]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
usb-linux: fix max_packet_size for highspeed.
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
e22a25c9 27#include "gdbstub.h"
05330448 28#include "kvm.h"
8369e01c 29#include "bswap.h"
05330448 30
d2f2b8a7
SH
31/* This check must be after config-host.h is included */
32#ifdef CONFIG_EVENTFD
33#include <sys/eventfd.h>
34#endif
35
f65ed4c1
AL
36/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37#define PAGE_SIZE TARGET_PAGE_SIZE
38
05330448
AL
39//#define DEBUG_KVM
40
41#ifdef DEBUG_KVM
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44#else
8c0d577e 45#define DPRINTF(fmt, ...) \
05330448
AL
46 do { } while (0)
47#endif
48
34fc643f
AL
49typedef struct KVMSlot
50{
c227f099
AL
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
34fc643f
AL
54 int slot;
55 int flags;
56} KVMSlot;
05330448 57
5832d1f2
AL
58typedef struct kvm_dirty_log KVMDirtyLog;
59
05330448
AL
60struct KVMState
61{
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
f65ed4c1 65 int coalesced_mmio;
62a2744c 66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
e69917e2 67 int broken_set_mem_region;
4495d6a7 68 int migration_log;
a0fb002c 69 int vcpu_events;
b0b1d690 70 int robust_singlestep;
ff44f1a3 71 int debugregs;
e22a25c9
AL
72#ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74#endif
6f725c13
GC
75 int irqchip_in_kernel;
76 int pit_in_kernel;
f1665b21 77 int xsave, xcrs;
d2f2b8a7 78 int many_ioeventfds;
05330448
AL
79};
80
6a7af8cb 81KVMState *kvm_state;
05330448 82
94a8d39a
JK
83static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
87};
88
05330448
AL
89static KVMSlot *kvm_alloc_slot(KVMState *s)
90{
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
a426e122 94 if (s->slots[i].memory_size == 0) {
05330448 95 return &s->slots[i];
a426e122 96 }
05330448
AL
97 }
98
d3f8d37f
AL
99 fprintf(stderr, "%s: no free slot available\n", __func__);
100 abort();
101}
102
103static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
d3f8d37f
AL
106{
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
111
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
114 return mem;
115 }
116 }
117
05330448
AL
118 return NULL;
119}
120
6152e2ae
AL
121/*
122 * Find overlapping slot with lowest start address
123 */
124static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
05330448 127{
6152e2ae 128 KVMSlot *found = NULL;
05330448
AL
129 int i;
130
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
133
6152e2ae
AL
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
136 continue;
137 }
138
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
141 found = mem;
142 }
05330448
AL
143 }
144
6152e2ae 145 return found;
05330448
AL
146}
147
983dfc3b
HY
148int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
150{
151 int i;
152
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
155
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159 return 1;
160 }
161 }
162
163 return 0;
164}
165
5832d1f2
AL
166static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
167{
168 struct kvm_userspace_memory_region mem;
169
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
b2e0a138 173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
5832d1f2 174 mem.flags = slot->flags;
4495d6a7
JK
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
177 }
5832d1f2
AL
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
179}
180
8d2ba1fb
JK
181static void kvm_reset_vcpu(void *opaque)
182{
183 CPUState *env = opaque;
184
caa5af0f 185 kvm_arch_reset_vcpu(env);
8d2ba1fb 186}
5832d1f2 187
6f725c13
GC
188int kvm_irqchip_in_kernel(void)
189{
190 return kvm_state->irqchip_in_kernel;
191}
192
193int kvm_pit_in_kernel(void)
194{
195 return kvm_state->pit_in_kernel;
196}
197
05330448
AL
198int kvm_init_vcpu(CPUState *env)
199{
200 KVMState *s = kvm_state;
201 long mmap_size;
202 int ret;
203
8c0d577e 204 DPRINTF("kvm_init_vcpu\n");
05330448 205
984b5181 206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448 207 if (ret < 0) {
8c0d577e 208 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
209 goto err;
210 }
211
212 env->kvm_fd = ret;
213 env->kvm_state = s;
d841b6c4 214 env->kvm_vcpu_dirty = 1;
05330448
AL
215
216 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
217 if (mmap_size < 0) {
748a680b 218 ret = mmap_size;
8c0d577e 219 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
220 goto err;
221 }
222
223 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
224 env->kvm_fd, 0);
225 if (env->kvm_run == MAP_FAILED) {
226 ret = -errno;
8c0d577e 227 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
228 goto err;
229 }
230
a426e122
JK
231 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
232 s->coalesced_mmio_ring =
233 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
234 }
62a2744c 235
05330448 236 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 237 if (ret == 0) {
a08d4367 238 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 239 kvm_arch_reset_vcpu(env);
8d2ba1fb 240 }
05330448
AL
241err:
242 return ret;
243}
244
5832d1f2
AL
245/*
246 * dirty pages logging control
247 */
25254bbc
MT
248
249static int kvm_mem_flags(KVMState *s, bool log_dirty)
250{
251 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
252}
253
254static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
5832d1f2
AL
255{
256 KVMState *s = kvm_state;
25254bbc 257 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
4495d6a7
JK
258 int old_flags;
259
4495d6a7 260 old_flags = mem->flags;
5832d1f2 261
25254bbc 262 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
5832d1f2
AL
263 mem->flags = flags;
264
4495d6a7
JK
265 /* If nothing changed effectively, no need to issue ioctl */
266 if (s->migration_log) {
267 flags |= KVM_MEM_LOG_DIRTY_PAGES;
268 }
25254bbc 269
4495d6a7 270 if (flags == old_flags) {
25254bbc 271 return 0;
4495d6a7
JK
272 }
273
5832d1f2
AL
274 return kvm_set_user_memory_region(s, mem);
275}
276
25254bbc
MT
277static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
278 ram_addr_t size, bool log_dirty)
279{
280 KVMState *s = kvm_state;
281 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
282
283 if (mem == NULL) {
284 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
285 TARGET_FMT_plx "\n", __func__, phys_addr,
286 (target_phys_addr_t)(phys_addr + size - 1));
287 return -EINVAL;
288 }
289 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
290}
291
e5896b12
AP
292static int kvm_log_start(CPUPhysMemoryClient *client,
293 target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 294{
25254bbc 295 return kvm_dirty_pages_log_change(phys_addr, size, true);
5832d1f2
AL
296}
297
e5896b12
AP
298static int kvm_log_stop(CPUPhysMemoryClient *client,
299 target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 300{
25254bbc 301 return kvm_dirty_pages_log_change(phys_addr, size, false);
5832d1f2
AL
302}
303
7b8f3b78 304static int kvm_set_migration_log(int enable)
4495d6a7
JK
305{
306 KVMState *s = kvm_state;
307 KVMSlot *mem;
308 int i, err;
309
310 s->migration_log = enable;
311
312 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
313 mem = &s->slots[i];
314
70fedd76
AW
315 if (!mem->memory_size) {
316 continue;
317 }
4495d6a7
JK
318 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
319 continue;
320 }
321 err = kvm_set_user_memory_region(s, mem);
322 if (err) {
323 return err;
324 }
325 }
326 return 0;
327}
328
8369e01c
MT
329/* get kvm's dirty pages bitmap and update qemu's */
330static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
331 unsigned long *bitmap,
332 unsigned long offset,
333 unsigned long mem_size)
96c1606b 334{
8369e01c
MT
335 unsigned int i, j;
336 unsigned long page_number, addr, addr1, c;
337 ram_addr_t ram_addr;
338 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
339 HOST_LONG_BITS;
340
341 /*
342 * bitmap-traveling is faster than memory-traveling (for addr...)
343 * especially when most of the memory is not dirty.
344 */
345 for (i = 0; i < len; i++) {
346 if (bitmap[i] != 0) {
347 c = leul_to_cpu(bitmap[i]);
348 do {
349 j = ffsl(c) - 1;
350 c &= ~(1ul << j);
351 page_number = i * HOST_LONG_BITS + j;
352 addr1 = page_number * TARGET_PAGE_SIZE;
353 addr = offset + addr1;
354 ram_addr = cpu_get_physical_page_desc(addr);
355 cpu_physical_memory_set_dirty(ram_addr);
356 } while (c != 0);
357 }
358 }
359 return 0;
96c1606b
AG
360}
361
8369e01c
MT
362#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
363
5832d1f2
AL
364/**
365 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
366 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
367 * This means all bits are set to dirty.
368 *
d3f8d37f 369 * @start_add: start of logged region.
5832d1f2
AL
370 * @end_addr: end of logged region.
371 */
7b8f3b78 372static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
a426e122 373 target_phys_addr_t end_addr)
5832d1f2
AL
374{
375 KVMState *s = kvm_state;
151f7749 376 unsigned long size, allocated_size = 0;
151f7749
JK
377 KVMDirtyLog d;
378 KVMSlot *mem;
379 int ret = 0;
5832d1f2 380
151f7749
JK
381 d.dirty_bitmap = NULL;
382 while (start_addr < end_addr) {
383 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
384 if (mem == NULL) {
385 break;
386 }
5832d1f2 387
51b0c606
MT
388 /* XXX bad kernel interface alert
389 * For dirty bitmap, kernel allocates array of size aligned to
390 * bits-per-long. But for case when the kernel is 64bits and
391 * the userspace is 32bits, userspace can't align to the same
392 * bits-per-long, since sizeof(long) is different between kernel
393 * and user space. This way, userspace will provide buffer which
394 * may be 4 bytes less than the kernel will use, resulting in
395 * userspace memory corruption (which is not detectable by valgrind
396 * too, in most cases).
397 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
398 * a hope that sizeof(long) wont become >8 any time soon.
399 */
400 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
401 /*HOST_LONG_BITS*/ 64) / 8;
151f7749
JK
402 if (!d.dirty_bitmap) {
403 d.dirty_bitmap = qemu_malloc(size);
404 } else if (size > allocated_size) {
405 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
406 }
407 allocated_size = size;
408 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 409
151f7749 410 d.slot = mem->slot;
5832d1f2 411
6e489f3f 412 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 413 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
414 ret = -1;
415 break;
416 }
5832d1f2 417
8369e01c
MT
418 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
419 mem->start_addr, mem->memory_size);
420 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 421 }
5832d1f2 422 qemu_free(d.dirty_bitmap);
151f7749
JK
423
424 return ret;
5832d1f2
AL
425}
426
c227f099 427int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
428{
429 int ret = -ENOSYS;
f65ed4c1
AL
430 KVMState *s = kvm_state;
431
432 if (s->coalesced_mmio) {
433 struct kvm_coalesced_mmio_zone zone;
434
435 zone.addr = start;
436 zone.size = size;
437
438 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
439 }
f65ed4c1
AL
440
441 return ret;
442}
443
c227f099 444int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
445{
446 int ret = -ENOSYS;
f65ed4c1
AL
447 KVMState *s = kvm_state;
448
449 if (s->coalesced_mmio) {
450 struct kvm_coalesced_mmio_zone zone;
451
452 zone.addr = start;
453 zone.size = size;
454
455 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
456 }
f65ed4c1
AL
457
458 return ret;
459}
460
ad7b8b33
AL
461int kvm_check_extension(KVMState *s, unsigned int extension)
462{
463 int ret;
464
465 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
466 if (ret < 0) {
467 ret = 0;
468 }
469
470 return ret;
471}
472
d2f2b8a7
SH
473static int kvm_check_many_ioeventfds(void)
474{
d0dcac83
SH
475 /* Userspace can use ioeventfd for io notification. This requires a host
476 * that supports eventfd(2) and an I/O thread; since eventfd does not
477 * support SIGIO it cannot interrupt the vcpu.
478 *
479 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
480 * can avoid creating too many ioeventfds.
481 */
d0dcac83 482#if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
d2f2b8a7
SH
483 int ioeventfds[7];
484 int i, ret = 0;
485 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
486 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
487 if (ioeventfds[i] < 0) {
488 break;
489 }
490 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
491 if (ret < 0) {
492 close(ioeventfds[i]);
493 break;
494 }
495 }
496
497 /* Decide whether many devices are supported or not */
498 ret = i == ARRAY_SIZE(ioeventfds);
499
500 while (i-- > 0) {
501 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
502 close(ioeventfds[i]);
503 }
504 return ret;
505#else
506 return 0;
507#endif
508}
509
94a8d39a
JK
510static const KVMCapabilityInfo *
511kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
512{
513 while (list->name) {
514 if (!kvm_check_extension(s, list->value)) {
515 return list;
516 }
517 list++;
518 }
519 return NULL;
520}
521
a426e122 522static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
25254bbc 523 ram_addr_t phys_offset, bool log_dirty)
46dbef6a
MT
524{
525 KVMState *s = kvm_state;
526 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
527 KVMSlot *mem, old;
528 int err;
529
14542fea
GN
530 /* kvm works in page size chunks, but the function may be called
531 with sub-page size and unaligned start address. */
532 size = TARGET_PAGE_ALIGN(size);
533 start_addr = TARGET_PAGE_ALIGN(start_addr);
46dbef6a
MT
534
535 /* KVM does not support read-only slots */
536 phys_offset &= ~IO_MEM_ROM;
537
538 while (1) {
539 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
540 if (!mem) {
541 break;
542 }
543
544 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
545 (start_addr + size <= mem->start_addr + mem->memory_size) &&
546 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
547 /* The new slot fits into the existing one and comes with
25254bbc
MT
548 * identical parameters - update flags and done. */
549 kvm_slot_dirty_pages_log_change(mem, log_dirty);
46dbef6a
MT
550 return;
551 }
552
553 old = *mem;
554
555 /* unregister the overlapping slot */
556 mem->memory_size = 0;
557 err = kvm_set_user_memory_region(s, mem);
558 if (err) {
559 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
560 __func__, strerror(-err));
561 abort();
562 }
563
564 /* Workaround for older KVM versions: we can't join slots, even not by
565 * unregistering the previous ones and then registering the larger
566 * slot. We have to maintain the existing fragmentation. Sigh.
567 *
568 * This workaround assumes that the new slot starts at the same
569 * address as the first existing one. If not or if some overlapping
570 * slot comes around later, we will fail (not seen in practice so far)
571 * - and actually require a recent KVM version. */
572 if (s->broken_set_mem_region &&
573 old.start_addr == start_addr && old.memory_size < size &&
574 flags < IO_MEM_UNASSIGNED) {
575 mem = kvm_alloc_slot(s);
576 mem->memory_size = old.memory_size;
577 mem->start_addr = old.start_addr;
578 mem->phys_offset = old.phys_offset;
25254bbc 579 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
580
581 err = kvm_set_user_memory_region(s, mem);
582 if (err) {
583 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
584 strerror(-err));
585 abort();
586 }
587
588 start_addr += old.memory_size;
589 phys_offset += old.memory_size;
590 size -= old.memory_size;
591 continue;
592 }
593
594 /* register prefix slot */
595 if (old.start_addr < start_addr) {
596 mem = kvm_alloc_slot(s);
597 mem->memory_size = start_addr - old.start_addr;
598 mem->start_addr = old.start_addr;
599 mem->phys_offset = old.phys_offset;
25254bbc 600 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
601
602 err = kvm_set_user_memory_region(s, mem);
603 if (err) {
604 fprintf(stderr, "%s: error registering prefix slot: %s\n",
605 __func__, strerror(-err));
d4d6868f
AG
606#ifdef TARGET_PPC
607 fprintf(stderr, "%s: This is probably because your kernel's " \
608 "PAGE_SIZE is too big. Please try to use 4k " \
609 "PAGE_SIZE!\n", __func__);
610#endif
46dbef6a
MT
611 abort();
612 }
613 }
614
615 /* register suffix slot */
616 if (old.start_addr + old.memory_size > start_addr + size) {
617 ram_addr_t size_delta;
618
619 mem = kvm_alloc_slot(s);
620 mem->start_addr = start_addr + size;
621 size_delta = mem->start_addr - old.start_addr;
622 mem->memory_size = old.memory_size - size_delta;
623 mem->phys_offset = old.phys_offset + size_delta;
25254bbc 624 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
625
626 err = kvm_set_user_memory_region(s, mem);
627 if (err) {
628 fprintf(stderr, "%s: error registering suffix slot: %s\n",
629 __func__, strerror(-err));
630 abort();
631 }
632 }
633 }
634
635 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 636 if (!size) {
46dbef6a 637 return;
a426e122 638 }
46dbef6a 639 /* KVM does not need to know about this memory */
a426e122 640 if (flags >= IO_MEM_UNASSIGNED) {
46dbef6a 641 return;
a426e122 642 }
46dbef6a
MT
643 mem = kvm_alloc_slot(s);
644 mem->memory_size = size;
645 mem->start_addr = start_addr;
646 mem->phys_offset = phys_offset;
25254bbc 647 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
648
649 err = kvm_set_user_memory_region(s, mem);
650 if (err) {
651 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
652 strerror(-err));
653 abort();
654 }
655}
656
7b8f3b78 657static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
a426e122 658 target_phys_addr_t start_addr,
0fd542fb
MT
659 ram_addr_t size, ram_addr_t phys_offset,
660 bool log_dirty)
7b8f3b78 661{
25254bbc 662 kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty);
7b8f3b78
MT
663}
664
665static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
a426e122
JK
666 target_phys_addr_t start_addr,
667 target_phys_addr_t end_addr)
7b8f3b78 668{
a426e122 669 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
7b8f3b78
MT
670}
671
672static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
a426e122 673 int enable)
7b8f3b78 674{
a426e122 675 return kvm_set_migration_log(enable);
7b8f3b78
MT
676}
677
678static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
a426e122
JK
679 .set_memory = kvm_client_set_memory,
680 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
681 .migration_log = kvm_client_migration_log,
e5896b12
AP
682 .log_start = kvm_log_start,
683 .log_stop = kvm_log_stop,
7b8f3b78
MT
684};
685
aa7f74d1
JK
686static void kvm_handle_interrupt(CPUState *env, int mask)
687{
688 env->interrupt_request |= mask;
689
690 if (!qemu_cpu_is_self(env)) {
691 qemu_cpu_kick(env);
692 }
693}
694
cad1e282 695int kvm_init(void)
05330448 696{
168ccc11
JK
697 static const char upgrade_note[] =
698 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
699 "(see http://sourceforge.net/projects/kvm).\n";
05330448 700 KVMState *s;
94a8d39a 701 const KVMCapabilityInfo *missing_cap;
05330448
AL
702 int ret;
703 int i;
704
05330448 705 s = qemu_mallocz(sizeof(KVMState));
05330448 706
e22a25c9 707#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 708 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 709#endif
a426e122 710 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 711 s->slots[i].slot = i;
a426e122 712 }
05330448 713 s->vmfd = -1;
40ff6d7e 714 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
715 if (s->fd == -1) {
716 fprintf(stderr, "Could not access KVM kernel module: %m\n");
717 ret = -errno;
718 goto err;
719 }
720
721 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
722 if (ret < KVM_API_VERSION) {
a426e122 723 if (ret > 0) {
05330448 724 ret = -EINVAL;
a426e122 725 }
05330448
AL
726 fprintf(stderr, "kvm version too old\n");
727 goto err;
728 }
729
730 if (ret > KVM_API_VERSION) {
731 ret = -EINVAL;
732 fprintf(stderr, "kvm version not supported\n");
733 goto err;
734 }
735
736 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
737 if (s->vmfd < 0) {
738#ifdef TARGET_S390X
739 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
740 "your host kernel command line\n");
741#endif
05330448 742 goto err;
0104dcac 743 }
05330448 744
94a8d39a
JK
745 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
746 if (!missing_cap) {
747 missing_cap =
748 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 749 }
94a8d39a 750 if (missing_cap) {
ad7b8b33 751 ret = -EINVAL;
94a8d39a
JK
752 fprintf(stderr, "kvm does not support %s\n%s",
753 missing_cap->name, upgrade_note);
d85dc283
AL
754 goto err;
755 }
756
ad7b8b33 757 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 758
e69917e2
JK
759 s->broken_set_mem_region = 1;
760#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
14a09518 761 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
762 if (ret > 0) {
763 s->broken_set_mem_region = 0;
764 }
765#endif
766
a0fb002c
JK
767 s->vcpu_events = 0;
768#ifdef KVM_CAP_VCPU_EVENTS
769 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
770#endif
771
b0b1d690
JK
772 s->robust_singlestep = 0;
773#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
774 s->robust_singlestep =
775 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
776#endif
777
ff44f1a3
JK
778 s->debugregs = 0;
779#ifdef KVM_CAP_DEBUGREGS
780 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
781#endif
782
f1665b21
SY
783 s->xsave = 0;
784#ifdef KVM_CAP_XSAVE
785 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
786#endif
787
788 s->xcrs = 0;
789#ifdef KVM_CAP_XCRS
790 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
791#endif
792
cad1e282 793 ret = kvm_arch_init(s);
a426e122 794 if (ret < 0) {
05330448 795 goto err;
a426e122 796 }
05330448
AL
797
798 kvm_state = s;
7b8f3b78 799 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
05330448 800
d2f2b8a7
SH
801 s->many_ioeventfds = kvm_check_many_ioeventfds();
802
aa7f74d1
JK
803 cpu_interrupt_handler = kvm_handle_interrupt;
804
05330448
AL
805 return 0;
806
807err:
808 if (s) {
a426e122 809 if (s->vmfd != -1) {
05330448 810 close(s->vmfd);
a426e122
JK
811 }
812 if (s->fd != -1) {
05330448 813 close(s->fd);
a426e122 814 }
05330448
AL
815 }
816 qemu_free(s);
817
818 return ret;
819}
820
b30e93e9
JK
821static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
822 uint32_t count)
05330448
AL
823{
824 int i;
825 uint8_t *ptr = data;
826
827 for (i = 0; i < count; i++) {
828 if (direction == KVM_EXIT_IO_IN) {
829 switch (size) {
830 case 1:
afcea8cb 831 stb_p(ptr, cpu_inb(port));
05330448
AL
832 break;
833 case 2:
afcea8cb 834 stw_p(ptr, cpu_inw(port));
05330448
AL
835 break;
836 case 4:
afcea8cb 837 stl_p(ptr, cpu_inl(port));
05330448
AL
838 break;
839 }
840 } else {
841 switch (size) {
842 case 1:
afcea8cb 843 cpu_outb(port, ldub_p(ptr));
05330448
AL
844 break;
845 case 2:
afcea8cb 846 cpu_outw(port, lduw_p(ptr));
05330448
AL
847 break;
848 case 4:
afcea8cb 849 cpu_outl(port, ldl_p(ptr));
05330448
AL
850 break;
851 }
852 }
853
854 ptr += size;
855 }
05330448
AL
856}
857
7c80eef8 858#ifdef KVM_CAP_INTERNAL_ERROR_DATA
73aaec4a 859static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
7c80eef8 860{
bb44e0d1 861 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
862 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
863 int i;
864
bb44e0d1 865 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
866 for (i = 0; i < run->internal.ndata; ++i) {
867 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
868 i, (uint64_t)run->internal.data[i]);
869 }
bb44e0d1
JK
870 } else {
871 fprintf(stderr, "\n");
7c80eef8 872 }
7c80eef8
MT
873 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
874 fprintf(stderr, "emulation failure\n");
a426e122 875 if (!kvm_arch_stop_on_emulation_error(env)) {
f5c848ee 876 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
d73cd8f4 877 return EXCP_INTERRUPT;
a426e122 878 }
7c80eef8
MT
879 }
880 /* FIXME: Should trigger a qmp message to let management know
881 * something went wrong.
882 */
73aaec4a 883 return -1;
7c80eef8
MT
884}
885#endif
886
62a2744c 887void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 888{
f65ed4c1 889 KVMState *s = kvm_state;
62a2744c
SY
890 if (s->coalesced_mmio_ring) {
891 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
892 while (ring->first != ring->last) {
893 struct kvm_coalesced_mmio *ent;
894
895 ent = &ring->coalesced_mmio[ring->first];
896
897 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 898 smp_wmb();
f65ed4c1
AL
899 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
900 }
901 }
f65ed4c1
AL
902}
903
2705d56a 904static void do_kvm_cpu_synchronize_state(void *_env)
4c0960c0 905{
2705d56a
JK
906 CPUState *env = _env;
907
9ded2744 908 if (!env->kvm_vcpu_dirty) {
4c0960c0 909 kvm_arch_get_registers(env);
9ded2744 910 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
911 }
912}
913
2705d56a
JK
914void kvm_cpu_synchronize_state(CPUState *env)
915{
a426e122 916 if (!env->kvm_vcpu_dirty) {
2705d56a 917 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
a426e122 918 }
2705d56a
JK
919}
920
ea375f9a
JK
921void kvm_cpu_synchronize_post_reset(CPUState *env)
922{
923 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
924 env->kvm_vcpu_dirty = 0;
925}
926
927void kvm_cpu_synchronize_post_init(CPUState *env)
928{
929 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
930 env->kvm_vcpu_dirty = 0;
931}
932
05330448
AL
933int kvm_cpu_exec(CPUState *env)
934{
935 struct kvm_run *run = env->kvm_run;
7cbb533f 936 int ret, run_ret;
05330448 937
8c0d577e 938 DPRINTF("kvm_cpu_exec()\n");
05330448 939
99036865 940 if (kvm_arch_process_async_events(env)) {
9ccfac9e 941 env->exit_request = 0;
6792a57b 942 return EXCP_HLT;
9ccfac9e 943 }
0af691d7 944
6792a57b
JK
945 cpu_single_env = env;
946
9ccfac9e 947 do {
9ded2744 948 if (env->kvm_vcpu_dirty) {
ea375f9a 949 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 950 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
951 }
952
8c14c173 953 kvm_arch_pre_run(env, run);
9ccfac9e
JK
954 if (env->exit_request) {
955 DPRINTF("interrupt exit requested\n");
956 /*
957 * KVM requires us to reenter the kernel after IO exits to complete
958 * instruction emulation. This self-signal will ensure that we
959 * leave ASAP again.
960 */
961 qemu_cpu_kick_self();
962 }
273faf1b 963 cpu_single_env = NULL;
d549db5a 964 qemu_mutex_unlock_iothread();
9ccfac9e 965
7cbb533f 966 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
9ccfac9e 967
d549db5a 968 qemu_mutex_lock_iothread();
273faf1b 969 cpu_single_env = env;
05330448
AL
970 kvm_arch_post_run(env, run);
971
b0c883b5
JK
972 kvm_flush_coalesced_mmio_buffer();
973
7cbb533f 974 if (run_ret < 0) {
dc77d341
JK
975 if (run_ret == -EINTR || run_ret == -EAGAIN) {
976 DPRINTF("io window exit\n");
d73cd8f4 977 ret = EXCP_INTERRUPT;
dc77d341
JK
978 break;
979 }
7cbb533f 980 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
05330448
AL
981 abort();
982 }
983
05330448
AL
984 switch (run->exit_reason) {
985 case KVM_EXIT_IO:
8c0d577e 986 DPRINTF("handle_io\n");
b30e93e9
JK
987 kvm_handle_io(run->io.port,
988 (uint8_t *)run + run->io.data_offset,
989 run->io.direction,
990 run->io.size,
991 run->io.count);
d73cd8f4 992 ret = 0;
05330448
AL
993 break;
994 case KVM_EXIT_MMIO:
8c0d577e 995 DPRINTF("handle_mmio\n");
05330448
AL
996 cpu_physical_memory_rw(run->mmio.phys_addr,
997 run->mmio.data,
998 run->mmio.len,
999 run->mmio.is_write);
d73cd8f4 1000 ret = 0;
05330448
AL
1001 break;
1002 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 1003 DPRINTF("irq_window_open\n");
d73cd8f4 1004 ret = EXCP_INTERRUPT;
05330448
AL
1005 break;
1006 case KVM_EXIT_SHUTDOWN:
8c0d577e 1007 DPRINTF("shutdown\n");
05330448 1008 qemu_system_reset_request();
d73cd8f4 1009 ret = EXCP_INTERRUPT;
05330448
AL
1010 break;
1011 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
1012 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1013 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 1014 ret = -1;
05330448 1015 break;
7c80eef8
MT
1016#ifdef KVM_CAP_INTERNAL_ERROR_DATA
1017 case KVM_EXIT_INTERNAL_ERROR:
73aaec4a 1018 ret = kvm_handle_internal_error(env, run);
7c80eef8
MT
1019 break;
1020#endif
05330448 1021 default:
8c0d577e 1022 DPRINTF("kvm_arch_handle_exit\n");
05330448
AL
1023 ret = kvm_arch_handle_exit(env, run);
1024 break;
1025 }
d73cd8f4 1026 } while (ret == 0);
05330448 1027
73aaec4a 1028 if (ret < 0) {
f5c848ee 1029 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
e07bbac5 1030 vm_stop(VMSTOP_PANIC);
becfc390
AL
1031 }
1032
6792a57b
JK
1033 env->exit_request = 0;
1034 cpu_single_env = NULL;
05330448
AL
1035 return ret;
1036}
1037
984b5181 1038int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1039{
1040 int ret;
984b5181
AL
1041 void *arg;
1042 va_list ap;
05330448 1043
984b5181
AL
1044 va_start(ap, type);
1045 arg = va_arg(ap, void *);
1046 va_end(ap);
1047
1048 ret = ioctl(s->fd, type, arg);
a426e122 1049 if (ret == -1) {
05330448 1050 ret = -errno;
a426e122 1051 }
05330448
AL
1052 return ret;
1053}
1054
984b5181 1055int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1056{
1057 int ret;
984b5181
AL
1058 void *arg;
1059 va_list ap;
1060
1061 va_start(ap, type);
1062 arg = va_arg(ap, void *);
1063 va_end(ap);
05330448 1064
984b5181 1065 ret = ioctl(s->vmfd, type, arg);
a426e122 1066 if (ret == -1) {
05330448 1067 ret = -errno;
a426e122 1068 }
05330448
AL
1069 return ret;
1070}
1071
984b5181 1072int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
1073{
1074 int ret;
984b5181
AL
1075 void *arg;
1076 va_list ap;
1077
1078 va_start(ap, type);
1079 arg = va_arg(ap, void *);
1080 va_end(ap);
05330448 1081
984b5181 1082 ret = ioctl(env->kvm_fd, type, arg);
a426e122 1083 if (ret == -1) {
05330448 1084 ret = -errno;
a426e122 1085 }
05330448
AL
1086 return ret;
1087}
bd322087
AL
1088
1089int kvm_has_sync_mmu(void)
1090{
94a8d39a 1091 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1092}
e22a25c9 1093
a0fb002c
JK
1094int kvm_has_vcpu_events(void)
1095{
1096 return kvm_state->vcpu_events;
1097}
1098
b0b1d690
JK
1099int kvm_has_robust_singlestep(void)
1100{
1101 return kvm_state->robust_singlestep;
1102}
1103
ff44f1a3
JK
1104int kvm_has_debugregs(void)
1105{
1106 return kvm_state->debugregs;
1107}
1108
f1665b21
SY
1109int kvm_has_xsave(void)
1110{
1111 return kvm_state->xsave;
1112}
1113
1114int kvm_has_xcrs(void)
1115{
1116 return kvm_state->xcrs;
1117}
1118
d2f2b8a7
SH
1119int kvm_has_many_ioeventfds(void)
1120{
1121 if (!kvm_enabled()) {
1122 return 0;
1123 }
1124 return kvm_state->many_ioeventfds;
1125}
1126
6f0437e8
JK
1127void kvm_setup_guest_memory(void *start, size_t size)
1128{
1129 if (!kvm_has_sync_mmu()) {
e78815a5 1130 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1131
1132 if (ret) {
e78815a5
AF
1133 perror("qemu_madvise");
1134 fprintf(stderr,
1135 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1136 exit(1);
1137 }
6f0437e8
JK
1138 }
1139}
1140
e22a25c9
AL
1141#ifdef KVM_CAP_SET_GUEST_DEBUG
1142struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1143 target_ulong pc)
1144{
1145 struct kvm_sw_breakpoint *bp;
1146
72cf2d4f 1147 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1148 if (bp->pc == pc) {
e22a25c9 1149 return bp;
a426e122 1150 }
e22a25c9
AL
1151 }
1152 return NULL;
1153}
1154
1155int kvm_sw_breakpoints_active(CPUState *env)
1156{
72cf2d4f 1157 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1158}
1159
452e4751
GC
1160struct kvm_set_guest_debug_data {
1161 struct kvm_guest_debug dbg;
1162 CPUState *env;
1163 int err;
1164};
1165
1166static void kvm_invoke_set_guest_debug(void *data)
1167{
1168 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
1169 CPUState *env = dbg_data->env;
1170
b3807725 1171 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1172}
1173
e22a25c9
AL
1174int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1175{
452e4751 1176 struct kvm_set_guest_debug_data data;
e22a25c9 1177
b0b1d690 1178 data.dbg.control = reinject_trap;
e22a25c9 1179
b0b1d690
JK
1180 if (env->singlestep_enabled) {
1181 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1182 }
452e4751 1183 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1184 data.env = env;
e22a25c9 1185
be41cbe0 1186 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
452e4751 1187 return data.err;
e22a25c9
AL
1188}
1189
1190int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1191 target_ulong len, int type)
1192{
1193 struct kvm_sw_breakpoint *bp;
1194 CPUState *env;
1195 int err;
1196
1197 if (type == GDB_BREAKPOINT_SW) {
1198 bp = kvm_find_sw_breakpoint(current_env, addr);
1199 if (bp) {
1200 bp->use_count++;
1201 return 0;
1202 }
1203
1204 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1205 if (!bp) {
e22a25c9 1206 return -ENOMEM;
a426e122 1207 }
e22a25c9
AL
1208
1209 bp->pc = addr;
1210 bp->use_count = 1;
1211 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1212 if (err) {
4a043713 1213 qemu_free(bp);
e22a25c9
AL
1214 return err;
1215 }
1216
72cf2d4f 1217 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1218 bp, entry);
1219 } else {
1220 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1221 if (err) {
e22a25c9 1222 return err;
a426e122 1223 }
e22a25c9
AL
1224 }
1225
1226 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1227 err = kvm_update_guest_debug(env, 0);
a426e122 1228 if (err) {
e22a25c9 1229 return err;
a426e122 1230 }
e22a25c9
AL
1231 }
1232 return 0;
1233}
1234
1235int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1236 target_ulong len, int type)
1237{
1238 struct kvm_sw_breakpoint *bp;
1239 CPUState *env;
1240 int err;
1241
1242 if (type == GDB_BREAKPOINT_SW) {
1243 bp = kvm_find_sw_breakpoint(current_env, addr);
a426e122 1244 if (!bp) {
e22a25c9 1245 return -ENOENT;
a426e122 1246 }
e22a25c9
AL
1247
1248 if (bp->use_count > 1) {
1249 bp->use_count--;
1250 return 0;
1251 }
1252
1253 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
a426e122 1254 if (err) {
e22a25c9 1255 return err;
a426e122 1256 }
e22a25c9 1257
72cf2d4f 1258 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
e22a25c9
AL
1259 qemu_free(bp);
1260 } else {
1261 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1262 if (err) {
e22a25c9 1263 return err;
a426e122 1264 }
e22a25c9
AL
1265 }
1266
1267 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1268 err = kvm_update_guest_debug(env, 0);
a426e122 1269 if (err) {
e22a25c9 1270 return err;
a426e122 1271 }
e22a25c9
AL
1272 }
1273 return 0;
1274}
1275
1276void kvm_remove_all_breakpoints(CPUState *current_env)
1277{
1278 struct kvm_sw_breakpoint *bp, *next;
1279 KVMState *s = current_env->kvm_state;
1280 CPUState *env;
1281
72cf2d4f 1282 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1283 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1284 /* Try harder to find a CPU that currently sees the breakpoint. */
1285 for (env = first_cpu; env != NULL; env = env->next_cpu) {
a426e122 1286 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
e22a25c9 1287 break;
a426e122 1288 }
e22a25c9
AL
1289 }
1290 }
1291 }
1292 kvm_arch_remove_all_hw_breakpoints();
1293
a426e122 1294 for (env = first_cpu; env != NULL; env = env->next_cpu) {
e22a25c9 1295 kvm_update_guest_debug(env, 0);
a426e122 1296 }
e22a25c9
AL
1297}
1298
1299#else /* !KVM_CAP_SET_GUEST_DEBUG */
1300
1301int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1302{
1303 return -EINVAL;
1304}
1305
1306int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1307 target_ulong len, int type)
1308{
1309 return -EINVAL;
1310}
1311
1312int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1313 target_ulong len, int type)
1314{
1315 return -EINVAL;
1316}
1317
1318void kvm_remove_all_breakpoints(CPUState *current_env)
1319{
1320}
1321#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1322
1323int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1324{
1325 struct kvm_signal_mask *sigmask;
1326 int r;
1327
a426e122 1328 if (!sigset) {
cc84de95 1329 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
a426e122 1330 }
cc84de95
MT
1331
1332 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1333
1334 sigmask->len = 8;
1335 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1336 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
4a043713 1337 qemu_free(sigmask);
cc84de95
MT
1338
1339 return r;
1340}
ca821806 1341
44f1a3d8
CM
1342int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1343{
1344#ifdef KVM_IOEVENTFD
1345 int ret;
1346 struct kvm_ioeventfd iofd;
1347
1348 iofd.datamatch = val;
1349 iofd.addr = addr;
1350 iofd.len = 4;
1351 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1352 iofd.fd = fd;
1353
1354 if (!kvm_enabled()) {
1355 return -ENOSYS;
1356 }
1357
1358 if (!assign) {
1359 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1360 }
1361
1362 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1363
1364 if (ret < 0) {
1365 return -errno;
1366 }
1367
1368 return 0;
1369#else
1370 return -ENOSYS;
1371#endif
1372}
1373
ca821806
MT
1374int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1375{
98c8573e 1376#ifdef KVM_IOEVENTFD
ca821806
MT
1377 struct kvm_ioeventfd kick = {
1378 .datamatch = val,
1379 .addr = addr,
1380 .len = 2,
1381 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1382 .fd = fd,
1383 };
1384 int r;
a426e122 1385 if (!kvm_enabled()) {
ca821806 1386 return -ENOSYS;
a426e122
JK
1387 }
1388 if (!assign) {
ca821806 1389 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
a426e122 1390 }
ca821806 1391 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
a426e122 1392 if (r < 0) {
ca821806 1393 return r;
a426e122 1394 }
ca821806 1395 return 0;
98c8573e
PB
1396#else
1397 return -ENOSYS;
ca821806 1398#endif
98c8573e 1399}
a1b87fe0
JK
1400
1401int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1402{
1403 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1404}
1405
1406int kvm_on_sigbus(int code, void *addr)
1407{
1408 return kvm_arch_on_sigbus(code, addr);
1409}