa2 1106 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
1107 } else {
1108 if (mem_path) {
c902760f 1109#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
1110 new_block->host = file_ram_alloc(new_block, size, mem_path);
1111 if (!new_block->host) {
6eebf958 1112 new_block->host = qemu_anon_ram_alloc(size);
8490fc78 1113 memory_try_enable_merging(new_block->host, size);
6977dfe6 1114 }
c902760f 1115#else
6977dfe6
YT
1116 fprintf(stderr, "-mem-path option unsupported\n");
1117 exit(1);
c902760f 1118#endif
6977dfe6 1119 } else {
868bb33f 1120 if (xen_enabled()) {
fce537d4 1121 xen_ram_alloc(new_block->offset, size, mr);
fdec9918
CB
1122 } else if (kvm_enabled()) {
1123 /* some s390/kvm configurations have special constraints */
6eebf958 1124 new_block->host = kvm_ram_alloc(size);
432d268c 1125 } else {
6eebf958 1126 new_block->host = qemu_anon_ram_alloc(size);
432d268c 1127 }
8490fc78 1128 memory_try_enable_merging(new_block->host, size);
6977dfe6 1129 }
c902760f 1130 }
94a6b54f
PB
1131 new_block->length = size;
1132
abb26d63
PB
1133 /* Keep the list sorted from biggest to smallest block. */
1134 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1135 if (block->length < new_block->length) {
1136 break;
1137 }
1138 }
1139 if (block) {
1140 QTAILQ_INSERT_BEFORE(block, new_block, next);
1141 } else {
1142 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1143 }
0d6d3c87 1144 ram_list.mru_block = NULL;
94a6b54f 1145
f798b07f 1146 ram_list.version++;
b2a8658e 1147 qemu_mutex_unlock_ramlist();
f798b07f 1148
7267c094 1149 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 1150 last_ram_offset() >> TARGET_PAGE_BITS);
5fda043f
IM
1151 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1152 0, size >> TARGET_PAGE_BITS);
1720aeee 1153 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
94a6b54f 1154
ddb97f1d 1155 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1156 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
ddb97f1d 1157
6f0437e8
JK
1158 if (kvm_enabled())
1159 kvm_setup_guest_memory(new_block->host, size);
1160
94a6b54f
PB
1161 return new_block->offset;
1162}
e9a1ab19 1163
c5705a77 1164ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1165{
c5705a77 1166 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1167}
1168
1f2e98b6
AW
1169void qemu_ram_free_from_ptr(ram_addr_t addr)
1170{
1171 RAMBlock *block;
1172
b2a8658e
UD
1173 /* This assumes the iothread lock is taken here too. */
1174 qemu_mutex_lock_ramlist();
a3161038 1175 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1176 if (addr == block->offset) {
a3161038 1177 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1178 ram_list.mru_block = NULL;
f798b07f 1179 ram_list.version++;
7267c094 1180 g_free(block);
b2a8658e 1181 break;
1f2e98b6
AW
1182 }
1183 }
b2a8658e 1184 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1185}
1186
c227f099 1187void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1188{
04b16653
AW
1189 RAMBlock *block;
1190
b2a8658e
UD
1191 /* This assumes the iothread lock is taken here too. */
1192 qemu_mutex_lock_ramlist();
a3161038 1193 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1194 if (addr == block->offset) {
a3161038 1195 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1196 ram_list.mru_block = NULL;
f798b07f 1197 ram_list.version++;
cd19cfa2
HY
1198 if (block->flags & RAM_PREALLOC_MASK) {
1199 ;
1200 } else if (mem_path) {
04b16653
AW
1201#if defined (__linux__) && !defined(TARGET_S390X)
1202 if (block->fd) {
1203 munmap(block->host, block->length);
1204 close(block->fd);
1205 } else {
e7a09b92 1206 qemu_anon_ram_free(block->host, block->length);
04b16653 1207 }
fd28aa13
JK
1208#else
1209 abort();
04b16653
AW
1210#endif
1211 } else {
868bb33f 1212 if (xen_enabled()) {
e41d7c69 1213 xen_invalidate_map_cache_entry(block->host);
432d268c 1214 } else {
e7a09b92 1215 qemu_anon_ram_free(block->host, block->length);
432d268c 1216 }
04b16653 1217 }
7267c094 1218 g_free(block);
b2a8658e 1219 break;
04b16653
AW
1220 }
1221 }
b2a8658e 1222 qemu_mutex_unlock_ramlist();
04b16653 1223
e9a1ab19
FB
1224}
1225
cd19cfa2
HY
1226#ifndef _WIN32
1227void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1228{
1229 RAMBlock *block;
1230 ram_addr_t offset;
1231 int flags;
1232 void *area, *vaddr;
1233
a3161038 1234 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1235 offset = addr - block->offset;
1236 if (offset < block->length) {
1237 vaddr = block->host + offset;
1238 if (block->flags & RAM_PREALLOC_MASK) {
1239 ;
1240 } else {
1241 flags = MAP_FIXED;
1242 munmap(vaddr, length);
1243 if (mem_path) {
1244#if defined(__linux__) && !defined(TARGET_S390X)
1245 if (block->fd) {
1246#ifdef MAP_POPULATE
1247 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1248 MAP_PRIVATE;
1249#else
1250 flags |= MAP_PRIVATE;
1251#endif
1252 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1253 flags, block->fd, offset);
1254 } else {
1255 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1256 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1257 flags, -1, 0);
1258 }
fd28aa13
JK
1259#else
1260 abort();
cd19cfa2
HY
1261#endif
1262 } else {
1263#if defined(TARGET_S390X) && defined(CONFIG_KVM)
1264 flags |= MAP_SHARED | MAP_ANONYMOUS;
1265 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1266 flags, -1, 0);
1267#else
1268 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1269 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1270 flags, -1, 0);
1271#endif
1272 }
1273 if (area != vaddr) {
f15fbc4b
AP
1274 fprintf(stderr, "Could not remap addr: "
1275 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1276 length, addr);
1277 exit(1);
1278 }
8490fc78 1279 memory_try_enable_merging(vaddr, length);
ddb97f1d 1280 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1281 }
1282 return;
1283 }
1284 }
1285}
1286#endif /* !_WIN32 */
1287
dc828ca1 1288/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
1289 With the exception of the softmmu code in this file, this should
1290 only be used for local memory (e.g. video ram) that the device owns,
1291 and knows it isn't going to access beyond the end of the block.
1292
1293 It should not be used for general purpose DMA.
1294 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1295 */
c227f099 1296void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 1297{
94a6b54f
PB
1298 RAMBlock *block;
1299
b2a8658e 1300 /* The list is protected by the iothread lock here. */
0d6d3c87
PB
1301 block = ram_list.mru_block;
1302 if (block && addr - block->offset < block->length) {
1303 goto found;
1304 }
a3161038 1305 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f471a17e 1306 if (addr - block->offset < block->length) {
0d6d3c87 1307 goto found;
f471a17e 1308 }
94a6b54f 1309 }
f471a17e
AW
1310
1311 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1312 abort();
1313
0d6d3c87
PB
1314found:
1315 ram_list.mru_block = block;
1316 if (xen_enabled()) {
1317 /* We need to check if the requested address is in the RAM
1318 * because we don't want to map the entire memory in QEMU.
1319 * In that case just map until the end of the page.
1320 */
1321 if (block->offset == 0) {
1322 return xen_map_cache(addr, 0, 0);
1323 } else if (block->host == NULL) {
1324 block->host =
1325 xen_map_cache(block->offset, block->length, 1);
1326 }
1327 }
1328 return block->host + (addr - block->offset);
dc828ca1
PB
1329}
1330
0d6d3c87
PB
1331/* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1332 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1333 *
1334 * ??? Is this still necessary?
b2e0a138 1335 */
8b9c99d9 1336static void *qemu_safe_ram_ptr(ram_addr_t addr)
b2e0a138
MT
1337{
1338 RAMBlock *block;
1339
b2a8658e 1340 /* The list is protected by the iothread lock here. */
a3161038 1341 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
b2e0a138 1342 if (addr - block->offset < block->length) {
868bb33f 1343 if (xen_enabled()) {
432d268c
JN
1344 /* We need to check if the requested address is in the RAM
1345 * because we don't want to map the entire memory in QEMU.
712c2b41 1346 * In that case just map until the end of the page.
432d268c
JN
1347 */
1348 if (block->offset == 0) {
e41d7c69 1349 return xen_map_cache(addr, 0, 0);
432d268c 1350 } else if (block->host == NULL) {
e41d7c69
JK
1351 block->host =
1352 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
1353 }
1354 }
b2e0a138
MT
1355 return block->host + (addr - block->offset);
1356 }
1357 }
1358
1359 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1360 abort();
1361
1362 return NULL;
1363}
1364
38bee5dc
SS
1365/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1366 * but takes a size argument */
8b9c99d9 1367static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 1368{
8ab934f9
SS
1369 if (*size == 0) {
1370 return NULL;
1371 }
868bb33f 1372 if (xen_enabled()) {
e41d7c69 1373 return xen_map_cache(addr, *size, 1);
868bb33f 1374 } else {
38bee5dc
SS
1375 RAMBlock *block;
1376
a3161038 1377 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1378 if (addr - block->offset < block->length) {
1379 if (addr - block->offset + *size > block->length)
1380 *size = block->length - addr + block->offset;
1381 return block->host + (addr - block->offset);
1382 }
1383 }
1384
1385 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1386 abort();
38bee5dc
SS
1387 }
1388}
1389
e890261f 1390int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1391{
94a6b54f
PB
1392 RAMBlock *block;
1393 uint8_t *host = ptr;
1394
868bb33f 1395 if (xen_enabled()) {
e41d7c69 1396 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
1397 return 0;
1398 }
1399
a3161038 1400 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1401 /* This case append when the block is not mapped. */
1402 if (block->host == NULL) {
1403 continue;
1404 }
f471a17e 1405 if (host - block->host < block->length) {
e890261f
MT
1406 *ram_addr = block->offset + (host - block->host);
1407 return 0;
f471a17e 1408 }
94a6b54f 1409 }
432d268c 1410
e890261f
MT
1411 return -1;
1412}
f471a17e 1413
e890261f
MT
1414/* Some of the softmmu routines need to translate from a host pointer
1415 (typically a TLB entry) back to a ram offset. */
1416ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1417{
1418 ram_addr_t ram_addr;
f471a17e 1419
e890261f
MT
1420 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1421 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1422 abort();
1423 }
1424 return ram_addr;
5579c7f3
PB
1425}
1426
a8170e5e 1427static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1428 uint64_t val, unsigned size)
9fa3e853 1429{
3a7d929e 1430 int dirty_flags;
f7c11b53 1431 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1432 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
0e0df1e2 1433 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 1434 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 1435 }
0e0df1e2
AK
1436 switch (size) {
1437 case 1:
1438 stb_p(qemu_get_ram_ptr(ram_addr), val);
1439 break;
1440 case 2:
1441 stw_p(qemu_get_ram_ptr(ram_addr), val);
1442 break;
1443 case 4:
1444 stl_p(qemu_get_ram_ptr(ram_addr), val);
1445 break;
1446 default:
1447 abort();
3a7d929e 1448 }
f23db169 1449 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 1450 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
1451 /* we remove the notdirty callback only if the code has been
1452 flushed */
1453 if (dirty_flags == 0xff)
2e70f6ef 1454 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
1455}
1456
b018ddf6
PB
1457static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1458 unsigned size, bool is_write)
1459{
1460 return is_write;
1461}
1462
0e0df1e2 1463static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1464 .write = notdirty_mem_write,
b018ddf6 1465 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1466 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1467};
1468
0f459d16 1469/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1470static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1471{
9349b4f9 1472 CPUArchState *env = cpu_single_env;
06d55cc1 1473 target_ulong pc, cs_base;
0f459d16 1474 target_ulong vaddr;
a1d1bb31 1475 CPUWatchpoint *wp;
06d55cc1 1476 int cpu_flags;
0f459d16 1477
06d55cc1
AL
1478 if (env->watchpoint_hit) {
1479 /* We re-entered the check after replacing the TB. Now raise
1480 * the debug interrupt so that is will trigger after the
1481 * current instruction. */
c3affe56 1482 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1483 return;
1484 }
2e70f6ef 1485 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 1486 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
1487 if ((vaddr == (wp->vaddr & len_mask) ||
1488 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
1489 wp->flags |= BP_WATCHPOINT_HIT;
1490 if (!env->watchpoint_hit) {
1491 env->watchpoint_hit = wp;
5a316526 1492 tb_check_watchpoint(env);
6e140f28
AL
1493 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1494 env->exception_index = EXCP_DEBUG;
488d6577 1495 cpu_loop_exit(env);
6e140f28
AL
1496 } else {
1497 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1498 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 1499 cpu_resume_from_signal(env, NULL);
6e140f28 1500 }
06d55cc1 1501 }
6e140f28
AL
1502 } else {
1503 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1504 }
1505 }
1506}
1507
6658ffb8
PB
1508/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1509 so these check for a hit then pass through to the normal out-of-line
1510 phys routines. */
a8170e5e 1511static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1512 unsigned size)
6658ffb8 1513{
1ec9b909
AK
1514 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1515 switch (size) {
1516 case 1: return ldub_phys(addr);
1517 case 2: return lduw_phys(addr);
1518 case 4: return ldl_phys(addr);
1519 default: abort();
1520 }
6658ffb8
PB
1521}
1522
a8170e5e 1523static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1524 uint64_t val, unsigned size)
6658ffb8 1525{
1ec9b909
AK
1526 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1527 switch (size) {
67364150
MF
1528 case 1:
1529 stb_phys(addr, val);
1530 break;
1531 case 2:
1532 stw_phys(addr, val);
1533 break;
1534 case 4:
1535 stl_phys(addr, val);
1536 break;
1ec9b909
AK
1537 default: abort();
1538 }
6658ffb8
PB
1539}
1540
1ec9b909
AK
1541static const MemoryRegionOps watch_mem_ops = {
1542 .read = watch_mem_read,
1543 .write = watch_mem_write,
1544 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1545};
6658ffb8 1546
a8170e5e 1547static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1548 unsigned len)
db7b5426 1549{
acc9d80b
JK
1550 subpage_t *subpage = opaque;
1551 uint8_t buf[4];
791af8c8 1552
db7b5426 1553#if defined(DEBUG_SUBPAGE)
acc9d80b
JK
1554 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1555 subpage, len, addr);
db7b5426 1556#endif
acc9d80b
JK
1557 address_space_read(subpage->as, addr + subpage->base, buf, len);
1558 switch (len) {
1559 case 1:
1560 return ldub_p(buf);
1561 case 2:
1562 return lduw_p(buf);
1563 case 4:
1564 return ldl_p(buf);
1565 default:
1566 abort();
1567 }
db7b5426
BS
1568}
1569
a8170e5e 1570static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1571 uint64_t value, unsigned len)
db7b5426 1572{
acc9d80b
JK
1573 subpage_t *subpage = opaque;
1574 uint8_t buf[4];
1575
db7b5426 1576#if defined(DEBUG_SUBPAGE)
70c68e44 1577 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
acc9d80b
JK
1578 " value %"PRIx64"\n",
1579 __func__, subpage, len, addr, value);
db7b5426 1580#endif
acc9d80b
JK
1581 switch (len) {
1582 case 1:
1583 stb_p(buf, value);
1584 break;
1585 case 2:
1586 stw_p(buf, value);
1587 break;
1588 case 4:
1589 stl_p(buf, value);
1590 break;
1591 default:
1592 abort();
1593 }
1594 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1595}
1596
c353e4cc
PB
1597static bool subpage_accepts(void *opaque, hwaddr addr,
1598 unsigned size, bool is_write)
1599{
acc9d80b 1600 subpage_t *subpage = opaque;
c353e4cc 1601#if defined(DEBUG_SUBPAGE)
acc9d80b
JK
1602 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1603 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1604#endif
1605
acc9d80b
JK
1606 return address_space_access_valid(subpage->as, addr + subpage->base,
1607 size, is_write);
c353e4cc
PB
1608}
1609
70c68e44
AK
1610static const MemoryRegionOps subpage_ops = {
1611 .read = subpage_read,
1612 .write = subpage_write,
c353e4cc 1613 .valid.accepts = subpage_accepts,
70c68e44 1614 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1615};
1616
c227f099 1617static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1618 uint16_t section)
db7b5426
BS
1619{
1620 int idx, eidx;
1621
1622 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1623 return -1;
1624 idx = SUBPAGE_IDX(start);
1625 eidx = SUBPAGE_IDX(end);
1626#if defined(DEBUG_SUBPAGE)
0bf9e31a 1627 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
1628 mmio, start, end, idx, eidx, memory);
1629#endif
db7b5426 1630 for (; idx <= eidx; idx++) {
5312bd8b 1631 mmio->sub_section[idx] = section;
db7b5426
BS
1632 }
1633
1634 return 0;
1635}
1636
acc9d80b 1637static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1638{
c227f099 1639 subpage_t *mmio;
db7b5426 1640
7267c094 1641 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1642
acc9d80b 1643 mmio->as = as;
1eec614b 1644 mmio->base = base;
2c9b15ca 1645 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1646 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1647 mmio->iomem.subpage = true;
db7b5426 1648#if defined(DEBUG_SUBPAGE)
1eec614b
AL
1649 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1650 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 1651#endif
0f0cb164 1652 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
db7b5426
BS
1653
1654 return mmio;
1655}
1656
5312bd8b
AK
1657static uint16_t dummy_section(MemoryRegion *mr)
1658{
1659 MemoryRegionSection section = {
1660 .mr = mr,
1661 .offset_within_address_space = 0,
1662 .offset_within_region = 0,
052e87b0 1663 .size = int128_2_64(),
5312bd8b
AK
1664 };
1665
1666 return phys_section_add(&section);
1667}
1668
a8170e5e 1669MemoryRegion *iotlb_to_region(hwaddr index)
aa102231 1670{
37ec01d4 1671 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1672}
1673
e9179ce1
AK
1674static void io_mem_init(void)
1675{
2c9b15ca
PB
1676 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1677 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1678 "unassigned", UINT64_MAX);
2c9b15ca 1679 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1680 "notdirty", UINT64_MAX);
2c9b15ca 1681 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1682 "watch", UINT64_MAX);
e9179ce1
AK
1683}
1684
ac1970fb
AK
1685static void mem_begin(MemoryListener *listener)
1686{
1687 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1688
ac1970fb
AK
1689 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1690}
1691
50c1e149
AK
1692static void core_begin(MemoryListener *listener)
1693{
5312bd8b
AK
1694 phys_sections_clear();
1695 phys_section_unassigned = dummy_section(&io_mem_unassigned);
aa102231
AK
1696 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1697 phys_section_rom = dummy_section(&io_mem_rom);
1698 phys_section_watch = dummy_section(&io_mem_watch);
50c1e149
AK
1699}
1700
1d71148e 1701static void tcg_commit(MemoryListener *listener)
50c1e149 1702{
9349b4f9 1703 CPUArchState *env;
117712c3
AK
1704
1705 /* since each CPU stores ram addresses in its TLB cache, we must
1706 reset the modified entries */
1707 /* XXX: slow ! */
1708 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1709 tlb_flush(env, 1);
1710 }
50c1e149
AK
1711}
1712
93632747
AK
1713static void core_log_global_start(MemoryListener *listener)
1714{
1715 cpu_physical_memory_set_dirty_tracking(1);
1716}
1717
1718static void core_log_global_stop(MemoryListener *listener)
1719{
1720 cpu_physical_memory_set_dirty_tracking(0);
1721}
1722
93632747 1723static MemoryListener core_memory_listener = {
50c1e149 1724 .begin = core_begin,
93632747
AK
1725 .log_global_start = core_log_global_start,
1726 .log_global_stop = core_log_global_stop,
ac1970fb 1727 .priority = 1,
93632747
AK
1728};
1729
1d71148e
AK
1730static MemoryListener tcg_memory_listener = {
1731 .commit = tcg_commit,
1732};
1733
ac1970fb
AK
1734void address_space_init_dispatch(AddressSpace *as)
1735{
1736 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1737
1738 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1739 d->listener = (MemoryListener) {
1740 .begin = mem_begin,
1741 .region_add = mem_add,
1742 .region_nop = mem_add,
1743 .priority = 0,
1744 };
acc9d80b 1745 d->as = as;
ac1970fb
AK
1746 as->dispatch = d;
1747 memory_listener_register(&d->listener, as);
1748}
1749
83f3c251
AK
1750void address_space_destroy_dispatch(AddressSpace *as)
1751{
1752 AddressSpaceDispatch *d = as->dispatch;
1753
1754 memory_listener_unregister(&d->listener);
83f3c251
AK
1755 g_free(d);
1756 as->dispatch = NULL;
1757}
1758
62152b8a
AK
1759static void memory_map_init(void)
1760{
7267c094 1761 system_memory = g_malloc(sizeof(*system_memory));
2c9b15ca 1762 memory_region_init(system_memory, NULL, "system", INT64_MAX);
7dca8043 1763 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1764
7267c094 1765 system_io = g_malloc(sizeof(*system_io));
2c9b15ca 1766 memory_region_init(system_io, NULL, "io", 65536);
7dca8043 1767 address_space_init(&address_space_io, system_io, "I/O");
93632747 1768
f6790af6 1769 memory_listener_register(&core_memory_listener, &address_space_memory);
f6790af6 1770 memory_listener_register(&tcg_memory_listener, &address_space_memory);
62152b8a
AK
1771}
1772
1773MemoryRegion *get_system_memory(void)
1774{
1775 return system_memory;
1776}
1777
309cb471
AK
1778MemoryRegion *get_system_io(void)
1779{
1780 return system_io;
1781}
1782
e2eef170
PB
1783#endif /* !defined(CONFIG_USER_ONLY) */
1784
13eb76e0
FB
1785/* physical memory access (slow version, mainly for debug) */
1786#if defined(CONFIG_USER_ONLY)
9349b4f9 1787int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
a68fe89c 1788 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1789{
1790 int l, flags;
1791 target_ulong page;
53a5960a 1792 void * p;
13eb76e0
FB
1793
1794 while (len > 0) {
1795 page = addr & TARGET_PAGE_MASK;
1796 l = (page + TARGET_PAGE_SIZE) - addr;
1797 if (l > len)
1798 l = len;
1799 flags = page_get_flags(page);
1800 if (!(flags & PAGE_VALID))
a68fe89c 1801 return -1;
13eb76e0
FB
1802 if (is_write) {
1803 if (!(flags & PAGE_WRITE))
a68fe89c 1804 return -1;
579a97f7 1805 /* XXX: this code should not depend on lock_user */
72fb7daa 1806 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1807 return -1;
72fb7daa
AJ
1808 memcpy(p, buf, l);
1809 unlock_user(p, addr, l);
13eb76e0
FB
1810 } else {
1811 if (!(flags & PAGE_READ))
a68fe89c 1812 return -1;
579a97f7 1813 /* XXX: this code should not depend on lock_user */
72fb7daa 1814 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1815 return -1;
72fb7daa 1816 memcpy(buf, p, l);
5b257578 1817 unlock_user(p, addr, 0);
13eb76e0
FB
1818 }
1819 len -= l;
1820 buf += l;
1821 addr += l;
1822 }
a68fe89c 1823 return 0;
13eb76e0 1824}
8df1cd07 1825
13eb76e0 1826#else
51d7a9eb 1827
a8170e5e
AK
1828static void invalidate_and_set_dirty(hwaddr addr,
1829 hwaddr length)
51d7a9eb
AP
1830{
1831 if (!cpu_physical_memory_is_dirty(addr)) {
1832 /* invalidate code */
1833 tb_invalidate_phys_page_range(addr, addr + length, 0);
1834 /* set dirty bit */
1835 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1836 }
e226939d 1837 xen_modified_memory(addr, length);
51d7a9eb
AP
1838}
1839
2bbfa05d
PB
1840static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1841{
1842 if (memory_region_is_ram(mr)) {
1843 return !(is_write && mr->readonly);
1844 }
1845 if (memory_region_is_romd(mr)) {
1846 return !is_write;
1847 }
1848
1849 return false;
1850}
1851
f52cc467 1852static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
82f2563f 1853{
f52cc467 1854 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
82f2563f
PB
1855 return 4;
1856 }
f52cc467 1857 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
82f2563f
PB
1858 return 2;
1859 }
1860 return 1;
1861}
1862
fd8aaa76 1863bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 1864 int len, bool is_write)
13eb76e0 1865{
149f54b5 1866 hwaddr l;
13eb76e0 1867 uint8_t *ptr;
791af8c8 1868 uint64_t val;
149f54b5 1869 hwaddr addr1;
5c8a00ce 1870 MemoryRegion *mr;
fd8aaa76 1871 bool error = false;
3b46e624 1872
13eb76e0 1873 while (len > 0) {
149f54b5 1874 l = len;
5c8a00ce 1875 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 1876
13eb76e0 1877 if (is_write) {
5c8a00ce
PB
1878 if (!memory_access_is_direct(mr, is_write)) {
1879 l = memory_access_size(mr, l, addr1);
6a00d601
FB
1880 /* XXX: could force cpu_single_env to NULL to avoid
1881 potential bugs */
82f2563f 1882 if (l == 4) {
1c213d19 1883 /* 32 bit write access */
c27004ec 1884 val = ldl_p(buf);
5c8a00ce 1885 error |= io_mem_write(mr, addr1, val, 4);
82f2563f 1886 } else if (l == 2) {
1c213d19 1887 /* 16 bit write access */
c27004ec 1888 val = lduw_p(buf);
5c8a00ce 1889 error |= io_mem_write(mr, addr1, val, 2);
13eb76e0 1890 } else {
1c213d19 1891 /* 8 bit write access */
c27004ec 1892 val = ldub_p(buf);
5c8a00ce 1893 error |= io_mem_write(mr, addr1, val, 1);
13eb76e0 1894 }
2bbfa05d 1895 } else {
5c8a00ce 1896 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 1897 /* RAM case */
5579c7f3 1898 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 1899 memcpy(ptr, buf, l);
51d7a9eb 1900 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
1901 }
1902 } else {
5c8a00ce 1903 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 1904 /* I/O case */
5c8a00ce 1905 l = memory_access_size(mr, l, addr1);
82f2563f 1906 if (l == 4) {
13eb76e0 1907 /* 32 bit read access */
5c8a00ce 1908 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 1909 stl_p(buf, val);
82f2563f 1910 } else if (l == 2) {
13eb76e0 1911 /* 16 bit read access */
5c8a00ce 1912 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 1913 stw_p(buf, val);
13eb76e0 1914 } else {
1c213d19 1915 /* 8 bit read access */
5c8a00ce 1916 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 1917 stb_p(buf, val);
13eb76e0
FB
1918 }
1919 } else {
1920 /* RAM case */
5c8a00ce 1921 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 1922 memcpy(buf, ptr, l);
13eb76e0
FB
1923 }
1924 }
1925 len -= l;
1926 buf += l;
1927 addr += l;
1928 }
fd8aaa76
PB
1929
1930 return error;
13eb76e0 1931}
8df1cd07 1932
fd8aaa76 1933bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
1934 const uint8_t *buf, int len)
1935{
fd8aaa76 1936 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
1937}
1938
fd8aaa76 1939bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 1940{
fd8aaa76 1941 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
1942}
1943
1944
a8170e5e 1945void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
1946 int len, int is_write)
1947{
fd8aaa76 1948 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
1949}
1950
d0ecd2aa 1951/* used for ROM loading : can write in RAM and ROM */
a8170e5e 1952void cpu_physical_memory_write_rom(hwaddr addr,
d0ecd2aa
FB
1953 const uint8_t *buf, int len)
1954{
149f54b5 1955 hwaddr l;
d0ecd2aa 1956 uint8_t *ptr;
149f54b5 1957 hwaddr addr1;
5c8a00ce 1958 MemoryRegion *mr;
3b46e624 1959
d0ecd2aa 1960 while (len > 0) {
149f54b5 1961 l = len;
5c8a00ce
PB
1962 mr = address_space_translate(&address_space_memory,
1963 addr, &addr1, &l, true);
3b46e624 1964
5c8a00ce
PB
1965 if (!(memory_region_is_ram(mr) ||
1966 memory_region_is_romd(mr))) {
d0ecd2aa
FB
1967 /* do nothing */
1968 } else {
5c8a00ce 1969 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 1970 /* ROM/RAM case */
5579c7f3 1971 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 1972 memcpy(ptr, buf, l);
51d7a9eb 1973 invalidate_and_set_dirty(addr1, l);
d0ecd2aa
FB
1974 }
1975 len -= l;
1976 buf += l;
1977 addr += l;
1978 }
1979}
1980
6d16c2f8
AL
1981typedef struct {
1982 void *buffer;
a8170e5e
AK
1983 hwaddr addr;
1984 hwaddr len;
6d16c2f8
AL
1985} BounceBuffer;
1986
1987static BounceBuffer bounce;
1988
ba223c29
AL
1989typedef struct MapClient {
1990 void *opaque;
1991 void (*callback)(void *opaque);
72cf2d4f 1992 QLIST_ENTRY(MapClient) link;
ba223c29
AL
1993} MapClient;
1994
72cf2d4f
BS
1995static QLIST_HEAD(map_client_list, MapClient) map_client_list
1996 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
1997
1998void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
1999{
7267c094 2000 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2001
2002 client->opaque = opaque;
2003 client->callback = callback;
72cf2d4f 2004 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2005 return client;
2006}
2007
8b9c99d9 2008static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2009{
2010 MapClient *client = (MapClient *)_client;
2011
72cf2d4f 2012 QLIST_REMOVE(client, link);
7267c094 2013 g_free(client);
ba223c29
AL
2014}
2015
2016static void cpu_notify_map_clients(void)
2017{
2018 MapClient *client;
2019
72cf2d4f
BS
2020 while (!QLIST_EMPTY(&map_client_list)) {
2021 client = QLIST_FIRST(&map_client_list);
ba223c29 2022 client->callback(client->opaque);
34d5e948 2023 cpu_unregister_map_client(client);
ba223c29
AL
2024 }
2025}
2026
51644ab7
PB
2027bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2028{
5c8a00ce 2029 MemoryRegion *mr;
51644ab7
PB
2030 hwaddr l, xlat;
2031
2032 while (len > 0) {
2033 l = len;
5c8a00ce
PB
2034 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2035 if (!memory_access_is_direct(mr, is_write)) {
2036 l = memory_access_size(mr, l, addr);
2037 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2038 return false;
2039 }
2040 }
2041
2042 len -= l;
2043 addr += l;
2044 }
2045 return true;
2046}
2047
6d16c2f8
AL
2048/* Map a physical memory region into a host virtual address.
2049 * May map a subset of the requested range, given by and returned in *plen.
2050 * May return NULL if resources needed to perform the mapping are exhausted.
2051 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2052 * Use cpu_register_map_client() to know when retrying the map operation is
2053 * likely to succeed.
6d16c2f8 2054 */
ac1970fb 2055void *address_space_map(AddressSpace *as,
a8170e5e
AK
2056 hwaddr addr,
2057 hwaddr *plen,
ac1970fb 2058 bool is_write)
6d16c2f8 2059{
a8170e5e
AK
2060 hwaddr len = *plen;
2061 hwaddr todo = 0;
149f54b5 2062 hwaddr l, xlat;
5c8a00ce 2063 MemoryRegion *mr;
f15fbc4b 2064 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
2065 ram_addr_t rlen;
2066 void *ret;
6d16c2f8
AL
2067
2068 while (len > 0) {
149f54b5 2069 l = len;
5c8a00ce 2070 mr = address_space_translate(as, addr, &xlat, &l, is_write);
6d16c2f8 2071
5c8a00ce 2072 if (!memory_access_is_direct(mr, is_write)) {
38bee5dc 2073 if (todo || bounce.buffer) {
6d16c2f8
AL
2074 break;
2075 }
2076 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2077 bounce.addr = addr;
2078 bounce.len = l;
2079 if (!is_write) {
ac1970fb 2080 address_space_read(as, addr, bounce.buffer, l);
6d16c2f8 2081 }
38bee5dc
SS
2082
2083 *plen = l;
2084 return bounce.buffer;
6d16c2f8 2085 }
8ab934f9 2086 if (!todo) {
5c8a00ce 2087 raddr = memory_region_get_ram_addr(mr) + xlat;
149f54b5 2088 } else {
5c8a00ce 2089 if (memory_region_get_ram_addr(mr) + xlat != raddr + todo) {
149f54b5
PB
2090 break;
2091 }
8ab934f9 2092 }
6d16c2f8
AL
2093
2094 len -= l;
2095 addr += l;
38bee5dc 2096 todo += l;
6d16c2f8 2097 }
8ab934f9
SS
2098 rlen = todo;
2099 ret = qemu_ram_ptr_length(raddr, &rlen);
2100 *plen = rlen;
2101 return ret;
6d16c2f8
AL
2102}
2103
ac1970fb 2104/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2105 * Will also mark the memory as dirty if is_write == 1. access_len gives
2106 * the amount of memory that was actually read or written by the caller.
2107 */
a8170e5e
AK
2108void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2109 int is_write, hwaddr access_len)
6d16c2f8
AL
2110{
2111 if (buffer != bounce.buffer) {
2112 if (is_write) {
e890261f 2113 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
2114 while (access_len) {
2115 unsigned l;
2116 l = TARGET_PAGE_SIZE;
2117 if (l > access_len)
2118 l = access_len;
51d7a9eb 2119 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2120 addr1 += l;
2121 access_len -= l;
2122 }
2123 }
868bb33f 2124 if (xen_enabled()) {
e41d7c69 2125 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2126 }
6d16c2f8
AL
2127 return;
2128 }
2129 if (is_write) {
ac1970fb 2130 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2131 }
f8a83245 2132 qemu_vfree(bounce.buffer);
6d16c2f8 2133 bounce.buffer = NULL;
ba223c29 2134 cpu_notify_map_clients();
6d16c2f8 2135}
d0ecd2aa 2136
a8170e5e
AK
2137void *cpu_physical_memory_map(hwaddr addr,
2138 hwaddr *plen,
ac1970fb
AK
2139 int is_write)
2140{
2141 return address_space_map(&address_space_memory, addr, plen, is_write);
2142}
2143
a8170e5e
AK
2144void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2145 int is_write, hwaddr access_len)
ac1970fb
AK
2146{
2147 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2148}
2149
8df1cd07 2150/* warning: addr must be aligned */
a8170e5e 2151static inline uint32_t ldl_phys_internal(hwaddr addr,
1e78bcc1 2152 enum device_endian endian)
8df1cd07 2153{
8df1cd07 2154 uint8_t *ptr;
791af8c8 2155 uint64_t val;
5c8a00ce 2156 MemoryRegion *mr;
149f54b5
PB
2157 hwaddr l = 4;
2158 hwaddr addr1;
8df1cd07 2159
5c8a00ce
PB
2160 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2161 false);
2162 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2163 /* I/O case */
5c8a00ce 2164 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2165#if defined(TARGET_WORDS_BIGENDIAN)
2166 if (endian == DEVICE_LITTLE_ENDIAN) {
2167 val = bswap32(val);
2168 }
2169#else
2170 if (endian == DEVICE_BIG_ENDIAN) {
2171 val = bswap32(val);
2172 }
2173#endif
8df1cd07
FB
2174 } else {
2175 /* RAM case */
5c8a00ce 2176 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2177 & TARGET_PAGE_MASK)
149f54b5 2178 + addr1);
1e78bcc1
AG
2179 switch (endian) {
2180 case DEVICE_LITTLE_ENDIAN:
2181 val = ldl_le_p(ptr);
2182 break;
2183 case DEVICE_BIG_ENDIAN:
2184 val = ldl_be_p(ptr);
2185 break;
2186 default:
2187 val = ldl_p(ptr);
2188 break;
2189 }
8df1cd07
FB
2190 }
2191 return val;
2192}
2193
a8170e5e 2194uint32_t ldl_phys(hwaddr addr)
1e78bcc1
AG
2195{
2196 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2197}
2198
a8170e5e 2199uint32_t ldl_le_phys(hwaddr addr)
1e78bcc1
AG
2200{
2201 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2202}
2203
a8170e5e 2204uint32_t ldl_be_phys(hwaddr addr)
1e78bcc1
AG
2205{
2206 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2207}
2208
84b7b8e7 2209/* warning: addr must be aligned */
a8170e5e 2210static inline uint64_t ldq_phys_internal(hwaddr addr,
1e78bcc1 2211 enum device_endian endian)
84b7b8e7 2212{
84b7b8e7
FB
2213 uint8_t *ptr;
2214 uint64_t val;
5c8a00ce 2215 MemoryRegion *mr;
149f54b5
PB
2216 hwaddr l = 8;
2217 hwaddr addr1;
84b7b8e7 2218
5c8a00ce
PB
2219 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2220 false);
2221 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2222 /* I/O case */
5c8a00ce 2223 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2224#if defined(TARGET_WORDS_BIGENDIAN)
2225 if (endian == DEVICE_LITTLE_ENDIAN) {
2226 val = bswap64(val);
2227 }
2228#else
2229 if (endian == DEVICE_BIG_ENDIAN) {
2230 val = bswap64(val);
2231 }
84b7b8e7
FB
2232#endif
2233 } else {
2234 /* RAM case */
5c8a00ce 2235 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2236 & TARGET_PAGE_MASK)
149f54b5 2237 + addr1);
1e78bcc1
AG
2238 switch (endian) {
2239 case DEVICE_LITTLE_ENDIAN:
2240 val = ldq_le_p(ptr);
2241 break;
2242 case DEVICE_BIG_ENDIAN:
2243 val = ldq_be_p(ptr);
2244 break;
2245 default:
2246 val = ldq_p(ptr);
2247 break;
2248 }
84b7b8e7
FB
2249 }
2250 return val;
2251}
2252
a8170e5e 2253uint64_t ldq_phys(hwaddr addr)
1e78bcc1
AG
2254{
2255 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2256}
2257
a8170e5e 2258uint64_t ldq_le_phys(hwaddr addr)
1e78bcc1
AG
2259{
2260 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2261}
2262
a8170e5e 2263uint64_t ldq_be_phys(hwaddr addr)
1e78bcc1
AG
2264{
2265 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2266}
2267
aab33094 2268/* XXX: optimize */
a8170e5e 2269uint32_t ldub_phys(hwaddr addr)
aab33094
FB
2270{
2271 uint8_t val;
2272 cpu_physical_memory_read(addr, &val, 1);
2273 return val;
2274}
2275
733f0b02 2276/* warning: addr must be aligned */
a8170e5e 2277static inline uint32_t lduw_phys_internal(hwaddr addr,
1e78bcc1 2278 enum device_endian endian)
aab33094 2279{
733f0b02
MT
2280 uint8_t *ptr;
2281 uint64_t val;
5c8a00ce 2282 MemoryRegion *mr;
149f54b5
PB
2283 hwaddr l = 2;
2284 hwaddr addr1;
733f0b02 2285
5c8a00ce
PB
2286 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2287 false);
2288 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2289 /* I/O case */
5c8a00ce 2290 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2291#if defined(TARGET_WORDS_BIGENDIAN)
2292 if (endian == DEVICE_LITTLE_ENDIAN) {
2293 val = bswap16(val);
2294 }
2295#else
2296 if (endian == DEVICE_BIG_ENDIAN) {
2297 val = bswap16(val);
2298 }
2299#endif
733f0b02
MT
2300 } else {
2301 /* RAM case */
5c8a00ce 2302 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2303 & TARGET_PAGE_MASK)
149f54b5 2304 + addr1);
1e78bcc1
AG
2305 switch (endian) {
2306 case DEVICE_LITTLE_ENDIAN:
2307 val = lduw_le_p(ptr);
2308 break;
2309 case DEVICE_BIG_ENDIAN:
2310 val = lduw_be_p(ptr);
2311 break;
2312 default:
2313 val = lduw_p(ptr);
2314 break;
2315 }
733f0b02
MT
2316 }
2317 return val;
aab33094
FB
2318}
2319
a8170e5e 2320uint32_t lduw_phys(hwaddr addr)
1e78bcc1
AG
2321{
2322 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2323}
2324
a8170e5e 2325uint32_t lduw_le_phys(hwaddr addr)
1e78bcc1
AG
2326{
2327 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2328}
2329
a8170e5e 2330uint32_t lduw_be_phys(hwaddr addr)
1e78bcc1
AG
2331{
2332 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2333}
2334
8df1cd07
FB
2335/* warning: addr must be aligned. The ram page is not masked as dirty
2336 and the code inside is not invalidated. It is useful if the dirty
2337 bits are used to track modified PTEs */
a8170e5e 2338void stl_phys_notdirty(hwaddr addr, uint32_t val)
8df1cd07 2339{
8df1cd07 2340 uint8_t *ptr;
5c8a00ce 2341 MemoryRegion *mr;
149f54b5
PB
2342 hwaddr l = 4;
2343 hwaddr addr1;
8df1cd07 2344
5c8a00ce
PB
2345 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2346 true);
2347 if (l < 4 || !memory_access_is_direct(mr, true)) {
2348 io_mem_write(mr, addr1, val, 4);
8df1cd07 2349 } else {
5c8a00ce 2350 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2351 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2352 stl_p(ptr, val);
74576198
AL
2353
2354 if (unlikely(in_migration)) {
2355 if (!cpu_physical_memory_is_dirty(addr1)) {
2356 /* invalidate code */
2357 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2358 /* set dirty bit */
f7c11b53
YT
2359 cpu_physical_memory_set_dirty_flags(
2360 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
2361 }
2362 }
8df1cd07
FB
2363 }
2364}
2365
2366/* warning: addr must be aligned */
a8170e5e 2367static inline void stl_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2368 enum device_endian endian)
8df1cd07 2369{
8df1cd07 2370 uint8_t *ptr;
5c8a00ce 2371 MemoryRegion *mr;
149f54b5
PB
2372 hwaddr l = 4;
2373 hwaddr addr1;
8df1cd07 2374
5c8a00ce
PB
2375 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2376 true);
2377 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2378#if defined(TARGET_WORDS_BIGENDIAN)
2379 if (endian == DEVICE_LITTLE_ENDIAN) {
2380 val = bswap32(val);
2381 }
2382#else
2383 if (endian == DEVICE_BIG_ENDIAN) {
2384 val = bswap32(val);
2385 }
2386#endif
5c8a00ce 2387 io_mem_write(mr, addr1, val, 4);
8df1cd07 2388 } else {
8df1cd07 2389 /* RAM case */
5c8a00ce 2390 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2391 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2392 switch (endian) {
2393 case DEVICE_LITTLE_ENDIAN:
2394 stl_le_p(ptr, val);
2395 break;
2396 case DEVICE_BIG_ENDIAN:
2397 stl_be_p(ptr, val);
2398 break;
2399 default:
2400 stl_p(ptr, val);
2401 break;
2402 }
51d7a9eb 2403 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2404 }
2405}
2406
a8170e5e 2407void stl_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2408{
2409 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2410}
2411
a8170e5e 2412void stl_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2413{
2414 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2415}
2416
a8170e5e 2417void stl_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2418{
2419 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2420}
2421
aab33094 2422/* XXX: optimize */
a8170e5e 2423void stb_phys(hwaddr addr, uint32_t val)
aab33094
FB
2424{
2425 uint8_t v = val;
2426 cpu_physical_memory_write(addr, &v, 1);
2427}
2428
733f0b02 2429/* warning: addr must be aligned */
a8170e5e 2430static inline void stw_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2431 enum device_endian endian)
aab33094 2432{
733f0b02 2433 uint8_t *ptr;
5c8a00ce 2434 MemoryRegion *mr;
149f54b5
PB
2435 hwaddr l = 2;
2436 hwaddr addr1;
733f0b02 2437
5c8a00ce
PB
2438 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2439 true);
2440 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2441#if defined(TARGET_WORDS_BIGENDIAN)
2442 if (endian == DEVICE_LITTLE_ENDIAN) {
2443 val = bswap16(val);
2444 }
2445#else
2446 if (endian == DEVICE_BIG_ENDIAN) {
2447 val = bswap16(val);
2448 }
2449#endif
5c8a00ce 2450 io_mem_write(mr, addr1, val, 2);
733f0b02 2451 } else {
733f0b02 2452 /* RAM case */
5c8a00ce 2453 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2454 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2455 switch (endian) {
2456 case DEVICE_LITTLE_ENDIAN:
2457 stw_le_p(ptr, val);
2458 break;
2459 case DEVICE_BIG_ENDIAN:
2460 stw_be_p(ptr, val);
2461 break;
2462 default:
2463 stw_p(ptr, val);
2464 break;
2465 }
51d7a9eb 2466 invalidate_and_set_dirty(addr1, 2);
733f0b02 2467 }
aab33094
FB
2468}
2469
a8170e5e 2470void stw_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2471{
2472 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2473}
2474
a8170e5e 2475void stw_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2476{
2477 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2478}
2479
a8170e5e 2480void stw_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2481{
2482 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2483}
2484
aab33094 2485/* XXX: optimize */
a8170e5e 2486void stq_phys(hwaddr addr, uint64_t val)
aab33094
FB
2487{
2488 val = tswap64(val);
71d2b725 2489 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
2490}
2491
a8170e5e 2492void stq_le_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2493{
2494 val = cpu_to_le64(val);
2495 cpu_physical_memory_write(addr, &val, 8);
2496}
2497
a8170e5e 2498void stq_be_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2499{
2500 val = cpu_to_be64(val);
2501 cpu_physical_memory_write(addr, &val, 8);
2502}
2503
5e2972fd 2504/* virtual memory access for debug (includes writing to ROM) */
9349b4f9 2505int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
b448f2f3 2506 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2507{
2508 int l;
a8170e5e 2509 hwaddr phys_addr;
9b3c35e0 2510 target_ulong page;
13eb76e0
FB
2511
2512 while (len > 0) {
2513 page = addr & TARGET_PAGE_MASK;
2514 phys_addr = cpu_get_phys_page_debug(env, page);
2515 /* if no physical page mapped, return an error */
2516 if (phys_addr == -1)
2517 return -1;
2518 l = (page + TARGET_PAGE_SIZE) - addr;
2519 if (l > len)
2520 l = len;
5e2972fd 2521 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
2522 if (is_write)
2523 cpu_physical_memory_write_rom(phys_addr, buf, l);
2524 else
5e2972fd 2525 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
2526 len -= l;
2527 buf += l;
2528 addr += l;
2529 }
2530 return 0;
2531}
a68fe89c 2532#endif
13eb76e0 2533
8e4a424b
BS
2534#if !defined(CONFIG_USER_ONLY)
2535
2536/*
2537 * A helper function for the _utterly broken_ virtio device model to find out if
2538 * it's running on a big endian machine. Don't do this at home kids!
2539 */
2540bool virtio_is_big_endian(void);
2541bool virtio_is_big_endian(void)
2542{
2543#if defined(TARGET_WORDS_BIGENDIAN)
2544 return true;
2545#else
2546 return false;
2547#endif
2548}
2549
2550#endif
2551
76f35538 2552#ifndef CONFIG_USER_ONLY
a8170e5e 2553bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2554{
5c8a00ce 2555 MemoryRegion*mr;
149f54b5 2556 hwaddr l = 1;
76f35538 2557
5c8a00ce
PB
2558 mr = address_space_translate(&address_space_memory,
2559 phys_addr, &phys_addr, &l, false);
76f35538 2560
5c8a00ce
PB
2561 return !(memory_region_is_ram(mr) ||
2562 memory_region_is_romd(mr));
76f35538 2563}
bd2fa51f
MH
2564
2565void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2566{
2567 RAMBlock *block;
2568
2569 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2570 func(block->host, block->offset, block->length, opaque);
2571 }
2572}
ec3f8c99 2573#endif