]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - include/linux/sched.h
sched/headers: Prepare to remove the <linux/gfp.h> include from <linux/sched.h>
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
1da177e4
LT
32
33#include <linux/smp.h>
34#include <linux/sem.h>
ab602f79 35#include <linux/shm.h>
1da177e4 36#include <linux/signal.h>
1da177e4
LT
37#include <linux/compiler.h>
38#include <linux/completion.h>
39#include <linux/pid.h>
40#include <linux/percpu.h>
41#include <linux/topology.h>
42#include <linux/seccomp.h>
e56d0903 43#include <linux/rcupdate.h>
05725f7e 44#include <linux/rculist.h>
23f78d4a 45#include <linux/rtmutex.h>
1da177e4 46
a3b6714e
DW
47#include <linux/time.h>
48#include <linux/param.h>
49#include <linux/resource.h>
50#include <linux/timer.h>
51#include <linux/hrtimer.h>
5c9a8750 52#include <linux/kcov.h>
7c3ab738 53#include <linux/task_io_accounting.h>
9745512c 54#include <linux/latencytop.h>
9e2b2dc4 55#include <linux/cred.h>
fa14ff4a 56#include <linux/llist.h>
7b44ab97 57#include <linux/uidgid.h>
21caf2fc 58#include <linux/gfp.h>
fd771233 59#include <linux/topology.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
1da177e4
LT
138/*
139 * These are the constant used to fake the fixed-point load-average
140 * counting. Some notes:
141 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
142 * a load-average precision of 10 bits integer + 11 bits fractional
143 * - if you want to count load-averages more often, you need more
144 * precision, or rounding will get you. With 2-second counting freq,
145 * the EXP_n values would be 1981, 2034 and 2043 if still using only
146 * 11 bit fractions.
147 */
148extern unsigned long avenrun[]; /* Load averages */
2d02494f 149extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
150
151#define FSHIFT 11 /* nr of bits of precision */
152#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 153#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
154#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
155#define EXP_5 2014 /* 1/exp(5sec/5min) */
156#define EXP_15 2037 /* 1/exp(5sec/15min) */
157
158#define CALC_LOAD(load,exp,n) \
159 load *= exp; \
160 load += n*(FIXED_1-exp); \
161 load >>= FSHIFT;
162
163extern unsigned long total_forks;
164extern int nr_threads;
1da177e4
LT
165DECLARE_PER_CPU(unsigned long, process_counts);
166extern int nr_processes(void);
167extern unsigned long nr_running(void);
2ee507c4 168extern bool single_task_running(void);
1da177e4 169extern unsigned long nr_iowait(void);
8c215bd3 170extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 171extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 172
0f004f5a 173extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
174
175#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
176extern void cpu_load_update_nohz_start(void);
177extern void cpu_load_update_nohz_stop(void);
3289bdb4 178#else
1f41906a
FW
179static inline void cpu_load_update_nohz_start(void) { }
180static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 181#endif
1da177e4 182
b637a328
PM
183extern void dump_cpu_task(int cpu);
184
43ae34cb
IM
185struct seq_file;
186struct cfs_rq;
4cf86d77 187struct task_group;
43ae34cb
IM
188#ifdef CONFIG_SCHED_DEBUG
189extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
190extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 191#endif
1da177e4 192
4a8342d2
LT
193/*
194 * Task state bitmask. NOTE! These bits are also
195 * encoded in fs/proc/array.c: get_task_state().
196 *
197 * We have two separate sets of flags: task->state
198 * is about runnability, while task->exit_state are
199 * about the task exiting. Confusing, but this way
200 * modifying one set can't modify the other one by
201 * mistake.
202 */
1da177e4
LT
203#define TASK_RUNNING 0
204#define TASK_INTERRUPTIBLE 1
205#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
206#define __TASK_STOPPED 4
207#define __TASK_TRACED 8
4a8342d2 208/* in tsk->exit_state */
ad86622b
ON
209#define EXIT_DEAD 16
210#define EXIT_ZOMBIE 32
abd50b39 211#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 212/* in tsk->state again */
af927232 213#define TASK_DEAD 64
f021a3c2 214#define TASK_WAKEKILL 128
e9c84311 215#define TASK_WAKING 256
f2530dc7 216#define TASK_PARKED 512
80ed87c8 217#define TASK_NOLOAD 1024
7dc603c9
PZ
218#define TASK_NEW 2048
219#define TASK_STATE_MAX 4096
f021a3c2 220
7dc603c9 221#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
73342151 222
642fa448 223/* Convenience macros for the sake of set_current_state */
f021a3c2
MW
224#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
225#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
226#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 227
80ed87c8
PZ
228#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
229
92a1f4bc
MW
230/* Convenience macros for the sake of wake_up */
231#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 232#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
233
234/* get_task_state() */
235#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 236 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 237 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 238
f021a3c2
MW
239#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
240#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 241#define task_is_stopped_or_traced(task) \
f021a3c2 242 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 243#define task_contributes_to_load(task) \
e3c8ca83 244 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
245 (task->flags & PF_FROZEN) == 0 && \
246 (task->state & TASK_NOLOAD) == 0)
1da177e4 247
8eb23b9f
PZ
248#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
249
8eb23b9f
PZ
250#define __set_current_state(state_value) \
251 do { \
252 current->task_state_change = _THIS_IP_; \
253 current->state = (state_value); \
254 } while (0)
255#define set_current_state(state_value) \
256 do { \
257 current->task_state_change = _THIS_IP_; \
a2250238 258 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
259 } while (0)
260
261#else
498d0c57
AM
262/*
263 * set_current_state() includes a barrier so that the write of current->state
264 * is correctly serialised wrt the caller's subsequent test of whether to
265 * actually sleep:
266 *
a2250238 267 * for (;;) {
498d0c57 268 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
269 * if (!need_sleep)
270 * break;
271 *
272 * schedule();
273 * }
274 * __set_current_state(TASK_RUNNING);
275 *
276 * If the caller does not need such serialisation (because, for instance, the
277 * condition test and condition change and wakeup are under the same lock) then
278 * use __set_current_state().
279 *
280 * The above is typically ordered against the wakeup, which does:
281 *
282 * need_sleep = false;
283 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
284 *
285 * Where wake_up_state() (and all other wakeup primitives) imply enough
286 * barriers to order the store of the variable against wakeup.
287 *
288 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
289 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
290 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 291 *
a2250238 292 * This is obviously fine, since they both store the exact same value.
498d0c57 293 *
a2250238 294 * Also see the comments of try_to_wake_up().
498d0c57 295 */
8eb23b9f 296#define __set_current_state(state_value) \
1da177e4 297 do { current->state = (state_value); } while (0)
8eb23b9f 298#define set_current_state(state_value) \
b92b8b35 299 smp_store_mb(current->state, (state_value))
1da177e4 300
8eb23b9f
PZ
301#endif
302
1da177e4
LT
303/* Task command name length */
304#define TASK_COMM_LEN 16
305
1da177e4
LT
306#include <linux/spinlock.h>
307
308/*
309 * This serializes "schedule()" and also protects
310 * the run-queue from deletions/modifications (but
311 * _adding_ to the beginning of the run-queue has
312 * a separate lock).
313 */
314extern rwlock_t tasklist_lock;
315extern spinlock_t mmlist_lock;
316
36c8b586 317struct task_struct;
1da177e4 318
db1466b3
PM
319#ifdef CONFIG_PROVE_RCU
320extern int lockdep_tasklist_lock_is_held(void);
321#endif /* #ifdef CONFIG_PROVE_RCU */
322
1da177e4
LT
323extern void sched_init(void);
324extern void sched_init_smp(void);
2d07b255 325extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 326extern void init_idle(struct task_struct *idle, int cpu);
1df21055 327extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 328
3fa0818b
RR
329extern cpumask_var_t cpu_isolated_map;
330
89f19f04 331extern int runqueue_is_locked(int cpu);
017730c1 332
3451d024 333#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 334extern void nohz_balance_enter_idle(int cpu);
69e1e811 335extern void set_cpu_sd_state_idle(void);
bc7a34b8 336extern int get_nohz_timer_target(void);
46cb4b7c 337#else
c1cc017c 338static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 339static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 340#endif
1da177e4 341
e59e2ae2 342/*
39bc89fd 343 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
344 */
345extern void show_state_filter(unsigned long state_filter);
346
347static inline void show_state(void)
348{
39bc89fd 349 show_state_filter(0);
e59e2ae2
IM
350}
351
1da177e4
LT
352extern void show_regs(struct pt_regs *);
353
354/*
355 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
356 * task), SP is the stack pointer of the first frame that should be shown in the back
357 * trace (or NULL if the entire call-chain of the task should be shown).
358 */
359extern void show_stack(struct task_struct *task, unsigned long *sp);
360
1da177e4
LT
361extern void cpu_init (void);
362extern void trap_init(void);
363extern void update_process_times(int user);
364extern void scheduler_tick(void);
9cf7243d 365extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
366extern int sched_cpu_activate(unsigned int cpu);
367extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 368
f2785ddb
TG
369#ifdef CONFIG_HOTPLUG_CPU
370extern int sched_cpu_dying(unsigned int cpu);
371#else
372# define sched_cpu_dying NULL
373#endif
1da177e4 374
82a1fcb9
IM
375extern void sched_show_task(struct task_struct *p);
376
19cc36c0 377#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 378extern void touch_softlockup_watchdog_sched(void);
8446f1d3 379extern void touch_softlockup_watchdog(void);
d6ad3e28 380extern void touch_softlockup_watchdog_sync(void);
04c9167f 381extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
382extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
383 void __user *buffer,
384 size_t *lenp, loff_t *ppos);
9c44bc03 385extern unsigned int softlockup_panic;
ac1f5912 386extern unsigned int hardlockup_panic;
004417a6 387void lockup_detector_init(void);
8446f1d3 388#else
03e0d461
TH
389static inline void touch_softlockup_watchdog_sched(void)
390{
391}
8446f1d3
IM
392static inline void touch_softlockup_watchdog(void)
393{
394}
d6ad3e28
JW
395static inline void touch_softlockup_watchdog_sync(void)
396{
397}
04c9167f
JF
398static inline void touch_all_softlockup_watchdogs(void)
399{
400}
004417a6
PZ
401static inline void lockup_detector_init(void)
402{
403}
8446f1d3
IM
404#endif
405
8b414521
MT
406#ifdef CONFIG_DETECT_HUNG_TASK
407void reset_hung_task_detector(void);
408#else
409static inline void reset_hung_task_detector(void)
410{
411}
412#endif
413
1da177e4
LT
414/* Attach to any functions which should be ignored in wchan output. */
415#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
416
417/* Linker adds these: start and end of __sched functions */
418extern char __sched_text_start[], __sched_text_end[];
419
1da177e4
LT
420/* Is this address in the __sched functions? */
421extern int in_sched_functions(unsigned long addr);
422
423#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 424extern signed long schedule_timeout(signed long timeout);
64ed93a2 425extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 426extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 427extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 428extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 429asmlinkage void schedule(void);
c5491ea7 430extern void schedule_preempt_disabled(void);
1da177e4 431
10ab5643
TH
432extern int __must_check io_schedule_prepare(void);
433extern void io_schedule_finish(int token);
9cff8ade 434extern long io_schedule_timeout(long timeout);
10ab5643 435extern void io_schedule(void);
9cff8ade 436
9af6528e
PZ
437void __noreturn do_task_dead(void);
438
ab516013 439struct nsproxy;
acce292c 440struct user_namespace;
1da177e4 441
efc1a3b1
DH
442#ifdef CONFIG_MMU
443extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
444extern unsigned long
445arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
446 unsigned long, unsigned long);
447extern unsigned long
448arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
449 unsigned long len, unsigned long pgoff,
450 unsigned long flags);
efc1a3b1
DH
451#else
452static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
453#endif
1da177e4 454
d049f74f
KC
455#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
456#define SUID_DUMP_USER 1 /* Dump as user of process */
457#define SUID_DUMP_ROOT 2 /* Dump as root */
458
6c5d5238 459/* mm flags */
f8af4da3 460
7288e118 461/* for SUID_DUMP_* above */
3cb4a0bb 462#define MMF_DUMPABLE_BITS 2
f8af4da3 463#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 464
942be387
ON
465extern void set_dumpable(struct mm_struct *mm, int value);
466/*
467 * This returns the actual value of the suid_dumpable flag. For things
468 * that are using this for checking for privilege transitions, it must
469 * test against SUID_DUMP_USER rather than treating it as a boolean
470 * value.
471 */
472static inline int __get_dumpable(unsigned long mm_flags)
473{
474 return mm_flags & MMF_DUMPABLE_MASK;
475}
476
477static inline int get_dumpable(struct mm_struct *mm)
478{
479 return __get_dumpable(mm->flags);
480}
481
3cb4a0bb
KH
482/* coredump filter bits */
483#define MMF_DUMP_ANON_PRIVATE 2
484#define MMF_DUMP_ANON_SHARED 3
485#define MMF_DUMP_MAPPED_PRIVATE 4
486#define MMF_DUMP_MAPPED_SHARED 5
82df3973 487#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
488#define MMF_DUMP_HUGETLB_PRIVATE 7
489#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
490#define MMF_DUMP_DAX_PRIVATE 9
491#define MMF_DUMP_DAX_SHARED 10
f8af4da3 492
3cb4a0bb 493#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 494#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
495#define MMF_DUMP_FILTER_MASK \
496 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
497#define MMF_DUMP_FILTER_DEFAULT \
e575f111 498 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
499 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
500
501#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
502# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
503#else
504# define MMF_DUMP_MASK_DEFAULT_ELF 0
505#endif
f8af4da3
HD
506 /* leave room for more dump flags */
507#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 508#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
3fb4afd9
SK
509/*
510 * This one-shot flag is dropped due to necessity of changing exe once again
511 * on NFS restore
512 */
513//#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 514
9f68f672
ON
515#define MMF_HAS_UPROBES 19 /* has uprobes */
516#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
862e3073 517#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
3f70dc38 518#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
6fcb52a5 519#define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
f8ac4ec9 520
f8af4da3 521#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 522
1da177e4
LT
523struct sighand_struct {
524 atomic_t count;
525 struct k_sigaction action[_NSIG];
526 spinlock_t siglock;
b8fceee1 527 wait_queue_head_t signalfd_wqh;
1da177e4
LT
528};
529
0e464814 530struct pacct_struct {
f6ec29a4
KK
531 int ac_flag;
532 long ac_exitcode;
0e464814 533 unsigned long ac_mem;
d4bc42af 534 u64 ac_utime, ac_stime;
77787bfb 535 unsigned long ac_minflt, ac_majflt;
0e464814
KK
536};
537
42c4ab41 538struct cpu_itimer {
858cf3a8
FW
539 u64 expires;
540 u64 incr;
42c4ab41
SG
541};
542
d37f761d 543/**
9d7fb042 544 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
545 * @utime: time spent in user mode
546 * @stime: time spent in system mode
9d7fb042 547 * @lock: protects the above two fields
d37f761d 548 *
9d7fb042
PZ
549 * Stores previous user/system time values such that we can guarantee
550 * monotonicity.
d37f761d 551 */
9d7fb042
PZ
552struct prev_cputime {
553#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5613fda9
FW
554 u64 utime;
555 u64 stime;
9d7fb042
PZ
556 raw_spinlock_t lock;
557#endif
d37f761d
FW
558};
559
9d7fb042
PZ
560static inline void prev_cputime_init(struct prev_cputime *prev)
561{
562#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
563 prev->utime = prev->stime = 0;
564 raw_spin_lock_init(&prev->lock);
565#endif
566}
567
f06febc9
FM
568/**
569 * struct task_cputime - collected CPU time counts
5613fda9
FW
570 * @utime: time spent in user mode, in nanoseconds
571 * @stime: time spent in kernel mode, in nanoseconds
f06febc9 572 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 573 *
9d7fb042
PZ
574 * This structure groups together three kinds of CPU time that are tracked for
575 * threads and thread groups. Most things considering CPU time want to group
576 * these counts together and treat all three of them in parallel.
f06febc9
FM
577 */
578struct task_cputime {
5613fda9
FW
579 u64 utime;
580 u64 stime;
f06febc9
FM
581 unsigned long long sum_exec_runtime;
582};
9d7fb042 583
f06febc9 584/* Alternate field names when used to cache expirations. */
f06febc9 585#define virt_exp utime
9d7fb042 586#define prof_exp stime
f06febc9
FM
587#define sched_exp sum_exec_runtime
588
971e8a98
JL
589/*
590 * This is the atomic variant of task_cputime, which can be used for
591 * storing and updating task_cputime statistics without locking.
592 */
593struct task_cputime_atomic {
594 atomic64_t utime;
595 atomic64_t stime;
596 atomic64_t sum_exec_runtime;
597};
598
599#define INIT_CPUTIME_ATOMIC \
600 (struct task_cputime_atomic) { \
601 .utime = ATOMIC64_INIT(0), \
602 .stime = ATOMIC64_INIT(0), \
603 .sum_exec_runtime = ATOMIC64_INIT(0), \
604 }
605
609ca066 606#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 607
c99e6efe 608/*
87dcbc06
PZ
609 * Disable preemption until the scheduler is running -- use an unconditional
610 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 611 *
87dcbc06 612 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 613 */
87dcbc06 614#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 615
c99e6efe 616/*
609ca066
PZ
617 * Initial preempt_count value; reflects the preempt_count schedule invariant
618 * which states that during context switches:
d86ee480 619 *
609ca066
PZ
620 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
621 *
622 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
623 * Note: See finish_task_switch().
c99e6efe 624 */
609ca066 625#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 626
f06febc9 627/**
4cd4c1b4 628 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 629 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
630 * @running: true when there are timers running and
631 * @cputime_atomic receives updates.
c8d75aa4
JL
632 * @checking_timer: true when a thread in the group is in the
633 * process of checking for thread group timers.
f06febc9
FM
634 *
635 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 636 * used for thread group CPU timer calculations.
f06febc9 637 */
4cd4c1b4 638struct thread_group_cputimer {
71107445 639 struct task_cputime_atomic cputime_atomic;
d5c373eb 640 bool running;
c8d75aa4 641 bool checking_timer;
f06febc9 642};
f06febc9 643
4714d1d3 644#include <linux/rwsem.h>
5091faa4
MG
645struct autogroup;
646
1da177e4 647/*
e815f0a8 648 * NOTE! "signal_struct" does not have its own
1da177e4
LT
649 * locking, because a shared signal_struct always
650 * implies a shared sighand_struct, so locking
651 * sighand_struct is always a proper superset of
652 * the locking of signal_struct.
653 */
654struct signal_struct {
ea6d290c 655 atomic_t sigcnt;
1da177e4 656 atomic_t live;
b3ac022c 657 int nr_threads;
0c740d0a 658 struct list_head thread_head;
1da177e4
LT
659
660 wait_queue_head_t wait_chldexit; /* for wait4() */
661
662 /* current thread group signal load-balancing target: */
36c8b586 663 struct task_struct *curr_target;
1da177e4
LT
664
665 /* shared signal handling: */
666 struct sigpending shared_pending;
667
668 /* thread group exit support */
669 int group_exit_code;
670 /* overloaded:
671 * - notify group_exit_task when ->count is equal to notify_count
672 * - everyone except group_exit_task is stopped during signal delivery
673 * of fatal signals, group_exit_task processes the signal.
674 */
1da177e4 675 int notify_count;
07dd20e0 676 struct task_struct *group_exit_task;
1da177e4
LT
677
678 /* thread group stop support, overloads group_exit_code too */
679 int group_stop_count;
680 unsigned int flags; /* see SIGNAL_* flags below */
681
ebec18a6
LP
682 /*
683 * PR_SET_CHILD_SUBREAPER marks a process, like a service
684 * manager, to re-parent orphan (double-forking) child processes
685 * to this process instead of 'init'. The service manager is
686 * able to receive SIGCHLD signals and is able to investigate
687 * the process until it calls wait(). All children of this
688 * process will inherit a flag if they should look for a
689 * child_subreaper process at exit.
690 */
691 unsigned int is_child_subreaper:1;
692 unsigned int has_child_subreaper:1;
693
b18b6a9c
NP
694#ifdef CONFIG_POSIX_TIMERS
695
1da177e4 696 /* POSIX.1b Interval Timers */
5ed67f05
PE
697 int posix_timer_id;
698 struct list_head posix_timers;
1da177e4
LT
699
700 /* ITIMER_REAL timer for the process */
2ff678b8
TG
701 struct hrtimer real_timer;
702 ktime_t it_real_incr;
1da177e4 703
42c4ab41
SG
704 /*
705 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
706 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
707 * values are defined to 0 and 1 respectively
708 */
709 struct cpu_itimer it[2];
1da177e4 710
f06febc9 711 /*
4cd4c1b4
PZ
712 * Thread group totals for process CPU timers.
713 * See thread_group_cputimer(), et al, for details.
f06febc9 714 */
4cd4c1b4 715 struct thread_group_cputimer cputimer;
f06febc9
FM
716
717 /* Earliest-expiration cache. */
718 struct task_cputime cputime_expires;
719
b18b6a9c
NP
720 struct list_head cpu_timers[3];
721
722#endif
723
724 struct pid *leader_pid;
725
d027d45d 726#ifdef CONFIG_NO_HZ_FULL
f009a7a7 727 atomic_t tick_dep_mask;
d027d45d
FW
728#endif
729
ab521dc0 730 struct pid *tty_old_pgrp;
1ec320af 731
1da177e4
LT
732 /* boolean value for session group leader */
733 int leader;
734
735 struct tty_struct *tty; /* NULL if no tty */
736
5091faa4
MG
737#ifdef CONFIG_SCHED_AUTOGROUP
738 struct autogroup *autogroup;
739#endif
1da177e4
LT
740 /*
741 * Cumulative resource counters for dead threads in the group,
742 * and for reaped dead child processes forked by this group.
743 * Live threads maintain their own counters and add to these
744 * in __exit_signal, except for the group leader.
745 */
e78c3496 746 seqlock_t stats_lock;
5613fda9 747 u64 utime, stime, cutime, cstime;
16a6d9be
FW
748 u64 gtime;
749 u64 cgtime;
9d7fb042 750 struct prev_cputime prev_cputime;
1da177e4
LT
751 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
752 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 753 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 754 unsigned long maxrss, cmaxrss;
940389b8 755 struct task_io_accounting ioac;
1da177e4 756
32bd671d
PZ
757 /*
758 * Cumulative ns of schedule CPU time fo dead threads in the
759 * group, not including a zombie group leader, (This only differs
760 * from jiffies_to_ns(utime + stime) if sched_clock uses something
761 * other than jiffies.)
762 */
763 unsigned long long sum_sched_runtime;
764
1da177e4
LT
765 /*
766 * We don't bother to synchronize most readers of this at all,
767 * because there is no reader checking a limit that actually needs
768 * to get both rlim_cur and rlim_max atomically, and either one
769 * alone is a single word that can safely be read normally.
770 * getrlimit/setrlimit use task_lock(current->group_leader) to
771 * protect this instead of the siglock, because they really
772 * have no need to disable irqs.
773 */
774 struct rlimit rlim[RLIM_NLIMITS];
775
0e464814
KK
776#ifdef CONFIG_BSD_PROCESS_ACCT
777 struct pacct_struct pacct; /* per-process accounting information */
778#endif
ad4ecbcb 779#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
780 struct taskstats *stats;
781#endif
522ed776
MT
782#ifdef CONFIG_AUDIT
783 unsigned audit_tty;
784 struct tty_audit_buf *tty_audit_buf;
785#endif
28b83c51 786
c96fc2d8
TH
787 /*
788 * Thread is the potential origin of an oom condition; kill first on
789 * oom
790 */
791 bool oom_flag_origin;
a9c58b90
DR
792 short oom_score_adj; /* OOM kill score adjustment */
793 short oom_score_adj_min; /* OOM kill score adjustment min value.
794 * Only settable by CAP_SYS_RESOURCE. */
26db62f1
MH
795 struct mm_struct *oom_mm; /* recorded mm when the thread group got
796 * killed by the oom killer */
9b1bf12d
KM
797
798 struct mutex cred_guard_mutex; /* guard against foreign influences on
799 * credential calculations
800 * (notably. ptrace) */
1da177e4
LT
801};
802
803/*
804 * Bits in flags field of signal_struct.
805 */
806#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
807#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
808#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 809#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
810/*
811 * Pending notifications to parent.
812 */
813#define SIGNAL_CLD_STOPPED 0x00000010
814#define SIGNAL_CLD_CONTINUED 0x00000020
815#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 816
fae5fa44
ON
817#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
818
2d39b3cd
JI
819#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
820 SIGNAL_STOP_CONTINUED)
821
822static inline void signal_set_stop_flags(struct signal_struct *sig,
823 unsigned int flags)
824{
825 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
826 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
827}
828
ed5d2cac
ON
829/* If true, all threads except ->group_exit_task have pending SIGKILL */
830static inline int signal_group_exit(const struct signal_struct *sig)
831{
832 return (sig->flags & SIGNAL_GROUP_EXIT) ||
833 (sig->group_exit_task != NULL);
834}
835
1da177e4
LT
836/*
837 * Some day this will be a full-fledged user tracking system..
838 */
839struct user_struct {
840 atomic_t __count; /* reference count */
841 atomic_t processes; /* How many processes does this user have? */
1da177e4 842 atomic_t sigpending; /* How many pending signals does this user have? */
4afeff85
EP
843#ifdef CONFIG_FANOTIFY
844 atomic_t fanotify_listeners;
845#endif
7ef9964e 846#ifdef CONFIG_EPOLL
52bd19f7 847 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 848#endif
970a8645 849#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
850 /* protected by mq_lock */
851 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 852#endif
1da177e4 853 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 854 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 855 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
856
857#ifdef CONFIG_KEYS
858 struct key *uid_keyring; /* UID specific keyring */
859 struct key *session_keyring; /* UID's default session keyring */
860#endif
861
862 /* Hash table maintenance information */
735de223 863 struct hlist_node uidhash_node;
7b44ab97 864 kuid_t uid;
24e377a8 865
aaac3ba9 866#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
867 atomic_long_t locked_vm;
868#endif
1da177e4
LT
869};
870
eb41d946 871extern int uids_sysfs_init(void);
5cb350ba 872
7b44ab97 873extern struct user_struct *find_user(kuid_t);
1da177e4
LT
874
875extern struct user_struct root_user;
876#define INIT_USER (&root_user)
877
b6dff3ec 878
1da177e4
LT
879struct backing_dev_info;
880struct reclaim_state;
881
f6db8347 882#ifdef CONFIG_SCHED_INFO
1da177e4
LT
883struct sched_info {
884 /* cumulative counters */
2d72376b 885 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 886 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
887
888 /* timestamps */
172ba844
BS
889 unsigned long long last_arrival,/* when we last ran on a cpu */
890 last_queued; /* when we were last queued to run */
1da177e4 891};
f6db8347 892#endif /* CONFIG_SCHED_INFO */
1da177e4 893
ca74e92b
SN
894#ifdef CONFIG_TASK_DELAY_ACCT
895struct task_delay_info {
896 spinlock_t lock;
897 unsigned int flags; /* Private per-task flags */
898
899 /* For each stat XXX, add following, aligned appropriately
900 *
901 * struct timespec XXX_start, XXX_end;
902 * u64 XXX_delay;
903 * u32 XXX_count;
904 *
905 * Atomicity of updates to XXX_delay, XXX_count protected by
906 * single lock above (split into XXX_lock if contention is an issue).
907 */
0ff92245
SN
908
909 /*
910 * XXX_count is incremented on every XXX operation, the delay
911 * associated with the operation is added to XXX_delay.
912 * XXX_delay contains the accumulated delay time in nanoseconds.
913 */
9667a23d 914 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
915 u64 blkio_delay; /* wait for sync block io completion */
916 u64 swapin_delay; /* wait for swapin block io completion */
917 u32 blkio_count; /* total count of the number of sync block */
918 /* io operations performed */
919 u32 swapin_count; /* total count of the number of swapin block */
920 /* io operations performed */
873b4771 921
9667a23d 922 u64 freepages_start;
873b4771
KK
923 u64 freepages_delay; /* wait for memory reclaim */
924 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 925};
52f17b6c
CS
926#endif /* CONFIG_TASK_DELAY_ACCT */
927
928static inline int sched_info_on(void)
929{
930#ifdef CONFIG_SCHEDSTATS
931 return 1;
932#elif defined(CONFIG_TASK_DELAY_ACCT)
933 extern int delayacct_on;
934 return delayacct_on;
935#else
936 return 0;
ca74e92b 937#endif
52f17b6c 938}
ca74e92b 939
cb251765
MG
940#ifdef CONFIG_SCHEDSTATS
941void force_schedstat_enabled(void);
942#endif
943
d15bcfdb
IM
944enum cpu_idle_type {
945 CPU_IDLE,
946 CPU_NOT_IDLE,
947 CPU_NEWLY_IDLE,
948 CPU_MAX_IDLE_TYPES
1da177e4
LT
949};
950
6ecdd749
YD
951/*
952 * Integer metrics need fixed point arithmetic, e.g., sched/fair
953 * has a few: load, load_avg, util_avg, freq, and capacity.
954 *
955 * We define a basic fixed point arithmetic range, and then formalize
956 * all these metrics based on that basic range.
957 */
958# define SCHED_FIXEDPOINT_SHIFT 10
959# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
960
1399fa78 961/*
ca8ce3d0 962 * Increase resolution of cpu_capacity calculations
1399fa78 963 */
6ecdd749 964#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 965#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 966
76751049
PZ
967/*
968 * Wake-queues are lists of tasks with a pending wakeup, whose
969 * callers have already marked the task as woken internally,
970 * and can thus carry on. A common use case is being able to
971 * do the wakeups once the corresponding user lock as been
972 * released.
973 *
974 * We hold reference to each task in the list across the wakeup,
975 * thus guaranteeing that the memory is still valid by the time
976 * the actual wakeups are performed in wake_up_q().
977 *
978 * One per task suffices, because there's never a need for a task to be
979 * in two wake queues simultaneously; it is forbidden to abandon a task
980 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
981 * already in a wake queue, the wakeup will happen soon and the second
982 * waker can just skip it.
983 *
194a6b5b 984 * The DEFINE_WAKE_Q macro declares and initializes the list head.
76751049 985 * wake_up_q() does NOT reinitialize the list; it's expected to be
0754445d
DB
986 * called near the end of a function. Otherwise, the list can be
987 * re-initialized for later re-use by wake_q_init().
76751049
PZ
988 *
989 * Note that this can cause spurious wakeups. schedule() callers
990 * must ensure the call is done inside a loop, confirming that the
991 * wakeup condition has in fact occurred.
992 */
993struct wake_q_node {
994 struct wake_q_node *next;
995};
996
997struct wake_q_head {
998 struct wake_q_node *first;
999 struct wake_q_node **lastp;
1000};
1001
1002#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1003
194a6b5b 1004#define DEFINE_WAKE_Q(name) \
76751049
PZ
1005 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1006
bcc9a76d
WL
1007static inline void wake_q_init(struct wake_q_head *head)
1008{
1009 head->first = WAKE_Q_TAIL;
1010 head->lastp = &head->first;
1011}
1012
76751049
PZ
1013extern void wake_q_add(struct wake_q_head *head,
1014 struct task_struct *task);
1015extern void wake_up_q(struct wake_q_head *head);
1016
1399fa78
NR
1017/*
1018 * sched-domains (multiprocessor balancing) declarations:
1019 */
2dd73a4f 1020#ifdef CONFIG_SMP
b5d978e0
PZ
1021#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1022#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1023#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1024#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1025#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1026#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1f6e6c7c 1027#define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
bd425d4b 1028#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
d77b3ed5 1029#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1030#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1031#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1032#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1033#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1034#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1035#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1036
143e1e28 1037#ifdef CONFIG_SCHED_SMT
b6220ad6 1038static inline int cpu_smt_flags(void)
143e1e28 1039{
5d4dfddd 1040 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1041}
1042#endif
1043
1044#ifdef CONFIG_SCHED_MC
b6220ad6 1045static inline int cpu_core_flags(void)
143e1e28
VG
1046{
1047 return SD_SHARE_PKG_RESOURCES;
1048}
1049#endif
1050
1051#ifdef CONFIG_NUMA
b6220ad6 1052static inline int cpu_numa_flags(void)
143e1e28
VG
1053{
1054 return SD_NUMA;
1055}
1056#endif
532cb4c4 1057
afe06efd
TC
1058extern int arch_asym_cpu_priority(int cpu);
1059
1d3504fc
HS
1060struct sched_domain_attr {
1061 int relax_domain_level;
1062};
1063
1064#define SD_ATTR_INIT (struct sched_domain_attr) { \
1065 .relax_domain_level = -1, \
1066}
1067
60495e77
PZ
1068extern int sched_domain_level_max;
1069
5e6521ea
LZ
1070struct sched_group;
1071
24fc7edb
PZ
1072struct sched_domain_shared {
1073 atomic_t ref;
0e369d75 1074 atomic_t nr_busy_cpus;
10e2f1ac 1075 int has_idle_cores;
24fc7edb
PZ
1076};
1077
1da177e4
LT
1078struct sched_domain {
1079 /* These fields must be setup */
1080 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1081 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1082 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1083 unsigned long min_interval; /* Minimum balance interval ms */
1084 unsigned long max_interval; /* Maximum balance interval ms */
1085 unsigned int busy_factor; /* less balancing by factor if busy */
1086 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1087 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1088 unsigned int busy_idx;
1089 unsigned int idle_idx;
1090 unsigned int newidle_idx;
1091 unsigned int wake_idx;
147cbb4b 1092 unsigned int forkexec_idx;
a52bfd73 1093 unsigned int smt_gain;
25f55d9d
VG
1094
1095 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1096 int flags; /* See SD_* */
60495e77 1097 int level;
1da177e4
LT
1098
1099 /* Runtime fields. */
1100 unsigned long last_balance; /* init to jiffies. units in jiffies */
1101 unsigned int balance_interval; /* initialise to 1. units in ms. */
1102 unsigned int nr_balance_failed; /* initialise to 0 */
1103
f48627e6 1104 /* idle_balance() stats */
9bd721c5 1105 u64 max_newidle_lb_cost;
f48627e6 1106 unsigned long next_decay_max_lb_cost;
2398f2c6 1107
10e2f1ac
PZ
1108 u64 avg_scan_cost; /* select_idle_sibling */
1109
1da177e4
LT
1110#ifdef CONFIG_SCHEDSTATS
1111 /* load_balance() stats */
480b9434
KC
1112 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1113 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1114 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1115 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1116 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1117 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1118 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1119 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1120
1121 /* Active load balancing */
480b9434
KC
1122 unsigned int alb_count;
1123 unsigned int alb_failed;
1124 unsigned int alb_pushed;
1da177e4 1125
68767a0a 1126 /* SD_BALANCE_EXEC stats */
480b9434
KC
1127 unsigned int sbe_count;
1128 unsigned int sbe_balanced;
1129 unsigned int sbe_pushed;
1da177e4 1130
68767a0a 1131 /* SD_BALANCE_FORK stats */
480b9434
KC
1132 unsigned int sbf_count;
1133 unsigned int sbf_balanced;
1134 unsigned int sbf_pushed;
68767a0a 1135
1da177e4 1136 /* try_to_wake_up() stats */
480b9434
KC
1137 unsigned int ttwu_wake_remote;
1138 unsigned int ttwu_move_affine;
1139 unsigned int ttwu_move_balance;
1da177e4 1140#endif
a5d8c348
IM
1141#ifdef CONFIG_SCHED_DEBUG
1142 char *name;
1143#endif
dce840a0
PZ
1144 union {
1145 void *private; /* used during construction */
1146 struct rcu_head rcu; /* used during destruction */
1147 };
24fc7edb 1148 struct sched_domain_shared *shared;
6c99e9ad 1149
669c55e9 1150 unsigned int span_weight;
4200efd9
IM
1151 /*
1152 * Span of all CPUs in this domain.
1153 *
1154 * NOTE: this field is variable length. (Allocated dynamically
1155 * by attaching extra space to the end of the structure,
1156 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1157 */
1158 unsigned long span[0];
1da177e4
LT
1159};
1160
758b2cdc
RR
1161static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1162{
6c99e9ad 1163 return to_cpumask(sd->span);
758b2cdc
RR
1164}
1165
acc3f5d7 1166extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1167 struct sched_domain_attr *dattr_new);
029190c5 1168
acc3f5d7
RR
1169/* Allocate an array of sched domains, for partition_sched_domains(). */
1170cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1171void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1172
39be3501
PZ
1173bool cpus_share_cache(int this_cpu, int that_cpu);
1174
143e1e28 1175typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1176typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1177
1178#define SDTL_OVERLAP 0x01
1179
1180struct sd_data {
1181 struct sched_domain **__percpu sd;
24fc7edb 1182 struct sched_domain_shared **__percpu sds;
143e1e28 1183 struct sched_group **__percpu sg;
63b2ca30 1184 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1185};
1186
1187struct sched_domain_topology_level {
1188 sched_domain_mask_f mask;
1189 sched_domain_flags_f sd_flags;
1190 int flags;
1191 int numa_level;
1192 struct sd_data data;
1193#ifdef CONFIG_SCHED_DEBUG
1194 char *name;
1195#endif
1196};
1197
143e1e28 1198extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1199extern void wake_up_if_idle(int cpu);
143e1e28
VG
1200
1201#ifdef CONFIG_SCHED_DEBUG
1202# define SD_INIT_NAME(type) .name = #type
1203#else
1204# define SD_INIT_NAME(type)
1205#endif
1206
1b427c15 1207#else /* CONFIG_SMP */
1da177e4 1208
1b427c15 1209struct sched_domain_attr;
d02c7a8c 1210
1b427c15 1211static inline void
acc3f5d7 1212partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1213 struct sched_domain_attr *dattr_new)
1214{
d02c7a8c 1215}
39be3501
PZ
1216
1217static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1218{
1219 return true;
1220}
1221
1b427c15 1222#endif /* !CONFIG_SMP */
1da177e4 1223
47fe38fc 1224
1da177e4 1225struct io_context; /* See blkdev.h */
1da177e4 1226
1da177e4 1227
383f2835 1228#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1229extern void prefetch_stack(struct task_struct *t);
383f2835
KC
1230#else
1231static inline void prefetch_stack(struct task_struct *t) { }
1232#endif
1da177e4
LT
1233
1234struct audit_context; /* See audit.c */
1235struct mempolicy;
b92ce558 1236struct pipe_inode_info;
4865ecf1 1237struct uts_namespace;
1da177e4 1238
20b8a59f 1239struct load_weight {
9dbdb155
PZ
1240 unsigned long weight;
1241 u32 inv_weight;
20b8a59f
IM
1242};
1243
9d89c257 1244/*
7b595334
YD
1245 * The load_avg/util_avg accumulates an infinite geometric series
1246 * (see __update_load_avg() in kernel/sched/fair.c).
1247 *
1248 * [load_avg definition]
1249 *
1250 * load_avg = runnable% * scale_load_down(load)
1251 *
1252 * where runnable% is the time ratio that a sched_entity is runnable.
1253 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1254 * blocked sched_entities.
7b595334
YD
1255 *
1256 * load_avg may also take frequency scaling into account:
1257 *
1258 * load_avg = runnable% * scale_load_down(load) * freq%
1259 *
1260 * where freq% is the CPU frequency normalized to the highest frequency.
1261 *
1262 * [util_avg definition]
1263 *
1264 * util_avg = running% * SCHED_CAPACITY_SCALE
1265 *
1266 * where running% is the time ratio that a sched_entity is running on
1267 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1268 * and blocked sched_entities.
1269 *
1270 * util_avg may also factor frequency scaling and CPU capacity scaling:
1271 *
1272 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1273 *
1274 * where freq% is the same as above, and capacity% is the CPU capacity
1275 * normalized to the greatest capacity (due to uarch differences, etc).
1276 *
1277 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1278 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1279 * we therefore scale them to as large a range as necessary. This is for
1280 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1281 *
1282 * [Overflow issue]
1283 *
1284 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1285 * with the highest load (=88761), always runnable on a single cfs_rq,
1286 * and should not overflow as the number already hits PID_MAX_LIMIT.
1287 *
1288 * For all other cases (including 32-bit kernels), struct load_weight's
1289 * weight will overflow first before we do, because:
1290 *
1291 * Max(load_avg) <= Max(load.weight)
1292 *
1293 * Then it is the load_weight's responsibility to consider overflow
1294 * issues.
9d89c257 1295 */
9d85f21c 1296struct sched_avg {
9d89c257
YD
1297 u64 last_update_time, load_sum;
1298 u32 util_sum, period_contrib;
1299 unsigned long load_avg, util_avg;
9d85f21c
PT
1300};
1301
94c18227 1302#ifdef CONFIG_SCHEDSTATS
41acab88 1303struct sched_statistics {
20b8a59f 1304 u64 wait_start;
94c18227 1305 u64 wait_max;
6d082592
AV
1306 u64 wait_count;
1307 u64 wait_sum;
8f0dfc34
AV
1308 u64 iowait_count;
1309 u64 iowait_sum;
94c18227 1310
20b8a59f 1311 u64 sleep_start;
20b8a59f 1312 u64 sleep_max;
94c18227
IM
1313 s64 sum_sleep_runtime;
1314
1315 u64 block_start;
20b8a59f
IM
1316 u64 block_max;
1317 u64 exec_max;
eba1ed4b 1318 u64 slice_max;
cc367732 1319
cc367732
IM
1320 u64 nr_migrations_cold;
1321 u64 nr_failed_migrations_affine;
1322 u64 nr_failed_migrations_running;
1323 u64 nr_failed_migrations_hot;
1324 u64 nr_forced_migrations;
cc367732
IM
1325
1326 u64 nr_wakeups;
1327 u64 nr_wakeups_sync;
1328 u64 nr_wakeups_migrate;
1329 u64 nr_wakeups_local;
1330 u64 nr_wakeups_remote;
1331 u64 nr_wakeups_affine;
1332 u64 nr_wakeups_affine_attempts;
1333 u64 nr_wakeups_passive;
1334 u64 nr_wakeups_idle;
41acab88
LDM
1335};
1336#endif
1337
1338struct sched_entity {
1339 struct load_weight load; /* for load-balancing */
1340 struct rb_node run_node;
1341 struct list_head group_node;
1342 unsigned int on_rq;
1343
1344 u64 exec_start;
1345 u64 sum_exec_runtime;
1346 u64 vruntime;
1347 u64 prev_sum_exec_runtime;
1348
41acab88
LDM
1349 u64 nr_migrations;
1350
41acab88
LDM
1351#ifdef CONFIG_SCHEDSTATS
1352 struct sched_statistics statistics;
94c18227
IM
1353#endif
1354
20b8a59f 1355#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1356 int depth;
20b8a59f
IM
1357 struct sched_entity *parent;
1358 /* rq on which this entity is (to be) queued: */
1359 struct cfs_rq *cfs_rq;
1360 /* rq "owned" by this entity/group: */
1361 struct cfs_rq *my_q;
1362#endif
8bd75c77 1363
141965c7 1364#ifdef CONFIG_SMP
5a107804
JO
1365 /*
1366 * Per entity load average tracking.
1367 *
1368 * Put into separate cache line so it does not
1369 * collide with read-mostly values above.
1370 */
1371 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1372#endif
20b8a59f 1373};
70b97a7f 1374
fa717060
PZ
1375struct sched_rt_entity {
1376 struct list_head run_list;
78f2c7db 1377 unsigned long timeout;
57d2aa00 1378 unsigned long watchdog_stamp;
bee367ed 1379 unsigned int time_slice;
ff77e468
PZ
1380 unsigned short on_rq;
1381 unsigned short on_list;
6f505b16 1382
58d6c2d7 1383 struct sched_rt_entity *back;
052f1dc7 1384#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1385 struct sched_rt_entity *parent;
1386 /* rq on which this entity is (to be) queued: */
1387 struct rt_rq *rt_rq;
1388 /* rq "owned" by this entity/group: */
1389 struct rt_rq *my_q;
1390#endif
fa717060
PZ
1391};
1392
aab03e05
DF
1393struct sched_dl_entity {
1394 struct rb_node rb_node;
1395
1396 /*
1397 * Original scheduling parameters. Copied here from sched_attr
4027d080 1398 * during sched_setattr(), they will remain the same until
1399 * the next sched_setattr().
aab03e05
DF
1400 */
1401 u64 dl_runtime; /* maximum runtime for each instance */
1402 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1403 u64 dl_period; /* separation of two instances (period) */
332ac17e 1404 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1405
1406 /*
1407 * Actual scheduling parameters. Initialized with the values above,
1408 * they are continously updated during task execution. Note that
1409 * the remaining runtime could be < 0 in case we are in overrun.
1410 */
1411 s64 runtime; /* remaining runtime for this instance */
1412 u64 deadline; /* absolute deadline for this instance */
1413 unsigned int flags; /* specifying the scheduler behaviour */
1414
1415 /*
1416 * Some bool flags:
1417 *
1418 * @dl_throttled tells if we exhausted the runtime. If so, the
1419 * task has to wait for a replenishment to be performed at the
1420 * next firing of dl_timer.
1421 *
2d3d891d
DF
1422 * @dl_boosted tells if we are boosted due to DI. If so we are
1423 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1424 * exit the critical section);
1425 *
1426 * @dl_yielded tells if task gave up the cpu before consuming
1427 * all its available runtime during the last job.
aab03e05 1428 */
72f9f3fd 1429 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1430
1431 /*
1432 * Bandwidth enforcement timer. Each -deadline task has its
1433 * own bandwidth to be enforced, thus we need one timer per task.
1434 */
1435 struct hrtimer dl_timer;
1436};
8bd75c77 1437
1d082fd0
PM
1438union rcu_special {
1439 struct {
8203d6d0
PM
1440 u8 blocked;
1441 u8 need_qs;
1442 u8 exp_need_qs;
1443 u8 pad; /* Otherwise the compiler can store garbage here. */
1444 } b; /* Bits. */
1445 u32 s; /* Set of bits. */
1d082fd0 1446};
86848966
PM
1447struct rcu_node;
1448
8dc85d54
PZ
1449enum perf_event_task_context {
1450 perf_invalid_context = -1,
1451 perf_hw_context = 0,
89a1e187 1452 perf_sw_context,
8dc85d54
PZ
1453 perf_nr_task_contexts,
1454};
1455
72b252ae
MG
1456/* Track pages that require TLB flushes */
1457struct tlbflush_unmap_batch {
1458 /*
1459 * Each bit set is a CPU that potentially has a TLB entry for one of
1460 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1461 */
1462 struct cpumask cpumask;
1463
1464 /* True if any bit in cpumask is set */
1465 bool flush_required;
d950c947
MG
1466
1467 /*
1468 * If true then the PTE was dirty when unmapped. The entry must be
1469 * flushed before IO is initiated or a stale TLB entry potentially
1470 * allows an update without redirtying the page.
1471 */
1472 bool writable;
72b252ae
MG
1473};
1474
1da177e4 1475struct task_struct {
c65eacbe
AL
1476#ifdef CONFIG_THREAD_INFO_IN_TASK
1477 /*
1478 * For reasons of header soup (see current_thread_info()), this
1479 * must be the first element of task_struct.
1480 */
1481 struct thread_info thread_info;
1482#endif
1da177e4 1483 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1484 void *stack;
1da177e4 1485 atomic_t usage;
97dc32cd
WC
1486 unsigned int flags; /* per process flags, defined below */
1487 unsigned int ptrace;
1da177e4 1488
2dd73a4f 1489#ifdef CONFIG_SMP
fa14ff4a 1490 struct llist_node wake_entry;
3ca7a440 1491 int on_cpu;
c65eacbe
AL
1492#ifdef CONFIG_THREAD_INFO_IN_TASK
1493 unsigned int cpu; /* current CPU */
1494#endif
63b0e9ed 1495 unsigned int wakee_flips;
62470419 1496 unsigned long wakee_flip_decay_ts;
63b0e9ed 1497 struct task_struct *last_wakee;
ac66f547
PZ
1498
1499 int wake_cpu;
2dd73a4f 1500#endif
fd2f4419 1501 int on_rq;
50e645a8 1502
b29739f9 1503 int prio, static_prio, normal_prio;
c7aceaba 1504 unsigned int rt_priority;
5522d5d5 1505 const struct sched_class *sched_class;
20b8a59f 1506 struct sched_entity se;
fa717060 1507 struct sched_rt_entity rt;
8323f26c
PZ
1508#ifdef CONFIG_CGROUP_SCHED
1509 struct task_group *sched_task_group;
1510#endif
aab03e05 1511 struct sched_dl_entity dl;
1da177e4 1512
e107be36
AK
1513#ifdef CONFIG_PREEMPT_NOTIFIERS
1514 /* list of struct preempt_notifier: */
1515 struct hlist_head preempt_notifiers;
1516#endif
1517
6c5c9341 1518#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1519 unsigned int btrace_seq;
6c5c9341 1520#endif
1da177e4 1521
97dc32cd 1522 unsigned int policy;
29baa747 1523 int nr_cpus_allowed;
1da177e4 1524 cpumask_t cpus_allowed;
1da177e4 1525
a57eb940 1526#ifdef CONFIG_PREEMPT_RCU
e260be67 1527 int rcu_read_lock_nesting;
1d082fd0 1528 union rcu_special rcu_read_unlock_special;
f41d911f 1529 struct list_head rcu_node_entry;
a57eb940 1530 struct rcu_node *rcu_blocked_node;
28f6569a 1531#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1532#ifdef CONFIG_TASKS_RCU
1533 unsigned long rcu_tasks_nvcsw;
1534 bool rcu_tasks_holdout;
1535 struct list_head rcu_tasks_holdout_list;
176f8f7a 1536 int rcu_tasks_idle_cpu;
8315f422 1537#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1538
f6db8347 1539#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1540 struct sched_info sched_info;
1541#endif
1542
1543 struct list_head tasks;
806c09a7 1544#ifdef CONFIG_SMP
917b627d 1545 struct plist_node pushable_tasks;
1baca4ce 1546 struct rb_node pushable_dl_tasks;
806c09a7 1547#endif
1da177e4
LT
1548
1549 struct mm_struct *mm, *active_mm;
314ff785
IM
1550
1551 /* Per-thread vma caching: */
1552 struct vmacache vmacache;
1553
34e55232
KH
1554#if defined(SPLIT_RSS_COUNTING)
1555 struct task_rss_stat rss_stat;
1556#endif
1da177e4 1557/* task state */
97dc32cd 1558 int exit_state;
1da177e4
LT
1559 int exit_code, exit_signal;
1560 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1561 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1562
1563 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1564 unsigned int personality;
9b89f6ba 1565
be958bdc 1566 /* scheduler bits, serialized by scheduler locks */
ca94c442 1567 unsigned sched_reset_on_fork:1;
a8e4f2ea 1568 unsigned sched_contributes_to_load:1;
ff303e66 1569 unsigned sched_migrated:1;
b7e7ade3 1570 unsigned sched_remote_wakeup:1;
be958bdc
PZ
1571 unsigned :0; /* force alignment to the next boundary */
1572
1573 /* unserialized, strictly 'current' */
1574 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1575 unsigned in_iowait:1;
7e781418
AL
1576#if !defined(TIF_RESTORE_SIGMASK)
1577 unsigned restore_sigmask:1;
1578#endif
626ebc41
TH
1579#ifdef CONFIG_MEMCG
1580 unsigned memcg_may_oom:1;
127424c8 1581#ifndef CONFIG_SLOB
6f185c29
VD
1582 unsigned memcg_kmem_skip_account:1;
1583#endif
127424c8 1584#endif
ff303e66
PZ
1585#ifdef CONFIG_COMPAT_BRK
1586 unsigned brk_randomized:1;
1587#endif
6f185c29 1588
1d4457f9
KC
1589 unsigned long atomic_flags; /* Flags needing atomic access. */
1590
f56141e3
AL
1591 struct restart_block restart_block;
1592
1da177e4
LT
1593 pid_t pid;
1594 pid_t tgid;
0a425405 1595
1314562a 1596#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1597 /* Canary value for the -fstack-protector gcc feature */
1598 unsigned long stack_canary;
1314562a 1599#endif
4d1d61a6 1600 /*
1da177e4 1601 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1602 * older sibling, respectively. (p->father can be replaced with
f470021a 1603 * p->real_parent->pid)
1da177e4 1604 */
abd63bc3
KC
1605 struct task_struct __rcu *real_parent; /* real parent process */
1606 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1607 /*
f470021a 1608 * children/sibling forms the list of my natural children
1da177e4
LT
1609 */
1610 struct list_head children; /* list of my children */
1611 struct list_head sibling; /* linkage in my parent's children list */
1612 struct task_struct *group_leader; /* threadgroup leader */
1613
f470021a
RM
1614 /*
1615 * ptraced is the list of tasks this task is using ptrace on.
1616 * This includes both natural children and PTRACE_ATTACH targets.
1617 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1618 */
1619 struct list_head ptraced;
1620 struct list_head ptrace_entry;
1621
1da177e4 1622 /* PID/PID hash table linkage. */
92476d7f 1623 struct pid_link pids[PIDTYPE_MAX];
47e65328 1624 struct list_head thread_group;
0c740d0a 1625 struct list_head thread_node;
1da177e4
LT
1626
1627 struct completion *vfork_done; /* for vfork() */
1628 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1629 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1630
5613fda9 1631 u64 utime, stime;
40565b5a 1632#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5613fda9 1633 u64 utimescaled, stimescaled;
40565b5a 1634#endif
16a6d9be 1635 u64 gtime;
9d7fb042 1636 struct prev_cputime prev_cputime;
6a61671b 1637#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1638 seqcount_t vtime_seqcount;
6a61671b
FW
1639 unsigned long long vtime_snap;
1640 enum {
7098c1ea
FW
1641 /* Task is sleeping or running in a CPU with VTIME inactive */
1642 VTIME_INACTIVE = 0,
1643 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1644 VTIME_USER,
7098c1ea 1645 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1646 VTIME_SYS,
1647 } vtime_snap_whence;
d99ca3b9 1648#endif
d027d45d
FW
1649
1650#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1651 atomic_t tick_dep_mask;
d027d45d 1652#endif
1da177e4 1653 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1654 u64 start_time; /* monotonic time in nsec */
57e0be04 1655 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1656/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1657 unsigned long min_flt, maj_flt;
1658
b18b6a9c 1659#ifdef CONFIG_POSIX_TIMERS
f06febc9 1660 struct task_cputime cputime_expires;
1da177e4 1661 struct list_head cpu_timers[3];
b18b6a9c 1662#endif
1da177e4
LT
1663
1664/* process credentials */
64b875f7 1665 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1b0ba1c9 1666 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1667 * credentials (COW) */
1b0ba1c9 1668 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1669 * credentials (COW) */
36772092
PBG
1670 char comm[TASK_COMM_LEN]; /* executable name excluding path
1671 - access with [gs]et_task_comm (which lock
1672 it with task_lock())
221af7f8 1673 - initialized normally by setup_new_exec */
1da177e4 1674/* file system info */
756daf26 1675 struct nameidata *nameidata;
3d5b6fcc 1676#ifdef CONFIG_SYSVIPC
1da177e4
LT
1677/* ipc stuff */
1678 struct sysv_sem sysvsem;
ab602f79 1679 struct sysv_shm sysvshm;
3d5b6fcc 1680#endif
e162b39a 1681#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1682/* hung task detection */
82a1fcb9
IM
1683 unsigned long last_switch_count;
1684#endif
1da177e4
LT
1685/* filesystem information */
1686 struct fs_struct *fs;
1687/* open file information */
1688 struct files_struct *files;
1651e14e 1689/* namespaces */
ab516013 1690 struct nsproxy *nsproxy;
1da177e4
LT
1691/* signal handlers */
1692 struct signal_struct *signal;
1693 struct sighand_struct *sighand;
1694
1695 sigset_t blocked, real_blocked;
f3de272b 1696 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1697 struct sigpending pending;
1698
1699 unsigned long sas_ss_sp;
1700 size_t sas_ss_size;
2a742138 1701 unsigned sas_ss_flags;
2e01fabe 1702
67d12145 1703 struct callback_head *task_works;
e73f8959 1704
1da177e4 1705 struct audit_context *audit_context;
bfef93a5 1706#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1707 kuid_t loginuid;
4746ec5b 1708 unsigned int sessionid;
bfef93a5 1709#endif
932ecebb 1710 struct seccomp seccomp;
1da177e4
LT
1711
1712/* Thread group tracking */
1713 u32 parent_exec_id;
1714 u32 self_exec_id;
58568d2a
MX
1715/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1716 * mempolicy */
1da177e4 1717 spinlock_t alloc_lock;
1da177e4 1718
b29739f9 1719 /* Protection of the PI data structures: */
1d615482 1720 raw_spinlock_t pi_lock;
b29739f9 1721
76751049
PZ
1722 struct wake_q_node wake_q;
1723
23f78d4a
IM
1724#ifdef CONFIG_RT_MUTEXES
1725 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1726 struct rb_root pi_waiters;
1727 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1728 /* Deadlock detection and priority inheritance handling */
1729 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1730#endif
1731
408894ee
IM
1732#ifdef CONFIG_DEBUG_MUTEXES
1733 /* mutex deadlock detection */
1734 struct mutex_waiter *blocked_on;
1735#endif
de30a2b3
IM
1736#ifdef CONFIG_TRACE_IRQFLAGS
1737 unsigned int irq_events;
de30a2b3 1738 unsigned long hardirq_enable_ip;
de30a2b3 1739 unsigned long hardirq_disable_ip;
fa1452e8 1740 unsigned int hardirq_enable_event;
de30a2b3 1741 unsigned int hardirq_disable_event;
fa1452e8
HS
1742 int hardirqs_enabled;
1743 int hardirq_context;
de30a2b3 1744 unsigned long softirq_disable_ip;
de30a2b3 1745 unsigned long softirq_enable_ip;
fa1452e8 1746 unsigned int softirq_disable_event;
de30a2b3 1747 unsigned int softirq_enable_event;
fa1452e8 1748 int softirqs_enabled;
de30a2b3
IM
1749 int softirq_context;
1750#endif
fbb9ce95 1751#ifdef CONFIG_LOCKDEP
bdb9441e 1752# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1753 u64 curr_chain_key;
1754 int lockdep_depth;
fbb9ce95 1755 unsigned int lockdep_recursion;
c7aceaba 1756 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1757 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1758#endif
c6d30853
AR
1759#ifdef CONFIG_UBSAN
1760 unsigned int in_ubsan;
1761#endif
408894ee 1762
1da177e4
LT
1763/* journalling filesystem info */
1764 void *journal_info;
1765
d89d8796 1766/* stacked block device info */
bddd87c7 1767 struct bio_list *bio_list;
d89d8796 1768
73c10101
JA
1769#ifdef CONFIG_BLOCK
1770/* stack plugging */
1771 struct blk_plug *plug;
1772#endif
1773
1da177e4
LT
1774/* VM state */
1775 struct reclaim_state *reclaim_state;
1776
1da177e4
LT
1777 struct backing_dev_info *backing_dev_info;
1778
1779 struct io_context *io_context;
1780
1781 unsigned long ptrace_message;
1782 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1783 struct task_io_accounting ioac;
8f0ab514 1784#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1785 u64 acct_rss_mem1; /* accumulated rss usage */
1786 u64 acct_vm_mem1; /* accumulated virtual memory usage */
605dc2b3 1787 u64 acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1788#endif
1789#ifdef CONFIG_CPUSETS
58568d2a 1790 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1791 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1792 int cpuset_mem_spread_rotor;
6adef3eb 1793 int cpuset_slab_spread_rotor;
1da177e4 1794#endif
ddbcc7e8 1795#ifdef CONFIG_CGROUPS
817929ec 1796 /* Control Group info protected by css_set_lock */
2c392b8c 1797 struct css_set __rcu *cgroups;
817929ec
PM
1798 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1799 struct list_head cg_list;
ddbcc7e8 1800#endif
e02737d5
FY
1801#ifdef CONFIG_INTEL_RDT_A
1802 int closid;
1803#endif
42b2dd0a 1804#ifdef CONFIG_FUTEX
0771dfef 1805 struct robust_list_head __user *robust_list;
34f192c6
IM
1806#ifdef CONFIG_COMPAT
1807 struct compat_robust_list_head __user *compat_robust_list;
1808#endif
c87e2837
IM
1809 struct list_head pi_state_list;
1810 struct futex_pi_state *pi_state_cache;
c7aceaba 1811#endif
cdd6c482 1812#ifdef CONFIG_PERF_EVENTS
8dc85d54 1813 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1814 struct mutex perf_event_mutex;
1815 struct list_head perf_event_list;
a63eaf34 1816#endif
8f47b187
TG
1817#ifdef CONFIG_DEBUG_PREEMPT
1818 unsigned long preempt_disable_ip;
1819#endif
c7aceaba 1820#ifdef CONFIG_NUMA
58568d2a 1821 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1822 short il_next;
207205a2 1823 short pref_node_fork;
42b2dd0a 1824#endif
cbee9f88
PZ
1825#ifdef CONFIG_NUMA_BALANCING
1826 int numa_scan_seq;
cbee9f88 1827 unsigned int numa_scan_period;
598f0ec0 1828 unsigned int numa_scan_period_max;
de1c9ce6 1829 int numa_preferred_nid;
6b9a7460 1830 unsigned long numa_migrate_retry;
cbee9f88 1831 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1832 u64 last_task_numa_placement;
1833 u64 last_sum_exec_runtime;
cbee9f88 1834 struct callback_head numa_work;
f809ca9a 1835
8c8a743c
PZ
1836 struct list_head numa_entry;
1837 struct numa_group *numa_group;
1838
745d6147 1839 /*
44dba3d5
IM
1840 * numa_faults is an array split into four regions:
1841 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1842 * in this precise order.
1843 *
1844 * faults_memory: Exponential decaying average of faults on a per-node
1845 * basis. Scheduling placement decisions are made based on these
1846 * counts. The values remain static for the duration of a PTE scan.
1847 * faults_cpu: Track the nodes the process was running on when a NUMA
1848 * hinting fault was incurred.
1849 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1850 * during the current scan window. When the scan completes, the counts
1851 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1852 */
44dba3d5 1853 unsigned long *numa_faults;
83e1d2cd 1854 unsigned long total_numa_faults;
745d6147 1855
04bb2f94
RR
1856 /*
1857 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1858 * scan window were remote/local or failed to migrate. The task scan
1859 * period is adapted based on the locality of the faults with different
1860 * weights depending on whether they were shared or private faults
04bb2f94 1861 */
074c2381 1862 unsigned long numa_faults_locality[3];
04bb2f94 1863
b32e86b4 1864 unsigned long numa_pages_migrated;
cbee9f88
PZ
1865#endif /* CONFIG_NUMA_BALANCING */
1866
72b252ae
MG
1867#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1868 struct tlbflush_unmap_batch tlb_ubc;
1869#endif
1870
e56d0903 1871 struct rcu_head rcu;
b92ce558
JA
1872
1873 /*
1874 * cache last used pipe for splice
1875 */
1876 struct pipe_inode_info *splice_pipe;
5640f768
ED
1877
1878 struct page_frag task_frag;
1879
ca74e92b
SN
1880#ifdef CONFIG_TASK_DELAY_ACCT
1881 struct task_delay_info *delays;
f4f154fd
AM
1882#endif
1883#ifdef CONFIG_FAULT_INJECTION
1884 int make_it_fail;
ca74e92b 1885#endif
9d823e8f
WF
1886 /*
1887 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1888 * balance_dirty_pages() for some dirty throttling pause
1889 */
1890 int nr_dirtied;
1891 int nr_dirtied_pause;
83712358 1892 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1893
9745512c
AV
1894#ifdef CONFIG_LATENCYTOP
1895 int latency_record_count;
1896 struct latency_record latency_record[LT_SAVECOUNT];
1897#endif
6976675d
AV
1898 /*
1899 * time slack values; these are used to round up poll() and
1900 * select() etc timeout values. These are in nanoseconds.
1901 */
da8b44d5
JS
1902 u64 timer_slack_ns;
1903 u64 default_timer_slack_ns;
f8d570a4 1904
0b24becc
AR
1905#ifdef CONFIG_KASAN
1906 unsigned int kasan_depth;
1907#endif
fb52607a 1908#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1909 /* Index of current stored address in ret_stack */
f201ae23
FW
1910 int curr_ret_stack;
1911 /* Stack of return addresses for return function tracing */
1912 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1913 /* time stamp for last schedule */
1914 unsigned long long ftrace_timestamp;
f201ae23
FW
1915 /*
1916 * Number of functions that haven't been traced
1917 * because of depth overrun.
1918 */
1919 atomic_t trace_overrun;
380c4b14
FW
1920 /* Pause for the tracing */
1921 atomic_t tracing_graph_pause;
f201ae23 1922#endif
ea4e2bc4
SR
1923#ifdef CONFIG_TRACING
1924 /* state flags for use by tracers */
1925 unsigned long trace;
b1cff0ad 1926 /* bitmask and counter of trace recursion */
261842b7
SR
1927 unsigned long trace_recursion;
1928#endif /* CONFIG_TRACING */
5c9a8750
DV
1929#ifdef CONFIG_KCOV
1930 /* Coverage collection mode enabled for this task (0 if disabled). */
1931 enum kcov_mode kcov_mode;
1932 /* Size of the kcov_area. */
1933 unsigned kcov_size;
1934 /* Buffer for coverage collection. */
1935 void *kcov_area;
1936 /* kcov desciptor wired with this task or NULL. */
1937 struct kcov *kcov;
1938#endif
6f185c29 1939#ifdef CONFIG_MEMCG
626ebc41
TH
1940 struct mem_cgroup *memcg_in_oom;
1941 gfp_t memcg_oom_gfp_mask;
1942 int memcg_oom_order;
b23afb93
TH
1943
1944 /* number of pages to reclaim on returning to userland */
1945 unsigned int memcg_nr_pages_over_high;
569b846d 1946#endif
0326f5a9
SD
1947#ifdef CONFIG_UPROBES
1948 struct uprobe_task *utask;
0326f5a9 1949#endif
cafe5635
KO
1950#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1951 unsigned int sequential_io;
1952 unsigned int sequential_io_avg;
1953#endif
8eb23b9f
PZ
1954#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1955 unsigned long task_state_change;
1956#endif
8bcbde54 1957 int pagefault_disabled;
03049269 1958#ifdef CONFIG_MMU
29c696e1 1959 struct task_struct *oom_reaper_list;
03049269 1960#endif
ba14a194
AL
1961#ifdef CONFIG_VMAP_STACK
1962 struct vm_struct *stack_vm_area;
1963#endif
68f24b08
AL
1964#ifdef CONFIG_THREAD_INFO_IN_TASK
1965 /* A live task holds one reference. */
1966 atomic_t stack_refcount;
1967#endif
0c8c0f03
DH
1968/* CPU-specific state of this task */
1969 struct thread_struct thread;
1970/*
1971 * WARNING: on x86, 'thread_struct' contains a variable-sized
1972 * structure. It *MUST* be at the end of 'task_struct'.
1973 *
1974 * Do not put anything below here!
1975 */
1da177e4
LT
1976};
1977
5aaeb5c0
IM
1978#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1979extern int arch_task_struct_size __read_mostly;
1980#else
1981# define arch_task_struct_size (sizeof(struct task_struct))
1982#endif
0c8c0f03 1983
ba14a194
AL
1984#ifdef CONFIG_VMAP_STACK
1985static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1986{
1987 return t->stack_vm_area;
1988}
1989#else
1990static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1991{
1992 return NULL;
1993}
1994#endif
1995
6688cc05
PZ
1996#define TNF_MIGRATED 0x01
1997#define TNF_NO_GROUP 0x02
dabe1d99 1998#define TNF_SHARED 0x04
04bb2f94 1999#define TNF_FAULT_LOCAL 0x08
074c2381 2000#define TNF_MIGRATE_FAIL 0x10
6688cc05 2001
b18dc5f2
MH
2002static inline bool in_vfork(struct task_struct *tsk)
2003{
2004 bool ret;
2005
2006 /*
2007 * need RCU to access ->real_parent if CLONE_VM was used along with
2008 * CLONE_PARENT.
2009 *
2010 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2011 * imply CLONE_VM
2012 *
2013 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2014 * ->real_parent is not necessarily the task doing vfork(), so in
2015 * theory we can't rely on task_lock() if we want to dereference it.
2016 *
2017 * And in this case we can't trust the real_parent->mm == tsk->mm
2018 * check, it can be false negative. But we do not care, if init or
2019 * another oom-unkillable task does this it should blame itself.
2020 */
2021 rcu_read_lock();
2022 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2023 rcu_read_unlock();
2024
2025 return ret;
2026}
2027
cbee9f88 2028#ifdef CONFIG_NUMA_BALANCING
6688cc05 2029extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 2030extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 2031extern void set_numabalancing_state(bool enabled);
82727018 2032extern void task_numa_free(struct task_struct *p);
10f39042
RR
2033extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2034 int src_nid, int dst_cpu);
cbee9f88 2035#else
ac8e895b 2036static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 2037 int flags)
cbee9f88
PZ
2038{
2039}
e29cf08b
MG
2040static inline pid_t task_numa_group_id(struct task_struct *p)
2041{
2042 return 0;
2043}
1a687c2e
MG
2044static inline void set_numabalancing_state(bool enabled)
2045{
2046}
82727018
RR
2047static inline void task_numa_free(struct task_struct *p)
2048{
2049}
10f39042
RR
2050static inline bool should_numa_migrate_memory(struct task_struct *p,
2051 struct page *page, int src_nid, int dst_cpu)
2052{
2053 return true;
2054}
cbee9f88
PZ
2055#endif
2056
e868171a 2057static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
2058{
2059 return task->pids[PIDTYPE_PID].pid;
2060}
2061
e868171a 2062static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
2063{
2064 return task->group_leader->pids[PIDTYPE_PID].pid;
2065}
2066
6dda81f4
ON
2067/*
2068 * Without tasklist or rcu lock it is not safe to dereference
2069 * the result of task_pgrp/task_session even if task == current,
2070 * we can race with another thread doing sys_setsid/sys_setpgid.
2071 */
e868171a 2072static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
2073{
2074 return task->group_leader->pids[PIDTYPE_PGID].pid;
2075}
2076
e868171a 2077static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
2078{
2079 return task->group_leader->pids[PIDTYPE_SID].pid;
2080}
2081
7af57294
PE
2082struct pid_namespace;
2083
2084/*
2085 * the helpers to get the task's different pids as they are seen
2086 * from various namespaces
2087 *
2088 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2089 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2090 * current.
7af57294
PE
2091 * task_xid_nr_ns() : id seen from the ns specified;
2092 *
2093 * set_task_vxid() : assigns a virtual id to a task;
2094 *
7af57294
PE
2095 * see also pid_nr() etc in include/linux/pid.h
2096 */
52ee2dfd
ON
2097pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2098 struct pid_namespace *ns);
7af57294 2099
e868171a 2100static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2101{
2102 return tsk->pid;
2103}
2104
52ee2dfd
ON
2105static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2106 struct pid_namespace *ns)
2107{
2108 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2109}
7af57294
PE
2110
2111static inline pid_t task_pid_vnr(struct task_struct *tsk)
2112{
52ee2dfd 2113 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2114}
2115
2116
e868171a 2117static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2118{
2119 return tsk->tgid;
2120}
2121
2f2a3a46 2122pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2123
2124static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2125{
2126 return pid_vnr(task_tgid(tsk));
2127}
2128
2129
80e0b6e8 2130static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2131static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2132{
2133 pid_t pid = 0;
2134
2135 rcu_read_lock();
2136 if (pid_alive(tsk))
2137 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2138 rcu_read_unlock();
2139
2140 return pid;
2141}
2142
2143static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2144{
2145 return task_ppid_nr_ns(tsk, &init_pid_ns);
2146}
2147
52ee2dfd
ON
2148static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2149 struct pid_namespace *ns)
7af57294 2150{
52ee2dfd 2151 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2152}
2153
7af57294
PE
2154static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2155{
52ee2dfd 2156 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2157}
2158
2159
52ee2dfd
ON
2160static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2161 struct pid_namespace *ns)
7af57294 2162{
52ee2dfd 2163 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2164}
2165
7af57294
PE
2166static inline pid_t task_session_vnr(struct task_struct *tsk)
2167{
52ee2dfd 2168 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2169}
2170
1b0f7ffd
ON
2171/* obsolete, do not use */
2172static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2173{
2174 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2175}
7af57294 2176
1da177e4
LT
2177/**
2178 * pid_alive - check that a task structure is not stale
2179 * @p: Task structure to be checked.
2180 *
2181 * Test if a process is not yet dead (at most zombie state)
2182 * If pid_alive fails, then pointers within the task structure
2183 * can be stale and must not be dereferenced.
e69f6186
YB
2184 *
2185 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2186 */
ad36d282 2187static inline int pid_alive(const struct task_struct *p)
1da177e4 2188{
92476d7f 2189 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2190}
2191
f400e198 2192/**
570f5241
SS
2193 * is_global_init - check if a task structure is init. Since init
2194 * is free to have sub-threads we need to check tgid.
3260259f
HK
2195 * @tsk: Task structure to be checked.
2196 *
2197 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2198 *
2199 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2200 */
e868171a 2201static inline int is_global_init(struct task_struct *tsk)
b461cc03 2202{
570f5241 2203 return task_tgid_nr(tsk) == 1;
b461cc03 2204}
b460cbc5 2205
9ec52099
CLG
2206extern struct pid *cad_pid;
2207
1da177e4 2208extern void free_task(struct task_struct *tsk);
1da177e4 2209#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2210
158d9ebd 2211extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2212
2213static inline void put_task_struct(struct task_struct *t)
2214{
2215 if (atomic_dec_and_test(&t->usage))
8c7904a0 2216 __put_task_struct(t);
e56d0903 2217}
1da177e4 2218
150593bf
ON
2219struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2220struct task_struct *try_get_task_struct(struct task_struct **ptask);
2221
6a61671b
FW
2222#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2223extern void task_cputime(struct task_struct *t,
5613fda9 2224 u64 *utime, u64 *stime);
16a6d9be 2225extern u64 task_gtime(struct task_struct *t);
6a61671b 2226#else
6fac4829 2227static inline void task_cputime(struct task_struct *t,
5613fda9 2228 u64 *utime, u64 *stime)
6fac4829 2229{
353c50eb
SG
2230 *utime = t->utime;
2231 *stime = t->stime;
6fac4829
FW
2232}
2233
16a6d9be 2234static inline u64 task_gtime(struct task_struct *t)
40565b5a
SG
2235{
2236 return t->gtime;
2237}
2238#endif
2239
2240#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
6fac4829 2241static inline void task_cputime_scaled(struct task_struct *t,
5613fda9
FW
2242 u64 *utimescaled,
2243 u64 *stimescaled)
6fac4829 2244{
353c50eb
SG
2245 *utimescaled = t->utimescaled;
2246 *stimescaled = t->stimescaled;
6fac4829 2247}
40565b5a
SG
2248#else
2249static inline void task_cputime_scaled(struct task_struct *t,
5613fda9
FW
2250 u64 *utimescaled,
2251 u64 *stimescaled)
6a61671b 2252{
40565b5a 2253 task_cputime(t, utimescaled, stimescaled);
6a61671b
FW
2254}
2255#endif
40565b5a 2256
5613fda9
FW
2257extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
2258extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
49048622 2259
1da177e4
LT
2260/*
2261 * Per process flags
2262 */
c1de45ca 2263#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1da177e4 2264#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2265#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2266#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2267#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2268#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2269#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2270#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2271#define PF_DUMPCORE 0x00000200 /* dumped core */
2272#define PF_SIGNALED 0x00000400 /* killed by a signal */
2273#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2274#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2275#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2276#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2277#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2278#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2279#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2280#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2281#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2282#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2283#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2284#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2285#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2286#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2287#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2288#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2289#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2290#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2291
2292/*
2293 * Only the _current_ task can read/write to tsk->flags, but other
2294 * tasks can access tsk->flags in readonly mode for example
2295 * with tsk_used_math (like during threaded core dumping).
2296 * There is however an exception to this rule during ptrace
2297 * or during fork: the ptracer task is allowed to write to the
2298 * child->flags of its traced child (same goes for fork, the parent
2299 * can write to the child->flags), because we're guaranteed the
2300 * child is not running and in turn not changing child->flags
2301 * at the same time the parent does it.
2302 */
2303#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2304#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2305#define clear_used_math() clear_stopped_child_used_math(current)
2306#define set_used_math() set_stopped_child_used_math(current)
2307#define conditional_stopped_child_used_math(condition, child) \
2308 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2309#define conditional_used_math(condition) \
2310 conditional_stopped_child_used_math(condition, current)
2311#define copy_to_stopped_child_used_math(child) \
2312 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2313/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2314#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2315#define used_math() tsk_used_math(current)
2316
934f3072
JB
2317/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2318 * __GFP_FS is also cleared as it implies __GFP_IO.
2319 */
21caf2fc
ML
2320static inline gfp_t memalloc_noio_flags(gfp_t flags)
2321{
2322 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2323 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2324 return flags;
2325}
2326
2327static inline unsigned int memalloc_noio_save(void)
2328{
2329 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2330 current->flags |= PF_MEMALLOC_NOIO;
2331 return flags;
2332}
2333
2334static inline void memalloc_noio_restore(unsigned int flags)
2335{
2336 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2337}
2338
1d4457f9 2339/* Per-process atomic flags. */
a2b86f77 2340#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2341#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2342#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
77ed2c57 2343#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2ad654bc 2344
1d4457f9 2345
e0e5070b
ZL
2346#define TASK_PFA_TEST(name, func) \
2347 static inline bool task_##func(struct task_struct *p) \
2348 { return test_bit(PFA_##name, &p->atomic_flags); }
2349#define TASK_PFA_SET(name, func) \
2350 static inline void task_set_##func(struct task_struct *p) \
2351 { set_bit(PFA_##name, &p->atomic_flags); }
2352#define TASK_PFA_CLEAR(name, func) \
2353 static inline void task_clear_##func(struct task_struct *p) \
2354 { clear_bit(PFA_##name, &p->atomic_flags); }
2355
2356TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2357TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2358
2ad654bc
ZL
2359TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2360TASK_PFA_SET(SPREAD_PAGE, spread_page)
2361TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2362
2363TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2364TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2365TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2366
77ed2c57
TH
2367TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2368TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2369
e5c1902e 2370/*
a8f072c1 2371 * task->jobctl flags
e5c1902e 2372 */
a8f072c1 2373#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2374
a8f072c1
TH
2375#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2376#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2377#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2378#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2379#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2380#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2381#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2382
b76808e6
PD
2383#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2384#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2385#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2386#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2387#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2388#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2389#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2390
fb1d910c 2391#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2392#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2393
7dd3db54 2394extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2395 unsigned long mask);
73ddff2b 2396extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2397extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2398 unsigned long mask);
39efa3ef 2399
f41d911f
PM
2400static inline void rcu_copy_process(struct task_struct *p)
2401{
8315f422 2402#ifdef CONFIG_PREEMPT_RCU
f41d911f 2403 p->rcu_read_lock_nesting = 0;
1d082fd0 2404 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2405 p->rcu_blocked_node = NULL;
f41d911f 2406 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2407#endif /* #ifdef CONFIG_PREEMPT_RCU */
2408#ifdef CONFIG_TASKS_RCU
2409 p->rcu_tasks_holdout = false;
2410 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2411 p->rcu_tasks_idle_cpu = -1;
8315f422 2412#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2413}
2414
907aed48
MG
2415static inline void tsk_restore_flags(struct task_struct *task,
2416 unsigned long orig_flags, unsigned long flags)
2417{
2418 task->flags &= ~flags;
2419 task->flags |= orig_flags & flags;
2420}
2421
f82f8042
JL
2422extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2423 const struct cpumask *trial);
7f51412a
JL
2424extern int task_can_attach(struct task_struct *p,
2425 const struct cpumask *cs_cpus_allowed);
1da177e4 2426#ifdef CONFIG_SMP
1e1b6c51
KM
2427extern void do_set_cpus_allowed(struct task_struct *p,
2428 const struct cpumask *new_mask);
2429
cd8ba7cd 2430extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2431 const struct cpumask *new_mask);
1da177e4 2432#else
1e1b6c51
KM
2433static inline void do_set_cpus_allowed(struct task_struct *p,
2434 const struct cpumask *new_mask)
2435{
2436}
cd8ba7cd 2437static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2438 const struct cpumask *new_mask)
1da177e4 2439{
96f874e2 2440 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2441 return -EINVAL;
2442 return 0;
2443}
2444#endif
e0ad9556 2445
3451d024 2446#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2447void calc_load_enter_idle(void);
2448void calc_load_exit_idle(void);
2449#else
2450static inline void calc_load_enter_idle(void) { }
2451static inline void calc_load_exit_idle(void) { }
3451d024 2452#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2453
6d0d2878
CB
2454#ifndef cpu_relax_yield
2455#define cpu_relax_yield() cpu_relax()
2456#endif
2457
b342501c 2458/*
c676329a
PZ
2459 * Do not use outside of architecture code which knows its limitations.
2460 *
2461 * sched_clock() has no promise of monotonicity or bounded drift between
2462 * CPUs, use (which you should not) requires disabling IRQs.
2463 *
2464 * Please use one of the three interfaces below.
b342501c 2465 */
1bbfa6f2 2466extern unsigned long long notrace sched_clock(void);
c676329a 2467/*
489a71b0 2468 * See the comment in kernel/sched/clock.c
c676329a 2469 */
545a2bf7 2470extern u64 running_clock(void);
c676329a
PZ
2471extern u64 sched_clock_cpu(int cpu);
2472
e436d800 2473
c1955a3d 2474extern void sched_clock_init(void);
3e51f33f 2475
c1955a3d 2476#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
9881b024
PZ
2477static inline void sched_clock_init_late(void)
2478{
2479}
2480
3e51f33f
PZ
2481static inline void sched_clock_tick(void)
2482{
2483}
2484
733ce725
PG
2485static inline void clear_sched_clock_stable(void)
2486{
2487}
2488
3e51f33f
PZ
2489static inline void sched_clock_idle_sleep_event(void)
2490{
2491}
2492
2493static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2494{
2495}
2c923e94
DL
2496
2497static inline u64 cpu_clock(int cpu)
2498{
2499 return sched_clock();
2500}
2501
2502static inline u64 local_clock(void)
2503{
2504 return sched_clock();
2505}
3e51f33f 2506#else
9881b024 2507extern void sched_clock_init_late(void);
c676329a
PZ
2508/*
2509 * Architectures can set this to 1 if they have specified
2510 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2511 * but then during bootup it turns out that sched_clock()
2512 * is reliable after all:
2513 */
35af99e6 2514extern int sched_clock_stable(void);
35af99e6 2515extern void clear_sched_clock_stable(void);
c676329a 2516
3e51f33f
PZ
2517extern void sched_clock_tick(void);
2518extern void sched_clock_idle_sleep_event(void);
2519extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2520
2521/*
2522 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2523 * time source that is monotonic per cpu argument and has bounded drift
2524 * between cpus.
2525 *
2526 * ######################### BIG FAT WARNING ##########################
2527 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2528 * # go backwards !! #
2529 * ####################################################################
2530 */
2531static inline u64 cpu_clock(int cpu)
2532{
2533 return sched_clock_cpu(cpu);
2534}
2535
2536static inline u64 local_clock(void)
2537{
2538 return sched_clock_cpu(raw_smp_processor_id());
2539}
3e51f33f
PZ
2540#endif
2541
b52bfee4
VP
2542#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2543/*
2544 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2545 * The reason for this explicit opt-in is not to have perf penalty with
2546 * slow sched_clocks.
2547 */
2548extern void enable_sched_clock_irqtime(void);
2549extern void disable_sched_clock_irqtime(void);
2550#else
2551static inline void enable_sched_clock_irqtime(void) {}
2552static inline void disable_sched_clock_irqtime(void) {}
2553#endif
2554
36c8b586 2555extern unsigned long long
41b86e9c 2556task_sched_runtime(struct task_struct *task);
1da177e4
LT
2557
2558/* sched_exec is called by processes performing an exec */
2559#ifdef CONFIG_SMP
2560extern void sched_exec(void);
2561#else
2562#define sched_exec() {}
2563#endif
2564
2aa44d05
IM
2565extern void sched_clock_idle_sleep_event(void);
2566extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2567
1da177e4
LT
2568#ifdef CONFIG_HOTPLUG_CPU
2569extern void idle_task_exit(void);
2570#else
2571static inline void idle_task_exit(void) {}
2572#endif
2573
3451d024 2574#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2575extern void wake_up_nohz_cpu(int cpu);
06d8308c 2576#else
1c20091e 2577static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2578#endif
2579
ce831b38 2580#ifdef CONFIG_NO_HZ_FULL
265f22a9 2581extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2582#endif
2583
5091faa4 2584#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2585extern void sched_autogroup_create_attach(struct task_struct *p);
2586extern void sched_autogroup_detach(struct task_struct *p);
2587extern void sched_autogroup_fork(struct signal_struct *sig);
2588extern void sched_autogroup_exit(struct signal_struct *sig);
8e5bfa8c 2589extern void sched_autogroup_exit_task(struct task_struct *p);
5091faa4
MG
2590#ifdef CONFIG_PROC_FS
2591extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2592extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2593#endif
2594#else
2595static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2596static inline void sched_autogroup_detach(struct task_struct *p) { }
2597static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2598static inline void sched_autogroup_exit(struct signal_struct *sig) { }
8e5bfa8c 2599static inline void sched_autogroup_exit_task(struct task_struct *p) { }
5091faa4
MG
2600#endif
2601
fa93384f 2602extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2603extern void set_user_nice(struct task_struct *p, long nice);
2604extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2605/**
2606 * task_nice - return the nice value of a given task.
2607 * @p: the task in question.
2608 *
2609 * Return: The nice value [ -20 ... 0 ... 19 ].
2610 */
2611static inline int task_nice(const struct task_struct *p)
2612{
2613 return PRIO_TO_NICE((p)->static_prio);
2614}
36c8b586
IM
2615extern int can_nice(const struct task_struct *p, const int nice);
2616extern int task_curr(const struct task_struct *p);
1da177e4 2617extern int idle_cpu(int cpu);
fe7de49f
KM
2618extern int sched_setscheduler(struct task_struct *, int,
2619 const struct sched_param *);
961ccddd 2620extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2621 const struct sched_param *);
d50dde5a
DF
2622extern int sched_setattr(struct task_struct *,
2623 const struct sched_attr *);
36c8b586 2624extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2625/**
2626 * is_idle_task - is the specified task an idle task?
fa757281 2627 * @p: the task in question.
e69f6186
YB
2628 *
2629 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2630 */
7061ca3b 2631static inline bool is_idle_task(const struct task_struct *p)
c4f30608 2632{
c1de45ca 2633 return !!(p->flags & PF_IDLE);
c4f30608 2634}
36c8b586 2635extern struct task_struct *curr_task(int cpu);
a458ae2e 2636extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2637
2638void yield(void);
2639
1da177e4 2640union thread_union {
c65eacbe 2641#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 2642 struct thread_info thread_info;
c65eacbe 2643#endif
1da177e4
LT
2644 unsigned long stack[THREAD_SIZE/sizeof(long)];
2645};
2646
2647#ifndef __HAVE_ARCH_KSTACK_END
2648static inline int kstack_end(void *addr)
2649{
2650 /* Reliable end of stack detection:
2651 * Some APM bios versions misalign the stack
2652 */
2653 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2654}
2655#endif
2656
2657extern union thread_union init_thread_union;
2658extern struct task_struct init_task;
2659
2660extern struct mm_struct init_mm;
2661
198fe21b
PE
2662extern struct pid_namespace init_pid_ns;
2663
2664/*
2665 * find a task by one of its numerical ids
2666 *
198fe21b
PE
2667 * find_task_by_pid_ns():
2668 * finds a task by its pid in the specified namespace
228ebcbe
PE
2669 * find_task_by_vpid():
2670 * finds a task by its virtual pid
198fe21b 2671 *
e49859e7 2672 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2673 */
2674
228ebcbe
PE
2675extern struct task_struct *find_task_by_vpid(pid_t nr);
2676extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2677 struct pid_namespace *ns);
198fe21b 2678
1da177e4 2679/* per-UID process charging. */
7b44ab97 2680extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2681static inline struct user_struct *get_uid(struct user_struct *u)
2682{
2683 atomic_inc(&u->__count);
2684 return u;
2685}
2686extern void free_uid(struct user_struct *);
1da177e4
LT
2687
2688#include <asm/current.h>
2689
f0af911a 2690extern void xtime_update(unsigned long ticks);
1da177e4 2691
b3c97528
HH
2692extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2693extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2694extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2695#ifdef CONFIG_SMP
2696 extern void kick_process(struct task_struct *tsk);
2697#else
2698 static inline void kick_process(struct task_struct *tsk) { }
2699#endif
aab03e05 2700extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2701extern void sched_dead(struct task_struct *p);
1da177e4 2702
1da177e4
LT
2703extern void proc_caches_init(void);
2704extern void flush_signals(struct task_struct *);
10ab825b 2705extern void ignore_signals(struct task_struct *);
1da177e4
LT
2706extern void flush_signal_handlers(struct task_struct *, int force_default);
2707extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2708
be0e6f29 2709static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2710{
be0e6f29
ON
2711 struct task_struct *tsk = current;
2712 siginfo_t __info;
1da177e4
LT
2713 int ret;
2714
be0e6f29
ON
2715 spin_lock_irq(&tsk->sighand->siglock);
2716 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2717 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2718
2719 return ret;
53c8f9f1 2720}
1da177e4 2721
9a13049e
ON
2722static inline void kernel_signal_stop(void)
2723{
2724 spin_lock_irq(&current->sighand->siglock);
2725 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2726 __set_current_state(TASK_STOPPED);
2727 spin_unlock_irq(&current->sighand->siglock);
2728
2729 schedule();
2730}
2731
1da177e4
LT
2732extern void release_task(struct task_struct * p);
2733extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2734extern int force_sigsegv(int, struct task_struct *);
2735extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2736extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2737extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2738extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2739 const struct cred *, u32);
c4b92fc1
EB
2740extern int kill_pgrp(struct pid *pid, int sig, int priv);
2741extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2742extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2743extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2744extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2745extern void force_sig(int, struct task_struct *);
1da177e4 2746extern int send_sig(int, struct task_struct *, int);
09faef11 2747extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2748extern struct sigqueue *sigqueue_alloc(void);
2749extern void sigqueue_free(struct sigqueue *);
ac5c2153 2750extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2751extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2752
7e781418
AL
2753#ifdef TIF_RESTORE_SIGMASK
2754/*
2755 * Legacy restore_sigmask accessors. These are inefficient on
2756 * SMP architectures because they require atomic operations.
2757 */
2758
2759/**
2760 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2761 *
2762 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2763 * will run before returning to user mode, to process the flag. For
2764 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2765 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2766 * arch code will notice on return to user mode, in case those bits
2767 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2768 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2769 */
2770static inline void set_restore_sigmask(void)
2771{
2772 set_thread_flag(TIF_RESTORE_SIGMASK);
2773 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2774}
2775static inline void clear_restore_sigmask(void)
2776{
2777 clear_thread_flag(TIF_RESTORE_SIGMASK);
2778}
2779static inline bool test_restore_sigmask(void)
2780{
2781 return test_thread_flag(TIF_RESTORE_SIGMASK);
2782}
2783static inline bool test_and_clear_restore_sigmask(void)
2784{
2785 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2786}
2787
2788#else /* TIF_RESTORE_SIGMASK */
2789
2790/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2791static inline void set_restore_sigmask(void)
2792{
2793 current->restore_sigmask = true;
2794 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2795}
2796static inline void clear_restore_sigmask(void)
2797{
2798 current->restore_sigmask = false;
2799}
2800static inline bool test_restore_sigmask(void)
2801{
2802 return current->restore_sigmask;
2803}
2804static inline bool test_and_clear_restore_sigmask(void)
2805{
2806 if (!current->restore_sigmask)
2807 return false;
2808 current->restore_sigmask = false;
2809 return true;
2810}
2811#endif
2812
51a7b448
AV
2813static inline void restore_saved_sigmask(void)
2814{
2815 if (test_and_clear_restore_sigmask())
77097ae5 2816 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2817}
2818
b7f9a11a
AV
2819static inline sigset_t *sigmask_to_save(void)
2820{
2821 sigset_t *res = &current->blocked;
2822 if (unlikely(test_restore_sigmask()))
2823 res = &current->saved_sigmask;
2824 return res;
2825}
2826
9ec52099
CLG
2827static inline int kill_cad_pid(int sig, int priv)
2828{
2829 return kill_pid(cad_pid, sig, priv);
2830}
2831
1da177e4
LT
2832/* These can be the second arg to send_sig_info/send_group_sig_info. */
2833#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2834#define SEND_SIG_PRIV ((struct siginfo *) 1)
2835#define SEND_SIG_FORCED ((struct siginfo *) 2)
2836
2a855dd0
SAS
2837/*
2838 * True if we are on the alternate signal stack.
2839 */
1da177e4
LT
2840static inline int on_sig_stack(unsigned long sp)
2841{
c876eeab
AL
2842 /*
2843 * If the signal stack is SS_AUTODISARM then, by construction, we
2844 * can't be on the signal stack unless user code deliberately set
2845 * SS_AUTODISARM when we were already on it.
2846 *
2847 * This improves reliability: if user state gets corrupted such that
2848 * the stack pointer points very close to the end of the signal stack,
2849 * then this check will enable the signal to be handled anyway.
2850 */
2851 if (current->sas_ss_flags & SS_AUTODISARM)
2852 return 0;
2853
2a855dd0
SAS
2854#ifdef CONFIG_STACK_GROWSUP
2855 return sp >= current->sas_ss_sp &&
2856 sp - current->sas_ss_sp < current->sas_ss_size;
2857#else
2858 return sp > current->sas_ss_sp &&
2859 sp - current->sas_ss_sp <= current->sas_ss_size;
2860#endif
1da177e4
LT
2861}
2862
2863static inline int sas_ss_flags(unsigned long sp)
2864{
72f15c03
RW
2865 if (!current->sas_ss_size)
2866 return SS_DISABLE;
2867
2868 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2869}
2870
2a742138
SS
2871static inline void sas_ss_reset(struct task_struct *p)
2872{
2873 p->sas_ss_sp = 0;
2874 p->sas_ss_size = 0;
2875 p->sas_ss_flags = SS_DISABLE;
2876}
2877
5a1b98d3
AV
2878static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2879{
2880 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2881#ifdef CONFIG_STACK_GROWSUP
2882 return current->sas_ss_sp;
2883#else
2884 return current->sas_ss_sp + current->sas_ss_size;
2885#endif
2886 return sp;
2887}
2888
1da177e4
LT
2889/*
2890 * Routines for handling mm_structs
2891 */
2892extern struct mm_struct * mm_alloc(void);
2893
f1f10076
VN
2894/**
2895 * mmgrab() - Pin a &struct mm_struct.
2896 * @mm: The &struct mm_struct to pin.
2897 *
2898 * Make sure that @mm will not get freed even after the owning task
2899 * exits. This doesn't guarantee that the associated address space
2900 * will still exist later on and mmget_not_zero() has to be used before
2901 * accessing it.
2902 *
2903 * This is a preferred way to to pin @mm for a longer/unbounded amount
2904 * of time.
2905 *
2906 * Use mmdrop() to release the reference acquired by mmgrab().
2907 *
2908 * See also <Documentation/vm/active_mm.txt> for an in-depth explanation
2909 * of &mm_struct.mm_count vs &mm_struct.mm_users.
2910 */
2911static inline void mmgrab(struct mm_struct *mm)
2912{
2913 atomic_inc(&mm->mm_count);
2914}
2915
1da177e4 2916/* mmdrop drops the mm and the page tables */
b3c97528 2917extern void __mmdrop(struct mm_struct *);
d2005e3f 2918static inline void mmdrop(struct mm_struct *mm)
1da177e4 2919{
6fb43d7b 2920 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2921 __mmdrop(mm);
2922}
2923
7283094e
MH
2924static inline void mmdrop_async_fn(struct work_struct *work)
2925{
2926 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2927 __mmdrop(mm);
2928}
2929
2930static inline void mmdrop_async(struct mm_struct *mm)
2931{
2932 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2933 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2934 schedule_work(&mm->async_put_work);
2935 }
2936}
2937
3fce371b
VN
2938/**
2939 * mmget() - Pin the address space associated with a &struct mm_struct.
2940 * @mm: The address space to pin.
2941 *
2942 * Make sure that the address space of the given &struct mm_struct doesn't
2943 * go away. This does not protect against parts of the address space being
2944 * modified or freed, however.
2945 *
2946 * Never use this function to pin this address space for an
2947 * unbounded/indefinite amount of time.
2948 *
2949 * Use mmput() to release the reference acquired by mmget().
2950 *
2951 * See also <Documentation/vm/active_mm.txt> for an in-depth explanation
2952 * of &mm_struct.mm_count vs &mm_struct.mm_users.
2953 */
2954static inline void mmget(struct mm_struct *mm)
2955{
2956 atomic_inc(&mm->mm_users);
2957}
2958
d2005e3f
ON
2959static inline bool mmget_not_zero(struct mm_struct *mm)
2960{
2961 return atomic_inc_not_zero(&mm->mm_users);
2962}
2963
1da177e4
LT
2964/* mmput gets rid of the mappings and all user-space */
2965extern void mmput(struct mm_struct *);
7ef949d7
MH
2966#ifdef CONFIG_MMU
2967/* same as above but performs the slow path from the async context. Can
ec8d7c14
MH
2968 * be called from the atomic context as well
2969 */
2970extern void mmput_async(struct mm_struct *);
7ef949d7 2971#endif
ec8d7c14 2972
1da177e4
LT
2973/* Grab a reference to a task's mm, if it is not already going away */
2974extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2975/*
2976 * Grab a reference to a task's mm, if it is not already going away
2977 * and ptrace_may_access with the mode parameter passed to it
2978 * succeeds.
2979 */
2980extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2981/* Remove the current tasks stale references to the old mm_struct */
2982extern void mm_release(struct task_struct *, struct mm_struct *);
2983
3033f14a
JT
2984#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2985extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2986 struct task_struct *, unsigned long);
2987#else
6f2c55b8 2988extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2989 struct task_struct *);
3033f14a
JT
2990
2991/* Architectures that haven't opted into copy_thread_tls get the tls argument
2992 * via pt_regs, so ignore the tls argument passed via C. */
2993static inline int copy_thread_tls(
2994 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2995 struct task_struct *p, unsigned long tls)
2996{
2997 return copy_thread(clone_flags, sp, arg, p);
2998}
2999#endif
1da177e4 3000extern void flush_thread(void);
5f56a5df
JS
3001
3002#ifdef CONFIG_HAVE_EXIT_THREAD
e6464694 3003extern void exit_thread(struct task_struct *tsk);
5f56a5df 3004#else
e6464694 3005static inline void exit_thread(struct task_struct *tsk)
5f56a5df
JS
3006{
3007}
3008#endif
1da177e4 3009
1da177e4 3010extern void exit_files(struct task_struct *);
a7e5328a 3011extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 3012
1da177e4 3013extern void exit_itimers(struct signal_struct *);
cbaffba1 3014extern void flush_itimer_signals(void);
1da177e4 3015
9402c95f 3016extern void do_group_exit(int);
1da177e4 3017
c4ad8f98 3018extern int do_execve(struct filename *,
d7627467 3019 const char __user * const __user *,
da3d4c5f 3020 const char __user * const __user *);
51f39a1f
DD
3021extern int do_execveat(int, struct filename *,
3022 const char __user * const __user *,
3023 const char __user * const __user *,
3024 int);
3033f14a 3025extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 3026extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 3027struct task_struct *fork_idle(int);
2aa3a7f8 3028extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 3029
82b89778
AH
3030extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
3031static inline void set_task_comm(struct task_struct *tsk, const char *from)
3032{
3033 __set_task_comm(tsk, from, false);
3034}
59714d65 3035extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
3036
3037#ifdef CONFIG_SMP
317f3941 3038void scheduler_ipi(void);
85ba2d86 3039extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 3040#else
184748cc 3041static inline void scheduler_ipi(void) { }
85ba2d86
RM
3042static inline unsigned long wait_task_inactive(struct task_struct *p,
3043 long match_state)
3044{
3045 return 1;
3046}
1da177e4
LT
3047#endif
3048
fafe870f
FW
3049#define tasklist_empty() \
3050 list_empty(&init_task.tasks)
3051
05725f7e
JP
3052#define next_task(p) \
3053 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
3054
3055#define for_each_process(p) \
3056 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
3057
5bb459bb 3058extern bool current_is_single_threaded(void);
d84f4f99 3059
1da177e4
LT
3060/*
3061 * Careful: do_each_thread/while_each_thread is a double loop so
3062 * 'break' will not work as expected - use goto instead.
3063 */
3064#define do_each_thread(g, t) \
3065 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3066
3067#define while_each_thread(g, t) \
3068 while ((t = next_thread(t)) != g)
3069
0c740d0a
ON
3070#define __for_each_thread(signal, t) \
3071 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3072
3073#define for_each_thread(p, t) \
3074 __for_each_thread((p)->signal, t)
3075
3076/* Careful: this is a double loop, 'break' won't work as expected. */
3077#define for_each_process_thread(p, t) \
3078 for_each_process(p) for_each_thread(p, t)
3079
0f1b92cb
ON
3080typedef int (*proc_visitor)(struct task_struct *p, void *data);
3081void walk_process_tree(struct task_struct *top, proc_visitor, void *);
3082
7e49827c
ON
3083static inline int get_nr_threads(struct task_struct *tsk)
3084{
b3ac022c 3085 return tsk->signal->nr_threads;
7e49827c
ON
3086}
3087
087806b1
ON
3088static inline bool thread_group_leader(struct task_struct *p)
3089{
3090 return p->exit_signal >= 0;
3091}
1da177e4 3092
0804ef4b
EB
3093/* Do to the insanities of de_thread it is possible for a process
3094 * to have the pid of the thread group leader without actually being
3095 * the thread group leader. For iteration through the pids in proc
3096 * all we care about is that we have a task with the appropriate
3097 * pid, we don't actually care if we have the right task.
3098 */
e1403b8e 3099static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 3100{
e1403b8e 3101 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
3102}
3103
bac0abd6 3104static inline
e1403b8e 3105bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 3106{
e1403b8e 3107 return p1->signal == p2->signal;
bac0abd6
PE
3108}
3109
36c8b586 3110static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 3111{
05725f7e
JP
3112 return list_entry_rcu(p->thread_group.next,
3113 struct task_struct, thread_group);
47e65328
ON
3114}
3115
e868171a 3116static inline int thread_group_empty(struct task_struct *p)
1da177e4 3117{
47e65328 3118 return list_empty(&p->thread_group);
1da177e4
LT
3119}
3120
3121#define delay_group_leader(p) \
3122 (thread_group_leader(p) && !thread_group_empty(p))
3123
1da177e4 3124/*
260ea101 3125 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 3126 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 3127 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 3128 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
3129 *
3130 * Nests both inside and outside of read_lock(&tasklist_lock).
3131 * It must not be nested with write_lock_irq(&tasklist_lock),
3132 * neither inside nor outside.
3133 */
3134static inline void task_lock(struct task_struct *p)
3135{
3136 spin_lock(&p->alloc_lock);
3137}
3138
3139static inline void task_unlock(struct task_struct *p)
3140{
3141 spin_unlock(&p->alloc_lock);
3142}
3143
b8ed374e 3144extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
3145 unsigned long *flags);
3146
9388dc30
AV
3147static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3148 unsigned long *flags)
3149{
3150 struct sighand_struct *ret;
3151
3152 ret = __lock_task_sighand(tsk, flags);
3153 (void)__cond_lock(&tsk->sighand->siglock, ret);
3154 return ret;
3155}
b8ed374e 3156
f63ee72e
ON
3157static inline void unlock_task_sighand(struct task_struct *tsk,
3158 unsigned long *flags)
3159{
3160 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3161}
3162
c65eacbe
AL
3163#ifdef CONFIG_THREAD_INFO_IN_TASK
3164
3165static inline struct thread_info *task_thread_info(struct task_struct *task)
3166{
3167 return &task->thread_info;
3168}
c6c314a6
AL
3169
3170/*
3171 * When accessing the stack of a non-current task that might exit, use
3172 * try_get_task_stack() instead. task_stack_page will return a pointer
3173 * that could get freed out from under you.
3174 */
c65eacbe
AL
3175static inline void *task_stack_page(const struct task_struct *task)
3176{
3177 return task->stack;
3178}
c6c314a6 3179
c65eacbe 3180#define setup_thread_stack(new,old) do { } while(0)
c6c314a6 3181
c65eacbe
AL
3182static inline unsigned long *end_of_stack(const struct task_struct *task)
3183{
3184 return task->stack;
3185}
3186
3187#elif !defined(__HAVE_THREAD_FUNCTIONS)
f037360f 3188
f7e4217b 3189#define task_thread_info(task) ((struct thread_info *)(task)->stack)
c65eacbe 3190#define task_stack_page(task) ((void *)(task)->stack)
a1261f54 3191
10ebffde
AV
3192static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3193{
3194 *task_thread_info(p) = *task_thread_info(org);
3195 task_thread_info(p)->task = p;
3196}
3197
6a40281a
CE
3198/*
3199 * Return the address of the last usable long on the stack.
3200 *
3201 * When the stack grows down, this is just above the thread
3202 * info struct. Going any lower will corrupt the threadinfo.
3203 *
3204 * When the stack grows up, this is the highest address.
3205 * Beyond that position, we corrupt data on the next page.
3206 */
10ebffde
AV
3207static inline unsigned long *end_of_stack(struct task_struct *p)
3208{
6a40281a
CE
3209#ifdef CONFIG_STACK_GROWSUP
3210 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3211#else
f7e4217b 3212 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 3213#endif
10ebffde
AV
3214}
3215
f037360f 3216#endif
c6c314a6 3217
68f24b08
AL
3218#ifdef CONFIG_THREAD_INFO_IN_TASK
3219static inline void *try_get_task_stack(struct task_struct *tsk)
3220{
3221 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3222 task_stack_page(tsk) : NULL;
3223}
3224
3225extern void put_task_stack(struct task_struct *tsk);
3226#else
c6c314a6
AL
3227static inline void *try_get_task_stack(struct task_struct *tsk)
3228{
3229 return task_stack_page(tsk);
3230}
3231
3232static inline void put_task_stack(struct task_struct *tsk) {}
68f24b08 3233#endif
c6c314a6 3234
a70857e4
AT
3235#define task_stack_end_corrupted(task) \
3236 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 3237
8b05c7e6
FT
3238static inline int object_is_on_stack(void *obj)
3239{
3240 void *stack = task_stack_page(current);
3241
3242 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3243}
3244
b235beea 3245extern void thread_stack_cache_init(void);
8c9843e5 3246
7c9f8861
ES
3247#ifdef CONFIG_DEBUG_STACK_USAGE
3248static inline unsigned long stack_not_used(struct task_struct *p)
3249{
3250 unsigned long *n = end_of_stack(p);
3251
3252 do { /* Skip over canary */
6c31da34
HD
3253# ifdef CONFIG_STACK_GROWSUP
3254 n--;
3255# else
7c9f8861 3256 n++;
6c31da34 3257# endif
7c9f8861
ES
3258 } while (!*n);
3259
6c31da34
HD
3260# ifdef CONFIG_STACK_GROWSUP
3261 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3262# else
7c9f8861 3263 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 3264# endif
7c9f8861
ES
3265}
3266#endif
d4311ff1 3267extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3268
1da177e4
LT
3269/* set thread flags in other task's structures
3270 * - see asm/thread_info.h for TIF_xxxx flags available
3271 */
3272static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3273{
a1261f54 3274 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3275}
3276
3277static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3278{
a1261f54 3279 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3280}
3281
3282static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3283{
a1261f54 3284 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3285}
3286
3287static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3288{
a1261f54 3289 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3290}
3291
3292static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3293{
a1261f54 3294 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3295}
3296
3297static inline void set_tsk_need_resched(struct task_struct *tsk)
3298{
3299 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3300}
3301
3302static inline void clear_tsk_need_resched(struct task_struct *tsk)
3303{
3304 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3305}
3306
8ae121ac
GH
3307static inline int test_tsk_need_resched(struct task_struct *tsk)
3308{
3309 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3310}
3311
690cc3ff
EB
3312static inline int restart_syscall(void)
3313{
3314 set_tsk_thread_flag(current, TIF_SIGPENDING);
3315 return -ERESTARTNOINTR;
3316}
3317
1da177e4
LT
3318static inline int signal_pending(struct task_struct *p)
3319{
3320 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3321}
f776d12d 3322
d9588725
RM
3323static inline int __fatal_signal_pending(struct task_struct *p)
3324{
3325 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3326}
f776d12d
MW
3327
3328static inline int fatal_signal_pending(struct task_struct *p)
3329{
3330 return signal_pending(p) && __fatal_signal_pending(p);
3331}
3332
16882c1e
ON
3333static inline int signal_pending_state(long state, struct task_struct *p)
3334{
3335 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3336 return 0;
3337 if (!signal_pending(p))
3338 return 0;
3339
16882c1e
ON
3340 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3341}
3342
1da177e4
LT
3343/*
3344 * cond_resched() and cond_resched_lock(): latency reduction via
3345 * explicit rescheduling in places that are safe. The return
3346 * value indicates whether a reschedule was done in fact.
3347 * cond_resched_lock() will drop the spinlock before scheduling,
3348 * cond_resched_softirq() will enable bhs before scheduling.
3349 */
35a773a0 3350#ifndef CONFIG_PREEMPT
c3921ab7 3351extern int _cond_resched(void);
35a773a0
PZ
3352#else
3353static inline int _cond_resched(void) { return 0; }
3354#endif
6f80bd98 3355
613afbf8 3356#define cond_resched() ({ \
3427445a 3357 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3358 _cond_resched(); \
3359})
6f80bd98 3360
613afbf8
FW
3361extern int __cond_resched_lock(spinlock_t *lock);
3362
3363#define cond_resched_lock(lock) ({ \
3427445a 3364 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3365 __cond_resched_lock(lock); \
3366})
3367
3368extern int __cond_resched_softirq(void);
3369
75e1056f 3370#define cond_resched_softirq() ({ \
3427445a 3371 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3372 __cond_resched_softirq(); \
613afbf8 3373})
1da177e4 3374
f6f3c437
SH
3375static inline void cond_resched_rcu(void)
3376{
3377#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3378 rcu_read_unlock();
3379 cond_resched();
3380 rcu_read_lock();
3381#endif
3382}
3383
1da177e4
LT
3384/*
3385 * Does a critical section need to be broken due to another
95c354fe
NP
3386 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3387 * but a general need for low latency)
1da177e4 3388 */
95c354fe 3389static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3390{
95c354fe
NP
3391#ifdef CONFIG_PREEMPT
3392 return spin_is_contended(lock);
3393#else
1da177e4 3394 return 0;
95c354fe 3395#endif
1da177e4
LT
3396}
3397
ee761f62
TG
3398/*
3399 * Idle thread specific functions to determine the need_resched
69dd0f84 3400 * polling state.
ee761f62 3401 */
69dd0f84 3402#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3403static inline int tsk_is_polling(struct task_struct *p)
3404{
3405 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3406}
ea811747
PZ
3407
3408static inline void __current_set_polling(void)
3a98f871
TG
3409{
3410 set_thread_flag(TIF_POLLING_NRFLAG);
3411}
3412
ea811747
PZ
3413static inline bool __must_check current_set_polling_and_test(void)
3414{
3415 __current_set_polling();
3416
3417 /*
3418 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3419 * paired by resched_curr()
ea811747 3420 */
4e857c58 3421 smp_mb__after_atomic();
ea811747
PZ
3422
3423 return unlikely(tif_need_resched());
3424}
3425
3426static inline void __current_clr_polling(void)
3a98f871
TG
3427{
3428 clear_thread_flag(TIF_POLLING_NRFLAG);
3429}
ea811747
PZ
3430
3431static inline bool __must_check current_clr_polling_and_test(void)
3432{
3433 __current_clr_polling();
3434
3435 /*
3436 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3437 * paired by resched_curr()
ea811747 3438 */
4e857c58 3439 smp_mb__after_atomic();
ea811747
PZ
3440
3441 return unlikely(tif_need_resched());
3442}
3443
ee761f62
TG
3444#else
3445static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3446static inline void __current_set_polling(void) { }
3447static inline void __current_clr_polling(void) { }
3448
3449static inline bool __must_check current_set_polling_and_test(void)
3450{
3451 return unlikely(tif_need_resched());
3452}
3453static inline bool __must_check current_clr_polling_and_test(void)
3454{
3455 return unlikely(tif_need_resched());
3456}
ee761f62
TG
3457#endif
3458
8cb75e0c
PZ
3459static inline void current_clr_polling(void)
3460{
3461 __current_clr_polling();
3462
3463 /*
3464 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3465 * Once the bit is cleared, we'll get IPIs with every new
3466 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3467 * fold.
3468 */
8875125e 3469 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3470
3471 preempt_fold_need_resched();
3472}
3473
75f93fed
PZ
3474static __always_inline bool need_resched(void)
3475{
3476 return unlikely(tif_need_resched());
3477}
3478
f06febc9
FM
3479/*
3480 * Thread group CPU time accounting.
3481 */
4cd4c1b4 3482void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3483void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3484
7bb44ade
RM
3485/*
3486 * Reevaluate whether the task has signals pending delivery.
3487 * Wake the task if so.
3488 * This is required every time the blocked sigset_t changes.
3489 * callers must hold sighand->siglock.
3490 */
3491extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3492extern void recalc_sigpending(void);
3493
910ffdb1
ON
3494extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3495
3496static inline void signal_wake_up(struct task_struct *t, bool resume)
3497{
3498 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3499}
3500static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3501{
3502 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3503}
1da177e4
LT
3504
3505/*
3506 * Wrappers for p->thread_info->cpu access. No-op on UP.
3507 */
3508#ifdef CONFIG_SMP
3509
3510static inline unsigned int task_cpu(const struct task_struct *p)
3511{
c65eacbe
AL
3512#ifdef CONFIG_THREAD_INFO_IN_TASK
3513 return p->cpu;
3514#else
a1261f54 3515 return task_thread_info(p)->cpu;
c65eacbe 3516#endif
1da177e4
LT
3517}
3518
b32e86b4
IM
3519static inline int task_node(const struct task_struct *p)
3520{
3521 return cpu_to_node(task_cpu(p));
3522}
3523
c65cc870 3524extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3525
3526#else
3527
3528static inline unsigned int task_cpu(const struct task_struct *p)
3529{
3530 return 0;
3531}
3532
3533static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3534{
3535}
3536
3537#endif /* CONFIG_SMP */
3538
d9345c65
PX
3539/*
3540 * In order to reduce various lock holder preemption latencies provide an
3541 * interface to see if a vCPU is currently running or not.
3542 *
3543 * This allows us to terminate optimistic spin loops and block, analogous to
3544 * the native optimistic spin heuristic of testing if the lock owner task is
3545 * running or not.
3546 */
3547#ifndef vcpu_is_preempted
3548# define vcpu_is_preempted(cpu) false
3549#endif
3550
96f874e2
RR
3551extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3552extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3553
7c941438 3554#ifdef CONFIG_CGROUP_SCHED
07e06b01 3555extern struct task_group root_task_group;
8323f26c 3556#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3557
54e99124
DG
3558extern int task_can_switch_user(struct user_struct *up,
3559 struct task_struct *tsk);
3560
4b98d11b
AD
3561#ifdef CONFIG_TASK_XACCT
3562static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3563{
940389b8 3564 tsk->ioac.rchar += amt;
4b98d11b
AD
3565}
3566
3567static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3568{
940389b8 3569 tsk->ioac.wchar += amt;
4b98d11b
AD
3570}
3571
3572static inline void inc_syscr(struct task_struct *tsk)
3573{
940389b8 3574 tsk->ioac.syscr++;
4b98d11b
AD
3575}
3576
3577static inline void inc_syscw(struct task_struct *tsk)
3578{
940389b8 3579 tsk->ioac.syscw++;
4b98d11b
AD
3580}
3581#else
3582static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3583{
3584}
3585
3586static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3587{
3588}
3589
3590static inline void inc_syscr(struct task_struct *tsk)
3591{
3592}
3593
3594static inline void inc_syscw(struct task_struct *tsk)
3595{
3596}
3597#endif
3598
82455257
DH
3599#ifndef TASK_SIZE_OF
3600#define TASK_SIZE_OF(tsk) TASK_SIZE
3601#endif
3602
f98bafa0 3603#ifdef CONFIG_MEMCG
cf475ad2 3604extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3605#else
3606static inline void mm_update_next_owner(struct mm_struct *mm)
3607{
3608}
f98bafa0 3609#endif /* CONFIG_MEMCG */
cf475ad2 3610
3e10e716
JS
3611static inline unsigned long task_rlimit(const struct task_struct *tsk,
3612 unsigned int limit)
3613{
316c1608 3614 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3615}
3616
3617static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3618 unsigned int limit)
3619{
316c1608 3620 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3621}
3622
3623static inline unsigned long rlimit(unsigned int limit)
3624{
3625 return task_rlimit(current, limit);
3626}
3627
3628static inline unsigned long rlimit_max(unsigned int limit)
3629{
3630 return task_rlimit_max(current, limit);
3631}
3632
58919e83
RW
3633#define SCHED_CPUFREQ_RT (1U << 0)
3634#define SCHED_CPUFREQ_DL (1U << 1)
8c34ab19 3635#define SCHED_CPUFREQ_IOWAIT (1U << 2)
58919e83
RW
3636
3637#define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3638
adaf9fcd
RW
3639#ifdef CONFIG_CPU_FREQ
3640struct update_util_data {
58919e83 3641 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
adaf9fcd
RW
3642};
3643
0bed612b 3644void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
58919e83
RW
3645 void (*func)(struct update_util_data *data, u64 time,
3646 unsigned int flags));
0bed612b 3647void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3648#endif /* CONFIG_CPU_FREQ */
3649
1da177e4 3650#endif