]> git.proxmox.com Git - qemu.git/blame - exec.c
xen: Adds a cap to the number of map cache entries.
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181
FB
28#include "cpu.h"
29#include "exec-all.h"
b67d9a52 30#include "tcg.h"
b3c7724c 31#include "hw/hw.h"
cc9e98cb 32#include "hw/qdev.h"
74576198 33#include "osdep.h"
7ba1e619 34#include "kvm.h"
432d268c 35#include "hw/xen.h"
29e922b6 36#include "qemu-timer.h"
53a5960a
PB
37#if defined(CONFIG_USER_ONLY)
38#include <qemu.h>
fd052bf6 39#include <signal.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
53a5960a 57#endif
54936004 58
fd6ce8f6 59//#define DEBUG_TB_INVALIDATE
66e85a21 60//#define DEBUG_FLUSH
9fa3e853 61//#define DEBUG_TLB
67d3b957 62//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
63
64/* make various TB consistency checks */
5fafdf24
TS
65//#define DEBUG_TB_CHECK
66//#define DEBUG_TLB_CHECK
fd6ce8f6 67
1196be37 68//#define DEBUG_IOPORT
db7b5426 69//#define DEBUG_SUBPAGE
1196be37 70
99773bd4
PB
71#if !defined(CONFIG_USER_ONLY)
72/* TB consistency checks only implemented for usermode emulation. */
73#undef DEBUG_TB_CHECK
74#endif
75
9fa3e853
FB
76#define SMC_BITMAP_USE_THRESHOLD 10
77
bdaf78e0 78static TranslationBlock *tbs;
24ab68ac 79static int code_gen_max_blocks;
9fa3e853 80TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 81static int nb_tbs;
eb51d102 82/* any access to the tbs or the page table must use this lock */
c227f099 83spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 84
141ac468
BS
85#if defined(__arm__) || defined(__sparc_v9__)
86/* The prologue must be reachable with a direct jump. ARM and Sparc64
87 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
88 section close to code segment. */
89#define code_gen_section \
90 __attribute__((__section__(".gen_code"))) \
91 __attribute__((aligned (32)))
f8e2af11
SW
92#elif defined(_WIN32)
93/* Maximum alignment for Win32 is 16. */
94#define code_gen_section \
95 __attribute__((aligned (16)))
d03d860b
BS
96#else
97#define code_gen_section \
98 __attribute__((aligned (32)))
99#endif
100
101uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
102static uint8_t *code_gen_buffer;
103static unsigned long code_gen_buffer_size;
26a5f13b 104/* threshold to flush the translated code buffer */
bdaf78e0 105static unsigned long code_gen_buffer_max_size;
24ab68ac 106static uint8_t *code_gen_ptr;
fd6ce8f6 107
e2eef170 108#if !defined(CONFIG_USER_ONLY)
9fa3e853 109int phys_ram_fd;
74576198 110static int in_migration;
94a6b54f 111
f471a17e 112RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
e2eef170 113#endif
9fa3e853 114
6a00d601
FB
115CPUState *first_cpu;
116/* current CPU in the current thread. It is only valid inside
117 cpu_exec() */
5fafdf24 118CPUState *cpu_single_env;
2e70f6ef 119/* 0 = Do not count executed instructions.
bf20dc07 120 1 = Precise instruction counting.
2e70f6ef
PB
121 2 = Adaptive rate instruction counting. */
122int use_icount = 0;
123/* Current instruction counter. While executing translated code this may
124 include some instructions that have not yet been executed. */
125int64_t qemu_icount;
6a00d601 126
54936004 127typedef struct PageDesc {
92e873b9 128 /* list of TBs intersecting this ram page */
fd6ce8f6 129 TranslationBlock *first_tb;
9fa3e853
FB
130 /* in order to optimize self modifying code, we count the number
131 of lookups we do to a given page to use a bitmap */
132 unsigned int code_write_count;
133 uint8_t *code_bitmap;
134#if defined(CONFIG_USER_ONLY)
135 unsigned long flags;
136#endif
54936004
FB
137} PageDesc;
138
41c1b1c9 139/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
140 while in user mode we want it to be based on virtual addresses. */
141#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
142#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
143# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
144#else
5cd2c5b6 145# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 146#endif
bedb69ea 147#else
5cd2c5b6 148# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 149#endif
54936004 150
5cd2c5b6
RH
151/* Size of the L2 (and L3, etc) page tables. */
152#define L2_BITS 10
54936004
FB
153#define L2_SIZE (1 << L2_BITS)
154
5cd2c5b6
RH
155/* The bits remaining after N lower levels of page tables. */
156#define P_L1_BITS_REM \
157 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
158#define V_L1_BITS_REM \
159 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
160
161/* Size of the L1 page table. Avoid silly small sizes. */
162#if P_L1_BITS_REM < 4
163#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
164#else
165#define P_L1_BITS P_L1_BITS_REM
166#endif
167
168#if V_L1_BITS_REM < 4
169#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
170#else
171#define V_L1_BITS V_L1_BITS_REM
172#endif
173
174#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
175#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
177#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
178#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179
83fb7adf
FB
180unsigned long qemu_real_host_page_size;
181unsigned long qemu_host_page_bits;
182unsigned long qemu_host_page_size;
183unsigned long qemu_host_page_mask;
54936004 184
5cd2c5b6
RH
185/* This is a multi-level map on the virtual address space.
186 The bottom level has pointers to PageDesc. */
187static void *l1_map[V_L1_SIZE];
54936004 188
e2eef170 189#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
190typedef struct PhysPageDesc {
191 /* offset in host memory of the page + io_index in the low bits */
192 ram_addr_t phys_offset;
193 ram_addr_t region_offset;
194} PhysPageDesc;
195
5cd2c5b6
RH
196/* This is a multi-level map on the physical address space.
197 The bottom level has pointers to PhysPageDesc. */
198static void *l1_phys_map[P_L1_SIZE];
6d9a1304 199
e2eef170
PB
200static void io_mem_init(void);
201
33417e70 202/* io memory support */
33417e70
FB
203CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
204CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 205void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 206static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
207static int io_mem_watch;
208#endif
33417e70 209
34865134 210/* log support */
1e8b27ca
JR
211#ifdef WIN32
212static const char *logfilename = "qemu.log";
213#else
d9b630fd 214static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 215#endif
34865134
FB
216FILE *logfile;
217int loglevel;
e735b91c 218static int log_append = 0;
34865134 219
e3db7226 220/* statistics */
b3755a91 221#if !defined(CONFIG_USER_ONLY)
e3db7226 222static int tlb_flush_count;
b3755a91 223#endif
e3db7226
FB
224static int tb_flush_count;
225static int tb_phys_invalidate_count;
226
7cb69cae
FB
227#ifdef _WIN32
228static void map_exec(void *addr, long size)
229{
230 DWORD old_protect;
231 VirtualProtect(addr, size,
232 PAGE_EXECUTE_READWRITE, &old_protect);
233
234}
235#else
236static void map_exec(void *addr, long size)
237{
4369415f 238 unsigned long start, end, page_size;
7cb69cae 239
4369415f 240 page_size = getpagesize();
7cb69cae 241 start = (unsigned long)addr;
4369415f 242 start &= ~(page_size - 1);
7cb69cae
FB
243
244 end = (unsigned long)addr + size;
4369415f
FB
245 end += page_size - 1;
246 end &= ~(page_size - 1);
7cb69cae
FB
247
248 mprotect((void *)start, end - start,
249 PROT_READ | PROT_WRITE | PROT_EXEC);
250}
251#endif
252
b346ff46 253static void page_init(void)
54936004 254{
83fb7adf 255 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 256 TARGET_PAGE_SIZE */
c2b48b69
AL
257#ifdef _WIN32
258 {
259 SYSTEM_INFO system_info;
260
261 GetSystemInfo(&system_info);
262 qemu_real_host_page_size = system_info.dwPageSize;
263 }
264#else
265 qemu_real_host_page_size = getpagesize();
266#endif
83fb7adf
FB
267 if (qemu_host_page_size == 0)
268 qemu_host_page_size = qemu_real_host_page_size;
269 if (qemu_host_page_size < TARGET_PAGE_SIZE)
270 qemu_host_page_size = TARGET_PAGE_SIZE;
271 qemu_host_page_bits = 0;
272 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
273 qemu_host_page_bits++;
274 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 275
2e9a5713 276#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 277 {
f01576f1
JL
278#ifdef HAVE_KINFO_GETVMMAP
279 struct kinfo_vmentry *freep;
280 int i, cnt;
281
282 freep = kinfo_getvmmap(getpid(), &cnt);
283 if (freep) {
284 mmap_lock();
285 for (i = 0; i < cnt; i++) {
286 unsigned long startaddr, endaddr;
287
288 startaddr = freep[i].kve_start;
289 endaddr = freep[i].kve_end;
290 if (h2g_valid(startaddr)) {
291 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
292
293 if (h2g_valid(endaddr)) {
294 endaddr = h2g(endaddr);
fd436907 295 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
296 } else {
297#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
298 endaddr = ~0ul;
fd436907 299 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
300#endif
301 }
302 }
303 }
304 free(freep);
305 mmap_unlock();
306 }
307#else
50a9569b 308 FILE *f;
50a9569b 309
0776590d 310 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 311
fd436907 312 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 313 if (f) {
5cd2c5b6
RH
314 mmap_lock();
315
50a9569b 316 do {
5cd2c5b6
RH
317 unsigned long startaddr, endaddr;
318 int n;
319
320 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
321
322 if (n == 2 && h2g_valid(startaddr)) {
323 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
324
325 if (h2g_valid(endaddr)) {
326 endaddr = h2g(endaddr);
327 } else {
328 endaddr = ~0ul;
329 }
330 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
331 }
332 } while (!feof(f));
5cd2c5b6 333
50a9569b 334 fclose(f);
5cd2c5b6 335 mmap_unlock();
50a9569b 336 }
f01576f1 337#endif
50a9569b
AZ
338 }
339#endif
54936004
FB
340}
341
41c1b1c9 342static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 343{
41c1b1c9
PB
344 PageDesc *pd;
345 void **lp;
346 int i;
347
5cd2c5b6 348#if defined(CONFIG_USER_ONLY)
2e9a5713 349 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
350# define ALLOC(P, SIZE) \
351 do { \
352 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
353 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
354 } while (0)
355#else
356# define ALLOC(P, SIZE) \
357 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 358#endif
434929bf 359
5cd2c5b6
RH
360 /* Level 1. Always allocated. */
361 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
362
363 /* Level 2..N-1. */
364 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
365 void **p = *lp;
366
367 if (p == NULL) {
368 if (!alloc) {
369 return NULL;
370 }
371 ALLOC(p, sizeof(void *) * L2_SIZE);
372 *lp = p;
17e2377a 373 }
5cd2c5b6
RH
374
375 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
376 }
377
378 pd = *lp;
379 if (pd == NULL) {
380 if (!alloc) {
381 return NULL;
382 }
383 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
384 *lp = pd;
54936004 385 }
5cd2c5b6
RH
386
387#undef ALLOC
5cd2c5b6
RH
388
389 return pd + (index & (L2_SIZE - 1));
54936004
FB
390}
391
41c1b1c9 392static inline PageDesc *page_find(tb_page_addr_t index)
54936004 393{
5cd2c5b6 394 return page_find_alloc(index, 0);
fd6ce8f6
FB
395}
396
6d9a1304 397#if !defined(CONFIG_USER_ONLY)
c227f099 398static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 399{
e3f4e2a4 400 PhysPageDesc *pd;
5cd2c5b6
RH
401 void **lp;
402 int i;
92e873b9 403
5cd2c5b6
RH
404 /* Level 1. Always allocated. */
405 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 406
5cd2c5b6
RH
407 /* Level 2..N-1. */
408 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
409 void **p = *lp;
410 if (p == NULL) {
411 if (!alloc) {
412 return NULL;
413 }
414 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
415 }
416 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 417 }
5cd2c5b6 418
e3f4e2a4 419 pd = *lp;
5cd2c5b6 420 if (pd == NULL) {
e3f4e2a4 421 int i;
5cd2c5b6
RH
422
423 if (!alloc) {
108c49b8 424 return NULL;
5cd2c5b6
RH
425 }
426
427 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
428
67c4d23c 429 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
430 pd[i].phys_offset = IO_MEM_UNASSIGNED;
431 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 432 }
92e873b9 433 }
5cd2c5b6
RH
434
435 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
436}
437
c227f099 438static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 439{
108c49b8 440 return phys_page_find_alloc(index, 0);
92e873b9
FB
441}
442
c227f099
AL
443static void tlb_protect_code(ram_addr_t ram_addr);
444static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 445 target_ulong vaddr);
c8a706fe
PB
446#define mmap_lock() do { } while(0)
447#define mmap_unlock() do { } while(0)
9fa3e853 448#endif
fd6ce8f6 449
4369415f
FB
450#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
451
452#if defined(CONFIG_USER_ONLY)
ccbb4d44 453/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
454 user mode. It will change when a dedicated libc will be used */
455#define USE_STATIC_CODE_GEN_BUFFER
456#endif
457
458#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
459static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
460 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
461#endif
462
8fcd3692 463static void code_gen_alloc(unsigned long tb_size)
26a5f13b 464{
4369415f
FB
465#ifdef USE_STATIC_CODE_GEN_BUFFER
466 code_gen_buffer = static_code_gen_buffer;
467 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
468 map_exec(code_gen_buffer, code_gen_buffer_size);
469#else
26a5f13b
FB
470 code_gen_buffer_size = tb_size;
471 if (code_gen_buffer_size == 0) {
4369415f
FB
472#if defined(CONFIG_USER_ONLY)
473 /* in user mode, phys_ram_size is not meaningful */
474 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
475#else
ccbb4d44 476 /* XXX: needs adjustments */
94a6b54f 477 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 478#endif
26a5f13b
FB
479 }
480 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
481 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
482 /* The code gen buffer location may have constraints depending on
483 the host cpu and OS */
484#if defined(__linux__)
485 {
486 int flags;
141ac468
BS
487 void *start = NULL;
488
26a5f13b
FB
489 flags = MAP_PRIVATE | MAP_ANONYMOUS;
490#if defined(__x86_64__)
491 flags |= MAP_32BIT;
492 /* Cannot map more than that */
493 if (code_gen_buffer_size > (800 * 1024 * 1024))
494 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
495#elif defined(__sparc_v9__)
496 // Map the buffer below 2G, so we can use direct calls and branches
497 flags |= MAP_FIXED;
498 start = (void *) 0x60000000UL;
499 if (code_gen_buffer_size > (512 * 1024 * 1024))
500 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 501#elif defined(__arm__)
63d41246 502 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
503 flags |= MAP_FIXED;
504 start = (void *) 0x01000000UL;
505 if (code_gen_buffer_size > 16 * 1024 * 1024)
506 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
507#elif defined(__s390x__)
508 /* Map the buffer so that we can use direct calls and branches. */
509 /* We have a +- 4GB range on the branches; leave some slop. */
510 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
511 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
512 }
513 start = (void *)0x90000000UL;
26a5f13b 514#endif
141ac468
BS
515 code_gen_buffer = mmap(start, code_gen_buffer_size,
516 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
517 flags, -1, 0);
518 if (code_gen_buffer == MAP_FAILED) {
519 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
520 exit(1);
521 }
522 }
cbb608a5
B
523#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
524 || defined(__DragonFly__) || defined(__OpenBSD__)
06e67a82
AL
525 {
526 int flags;
527 void *addr = NULL;
528 flags = MAP_PRIVATE | MAP_ANONYMOUS;
529#if defined(__x86_64__)
530 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
531 * 0x40000000 is free */
532 flags |= MAP_FIXED;
533 addr = (void *)0x40000000;
534 /* Cannot map more than that */
535 if (code_gen_buffer_size > (800 * 1024 * 1024))
536 code_gen_buffer_size = (800 * 1024 * 1024);
4cd31ad2
BS
537#elif defined(__sparc_v9__)
538 // Map the buffer below 2G, so we can use direct calls and branches
539 flags |= MAP_FIXED;
540 addr = (void *) 0x60000000UL;
541 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
542 code_gen_buffer_size = (512 * 1024 * 1024);
543 }
06e67a82
AL
544#endif
545 code_gen_buffer = mmap(addr, code_gen_buffer_size,
546 PROT_WRITE | PROT_READ | PROT_EXEC,
547 flags, -1, 0);
548 if (code_gen_buffer == MAP_FAILED) {
549 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
550 exit(1);
551 }
552 }
26a5f13b
FB
553#else
554 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
555 map_exec(code_gen_buffer, code_gen_buffer_size);
556#endif
4369415f 557#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
558 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
559 code_gen_buffer_max_size = code_gen_buffer_size -
239fda31 560 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
26a5f13b
FB
561 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
562 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
563}
564
565/* Must be called before using the QEMU cpus. 'tb_size' is the size
566 (in bytes) allocated to the translation buffer. Zero means default
567 size. */
568void cpu_exec_init_all(unsigned long tb_size)
569{
26a5f13b
FB
570 cpu_gen_init();
571 code_gen_alloc(tb_size);
572 code_gen_ptr = code_gen_buffer;
4369415f 573 page_init();
e2eef170 574#if !defined(CONFIG_USER_ONLY)
26a5f13b 575 io_mem_init();
e2eef170 576#endif
9002ec79
RH
577#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
578 /* There's no guest base to take into account, so go ahead and
579 initialize the prologue now. */
580 tcg_prologue_init(&tcg_ctx);
581#endif
26a5f13b
FB
582}
583
9656f324
PB
584#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
585
e59fb374 586static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
587{
588 CPUState *env = opaque;
9656f324 589
3098dba0
AJ
590 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
591 version_id is increased. */
592 env->interrupt_request &= ~0x01;
9656f324
PB
593 tlb_flush(env, 1);
594
595 return 0;
596}
e7f4eff7
JQ
597
598static const VMStateDescription vmstate_cpu_common = {
599 .name = "cpu_common",
600 .version_id = 1,
601 .minimum_version_id = 1,
602 .minimum_version_id_old = 1,
e7f4eff7
JQ
603 .post_load = cpu_common_post_load,
604 .fields = (VMStateField []) {
605 VMSTATE_UINT32(halted, CPUState),
606 VMSTATE_UINT32(interrupt_request, CPUState),
607 VMSTATE_END_OF_LIST()
608 }
609};
9656f324
PB
610#endif
611
950f1472
GC
612CPUState *qemu_get_cpu(int cpu)
613{
614 CPUState *env = first_cpu;
615
616 while (env) {
617 if (env->cpu_index == cpu)
618 break;
619 env = env->next_cpu;
620 }
621
622 return env;
623}
624
6a00d601 625void cpu_exec_init(CPUState *env)
fd6ce8f6 626{
6a00d601
FB
627 CPUState **penv;
628 int cpu_index;
629
c2764719
PB
630#if defined(CONFIG_USER_ONLY)
631 cpu_list_lock();
632#endif
6a00d601
FB
633 env->next_cpu = NULL;
634 penv = &first_cpu;
635 cpu_index = 0;
636 while (*penv != NULL) {
1e9fa730 637 penv = &(*penv)->next_cpu;
6a00d601
FB
638 cpu_index++;
639 }
640 env->cpu_index = cpu_index;
268a362c 641 env->numa_node = 0;
72cf2d4f
BS
642 QTAILQ_INIT(&env->breakpoints);
643 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
644#ifndef CONFIG_USER_ONLY
645 env->thread_id = qemu_get_thread_id();
646#endif
6a00d601 647 *penv = env;
c2764719
PB
648#if defined(CONFIG_USER_ONLY)
649 cpu_list_unlock();
650#endif
b3c7724c 651#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
652 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
653 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
654 cpu_save, cpu_load, env);
655#endif
fd6ce8f6
FB
656}
657
d1a1eb74
TG
658/* Allocate a new translation block. Flush the translation buffer if
659 too many translation blocks or too much generated code. */
660static TranslationBlock *tb_alloc(target_ulong pc)
661{
662 TranslationBlock *tb;
663
664 if (nb_tbs >= code_gen_max_blocks ||
665 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
666 return NULL;
667 tb = &tbs[nb_tbs++];
668 tb->pc = pc;
669 tb->cflags = 0;
670 return tb;
671}
672
673void tb_free(TranslationBlock *tb)
674{
675 /* In practice this is mostly used for single use temporary TB
676 Ignore the hard cases and just back up if this TB happens to
677 be the last one generated. */
678 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
679 code_gen_ptr = tb->tc_ptr;
680 nb_tbs--;
681 }
682}
683
9fa3e853
FB
684static inline void invalidate_page_bitmap(PageDesc *p)
685{
686 if (p->code_bitmap) {
59817ccb 687 qemu_free(p->code_bitmap);
9fa3e853
FB
688 p->code_bitmap = NULL;
689 }
690 p->code_write_count = 0;
691}
692
5cd2c5b6
RH
693/* Set to NULL all the 'first_tb' fields in all PageDescs. */
694
695static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 696{
5cd2c5b6 697 int i;
fd6ce8f6 698
5cd2c5b6
RH
699 if (*lp == NULL) {
700 return;
701 }
702 if (level == 0) {
703 PageDesc *pd = *lp;
7296abac 704 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
705 pd[i].first_tb = NULL;
706 invalidate_page_bitmap(pd + i);
fd6ce8f6 707 }
5cd2c5b6
RH
708 } else {
709 void **pp = *lp;
7296abac 710 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
711 page_flush_tb_1 (level - 1, pp + i);
712 }
713 }
714}
715
716static void page_flush_tb(void)
717{
718 int i;
719 for (i = 0; i < V_L1_SIZE; i++) {
720 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
721 }
722}
723
724/* flush all the translation blocks */
d4e8164f 725/* XXX: tb_flush is currently not thread safe */
6a00d601 726void tb_flush(CPUState *env1)
fd6ce8f6 727{
6a00d601 728 CPUState *env;
0124311e 729#if defined(DEBUG_FLUSH)
ab3d1727
BS
730 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
731 (unsigned long)(code_gen_ptr - code_gen_buffer),
732 nb_tbs, nb_tbs > 0 ?
733 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 734#endif
26a5f13b 735 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
736 cpu_abort(env1, "Internal error: code buffer overflow\n");
737
fd6ce8f6 738 nb_tbs = 0;
3b46e624 739
6a00d601
FB
740 for(env = first_cpu; env != NULL; env = env->next_cpu) {
741 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
742 }
9fa3e853 743
8a8a608f 744 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 745 page_flush_tb();
9fa3e853 746
fd6ce8f6 747 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
748 /* XXX: flush processor icache at this point if cache flush is
749 expensive */
e3db7226 750 tb_flush_count++;
fd6ce8f6
FB
751}
752
753#ifdef DEBUG_TB_CHECK
754
bc98a7ef 755static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
756{
757 TranslationBlock *tb;
758 int i;
759 address &= TARGET_PAGE_MASK;
99773bd4
PB
760 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
761 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
762 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
763 address >= tb->pc + tb->size)) {
0bf9e31a
BS
764 printf("ERROR invalidate: address=" TARGET_FMT_lx
765 " PC=%08lx size=%04x\n",
99773bd4 766 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
767 }
768 }
769 }
770}
771
772/* verify that all the pages have correct rights for code */
773static void tb_page_check(void)
774{
775 TranslationBlock *tb;
776 int i, flags1, flags2;
3b46e624 777
99773bd4
PB
778 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
779 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
780 flags1 = page_get_flags(tb->pc);
781 flags2 = page_get_flags(tb->pc + tb->size - 1);
782 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
783 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 784 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
785 }
786 }
787 }
788}
789
790#endif
791
792/* invalidate one TB */
793static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
794 int next_offset)
795{
796 TranslationBlock *tb1;
797 for(;;) {
798 tb1 = *ptb;
799 if (tb1 == tb) {
800 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
801 break;
802 }
803 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
804 }
805}
806
9fa3e853
FB
807static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
808{
809 TranslationBlock *tb1;
810 unsigned int n1;
811
812 for(;;) {
813 tb1 = *ptb;
814 n1 = (long)tb1 & 3;
815 tb1 = (TranslationBlock *)((long)tb1 & ~3);
816 if (tb1 == tb) {
817 *ptb = tb1->page_next[n1];
818 break;
819 }
820 ptb = &tb1->page_next[n1];
821 }
822}
823
d4e8164f
FB
824static inline void tb_jmp_remove(TranslationBlock *tb, int n)
825{
826 TranslationBlock *tb1, **ptb;
827 unsigned int n1;
828
829 ptb = &tb->jmp_next[n];
830 tb1 = *ptb;
831 if (tb1) {
832 /* find tb(n) in circular list */
833 for(;;) {
834 tb1 = *ptb;
835 n1 = (long)tb1 & 3;
836 tb1 = (TranslationBlock *)((long)tb1 & ~3);
837 if (n1 == n && tb1 == tb)
838 break;
839 if (n1 == 2) {
840 ptb = &tb1->jmp_first;
841 } else {
842 ptb = &tb1->jmp_next[n1];
843 }
844 }
845 /* now we can suppress tb(n) from the list */
846 *ptb = tb->jmp_next[n];
847
848 tb->jmp_next[n] = NULL;
849 }
850}
851
852/* reset the jump entry 'n' of a TB so that it is not chained to
853 another TB */
854static inline void tb_reset_jump(TranslationBlock *tb, int n)
855{
856 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
857}
858
41c1b1c9 859void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 860{
6a00d601 861 CPUState *env;
8a40a180 862 PageDesc *p;
d4e8164f 863 unsigned int h, n1;
41c1b1c9 864 tb_page_addr_t phys_pc;
8a40a180 865 TranslationBlock *tb1, *tb2;
3b46e624 866
8a40a180
FB
867 /* remove the TB from the hash list */
868 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
869 h = tb_phys_hash_func(phys_pc);
5fafdf24 870 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
871 offsetof(TranslationBlock, phys_hash_next));
872
873 /* remove the TB from the page list */
874 if (tb->page_addr[0] != page_addr) {
875 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
876 tb_page_remove(&p->first_tb, tb);
877 invalidate_page_bitmap(p);
878 }
879 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
880 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
881 tb_page_remove(&p->first_tb, tb);
882 invalidate_page_bitmap(p);
883 }
884
36bdbe54 885 tb_invalidated_flag = 1;
59817ccb 886
fd6ce8f6 887 /* remove the TB from the hash list */
8a40a180 888 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
889 for(env = first_cpu; env != NULL; env = env->next_cpu) {
890 if (env->tb_jmp_cache[h] == tb)
891 env->tb_jmp_cache[h] = NULL;
892 }
d4e8164f
FB
893
894 /* suppress this TB from the two jump lists */
895 tb_jmp_remove(tb, 0);
896 tb_jmp_remove(tb, 1);
897
898 /* suppress any remaining jumps to this TB */
899 tb1 = tb->jmp_first;
900 for(;;) {
901 n1 = (long)tb1 & 3;
902 if (n1 == 2)
903 break;
904 tb1 = (TranslationBlock *)((long)tb1 & ~3);
905 tb2 = tb1->jmp_next[n1];
906 tb_reset_jump(tb1, n1);
907 tb1->jmp_next[n1] = NULL;
908 tb1 = tb2;
909 }
910 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 911
e3db7226 912 tb_phys_invalidate_count++;
9fa3e853
FB
913}
914
915static inline void set_bits(uint8_t *tab, int start, int len)
916{
917 int end, mask, end1;
918
919 end = start + len;
920 tab += start >> 3;
921 mask = 0xff << (start & 7);
922 if ((start & ~7) == (end & ~7)) {
923 if (start < end) {
924 mask &= ~(0xff << (end & 7));
925 *tab |= mask;
926 }
927 } else {
928 *tab++ |= mask;
929 start = (start + 8) & ~7;
930 end1 = end & ~7;
931 while (start < end1) {
932 *tab++ = 0xff;
933 start += 8;
934 }
935 if (start < end) {
936 mask = ~(0xff << (end & 7));
937 *tab |= mask;
938 }
939 }
940}
941
942static void build_page_bitmap(PageDesc *p)
943{
944 int n, tb_start, tb_end;
945 TranslationBlock *tb;
3b46e624 946
b2a7081a 947 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
948
949 tb = p->first_tb;
950 while (tb != NULL) {
951 n = (long)tb & 3;
952 tb = (TranslationBlock *)((long)tb & ~3);
953 /* NOTE: this is subtle as a TB may span two physical pages */
954 if (n == 0) {
955 /* NOTE: tb_end may be after the end of the page, but
956 it is not a problem */
957 tb_start = tb->pc & ~TARGET_PAGE_MASK;
958 tb_end = tb_start + tb->size;
959 if (tb_end > TARGET_PAGE_SIZE)
960 tb_end = TARGET_PAGE_SIZE;
961 } else {
962 tb_start = 0;
963 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
964 }
965 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
966 tb = tb->page_next[n];
967 }
968}
969
2e70f6ef
PB
970TranslationBlock *tb_gen_code(CPUState *env,
971 target_ulong pc, target_ulong cs_base,
972 int flags, int cflags)
d720b93d
FB
973{
974 TranslationBlock *tb;
975 uint8_t *tc_ptr;
41c1b1c9
PB
976 tb_page_addr_t phys_pc, phys_page2;
977 target_ulong virt_page2;
d720b93d
FB
978 int code_gen_size;
979
41c1b1c9 980 phys_pc = get_page_addr_code(env, pc);
c27004ec 981 tb = tb_alloc(pc);
d720b93d
FB
982 if (!tb) {
983 /* flush must be done */
984 tb_flush(env);
985 /* cannot fail at this point */
c27004ec 986 tb = tb_alloc(pc);
2e70f6ef
PB
987 /* Don't forget to invalidate previous TB info. */
988 tb_invalidated_flag = 1;
d720b93d
FB
989 }
990 tc_ptr = code_gen_ptr;
991 tb->tc_ptr = tc_ptr;
992 tb->cs_base = cs_base;
993 tb->flags = flags;
994 tb->cflags = cflags;
d07bde88 995 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 996 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 997
d720b93d 998 /* check next page if needed */
c27004ec 999 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1000 phys_page2 = -1;
c27004ec 1001 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1002 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1003 }
41c1b1c9 1004 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1005 return tb;
d720b93d 1006}
3b46e624 1007
9fa3e853
FB
1008/* invalidate all TBs which intersect with the target physical page
1009 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1010 the same physical page. 'is_cpu_write_access' should be true if called
1011 from a real cpu write access: the virtual CPU will exit the current
1012 TB if code is modified inside this TB. */
41c1b1c9 1013void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1014 int is_cpu_write_access)
1015{
6b917547 1016 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1017 CPUState *env = cpu_single_env;
41c1b1c9 1018 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1019 PageDesc *p;
1020 int n;
1021#ifdef TARGET_HAS_PRECISE_SMC
1022 int current_tb_not_found = is_cpu_write_access;
1023 TranslationBlock *current_tb = NULL;
1024 int current_tb_modified = 0;
1025 target_ulong current_pc = 0;
1026 target_ulong current_cs_base = 0;
1027 int current_flags = 0;
1028#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1029
1030 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1031 if (!p)
9fa3e853 1032 return;
5fafdf24 1033 if (!p->code_bitmap &&
d720b93d
FB
1034 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1035 is_cpu_write_access) {
9fa3e853
FB
1036 /* build code bitmap */
1037 build_page_bitmap(p);
1038 }
1039
1040 /* we remove all the TBs in the range [start, end[ */
1041 /* XXX: see if in some cases it could be faster to invalidate all the code */
1042 tb = p->first_tb;
1043 while (tb != NULL) {
1044 n = (long)tb & 3;
1045 tb = (TranslationBlock *)((long)tb & ~3);
1046 tb_next = tb->page_next[n];
1047 /* NOTE: this is subtle as a TB may span two physical pages */
1048 if (n == 0) {
1049 /* NOTE: tb_end may be after the end of the page, but
1050 it is not a problem */
1051 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1052 tb_end = tb_start + tb->size;
1053 } else {
1054 tb_start = tb->page_addr[1];
1055 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1056 }
1057 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1058#ifdef TARGET_HAS_PRECISE_SMC
1059 if (current_tb_not_found) {
1060 current_tb_not_found = 0;
1061 current_tb = NULL;
2e70f6ef 1062 if (env->mem_io_pc) {
d720b93d 1063 /* now we have a real cpu fault */
2e70f6ef 1064 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1065 }
1066 }
1067 if (current_tb == tb &&
2e70f6ef 1068 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1069 /* If we are modifying the current TB, we must stop
1070 its execution. We could be more precise by checking
1071 that the modification is after the current PC, but it
1072 would require a specialized function to partially
1073 restore the CPU state */
3b46e624 1074
d720b93d 1075 current_tb_modified = 1;
618ba8e6 1076 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1077 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1078 &current_flags);
d720b93d
FB
1079 }
1080#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1081 /* we need to do that to handle the case where a signal
1082 occurs while doing tb_phys_invalidate() */
1083 saved_tb = NULL;
1084 if (env) {
1085 saved_tb = env->current_tb;
1086 env->current_tb = NULL;
1087 }
9fa3e853 1088 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1089 if (env) {
1090 env->current_tb = saved_tb;
1091 if (env->interrupt_request && env->current_tb)
1092 cpu_interrupt(env, env->interrupt_request);
1093 }
9fa3e853
FB
1094 }
1095 tb = tb_next;
1096 }
1097#if !defined(CONFIG_USER_ONLY)
1098 /* if no code remaining, no need to continue to use slow writes */
1099 if (!p->first_tb) {
1100 invalidate_page_bitmap(p);
d720b93d 1101 if (is_cpu_write_access) {
2e70f6ef 1102 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1103 }
1104 }
1105#endif
1106#ifdef TARGET_HAS_PRECISE_SMC
1107 if (current_tb_modified) {
1108 /* we generate a block containing just the instruction
1109 modifying the memory. It will ensure that it cannot modify
1110 itself */
ea1c1802 1111 env->current_tb = NULL;
2e70f6ef 1112 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1113 cpu_resume_from_signal(env, NULL);
9fa3e853 1114 }
fd6ce8f6 1115#endif
9fa3e853 1116}
fd6ce8f6 1117
9fa3e853 1118/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1119static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1120{
1121 PageDesc *p;
1122 int offset, b;
59817ccb 1123#if 0
a4193c8a 1124 if (1) {
93fcfe39
AL
1125 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1126 cpu_single_env->mem_io_vaddr, len,
1127 cpu_single_env->eip,
1128 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1129 }
1130#endif
9fa3e853 1131 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1132 if (!p)
9fa3e853
FB
1133 return;
1134 if (p->code_bitmap) {
1135 offset = start & ~TARGET_PAGE_MASK;
1136 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1137 if (b & ((1 << len) - 1))
1138 goto do_invalidate;
1139 } else {
1140 do_invalidate:
d720b93d 1141 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1142 }
1143}
1144
9fa3e853 1145#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1146static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1147 unsigned long pc, void *puc)
9fa3e853 1148{
6b917547 1149 TranslationBlock *tb;
9fa3e853 1150 PageDesc *p;
6b917547 1151 int n;
d720b93d 1152#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1153 TranslationBlock *current_tb = NULL;
d720b93d 1154 CPUState *env = cpu_single_env;
6b917547
AL
1155 int current_tb_modified = 0;
1156 target_ulong current_pc = 0;
1157 target_ulong current_cs_base = 0;
1158 int current_flags = 0;
d720b93d 1159#endif
9fa3e853
FB
1160
1161 addr &= TARGET_PAGE_MASK;
1162 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1163 if (!p)
9fa3e853
FB
1164 return;
1165 tb = p->first_tb;
d720b93d
FB
1166#ifdef TARGET_HAS_PRECISE_SMC
1167 if (tb && pc != 0) {
1168 current_tb = tb_find_pc(pc);
1169 }
1170#endif
9fa3e853
FB
1171 while (tb != NULL) {
1172 n = (long)tb & 3;
1173 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1174#ifdef TARGET_HAS_PRECISE_SMC
1175 if (current_tb == tb &&
2e70f6ef 1176 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1177 /* If we are modifying the current TB, we must stop
1178 its execution. We could be more precise by checking
1179 that the modification is after the current PC, but it
1180 would require a specialized function to partially
1181 restore the CPU state */
3b46e624 1182
d720b93d 1183 current_tb_modified = 1;
618ba8e6 1184 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1185 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1186 &current_flags);
d720b93d
FB
1187 }
1188#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1189 tb_phys_invalidate(tb, addr);
1190 tb = tb->page_next[n];
1191 }
fd6ce8f6 1192 p->first_tb = NULL;
d720b93d
FB
1193#ifdef TARGET_HAS_PRECISE_SMC
1194 if (current_tb_modified) {
1195 /* we generate a block containing just the instruction
1196 modifying the memory. It will ensure that it cannot modify
1197 itself */
ea1c1802 1198 env->current_tb = NULL;
2e70f6ef 1199 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1200 cpu_resume_from_signal(env, puc);
1201 }
1202#endif
fd6ce8f6 1203}
9fa3e853 1204#endif
fd6ce8f6
FB
1205
1206/* add the tb in the target page and protect it if necessary */
5fafdf24 1207static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1208 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1209{
1210 PageDesc *p;
9fa3e853
FB
1211 TranslationBlock *last_first_tb;
1212
1213 tb->page_addr[n] = page_addr;
5cd2c5b6 1214 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1215 tb->page_next[n] = p->first_tb;
1216 last_first_tb = p->first_tb;
1217 p->first_tb = (TranslationBlock *)((long)tb | n);
1218 invalidate_page_bitmap(p);
fd6ce8f6 1219
107db443 1220#if defined(TARGET_HAS_SMC) || 1
d720b93d 1221
9fa3e853 1222#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1223 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1224 target_ulong addr;
1225 PageDesc *p2;
9fa3e853
FB
1226 int prot;
1227
fd6ce8f6
FB
1228 /* force the host page as non writable (writes will have a
1229 page fault + mprotect overhead) */
53a5960a 1230 page_addr &= qemu_host_page_mask;
fd6ce8f6 1231 prot = 0;
53a5960a
PB
1232 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1233 addr += TARGET_PAGE_SIZE) {
1234
1235 p2 = page_find (addr >> TARGET_PAGE_BITS);
1236 if (!p2)
1237 continue;
1238 prot |= p2->flags;
1239 p2->flags &= ~PAGE_WRITE;
53a5960a 1240 }
5fafdf24 1241 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1242 (prot & PAGE_BITS) & ~PAGE_WRITE);
1243#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1244 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1245 page_addr);
fd6ce8f6 1246#endif
fd6ce8f6 1247 }
9fa3e853
FB
1248#else
1249 /* if some code is already present, then the pages are already
1250 protected. So we handle the case where only the first TB is
1251 allocated in a physical page */
1252 if (!last_first_tb) {
6a00d601 1253 tlb_protect_code(page_addr);
9fa3e853
FB
1254 }
1255#endif
d720b93d
FB
1256
1257#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1258}
1259
9fa3e853
FB
1260/* add a new TB and link it to the physical page tables. phys_page2 is
1261 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1262void tb_link_page(TranslationBlock *tb,
1263 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1264{
9fa3e853
FB
1265 unsigned int h;
1266 TranslationBlock **ptb;
1267
c8a706fe
PB
1268 /* Grab the mmap lock to stop another thread invalidating this TB
1269 before we are done. */
1270 mmap_lock();
9fa3e853
FB
1271 /* add in the physical hash table */
1272 h = tb_phys_hash_func(phys_pc);
1273 ptb = &tb_phys_hash[h];
1274 tb->phys_hash_next = *ptb;
1275 *ptb = tb;
fd6ce8f6
FB
1276
1277 /* add in the page list */
9fa3e853
FB
1278 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1279 if (phys_page2 != -1)
1280 tb_alloc_page(tb, 1, phys_page2);
1281 else
1282 tb->page_addr[1] = -1;
9fa3e853 1283
d4e8164f
FB
1284 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1285 tb->jmp_next[0] = NULL;
1286 tb->jmp_next[1] = NULL;
1287
1288 /* init original jump addresses */
1289 if (tb->tb_next_offset[0] != 0xffff)
1290 tb_reset_jump(tb, 0);
1291 if (tb->tb_next_offset[1] != 0xffff)
1292 tb_reset_jump(tb, 1);
8a40a180
FB
1293
1294#ifdef DEBUG_TB_CHECK
1295 tb_page_check();
1296#endif
c8a706fe 1297 mmap_unlock();
fd6ce8f6
FB
1298}
1299
9fa3e853
FB
1300/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1301 tb[1].tc_ptr. Return NULL if not found */
1302TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1303{
9fa3e853
FB
1304 int m_min, m_max, m;
1305 unsigned long v;
1306 TranslationBlock *tb;
a513fe19
FB
1307
1308 if (nb_tbs <= 0)
1309 return NULL;
1310 if (tc_ptr < (unsigned long)code_gen_buffer ||
1311 tc_ptr >= (unsigned long)code_gen_ptr)
1312 return NULL;
1313 /* binary search (cf Knuth) */
1314 m_min = 0;
1315 m_max = nb_tbs - 1;
1316 while (m_min <= m_max) {
1317 m = (m_min + m_max) >> 1;
1318 tb = &tbs[m];
1319 v = (unsigned long)tb->tc_ptr;
1320 if (v == tc_ptr)
1321 return tb;
1322 else if (tc_ptr < v) {
1323 m_max = m - 1;
1324 } else {
1325 m_min = m + 1;
1326 }
5fafdf24 1327 }
a513fe19
FB
1328 return &tbs[m_max];
1329}
7501267e 1330
ea041c0e
FB
1331static void tb_reset_jump_recursive(TranslationBlock *tb);
1332
1333static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1334{
1335 TranslationBlock *tb1, *tb_next, **ptb;
1336 unsigned int n1;
1337
1338 tb1 = tb->jmp_next[n];
1339 if (tb1 != NULL) {
1340 /* find head of list */
1341 for(;;) {
1342 n1 = (long)tb1 & 3;
1343 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1344 if (n1 == 2)
1345 break;
1346 tb1 = tb1->jmp_next[n1];
1347 }
1348 /* we are now sure now that tb jumps to tb1 */
1349 tb_next = tb1;
1350
1351 /* remove tb from the jmp_first list */
1352 ptb = &tb_next->jmp_first;
1353 for(;;) {
1354 tb1 = *ptb;
1355 n1 = (long)tb1 & 3;
1356 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1357 if (n1 == n && tb1 == tb)
1358 break;
1359 ptb = &tb1->jmp_next[n1];
1360 }
1361 *ptb = tb->jmp_next[n];
1362 tb->jmp_next[n] = NULL;
3b46e624 1363
ea041c0e
FB
1364 /* suppress the jump to next tb in generated code */
1365 tb_reset_jump(tb, n);
1366
0124311e 1367 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1368 tb_reset_jump_recursive(tb_next);
1369 }
1370}
1371
1372static void tb_reset_jump_recursive(TranslationBlock *tb)
1373{
1374 tb_reset_jump_recursive2(tb, 0);
1375 tb_reset_jump_recursive2(tb, 1);
1376}
1377
1fddef4b 1378#if defined(TARGET_HAS_ICE)
94df27fd
PB
1379#if defined(CONFIG_USER_ONLY)
1380static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1381{
1382 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1383}
1384#else
d720b93d
FB
1385static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1386{
c227f099 1387 target_phys_addr_t addr;
9b3c35e0 1388 target_ulong pd;
c227f099 1389 ram_addr_t ram_addr;
c2f07f81 1390 PhysPageDesc *p;
d720b93d 1391
c2f07f81
PB
1392 addr = cpu_get_phys_page_debug(env, pc);
1393 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1394 if (!p) {
1395 pd = IO_MEM_UNASSIGNED;
1396 } else {
1397 pd = p->phys_offset;
1398 }
1399 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1400 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1401}
c27004ec 1402#endif
94df27fd 1403#endif /* TARGET_HAS_ICE */
d720b93d 1404
c527ee8f
PB
1405#if defined(CONFIG_USER_ONLY)
1406void cpu_watchpoint_remove_all(CPUState *env, int mask)
1407
1408{
1409}
1410
1411int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1412 int flags, CPUWatchpoint **watchpoint)
1413{
1414 return -ENOSYS;
1415}
1416#else
6658ffb8 1417/* Add a watchpoint. */
a1d1bb31
AL
1418int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1419 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1420{
b4051334 1421 target_ulong len_mask = ~(len - 1);
c0ce998e 1422 CPUWatchpoint *wp;
6658ffb8 1423
b4051334
AL
1424 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1425 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1426 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1427 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1428 return -EINVAL;
1429 }
a1d1bb31 1430 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1431
1432 wp->vaddr = addr;
b4051334 1433 wp->len_mask = len_mask;
a1d1bb31
AL
1434 wp->flags = flags;
1435
2dc9f411 1436 /* keep all GDB-injected watchpoints in front */
c0ce998e 1437 if (flags & BP_GDB)
72cf2d4f 1438 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1439 else
72cf2d4f 1440 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1441
6658ffb8 1442 tlb_flush_page(env, addr);
a1d1bb31
AL
1443
1444 if (watchpoint)
1445 *watchpoint = wp;
1446 return 0;
6658ffb8
PB
1447}
1448
a1d1bb31
AL
1449/* Remove a specific watchpoint. */
1450int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1451 int flags)
6658ffb8 1452{
b4051334 1453 target_ulong len_mask = ~(len - 1);
a1d1bb31 1454 CPUWatchpoint *wp;
6658ffb8 1455
72cf2d4f 1456 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1457 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1458 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1459 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1460 return 0;
1461 }
1462 }
a1d1bb31 1463 return -ENOENT;
6658ffb8
PB
1464}
1465
a1d1bb31
AL
1466/* Remove a specific watchpoint by reference. */
1467void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1468{
72cf2d4f 1469 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1470
a1d1bb31
AL
1471 tlb_flush_page(env, watchpoint->vaddr);
1472
1473 qemu_free(watchpoint);
1474}
1475
1476/* Remove all matching watchpoints. */
1477void cpu_watchpoint_remove_all(CPUState *env, int mask)
1478{
c0ce998e 1479 CPUWatchpoint *wp, *next;
a1d1bb31 1480
72cf2d4f 1481 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1482 if (wp->flags & mask)
1483 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1484 }
7d03f82f 1485}
c527ee8f 1486#endif
7d03f82f 1487
a1d1bb31
AL
1488/* Add a breakpoint. */
1489int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1490 CPUBreakpoint **breakpoint)
4c3a88a2 1491{
1fddef4b 1492#if defined(TARGET_HAS_ICE)
c0ce998e 1493 CPUBreakpoint *bp;
3b46e624 1494
a1d1bb31 1495 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1496
a1d1bb31
AL
1497 bp->pc = pc;
1498 bp->flags = flags;
1499
2dc9f411 1500 /* keep all GDB-injected breakpoints in front */
c0ce998e 1501 if (flags & BP_GDB)
72cf2d4f 1502 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1503 else
72cf2d4f 1504 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1505
d720b93d 1506 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1507
1508 if (breakpoint)
1509 *breakpoint = bp;
4c3a88a2
FB
1510 return 0;
1511#else
a1d1bb31 1512 return -ENOSYS;
4c3a88a2
FB
1513#endif
1514}
1515
a1d1bb31
AL
1516/* Remove a specific breakpoint. */
1517int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1518{
7d03f82f 1519#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1520 CPUBreakpoint *bp;
1521
72cf2d4f 1522 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1523 if (bp->pc == pc && bp->flags == flags) {
1524 cpu_breakpoint_remove_by_ref(env, bp);
1525 return 0;
1526 }
7d03f82f 1527 }
a1d1bb31
AL
1528 return -ENOENT;
1529#else
1530 return -ENOSYS;
7d03f82f
EI
1531#endif
1532}
1533
a1d1bb31
AL
1534/* Remove a specific breakpoint by reference. */
1535void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1536{
1fddef4b 1537#if defined(TARGET_HAS_ICE)
72cf2d4f 1538 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1539
a1d1bb31
AL
1540 breakpoint_invalidate(env, breakpoint->pc);
1541
1542 qemu_free(breakpoint);
1543#endif
1544}
1545
1546/* Remove all matching breakpoints. */
1547void cpu_breakpoint_remove_all(CPUState *env, int mask)
1548{
1549#if defined(TARGET_HAS_ICE)
c0ce998e 1550 CPUBreakpoint *bp, *next;
a1d1bb31 1551
72cf2d4f 1552 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1553 if (bp->flags & mask)
1554 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1555 }
4c3a88a2
FB
1556#endif
1557}
1558
c33a346e
FB
1559/* enable or disable single step mode. EXCP_DEBUG is returned by the
1560 CPU loop after each instruction */
1561void cpu_single_step(CPUState *env, int enabled)
1562{
1fddef4b 1563#if defined(TARGET_HAS_ICE)
c33a346e
FB
1564 if (env->singlestep_enabled != enabled) {
1565 env->singlestep_enabled = enabled;
e22a25c9
AL
1566 if (kvm_enabled())
1567 kvm_update_guest_debug(env, 0);
1568 else {
ccbb4d44 1569 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1570 /* XXX: only flush what is necessary */
1571 tb_flush(env);
1572 }
c33a346e
FB
1573 }
1574#endif
1575}
1576
34865134
FB
1577/* enable or disable low levels log */
1578void cpu_set_log(int log_flags)
1579{
1580 loglevel = log_flags;
1581 if (loglevel && !logfile) {
11fcfab4 1582 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1583 if (!logfile) {
1584 perror(logfilename);
1585 _exit(1);
1586 }
9fa3e853
FB
1587#if !defined(CONFIG_SOFTMMU)
1588 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1589 {
b55266b5 1590 static char logfile_buf[4096];
9fa3e853
FB
1591 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1592 }
bf65f53f
FN
1593#elif !defined(_WIN32)
1594 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1595 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1596#endif
e735b91c
PB
1597 log_append = 1;
1598 }
1599 if (!loglevel && logfile) {
1600 fclose(logfile);
1601 logfile = NULL;
34865134
FB
1602 }
1603}
1604
1605void cpu_set_log_filename(const char *filename)
1606{
1607 logfilename = strdup(filename);
e735b91c
PB
1608 if (logfile) {
1609 fclose(logfile);
1610 logfile = NULL;
1611 }
1612 cpu_set_log(loglevel);
34865134 1613}
c33a346e 1614
3098dba0 1615static void cpu_unlink_tb(CPUState *env)
ea041c0e 1616{
3098dba0
AJ
1617 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1618 problem and hope the cpu will stop of its own accord. For userspace
1619 emulation this often isn't actually as bad as it sounds. Often
1620 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1621 TranslationBlock *tb;
c227f099 1622 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1623
cab1b4bd 1624 spin_lock(&interrupt_lock);
3098dba0
AJ
1625 tb = env->current_tb;
1626 /* if the cpu is currently executing code, we must unlink it and
1627 all the potentially executing TB */
f76cfe56 1628 if (tb) {
3098dba0
AJ
1629 env->current_tb = NULL;
1630 tb_reset_jump_recursive(tb);
be214e6c 1631 }
cab1b4bd 1632 spin_unlock(&interrupt_lock);
3098dba0
AJ
1633}
1634
97ffbd8d 1635#ifndef CONFIG_USER_ONLY
3098dba0 1636/* mask must never be zero, except for A20 change call */
ec6959d0 1637static void tcg_handle_interrupt(CPUState *env, int mask)
3098dba0
AJ
1638{
1639 int old_mask;
be214e6c 1640
2e70f6ef 1641 old_mask = env->interrupt_request;
68a79315 1642 env->interrupt_request |= mask;
3098dba0 1643
8edac960
AL
1644 /*
1645 * If called from iothread context, wake the target cpu in
1646 * case its halted.
1647 */
b7680cb6 1648 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1649 qemu_cpu_kick(env);
1650 return;
1651 }
8edac960 1652
2e70f6ef 1653 if (use_icount) {
266910c4 1654 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1655 if (!can_do_io(env)
be214e6c 1656 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1657 cpu_abort(env, "Raised interrupt while not in I/O function");
1658 }
2e70f6ef 1659 } else {
3098dba0 1660 cpu_unlink_tb(env);
ea041c0e
FB
1661 }
1662}
1663
ec6959d0
JK
1664CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1665
97ffbd8d
JK
1666#else /* CONFIG_USER_ONLY */
1667
1668void cpu_interrupt(CPUState *env, int mask)
1669{
1670 env->interrupt_request |= mask;
1671 cpu_unlink_tb(env);
1672}
1673#endif /* CONFIG_USER_ONLY */
1674
b54ad049
FB
1675void cpu_reset_interrupt(CPUState *env, int mask)
1676{
1677 env->interrupt_request &= ~mask;
1678}
1679
3098dba0
AJ
1680void cpu_exit(CPUState *env)
1681{
1682 env->exit_request = 1;
1683 cpu_unlink_tb(env);
1684}
1685
c7cd6a37 1686const CPULogItem cpu_log_items[] = {
5fafdf24 1687 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1688 "show generated host assembly code for each compiled TB" },
1689 { CPU_LOG_TB_IN_ASM, "in_asm",
1690 "show target assembly code for each compiled TB" },
5fafdf24 1691 { CPU_LOG_TB_OP, "op",
57fec1fe 1692 "show micro ops for each compiled TB" },
f193c797 1693 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1694 "show micro ops "
1695#ifdef TARGET_I386
1696 "before eflags optimization and "
f193c797 1697#endif
e01a1157 1698 "after liveness analysis" },
f193c797
FB
1699 { CPU_LOG_INT, "int",
1700 "show interrupts/exceptions in short format" },
1701 { CPU_LOG_EXEC, "exec",
1702 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1703 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1704 "show CPU state before block translation" },
f193c797
FB
1705#ifdef TARGET_I386
1706 { CPU_LOG_PCALL, "pcall",
1707 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1708 { CPU_LOG_RESET, "cpu_reset",
1709 "show CPU state before CPU resets" },
f193c797 1710#endif
8e3a9fd2 1711#ifdef DEBUG_IOPORT
fd872598
FB
1712 { CPU_LOG_IOPORT, "ioport",
1713 "show all i/o ports accesses" },
8e3a9fd2 1714#endif
f193c797
FB
1715 { 0, NULL, NULL },
1716};
1717
f6f3fbca
MT
1718#ifndef CONFIG_USER_ONLY
1719static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1720 = QLIST_HEAD_INITIALIZER(memory_client_list);
1721
1722static void cpu_notify_set_memory(target_phys_addr_t start_addr,
9742bf26 1723 ram_addr_t size,
0fd542fb
MT
1724 ram_addr_t phys_offset,
1725 bool log_dirty)
f6f3fbca
MT
1726{
1727 CPUPhysMemoryClient *client;
1728 QLIST_FOREACH(client, &memory_client_list, list) {
0fd542fb 1729 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
f6f3fbca
MT
1730 }
1731}
1732
1733static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
9742bf26 1734 target_phys_addr_t end)
f6f3fbca
MT
1735{
1736 CPUPhysMemoryClient *client;
1737 QLIST_FOREACH(client, &memory_client_list, list) {
1738 int r = client->sync_dirty_bitmap(client, start, end);
1739 if (r < 0)
1740 return r;
1741 }
1742 return 0;
1743}
1744
1745static int cpu_notify_migration_log(int enable)
1746{
1747 CPUPhysMemoryClient *client;
1748 QLIST_FOREACH(client, &memory_client_list, list) {
1749 int r = client->migration_log(client, enable);
1750 if (r < 0)
1751 return r;
1752 }
1753 return 0;
1754}
1755
8d4c78e7
AW
1756/* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1757 * address. Each intermediate table provides the next L2_BITs of guest
1758 * physical address space. The number of levels vary based on host and
1759 * guest configuration, making it efficient to build the final guest
1760 * physical address by seeding the L1 offset and shifting and adding in
1761 * each L2 offset as we recurse through them. */
5cd2c5b6 1762static void phys_page_for_each_1(CPUPhysMemoryClient *client,
8d4c78e7 1763 int level, void **lp, target_phys_addr_t addr)
f6f3fbca 1764{
5cd2c5b6 1765 int i;
f6f3fbca 1766
5cd2c5b6
RH
1767 if (*lp == NULL) {
1768 return;
1769 }
1770 if (level == 0) {
1771 PhysPageDesc *pd = *lp;
8d4c78e7 1772 addr <<= L2_BITS + TARGET_PAGE_BITS;
7296abac 1773 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1774 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
8d4c78e7 1775 client->set_memory(client, addr | i << TARGET_PAGE_BITS,
0fd542fb 1776 TARGET_PAGE_SIZE, pd[i].phys_offset, false);
f6f3fbca 1777 }
5cd2c5b6
RH
1778 }
1779 } else {
1780 void **pp = *lp;
7296abac 1781 for (i = 0; i < L2_SIZE; ++i) {
8d4c78e7
AW
1782 phys_page_for_each_1(client, level - 1, pp + i,
1783 (addr << L2_BITS) | i);
f6f3fbca
MT
1784 }
1785 }
1786}
1787
1788static void phys_page_for_each(CPUPhysMemoryClient *client)
1789{
5cd2c5b6
RH
1790 int i;
1791 for (i = 0; i < P_L1_SIZE; ++i) {
1792 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
8d4c78e7 1793 l1_phys_map + i, i);
f6f3fbca 1794 }
f6f3fbca
MT
1795}
1796
1797void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1798{
1799 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1800 phys_page_for_each(client);
1801}
1802
1803void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1804{
1805 QLIST_REMOVE(client, list);
1806}
1807#endif
1808
f193c797
FB
1809static int cmp1(const char *s1, int n, const char *s2)
1810{
1811 if (strlen(s2) != n)
1812 return 0;
1813 return memcmp(s1, s2, n) == 0;
1814}
3b46e624 1815
f193c797
FB
1816/* takes a comma separated list of log masks. Return 0 if error. */
1817int cpu_str_to_log_mask(const char *str)
1818{
c7cd6a37 1819 const CPULogItem *item;
f193c797
FB
1820 int mask;
1821 const char *p, *p1;
1822
1823 p = str;
1824 mask = 0;
1825 for(;;) {
1826 p1 = strchr(p, ',');
1827 if (!p1)
1828 p1 = p + strlen(p);
9742bf26
YT
1829 if(cmp1(p,p1-p,"all")) {
1830 for(item = cpu_log_items; item->mask != 0; item++) {
1831 mask |= item->mask;
1832 }
1833 } else {
1834 for(item = cpu_log_items; item->mask != 0; item++) {
1835 if (cmp1(p, p1 - p, item->name))
1836 goto found;
1837 }
1838 return 0;
f193c797 1839 }
f193c797
FB
1840 found:
1841 mask |= item->mask;
1842 if (*p1 != ',')
1843 break;
1844 p = p1 + 1;
1845 }
1846 return mask;
1847}
ea041c0e 1848
7501267e
FB
1849void cpu_abort(CPUState *env, const char *fmt, ...)
1850{
1851 va_list ap;
493ae1f0 1852 va_list ap2;
7501267e
FB
1853
1854 va_start(ap, fmt);
493ae1f0 1855 va_copy(ap2, ap);
7501267e
FB
1856 fprintf(stderr, "qemu: fatal: ");
1857 vfprintf(stderr, fmt, ap);
1858 fprintf(stderr, "\n");
1859#ifdef TARGET_I386
7fe48483
FB
1860 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1861#else
1862 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1863#endif
93fcfe39
AL
1864 if (qemu_log_enabled()) {
1865 qemu_log("qemu: fatal: ");
1866 qemu_log_vprintf(fmt, ap2);
1867 qemu_log("\n");
f9373291 1868#ifdef TARGET_I386
93fcfe39 1869 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1870#else
93fcfe39 1871 log_cpu_state(env, 0);
f9373291 1872#endif
31b1a7b4 1873 qemu_log_flush();
93fcfe39 1874 qemu_log_close();
924edcae 1875 }
493ae1f0 1876 va_end(ap2);
f9373291 1877 va_end(ap);
fd052bf6
RV
1878#if defined(CONFIG_USER_ONLY)
1879 {
1880 struct sigaction act;
1881 sigfillset(&act.sa_mask);
1882 act.sa_handler = SIG_DFL;
1883 sigaction(SIGABRT, &act, NULL);
1884 }
1885#endif
7501267e
FB
1886 abort();
1887}
1888
c5be9f08
TS
1889CPUState *cpu_copy(CPUState *env)
1890{
01ba9816 1891 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1892 CPUState *next_cpu = new_env->next_cpu;
1893 int cpu_index = new_env->cpu_index;
5a38f081
AL
1894#if defined(TARGET_HAS_ICE)
1895 CPUBreakpoint *bp;
1896 CPUWatchpoint *wp;
1897#endif
1898
c5be9f08 1899 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1900
1901 /* Preserve chaining and index. */
c5be9f08
TS
1902 new_env->next_cpu = next_cpu;
1903 new_env->cpu_index = cpu_index;
5a38f081
AL
1904
1905 /* Clone all break/watchpoints.
1906 Note: Once we support ptrace with hw-debug register access, make sure
1907 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1908 QTAILQ_INIT(&env->breakpoints);
1909 QTAILQ_INIT(&env->watchpoints);
5a38f081 1910#if defined(TARGET_HAS_ICE)
72cf2d4f 1911 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1912 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1913 }
72cf2d4f 1914 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1915 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1916 wp->flags, NULL);
1917 }
1918#endif
1919
c5be9f08
TS
1920 return new_env;
1921}
1922
0124311e
FB
1923#if !defined(CONFIG_USER_ONLY)
1924
5c751e99
EI
1925static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1926{
1927 unsigned int i;
1928
1929 /* Discard jump cache entries for any tb which might potentially
1930 overlap the flushed page. */
1931 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1932 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1933 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1934
1935 i = tb_jmp_cache_hash_page(addr);
1936 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1937 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1938}
1939
08738984
IK
1940static CPUTLBEntry s_cputlb_empty_entry = {
1941 .addr_read = -1,
1942 .addr_write = -1,
1943 .addr_code = -1,
1944 .addend = -1,
1945};
1946
ee8b7021
FB
1947/* NOTE: if flush_global is true, also flush global entries (not
1948 implemented yet) */
1949void tlb_flush(CPUState *env, int flush_global)
33417e70 1950{
33417e70 1951 int i;
0124311e 1952
9fa3e853
FB
1953#if defined(DEBUG_TLB)
1954 printf("tlb_flush:\n");
1955#endif
0124311e
FB
1956 /* must reset current TB so that interrupts cannot modify the
1957 links while we are modifying them */
1958 env->current_tb = NULL;
1959
33417e70 1960 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1961 int mmu_idx;
1962 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1963 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1964 }
33417e70 1965 }
9fa3e853 1966
8a40a180 1967 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1968
d4c430a8
PB
1969 env->tlb_flush_addr = -1;
1970 env->tlb_flush_mask = 0;
e3db7226 1971 tlb_flush_count++;
33417e70
FB
1972}
1973
274da6b2 1974static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1975{
5fafdf24 1976 if (addr == (tlb_entry->addr_read &
84b7b8e7 1977 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1978 addr == (tlb_entry->addr_write &
84b7b8e7 1979 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1980 addr == (tlb_entry->addr_code &
84b7b8e7 1981 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1982 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1983 }
61382a50
FB
1984}
1985
2e12669a 1986void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1987{
8a40a180 1988 int i;
cfde4bd9 1989 int mmu_idx;
0124311e 1990
9fa3e853 1991#if defined(DEBUG_TLB)
108c49b8 1992 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1993#endif
d4c430a8
PB
1994 /* Check if we need to flush due to large pages. */
1995 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1996#if defined(DEBUG_TLB)
1997 printf("tlb_flush_page: forced full flush ("
1998 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1999 env->tlb_flush_addr, env->tlb_flush_mask);
2000#endif
2001 tlb_flush(env, 1);
2002 return;
2003 }
0124311e
FB
2004 /* must reset current TB so that interrupts cannot modify the
2005 links while we are modifying them */
2006 env->current_tb = NULL;
61382a50
FB
2007
2008 addr &= TARGET_PAGE_MASK;
2009 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2010 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2011 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2012
5c751e99 2013 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2014}
2015
9fa3e853
FB
2016/* update the TLBs so that writes to code in the virtual page 'addr'
2017 can be detected */
c227f099 2018static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2019{
5fafdf24 2020 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2021 ram_addr + TARGET_PAGE_SIZE,
2022 CODE_DIRTY_FLAG);
9fa3e853
FB
2023}
2024
9fa3e853 2025/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2026 tested for self modifying code */
c227f099 2027static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2028 target_ulong vaddr)
9fa3e853 2029{
f7c11b53 2030 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2031}
2032
5fafdf24 2033static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2034 unsigned long start, unsigned long length)
2035{
2036 unsigned long addr;
84b7b8e7
FB
2037 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2038 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2039 if ((addr - start) < length) {
0f459d16 2040 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2041 }
2042 }
2043}
2044
5579c7f3 2045/* Note: start and end must be within the same ram block. */
c227f099 2046void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2047 int dirty_flags)
1ccde1cb
FB
2048{
2049 CPUState *env;
4f2ac237 2050 unsigned long length, start1;
f7c11b53 2051 int i;
1ccde1cb
FB
2052
2053 start &= TARGET_PAGE_MASK;
2054 end = TARGET_PAGE_ALIGN(end);
2055
2056 length = end - start;
2057 if (length == 0)
2058 return;
f7c11b53 2059 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2060
1ccde1cb
FB
2061 /* we modify the TLB cache so that the dirty bit will be set again
2062 when accessing the range */
b2e0a138 2063 start1 = (unsigned long)qemu_safe_ram_ptr(start);
5579c7f3
PB
2064 /* Chek that we don't span multiple blocks - this breaks the
2065 address comparisons below. */
b2e0a138 2066 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
5579c7f3
PB
2067 != (end - 1) - start) {
2068 abort();
2069 }
2070
6a00d601 2071 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2072 int mmu_idx;
2073 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2074 for(i = 0; i < CPU_TLB_SIZE; i++)
2075 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2076 start1, length);
2077 }
6a00d601 2078 }
1ccde1cb
FB
2079}
2080
74576198
AL
2081int cpu_physical_memory_set_dirty_tracking(int enable)
2082{
f6f3fbca 2083 int ret = 0;
74576198 2084 in_migration = enable;
f6f3fbca
MT
2085 ret = cpu_notify_migration_log(!!enable);
2086 return ret;
74576198
AL
2087}
2088
2089int cpu_physical_memory_get_dirty_tracking(void)
2090{
2091 return in_migration;
2092}
2093
c227f099
AL
2094int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2095 target_phys_addr_t end_addr)
2bec46dc 2096{
7b8f3b78 2097 int ret;
151f7749 2098
f6f3fbca 2099 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2100 return ret;
2bec46dc
AL
2101}
2102
e5896b12
AP
2103int cpu_physical_log_start(target_phys_addr_t start_addr,
2104 ram_addr_t size)
2105{
2106 CPUPhysMemoryClient *client;
2107 QLIST_FOREACH(client, &memory_client_list, list) {
2108 if (client->log_start) {
2109 int r = client->log_start(client, start_addr, size);
2110 if (r < 0) {
2111 return r;
2112 }
2113 }
2114 }
2115 return 0;
2116}
2117
2118int cpu_physical_log_stop(target_phys_addr_t start_addr,
2119 ram_addr_t size)
2120{
2121 CPUPhysMemoryClient *client;
2122 QLIST_FOREACH(client, &memory_client_list, list) {
2123 if (client->log_stop) {
2124 int r = client->log_stop(client, start_addr, size);
2125 if (r < 0) {
2126 return r;
2127 }
2128 }
2129 }
2130 return 0;
2131}
2132
3a7d929e
FB
2133static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2134{
c227f099 2135 ram_addr_t ram_addr;
5579c7f3 2136 void *p;
3a7d929e 2137
84b7b8e7 2138 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2139 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2140 + tlb_entry->addend);
e890261f 2141 ram_addr = qemu_ram_addr_from_host_nofail(p);
3a7d929e 2142 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2143 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2144 }
2145 }
2146}
2147
2148/* update the TLB according to the current state of the dirty bits */
2149void cpu_tlb_update_dirty(CPUState *env)
2150{
2151 int i;
cfde4bd9
IY
2152 int mmu_idx;
2153 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2154 for(i = 0; i < CPU_TLB_SIZE; i++)
2155 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2156 }
3a7d929e
FB
2157}
2158
0f459d16 2159static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2160{
0f459d16
PB
2161 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2162 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2163}
2164
0f459d16
PB
2165/* update the TLB corresponding to virtual page vaddr
2166 so that it is no longer dirty */
2167static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2168{
1ccde1cb 2169 int i;
cfde4bd9 2170 int mmu_idx;
1ccde1cb 2171
0f459d16 2172 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2173 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2174 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2175 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2176}
2177
d4c430a8
PB
2178/* Our TLB does not support large pages, so remember the area covered by
2179 large pages and trigger a full TLB flush if these are invalidated. */
2180static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2181 target_ulong size)
2182{
2183 target_ulong mask = ~(size - 1);
2184
2185 if (env->tlb_flush_addr == (target_ulong)-1) {
2186 env->tlb_flush_addr = vaddr & mask;
2187 env->tlb_flush_mask = mask;
2188 return;
2189 }
2190 /* Extend the existing region to include the new page.
2191 This is a compromise between unnecessary flushes and the cost
2192 of maintaining a full variable size TLB. */
2193 mask &= env->tlb_flush_mask;
2194 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2195 mask <<= 1;
2196 }
2197 env->tlb_flush_addr &= mask;
2198 env->tlb_flush_mask = mask;
2199}
2200
2201/* Add a new TLB entry. At most one entry for a given virtual address
2202 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2203 supplied size is only used by tlb_flush_page. */
2204void tlb_set_page(CPUState *env, target_ulong vaddr,
2205 target_phys_addr_t paddr, int prot,
2206 int mmu_idx, target_ulong size)
9fa3e853 2207{
92e873b9 2208 PhysPageDesc *p;
4f2ac237 2209 unsigned long pd;
9fa3e853 2210 unsigned int index;
4f2ac237 2211 target_ulong address;
0f459d16 2212 target_ulong code_address;
355b1943 2213 unsigned long addend;
84b7b8e7 2214 CPUTLBEntry *te;
a1d1bb31 2215 CPUWatchpoint *wp;
c227f099 2216 target_phys_addr_t iotlb;
9fa3e853 2217
d4c430a8
PB
2218 assert(size >= TARGET_PAGE_SIZE);
2219 if (size != TARGET_PAGE_SIZE) {
2220 tlb_add_large_page(env, vaddr, size);
2221 }
92e873b9 2222 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2223 if (!p) {
2224 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2225 } else {
2226 pd = p->phys_offset;
9fa3e853
FB
2227 }
2228#if defined(DEBUG_TLB)
7fd3f494
SW
2229 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2230 " prot=%x idx=%d pd=0x%08lx\n",
2231 vaddr, paddr, prot, mmu_idx, pd);
9fa3e853
FB
2232#endif
2233
0f459d16
PB
2234 address = vaddr;
2235 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2236 /* IO memory case (romd handled later) */
2237 address |= TLB_MMIO;
2238 }
5579c7f3 2239 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2240 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2241 /* Normal RAM. */
2242 iotlb = pd & TARGET_PAGE_MASK;
2243 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2244 iotlb |= IO_MEM_NOTDIRTY;
2245 else
2246 iotlb |= IO_MEM_ROM;
2247 } else {
ccbb4d44 2248 /* IO handlers are currently passed a physical address.
0f459d16
PB
2249 It would be nice to pass an offset from the base address
2250 of that region. This would avoid having to special case RAM,
2251 and avoid full address decoding in every device.
2252 We can't use the high bits of pd for this because
2253 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2254 iotlb = (pd & ~TARGET_PAGE_MASK);
2255 if (p) {
8da3ff18
PB
2256 iotlb += p->region_offset;
2257 } else {
2258 iotlb += paddr;
2259 }
0f459d16
PB
2260 }
2261
2262 code_address = address;
2263 /* Make accesses to pages with watchpoints go via the
2264 watchpoint trap routines. */
72cf2d4f 2265 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2266 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
bf298f83
JK
2267 /* Avoid trapping reads of pages with a write breakpoint. */
2268 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2269 iotlb = io_mem_watch + paddr;
2270 address |= TLB_MMIO;
2271 break;
2272 }
6658ffb8 2273 }
0f459d16 2274 }
d79acba4 2275
0f459d16
PB
2276 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2277 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2278 te = &env->tlb_table[mmu_idx][index];
2279 te->addend = addend - vaddr;
2280 if (prot & PAGE_READ) {
2281 te->addr_read = address;
2282 } else {
2283 te->addr_read = -1;
2284 }
5c751e99 2285
0f459d16
PB
2286 if (prot & PAGE_EXEC) {
2287 te->addr_code = code_address;
2288 } else {
2289 te->addr_code = -1;
2290 }
2291 if (prot & PAGE_WRITE) {
2292 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2293 (pd & IO_MEM_ROMD)) {
2294 /* Write access calls the I/O callback. */
2295 te->addr_write = address | TLB_MMIO;
2296 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2297 !cpu_physical_memory_is_dirty(pd)) {
2298 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2299 } else {
0f459d16 2300 te->addr_write = address;
9fa3e853 2301 }
0f459d16
PB
2302 } else {
2303 te->addr_write = -1;
9fa3e853 2304 }
9fa3e853
FB
2305}
2306
0124311e
FB
2307#else
2308
ee8b7021 2309void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2310{
2311}
2312
2e12669a 2313void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2314{
2315}
2316
edf8e2af
MW
2317/*
2318 * Walks guest process memory "regions" one by one
2319 * and calls callback function 'fn' for each region.
2320 */
5cd2c5b6
RH
2321
2322struct walk_memory_regions_data
2323{
2324 walk_memory_regions_fn fn;
2325 void *priv;
2326 unsigned long start;
2327 int prot;
2328};
2329
2330static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2331 abi_ulong end, int new_prot)
5cd2c5b6
RH
2332{
2333 if (data->start != -1ul) {
2334 int rc = data->fn(data->priv, data->start, end, data->prot);
2335 if (rc != 0) {
2336 return rc;
2337 }
2338 }
2339
2340 data->start = (new_prot ? end : -1ul);
2341 data->prot = new_prot;
2342
2343 return 0;
2344}
2345
2346static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2347 abi_ulong base, int level, void **lp)
5cd2c5b6 2348{
b480d9b7 2349 abi_ulong pa;
5cd2c5b6
RH
2350 int i, rc;
2351
2352 if (*lp == NULL) {
2353 return walk_memory_regions_end(data, base, 0);
2354 }
2355
2356 if (level == 0) {
2357 PageDesc *pd = *lp;
7296abac 2358 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2359 int prot = pd[i].flags;
2360
2361 pa = base | (i << TARGET_PAGE_BITS);
2362 if (prot != data->prot) {
2363 rc = walk_memory_regions_end(data, pa, prot);
2364 if (rc != 0) {
2365 return rc;
9fa3e853 2366 }
9fa3e853 2367 }
5cd2c5b6
RH
2368 }
2369 } else {
2370 void **pp = *lp;
7296abac 2371 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2372 pa = base | ((abi_ulong)i <<
2373 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2374 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2375 if (rc != 0) {
2376 return rc;
2377 }
2378 }
2379 }
2380
2381 return 0;
2382}
2383
2384int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2385{
2386 struct walk_memory_regions_data data;
2387 unsigned long i;
2388
2389 data.fn = fn;
2390 data.priv = priv;
2391 data.start = -1ul;
2392 data.prot = 0;
2393
2394 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2395 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2396 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2397 if (rc != 0) {
2398 return rc;
9fa3e853 2399 }
33417e70 2400 }
5cd2c5b6
RH
2401
2402 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2403}
2404
b480d9b7
PB
2405static int dump_region(void *priv, abi_ulong start,
2406 abi_ulong end, unsigned long prot)
edf8e2af
MW
2407{
2408 FILE *f = (FILE *)priv;
2409
b480d9b7
PB
2410 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2411 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2412 start, end, end - start,
2413 ((prot & PAGE_READ) ? 'r' : '-'),
2414 ((prot & PAGE_WRITE) ? 'w' : '-'),
2415 ((prot & PAGE_EXEC) ? 'x' : '-'));
2416
2417 return (0);
2418}
2419
2420/* dump memory mappings */
2421void page_dump(FILE *f)
2422{
2423 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2424 "start", "end", "size", "prot");
2425 walk_memory_regions(f, dump_region);
33417e70
FB
2426}
2427
53a5960a 2428int page_get_flags(target_ulong address)
33417e70 2429{
9fa3e853
FB
2430 PageDesc *p;
2431
2432 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2433 if (!p)
9fa3e853
FB
2434 return 0;
2435 return p->flags;
2436}
2437
376a7909
RH
2438/* Modify the flags of a page and invalidate the code if necessary.
2439 The flag PAGE_WRITE_ORG is positioned automatically depending
2440 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2441void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2442{
376a7909
RH
2443 target_ulong addr, len;
2444
2445 /* This function should never be called with addresses outside the
2446 guest address space. If this assert fires, it probably indicates
2447 a missing call to h2g_valid. */
b480d9b7
PB
2448#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2449 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2450#endif
2451 assert(start < end);
9fa3e853
FB
2452
2453 start = start & TARGET_PAGE_MASK;
2454 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2455
2456 if (flags & PAGE_WRITE) {
9fa3e853 2457 flags |= PAGE_WRITE_ORG;
376a7909
RH
2458 }
2459
2460 for (addr = start, len = end - start;
2461 len != 0;
2462 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2463 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2464
2465 /* If the write protection bit is set, then we invalidate
2466 the code inside. */
5fafdf24 2467 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2468 (flags & PAGE_WRITE) &&
2469 p->first_tb) {
d720b93d 2470 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2471 }
2472 p->flags = flags;
2473 }
33417e70
FB
2474}
2475
3d97b40b
TS
2476int page_check_range(target_ulong start, target_ulong len, int flags)
2477{
2478 PageDesc *p;
2479 target_ulong end;
2480 target_ulong addr;
2481
376a7909
RH
2482 /* This function should never be called with addresses outside the
2483 guest address space. If this assert fires, it probably indicates
2484 a missing call to h2g_valid. */
338e9e6c
BS
2485#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2486 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2487#endif
2488
3e0650a9
RH
2489 if (len == 0) {
2490 return 0;
2491 }
376a7909
RH
2492 if (start + len - 1 < start) {
2493 /* We've wrapped around. */
55f280c9 2494 return -1;
376a7909 2495 }
55f280c9 2496
3d97b40b
TS
2497 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2498 start = start & TARGET_PAGE_MASK;
2499
376a7909
RH
2500 for (addr = start, len = end - start;
2501 len != 0;
2502 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2503 p = page_find(addr >> TARGET_PAGE_BITS);
2504 if( !p )
2505 return -1;
2506 if( !(p->flags & PAGE_VALID) )
2507 return -1;
2508
dae3270c 2509 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2510 return -1;
dae3270c
FB
2511 if (flags & PAGE_WRITE) {
2512 if (!(p->flags & PAGE_WRITE_ORG))
2513 return -1;
2514 /* unprotect the page if it was put read-only because it
2515 contains translated code */
2516 if (!(p->flags & PAGE_WRITE)) {
2517 if (!page_unprotect(addr, 0, NULL))
2518 return -1;
2519 }
2520 return 0;
2521 }
3d97b40b
TS
2522 }
2523 return 0;
2524}
2525
9fa3e853 2526/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2527 page. Return TRUE if the fault was successfully handled. */
53a5960a 2528int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2529{
45d679d6
AJ
2530 unsigned int prot;
2531 PageDesc *p;
53a5960a 2532 target_ulong host_start, host_end, addr;
9fa3e853 2533
c8a706fe
PB
2534 /* Technically this isn't safe inside a signal handler. However we
2535 know this only ever happens in a synchronous SEGV handler, so in
2536 practice it seems to be ok. */
2537 mmap_lock();
2538
45d679d6
AJ
2539 p = page_find(address >> TARGET_PAGE_BITS);
2540 if (!p) {
c8a706fe 2541 mmap_unlock();
9fa3e853 2542 return 0;
c8a706fe 2543 }
45d679d6 2544
9fa3e853
FB
2545 /* if the page was really writable, then we change its
2546 protection back to writable */
45d679d6
AJ
2547 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2548 host_start = address & qemu_host_page_mask;
2549 host_end = host_start + qemu_host_page_size;
2550
2551 prot = 0;
2552 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2553 p = page_find(addr >> TARGET_PAGE_BITS);
2554 p->flags |= PAGE_WRITE;
2555 prot |= p->flags;
2556
9fa3e853
FB
2557 /* and since the content will be modified, we must invalidate
2558 the corresponding translated code. */
45d679d6 2559 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2560#ifdef DEBUG_TB_CHECK
45d679d6 2561 tb_invalidate_check(addr);
9fa3e853 2562#endif
9fa3e853 2563 }
45d679d6
AJ
2564 mprotect((void *)g2h(host_start), qemu_host_page_size,
2565 prot & PAGE_BITS);
2566
2567 mmap_unlock();
2568 return 1;
9fa3e853 2569 }
c8a706fe 2570 mmap_unlock();
9fa3e853
FB
2571 return 0;
2572}
2573
6a00d601
FB
2574static inline void tlb_set_dirty(CPUState *env,
2575 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2576{
2577}
9fa3e853
FB
2578#endif /* defined(CONFIG_USER_ONLY) */
2579
e2eef170 2580#if !defined(CONFIG_USER_ONLY)
8da3ff18 2581
c04b2b78
PB
2582#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2583typedef struct subpage_t {
2584 target_phys_addr_t base;
f6405247
RH
2585 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2586 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2587} subpage_t;
2588
c227f099
AL
2589static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2590 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2591static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2592 ram_addr_t orig_memory,
2593 ram_addr_t region_offset);
db7b5426
BS
2594#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2595 need_subpage) \
2596 do { \
2597 if (addr > start_addr) \
2598 start_addr2 = 0; \
2599 else { \
2600 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2601 if (start_addr2 > 0) \
2602 need_subpage = 1; \
2603 } \
2604 \
49e9fba2 2605 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2606 end_addr2 = TARGET_PAGE_SIZE - 1; \
2607 else { \
2608 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2609 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2610 need_subpage = 1; \
2611 } \
2612 } while (0)
2613
8f2498f9
MT
2614/* register physical memory.
2615 For RAM, 'size' must be a multiple of the target page size.
2616 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2617 io memory page. The address used when calling the IO function is
2618 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2619 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2620 before calculating this offset. This should not be a problem unless
2621 the low bits of start_addr and region_offset differ. */
0fd542fb 2622void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
c227f099
AL
2623 ram_addr_t size,
2624 ram_addr_t phys_offset,
0fd542fb
MT
2625 ram_addr_t region_offset,
2626 bool log_dirty)
33417e70 2627{
c227f099 2628 target_phys_addr_t addr, end_addr;
92e873b9 2629 PhysPageDesc *p;
9d42037b 2630 CPUState *env;
c227f099 2631 ram_addr_t orig_size = size;
f6405247 2632 subpage_t *subpage;
33417e70 2633
3b8e6a2d 2634 assert(size);
0fd542fb 2635 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
f6f3fbca 2636
67c4d23c
PB
2637 if (phys_offset == IO_MEM_UNASSIGNED) {
2638 region_offset = start_addr;
2639 }
8da3ff18 2640 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2641 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2642 end_addr = start_addr + (target_phys_addr_t)size;
3b8e6a2d
EI
2643
2644 addr = start_addr;
2645 do {
db7b5426
BS
2646 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2647 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2648 ram_addr_t orig_memory = p->phys_offset;
2649 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2650 int need_subpage = 0;
2651
2652 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2653 need_subpage);
f6405247 2654 if (need_subpage) {
db7b5426
BS
2655 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2656 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2657 &p->phys_offset, orig_memory,
2658 p->region_offset);
db7b5426
BS
2659 } else {
2660 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2661 >> IO_MEM_SHIFT];
2662 }
8da3ff18
PB
2663 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2664 region_offset);
2665 p->region_offset = 0;
db7b5426
BS
2666 } else {
2667 p->phys_offset = phys_offset;
2668 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2669 (phys_offset & IO_MEM_ROMD))
2670 phys_offset += TARGET_PAGE_SIZE;
2671 }
2672 } else {
2673 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2674 p->phys_offset = phys_offset;
8da3ff18 2675 p->region_offset = region_offset;
db7b5426 2676 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2677 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2678 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2679 } else {
c227f099 2680 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2681 int need_subpage = 0;
2682
2683 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2684 end_addr2, need_subpage);
2685
f6405247 2686 if (need_subpage) {
db7b5426 2687 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2688 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2689 addr & TARGET_PAGE_MASK);
db7b5426 2690 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2691 phys_offset, region_offset);
2692 p->region_offset = 0;
db7b5426
BS
2693 }
2694 }
2695 }
8da3ff18 2696 region_offset += TARGET_PAGE_SIZE;
3b8e6a2d
EI
2697 addr += TARGET_PAGE_SIZE;
2698 } while (addr != end_addr);
3b46e624 2699
9d42037b
FB
2700 /* since each CPU stores ram addresses in its TLB cache, we must
2701 reset the modified entries */
2702 /* XXX: slow ! */
2703 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2704 tlb_flush(env, 1);
2705 }
33417e70
FB
2706}
2707
ba863458 2708/* XXX: temporary until new memory mapping API */
c227f099 2709ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2710{
2711 PhysPageDesc *p;
2712
2713 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2714 if (!p)
2715 return IO_MEM_UNASSIGNED;
2716 return p->phys_offset;
2717}
2718
c227f099 2719void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2720{
2721 if (kvm_enabled())
2722 kvm_coalesce_mmio_region(addr, size);
2723}
2724
c227f099 2725void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2726{
2727 if (kvm_enabled())
2728 kvm_uncoalesce_mmio_region(addr, size);
2729}
2730
62a2744c
SY
2731void qemu_flush_coalesced_mmio_buffer(void)
2732{
2733 if (kvm_enabled())
2734 kvm_flush_coalesced_mmio_buffer();
2735}
2736
c902760f
MT
2737#if defined(__linux__) && !defined(TARGET_S390X)
2738
2739#include <sys/vfs.h>
2740
2741#define HUGETLBFS_MAGIC 0x958458f6
2742
2743static long gethugepagesize(const char *path)
2744{
2745 struct statfs fs;
2746 int ret;
2747
2748 do {
9742bf26 2749 ret = statfs(path, &fs);
c902760f
MT
2750 } while (ret != 0 && errno == EINTR);
2751
2752 if (ret != 0) {
9742bf26
YT
2753 perror(path);
2754 return 0;
c902760f
MT
2755 }
2756
2757 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2758 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2759
2760 return fs.f_bsize;
2761}
2762
04b16653
AW
2763static void *file_ram_alloc(RAMBlock *block,
2764 ram_addr_t memory,
2765 const char *path)
c902760f
MT
2766{
2767 char *filename;
2768 void *area;
2769 int fd;
2770#ifdef MAP_POPULATE
2771 int flags;
2772#endif
2773 unsigned long hpagesize;
2774
2775 hpagesize = gethugepagesize(path);
2776 if (!hpagesize) {
9742bf26 2777 return NULL;
c902760f
MT
2778 }
2779
2780 if (memory < hpagesize) {
2781 return NULL;
2782 }
2783
2784 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2785 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2786 return NULL;
2787 }
2788
2789 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2790 return NULL;
c902760f
MT
2791 }
2792
2793 fd = mkstemp(filename);
2794 if (fd < 0) {
9742bf26
YT
2795 perror("unable to create backing store for hugepages");
2796 free(filename);
2797 return NULL;
c902760f
MT
2798 }
2799 unlink(filename);
2800 free(filename);
2801
2802 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2803
2804 /*
2805 * ftruncate is not supported by hugetlbfs in older
2806 * hosts, so don't bother bailing out on errors.
2807 * If anything goes wrong with it under other filesystems,
2808 * mmap will fail.
2809 */
2810 if (ftruncate(fd, memory))
9742bf26 2811 perror("ftruncate");
c902760f
MT
2812
2813#ifdef MAP_POPULATE
2814 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2815 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2816 * to sidestep this quirk.
2817 */
2818 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2819 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2820#else
2821 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2822#endif
2823 if (area == MAP_FAILED) {
9742bf26
YT
2824 perror("file_ram_alloc: can't mmap RAM pages");
2825 close(fd);
2826 return (NULL);
c902760f 2827 }
04b16653 2828 block->fd = fd;
c902760f
MT
2829 return area;
2830}
2831#endif
2832
d17b5288 2833static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2834{
2835 RAMBlock *block, *next_block;
09d7ae90 2836 ram_addr_t offset = 0, mingap = ULONG_MAX;
04b16653
AW
2837
2838 if (QLIST_EMPTY(&ram_list.blocks))
2839 return 0;
2840
2841 QLIST_FOREACH(block, &ram_list.blocks, next) {
2842 ram_addr_t end, next = ULONG_MAX;
2843
2844 end = block->offset + block->length;
2845
2846 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2847 if (next_block->offset >= end) {
2848 next = MIN(next, next_block->offset);
2849 }
2850 }
2851 if (next - end >= size && next - end < mingap) {
2852 offset = end;
2853 mingap = next - end;
2854 }
2855 }
2856 return offset;
2857}
2858
2859static ram_addr_t last_ram_offset(void)
d17b5288
AW
2860{
2861 RAMBlock *block;
2862 ram_addr_t last = 0;
2863
2864 QLIST_FOREACH(block, &ram_list.blocks, next)
2865 last = MAX(last, block->offset + block->length);
2866
2867 return last;
2868}
2869
84b89d78 2870ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
6977dfe6 2871 ram_addr_t size, void *host)
84b89d78
CM
2872{
2873 RAMBlock *new_block, *block;
2874
2875 size = TARGET_PAGE_ALIGN(size);
2876 new_block = qemu_mallocz(sizeof(*new_block));
2877
2878 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2879 char *id = dev->parent_bus->info->get_dev_path(dev);
2880 if (id) {
2881 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2882 qemu_free(id);
2883 }
2884 }
2885 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2886
2887 QLIST_FOREACH(block, &ram_list.blocks, next) {
2888 if (!strcmp(block->idstr, new_block->idstr)) {
2889 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2890 new_block->idstr);
2891 abort();
2892 }
2893 }
2894
432d268c 2895 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2896 if (host) {
2897 new_block->host = host;
cd19cfa2 2898 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2899 } else {
2900 if (mem_path) {
c902760f 2901#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2902 new_block->host = file_ram_alloc(new_block, size, mem_path);
2903 if (!new_block->host) {
2904 new_block->host = qemu_vmalloc(size);
e78815a5 2905 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2906 }
c902760f 2907#else
6977dfe6
YT
2908 fprintf(stderr, "-mem-path option unsupported\n");
2909 exit(1);
c902760f 2910#endif
6977dfe6 2911 } else {
6b02494d 2912#if defined(TARGET_S390X) && defined(CONFIG_KVM)
6977dfe6
YT
2913 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2914 new_block->host = mmap((void*)0x1000000, size,
2915 PROT_EXEC|PROT_READ|PROT_WRITE,
2916 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2917#else
432d268c
JN
2918 if (xen_mapcache_enabled()) {
2919 xen_ram_alloc(new_block->offset, size);
2920 } else {
2921 new_block->host = qemu_vmalloc(size);
2922 }
6b02494d 2923#endif
e78815a5 2924 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
6977dfe6 2925 }
c902760f 2926 }
94a6b54f
PB
2927 new_block->length = size;
2928
f471a17e 2929 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2930
f471a17e 2931 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
04b16653 2932 last_ram_offset() >> TARGET_PAGE_BITS);
d17b5288 2933 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
94a6b54f
PB
2934 0xff, size >> TARGET_PAGE_BITS);
2935
6f0437e8
JK
2936 if (kvm_enabled())
2937 kvm_setup_guest_memory(new_block->host, size);
2938
94a6b54f
PB
2939 return new_block->offset;
2940}
e9a1ab19 2941
6977dfe6
YT
2942ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2943{
2944 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2945}
2946
c227f099 2947void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2948{
04b16653
AW
2949 RAMBlock *block;
2950
2951 QLIST_FOREACH(block, &ram_list.blocks, next) {
2952 if (addr == block->offset) {
2953 QLIST_REMOVE(block, next);
cd19cfa2
HY
2954 if (block->flags & RAM_PREALLOC_MASK) {
2955 ;
2956 } else if (mem_path) {
04b16653
AW
2957#if defined (__linux__) && !defined(TARGET_S390X)
2958 if (block->fd) {
2959 munmap(block->host, block->length);
2960 close(block->fd);
2961 } else {
2962 qemu_vfree(block->host);
2963 }
fd28aa13
JK
2964#else
2965 abort();
04b16653
AW
2966#endif
2967 } else {
2968#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2969 munmap(block->host, block->length);
2970#else
432d268c
JN
2971 if (xen_mapcache_enabled()) {
2972 qemu_invalidate_entry(block->host);
2973 } else {
2974 qemu_vfree(block->host);
2975 }
04b16653
AW
2976#endif
2977 }
2978 qemu_free(block);
2979 return;
2980 }
2981 }
2982
e9a1ab19
FB
2983}
2984
cd19cfa2
HY
2985#ifndef _WIN32
2986void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2987{
2988 RAMBlock *block;
2989 ram_addr_t offset;
2990 int flags;
2991 void *area, *vaddr;
2992
2993 QLIST_FOREACH(block, &ram_list.blocks, next) {
2994 offset = addr - block->offset;
2995 if (offset < block->length) {
2996 vaddr = block->host + offset;
2997 if (block->flags & RAM_PREALLOC_MASK) {
2998 ;
2999 } else {
3000 flags = MAP_FIXED;
3001 munmap(vaddr, length);
3002 if (mem_path) {
3003#if defined(__linux__) && !defined(TARGET_S390X)
3004 if (block->fd) {
3005#ifdef MAP_POPULATE
3006 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3007 MAP_PRIVATE;
3008#else
3009 flags |= MAP_PRIVATE;
3010#endif
3011 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3012 flags, block->fd, offset);
3013 } else {
3014 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3015 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3016 flags, -1, 0);
3017 }
fd28aa13
JK
3018#else
3019 abort();
cd19cfa2
HY
3020#endif
3021 } else {
3022#if defined(TARGET_S390X) && defined(CONFIG_KVM)
3023 flags |= MAP_SHARED | MAP_ANONYMOUS;
3024 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3025 flags, -1, 0);
3026#else
3027 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3028 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3029 flags, -1, 0);
3030#endif
3031 }
3032 if (area != vaddr) {
3033 fprintf(stderr, "Could not remap addr: %lx@%lx\n",
3034 length, addr);
3035 exit(1);
3036 }
3037 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3038 }
3039 return;
3040 }
3041 }
3042}
3043#endif /* !_WIN32 */
3044
dc828ca1 3045/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
3046 With the exception of the softmmu code in this file, this should
3047 only be used for local memory (e.g. video ram) that the device owns,
3048 and knows it isn't going to access beyond the end of the block.
3049
3050 It should not be used for general purpose DMA.
3051 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3052 */
c227f099 3053void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 3054{
94a6b54f
PB
3055 RAMBlock *block;
3056
f471a17e
AW
3057 QLIST_FOREACH(block, &ram_list.blocks, next) {
3058 if (addr - block->offset < block->length) {
7d82af38
VP
3059 /* Move this entry to to start of the list. */
3060 if (block != QLIST_FIRST(&ram_list.blocks)) {
3061 QLIST_REMOVE(block, next);
3062 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3063 }
432d268c
JN
3064 if (xen_mapcache_enabled()) {
3065 /* We need to check if the requested address is in the RAM
3066 * because we don't want to map the entire memory in QEMU.
3067 */
3068 if (block->offset == 0) {
3069 return qemu_map_cache(addr, 0, 1);
3070 } else if (block->host == NULL) {
3071 block->host = xen_map_block(block->offset, block->length);
3072 }
3073 }
f471a17e
AW
3074 return block->host + (addr - block->offset);
3075 }
94a6b54f 3076 }
f471a17e
AW
3077
3078 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3079 abort();
3080
3081 return NULL;
dc828ca1
PB
3082}
3083
b2e0a138
MT
3084/* Return a host pointer to ram allocated with qemu_ram_alloc.
3085 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3086 */
3087void *qemu_safe_ram_ptr(ram_addr_t addr)
3088{
3089 RAMBlock *block;
3090
3091 QLIST_FOREACH(block, &ram_list.blocks, next) {
3092 if (addr - block->offset < block->length) {
432d268c
JN
3093 if (xen_mapcache_enabled()) {
3094 /* We need to check if the requested address is in the RAM
3095 * because we don't want to map the entire memory in QEMU.
3096 */
3097 if (block->offset == 0) {
3098 return qemu_map_cache(addr, 0, 1);
3099 } else if (block->host == NULL) {
3100 block->host = xen_map_block(block->offset, block->length);
3101 }
3102 }
b2e0a138
MT
3103 return block->host + (addr - block->offset);
3104 }
3105 }
3106
3107 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3108 abort();
3109
3110 return NULL;
3111}
3112
e890261f 3113int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 3114{
94a6b54f
PB
3115 RAMBlock *block;
3116 uint8_t *host = ptr;
3117
f471a17e 3118 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
3119 /* This case append when the block is not mapped. */
3120 if (block->host == NULL) {
3121 continue;
3122 }
f471a17e 3123 if (host - block->host < block->length) {
e890261f
MT
3124 *ram_addr = block->offset + (host - block->host);
3125 return 0;
f471a17e 3126 }
94a6b54f 3127 }
432d268c
JN
3128
3129 if (xen_mapcache_enabled()) {
3130 *ram_addr = qemu_ram_addr_from_mapcache(ptr);
3131 return 0;
3132 }
3133
e890261f
MT
3134 return -1;
3135}
f471a17e 3136
e890261f
MT
3137/* Some of the softmmu routines need to translate from a host pointer
3138 (typically a TLB entry) back to a ram offset. */
3139ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3140{
3141 ram_addr_t ram_addr;
f471a17e 3142
e890261f
MT
3143 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3144 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3145 abort();
3146 }
3147 return ram_addr;
5579c7f3
PB
3148}
3149
c227f099 3150static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 3151{
67d3b957 3152#ifdef DEBUG_UNASSIGNED
ab3d1727 3153 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 3154#endif
faed1c2a 3155#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3156 do_unassigned_access(addr, 0, 0, 0, 1);
3157#endif
3158 return 0;
3159}
3160
c227f099 3161static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3162{
3163#ifdef DEBUG_UNASSIGNED
3164 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3165#endif
faed1c2a 3166#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3167 do_unassigned_access(addr, 0, 0, 0, 2);
3168#endif
3169 return 0;
3170}
3171
c227f099 3172static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
3173{
3174#ifdef DEBUG_UNASSIGNED
3175 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3176#endif
faed1c2a 3177#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3178 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 3179#endif
33417e70
FB
3180 return 0;
3181}
3182
c227f099 3183static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 3184{
67d3b957 3185#ifdef DEBUG_UNASSIGNED
ab3d1727 3186 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 3187#endif
faed1c2a 3188#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3189 do_unassigned_access(addr, 1, 0, 0, 1);
3190#endif
3191}
3192
c227f099 3193static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3194{
3195#ifdef DEBUG_UNASSIGNED
3196 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3197#endif
faed1c2a 3198#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
3199 do_unassigned_access(addr, 1, 0, 0, 2);
3200#endif
3201}
3202
c227f099 3203static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
3204{
3205#ifdef DEBUG_UNASSIGNED
3206 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3207#endif
faed1c2a 3208#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 3209 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 3210#endif
33417e70
FB
3211}
3212
d60efc6b 3213static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 3214 unassigned_mem_readb,
e18231a3
BS
3215 unassigned_mem_readw,
3216 unassigned_mem_readl,
33417e70
FB
3217};
3218
d60efc6b 3219static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 3220 unassigned_mem_writeb,
e18231a3
BS
3221 unassigned_mem_writew,
3222 unassigned_mem_writel,
33417e70
FB
3223};
3224
c227f099 3225static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3226 uint32_t val)
9fa3e853 3227{
3a7d929e 3228 int dirty_flags;
f7c11b53 3229 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3230 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3231#if !defined(CONFIG_USER_ONLY)
3a7d929e 3232 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 3233 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3234#endif
3a7d929e 3235 }
5579c7f3 3236 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3237 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3238 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3239 /* we remove the notdirty callback only if the code has been
3240 flushed */
3241 if (dirty_flags == 0xff)
2e70f6ef 3242 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3243}
3244
c227f099 3245static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3246 uint32_t val)
9fa3e853 3247{
3a7d929e 3248 int dirty_flags;
f7c11b53 3249 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3250 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3251#if !defined(CONFIG_USER_ONLY)
3a7d929e 3252 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3253 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3254#endif
3a7d929e 3255 }
5579c7f3 3256 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3257 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3258 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3259 /* we remove the notdirty callback only if the code has been
3260 flushed */
3261 if (dirty_flags == 0xff)
2e70f6ef 3262 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3263}
3264
c227f099 3265static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3266 uint32_t val)
9fa3e853 3267{
3a7d929e 3268 int dirty_flags;
f7c11b53 3269 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3270 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3271#if !defined(CONFIG_USER_ONLY)
3a7d929e 3272 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3273 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3274#endif
3a7d929e 3275 }
5579c7f3 3276 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3277 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3278 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3279 /* we remove the notdirty callback only if the code has been
3280 flushed */
3281 if (dirty_flags == 0xff)
2e70f6ef 3282 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3283}
3284
d60efc6b 3285static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3286 NULL, /* never used */
3287 NULL, /* never used */
3288 NULL, /* never used */
3289};
3290
d60efc6b 3291static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3292 notdirty_mem_writeb,
3293 notdirty_mem_writew,
3294 notdirty_mem_writel,
3295};
3296
0f459d16 3297/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3298static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3299{
3300 CPUState *env = cpu_single_env;
06d55cc1
AL
3301 target_ulong pc, cs_base;
3302 TranslationBlock *tb;
0f459d16 3303 target_ulong vaddr;
a1d1bb31 3304 CPUWatchpoint *wp;
06d55cc1 3305 int cpu_flags;
0f459d16 3306
06d55cc1
AL
3307 if (env->watchpoint_hit) {
3308 /* We re-entered the check after replacing the TB. Now raise
3309 * the debug interrupt so that is will trigger after the
3310 * current instruction. */
3311 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3312 return;
3313 }
2e70f6ef 3314 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3315 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3316 if ((vaddr == (wp->vaddr & len_mask) ||
3317 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3318 wp->flags |= BP_WATCHPOINT_HIT;
3319 if (!env->watchpoint_hit) {
3320 env->watchpoint_hit = wp;
3321 tb = tb_find_pc(env->mem_io_pc);
3322 if (!tb) {
3323 cpu_abort(env, "check_watchpoint: could not find TB for "
3324 "pc=%p", (void *)env->mem_io_pc);
3325 }
618ba8e6 3326 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
3327 tb_phys_invalidate(tb, -1);
3328 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3329 env->exception_index = EXCP_DEBUG;
3330 } else {
3331 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3332 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3333 }
3334 cpu_resume_from_signal(env, NULL);
06d55cc1 3335 }
6e140f28
AL
3336 } else {
3337 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3338 }
3339 }
3340}
3341
6658ffb8
PB
3342/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3343 so these check for a hit then pass through to the normal out-of-line
3344 phys routines. */
c227f099 3345static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3346{
b4051334 3347 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3348 return ldub_phys(addr);
3349}
3350
c227f099 3351static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3352{
b4051334 3353 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3354 return lduw_phys(addr);
3355}
3356
c227f099 3357static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3358{
b4051334 3359 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3360 return ldl_phys(addr);
3361}
3362
c227f099 3363static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3364 uint32_t val)
3365{
b4051334 3366 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3367 stb_phys(addr, val);
3368}
3369
c227f099 3370static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3371 uint32_t val)
3372{
b4051334 3373 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3374 stw_phys(addr, val);
3375}
3376
c227f099 3377static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3378 uint32_t val)
3379{
b4051334 3380 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3381 stl_phys(addr, val);
3382}
3383
d60efc6b 3384static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3385 watch_mem_readb,
3386 watch_mem_readw,
3387 watch_mem_readl,
3388};
3389
d60efc6b 3390static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3391 watch_mem_writeb,
3392 watch_mem_writew,
3393 watch_mem_writel,
3394};
6658ffb8 3395
f6405247
RH
3396static inline uint32_t subpage_readlen (subpage_t *mmio,
3397 target_phys_addr_t addr,
3398 unsigned int len)
db7b5426 3399{
f6405247 3400 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3401#if defined(DEBUG_SUBPAGE)
3402 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3403 mmio, len, addr, idx);
3404#endif
db7b5426 3405
f6405247
RH
3406 addr += mmio->region_offset[idx];
3407 idx = mmio->sub_io_index[idx];
3408 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3409}
3410
c227f099 3411static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3412 uint32_t value, unsigned int len)
db7b5426 3413{
f6405247 3414 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3415#if defined(DEBUG_SUBPAGE)
f6405247
RH
3416 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3417 __func__, mmio, len, addr, idx, value);
db7b5426 3418#endif
f6405247
RH
3419
3420 addr += mmio->region_offset[idx];
3421 idx = mmio->sub_io_index[idx];
3422 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3423}
3424
c227f099 3425static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3426{
db7b5426
BS
3427 return subpage_readlen(opaque, addr, 0);
3428}
3429
c227f099 3430static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3431 uint32_t value)
3432{
db7b5426
BS
3433 subpage_writelen(opaque, addr, value, 0);
3434}
3435
c227f099 3436static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3437{
db7b5426
BS
3438 return subpage_readlen(opaque, addr, 1);
3439}
3440
c227f099 3441static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3442 uint32_t value)
3443{
db7b5426
BS
3444 subpage_writelen(opaque, addr, value, 1);
3445}
3446
c227f099 3447static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3448{
db7b5426
BS
3449 return subpage_readlen(opaque, addr, 2);
3450}
3451
f6405247
RH
3452static void subpage_writel (void *opaque, target_phys_addr_t addr,
3453 uint32_t value)
db7b5426 3454{
db7b5426
BS
3455 subpage_writelen(opaque, addr, value, 2);
3456}
3457
d60efc6b 3458static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3459 &subpage_readb,
3460 &subpage_readw,
3461 &subpage_readl,
3462};
3463
d60efc6b 3464static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3465 &subpage_writeb,
3466 &subpage_writew,
3467 &subpage_writel,
3468};
3469
c227f099
AL
3470static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3471 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3472{
3473 int idx, eidx;
3474
3475 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3476 return -1;
3477 idx = SUBPAGE_IDX(start);
3478 eidx = SUBPAGE_IDX(end);
3479#if defined(DEBUG_SUBPAGE)
0bf9e31a 3480 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3481 mmio, start, end, idx, eidx, memory);
3482#endif
95c318f5
GN
3483 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3484 memory = IO_MEM_UNASSIGNED;
f6405247 3485 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3486 for (; idx <= eidx; idx++) {
f6405247
RH
3487 mmio->sub_io_index[idx] = memory;
3488 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3489 }
3490
3491 return 0;
3492}
3493
f6405247
RH
3494static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3495 ram_addr_t orig_memory,
3496 ram_addr_t region_offset)
db7b5426 3497{
c227f099 3498 subpage_t *mmio;
db7b5426
BS
3499 int subpage_memory;
3500
c227f099 3501 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3502
3503 mmio->base = base;
2507c12a
AG
3504 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3505 DEVICE_NATIVE_ENDIAN);
db7b5426 3506#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3507 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3508 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3509#endif
1eec614b 3510 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3511 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3512
3513 return mmio;
3514}
3515
88715657
AL
3516static int get_free_io_mem_idx(void)
3517{
3518 int i;
3519
3520 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3521 if (!io_mem_used[i]) {
3522 io_mem_used[i] = 1;
3523 return i;
3524 }
c6703b47 3525 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3526 return -1;
3527}
3528
dd310534
AG
3529/*
3530 * Usually, devices operate in little endian mode. There are devices out
3531 * there that operate in big endian too. Each device gets byte swapped
3532 * mmio if plugged onto a CPU that does the other endianness.
3533 *
3534 * CPU Device swap?
3535 *
3536 * little little no
3537 * little big yes
3538 * big little yes
3539 * big big no
3540 */
3541
3542typedef struct SwapEndianContainer {
3543 CPUReadMemoryFunc *read[3];
3544 CPUWriteMemoryFunc *write[3];
3545 void *opaque;
3546} SwapEndianContainer;
3547
3548static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3549{
3550 uint32_t val;
3551 SwapEndianContainer *c = opaque;
3552 val = c->read[0](c->opaque, addr);
3553 return val;
3554}
3555
3556static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3557{
3558 uint32_t val;
3559 SwapEndianContainer *c = opaque;
3560 val = bswap16(c->read[1](c->opaque, addr));
3561 return val;
3562}
3563
3564static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3565{
3566 uint32_t val;
3567 SwapEndianContainer *c = opaque;
3568 val = bswap32(c->read[2](c->opaque, addr));
3569 return val;
3570}
3571
3572static CPUReadMemoryFunc * const swapendian_readfn[3]={
3573 swapendian_mem_readb,
3574 swapendian_mem_readw,
3575 swapendian_mem_readl
3576};
3577
3578static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3579 uint32_t val)
3580{
3581 SwapEndianContainer *c = opaque;
3582 c->write[0](c->opaque, addr, val);
3583}
3584
3585static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3586 uint32_t val)
3587{
3588 SwapEndianContainer *c = opaque;
3589 c->write[1](c->opaque, addr, bswap16(val));
3590}
3591
3592static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3593 uint32_t val)
3594{
3595 SwapEndianContainer *c = opaque;
3596 c->write[2](c->opaque, addr, bswap32(val));
3597}
3598
3599static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3600 swapendian_mem_writeb,
3601 swapendian_mem_writew,
3602 swapendian_mem_writel
3603};
3604
3605static void swapendian_init(int io_index)
3606{
3607 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3608 int i;
3609
3610 /* Swap mmio for big endian targets */
3611 c->opaque = io_mem_opaque[io_index];
3612 for (i = 0; i < 3; i++) {
3613 c->read[i] = io_mem_read[io_index][i];
3614 c->write[i] = io_mem_write[io_index][i];
3615
3616 io_mem_read[io_index][i] = swapendian_readfn[i];
3617 io_mem_write[io_index][i] = swapendian_writefn[i];
3618 }
3619 io_mem_opaque[io_index] = c;
3620}
3621
3622static void swapendian_del(int io_index)
3623{
3624 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3625 qemu_free(io_mem_opaque[io_index]);
3626 }
3627}
3628
33417e70
FB
3629/* mem_read and mem_write are arrays of functions containing the
3630 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3631 2). Functions can be omitted with a NULL function pointer.
3ee89922 3632 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3633 modified. If it is zero, a new io zone is allocated. The return
3634 value can be used with cpu_register_physical_memory(). (-1) is
3635 returned if error. */
1eed09cb 3636static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3637 CPUReadMemoryFunc * const *mem_read,
3638 CPUWriteMemoryFunc * const *mem_write,
dd310534 3639 void *opaque, enum device_endian endian)
33417e70 3640{
3cab721d
RH
3641 int i;
3642
33417e70 3643 if (io_index <= 0) {
88715657
AL
3644 io_index = get_free_io_mem_idx();
3645 if (io_index == -1)
3646 return io_index;
33417e70 3647 } else {
1eed09cb 3648 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3649 if (io_index >= IO_MEM_NB_ENTRIES)
3650 return -1;
3651 }
b5ff1b31 3652
3cab721d
RH
3653 for (i = 0; i < 3; ++i) {
3654 io_mem_read[io_index][i]
3655 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3656 }
3657 for (i = 0; i < 3; ++i) {
3658 io_mem_write[io_index][i]
3659 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3660 }
a4193c8a 3661 io_mem_opaque[io_index] = opaque;
f6405247 3662
dd310534
AG
3663 switch (endian) {
3664 case DEVICE_BIG_ENDIAN:
3665#ifndef TARGET_WORDS_BIGENDIAN
3666 swapendian_init(io_index);
3667#endif
3668 break;
3669 case DEVICE_LITTLE_ENDIAN:
3670#ifdef TARGET_WORDS_BIGENDIAN
3671 swapendian_init(io_index);
3672#endif
3673 break;
3674 case DEVICE_NATIVE_ENDIAN:
3675 default:
3676 break;
3677 }
3678
f6405247 3679 return (io_index << IO_MEM_SHIFT);
33417e70 3680}
61382a50 3681
d60efc6b
BS
3682int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3683 CPUWriteMemoryFunc * const *mem_write,
dd310534 3684 void *opaque, enum device_endian endian)
1eed09cb 3685{
2507c12a 3686 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
1eed09cb
AK
3687}
3688
88715657
AL
3689void cpu_unregister_io_memory(int io_table_address)
3690{
3691 int i;
3692 int io_index = io_table_address >> IO_MEM_SHIFT;
3693
dd310534
AG
3694 swapendian_del(io_index);
3695
88715657
AL
3696 for (i=0;i < 3; i++) {
3697 io_mem_read[io_index][i] = unassigned_mem_read[i];
3698 io_mem_write[io_index][i] = unassigned_mem_write[i];
3699 }
3700 io_mem_opaque[io_index] = NULL;
3701 io_mem_used[io_index] = 0;
3702}
3703
e9179ce1
AK
3704static void io_mem_init(void)
3705{
3706 int i;
3707
2507c12a
AG
3708 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3709 unassigned_mem_write, NULL,
3710 DEVICE_NATIVE_ENDIAN);
3711 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3712 unassigned_mem_write, NULL,
3713 DEVICE_NATIVE_ENDIAN);
3714 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3715 notdirty_mem_write, NULL,
3716 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3717 for (i=0; i<5; i++)
3718 io_mem_used[i] = 1;
3719
3720 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2507c12a
AG
3721 watch_mem_write, NULL,
3722 DEVICE_NATIVE_ENDIAN);
e9179ce1
AK
3723}
3724
e2eef170
PB
3725#endif /* !defined(CONFIG_USER_ONLY) */
3726
13eb76e0
FB
3727/* physical memory access (slow version, mainly for debug) */
3728#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3729int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3730 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3731{
3732 int l, flags;
3733 target_ulong page;
53a5960a 3734 void * p;
13eb76e0
FB
3735
3736 while (len > 0) {
3737 page = addr & TARGET_PAGE_MASK;
3738 l = (page + TARGET_PAGE_SIZE) - addr;
3739 if (l > len)
3740 l = len;
3741 flags = page_get_flags(page);
3742 if (!(flags & PAGE_VALID))
a68fe89c 3743 return -1;
13eb76e0
FB
3744 if (is_write) {
3745 if (!(flags & PAGE_WRITE))
a68fe89c 3746 return -1;
579a97f7 3747 /* XXX: this code should not depend on lock_user */
72fb7daa 3748 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3749 return -1;
72fb7daa
AJ
3750 memcpy(p, buf, l);
3751 unlock_user(p, addr, l);
13eb76e0
FB
3752 } else {
3753 if (!(flags & PAGE_READ))
a68fe89c 3754 return -1;
579a97f7 3755 /* XXX: this code should not depend on lock_user */
72fb7daa 3756 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3757 return -1;
72fb7daa 3758 memcpy(buf, p, l);
5b257578 3759 unlock_user(p, addr, 0);
13eb76e0
FB
3760 }
3761 len -= l;
3762 buf += l;
3763 addr += l;
3764 }
a68fe89c 3765 return 0;
13eb76e0 3766}
8df1cd07 3767
13eb76e0 3768#else
c227f099 3769void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3770 int len, int is_write)
3771{
3772 int l, io_index;
3773 uint8_t *ptr;
3774 uint32_t val;
c227f099 3775 target_phys_addr_t page;
2e12669a 3776 unsigned long pd;
92e873b9 3777 PhysPageDesc *p;
3b46e624 3778
13eb76e0
FB
3779 while (len > 0) {
3780 page = addr & TARGET_PAGE_MASK;
3781 l = (page + TARGET_PAGE_SIZE) - addr;
3782 if (l > len)
3783 l = len;
92e873b9 3784 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3785 if (!p) {
3786 pd = IO_MEM_UNASSIGNED;
3787 } else {
3788 pd = p->phys_offset;
3789 }
3b46e624 3790
13eb76e0 3791 if (is_write) {
3a7d929e 3792 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3793 target_phys_addr_t addr1 = addr;
13eb76e0 3794 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3795 if (p)
6c2934db 3796 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3797 /* XXX: could force cpu_single_env to NULL to avoid
3798 potential bugs */
6c2934db 3799 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3800 /* 32 bit write access */
c27004ec 3801 val = ldl_p(buf);
6c2934db 3802 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3803 l = 4;
6c2934db 3804 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3805 /* 16 bit write access */
c27004ec 3806 val = lduw_p(buf);
6c2934db 3807 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3808 l = 2;
3809 } else {
1c213d19 3810 /* 8 bit write access */
c27004ec 3811 val = ldub_p(buf);
6c2934db 3812 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3813 l = 1;
3814 }
3815 } else {
b448f2f3
FB
3816 unsigned long addr1;
3817 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3818 /* RAM case */
5579c7f3 3819 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3820 memcpy(ptr, buf, l);
3a7d929e
FB
3821 if (!cpu_physical_memory_is_dirty(addr1)) {
3822 /* invalidate code */
3823 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3824 /* set dirty bit */
f7c11b53
YT
3825 cpu_physical_memory_set_dirty_flags(
3826 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3827 }
13eb76e0
FB
3828 }
3829 } else {
5fafdf24 3830 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3831 !(pd & IO_MEM_ROMD)) {
c227f099 3832 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3833 /* I/O case */
3834 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3835 if (p)
6c2934db
AJ
3836 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3837 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3838 /* 32 bit read access */
6c2934db 3839 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3840 stl_p(buf, val);
13eb76e0 3841 l = 4;
6c2934db 3842 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3843 /* 16 bit read access */
6c2934db 3844 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3845 stw_p(buf, val);
13eb76e0
FB
3846 l = 2;
3847 } else {
1c213d19 3848 /* 8 bit read access */
6c2934db 3849 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3850 stb_p(buf, val);
13eb76e0
FB
3851 l = 1;
3852 }
3853 } else {
3854 /* RAM case */
5579c7f3 3855 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3856 (addr & ~TARGET_PAGE_MASK);
3857 memcpy(buf, ptr, l);
3858 }
3859 }
3860 len -= l;
3861 buf += l;
3862 addr += l;
3863 }
3864}
8df1cd07 3865
d0ecd2aa 3866/* used for ROM loading : can write in RAM and ROM */
c227f099 3867void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3868 const uint8_t *buf, int len)
3869{
3870 int l;
3871 uint8_t *ptr;
c227f099 3872 target_phys_addr_t page;
d0ecd2aa
FB
3873 unsigned long pd;
3874 PhysPageDesc *p;
3b46e624 3875
d0ecd2aa
FB
3876 while (len > 0) {
3877 page = addr & TARGET_PAGE_MASK;
3878 l = (page + TARGET_PAGE_SIZE) - addr;
3879 if (l > len)
3880 l = len;
3881 p = phys_page_find(page >> TARGET_PAGE_BITS);
3882 if (!p) {
3883 pd = IO_MEM_UNASSIGNED;
3884 } else {
3885 pd = p->phys_offset;
3886 }
3b46e624 3887
d0ecd2aa 3888 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3889 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3890 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3891 /* do nothing */
3892 } else {
3893 unsigned long addr1;
3894 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3895 /* ROM/RAM case */
5579c7f3 3896 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3897 memcpy(ptr, buf, l);
3898 }
3899 len -= l;
3900 buf += l;
3901 addr += l;
3902 }
3903}
3904
6d16c2f8
AL
3905typedef struct {
3906 void *buffer;
c227f099
AL
3907 target_phys_addr_t addr;
3908 target_phys_addr_t len;
6d16c2f8
AL
3909} BounceBuffer;
3910
3911static BounceBuffer bounce;
3912
ba223c29
AL
3913typedef struct MapClient {
3914 void *opaque;
3915 void (*callback)(void *opaque);
72cf2d4f 3916 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3917} MapClient;
3918
72cf2d4f
BS
3919static QLIST_HEAD(map_client_list, MapClient) map_client_list
3920 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3921
3922void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3923{
3924 MapClient *client = qemu_malloc(sizeof(*client));
3925
3926 client->opaque = opaque;
3927 client->callback = callback;
72cf2d4f 3928 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3929 return client;
3930}
3931
3932void cpu_unregister_map_client(void *_client)
3933{
3934 MapClient *client = (MapClient *)_client;
3935
72cf2d4f 3936 QLIST_REMOVE(client, link);
34d5e948 3937 qemu_free(client);
ba223c29
AL
3938}
3939
3940static void cpu_notify_map_clients(void)
3941{
3942 MapClient *client;
3943
72cf2d4f
BS
3944 while (!QLIST_EMPTY(&map_client_list)) {
3945 client = QLIST_FIRST(&map_client_list);
ba223c29 3946 client->callback(client->opaque);
34d5e948 3947 cpu_unregister_map_client(client);
ba223c29
AL
3948 }
3949}
3950
6d16c2f8
AL
3951/* Map a physical memory region into a host virtual address.
3952 * May map a subset of the requested range, given by and returned in *plen.
3953 * May return NULL if resources needed to perform the mapping are exhausted.
3954 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3955 * Use cpu_register_map_client() to know when retrying the map operation is
3956 * likely to succeed.
6d16c2f8 3957 */
c227f099
AL
3958void *cpu_physical_memory_map(target_phys_addr_t addr,
3959 target_phys_addr_t *plen,
6d16c2f8
AL
3960 int is_write)
3961{
c227f099
AL
3962 target_phys_addr_t len = *plen;
3963 target_phys_addr_t done = 0;
6d16c2f8
AL
3964 int l;
3965 uint8_t *ret = NULL;
3966 uint8_t *ptr;
c227f099 3967 target_phys_addr_t page;
6d16c2f8
AL
3968 unsigned long pd;
3969 PhysPageDesc *p;
3970 unsigned long addr1;
3971
3972 while (len > 0) {
3973 page = addr & TARGET_PAGE_MASK;
3974 l = (page + TARGET_PAGE_SIZE) - addr;
3975 if (l > len)
3976 l = len;
3977 p = phys_page_find(page >> TARGET_PAGE_BITS);
3978 if (!p) {
3979 pd = IO_MEM_UNASSIGNED;
3980 } else {
3981 pd = p->phys_offset;
3982 }
3983
3984 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3985 if (done || bounce.buffer) {
3986 break;
3987 }
3988 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3989 bounce.addr = addr;
3990 bounce.len = l;
3991 if (!is_write) {
54f7b4a3 3992 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8
AL
3993 }
3994 ptr = bounce.buffer;
3995 } else {
3996 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3997 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3998 }
3999 if (!done) {
4000 ret = ptr;
4001 } else if (ret + done != ptr) {
4002 break;
4003 }
4004
4005 len -= l;
4006 addr += l;
4007 done += l;
4008 }
4009 *plen = done;
4010 return ret;
4011}
4012
4013/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4014 * Will also mark the memory as dirty if is_write == 1. access_len gives
4015 * the amount of memory that was actually read or written by the caller.
4016 */
c227f099
AL
4017void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4018 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
4019{
4020 if (buffer != bounce.buffer) {
4021 if (is_write) {
e890261f 4022 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
4023 while (access_len) {
4024 unsigned l;
4025 l = TARGET_PAGE_SIZE;
4026 if (l > access_len)
4027 l = access_len;
4028 if (!cpu_physical_memory_is_dirty(addr1)) {
4029 /* invalidate code */
4030 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4031 /* set dirty bit */
f7c11b53
YT
4032 cpu_physical_memory_set_dirty_flags(
4033 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
4034 }
4035 addr1 += l;
4036 access_len -= l;
4037 }
4038 }
4039 return;
4040 }
4041 if (is_write) {
4042 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4043 }
f8a83245 4044 qemu_vfree(bounce.buffer);
6d16c2f8 4045 bounce.buffer = NULL;
ba223c29 4046 cpu_notify_map_clients();
6d16c2f8 4047}
d0ecd2aa 4048
8df1cd07 4049/* warning: addr must be aligned */
c227f099 4050uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
4051{
4052 int io_index;
4053 uint8_t *ptr;
4054 uint32_t val;
4055 unsigned long pd;
4056 PhysPageDesc *p;
4057
4058 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4059 if (!p) {
4060 pd = IO_MEM_UNASSIGNED;
4061 } else {
4062 pd = p->phys_offset;
4063 }
3b46e624 4064
5fafdf24 4065 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 4066 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
4067 /* I/O case */
4068 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4069 if (p)
4070 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4071 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4072 } else {
4073 /* RAM case */
5579c7f3 4074 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
4075 (addr & ~TARGET_PAGE_MASK);
4076 val = ldl_p(ptr);
4077 }
4078 return val;
4079}
4080
84b7b8e7 4081/* warning: addr must be aligned */
c227f099 4082uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
4083{
4084 int io_index;
4085 uint8_t *ptr;
4086 uint64_t val;
4087 unsigned long pd;
4088 PhysPageDesc *p;
4089
4090 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4091 if (!p) {
4092 pd = IO_MEM_UNASSIGNED;
4093 } else {
4094 pd = p->phys_offset;
4095 }
3b46e624 4096
2a4188a3
FB
4097 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4098 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
4099 /* I/O case */
4100 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4101 if (p)
4102 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
4103#ifdef TARGET_WORDS_BIGENDIAN
4104 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4105 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4106#else
4107 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4108 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4109#endif
4110 } else {
4111 /* RAM case */
5579c7f3 4112 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
4113 (addr & ~TARGET_PAGE_MASK);
4114 val = ldq_p(ptr);
4115 }
4116 return val;
4117}
4118
aab33094 4119/* XXX: optimize */
c227f099 4120uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
4121{
4122 uint8_t val;
4123 cpu_physical_memory_read(addr, &val, 1);
4124 return val;
4125}
4126
733f0b02 4127/* warning: addr must be aligned */
c227f099 4128uint32_t lduw_phys(target_phys_addr_t addr)
aab33094 4129{
733f0b02
MT
4130 int io_index;
4131 uint8_t *ptr;
4132 uint64_t val;
4133 unsigned long pd;
4134 PhysPageDesc *p;
4135
4136 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4137 if (!p) {
4138 pd = IO_MEM_UNASSIGNED;
4139 } else {
4140 pd = p->phys_offset;
4141 }
4142
4143 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4144 !(pd & IO_MEM_ROMD)) {
4145 /* I/O case */
4146 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4147 if (p)
4148 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4149 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4150 } else {
4151 /* RAM case */
4152 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4153 (addr & ~TARGET_PAGE_MASK);
4154 val = lduw_p(ptr);
4155 }
4156 return val;
aab33094
FB
4157}
4158
8df1cd07
FB
4159/* warning: addr must be aligned. The ram page is not masked as dirty
4160 and the code inside is not invalidated. It is useful if the dirty
4161 bits are used to track modified PTEs */
c227f099 4162void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4163{
4164 int io_index;
4165 uint8_t *ptr;
4166 unsigned long pd;
4167 PhysPageDesc *p;
4168
4169 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4170 if (!p) {
4171 pd = IO_MEM_UNASSIGNED;
4172 } else {
4173 pd = p->phys_offset;
4174 }
3b46e624 4175
3a7d929e 4176 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4177 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4178 if (p)
4179 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4180 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4181 } else {
74576198 4182 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 4183 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4184 stl_p(ptr, val);
74576198
AL
4185
4186 if (unlikely(in_migration)) {
4187 if (!cpu_physical_memory_is_dirty(addr1)) {
4188 /* invalidate code */
4189 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4190 /* set dirty bit */
f7c11b53
YT
4191 cpu_physical_memory_set_dirty_flags(
4192 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
4193 }
4194 }
8df1cd07
FB
4195 }
4196}
4197
c227f099 4198void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
4199{
4200 int io_index;
4201 uint8_t *ptr;
4202 unsigned long pd;
4203 PhysPageDesc *p;
4204
4205 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4206 if (!p) {
4207 pd = IO_MEM_UNASSIGNED;
4208 } else {
4209 pd = p->phys_offset;
4210 }
3b46e624 4211
bc98a7ef
JM
4212 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4213 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4214 if (p)
4215 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
4216#ifdef TARGET_WORDS_BIGENDIAN
4217 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4218 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4219#else
4220 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4221 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4222#endif
4223 } else {
5579c7f3 4224 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
4225 (addr & ~TARGET_PAGE_MASK);
4226 stq_p(ptr, val);
4227 }
4228}
4229
8df1cd07 4230/* warning: addr must be aligned */
c227f099 4231void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
4232{
4233 int io_index;
4234 uint8_t *ptr;
4235 unsigned long pd;
4236 PhysPageDesc *p;
4237
4238 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4239 if (!p) {
4240 pd = IO_MEM_UNASSIGNED;
4241 } else {
4242 pd = p->phys_offset;
4243 }
3b46e624 4244
3a7d929e 4245 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 4246 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
4247 if (p)
4248 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
4249 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4250 } else {
4251 unsigned long addr1;
4252 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4253 /* RAM case */
5579c7f3 4254 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 4255 stl_p(ptr, val);
3a7d929e
FB
4256 if (!cpu_physical_memory_is_dirty(addr1)) {
4257 /* invalidate code */
4258 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4259 /* set dirty bit */
f7c11b53
YT
4260 cpu_physical_memory_set_dirty_flags(addr1,
4261 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 4262 }
8df1cd07
FB
4263 }
4264}
4265
aab33094 4266/* XXX: optimize */
c227f099 4267void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
4268{
4269 uint8_t v = val;
4270 cpu_physical_memory_write(addr, &v, 1);
4271}
4272
733f0b02 4273/* warning: addr must be aligned */
c227f099 4274void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094 4275{
733f0b02
MT
4276 int io_index;
4277 uint8_t *ptr;
4278 unsigned long pd;
4279 PhysPageDesc *p;
4280
4281 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4282 if (!p) {
4283 pd = IO_MEM_UNASSIGNED;
4284 } else {
4285 pd = p->phys_offset;
4286 }
4287
4288 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4289 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4290 if (p)
4291 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4292 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4293 } else {
4294 unsigned long addr1;
4295 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4296 /* RAM case */
4297 ptr = qemu_get_ram_ptr(addr1);
4298 stw_p(ptr, val);
4299 if (!cpu_physical_memory_is_dirty(addr1)) {
4300 /* invalidate code */
4301 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4302 /* set dirty bit */
4303 cpu_physical_memory_set_dirty_flags(addr1,
4304 (0xff & ~CODE_DIRTY_FLAG));
4305 }
4306 }
aab33094
FB
4307}
4308
4309/* XXX: optimize */
c227f099 4310void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4311{
4312 val = tswap64(val);
71d2b725 4313 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4314}
4315
5e2972fd 4316/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 4317int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 4318 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4319{
4320 int l;
c227f099 4321 target_phys_addr_t phys_addr;
9b3c35e0 4322 target_ulong page;
13eb76e0
FB
4323
4324 while (len > 0) {
4325 page = addr & TARGET_PAGE_MASK;
4326 phys_addr = cpu_get_phys_page_debug(env, page);
4327 /* if no physical page mapped, return an error */
4328 if (phys_addr == -1)
4329 return -1;
4330 l = (page + TARGET_PAGE_SIZE) - addr;
4331 if (l > len)
4332 l = len;
5e2972fd 4333 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4334 if (is_write)
4335 cpu_physical_memory_write_rom(phys_addr, buf, l);
4336 else
5e2972fd 4337 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4338 len -= l;
4339 buf += l;
4340 addr += l;
4341 }
4342 return 0;
4343}
a68fe89c 4344#endif
13eb76e0 4345
2e70f6ef
PB
4346/* in deterministic execution mode, instructions doing device I/Os
4347 must be at the end of the TB */
4348void cpu_io_recompile(CPUState *env, void *retaddr)
4349{
4350 TranslationBlock *tb;
4351 uint32_t n, cflags;
4352 target_ulong pc, cs_base;
4353 uint64_t flags;
4354
4355 tb = tb_find_pc((unsigned long)retaddr);
4356 if (!tb) {
4357 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4358 retaddr);
4359 }
4360 n = env->icount_decr.u16.low + tb->icount;
618ba8e6 4361 cpu_restore_state(tb, env, (unsigned long)retaddr);
2e70f6ef 4362 /* Calculate how many instructions had been executed before the fault
bf20dc07 4363 occurred. */
2e70f6ef
PB
4364 n = n - env->icount_decr.u16.low;
4365 /* Generate a new TB ending on the I/O insn. */
4366 n++;
4367 /* On MIPS and SH, delay slot instructions can only be restarted if
4368 they were already the first instruction in the TB. If this is not
bf20dc07 4369 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4370 branch. */
4371#if defined(TARGET_MIPS)
4372 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4373 env->active_tc.PC -= 4;
4374 env->icount_decr.u16.low++;
4375 env->hflags &= ~MIPS_HFLAG_BMASK;
4376 }
4377#elif defined(TARGET_SH4)
4378 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4379 && n > 1) {
4380 env->pc -= 2;
4381 env->icount_decr.u16.low++;
4382 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4383 }
4384#endif
4385 /* This should never happen. */
4386 if (n > CF_COUNT_MASK)
4387 cpu_abort(env, "TB too big during recompile");
4388
4389 cflags = n | CF_LAST_IO;
4390 pc = tb->pc;
4391 cs_base = tb->cs_base;
4392 flags = tb->flags;
4393 tb_phys_invalidate(tb, -1);
4394 /* FIXME: In theory this could raise an exception. In practice
4395 we have already translated the block once so it's probably ok. */
4396 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4397 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4398 the first in the TB) then we end up generating a whole new TB and
4399 repeating the fault, which is horribly inefficient.
4400 Better would be to execute just this insn uncached, or generate a
4401 second new TB. */
4402 cpu_resume_from_signal(env, NULL);
4403}
4404
b3755a91
PB
4405#if !defined(CONFIG_USER_ONLY)
4406
055403b2 4407void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4408{
4409 int i, target_code_size, max_target_code_size;
4410 int direct_jmp_count, direct_jmp2_count, cross_page;
4411 TranslationBlock *tb;
3b46e624 4412
e3db7226
FB
4413 target_code_size = 0;
4414 max_target_code_size = 0;
4415 cross_page = 0;
4416 direct_jmp_count = 0;
4417 direct_jmp2_count = 0;
4418 for(i = 0; i < nb_tbs; i++) {
4419 tb = &tbs[i];
4420 target_code_size += tb->size;
4421 if (tb->size > max_target_code_size)
4422 max_target_code_size = tb->size;
4423 if (tb->page_addr[1] != -1)
4424 cross_page++;
4425 if (tb->tb_next_offset[0] != 0xffff) {
4426 direct_jmp_count++;
4427 if (tb->tb_next_offset[1] != 0xffff) {
4428 direct_jmp2_count++;
4429 }
4430 }
4431 }
4432 /* XXX: avoid using doubles ? */
57fec1fe 4433 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4434 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4435 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4436 cpu_fprintf(f, "TB count %d/%d\n",
4437 nb_tbs, code_gen_max_blocks);
5fafdf24 4438 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4439 nb_tbs ? target_code_size / nb_tbs : 0,
4440 max_target_code_size);
055403b2 4441 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4442 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4443 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4444 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4445 cross_page,
e3db7226
FB
4446 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4447 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4448 direct_jmp_count,
e3db7226
FB
4449 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4450 direct_jmp2_count,
4451 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4452 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4453 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4454 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4455 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4456 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4457}
4458
61382a50
FB
4459#define MMUSUFFIX _cmmu
4460#define GETPC() NULL
4461#define env cpu_single_env
b769d8fe 4462#define SOFTMMU_CODE_ACCESS
61382a50
FB
4463
4464#define SHIFT 0
4465#include "softmmu_template.h"
4466
4467#define SHIFT 1
4468#include "softmmu_template.h"
4469
4470#define SHIFT 2
4471#include "softmmu_template.h"
4472
4473#define SHIFT 3
4474#include "softmmu_template.h"
4475
4476#undef env
4477
4478#endif