]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
exec: check kvm mmu notifiers earlier
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
4485bd26 30#if !defined(CONFIG_USER_ONLY)
47c8ca53 31#include "hw/boards.h"
33c11879 32#include "hw/xen/xen.h"
4485bd26 33#endif
9c17d615 34#include "sysemu/kvm.h"
2ff3de68 35#include "sysemu/sysemu.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
75a34036 38#include "qemu/error-report.h"
53a5960a 39#if defined(CONFIG_USER_ONLY)
a9c94277 40#include "qemu.h"
432d268c 41#else /* !CONFIG_USER_ONLY */
741da0d3
PB
42#include "hw/hw.h"
43#include "exec/memory.h"
df43d49c 44#include "exec/ioport.h"
741da0d3 45#include "sysemu/dma.h"
9c607668 46#include "sysemu/numa.h"
79ca7a1b 47#include "sysemu/hw_accel.h"
741da0d3 48#include "exec/address-spaces.h"
9c17d615 49#include "sysemu/xen-mapcache.h"
0ab8ed18 50#include "trace-root.h"
d3a5038c 51
e2fa71f5
DDAG
52#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53#include <fcntl.h>
54#include <linux/falloc.h>
55#endif
56
53a5960a 57#endif
0d6d3c87 58#include "exec/cpu-all.h"
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
0844e007 91MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 92static MemoryRegion io_mem_unassigned;
0e0df1e2 93
7bd4f430
PB
94/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95#define RAM_PREALLOC (1 << 0)
96
dbcb8981
PB
97/* RAM is mmap-ed with MAP_SHARED */
98#define RAM_SHARED (1 << 1)
99
62be4e3a
MT
100/* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103#define RAM_RESIZEABLE (1 << 2)
104
e2eef170 105#endif
9fa3e853 106
20bccb82
PM
107#ifdef TARGET_PAGE_BITS_VARY
108int target_page_bits;
109bool target_page_bits_decided;
110#endif
111
bdc44640 112struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
f240eb6f 115__thread CPUState *current_cpu;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef 118 2 = Adaptive rate instruction counting. */
5708fc66 119int use_icount;
6a00d601 120
20bccb82
PM
121bool set_preferred_target_page_bits(int bits)
122{
123 /* The target page size is the lowest common denominator for all
124 * the CPUs in the system, so we can only make it smaller, never
125 * larger. And we can't make it smaller once we've committed to
126 * a particular size.
127 */
128#ifdef TARGET_PAGE_BITS_VARY
129 assert(bits >= TARGET_PAGE_BITS_MIN);
130 if (target_page_bits == 0 || target_page_bits > bits) {
131 if (target_page_bits_decided) {
132 return false;
133 }
134 target_page_bits = bits;
135 }
136#endif
137 return true;
138}
139
e2eef170 140#if !defined(CONFIG_USER_ONLY)
4346ae3e 141
20bccb82
PM
142static void finalize_target_page_bits(void)
143{
144#ifdef TARGET_PAGE_BITS_VARY
145 if (target_page_bits == 0) {
146 target_page_bits = TARGET_PAGE_BITS_MIN;
147 }
148 target_page_bits_decided = true;
149#endif
150}
151
1db8abb1
PB
152typedef struct PhysPageEntry PhysPageEntry;
153
154struct PhysPageEntry {
9736e55b 155 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 156 uint32_t skip : 6;
9736e55b 157 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 158 uint32_t ptr : 26;
1db8abb1
PB
159};
160
8b795765
MT
161#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
162
03f49957 163/* Size of the L2 (and L3, etc) page tables. */
57271d63 164#define ADDR_SPACE_BITS 64
03f49957 165
026736ce 166#define P_L2_BITS 9
03f49957
PB
167#define P_L2_SIZE (1 << P_L2_BITS)
168
169#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
170
171typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 172
53cb28cb 173typedef struct PhysPageMap {
79e2b9ae
PB
174 struct rcu_head rcu;
175
53cb28cb
MA
176 unsigned sections_nb;
177 unsigned sections_nb_alloc;
178 unsigned nodes_nb;
179 unsigned nodes_nb_alloc;
180 Node *nodes;
181 MemoryRegionSection *sections;
182} PhysPageMap;
183
1db8abb1 184struct AddressSpaceDispatch {
79e2b9ae
PB
185 struct rcu_head rcu;
186
729633c2 187 MemoryRegionSection *mru_section;
1db8abb1
PB
188 /* This is a multi-level map on the physical address space.
189 * The bottom level has pointers to MemoryRegionSections.
190 */
191 PhysPageEntry phys_map;
53cb28cb 192 PhysPageMap map;
acc9d80b 193 AddressSpace *as;
1db8abb1
PB
194};
195
90260c6c
JK
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 MemoryRegion iomem;
acc9d80b 199 AddressSpace *as;
90260c6c 200 hwaddr base;
2615fabd 201 uint16_t sub_section[];
90260c6c
JK
202} subpage_t;
203
b41aac4f
LPF
204#define PHYS_SECTION_UNASSIGNED 0
205#define PHYS_SECTION_NOTDIRTY 1
206#define PHYS_SECTION_ROM 2
207#define PHYS_SECTION_WATCH 3
5312bd8b 208
e2eef170 209static void io_mem_init(void);
62152b8a 210static void memory_map_init(void);
09daed84 211static void tcg_commit(MemoryListener *listener);
e2eef170 212
1ec9b909 213static MemoryRegion io_mem_watch;
32857f4d
PM
214
215/**
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 */
222struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
227};
228
8deaf12c
GH
229struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
233};
234
6658ffb8 235#endif
fd6ce8f6 236
6d9a1304 237#if !defined(CONFIG_USER_ONLY)
d6f2ea22 238
53cb28cb 239static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 240{
101420b8 241 static unsigned alloc_hint = 16;
53cb28cb 242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 246 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 247 }
f7bf5461
AK
248}
249
db94604b 250static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
251{
252 unsigned i;
8b795765 253 uint32_t ret;
db94604b
PB
254 PhysPageEntry e;
255 PhysPageEntry *p;
f7bf5461 256
53cb28cb 257 ret = map->nodes_nb++;
db94604b 258 p = map->nodes[ret];
f7bf5461 259 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 260 assert(ret != map->nodes_nb_alloc);
db94604b
PB
261
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 264 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 265 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 266 }
f7bf5461 267 return ret;
d6f2ea22
AK
268}
269
53cb28cb
MA
270static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 272 int level)
f7bf5461
AK
273{
274 PhysPageEntry *p;
03f49957 275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 276
9736e55b 277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 278 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 279 }
db94604b 280 p = map->nodes[lp->ptr];
03f49957 281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 282
03f49957 283 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 284 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 285 lp->skip = 0;
c19e8800 286 lp->ptr = leaf;
07f07b31
AK
287 *index += step;
288 *nb -= step;
2999097b 289 } else {
53cb28cb 290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
291 }
292 ++lp;
f7bf5461
AK
293 }
294}
295
ac1970fb 296static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 297 hwaddr index, hwaddr nb,
2999097b 298 uint16_t leaf)
f7bf5461 299{
2999097b 300 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 302
53cb28cb 303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
304}
305
b35ba30f
MT
306/* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
308 */
efee678d 309static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
310{
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
315
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
318 }
319
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
324 }
325
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
efee678d 329 phys_page_compact(&p[i], nodes);
b35ba30f
MT
330 }
331 }
332
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
336 }
337
338 assert(valid_ptr < P_L2_SIZE);
339
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
343 }
344
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
352 */
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
356 }
357}
358
359static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
360{
b35ba30f 361 if (d->phys_map.skip) {
efee678d 362 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
363 }
364}
365
29cb533d
FZ
366static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
368{
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
371 */
258dfaaa 372 return int128_gethi(section->size) ||
29cb533d 373 range_covers_byte(section->offset_within_address_space,
258dfaaa 374 int128_getlo(section->size), addr);
29cb533d
FZ
375}
376
003a0cf2 377static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 378{
003a0cf2
PX
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
97115a8d 382 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 383 int i;
f1f6e3b8 384
9736e55b 385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 387 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 388 }
9affd6fc 389 p = nodes[lp.ptr];
03f49957 390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 391 }
b35ba30f 392
29cb533d 393 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
397 }
f3705d53
AK
398}
399
e5548617
BS
400bool memory_region_is_unassigned(MemoryRegion *mr)
401{
2a8e7499 402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 403 && mr != &io_mem_watch;
fd6ce8f6 404}
149f54b5 405
79e2b9ae 406/* Called from RCU critical section */
c7086b4a 407static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
408 hwaddr addr,
409 bool resolve_subpage)
9f029603 410{
729633c2 411 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 412 subpage_t *subpage;
729633c2 413 bool update;
90260c6c 414
729633c2
FZ
415 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
416 section_covers_addr(section, addr)) {
417 update = false;
418 } else {
003a0cf2 419 section = phys_page_find(d, addr);
729633c2
FZ
420 update = true;
421 }
90260c6c
JK
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 425 }
729633c2
FZ
426 if (update) {
427 atomic_set(&d->mru_section, section);
428 }
90260c6c 429 return section;
9f029603
JK
430}
431
79e2b9ae 432/* Called from RCU critical section */
90260c6c 433static MemoryRegionSection *
c7086b4a 434address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 435 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
436{
437 MemoryRegionSection *section;
965eb2fc 438 MemoryRegion *mr;
a87f3954 439 Int128 diff;
149f54b5 440
c7086b4a 441 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
444
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
447
965eb2fc 448 mr = section->mr;
b242e0e0
PB
449
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
456 *
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
460 */
965eb2fc 461 if (memory_region_is_ram(mr)) {
e4a511f8 462 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
464 }
149f54b5
PB
465 return section;
466}
90260c6c 467
41063e1e 468/* Called from RCU critical section */
a764040c
PX
469static MemoryRegionSection address_space_do_translate(AddressSpace *as,
470 hwaddr addr,
471 hwaddr *xlat,
472 hwaddr *plen,
473 bool is_write,
474 bool is_mmio)
052c8fa9 475{
a764040c 476 IOMMUTLBEntry iotlb;
052c8fa9
JW
477 MemoryRegionSection *section;
478 MemoryRegion *mr;
479
480 for (;;) {
481 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
a764040c 482 section = address_space_translate_internal(d, addr, &addr, plen, is_mmio);
052c8fa9
JW
483 mr = section->mr;
484
485 if (!mr->iommu_ops) {
486 break;
487 }
488
bf55b7af
PX
489 iotlb = mr->iommu_ops->translate(mr, addr, is_write ?
490 IOMMU_WO : IOMMU_RO);
a764040c
PX
491 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
492 | (addr & iotlb.addr_mask));
493 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 494 if (!(iotlb.perm & (1 << is_write))) {
a764040c 495 goto translate_fail;
052c8fa9
JW
496 }
497
052c8fa9
JW
498 as = iotlb.target_as;
499 }
500
a764040c
PX
501 *xlat = addr;
502
503 return *section;
504
505translate_fail:
506 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
507}
508
509/* Called from RCU critical section */
a764040c
PX
510IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
511 bool is_write)
90260c6c 512{
a764040c
PX
513 MemoryRegionSection section;
514 hwaddr xlat, plen;
30951157 515
a764040c
PX
516 /* Try to get maximum page mask during translation. */
517 plen = (hwaddr)-1;
30951157 518
a764040c
PX
519 /* This can never be MMIO. */
520 section = address_space_do_translate(as, addr, &xlat, &plen,
521 is_write, false);
30951157 522
a764040c
PX
523 /* Illegal translation */
524 if (section.mr == &io_mem_unassigned) {
525 goto iotlb_fail;
526 }
30951157 527
a764040c
PX
528 /* Convert memory region offset into address space offset */
529 xlat += section.offset_within_address_space -
530 section.offset_within_region;
531
532 if (plen == (hwaddr)-1) {
533 /*
534 * We use default page size here. Logically it only happens
535 * for identity mappings.
536 */
537 plen = TARGET_PAGE_SIZE;
30951157
AK
538 }
539
a764040c
PX
540 /* Convert to address mask */
541 plen -= 1;
542
543 return (IOMMUTLBEntry) {
544 .target_as = section.address_space,
545 .iova = addr & ~plen,
546 .translated_addr = xlat & ~plen,
547 .addr_mask = plen,
548 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
549 .perm = IOMMU_RW,
550 };
551
552iotlb_fail:
553 return (IOMMUTLBEntry) {0};
554}
555
556/* Called from RCU critical section */
557MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
558 hwaddr *xlat, hwaddr *plen,
559 bool is_write)
560{
561 MemoryRegion *mr;
562 MemoryRegionSection section;
563
564 /* This can be MMIO, so setup MMIO bit. */
565 section = address_space_do_translate(as, addr, xlat, plen, is_write, true);
566 mr = section.mr;
567
fe680d0d 568 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 569 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 570 *plen = MIN(page, *plen);
a87f3954
PB
571 }
572
30951157 573 return mr;
90260c6c
JK
574}
575
79e2b9ae 576/* Called from RCU critical section */
90260c6c 577MemoryRegionSection *
d7898cda 578address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 579 hwaddr *xlat, hwaddr *plen)
90260c6c 580{
30951157 581 MemoryRegionSection *section;
f35e44e7 582 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
583
584 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
585
586 assert(!section->mr->iommu_ops);
587 return section;
90260c6c 588}
5b6dd868 589#endif
fd6ce8f6 590
b170fce3 591#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
592
593static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 594{
259186a7 595 CPUState *cpu = opaque;
a513fe19 596
5b6dd868
BS
597 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
598 version_id is increased. */
259186a7 599 cpu->interrupt_request &= ~0x01;
d10eb08f 600 tlb_flush(cpu);
5b6dd868
BS
601
602 return 0;
a513fe19 603}
7501267e 604
6c3bff0e
PD
605static int cpu_common_pre_load(void *opaque)
606{
607 CPUState *cpu = opaque;
608
adee6424 609 cpu->exception_index = -1;
6c3bff0e
PD
610
611 return 0;
612}
613
614static bool cpu_common_exception_index_needed(void *opaque)
615{
616 CPUState *cpu = opaque;
617
adee6424 618 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
619}
620
621static const VMStateDescription vmstate_cpu_common_exception_index = {
622 .name = "cpu_common/exception_index",
623 .version_id = 1,
624 .minimum_version_id = 1,
5cd8cada 625 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
626 .fields = (VMStateField[]) {
627 VMSTATE_INT32(exception_index, CPUState),
628 VMSTATE_END_OF_LIST()
629 }
630};
631
bac05aa9
AS
632static bool cpu_common_crash_occurred_needed(void *opaque)
633{
634 CPUState *cpu = opaque;
635
636 return cpu->crash_occurred;
637}
638
639static const VMStateDescription vmstate_cpu_common_crash_occurred = {
640 .name = "cpu_common/crash_occurred",
641 .version_id = 1,
642 .minimum_version_id = 1,
643 .needed = cpu_common_crash_occurred_needed,
644 .fields = (VMStateField[]) {
645 VMSTATE_BOOL(crash_occurred, CPUState),
646 VMSTATE_END_OF_LIST()
647 }
648};
649
1a1562f5 650const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
651 .name = "cpu_common",
652 .version_id = 1,
653 .minimum_version_id = 1,
6c3bff0e 654 .pre_load = cpu_common_pre_load,
5b6dd868 655 .post_load = cpu_common_post_load,
35d08458 656 .fields = (VMStateField[]) {
259186a7
AF
657 VMSTATE_UINT32(halted, CPUState),
658 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 659 VMSTATE_END_OF_LIST()
6c3bff0e 660 },
5cd8cada
JQ
661 .subsections = (const VMStateDescription*[]) {
662 &vmstate_cpu_common_exception_index,
bac05aa9 663 &vmstate_cpu_common_crash_occurred,
5cd8cada 664 NULL
5b6dd868
BS
665 }
666};
1a1562f5 667
5b6dd868 668#endif
ea041c0e 669
38d8f5c8 670CPUState *qemu_get_cpu(int index)
ea041c0e 671{
bdc44640 672 CPUState *cpu;
ea041c0e 673
bdc44640 674 CPU_FOREACH(cpu) {
55e5c285 675 if (cpu->cpu_index == index) {
bdc44640 676 return cpu;
55e5c285 677 }
ea041c0e 678 }
5b6dd868 679
bdc44640 680 return NULL;
ea041c0e
FB
681}
682
09daed84 683#if !defined(CONFIG_USER_ONLY)
56943e8c 684void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 685{
12ebc9a7
PM
686 CPUAddressSpace *newas;
687
688 /* Target code should have set num_ases before calling us */
689 assert(asidx < cpu->num_ases);
690
56943e8c
PM
691 if (asidx == 0) {
692 /* address space 0 gets the convenience alias */
693 cpu->as = as;
694 }
695
12ebc9a7
PM
696 /* KVM cannot currently support multiple address spaces. */
697 assert(asidx == 0 || !kvm_enabled());
09daed84 698
12ebc9a7
PM
699 if (!cpu->cpu_ases) {
700 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 701 }
32857f4d 702
12ebc9a7
PM
703 newas = &cpu->cpu_ases[asidx];
704 newas->cpu = cpu;
705 newas->as = as;
56943e8c 706 if (tcg_enabled()) {
12ebc9a7
PM
707 newas->tcg_as_listener.commit = tcg_commit;
708 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 709 }
09daed84 710}
651a5bc0
PM
711
712AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
713{
714 /* Return the AddressSpace corresponding to the specified index */
715 return cpu->cpu_ases[asidx].as;
716}
09daed84
EI
717#endif
718
7bbc124e 719void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 720{
9dfeca7c
BR
721 CPUClass *cc = CPU_GET_CLASS(cpu);
722
267f685b 723 cpu_list_remove(cpu);
9dfeca7c
BR
724
725 if (cc->vmsd != NULL) {
726 vmstate_unregister(NULL, cc->vmsd, cpu);
727 }
728 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
729 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
730 }
1c59eb39
BR
731}
732
39e329e3 733void cpu_exec_initfn(CPUState *cpu)
ea041c0e 734{
56943e8c 735 cpu->as = NULL;
12ebc9a7 736 cpu->num_ases = 0;
56943e8c 737
291135b5 738#ifndef CONFIG_USER_ONLY
291135b5 739 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
740
741 /* This is a softmmu CPU object, so create a property for it
742 * so users can wire up its memory. (This can't go in qom/cpu.c
743 * because that file is compiled only once for both user-mode
744 * and system builds.) The default if no link is set up is to use
745 * the system address space.
746 */
747 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
748 (Object **)&cpu->memory,
749 qdev_prop_allow_set_link_before_realize,
750 OBJ_PROP_LINK_UNREF_ON_RELEASE,
751 &error_abort);
752 cpu->memory = system_memory;
753 object_ref(OBJECT(cpu->memory));
291135b5 754#endif
39e329e3
LV
755}
756
ce5b1bbf 757void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
758{
759 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 760
267f685b 761 cpu_list_add(cpu);
1bc7e522
IM
762
763#ifndef CONFIG_USER_ONLY
e0d47944 764 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 765 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 766 }
b170fce3 767 if (cc->vmsd != NULL) {
741da0d3 768 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 769 }
741da0d3 770#endif
ea041c0e
FB
771}
772
00b941e5 773static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 774{
a9353fe8
PM
775 /* Flush the whole TB as this will not have race conditions
776 * even if we don't have proper locking yet.
777 * Ideally we would just invalidate the TBs for the
778 * specified PC.
779 */
780 tb_flush(cpu);
1e7855a5 781}
d720b93d 782
c527ee8f 783#if defined(CONFIG_USER_ONLY)
75a34036 784void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
785
786{
787}
788
3ee887e8
PM
789int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
790 int flags)
791{
792 return -ENOSYS;
793}
794
795void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
796{
797}
798
75a34036 799int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
800 int flags, CPUWatchpoint **watchpoint)
801{
802 return -ENOSYS;
803}
804#else
6658ffb8 805/* Add a watchpoint. */
75a34036 806int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 807 int flags, CPUWatchpoint **watchpoint)
6658ffb8 808{
c0ce998e 809 CPUWatchpoint *wp;
6658ffb8 810
05068c0d 811 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 812 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
813 error_report("tried to set invalid watchpoint at %"
814 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
815 return -EINVAL;
816 }
7267c094 817 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
818
819 wp->vaddr = addr;
05068c0d 820 wp->len = len;
a1d1bb31
AL
821 wp->flags = flags;
822
2dc9f411 823 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
824 if (flags & BP_GDB) {
825 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
826 } else {
827 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
828 }
6658ffb8 829
31b030d4 830 tlb_flush_page(cpu, addr);
a1d1bb31
AL
831
832 if (watchpoint)
833 *watchpoint = wp;
834 return 0;
6658ffb8
PB
835}
836
a1d1bb31 837/* Remove a specific watchpoint. */
75a34036 838int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 839 int flags)
6658ffb8 840{
a1d1bb31 841 CPUWatchpoint *wp;
6658ffb8 842
ff4700b0 843 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 844 if (addr == wp->vaddr && len == wp->len
6e140f28 845 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 846 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
847 return 0;
848 }
849 }
a1d1bb31 850 return -ENOENT;
6658ffb8
PB
851}
852
a1d1bb31 853/* Remove a specific watchpoint by reference. */
75a34036 854void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 855{
ff4700b0 856 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 857
31b030d4 858 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 859
7267c094 860 g_free(watchpoint);
a1d1bb31
AL
861}
862
863/* Remove all matching watchpoints. */
75a34036 864void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 865{
c0ce998e 866 CPUWatchpoint *wp, *next;
a1d1bb31 867
ff4700b0 868 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
869 if (wp->flags & mask) {
870 cpu_watchpoint_remove_by_ref(cpu, wp);
871 }
c0ce998e 872 }
7d03f82f 873}
05068c0d
PM
874
875/* Return true if this watchpoint address matches the specified
876 * access (ie the address range covered by the watchpoint overlaps
877 * partially or completely with the address range covered by the
878 * access).
879 */
880static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
881 vaddr addr,
882 vaddr len)
883{
884 /* We know the lengths are non-zero, but a little caution is
885 * required to avoid errors in the case where the range ends
886 * exactly at the top of the address space and so addr + len
887 * wraps round to zero.
888 */
889 vaddr wpend = wp->vaddr + wp->len - 1;
890 vaddr addrend = addr + len - 1;
891
892 return !(addr > wpend || wp->vaddr > addrend);
893}
894
c527ee8f 895#endif
7d03f82f 896
a1d1bb31 897/* Add a breakpoint. */
b3310ab3 898int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 899 CPUBreakpoint **breakpoint)
4c3a88a2 900{
c0ce998e 901 CPUBreakpoint *bp;
3b46e624 902
7267c094 903 bp = g_malloc(sizeof(*bp));
4c3a88a2 904
a1d1bb31
AL
905 bp->pc = pc;
906 bp->flags = flags;
907
2dc9f411 908 /* keep all GDB-injected breakpoints in front */
00b941e5 909 if (flags & BP_GDB) {
f0c3c505 910 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 911 } else {
f0c3c505 912 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 913 }
3b46e624 914
f0c3c505 915 breakpoint_invalidate(cpu, pc);
a1d1bb31 916
00b941e5 917 if (breakpoint) {
a1d1bb31 918 *breakpoint = bp;
00b941e5 919 }
4c3a88a2 920 return 0;
4c3a88a2
FB
921}
922
a1d1bb31 923/* Remove a specific breakpoint. */
b3310ab3 924int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 925{
a1d1bb31
AL
926 CPUBreakpoint *bp;
927
f0c3c505 928 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 929 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 930 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
931 return 0;
932 }
7d03f82f 933 }
a1d1bb31 934 return -ENOENT;
7d03f82f
EI
935}
936
a1d1bb31 937/* Remove a specific breakpoint by reference. */
b3310ab3 938void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 939{
f0c3c505
AF
940 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
941
942 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 943
7267c094 944 g_free(breakpoint);
a1d1bb31
AL
945}
946
947/* Remove all matching breakpoints. */
b3310ab3 948void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 949{
c0ce998e 950 CPUBreakpoint *bp, *next;
a1d1bb31 951
f0c3c505 952 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
953 if (bp->flags & mask) {
954 cpu_breakpoint_remove_by_ref(cpu, bp);
955 }
c0ce998e 956 }
4c3a88a2
FB
957}
958
c33a346e
FB
959/* enable or disable single step mode. EXCP_DEBUG is returned by the
960 CPU loop after each instruction */
3825b28f 961void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 962{
ed2803da
AF
963 if (cpu->singlestep_enabled != enabled) {
964 cpu->singlestep_enabled = enabled;
965 if (kvm_enabled()) {
38e478ec 966 kvm_update_guest_debug(cpu, 0);
ed2803da 967 } else {
ccbb4d44 968 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 969 /* XXX: only flush what is necessary */
bbd77c18 970 tb_flush(cpu);
e22a25c9 971 }
c33a346e 972 }
c33a346e
FB
973}
974
a47dddd7 975void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
976{
977 va_list ap;
493ae1f0 978 va_list ap2;
7501267e
FB
979
980 va_start(ap, fmt);
493ae1f0 981 va_copy(ap2, ap);
7501267e
FB
982 fprintf(stderr, "qemu: fatal: ");
983 vfprintf(stderr, fmt, ap);
984 fprintf(stderr, "\n");
878096ee 985 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 986 if (qemu_log_separate()) {
1ee73216 987 qemu_log_lock();
93fcfe39
AL
988 qemu_log("qemu: fatal: ");
989 qemu_log_vprintf(fmt, ap2);
990 qemu_log("\n");
a0762859 991 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 992 qemu_log_flush();
1ee73216 993 qemu_log_unlock();
93fcfe39 994 qemu_log_close();
924edcae 995 }
493ae1f0 996 va_end(ap2);
f9373291 997 va_end(ap);
7615936e 998 replay_finish();
fd052bf6
RV
999#if defined(CONFIG_USER_ONLY)
1000 {
1001 struct sigaction act;
1002 sigfillset(&act.sa_mask);
1003 act.sa_handler = SIG_DFL;
1004 sigaction(SIGABRT, &act, NULL);
1005 }
1006#endif
7501267e
FB
1007 abort();
1008}
1009
0124311e 1010#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1011/* Called from RCU critical section */
041603fe
PB
1012static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1013{
1014 RAMBlock *block;
1015
43771539 1016 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1017 if (block && addr - block->offset < block->max_length) {
68851b98 1018 return block;
041603fe 1019 }
99e15582 1020 RAMBLOCK_FOREACH(block) {
9b8424d5 1021 if (addr - block->offset < block->max_length) {
041603fe
PB
1022 goto found;
1023 }
1024 }
1025
1026 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1027 abort();
1028
1029found:
43771539
PB
1030 /* It is safe to write mru_block outside the iothread lock. This
1031 * is what happens:
1032 *
1033 * mru_block = xxx
1034 * rcu_read_unlock()
1035 * xxx removed from list
1036 * rcu_read_lock()
1037 * read mru_block
1038 * mru_block = NULL;
1039 * call_rcu(reclaim_ramblock, xxx);
1040 * rcu_read_unlock()
1041 *
1042 * atomic_rcu_set is not needed here. The block was already published
1043 * when it was placed into the list. Here we're just making an extra
1044 * copy of the pointer.
1045 */
041603fe
PB
1046 ram_list.mru_block = block;
1047 return block;
1048}
1049
a2f4d5be 1050static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1051{
9a13565d 1052 CPUState *cpu;
041603fe 1053 ram_addr_t start1;
a2f4d5be
JQ
1054 RAMBlock *block;
1055 ram_addr_t end;
1056
1057 end = TARGET_PAGE_ALIGN(start + length);
1058 start &= TARGET_PAGE_MASK;
d24981d3 1059
0dc3f44a 1060 rcu_read_lock();
041603fe
PB
1061 block = qemu_get_ram_block(start);
1062 assert(block == qemu_get_ram_block(end - 1));
1240be24 1063 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1064 CPU_FOREACH(cpu) {
1065 tlb_reset_dirty(cpu, start1, length);
1066 }
0dc3f44a 1067 rcu_read_unlock();
d24981d3
JQ
1068}
1069
5579c7f3 1070/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1071bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1072 ram_addr_t length,
1073 unsigned client)
1ccde1cb 1074{
5b82b703 1075 DirtyMemoryBlocks *blocks;
03eebc9e 1076 unsigned long end, page;
5b82b703 1077 bool dirty = false;
03eebc9e
SH
1078
1079 if (length == 0) {
1080 return false;
1081 }
f23db169 1082
03eebc9e
SH
1083 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1084 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1085
1086 rcu_read_lock();
1087
1088 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1089
1090 while (page < end) {
1091 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1092 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1093 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1094
1095 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1096 offset, num);
1097 page += num;
1098 }
1099
1100 rcu_read_unlock();
03eebc9e
SH
1101
1102 if (dirty && tcg_enabled()) {
a2f4d5be 1103 tlb_reset_dirty_range_all(start, length);
5579c7f3 1104 }
03eebc9e
SH
1105
1106 return dirty;
1ccde1cb
FB
1107}
1108
8deaf12c
GH
1109DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1110 (ram_addr_t start, ram_addr_t length, unsigned client)
1111{
1112 DirtyMemoryBlocks *blocks;
1113 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1114 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1115 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1116 DirtyBitmapSnapshot *snap;
1117 unsigned long page, end, dest;
1118
1119 snap = g_malloc0(sizeof(*snap) +
1120 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1121 snap->start = first;
1122 snap->end = last;
1123
1124 page = first >> TARGET_PAGE_BITS;
1125 end = last >> TARGET_PAGE_BITS;
1126 dest = 0;
1127
1128 rcu_read_lock();
1129
1130 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1131
1132 while (page < end) {
1133 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1134 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1135 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1136
1137 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1138 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1139 offset >>= BITS_PER_LEVEL;
1140
1141 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1142 blocks->blocks[idx] + offset,
1143 num);
1144 page += num;
1145 dest += num >> BITS_PER_LEVEL;
1146 }
1147
1148 rcu_read_unlock();
1149
1150 if (tcg_enabled()) {
1151 tlb_reset_dirty_range_all(start, length);
1152 }
1153
1154 return snap;
1155}
1156
1157bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1158 ram_addr_t start,
1159 ram_addr_t length)
1160{
1161 unsigned long page, end;
1162
1163 assert(start >= snap->start);
1164 assert(start + length <= snap->end);
1165
1166 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1167 page = (start - snap->start) >> TARGET_PAGE_BITS;
1168
1169 while (page < end) {
1170 if (test_bit(page, snap->dirty)) {
1171 return true;
1172 }
1173 page++;
1174 }
1175 return false;
1176}
1177
79e2b9ae 1178/* Called from RCU critical section */
bb0e627a 1179hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1180 MemoryRegionSection *section,
1181 target_ulong vaddr,
1182 hwaddr paddr, hwaddr xlat,
1183 int prot,
1184 target_ulong *address)
e5548617 1185{
a8170e5e 1186 hwaddr iotlb;
e5548617
BS
1187 CPUWatchpoint *wp;
1188
cc5bea60 1189 if (memory_region_is_ram(section->mr)) {
e5548617 1190 /* Normal RAM. */
e4e69794 1191 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1192 if (!section->readonly) {
b41aac4f 1193 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1194 } else {
b41aac4f 1195 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1196 }
1197 } else {
0b8e2c10
PM
1198 AddressSpaceDispatch *d;
1199
1200 d = atomic_rcu_read(&section->address_space->dispatch);
1201 iotlb = section - d->map.sections;
149f54b5 1202 iotlb += xlat;
e5548617
BS
1203 }
1204
1205 /* Make accesses to pages with watchpoints go via the
1206 watchpoint trap routines. */
ff4700b0 1207 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1208 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1209 /* Avoid trapping reads of pages with a write breakpoint. */
1210 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1211 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1212 *address |= TLB_MMIO;
1213 break;
1214 }
1215 }
1216 }
1217
1218 return iotlb;
1219}
9fa3e853
FB
1220#endif /* defined(CONFIG_USER_ONLY) */
1221
e2eef170 1222#if !defined(CONFIG_USER_ONLY)
8da3ff18 1223
c227f099 1224static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1225 uint16_t section);
acc9d80b 1226static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1227
a2b257d6
IM
1228static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1229 qemu_anon_ram_alloc;
91138037
MA
1230
1231/*
1232 * Set a custom physical guest memory alloator.
1233 * Accelerators with unusual needs may need this. Hopefully, we can
1234 * get rid of it eventually.
1235 */
a2b257d6 1236void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1237{
1238 phys_mem_alloc = alloc;
1239}
1240
53cb28cb
MA
1241static uint16_t phys_section_add(PhysPageMap *map,
1242 MemoryRegionSection *section)
5312bd8b 1243{
68f3f65b
PB
1244 /* The physical section number is ORed with a page-aligned
1245 * pointer to produce the iotlb entries. Thus it should
1246 * never overflow into the page-aligned value.
1247 */
53cb28cb 1248 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1249
53cb28cb
MA
1250 if (map->sections_nb == map->sections_nb_alloc) {
1251 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1252 map->sections = g_renew(MemoryRegionSection, map->sections,
1253 map->sections_nb_alloc);
5312bd8b 1254 }
53cb28cb 1255 map->sections[map->sections_nb] = *section;
dfde4e6e 1256 memory_region_ref(section->mr);
53cb28cb 1257 return map->sections_nb++;
5312bd8b
AK
1258}
1259
058bc4b5
PB
1260static void phys_section_destroy(MemoryRegion *mr)
1261{
55b4e80b
DS
1262 bool have_sub_page = mr->subpage;
1263
dfde4e6e
PB
1264 memory_region_unref(mr);
1265
55b4e80b 1266 if (have_sub_page) {
058bc4b5 1267 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1268 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1269 g_free(subpage);
1270 }
1271}
1272
6092666e 1273static void phys_sections_free(PhysPageMap *map)
5312bd8b 1274{
9affd6fc
PB
1275 while (map->sections_nb > 0) {
1276 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1277 phys_section_destroy(section->mr);
1278 }
9affd6fc
PB
1279 g_free(map->sections);
1280 g_free(map->nodes);
5312bd8b
AK
1281}
1282
ac1970fb 1283static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1284{
1285 subpage_t *subpage;
a8170e5e 1286 hwaddr base = section->offset_within_address_space
0f0cb164 1287 & TARGET_PAGE_MASK;
003a0cf2 1288 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1289 MemoryRegionSection subsection = {
1290 .offset_within_address_space = base,
052e87b0 1291 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1292 };
a8170e5e 1293 hwaddr start, end;
0f0cb164 1294
f3705d53 1295 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1296
f3705d53 1297 if (!(existing->mr->subpage)) {
acc9d80b 1298 subpage = subpage_init(d->as, base);
3be91e86 1299 subsection.address_space = d->as;
0f0cb164 1300 subsection.mr = &subpage->iomem;
ac1970fb 1301 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1302 phys_section_add(&d->map, &subsection));
0f0cb164 1303 } else {
f3705d53 1304 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1305 }
1306 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1307 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1308 subpage_register(subpage, start, end,
1309 phys_section_add(&d->map, section));
0f0cb164
AK
1310}
1311
1312
052e87b0
PB
1313static void register_multipage(AddressSpaceDispatch *d,
1314 MemoryRegionSection *section)
33417e70 1315{
a8170e5e 1316 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1317 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1318 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1319 TARGET_PAGE_BITS));
dd81124b 1320
733d5ef5
PB
1321 assert(num_pages);
1322 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1323}
1324
ac1970fb 1325static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1326{
89ae337a 1327 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1328 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1329 MemoryRegionSection now = *section, remain = *section;
052e87b0 1330 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1331
733d5ef5
PB
1332 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1333 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1334 - now.offset_within_address_space;
1335
052e87b0 1336 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1337 register_subpage(d, &now);
733d5ef5 1338 } else {
052e87b0 1339 now.size = int128_zero();
733d5ef5 1340 }
052e87b0
PB
1341 while (int128_ne(remain.size, now.size)) {
1342 remain.size = int128_sub(remain.size, now.size);
1343 remain.offset_within_address_space += int128_get64(now.size);
1344 remain.offset_within_region += int128_get64(now.size);
69b67646 1345 now = remain;
052e87b0 1346 if (int128_lt(remain.size, page_size)) {
733d5ef5 1347 register_subpage(d, &now);
88266249 1348 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1349 now.size = page_size;
ac1970fb 1350 register_subpage(d, &now);
69b67646 1351 } else {
052e87b0 1352 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1353 register_multipage(d, &now);
69b67646 1354 }
0f0cb164
AK
1355 }
1356}
1357
62a2744c
SY
1358void qemu_flush_coalesced_mmio_buffer(void)
1359{
1360 if (kvm_enabled())
1361 kvm_flush_coalesced_mmio_buffer();
1362}
1363
b2a8658e
UD
1364void qemu_mutex_lock_ramlist(void)
1365{
1366 qemu_mutex_lock(&ram_list.mutex);
1367}
1368
1369void qemu_mutex_unlock_ramlist(void)
1370{
1371 qemu_mutex_unlock(&ram_list.mutex);
1372}
1373
be9b23c4
PX
1374void ram_block_dump(Monitor *mon)
1375{
1376 RAMBlock *block;
1377 char *psize;
1378
1379 rcu_read_lock();
1380 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1381 "Block Name", "PSize", "Offset", "Used", "Total");
1382 RAMBLOCK_FOREACH(block) {
1383 psize = size_to_str(block->page_size);
1384 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1385 " 0x%016" PRIx64 "\n", block->idstr, psize,
1386 (uint64_t)block->offset,
1387 (uint64_t)block->used_length,
1388 (uint64_t)block->max_length);
1389 g_free(psize);
1390 }
1391 rcu_read_unlock();
1392}
1393
9c607668
AK
1394#ifdef __linux__
1395/*
1396 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1397 * may or may not name the same files / on the same filesystem now as
1398 * when we actually open and map them. Iterate over the file
1399 * descriptors instead, and use qemu_fd_getpagesize().
1400 */
1401static int find_max_supported_pagesize(Object *obj, void *opaque)
1402{
1403 char *mem_path;
1404 long *hpsize_min = opaque;
1405
1406 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1407 mem_path = object_property_get_str(obj, "mem-path", NULL);
1408 if (mem_path) {
1409 long hpsize = qemu_mempath_getpagesize(mem_path);
1410 if (hpsize < *hpsize_min) {
1411 *hpsize_min = hpsize;
1412 }
1413 } else {
1414 *hpsize_min = getpagesize();
1415 }
1416 }
1417
1418 return 0;
1419}
1420
1421long qemu_getrampagesize(void)
1422{
1423 long hpsize = LONG_MAX;
1424 long mainrampagesize;
1425 Object *memdev_root;
1426
1427 if (mem_path) {
1428 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1429 } else {
1430 mainrampagesize = getpagesize();
1431 }
1432
1433 /* it's possible we have memory-backend objects with
1434 * hugepage-backed RAM. these may get mapped into system
1435 * address space via -numa parameters or memory hotplug
1436 * hooks. we want to take these into account, but we
1437 * also want to make sure these supported hugepage
1438 * sizes are applicable across the entire range of memory
1439 * we may boot from, so we take the min across all
1440 * backends, and assume normal pages in cases where a
1441 * backend isn't backed by hugepages.
1442 */
1443 memdev_root = object_resolve_path("/objects", NULL);
1444 if (memdev_root) {
1445 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1446 }
1447 if (hpsize == LONG_MAX) {
1448 /* No additional memory regions found ==> Report main RAM page size */
1449 return mainrampagesize;
1450 }
1451
1452 /* If NUMA is disabled or the NUMA nodes are not backed with a
1453 * memory-backend, then there is at least one node using "normal" RAM,
1454 * so if its page size is smaller we have got to report that size instead.
1455 */
1456 if (hpsize > mainrampagesize &&
1457 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1458 static bool warned;
1459 if (!warned) {
1460 error_report("Huge page support disabled (n/a for main memory).");
1461 warned = true;
1462 }
1463 return mainrampagesize;
1464 }
1465
1466 return hpsize;
1467}
1468#else
1469long qemu_getrampagesize(void)
1470{
1471 return getpagesize();
1472}
1473#endif
1474
e1e84ba0 1475#ifdef __linux__
d6af99c9
HZ
1476static int64_t get_file_size(int fd)
1477{
1478 int64_t size = lseek(fd, 0, SEEK_END);
1479 if (size < 0) {
1480 return -errno;
1481 }
1482 return size;
1483}
1484
04b16653
AW
1485static void *file_ram_alloc(RAMBlock *block,
1486 ram_addr_t memory,
7f56e740
PB
1487 const char *path,
1488 Error **errp)
c902760f 1489{
fd97fd44 1490 bool unlink_on_error = false;
c902760f 1491 char *filename;
8ca761f6
PF
1492 char *sanitized_name;
1493 char *c;
056b68af 1494 void *area = MAP_FAILED;
5c3ece79 1495 int fd = -1;
d6af99c9 1496 int64_t file_size;
c902760f 1497
fd97fd44
MA
1498 for (;;) {
1499 fd = open(path, O_RDWR);
1500 if (fd >= 0) {
1501 /* @path names an existing file, use it */
1502 break;
8d31d6b6 1503 }
fd97fd44
MA
1504 if (errno == ENOENT) {
1505 /* @path names a file that doesn't exist, create it */
1506 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1507 if (fd >= 0) {
1508 unlink_on_error = true;
1509 break;
1510 }
1511 } else if (errno == EISDIR) {
1512 /* @path names a directory, create a file there */
1513 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1514 sanitized_name = g_strdup(memory_region_name(block->mr));
1515 for (c = sanitized_name; *c != '\0'; c++) {
1516 if (*c == '/') {
1517 *c = '_';
1518 }
1519 }
8ca761f6 1520
fd97fd44
MA
1521 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1522 sanitized_name);
1523 g_free(sanitized_name);
8d31d6b6 1524
fd97fd44
MA
1525 fd = mkstemp(filename);
1526 if (fd >= 0) {
1527 unlink(filename);
1528 g_free(filename);
1529 break;
1530 }
1531 g_free(filename);
8d31d6b6 1532 }
fd97fd44
MA
1533 if (errno != EEXIST && errno != EINTR) {
1534 error_setg_errno(errp, errno,
1535 "can't open backing store %s for guest RAM",
1536 path);
1537 goto error;
1538 }
1539 /*
1540 * Try again on EINTR and EEXIST. The latter happens when
1541 * something else creates the file between our two open().
1542 */
8d31d6b6 1543 }
c902760f 1544
863e9621 1545 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1546 block->mr->align = block->page_size;
1547#if defined(__s390x__)
1548 if (kvm_enabled()) {
1549 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1550 }
1551#endif
fd97fd44 1552
d6af99c9
HZ
1553 file_size = get_file_size(fd);
1554
863e9621 1555 if (memory < block->page_size) {
fd97fd44 1556 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1557 "or larger than page size 0x%zx",
1558 memory, block->page_size);
f9a49dfa 1559 goto error;
c902760f 1560 }
c902760f 1561
1775f111
HZ
1562 if (file_size > 0 && file_size < memory) {
1563 error_setg(errp, "backing store %s size 0x%" PRIx64
1564 " does not match 'size' option 0x" RAM_ADDR_FMT,
1565 path, file_size, memory);
1566 goto error;
1567 }
1568
863e9621 1569 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1570
1571 /*
1572 * ftruncate is not supported by hugetlbfs in older
1573 * hosts, so don't bother bailing out on errors.
1574 * If anything goes wrong with it under other filesystems,
1575 * mmap will fail.
d6af99c9
HZ
1576 *
1577 * Do not truncate the non-empty backend file to avoid corrupting
1578 * the existing data in the file. Disabling shrinking is not
1579 * enough. For example, the current vNVDIMM implementation stores
1580 * the guest NVDIMM labels at the end of the backend file. If the
1581 * backend file is later extended, QEMU will not be able to find
1582 * those labels. Therefore, extending the non-empty backend file
1583 * is disabled as well.
c902760f 1584 */
d6af99c9 1585 if (!file_size && ftruncate(fd, memory)) {
9742bf26 1586 perror("ftruncate");
7f56e740 1587 }
c902760f 1588
d2f39add
DD
1589 area = qemu_ram_mmap(fd, memory, block->mr->align,
1590 block->flags & RAM_SHARED);
c902760f 1591 if (area == MAP_FAILED) {
7f56e740 1592 error_setg_errno(errp, errno,
fd97fd44 1593 "unable to map backing store for guest RAM");
f9a49dfa 1594 goto error;
c902760f 1595 }
ef36fa14
MT
1596
1597 if (mem_prealloc) {
1e356fc1 1598 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af
IM
1599 if (errp && *errp) {
1600 goto error;
1601 }
ef36fa14
MT
1602 }
1603
04b16653 1604 block->fd = fd;
c902760f 1605 return area;
f9a49dfa
MT
1606
1607error:
056b68af
IM
1608 if (area != MAP_FAILED) {
1609 qemu_ram_munmap(area, memory);
1610 }
fd97fd44
MA
1611 if (unlink_on_error) {
1612 unlink(path);
1613 }
5c3ece79
PB
1614 if (fd != -1) {
1615 close(fd);
1616 }
f9a49dfa 1617 return NULL;
c902760f
MT
1618}
1619#endif
1620
0dc3f44a 1621/* Called with the ramlist lock held. */
d17b5288 1622static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1623{
1624 RAMBlock *block, *next_block;
3e837b2c 1625 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1626
49cd9ac6
SH
1627 assert(size != 0); /* it would hand out same offset multiple times */
1628
0dc3f44a 1629 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1630 return 0;
0d53d9fe 1631 }
04b16653 1632
99e15582 1633 RAMBLOCK_FOREACH(block) {
f15fbc4b 1634 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1635
62be4e3a 1636 end = block->offset + block->max_length;
04b16653 1637
99e15582 1638 RAMBLOCK_FOREACH(next_block) {
04b16653
AW
1639 if (next_block->offset >= end) {
1640 next = MIN(next, next_block->offset);
1641 }
1642 }
1643 if (next - end >= size && next - end < mingap) {
3e837b2c 1644 offset = end;
04b16653
AW
1645 mingap = next - end;
1646 }
1647 }
3e837b2c
AW
1648
1649 if (offset == RAM_ADDR_MAX) {
1650 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1651 (uint64_t)size);
1652 abort();
1653 }
1654
04b16653
AW
1655 return offset;
1656}
1657
b8c48993 1658unsigned long last_ram_page(void)
d17b5288
AW
1659{
1660 RAMBlock *block;
1661 ram_addr_t last = 0;
1662
0dc3f44a 1663 rcu_read_lock();
99e15582 1664 RAMBLOCK_FOREACH(block) {
62be4e3a 1665 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1666 }
0dc3f44a 1667 rcu_read_unlock();
b8c48993 1668 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1669}
1670
ddb97f1d
JB
1671static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1672{
1673 int ret;
ddb97f1d
JB
1674
1675 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1676 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1677 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1678 if (ret) {
1679 perror("qemu_madvise");
1680 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1681 "but dump_guest_core=off specified\n");
1682 }
1683 }
1684}
1685
422148d3
DDAG
1686const char *qemu_ram_get_idstr(RAMBlock *rb)
1687{
1688 return rb->idstr;
1689}
1690
463a4ac2
DDAG
1691bool qemu_ram_is_shared(RAMBlock *rb)
1692{
1693 return rb->flags & RAM_SHARED;
1694}
1695
ae3a7047 1696/* Called with iothread lock held. */
fa53a0e5 1697void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1698{
fa53a0e5 1699 RAMBlock *block;
20cfe881 1700
c5705a77
AK
1701 assert(new_block);
1702 assert(!new_block->idstr[0]);
84b89d78 1703
09e5ab63
AL
1704 if (dev) {
1705 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1706 if (id) {
1707 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1708 g_free(id);
84b89d78
CM
1709 }
1710 }
1711 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1712
ab0a9956 1713 rcu_read_lock();
99e15582 1714 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1715 if (block != new_block &&
1716 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1717 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1718 new_block->idstr);
1719 abort();
1720 }
1721 }
0dc3f44a 1722 rcu_read_unlock();
c5705a77
AK
1723}
1724
ae3a7047 1725/* Called with iothread lock held. */
fa53a0e5 1726void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1727{
ae3a7047
MD
1728 /* FIXME: arch_init.c assumes that this is not called throughout
1729 * migration. Ignore the problem since hot-unplug during migration
1730 * does not work anyway.
1731 */
20cfe881
HT
1732 if (block) {
1733 memset(block->idstr, 0, sizeof(block->idstr));
1734 }
1735}
1736
863e9621
DDAG
1737size_t qemu_ram_pagesize(RAMBlock *rb)
1738{
1739 return rb->page_size;
1740}
1741
67f11b5c
DDAG
1742/* Returns the largest size of page in use */
1743size_t qemu_ram_pagesize_largest(void)
1744{
1745 RAMBlock *block;
1746 size_t largest = 0;
1747
99e15582 1748 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1749 largest = MAX(largest, qemu_ram_pagesize(block));
1750 }
1751
1752 return largest;
1753}
1754
8490fc78
LC
1755static int memory_try_enable_merging(void *addr, size_t len)
1756{
75cc7f01 1757 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1758 /* disabled by the user */
1759 return 0;
1760 }
1761
1762 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1763}
1764
62be4e3a
MT
1765/* Only legal before guest might have detected the memory size: e.g. on
1766 * incoming migration, or right after reset.
1767 *
1768 * As memory core doesn't know how is memory accessed, it is up to
1769 * resize callback to update device state and/or add assertions to detect
1770 * misuse, if necessary.
1771 */
fa53a0e5 1772int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1773{
62be4e3a
MT
1774 assert(block);
1775
4ed023ce 1776 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1777
62be4e3a
MT
1778 if (block->used_length == newsize) {
1779 return 0;
1780 }
1781
1782 if (!(block->flags & RAM_RESIZEABLE)) {
1783 error_setg_errno(errp, EINVAL,
1784 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1785 " in != 0x" RAM_ADDR_FMT, block->idstr,
1786 newsize, block->used_length);
1787 return -EINVAL;
1788 }
1789
1790 if (block->max_length < newsize) {
1791 error_setg_errno(errp, EINVAL,
1792 "Length too large: %s: 0x" RAM_ADDR_FMT
1793 " > 0x" RAM_ADDR_FMT, block->idstr,
1794 newsize, block->max_length);
1795 return -EINVAL;
1796 }
1797
1798 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1799 block->used_length = newsize;
58d2707e
PB
1800 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1801 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1802 memory_region_set_size(block->mr, newsize);
1803 if (block->resized) {
1804 block->resized(block->idstr, newsize, block->host);
1805 }
1806 return 0;
1807}
1808
5b82b703
SH
1809/* Called with ram_list.mutex held */
1810static void dirty_memory_extend(ram_addr_t old_ram_size,
1811 ram_addr_t new_ram_size)
1812{
1813 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1814 DIRTY_MEMORY_BLOCK_SIZE);
1815 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1816 DIRTY_MEMORY_BLOCK_SIZE);
1817 int i;
1818
1819 /* Only need to extend if block count increased */
1820 if (new_num_blocks <= old_num_blocks) {
1821 return;
1822 }
1823
1824 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1825 DirtyMemoryBlocks *old_blocks;
1826 DirtyMemoryBlocks *new_blocks;
1827 int j;
1828
1829 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1830 new_blocks = g_malloc(sizeof(*new_blocks) +
1831 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1832
1833 if (old_num_blocks) {
1834 memcpy(new_blocks->blocks, old_blocks->blocks,
1835 old_num_blocks * sizeof(old_blocks->blocks[0]));
1836 }
1837
1838 for (j = old_num_blocks; j < new_num_blocks; j++) {
1839 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1840 }
1841
1842 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1843
1844 if (old_blocks) {
1845 g_free_rcu(old_blocks, rcu);
1846 }
1847 }
1848}
1849
528f46af 1850static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1851{
e1c57ab8 1852 RAMBlock *block;
0d53d9fe 1853 RAMBlock *last_block = NULL;
2152f5ca 1854 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1855 Error *err = NULL;
2152f5ca 1856
b8c48993 1857 old_ram_size = last_ram_page();
c5705a77 1858
b2a8658e 1859 qemu_mutex_lock_ramlist();
9b8424d5 1860 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1861
1862 if (!new_block->host) {
1863 if (xen_enabled()) {
9b8424d5 1864 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1865 new_block->mr, &err);
1866 if (err) {
1867 error_propagate(errp, err);
1868 qemu_mutex_unlock_ramlist();
39c350ee 1869 return;
37aa7a0e 1870 }
e1c57ab8 1871 } else {
9b8424d5 1872 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1873 &new_block->mr->align);
39228250 1874 if (!new_block->host) {
ef701d7b
HT
1875 error_setg_errno(errp, errno,
1876 "cannot set up guest memory '%s'",
1877 memory_region_name(new_block->mr));
1878 qemu_mutex_unlock_ramlist();
39c350ee 1879 return;
39228250 1880 }
9b8424d5 1881 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1882 }
c902760f 1883 }
94a6b54f 1884
dd631697
LZ
1885 new_ram_size = MAX(old_ram_size,
1886 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1887 if (new_ram_size > old_ram_size) {
5b82b703 1888 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1889 }
0d53d9fe
MD
1890 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1891 * QLIST (which has an RCU-friendly variant) does not have insertion at
1892 * tail, so save the last element in last_block.
1893 */
99e15582 1894 RAMBLOCK_FOREACH(block) {
0d53d9fe 1895 last_block = block;
9b8424d5 1896 if (block->max_length < new_block->max_length) {
abb26d63
PB
1897 break;
1898 }
1899 }
1900 if (block) {
0dc3f44a 1901 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1902 } else if (last_block) {
0dc3f44a 1903 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1904 } else { /* list is empty */
0dc3f44a 1905 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1906 }
0d6d3c87 1907 ram_list.mru_block = NULL;
94a6b54f 1908
0dc3f44a
MD
1909 /* Write list before version */
1910 smp_wmb();
f798b07f 1911 ram_list.version++;
b2a8658e 1912 qemu_mutex_unlock_ramlist();
f798b07f 1913
9b8424d5 1914 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1915 new_block->used_length,
1916 DIRTY_CLIENTS_ALL);
94a6b54f 1917
a904c911
PB
1918 if (new_block->host) {
1919 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1920 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1921 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1922 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1923 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1924 }
94a6b54f 1925}
e9a1ab19 1926
0b183fc8 1927#ifdef __linux__
528f46af
FZ
1928RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1929 bool share, const char *mem_path,
1930 Error **errp)
e1c57ab8
PB
1931{
1932 RAMBlock *new_block;
ef701d7b 1933 Error *local_err = NULL;
e1c57ab8
PB
1934
1935 if (xen_enabled()) {
7f56e740 1936 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1937 return NULL;
e1c57ab8
PB
1938 }
1939
e45e7ae2
MAL
1940 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1941 error_setg(errp,
1942 "host lacks kvm mmu notifiers, -mem-path unsupported");
1943 return NULL;
1944 }
1945
e1c57ab8
PB
1946 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1947 /*
1948 * file_ram_alloc() needs to allocate just like
1949 * phys_mem_alloc, but we haven't bothered to provide
1950 * a hook there.
1951 */
7f56e740
PB
1952 error_setg(errp,
1953 "-mem-path not supported with this accelerator");
528f46af 1954 return NULL;
e1c57ab8
PB
1955 }
1956
4ed023ce 1957 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1958 new_block = g_malloc0(sizeof(*new_block));
1959 new_block->mr = mr;
9b8424d5
MT
1960 new_block->used_length = size;
1961 new_block->max_length = size;
dbcb8981 1962 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1963 new_block->host = file_ram_alloc(new_block, size,
1964 mem_path, errp);
1965 if (!new_block->host) {
1966 g_free(new_block);
528f46af 1967 return NULL;
7f56e740
PB
1968 }
1969
528f46af 1970 ram_block_add(new_block, &local_err);
ef701d7b
HT
1971 if (local_err) {
1972 g_free(new_block);
1973 error_propagate(errp, local_err);
528f46af 1974 return NULL;
ef701d7b 1975 }
528f46af 1976 return new_block;
e1c57ab8 1977}
0b183fc8 1978#endif
e1c57ab8 1979
62be4e3a 1980static
528f46af
FZ
1981RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1982 void (*resized)(const char*,
1983 uint64_t length,
1984 void *host),
1985 void *host, bool resizeable,
1986 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1987{
1988 RAMBlock *new_block;
ef701d7b 1989 Error *local_err = NULL;
e1c57ab8 1990
4ed023ce
DDAG
1991 size = HOST_PAGE_ALIGN(size);
1992 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1993 new_block = g_malloc0(sizeof(*new_block));
1994 new_block->mr = mr;
62be4e3a 1995 new_block->resized = resized;
9b8424d5
MT
1996 new_block->used_length = size;
1997 new_block->max_length = max_size;
62be4e3a 1998 assert(max_size >= size);
e1c57ab8 1999 new_block->fd = -1;
863e9621 2000 new_block->page_size = getpagesize();
e1c57ab8
PB
2001 new_block->host = host;
2002 if (host) {
7bd4f430 2003 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2004 }
62be4e3a
MT
2005 if (resizeable) {
2006 new_block->flags |= RAM_RESIZEABLE;
2007 }
528f46af 2008 ram_block_add(new_block, &local_err);
ef701d7b
HT
2009 if (local_err) {
2010 g_free(new_block);
2011 error_propagate(errp, local_err);
528f46af 2012 return NULL;
ef701d7b 2013 }
528f46af 2014 return new_block;
e1c57ab8
PB
2015}
2016
528f46af 2017RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2018 MemoryRegion *mr, Error **errp)
2019{
2020 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2021}
2022
528f46af 2023RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 2024{
62be4e3a
MT
2025 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2026}
2027
528f46af 2028RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2029 void (*resized)(const char*,
2030 uint64_t length,
2031 void *host),
2032 MemoryRegion *mr, Error **errp)
2033{
2034 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
2035}
2036
43771539
PB
2037static void reclaim_ramblock(RAMBlock *block)
2038{
2039 if (block->flags & RAM_PREALLOC) {
2040 ;
2041 } else if (xen_enabled()) {
2042 xen_invalidate_map_cache_entry(block->host);
2043#ifndef _WIN32
2044 } else if (block->fd >= 0) {
2f3a2bb1 2045 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2046 close(block->fd);
2047#endif
2048 } else {
2049 qemu_anon_ram_free(block->host, block->max_length);
2050 }
2051 g_free(block);
2052}
2053
f1060c55 2054void qemu_ram_free(RAMBlock *block)
e9a1ab19 2055{
85bc2a15
MAL
2056 if (!block) {
2057 return;
2058 }
2059
0987d735
PB
2060 if (block->host) {
2061 ram_block_notify_remove(block->host, block->max_length);
2062 }
2063
b2a8658e 2064 qemu_mutex_lock_ramlist();
f1060c55
FZ
2065 QLIST_REMOVE_RCU(block, next);
2066 ram_list.mru_block = NULL;
2067 /* Write list before version */
2068 smp_wmb();
2069 ram_list.version++;
2070 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2071 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2072}
2073
cd19cfa2
HY
2074#ifndef _WIN32
2075void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2076{
2077 RAMBlock *block;
2078 ram_addr_t offset;
2079 int flags;
2080 void *area, *vaddr;
2081
99e15582 2082 RAMBLOCK_FOREACH(block) {
cd19cfa2 2083 offset = addr - block->offset;
9b8424d5 2084 if (offset < block->max_length) {
1240be24 2085 vaddr = ramblock_ptr(block, offset);
7bd4f430 2086 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2087 ;
dfeaf2ab
MA
2088 } else if (xen_enabled()) {
2089 abort();
cd19cfa2
HY
2090 } else {
2091 flags = MAP_FIXED;
3435f395 2092 if (block->fd >= 0) {
dbcb8981
PB
2093 flags |= (block->flags & RAM_SHARED ?
2094 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2095 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2096 flags, block->fd, offset);
cd19cfa2 2097 } else {
2eb9fbaa
MA
2098 /*
2099 * Remap needs to match alloc. Accelerators that
2100 * set phys_mem_alloc never remap. If they did,
2101 * we'd need a remap hook here.
2102 */
2103 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2104
cd19cfa2
HY
2105 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2106 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2107 flags, -1, 0);
cd19cfa2
HY
2108 }
2109 if (area != vaddr) {
f15fbc4b
AP
2110 fprintf(stderr, "Could not remap addr: "
2111 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2112 length, addr);
2113 exit(1);
2114 }
8490fc78 2115 memory_try_enable_merging(vaddr, length);
ddb97f1d 2116 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2117 }
cd19cfa2
HY
2118 }
2119 }
2120}
2121#endif /* !_WIN32 */
2122
1b5ec234 2123/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2124 * This should not be used for general purpose DMA. Use address_space_map
2125 * or address_space_rw instead. For local memory (e.g. video ram) that the
2126 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2127 *
49b24afc 2128 * Called within RCU critical section.
1b5ec234 2129 */
0878d0e1 2130void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2131{
3655cb9c
GA
2132 RAMBlock *block = ram_block;
2133
2134 if (block == NULL) {
2135 block = qemu_get_ram_block(addr);
0878d0e1 2136 addr -= block->offset;
3655cb9c 2137 }
ae3a7047
MD
2138
2139 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2140 /* We need to check if the requested address is in the RAM
2141 * because we don't want to map the entire memory in QEMU.
2142 * In that case just map until the end of the page.
2143 */
2144 if (block->offset == 0) {
1ff7c598 2145 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2146 }
ae3a7047 2147
1ff7c598 2148 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2149 }
0878d0e1 2150 return ramblock_ptr(block, addr);
dc828ca1
PB
2151}
2152
0878d0e1 2153/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2154 * but takes a size argument.
0dc3f44a 2155 *
e81bcda5 2156 * Called within RCU critical section.
ae3a7047 2157 */
3655cb9c
GA
2158static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2159 hwaddr *size)
38bee5dc 2160{
3655cb9c 2161 RAMBlock *block = ram_block;
8ab934f9
SS
2162 if (*size == 0) {
2163 return NULL;
2164 }
e81bcda5 2165
3655cb9c
GA
2166 if (block == NULL) {
2167 block = qemu_get_ram_block(addr);
0878d0e1 2168 addr -= block->offset;
3655cb9c 2169 }
0878d0e1 2170 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2171
2172 if (xen_enabled() && block->host == NULL) {
2173 /* We need to check if the requested address is in the RAM
2174 * because we don't want to map the entire memory in QEMU.
2175 * In that case just map the requested area.
2176 */
2177 if (block->offset == 0) {
1ff7c598 2178 return xen_map_cache(addr, *size, 1, true);
38bee5dc
SS
2179 }
2180
1ff7c598 2181 block->host = xen_map_cache(block->offset, block->max_length, 1, true);
38bee5dc 2182 }
e81bcda5 2183
0878d0e1 2184 return ramblock_ptr(block, addr);
38bee5dc
SS
2185}
2186
422148d3
DDAG
2187/*
2188 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2189 * in that RAMBlock.
2190 *
2191 * ptr: Host pointer to look up
2192 * round_offset: If true round the result offset down to a page boundary
2193 * *ram_addr: set to result ram_addr
2194 * *offset: set to result offset within the RAMBlock
2195 *
2196 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2197 *
2198 * By the time this function returns, the returned pointer is not protected
2199 * by RCU anymore. If the caller is not within an RCU critical section and
2200 * does not hold the iothread lock, it must have other means of protecting the
2201 * pointer, such as a reference to the region that includes the incoming
2202 * ram_addr_t.
2203 */
422148d3 2204RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2205 ram_addr_t *offset)
5579c7f3 2206{
94a6b54f
PB
2207 RAMBlock *block;
2208 uint8_t *host = ptr;
2209
868bb33f 2210 if (xen_enabled()) {
f615f396 2211 ram_addr_t ram_addr;
0dc3f44a 2212 rcu_read_lock();
f615f396
PB
2213 ram_addr = xen_ram_addr_from_mapcache(ptr);
2214 block = qemu_get_ram_block(ram_addr);
422148d3 2215 if (block) {
d6b6aec4 2216 *offset = ram_addr - block->offset;
422148d3 2217 }
0dc3f44a 2218 rcu_read_unlock();
422148d3 2219 return block;
712c2b41
SS
2220 }
2221
0dc3f44a
MD
2222 rcu_read_lock();
2223 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2224 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2225 goto found;
2226 }
2227
99e15582 2228 RAMBLOCK_FOREACH(block) {
432d268c
JN
2229 /* This case append when the block is not mapped. */
2230 if (block->host == NULL) {
2231 continue;
2232 }
9b8424d5 2233 if (host - block->host < block->max_length) {
23887b79 2234 goto found;
f471a17e 2235 }
94a6b54f 2236 }
432d268c 2237
0dc3f44a 2238 rcu_read_unlock();
1b5ec234 2239 return NULL;
23887b79
PB
2240
2241found:
422148d3
DDAG
2242 *offset = (host - block->host);
2243 if (round_offset) {
2244 *offset &= TARGET_PAGE_MASK;
2245 }
0dc3f44a 2246 rcu_read_unlock();
422148d3
DDAG
2247 return block;
2248}
2249
e3dd7493
DDAG
2250/*
2251 * Finds the named RAMBlock
2252 *
2253 * name: The name of RAMBlock to find
2254 *
2255 * Returns: RAMBlock (or NULL if not found)
2256 */
2257RAMBlock *qemu_ram_block_by_name(const char *name)
2258{
2259 RAMBlock *block;
2260
99e15582 2261 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2262 if (!strcmp(name, block->idstr)) {
2263 return block;
2264 }
2265 }
2266
2267 return NULL;
2268}
2269
422148d3
DDAG
2270/* Some of the softmmu routines need to translate from a host pointer
2271 (typically a TLB entry) back to a ram offset. */
07bdaa41 2272ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2273{
2274 RAMBlock *block;
f615f396 2275 ram_addr_t offset;
422148d3 2276
f615f396 2277 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2278 if (!block) {
07bdaa41 2279 return RAM_ADDR_INVALID;
422148d3
DDAG
2280 }
2281
07bdaa41 2282 return block->offset + offset;
e890261f 2283}
f471a17e 2284
49b24afc 2285/* Called within RCU critical section. */
a8170e5e 2286static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2287 uint64_t val, unsigned size)
9fa3e853 2288{
ba051fb5
AB
2289 bool locked = false;
2290
52159192 2291 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2292 locked = true;
2293 tb_lock();
0e0df1e2 2294 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2295 }
0e0df1e2
AK
2296 switch (size) {
2297 case 1:
0878d0e1 2298 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2299 break;
2300 case 2:
0878d0e1 2301 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2302 break;
2303 case 4:
0878d0e1 2304 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2305 break;
2306 default:
2307 abort();
3a7d929e 2308 }
ba051fb5
AB
2309
2310 if (locked) {
2311 tb_unlock();
2312 }
2313
58d2707e
PB
2314 /* Set both VGA and migration bits for simplicity and to remove
2315 * the notdirty callback faster.
2316 */
2317 cpu_physical_memory_set_dirty_range(ram_addr, size,
2318 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2319 /* we remove the notdirty callback only if the code has been
2320 flushed */
a2cd8c85 2321 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2322 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2323 }
9fa3e853
FB
2324}
2325
b018ddf6
PB
2326static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2327 unsigned size, bool is_write)
2328{
2329 return is_write;
2330}
2331
0e0df1e2 2332static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2333 .write = notdirty_mem_write,
b018ddf6 2334 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2335 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2336};
2337
0f459d16 2338/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2339static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2340{
93afeade 2341 CPUState *cpu = current_cpu;
568496c0 2342 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2343 CPUArchState *env = cpu->env_ptr;
06d55cc1 2344 target_ulong pc, cs_base;
0f459d16 2345 target_ulong vaddr;
a1d1bb31 2346 CPUWatchpoint *wp;
89fee74a 2347 uint32_t cpu_flags;
0f459d16 2348
ff4700b0 2349 if (cpu->watchpoint_hit) {
06d55cc1
AL
2350 /* We re-entered the check after replacing the TB. Now raise
2351 * the debug interrupt so that is will trigger after the
2352 * current instruction. */
93afeade 2353 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2354 return;
2355 }
93afeade 2356 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2357 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2358 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2359 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2360 && (wp->flags & flags)) {
08225676
PM
2361 if (flags == BP_MEM_READ) {
2362 wp->flags |= BP_WATCHPOINT_HIT_READ;
2363 } else {
2364 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2365 }
2366 wp->hitaddr = vaddr;
66b9b43c 2367 wp->hitattrs = attrs;
ff4700b0 2368 if (!cpu->watchpoint_hit) {
568496c0
SF
2369 if (wp->flags & BP_CPU &&
2370 !cc->debug_check_watchpoint(cpu, wp)) {
2371 wp->flags &= ~BP_WATCHPOINT_HIT;
2372 continue;
2373 }
ff4700b0 2374 cpu->watchpoint_hit = wp;
a5e99826 2375
8d04fb55
JK
2376 /* Both tb_lock and iothread_mutex will be reset when
2377 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2378 * back into the cpu_exec main loop.
a5e99826
FK
2379 */
2380 tb_lock();
239c51a5 2381 tb_check_watchpoint(cpu);
6e140f28 2382 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2383 cpu->exception_index = EXCP_DEBUG;
5638d180 2384 cpu_loop_exit(cpu);
6e140f28
AL
2385 } else {
2386 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2387 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2388 cpu_loop_exit_noexc(cpu);
6e140f28 2389 }
06d55cc1 2390 }
6e140f28
AL
2391 } else {
2392 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2393 }
2394 }
2395}
2396
6658ffb8
PB
2397/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2398 so these check for a hit then pass through to the normal out-of-line
2399 phys routines. */
66b9b43c
PM
2400static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2401 unsigned size, MemTxAttrs attrs)
6658ffb8 2402{
66b9b43c
PM
2403 MemTxResult res;
2404 uint64_t data;
79ed0416
PM
2405 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2406 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2407
2408 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2409 switch (size) {
66b9b43c 2410 case 1:
79ed0416 2411 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2412 break;
2413 case 2:
79ed0416 2414 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2415 break;
2416 case 4:
79ed0416 2417 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2418 break;
1ec9b909
AK
2419 default: abort();
2420 }
66b9b43c
PM
2421 *pdata = data;
2422 return res;
6658ffb8
PB
2423}
2424
66b9b43c
PM
2425static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2426 uint64_t val, unsigned size,
2427 MemTxAttrs attrs)
6658ffb8 2428{
66b9b43c 2429 MemTxResult res;
79ed0416
PM
2430 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2431 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2432
2433 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2434 switch (size) {
67364150 2435 case 1:
79ed0416 2436 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2437 break;
2438 case 2:
79ed0416 2439 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2440 break;
2441 case 4:
79ed0416 2442 address_space_stl(as, addr, val, attrs, &res);
67364150 2443 break;
1ec9b909
AK
2444 default: abort();
2445 }
66b9b43c 2446 return res;
6658ffb8
PB
2447}
2448
1ec9b909 2449static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2450 .read_with_attrs = watch_mem_read,
2451 .write_with_attrs = watch_mem_write,
1ec9b909 2452 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2453};
6658ffb8 2454
f25a49e0
PM
2455static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2456 unsigned len, MemTxAttrs attrs)
db7b5426 2457{
acc9d80b 2458 subpage_t *subpage = opaque;
ff6cff75 2459 uint8_t buf[8];
5c9eb028 2460 MemTxResult res;
791af8c8 2461
db7b5426 2462#if defined(DEBUG_SUBPAGE)
016e9d62 2463 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2464 subpage, len, addr);
db7b5426 2465#endif
5c9eb028
PM
2466 res = address_space_read(subpage->as, addr + subpage->base,
2467 attrs, buf, len);
2468 if (res) {
2469 return res;
f25a49e0 2470 }
acc9d80b
JK
2471 switch (len) {
2472 case 1:
f25a49e0
PM
2473 *data = ldub_p(buf);
2474 return MEMTX_OK;
acc9d80b 2475 case 2:
f25a49e0
PM
2476 *data = lduw_p(buf);
2477 return MEMTX_OK;
acc9d80b 2478 case 4:
f25a49e0
PM
2479 *data = ldl_p(buf);
2480 return MEMTX_OK;
ff6cff75 2481 case 8:
f25a49e0
PM
2482 *data = ldq_p(buf);
2483 return MEMTX_OK;
acc9d80b
JK
2484 default:
2485 abort();
2486 }
db7b5426
BS
2487}
2488
f25a49e0
PM
2489static MemTxResult subpage_write(void *opaque, hwaddr addr,
2490 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2491{
acc9d80b 2492 subpage_t *subpage = opaque;
ff6cff75 2493 uint8_t buf[8];
acc9d80b 2494
db7b5426 2495#if defined(DEBUG_SUBPAGE)
016e9d62 2496 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2497 " value %"PRIx64"\n",
2498 __func__, subpage, len, addr, value);
db7b5426 2499#endif
acc9d80b
JK
2500 switch (len) {
2501 case 1:
2502 stb_p(buf, value);
2503 break;
2504 case 2:
2505 stw_p(buf, value);
2506 break;
2507 case 4:
2508 stl_p(buf, value);
2509 break;
ff6cff75
PB
2510 case 8:
2511 stq_p(buf, value);
2512 break;
acc9d80b
JK
2513 default:
2514 abort();
2515 }
5c9eb028
PM
2516 return address_space_write(subpage->as, addr + subpage->base,
2517 attrs, buf, len);
db7b5426
BS
2518}
2519
c353e4cc 2520static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2521 unsigned len, bool is_write)
c353e4cc 2522{
acc9d80b 2523 subpage_t *subpage = opaque;
c353e4cc 2524#if defined(DEBUG_SUBPAGE)
016e9d62 2525 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2526 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2527#endif
2528
acc9d80b 2529 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2530 len, is_write);
c353e4cc
PB
2531}
2532
70c68e44 2533static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2534 .read_with_attrs = subpage_read,
2535 .write_with_attrs = subpage_write,
ff6cff75
PB
2536 .impl.min_access_size = 1,
2537 .impl.max_access_size = 8,
2538 .valid.min_access_size = 1,
2539 .valid.max_access_size = 8,
c353e4cc 2540 .valid.accepts = subpage_accepts,
70c68e44 2541 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2542};
2543
c227f099 2544static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2545 uint16_t section)
db7b5426
BS
2546{
2547 int idx, eidx;
2548
2549 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2550 return -1;
2551 idx = SUBPAGE_IDX(start);
2552 eidx = SUBPAGE_IDX(end);
2553#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2554 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2555 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2556#endif
db7b5426 2557 for (; idx <= eidx; idx++) {
5312bd8b 2558 mmio->sub_section[idx] = section;
db7b5426
BS
2559 }
2560
2561 return 0;
2562}
2563
acc9d80b 2564static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2565{
c227f099 2566 subpage_t *mmio;
db7b5426 2567
2615fabd 2568 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
acc9d80b 2569 mmio->as = as;
1eec614b 2570 mmio->base = base;
2c9b15ca 2571 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2572 NULL, TARGET_PAGE_SIZE);
b3b00c78 2573 mmio->iomem.subpage = true;
db7b5426 2574#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2575 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2576 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2577#endif
b41aac4f 2578 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2579
2580 return mmio;
2581}
2582
a656e22f
PC
2583static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2584 MemoryRegion *mr)
5312bd8b 2585{
a656e22f 2586 assert(as);
5312bd8b 2587 MemoryRegionSection section = {
a656e22f 2588 .address_space = as,
5312bd8b
AK
2589 .mr = mr,
2590 .offset_within_address_space = 0,
2591 .offset_within_region = 0,
052e87b0 2592 .size = int128_2_64(),
5312bd8b
AK
2593 };
2594
53cb28cb 2595 return phys_section_add(map, &section);
5312bd8b
AK
2596}
2597
a54c87b6 2598MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2599{
a54c87b6
PM
2600 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2601 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2602 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2603 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2604
2605 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2606}
2607
e9179ce1
AK
2608static void io_mem_init(void)
2609{
1f6245e5 2610 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2611 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2612 NULL, UINT64_MAX);
8d04fb55
JK
2613
2614 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2615 * which can be called without the iothread mutex.
2616 */
2c9b15ca 2617 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2618 NULL, UINT64_MAX);
8d04fb55
JK
2619 memory_region_clear_global_locking(&io_mem_notdirty);
2620
2c9b15ca 2621 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2622 NULL, UINT64_MAX);
e9179ce1
AK
2623}
2624
ac1970fb 2625static void mem_begin(MemoryListener *listener)
00752703
PB
2626{
2627 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2628 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2629 uint16_t n;
2630
a656e22f 2631 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2632 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2633 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2634 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2635 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2636 assert(n == PHYS_SECTION_ROM);
a656e22f 2637 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2638 assert(n == PHYS_SECTION_WATCH);
00752703 2639
9736e55b 2640 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2641 d->as = as;
2642 as->next_dispatch = d;
2643}
2644
79e2b9ae
PB
2645static void address_space_dispatch_free(AddressSpaceDispatch *d)
2646{
2647 phys_sections_free(&d->map);
2648 g_free(d);
2649}
2650
00752703 2651static void mem_commit(MemoryListener *listener)
ac1970fb 2652{
89ae337a 2653 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2654 AddressSpaceDispatch *cur = as->dispatch;
2655 AddressSpaceDispatch *next = as->next_dispatch;
2656
53cb28cb 2657 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2658
79e2b9ae 2659 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2660 if (cur) {
79e2b9ae 2661 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2662 }
9affd6fc
PB
2663}
2664
1d71148e 2665static void tcg_commit(MemoryListener *listener)
50c1e149 2666{
32857f4d
PM
2667 CPUAddressSpace *cpuas;
2668 AddressSpaceDispatch *d;
117712c3
AK
2669
2670 /* since each CPU stores ram addresses in its TLB cache, we must
2671 reset the modified entries */
32857f4d
PM
2672 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2673 cpu_reloading_memory_map();
2674 /* The CPU and TLB are protected by the iothread lock.
2675 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2676 * may have split the RCU critical section.
2677 */
2678 d = atomic_rcu_read(&cpuas->as->dispatch);
f35e44e7 2679 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2680 tlb_flush(cpuas->cpu);
50c1e149
AK
2681}
2682
ac1970fb
AK
2683void address_space_init_dispatch(AddressSpace *as)
2684{
00752703 2685 as->dispatch = NULL;
89ae337a 2686 as->dispatch_listener = (MemoryListener) {
ac1970fb 2687 .begin = mem_begin,
00752703 2688 .commit = mem_commit,
ac1970fb
AK
2689 .region_add = mem_add,
2690 .region_nop = mem_add,
2691 .priority = 0,
2692 };
89ae337a 2693 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2694}
2695
6e48e8f9
PB
2696void address_space_unregister(AddressSpace *as)
2697{
2698 memory_listener_unregister(&as->dispatch_listener);
2699}
2700
83f3c251
AK
2701void address_space_destroy_dispatch(AddressSpace *as)
2702{
2703 AddressSpaceDispatch *d = as->dispatch;
2704
79e2b9ae
PB
2705 atomic_rcu_set(&as->dispatch, NULL);
2706 if (d) {
2707 call_rcu(d, address_space_dispatch_free, rcu);
2708 }
83f3c251
AK
2709}
2710
62152b8a
AK
2711static void memory_map_init(void)
2712{
7267c094 2713 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2714
57271d63 2715 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2716 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2717
7267c094 2718 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2719 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2720 65536);
7dca8043 2721 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2722}
2723
2724MemoryRegion *get_system_memory(void)
2725{
2726 return system_memory;
2727}
2728
309cb471
AK
2729MemoryRegion *get_system_io(void)
2730{
2731 return system_io;
2732}
2733
e2eef170
PB
2734#endif /* !defined(CONFIG_USER_ONLY) */
2735
13eb76e0
FB
2736/* physical memory access (slow version, mainly for debug) */
2737#if defined(CONFIG_USER_ONLY)
f17ec444 2738int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2739 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2740{
2741 int l, flags;
2742 target_ulong page;
53a5960a 2743 void * p;
13eb76e0
FB
2744
2745 while (len > 0) {
2746 page = addr & TARGET_PAGE_MASK;
2747 l = (page + TARGET_PAGE_SIZE) - addr;
2748 if (l > len)
2749 l = len;
2750 flags = page_get_flags(page);
2751 if (!(flags & PAGE_VALID))
a68fe89c 2752 return -1;
13eb76e0
FB
2753 if (is_write) {
2754 if (!(flags & PAGE_WRITE))
a68fe89c 2755 return -1;
579a97f7 2756 /* XXX: this code should not depend on lock_user */
72fb7daa 2757 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2758 return -1;
72fb7daa
AJ
2759 memcpy(p, buf, l);
2760 unlock_user(p, addr, l);
13eb76e0
FB
2761 } else {
2762 if (!(flags & PAGE_READ))
a68fe89c 2763 return -1;
579a97f7 2764 /* XXX: this code should not depend on lock_user */
72fb7daa 2765 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2766 return -1;
72fb7daa 2767 memcpy(buf, p, l);
5b257578 2768 unlock_user(p, addr, 0);
13eb76e0
FB
2769 }
2770 len -= l;
2771 buf += l;
2772 addr += l;
2773 }
a68fe89c 2774 return 0;
13eb76e0 2775}
8df1cd07 2776
13eb76e0 2777#else
51d7a9eb 2778
845b6214 2779static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2780 hwaddr length)
51d7a9eb 2781{
e87f7778 2782 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2783 addr += memory_region_get_ram_addr(mr);
2784
e87f7778
PB
2785 /* No early return if dirty_log_mask is or becomes 0, because
2786 * cpu_physical_memory_set_dirty_range will still call
2787 * xen_modified_memory.
2788 */
2789 if (dirty_log_mask) {
2790 dirty_log_mask =
2791 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2792 }
2793 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
ba051fb5 2794 tb_lock();
e87f7778 2795 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2796 tb_unlock();
e87f7778 2797 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2798 }
e87f7778 2799 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2800}
2801
23326164 2802static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2803{
e1622f4b 2804 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2805
2806 /* Regions are assumed to support 1-4 byte accesses unless
2807 otherwise specified. */
23326164
RH
2808 if (access_size_max == 0) {
2809 access_size_max = 4;
2810 }
2811
2812 /* Bound the maximum access by the alignment of the address. */
2813 if (!mr->ops->impl.unaligned) {
2814 unsigned align_size_max = addr & -addr;
2815 if (align_size_max != 0 && align_size_max < access_size_max) {
2816 access_size_max = align_size_max;
2817 }
82f2563f 2818 }
23326164
RH
2819
2820 /* Don't attempt accesses larger than the maximum. */
2821 if (l > access_size_max) {
2822 l = access_size_max;
82f2563f 2823 }
6554f5c0 2824 l = pow2floor(l);
23326164
RH
2825
2826 return l;
82f2563f
PB
2827}
2828
4840f10e 2829static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2830{
4840f10e
JK
2831 bool unlocked = !qemu_mutex_iothread_locked();
2832 bool release_lock = false;
2833
2834 if (unlocked && mr->global_locking) {
2835 qemu_mutex_lock_iothread();
2836 unlocked = false;
2837 release_lock = true;
2838 }
125b3806 2839 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2840 if (unlocked) {
2841 qemu_mutex_lock_iothread();
2842 }
125b3806 2843 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2844 if (unlocked) {
2845 qemu_mutex_unlock_iothread();
2846 }
125b3806 2847 }
4840f10e
JK
2848
2849 return release_lock;
125b3806
PB
2850}
2851
a203ac70
PB
2852/* Called within RCU critical section. */
2853static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2854 MemTxAttrs attrs,
2855 const uint8_t *buf,
2856 int len, hwaddr addr1,
2857 hwaddr l, MemoryRegion *mr)
13eb76e0 2858{
13eb76e0 2859 uint8_t *ptr;
791af8c8 2860 uint64_t val;
3b643495 2861 MemTxResult result = MEMTX_OK;
4840f10e 2862 bool release_lock = false;
3b46e624 2863
a203ac70 2864 for (;;) {
eb7eeb88
PB
2865 if (!memory_access_is_direct(mr, true)) {
2866 release_lock |= prepare_mmio_access(mr);
2867 l = memory_access_size(mr, l, addr1);
2868 /* XXX: could force current_cpu to NULL to avoid
2869 potential bugs */
2870 switch (l) {
2871 case 8:
2872 /* 64 bit write access */
2873 val = ldq_p(buf);
2874 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2875 attrs);
2876 break;
2877 case 4:
2878 /* 32 bit write access */
6da67de6 2879 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2880 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2881 attrs);
2882 break;
2883 case 2:
2884 /* 16 bit write access */
2885 val = lduw_p(buf);
2886 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2887 attrs);
2888 break;
2889 case 1:
2890 /* 8 bit write access */
2891 val = ldub_p(buf);
2892 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2893 attrs);
2894 break;
2895 default:
2896 abort();
13eb76e0
FB
2897 }
2898 } else {
eb7eeb88 2899 /* RAM case */
0878d0e1 2900 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2901 memcpy(ptr, buf, l);
2902 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2903 }
4840f10e
JK
2904
2905 if (release_lock) {
2906 qemu_mutex_unlock_iothread();
2907 release_lock = false;
2908 }
2909
13eb76e0
FB
2910 len -= l;
2911 buf += l;
2912 addr += l;
a203ac70
PB
2913
2914 if (!len) {
2915 break;
2916 }
2917
2918 l = len;
2919 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2920 }
fd8aaa76 2921
3b643495 2922 return result;
13eb76e0 2923}
8df1cd07 2924
a203ac70
PB
2925MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2926 const uint8_t *buf, int len)
ac1970fb 2927{
eb7eeb88 2928 hwaddr l;
eb7eeb88
PB
2929 hwaddr addr1;
2930 MemoryRegion *mr;
2931 MemTxResult result = MEMTX_OK;
eb7eeb88 2932
a203ac70
PB
2933 if (len > 0) {
2934 rcu_read_lock();
eb7eeb88 2935 l = len;
a203ac70
PB
2936 mr = address_space_translate(as, addr, &addr1, &l, true);
2937 result = address_space_write_continue(as, addr, attrs, buf, len,
2938 addr1, l, mr);
2939 rcu_read_unlock();
2940 }
2941
2942 return result;
2943}
2944
2945/* Called within RCU critical section. */
2946MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2947 MemTxAttrs attrs, uint8_t *buf,
2948 int len, hwaddr addr1, hwaddr l,
2949 MemoryRegion *mr)
2950{
2951 uint8_t *ptr;
2952 uint64_t val;
2953 MemTxResult result = MEMTX_OK;
2954 bool release_lock = false;
eb7eeb88 2955
a203ac70 2956 for (;;) {
eb7eeb88
PB
2957 if (!memory_access_is_direct(mr, false)) {
2958 /* I/O case */
2959 release_lock |= prepare_mmio_access(mr);
2960 l = memory_access_size(mr, l, addr1);
2961 switch (l) {
2962 case 8:
2963 /* 64 bit read access */
2964 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2965 attrs);
2966 stq_p(buf, val);
2967 break;
2968 case 4:
2969 /* 32 bit read access */
2970 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2971 attrs);
2972 stl_p(buf, val);
2973 break;
2974 case 2:
2975 /* 16 bit read access */
2976 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2977 attrs);
2978 stw_p(buf, val);
2979 break;
2980 case 1:
2981 /* 8 bit read access */
2982 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2983 attrs);
2984 stb_p(buf, val);
2985 break;
2986 default:
2987 abort();
2988 }
2989 } else {
2990 /* RAM case */
0878d0e1 2991 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2992 memcpy(buf, ptr, l);
2993 }
2994
2995 if (release_lock) {
2996 qemu_mutex_unlock_iothread();
2997 release_lock = false;
2998 }
2999
3000 len -= l;
3001 buf += l;
3002 addr += l;
a203ac70
PB
3003
3004 if (!len) {
3005 break;
3006 }
3007
3008 l = len;
3009 mr = address_space_translate(as, addr, &addr1, &l, false);
3010 }
3011
3012 return result;
3013}
3014
3cc8f884
PB
3015MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3016 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3017{
3018 hwaddr l;
3019 hwaddr addr1;
3020 MemoryRegion *mr;
3021 MemTxResult result = MEMTX_OK;
3022
3023 if (len > 0) {
3024 rcu_read_lock();
3025 l = len;
3026 mr = address_space_translate(as, addr, &addr1, &l, false);
3027 result = address_space_read_continue(as, addr, attrs, buf, len,
3028 addr1, l, mr);
3029 rcu_read_unlock();
eb7eeb88 3030 }
eb7eeb88
PB
3031
3032 return result;
ac1970fb
AK
3033}
3034
eb7eeb88
PB
3035MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3036 uint8_t *buf, int len, bool is_write)
3037{
3038 if (is_write) {
3039 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
3040 } else {
3041 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
3042 }
3043}
ac1970fb 3044
a8170e5e 3045void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3046 int len, int is_write)
3047{
5c9eb028
PM
3048 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3049 buf, len, is_write);
ac1970fb
AK
3050}
3051
582b55a9
AG
3052enum write_rom_type {
3053 WRITE_DATA,
3054 FLUSH_CACHE,
3055};
3056
2a221651 3057static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3058 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3059{
149f54b5 3060 hwaddr l;
d0ecd2aa 3061 uint8_t *ptr;
149f54b5 3062 hwaddr addr1;
5c8a00ce 3063 MemoryRegion *mr;
3b46e624 3064
41063e1e 3065 rcu_read_lock();
d0ecd2aa 3066 while (len > 0) {
149f54b5 3067 l = len;
2a221651 3068 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3069
5c8a00ce
PB
3070 if (!(memory_region_is_ram(mr) ||
3071 memory_region_is_romd(mr))) {
b242e0e0 3072 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3073 } else {
d0ecd2aa 3074 /* ROM/RAM case */
0878d0e1 3075 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3076 switch (type) {
3077 case WRITE_DATA:
3078 memcpy(ptr, buf, l);
845b6214 3079 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3080 break;
3081 case FLUSH_CACHE:
3082 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3083 break;
3084 }
d0ecd2aa
FB
3085 }
3086 len -= l;
3087 buf += l;
3088 addr += l;
3089 }
41063e1e 3090 rcu_read_unlock();
d0ecd2aa
FB
3091}
3092
582b55a9 3093/* used for ROM loading : can write in RAM and ROM */
2a221651 3094void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3095 const uint8_t *buf, int len)
3096{
2a221651 3097 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3098}
3099
3100void cpu_flush_icache_range(hwaddr start, int len)
3101{
3102 /*
3103 * This function should do the same thing as an icache flush that was
3104 * triggered from within the guest. For TCG we are always cache coherent,
3105 * so there is no need to flush anything. For KVM / Xen we need to flush
3106 * the host's instruction cache at least.
3107 */
3108 if (tcg_enabled()) {
3109 return;
3110 }
3111
2a221651
EI
3112 cpu_physical_memory_write_rom_internal(&address_space_memory,
3113 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3114}
3115
6d16c2f8 3116typedef struct {
d3e71559 3117 MemoryRegion *mr;
6d16c2f8 3118 void *buffer;
a8170e5e
AK
3119 hwaddr addr;
3120 hwaddr len;
c2cba0ff 3121 bool in_use;
6d16c2f8
AL
3122} BounceBuffer;
3123
3124static BounceBuffer bounce;
3125
ba223c29 3126typedef struct MapClient {
e95205e1 3127 QEMUBH *bh;
72cf2d4f 3128 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3129} MapClient;
3130
38e047b5 3131QemuMutex map_client_list_lock;
72cf2d4f
BS
3132static QLIST_HEAD(map_client_list, MapClient) map_client_list
3133 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3134
e95205e1
FZ
3135static void cpu_unregister_map_client_do(MapClient *client)
3136{
3137 QLIST_REMOVE(client, link);
3138 g_free(client);
3139}
3140
33b6c2ed
FZ
3141static void cpu_notify_map_clients_locked(void)
3142{
3143 MapClient *client;
3144
3145 while (!QLIST_EMPTY(&map_client_list)) {
3146 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3147 qemu_bh_schedule(client->bh);
3148 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3149 }
3150}
3151
e95205e1 3152void cpu_register_map_client(QEMUBH *bh)
ba223c29 3153{
7267c094 3154 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3155
38e047b5 3156 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3157 client->bh = bh;
72cf2d4f 3158 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3159 if (!atomic_read(&bounce.in_use)) {
3160 cpu_notify_map_clients_locked();
3161 }
38e047b5 3162 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3163}
3164
38e047b5 3165void cpu_exec_init_all(void)
ba223c29 3166{
38e047b5 3167 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3168 /* The data structures we set up here depend on knowing the page size,
3169 * so no more changes can be made after this point.
3170 * In an ideal world, nothing we did before we had finished the
3171 * machine setup would care about the target page size, and we could
3172 * do this much later, rather than requiring board models to state
3173 * up front what their requirements are.
3174 */
3175 finalize_target_page_bits();
38e047b5 3176 io_mem_init();
680a4783 3177 memory_map_init();
38e047b5 3178 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3179}
3180
e95205e1 3181void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3182{
3183 MapClient *client;
3184
e95205e1
FZ
3185 qemu_mutex_lock(&map_client_list_lock);
3186 QLIST_FOREACH(client, &map_client_list, link) {
3187 if (client->bh == bh) {
3188 cpu_unregister_map_client_do(client);
3189 break;
3190 }
ba223c29 3191 }
e95205e1 3192 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3193}
3194
3195static void cpu_notify_map_clients(void)
3196{
38e047b5 3197 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3198 cpu_notify_map_clients_locked();
38e047b5 3199 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3200}
3201
51644ab7
PB
3202bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3203{
5c8a00ce 3204 MemoryRegion *mr;
51644ab7
PB
3205 hwaddr l, xlat;
3206
41063e1e 3207 rcu_read_lock();
51644ab7
PB
3208 while (len > 0) {
3209 l = len;
5c8a00ce
PB
3210 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3211 if (!memory_access_is_direct(mr, is_write)) {
3212 l = memory_access_size(mr, l, addr);
3213 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3214 rcu_read_unlock();
51644ab7
PB
3215 return false;
3216 }
3217 }
3218
3219 len -= l;
3220 addr += l;
3221 }
41063e1e 3222 rcu_read_unlock();
51644ab7
PB
3223 return true;
3224}
3225
715c31ec
PB
3226static hwaddr
3227address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3228 MemoryRegion *mr, hwaddr base, hwaddr len,
3229 bool is_write)
3230{
3231 hwaddr done = 0;
3232 hwaddr xlat;
3233 MemoryRegion *this_mr;
3234
3235 for (;;) {
3236 target_len -= len;
3237 addr += len;
3238 done += len;
3239 if (target_len == 0) {
3240 return done;
3241 }
3242
3243 len = target_len;
3244 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3245 if (this_mr != mr || xlat != base + done) {
3246 return done;
3247 }
3248 }
3249}
3250
6d16c2f8
AL
3251/* Map a physical memory region into a host virtual address.
3252 * May map a subset of the requested range, given by and returned in *plen.
3253 * May return NULL if resources needed to perform the mapping are exhausted.
3254 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3255 * Use cpu_register_map_client() to know when retrying the map operation is
3256 * likely to succeed.
6d16c2f8 3257 */
ac1970fb 3258void *address_space_map(AddressSpace *as,
a8170e5e
AK
3259 hwaddr addr,
3260 hwaddr *plen,
ac1970fb 3261 bool is_write)
6d16c2f8 3262{
a8170e5e 3263 hwaddr len = *plen;
715c31ec
PB
3264 hwaddr l, xlat;
3265 MemoryRegion *mr;
e81bcda5 3266 void *ptr;
6d16c2f8 3267
e3127ae0
PB
3268 if (len == 0) {
3269 return NULL;
3270 }
38bee5dc 3271
e3127ae0 3272 l = len;
41063e1e 3273 rcu_read_lock();
e3127ae0 3274 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 3275
e3127ae0 3276 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3277 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3278 rcu_read_unlock();
e3127ae0 3279 return NULL;
6d16c2f8 3280 }
e85d9db5
KW
3281 /* Avoid unbounded allocations */
3282 l = MIN(l, TARGET_PAGE_SIZE);
3283 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3284 bounce.addr = addr;
3285 bounce.len = l;
d3e71559
PB
3286
3287 memory_region_ref(mr);
3288 bounce.mr = mr;
e3127ae0 3289 if (!is_write) {
5c9eb028
PM
3290 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3291 bounce.buffer, l);
8ab934f9 3292 }
6d16c2f8 3293
41063e1e 3294 rcu_read_unlock();
e3127ae0
PB
3295 *plen = l;
3296 return bounce.buffer;
3297 }
3298
e3127ae0 3299
d3e71559 3300 memory_region_ref(mr);
715c31ec
PB
3301 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3302 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
e81bcda5
PB
3303 rcu_read_unlock();
3304
3305 return ptr;
6d16c2f8
AL
3306}
3307
ac1970fb 3308/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3309 * Will also mark the memory as dirty if is_write == 1. access_len gives
3310 * the amount of memory that was actually read or written by the caller.
3311 */
a8170e5e
AK
3312void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3313 int is_write, hwaddr access_len)
6d16c2f8
AL
3314{
3315 if (buffer != bounce.buffer) {
d3e71559
PB
3316 MemoryRegion *mr;
3317 ram_addr_t addr1;
3318
07bdaa41 3319 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3320 assert(mr != NULL);
6d16c2f8 3321 if (is_write) {
845b6214 3322 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3323 }
868bb33f 3324 if (xen_enabled()) {
e41d7c69 3325 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3326 }
d3e71559 3327 memory_region_unref(mr);
6d16c2f8
AL
3328 return;
3329 }
3330 if (is_write) {
5c9eb028
PM
3331 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3332 bounce.buffer, access_len);
6d16c2f8 3333 }
f8a83245 3334 qemu_vfree(bounce.buffer);
6d16c2f8 3335 bounce.buffer = NULL;
d3e71559 3336 memory_region_unref(bounce.mr);
c2cba0ff 3337 atomic_mb_set(&bounce.in_use, false);
ba223c29 3338 cpu_notify_map_clients();
6d16c2f8 3339}
d0ecd2aa 3340
a8170e5e
AK
3341void *cpu_physical_memory_map(hwaddr addr,
3342 hwaddr *plen,
ac1970fb
AK
3343 int is_write)
3344{
3345 return address_space_map(&address_space_memory, addr, plen, is_write);
3346}
3347
a8170e5e
AK
3348void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3349 int is_write, hwaddr access_len)
ac1970fb
AK
3350{
3351 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3352}
3353
0ce265ff
PB
3354#define ARG1_DECL AddressSpace *as
3355#define ARG1 as
3356#define SUFFIX
3357#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3358#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3359#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3360#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3361#define RCU_READ_LOCK(...) rcu_read_lock()
3362#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3363#include "memory_ldst.inc.c"
1e78bcc1 3364
1f4e496e
PB
3365int64_t address_space_cache_init(MemoryRegionCache *cache,
3366 AddressSpace *as,
3367 hwaddr addr,
3368 hwaddr len,
3369 bool is_write)
3370{
90c4fe5f
PB
3371 cache->len = len;
3372 cache->as = as;
3373 cache->xlat = addr;
3374 return len;
1f4e496e
PB
3375}
3376
3377void address_space_cache_invalidate(MemoryRegionCache *cache,
3378 hwaddr addr,
3379 hwaddr access_len)
3380{
1f4e496e
PB
3381}
3382
3383void address_space_cache_destroy(MemoryRegionCache *cache)
3384{
90c4fe5f 3385 cache->as = NULL;
1f4e496e
PB
3386}
3387
3388#define ARG1_DECL MemoryRegionCache *cache
3389#define ARG1 cache
3390#define SUFFIX _cached
90c4fe5f
PB
3391#define TRANSLATE(addr, ...) \
3392 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3393#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3394#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3395#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3396#define RCU_READ_LOCK() rcu_read_lock()
3397#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3398#include "memory_ldst.inc.c"
3399
5e2972fd 3400/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3401int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3402 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3403{
3404 int l;
a8170e5e 3405 hwaddr phys_addr;
9b3c35e0 3406 target_ulong page;
13eb76e0 3407
79ca7a1b 3408 cpu_synchronize_state(cpu);
13eb76e0 3409 while (len > 0) {
5232e4c7
PM
3410 int asidx;
3411 MemTxAttrs attrs;
3412
13eb76e0 3413 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3414 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3415 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3416 /* if no physical page mapped, return an error */
3417 if (phys_addr == -1)
3418 return -1;
3419 l = (page + TARGET_PAGE_SIZE) - addr;
3420 if (l > len)
3421 l = len;
5e2972fd 3422 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3423 if (is_write) {
5232e4c7
PM
3424 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3425 phys_addr, buf, l);
2e38847b 3426 } else {
5232e4c7
PM
3427 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3428 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3429 buf, l, 0);
2e38847b 3430 }
13eb76e0
FB
3431 len -= l;
3432 buf += l;
3433 addr += l;
3434 }
3435 return 0;
3436}
038629a6
DDAG
3437
3438/*
3439 * Allows code that needs to deal with migration bitmaps etc to still be built
3440 * target independent.
3441 */
20afaed9 3442size_t qemu_target_page_size(void)
038629a6 3443{
20afaed9 3444 return TARGET_PAGE_SIZE;
038629a6
DDAG
3445}
3446
46d702b1
JQ
3447int qemu_target_page_bits(void)
3448{
3449 return TARGET_PAGE_BITS;
3450}
3451
3452int qemu_target_page_bits_min(void)
3453{
3454 return TARGET_PAGE_BITS_MIN;
3455}
a68fe89c 3456#endif
13eb76e0 3457
8e4a424b
BS
3458/*
3459 * A helper function for the _utterly broken_ virtio device model to find out if
3460 * it's running on a big endian machine. Don't do this at home kids!
3461 */
98ed8ecf
GK
3462bool target_words_bigendian(void);
3463bool target_words_bigendian(void)
8e4a424b
BS
3464{
3465#if defined(TARGET_WORDS_BIGENDIAN)
3466 return true;
3467#else
3468 return false;
3469#endif
3470}
3471
76f35538 3472#ifndef CONFIG_USER_ONLY
a8170e5e 3473bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3474{
5c8a00ce 3475 MemoryRegion*mr;
149f54b5 3476 hwaddr l = 1;
41063e1e 3477 bool res;
76f35538 3478
41063e1e 3479 rcu_read_lock();
5c8a00ce
PB
3480 mr = address_space_translate(&address_space_memory,
3481 phys_addr, &phys_addr, &l, false);
76f35538 3482
41063e1e
PB
3483 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3484 rcu_read_unlock();
3485 return res;
76f35538 3486}
bd2fa51f 3487
e3807054 3488int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3489{
3490 RAMBlock *block;
e3807054 3491 int ret = 0;
bd2fa51f 3492
0dc3f44a 3493 rcu_read_lock();
99e15582 3494 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3495 ret = func(block->idstr, block->host, block->offset,
3496 block->used_length, opaque);
3497 if (ret) {
3498 break;
3499 }
bd2fa51f 3500 }
0dc3f44a 3501 rcu_read_unlock();
e3807054 3502 return ret;
bd2fa51f 3503}
d3a5038c
DDAG
3504
3505/*
3506 * Unmap pages of memory from start to start+length such that
3507 * they a) read as 0, b) Trigger whatever fault mechanism
3508 * the OS provides for postcopy.
3509 * The pages must be unmapped by the end of the function.
3510 * Returns: 0 on success, none-0 on failure
3511 *
3512 */
3513int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3514{
3515 int ret = -1;
3516
3517 uint8_t *host_startaddr = rb->host + start;
3518
3519 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3520 error_report("ram_block_discard_range: Unaligned start address: %p",
3521 host_startaddr);
3522 goto err;
3523 }
3524
3525 if ((start + length) <= rb->used_length) {
3526 uint8_t *host_endaddr = host_startaddr + length;
3527 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3528 error_report("ram_block_discard_range: Unaligned end address: %p",
3529 host_endaddr);
3530 goto err;
3531 }
3532
3533 errno = ENOTSUP; /* If we are missing MADVISE etc */
3534
e2fa71f5 3535 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3536#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3537 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3538 * freeing the page.
3539 */
3540 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3541#endif
e2fa71f5
DDAG
3542 } else {
3543 /* Huge page case - unfortunately it can't do DONTNEED, but
3544 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3545 * huge page file.
3546 */
3547#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3548 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3549 start, length);
3550#endif
3551 }
d3a5038c
DDAG
3552 if (ret) {
3553 ret = -errno;
3554 error_report("ram_block_discard_range: Failed to discard range "
3555 "%s:%" PRIx64 " +%zx (%d)",
3556 rb->idstr, start, length, ret);
3557 }
3558 } else {
3559 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3560 "/%zx/" RAM_ADDR_FMT")",
3561 rb->idstr, start, length, rb->used_length);
3562 }
3563
3564err:
3565 return ret;
3566}
3567
ec3f8c99 3568#endif