]> git.proxmox.com Git - qemu.git/blame - kvm-all.c
stellaris: Calculate system clock period on reset
[qemu.git] / kvm-all.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5832d1f2 5 * Red Hat, Inc. 2008
05330448
AL
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
5832d1f2 9 * Glauber Costa <gcosta@redhat.com>
05330448
AL
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16#include <sys/types.h>
17#include <sys/ioctl.h>
18#include <sys/mman.h>
984b5181 19#include <stdarg.h>
05330448
AL
20
21#include <linux/kvm.h>
22
23#include "qemu-common.h"
85199474 24#include "qemu-barrier.h"
05330448 25#include "sysemu.h"
d33a1810 26#include "hw/hw.h"
e22a25c9 27#include "gdbstub.h"
05330448 28#include "kvm.h"
8369e01c 29#include "bswap.h"
05330448 30
d2f2b8a7
SH
31/* This check must be after config-host.h is included */
32#ifdef CONFIG_EVENTFD
33#include <sys/eventfd.h>
34#endif
35
f65ed4c1
AL
36/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37#define PAGE_SIZE TARGET_PAGE_SIZE
38
05330448
AL
39//#define DEBUG_KVM
40
41#ifdef DEBUG_KVM
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44#else
8c0d577e 45#define DPRINTF(fmt, ...) \
05330448
AL
46 do { } while (0)
47#endif
48
34fc643f
AL
49typedef struct KVMSlot
50{
c227f099
AL
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
34fc643f
AL
54 int slot;
55 int flags;
56} KVMSlot;
05330448 57
5832d1f2
AL
58typedef struct kvm_dirty_log KVMDirtyLog;
59
05330448
AL
60struct KVMState
61{
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
f65ed4c1 65 int coalesced_mmio;
62a2744c 66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
1cae88b9 67 bool coalesced_flush_in_progress;
e69917e2 68 int broken_set_mem_region;
4495d6a7 69 int migration_log;
a0fb002c 70 int vcpu_events;
b0b1d690 71 int robust_singlestep;
ff44f1a3 72 int debugregs;
e22a25c9
AL
73#ifdef KVM_CAP_SET_GUEST_DEBUG
74 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
75#endif
6f725c13
GC
76 int irqchip_in_kernel;
77 int pit_in_kernel;
f1665b21 78 int xsave, xcrs;
d2f2b8a7 79 int many_ioeventfds;
05330448
AL
80};
81
6a7af8cb 82KVMState *kvm_state;
05330448 83
94a8d39a
JK
84static const KVMCapabilityInfo kvm_required_capabilites[] = {
85 KVM_CAP_INFO(USER_MEMORY),
86 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
87 KVM_CAP_LAST_INFO
88};
89
05330448
AL
90static KVMSlot *kvm_alloc_slot(KVMState *s)
91{
92 int i;
93
94 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
a426e122 95 if (s->slots[i].memory_size == 0) {
05330448 96 return &s->slots[i];
a426e122 97 }
05330448
AL
98 }
99
d3f8d37f
AL
100 fprintf(stderr, "%s: no free slot available\n", __func__);
101 abort();
102}
103
104static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
c227f099
AL
105 target_phys_addr_t start_addr,
106 target_phys_addr_t end_addr)
d3f8d37f
AL
107{
108 int i;
109
110 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
111 KVMSlot *mem = &s->slots[i];
112
113 if (start_addr == mem->start_addr &&
114 end_addr == mem->start_addr + mem->memory_size) {
115 return mem;
116 }
117 }
118
05330448
AL
119 return NULL;
120}
121
6152e2ae
AL
122/*
123 * Find overlapping slot with lowest start address
124 */
125static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
c227f099
AL
126 target_phys_addr_t start_addr,
127 target_phys_addr_t end_addr)
05330448 128{
6152e2ae 129 KVMSlot *found = NULL;
05330448
AL
130 int i;
131
132 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
133 KVMSlot *mem = &s->slots[i];
134
6152e2ae
AL
135 if (mem->memory_size == 0 ||
136 (found && found->start_addr < mem->start_addr)) {
137 continue;
138 }
139
140 if (end_addr > mem->start_addr &&
141 start_addr < mem->start_addr + mem->memory_size) {
142 found = mem;
143 }
05330448
AL
144 }
145
6152e2ae 146 return found;
05330448
AL
147}
148
983dfc3b
HY
149int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
150 target_phys_addr_t *phys_addr)
151{
152 int i;
153
154 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
155 KVMSlot *mem = &s->slots[i];
156
157 if (ram_addr >= mem->phys_offset &&
158 ram_addr < mem->phys_offset + mem->memory_size) {
159 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
160 return 1;
161 }
162 }
163
164 return 0;
165}
166
5832d1f2
AL
167static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
168{
169 struct kvm_userspace_memory_region mem;
170
171 mem.slot = slot->slot;
172 mem.guest_phys_addr = slot->start_addr;
173 mem.memory_size = slot->memory_size;
b2e0a138 174 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
5832d1f2 175 mem.flags = slot->flags;
4495d6a7
JK
176 if (s->migration_log) {
177 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
178 }
5832d1f2
AL
179 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
180}
181
8d2ba1fb
JK
182static void kvm_reset_vcpu(void *opaque)
183{
184 CPUState *env = opaque;
185
caa5af0f 186 kvm_arch_reset_vcpu(env);
8d2ba1fb 187}
5832d1f2 188
6f725c13
GC
189int kvm_irqchip_in_kernel(void)
190{
191 return kvm_state->irqchip_in_kernel;
192}
193
194int kvm_pit_in_kernel(void)
195{
196 return kvm_state->pit_in_kernel;
197}
198
05330448
AL
199int kvm_init_vcpu(CPUState *env)
200{
201 KVMState *s = kvm_state;
202 long mmap_size;
203 int ret;
204
8c0d577e 205 DPRINTF("kvm_init_vcpu\n");
05330448 206
984b5181 207 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
05330448 208 if (ret < 0) {
8c0d577e 209 DPRINTF("kvm_create_vcpu failed\n");
05330448
AL
210 goto err;
211 }
212
213 env->kvm_fd = ret;
214 env->kvm_state = s;
d841b6c4 215 env->kvm_vcpu_dirty = 1;
05330448
AL
216
217 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
218 if (mmap_size < 0) {
748a680b 219 ret = mmap_size;
8c0d577e 220 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
05330448
AL
221 goto err;
222 }
223
224 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
225 env->kvm_fd, 0);
226 if (env->kvm_run == MAP_FAILED) {
227 ret = -errno;
8c0d577e 228 DPRINTF("mmap'ing vcpu state failed\n");
05330448
AL
229 goto err;
230 }
231
a426e122
JK
232 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
233 s->coalesced_mmio_ring =
234 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
235 }
62a2744c 236
05330448 237 ret = kvm_arch_init_vcpu(env);
8d2ba1fb 238 if (ret == 0) {
a08d4367 239 qemu_register_reset(kvm_reset_vcpu, env);
caa5af0f 240 kvm_arch_reset_vcpu(env);
8d2ba1fb 241 }
05330448
AL
242err:
243 return ret;
244}
245
5832d1f2
AL
246/*
247 * dirty pages logging control
248 */
25254bbc
MT
249
250static int kvm_mem_flags(KVMState *s, bool log_dirty)
251{
252 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
253}
254
255static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
5832d1f2
AL
256{
257 KVMState *s = kvm_state;
25254bbc 258 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
4495d6a7
JK
259 int old_flags;
260
4495d6a7 261 old_flags = mem->flags;
5832d1f2 262
25254bbc 263 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
5832d1f2
AL
264 mem->flags = flags;
265
4495d6a7
JK
266 /* If nothing changed effectively, no need to issue ioctl */
267 if (s->migration_log) {
268 flags |= KVM_MEM_LOG_DIRTY_PAGES;
269 }
25254bbc 270
4495d6a7 271 if (flags == old_flags) {
25254bbc 272 return 0;
4495d6a7
JK
273 }
274
5832d1f2
AL
275 return kvm_set_user_memory_region(s, mem);
276}
277
25254bbc
MT
278static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
279 ram_addr_t size, bool log_dirty)
280{
281 KVMState *s = kvm_state;
282 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
283
284 if (mem == NULL) {
285 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
286 TARGET_FMT_plx "\n", __func__, phys_addr,
287 (target_phys_addr_t)(phys_addr + size - 1));
288 return -EINVAL;
289 }
290 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
291}
292
e5896b12
AP
293static int kvm_log_start(CPUPhysMemoryClient *client,
294 target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 295{
25254bbc 296 return kvm_dirty_pages_log_change(phys_addr, size, true);
5832d1f2
AL
297}
298
e5896b12
AP
299static int kvm_log_stop(CPUPhysMemoryClient *client,
300 target_phys_addr_t phys_addr, ram_addr_t size)
5832d1f2 301{
25254bbc 302 return kvm_dirty_pages_log_change(phys_addr, size, false);
5832d1f2
AL
303}
304
7b8f3b78 305static int kvm_set_migration_log(int enable)
4495d6a7
JK
306{
307 KVMState *s = kvm_state;
308 KVMSlot *mem;
309 int i, err;
310
311 s->migration_log = enable;
312
313 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
314 mem = &s->slots[i];
315
70fedd76
AW
316 if (!mem->memory_size) {
317 continue;
318 }
4495d6a7
JK
319 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
320 continue;
321 }
322 err = kvm_set_user_memory_region(s, mem);
323 if (err) {
324 return err;
325 }
326 }
327 return 0;
328}
329
8369e01c
MT
330/* get kvm's dirty pages bitmap and update qemu's */
331static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
332 unsigned long *bitmap,
333 unsigned long offset,
334 unsigned long mem_size)
96c1606b 335{
8369e01c
MT
336 unsigned int i, j;
337 unsigned long page_number, addr, addr1, c;
338 ram_addr_t ram_addr;
339 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
340 HOST_LONG_BITS;
341
342 /*
343 * bitmap-traveling is faster than memory-traveling (for addr...)
344 * especially when most of the memory is not dirty.
345 */
346 for (i = 0; i < len; i++) {
347 if (bitmap[i] != 0) {
348 c = leul_to_cpu(bitmap[i]);
349 do {
350 j = ffsl(c) - 1;
351 c &= ~(1ul << j);
352 page_number = i * HOST_LONG_BITS + j;
353 addr1 = page_number * TARGET_PAGE_SIZE;
354 addr = offset + addr1;
355 ram_addr = cpu_get_physical_page_desc(addr);
356 cpu_physical_memory_set_dirty(ram_addr);
357 } while (c != 0);
358 }
359 }
360 return 0;
96c1606b
AG
361}
362
8369e01c
MT
363#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
364
5832d1f2
AL
365/**
366 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
367 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
368 * This means all bits are set to dirty.
369 *
d3f8d37f 370 * @start_add: start of logged region.
5832d1f2
AL
371 * @end_addr: end of logged region.
372 */
7b8f3b78 373static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
a426e122 374 target_phys_addr_t end_addr)
5832d1f2
AL
375{
376 KVMState *s = kvm_state;
151f7749 377 unsigned long size, allocated_size = 0;
151f7749
JK
378 KVMDirtyLog d;
379 KVMSlot *mem;
380 int ret = 0;
5832d1f2 381
151f7749
JK
382 d.dirty_bitmap = NULL;
383 while (start_addr < end_addr) {
384 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
385 if (mem == NULL) {
386 break;
387 }
5832d1f2 388
51b0c606
MT
389 /* XXX bad kernel interface alert
390 * For dirty bitmap, kernel allocates array of size aligned to
391 * bits-per-long. But for case when the kernel is 64bits and
392 * the userspace is 32bits, userspace can't align to the same
393 * bits-per-long, since sizeof(long) is different between kernel
394 * and user space. This way, userspace will provide buffer which
395 * may be 4 bytes less than the kernel will use, resulting in
396 * userspace memory corruption (which is not detectable by valgrind
397 * too, in most cases).
398 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
399 * a hope that sizeof(long) wont become >8 any time soon.
400 */
401 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
402 /*HOST_LONG_BITS*/ 64) / 8;
151f7749 403 if (!d.dirty_bitmap) {
7267c094 404 d.dirty_bitmap = g_malloc(size);
151f7749 405 } else if (size > allocated_size) {
7267c094 406 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
151f7749
JK
407 }
408 allocated_size = size;
409 memset(d.dirty_bitmap, 0, allocated_size);
5832d1f2 410
151f7749 411 d.slot = mem->slot;
5832d1f2 412
6e489f3f 413 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
8c0d577e 414 DPRINTF("ioctl failed %d\n", errno);
151f7749
JK
415 ret = -1;
416 break;
417 }
5832d1f2 418
8369e01c
MT
419 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
420 mem->start_addr, mem->memory_size);
421 start_addr = mem->start_addr + mem->memory_size;
5832d1f2 422 }
7267c094 423 g_free(d.dirty_bitmap);
151f7749
JK
424
425 return ret;
5832d1f2
AL
426}
427
c227f099 428int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
429{
430 int ret = -ENOSYS;
f65ed4c1
AL
431 KVMState *s = kvm_state;
432
433 if (s->coalesced_mmio) {
434 struct kvm_coalesced_mmio_zone zone;
435
436 zone.addr = start;
437 zone.size = size;
438
439 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
440 }
f65ed4c1
AL
441
442 return ret;
443}
444
c227f099 445int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
f65ed4c1
AL
446{
447 int ret = -ENOSYS;
f65ed4c1
AL
448 KVMState *s = kvm_state;
449
450 if (s->coalesced_mmio) {
451 struct kvm_coalesced_mmio_zone zone;
452
453 zone.addr = start;
454 zone.size = size;
455
456 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
457 }
f65ed4c1
AL
458
459 return ret;
460}
461
ad7b8b33
AL
462int kvm_check_extension(KVMState *s, unsigned int extension)
463{
464 int ret;
465
466 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
467 if (ret < 0) {
468 ret = 0;
469 }
470
471 return ret;
472}
473
d2f2b8a7
SH
474static int kvm_check_many_ioeventfds(void)
475{
d0dcac83
SH
476 /* Userspace can use ioeventfd for io notification. This requires a host
477 * that supports eventfd(2) and an I/O thread; since eventfd does not
478 * support SIGIO it cannot interrupt the vcpu.
479 *
480 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
d2f2b8a7
SH
481 * can avoid creating too many ioeventfds.
482 */
12d4536f 483#if defined(CONFIG_EVENTFD)
d2f2b8a7
SH
484 int ioeventfds[7];
485 int i, ret = 0;
486 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
487 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
488 if (ioeventfds[i] < 0) {
489 break;
490 }
491 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
492 if (ret < 0) {
493 close(ioeventfds[i]);
494 break;
495 }
496 }
497
498 /* Decide whether many devices are supported or not */
499 ret = i == ARRAY_SIZE(ioeventfds);
500
501 while (i-- > 0) {
502 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
503 close(ioeventfds[i]);
504 }
505 return ret;
506#else
507 return 0;
508#endif
509}
510
94a8d39a
JK
511static const KVMCapabilityInfo *
512kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
513{
514 while (list->name) {
515 if (!kvm_check_extension(s, list->value)) {
516 return list;
517 }
518 list++;
519 }
520 return NULL;
521}
522
a426e122 523static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
25254bbc 524 ram_addr_t phys_offset, bool log_dirty)
46dbef6a
MT
525{
526 KVMState *s = kvm_state;
527 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
528 KVMSlot *mem, old;
529 int err;
530
14542fea
GN
531 /* kvm works in page size chunks, but the function may be called
532 with sub-page size and unaligned start address. */
533 size = TARGET_PAGE_ALIGN(size);
534 start_addr = TARGET_PAGE_ALIGN(start_addr);
46dbef6a
MT
535
536 /* KVM does not support read-only slots */
537 phys_offset &= ~IO_MEM_ROM;
538
539 while (1) {
540 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
541 if (!mem) {
542 break;
543 }
544
545 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
546 (start_addr + size <= mem->start_addr + mem->memory_size) &&
547 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
548 /* The new slot fits into the existing one and comes with
25254bbc
MT
549 * identical parameters - update flags and done. */
550 kvm_slot_dirty_pages_log_change(mem, log_dirty);
46dbef6a
MT
551 return;
552 }
553
554 old = *mem;
555
556 /* unregister the overlapping slot */
557 mem->memory_size = 0;
558 err = kvm_set_user_memory_region(s, mem);
559 if (err) {
560 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
561 __func__, strerror(-err));
562 abort();
563 }
564
565 /* Workaround for older KVM versions: we can't join slots, even not by
566 * unregistering the previous ones and then registering the larger
567 * slot. We have to maintain the existing fragmentation. Sigh.
568 *
569 * This workaround assumes that the new slot starts at the same
570 * address as the first existing one. If not or if some overlapping
571 * slot comes around later, we will fail (not seen in practice so far)
572 * - and actually require a recent KVM version. */
573 if (s->broken_set_mem_region &&
574 old.start_addr == start_addr && old.memory_size < size &&
575 flags < IO_MEM_UNASSIGNED) {
576 mem = kvm_alloc_slot(s);
577 mem->memory_size = old.memory_size;
578 mem->start_addr = old.start_addr;
579 mem->phys_offset = old.phys_offset;
25254bbc 580 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
581
582 err = kvm_set_user_memory_region(s, mem);
583 if (err) {
584 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
585 strerror(-err));
586 abort();
587 }
588
589 start_addr += old.memory_size;
590 phys_offset += old.memory_size;
591 size -= old.memory_size;
592 continue;
593 }
594
595 /* register prefix slot */
596 if (old.start_addr < start_addr) {
597 mem = kvm_alloc_slot(s);
598 mem->memory_size = start_addr - old.start_addr;
599 mem->start_addr = old.start_addr;
600 mem->phys_offset = old.phys_offset;
25254bbc 601 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
602
603 err = kvm_set_user_memory_region(s, mem);
604 if (err) {
605 fprintf(stderr, "%s: error registering prefix slot: %s\n",
606 __func__, strerror(-err));
d4d6868f
AG
607#ifdef TARGET_PPC
608 fprintf(stderr, "%s: This is probably because your kernel's " \
609 "PAGE_SIZE is too big. Please try to use 4k " \
610 "PAGE_SIZE!\n", __func__);
611#endif
46dbef6a
MT
612 abort();
613 }
614 }
615
616 /* register suffix slot */
617 if (old.start_addr + old.memory_size > start_addr + size) {
618 ram_addr_t size_delta;
619
620 mem = kvm_alloc_slot(s);
621 mem->start_addr = start_addr + size;
622 size_delta = mem->start_addr - old.start_addr;
623 mem->memory_size = old.memory_size - size_delta;
624 mem->phys_offset = old.phys_offset + size_delta;
25254bbc 625 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
626
627 err = kvm_set_user_memory_region(s, mem);
628 if (err) {
629 fprintf(stderr, "%s: error registering suffix slot: %s\n",
630 __func__, strerror(-err));
631 abort();
632 }
633 }
634 }
635
636 /* in case the KVM bug workaround already "consumed" the new slot */
a426e122 637 if (!size) {
46dbef6a 638 return;
a426e122 639 }
46dbef6a 640 /* KVM does not need to know about this memory */
a426e122 641 if (flags >= IO_MEM_UNASSIGNED) {
46dbef6a 642 return;
a426e122 643 }
46dbef6a
MT
644 mem = kvm_alloc_slot(s);
645 mem->memory_size = size;
646 mem->start_addr = start_addr;
647 mem->phys_offset = phys_offset;
25254bbc 648 mem->flags = kvm_mem_flags(s, log_dirty);
46dbef6a
MT
649
650 err = kvm_set_user_memory_region(s, mem);
651 if (err) {
652 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
653 strerror(-err));
654 abort();
655 }
656}
657
7b8f3b78 658static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
a426e122 659 target_phys_addr_t start_addr,
0fd542fb
MT
660 ram_addr_t size, ram_addr_t phys_offset,
661 bool log_dirty)
7b8f3b78 662{
25254bbc 663 kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty);
7b8f3b78
MT
664}
665
666static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
a426e122
JK
667 target_phys_addr_t start_addr,
668 target_phys_addr_t end_addr)
7b8f3b78 669{
a426e122 670 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
7b8f3b78
MT
671}
672
673static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
a426e122 674 int enable)
7b8f3b78 675{
a426e122 676 return kvm_set_migration_log(enable);
7b8f3b78
MT
677}
678
679static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
a426e122
JK
680 .set_memory = kvm_client_set_memory,
681 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
682 .migration_log = kvm_client_migration_log,
e5896b12
AP
683 .log_start = kvm_log_start,
684 .log_stop = kvm_log_stop,
7b8f3b78
MT
685};
686
aa7f74d1
JK
687static void kvm_handle_interrupt(CPUState *env, int mask)
688{
689 env->interrupt_request |= mask;
690
691 if (!qemu_cpu_is_self(env)) {
692 qemu_cpu_kick(env);
693 }
694}
695
cad1e282 696int kvm_init(void)
05330448 697{
168ccc11
JK
698 static const char upgrade_note[] =
699 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
700 "(see http://sourceforge.net/projects/kvm).\n";
05330448 701 KVMState *s;
94a8d39a 702 const KVMCapabilityInfo *missing_cap;
05330448
AL
703 int ret;
704 int i;
705
7267c094 706 s = g_malloc0(sizeof(KVMState));
05330448 707
e22a25c9 708#ifdef KVM_CAP_SET_GUEST_DEBUG
72cf2d4f 709 QTAILQ_INIT(&s->kvm_sw_breakpoints);
e22a25c9 710#endif
a426e122 711 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
05330448 712 s->slots[i].slot = i;
a426e122 713 }
05330448 714 s->vmfd = -1;
40ff6d7e 715 s->fd = qemu_open("/dev/kvm", O_RDWR);
05330448
AL
716 if (s->fd == -1) {
717 fprintf(stderr, "Could not access KVM kernel module: %m\n");
718 ret = -errno;
719 goto err;
720 }
721
722 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
723 if (ret < KVM_API_VERSION) {
a426e122 724 if (ret > 0) {
05330448 725 ret = -EINVAL;
a426e122 726 }
05330448
AL
727 fprintf(stderr, "kvm version too old\n");
728 goto err;
729 }
730
731 if (ret > KVM_API_VERSION) {
732 ret = -EINVAL;
733 fprintf(stderr, "kvm version not supported\n");
734 goto err;
735 }
736
737 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
0104dcac
AG
738 if (s->vmfd < 0) {
739#ifdef TARGET_S390X
740 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
741 "your host kernel command line\n");
742#endif
db9eae1c 743 ret = s->vmfd;
05330448 744 goto err;
0104dcac 745 }
05330448 746
94a8d39a
JK
747 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
748 if (!missing_cap) {
749 missing_cap =
750 kvm_check_extension_list(s, kvm_arch_required_capabilities);
05330448 751 }
94a8d39a 752 if (missing_cap) {
ad7b8b33 753 ret = -EINVAL;
94a8d39a
JK
754 fprintf(stderr, "kvm does not support %s\n%s",
755 missing_cap->name, upgrade_note);
d85dc283
AL
756 goto err;
757 }
758
ad7b8b33 759 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
f65ed4c1 760
e69917e2 761 s->broken_set_mem_region = 1;
14a09518 762 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
e69917e2
JK
763 if (ret > 0) {
764 s->broken_set_mem_region = 0;
765 }
e69917e2 766
a0fb002c
JK
767#ifdef KVM_CAP_VCPU_EVENTS
768 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
769#endif
770
b0b1d690
JK
771 s->robust_singlestep =
772 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
b0b1d690 773
ff44f1a3
JK
774#ifdef KVM_CAP_DEBUGREGS
775 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
776#endif
777
f1665b21
SY
778#ifdef KVM_CAP_XSAVE
779 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
780#endif
781
f1665b21
SY
782#ifdef KVM_CAP_XCRS
783 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
784#endif
785
cad1e282 786 ret = kvm_arch_init(s);
a426e122 787 if (ret < 0) {
05330448 788 goto err;
a426e122 789 }
05330448
AL
790
791 kvm_state = s;
7b8f3b78 792 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
05330448 793
d2f2b8a7
SH
794 s->many_ioeventfds = kvm_check_many_ioeventfds();
795
aa7f74d1
JK
796 cpu_interrupt_handler = kvm_handle_interrupt;
797
05330448
AL
798 return 0;
799
800err:
801 if (s) {
db9eae1c 802 if (s->vmfd >= 0) {
05330448 803 close(s->vmfd);
a426e122
JK
804 }
805 if (s->fd != -1) {
05330448 806 close(s->fd);
a426e122 807 }
05330448 808 }
7267c094 809 g_free(s);
05330448
AL
810
811 return ret;
812}
813
b30e93e9
JK
814static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
815 uint32_t count)
05330448
AL
816{
817 int i;
818 uint8_t *ptr = data;
819
820 for (i = 0; i < count; i++) {
821 if (direction == KVM_EXIT_IO_IN) {
822 switch (size) {
823 case 1:
afcea8cb 824 stb_p(ptr, cpu_inb(port));
05330448
AL
825 break;
826 case 2:
afcea8cb 827 stw_p(ptr, cpu_inw(port));
05330448
AL
828 break;
829 case 4:
afcea8cb 830 stl_p(ptr, cpu_inl(port));
05330448
AL
831 break;
832 }
833 } else {
834 switch (size) {
835 case 1:
afcea8cb 836 cpu_outb(port, ldub_p(ptr));
05330448
AL
837 break;
838 case 2:
afcea8cb 839 cpu_outw(port, lduw_p(ptr));
05330448
AL
840 break;
841 case 4:
afcea8cb 842 cpu_outl(port, ldl_p(ptr));
05330448
AL
843 break;
844 }
845 }
846
847 ptr += size;
848 }
05330448
AL
849}
850
73aaec4a 851static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
7c80eef8 852{
bb44e0d1 853 fprintf(stderr, "KVM internal error.");
7c80eef8
MT
854 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
855 int i;
856
bb44e0d1 857 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
7c80eef8
MT
858 for (i = 0; i < run->internal.ndata; ++i) {
859 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
860 i, (uint64_t)run->internal.data[i]);
861 }
bb44e0d1
JK
862 } else {
863 fprintf(stderr, "\n");
7c80eef8 864 }
7c80eef8
MT
865 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
866 fprintf(stderr, "emulation failure\n");
a426e122 867 if (!kvm_arch_stop_on_emulation_error(env)) {
f5c848ee 868 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
d73cd8f4 869 return EXCP_INTERRUPT;
a426e122 870 }
7c80eef8
MT
871 }
872 /* FIXME: Should trigger a qmp message to let management know
873 * something went wrong.
874 */
73aaec4a 875 return -1;
7c80eef8 876}
7c80eef8 877
62a2744c 878void kvm_flush_coalesced_mmio_buffer(void)
f65ed4c1 879{
f65ed4c1 880 KVMState *s = kvm_state;
1cae88b9
AK
881
882 if (s->coalesced_flush_in_progress) {
883 return;
884 }
885
886 s->coalesced_flush_in_progress = true;
887
62a2744c
SY
888 if (s->coalesced_mmio_ring) {
889 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
f65ed4c1
AL
890 while (ring->first != ring->last) {
891 struct kvm_coalesced_mmio *ent;
892
893 ent = &ring->coalesced_mmio[ring->first];
894
895 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
85199474 896 smp_wmb();
f65ed4c1
AL
897 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
898 }
899 }
1cae88b9
AK
900
901 s->coalesced_flush_in_progress = false;
f65ed4c1
AL
902}
903
2705d56a 904static void do_kvm_cpu_synchronize_state(void *_env)
4c0960c0 905{
2705d56a
JK
906 CPUState *env = _env;
907
9ded2744 908 if (!env->kvm_vcpu_dirty) {
4c0960c0 909 kvm_arch_get_registers(env);
9ded2744 910 env->kvm_vcpu_dirty = 1;
4c0960c0
AK
911 }
912}
913
2705d56a
JK
914void kvm_cpu_synchronize_state(CPUState *env)
915{
a426e122 916 if (!env->kvm_vcpu_dirty) {
2705d56a 917 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
a426e122 918 }
2705d56a
JK
919}
920
ea375f9a
JK
921void kvm_cpu_synchronize_post_reset(CPUState *env)
922{
923 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
924 env->kvm_vcpu_dirty = 0;
925}
926
927void kvm_cpu_synchronize_post_init(CPUState *env)
928{
929 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
930 env->kvm_vcpu_dirty = 0;
931}
932
05330448
AL
933int kvm_cpu_exec(CPUState *env)
934{
935 struct kvm_run *run = env->kvm_run;
7cbb533f 936 int ret, run_ret;
05330448 937
8c0d577e 938 DPRINTF("kvm_cpu_exec()\n");
05330448 939
99036865 940 if (kvm_arch_process_async_events(env)) {
9ccfac9e 941 env->exit_request = 0;
6792a57b 942 return EXCP_HLT;
9ccfac9e 943 }
0af691d7 944
6792a57b
JK
945 cpu_single_env = env;
946
9ccfac9e 947 do {
9ded2744 948 if (env->kvm_vcpu_dirty) {
ea375f9a 949 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
9ded2744 950 env->kvm_vcpu_dirty = 0;
4c0960c0
AK
951 }
952
8c14c173 953 kvm_arch_pre_run(env, run);
9ccfac9e
JK
954 if (env->exit_request) {
955 DPRINTF("interrupt exit requested\n");
956 /*
957 * KVM requires us to reenter the kernel after IO exits to complete
958 * instruction emulation. This self-signal will ensure that we
959 * leave ASAP again.
960 */
961 qemu_cpu_kick_self();
962 }
273faf1b 963 cpu_single_env = NULL;
d549db5a 964 qemu_mutex_unlock_iothread();
9ccfac9e 965
7cbb533f 966 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
9ccfac9e 967
d549db5a 968 qemu_mutex_lock_iothread();
273faf1b 969 cpu_single_env = env;
05330448
AL
970 kvm_arch_post_run(env, run);
971
b0c883b5
JK
972 kvm_flush_coalesced_mmio_buffer();
973
7cbb533f 974 if (run_ret < 0) {
dc77d341
JK
975 if (run_ret == -EINTR || run_ret == -EAGAIN) {
976 DPRINTF("io window exit\n");
d73cd8f4 977 ret = EXCP_INTERRUPT;
dc77d341
JK
978 break;
979 }
7cbb533f 980 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
05330448
AL
981 abort();
982 }
983
05330448
AL
984 switch (run->exit_reason) {
985 case KVM_EXIT_IO:
8c0d577e 986 DPRINTF("handle_io\n");
b30e93e9
JK
987 kvm_handle_io(run->io.port,
988 (uint8_t *)run + run->io.data_offset,
989 run->io.direction,
990 run->io.size,
991 run->io.count);
d73cd8f4 992 ret = 0;
05330448
AL
993 break;
994 case KVM_EXIT_MMIO:
8c0d577e 995 DPRINTF("handle_mmio\n");
05330448
AL
996 cpu_physical_memory_rw(run->mmio.phys_addr,
997 run->mmio.data,
998 run->mmio.len,
999 run->mmio.is_write);
d73cd8f4 1000 ret = 0;
05330448
AL
1001 break;
1002 case KVM_EXIT_IRQ_WINDOW_OPEN:
8c0d577e 1003 DPRINTF("irq_window_open\n");
d73cd8f4 1004 ret = EXCP_INTERRUPT;
05330448
AL
1005 break;
1006 case KVM_EXIT_SHUTDOWN:
8c0d577e 1007 DPRINTF("shutdown\n");
05330448 1008 qemu_system_reset_request();
d73cd8f4 1009 ret = EXCP_INTERRUPT;
05330448
AL
1010 break;
1011 case KVM_EXIT_UNKNOWN:
bb44e0d1
JK
1012 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1013 (uint64_t)run->hw.hardware_exit_reason);
73aaec4a 1014 ret = -1;
05330448 1015 break;
7c80eef8 1016 case KVM_EXIT_INTERNAL_ERROR:
73aaec4a 1017 ret = kvm_handle_internal_error(env, run);
7c80eef8 1018 break;
05330448 1019 default:
8c0d577e 1020 DPRINTF("kvm_arch_handle_exit\n");
05330448
AL
1021 ret = kvm_arch_handle_exit(env, run);
1022 break;
1023 }
d73cd8f4 1024 } while (ret == 0);
05330448 1025
73aaec4a 1026 if (ret < 0) {
f5c848ee 1027 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
0461d5a6 1028 vm_stop(RUN_STATE_INTERNAL_ERROR);
becfc390
AL
1029 }
1030
6792a57b
JK
1031 env->exit_request = 0;
1032 cpu_single_env = NULL;
05330448
AL
1033 return ret;
1034}
1035
984b5181 1036int kvm_ioctl(KVMState *s, int type, ...)
05330448
AL
1037{
1038 int ret;
984b5181
AL
1039 void *arg;
1040 va_list ap;
05330448 1041
984b5181
AL
1042 va_start(ap, type);
1043 arg = va_arg(ap, void *);
1044 va_end(ap);
1045
1046 ret = ioctl(s->fd, type, arg);
a426e122 1047 if (ret == -1) {
05330448 1048 ret = -errno;
a426e122 1049 }
05330448
AL
1050 return ret;
1051}
1052
984b5181 1053int kvm_vm_ioctl(KVMState *s, int type, ...)
05330448
AL
1054{
1055 int ret;
984b5181
AL
1056 void *arg;
1057 va_list ap;
1058
1059 va_start(ap, type);
1060 arg = va_arg(ap, void *);
1061 va_end(ap);
05330448 1062
984b5181 1063 ret = ioctl(s->vmfd, type, arg);
a426e122 1064 if (ret == -1) {
05330448 1065 ret = -errno;
a426e122 1066 }
05330448
AL
1067 return ret;
1068}
1069
984b5181 1070int kvm_vcpu_ioctl(CPUState *env, int type, ...)
05330448
AL
1071{
1072 int ret;
984b5181
AL
1073 void *arg;
1074 va_list ap;
1075
1076 va_start(ap, type);
1077 arg = va_arg(ap, void *);
1078 va_end(ap);
05330448 1079
984b5181 1080 ret = ioctl(env->kvm_fd, type, arg);
a426e122 1081 if (ret == -1) {
05330448 1082 ret = -errno;
a426e122 1083 }
05330448
AL
1084 return ret;
1085}
bd322087
AL
1086
1087int kvm_has_sync_mmu(void)
1088{
94a8d39a 1089 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
bd322087 1090}
e22a25c9 1091
a0fb002c
JK
1092int kvm_has_vcpu_events(void)
1093{
1094 return kvm_state->vcpu_events;
1095}
1096
b0b1d690
JK
1097int kvm_has_robust_singlestep(void)
1098{
1099 return kvm_state->robust_singlestep;
1100}
1101
ff44f1a3
JK
1102int kvm_has_debugregs(void)
1103{
1104 return kvm_state->debugregs;
1105}
1106
f1665b21
SY
1107int kvm_has_xsave(void)
1108{
1109 return kvm_state->xsave;
1110}
1111
1112int kvm_has_xcrs(void)
1113{
1114 return kvm_state->xcrs;
1115}
1116
d2f2b8a7
SH
1117int kvm_has_many_ioeventfds(void)
1118{
1119 if (!kvm_enabled()) {
1120 return 0;
1121 }
1122 return kvm_state->many_ioeventfds;
1123}
1124
6f0437e8
JK
1125void kvm_setup_guest_memory(void *start, size_t size)
1126{
1127 if (!kvm_has_sync_mmu()) {
e78815a5 1128 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
6f0437e8
JK
1129
1130 if (ret) {
e78815a5
AF
1131 perror("qemu_madvise");
1132 fprintf(stderr,
1133 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
6f0437e8
JK
1134 exit(1);
1135 }
6f0437e8
JK
1136 }
1137}
1138
e22a25c9
AL
1139#ifdef KVM_CAP_SET_GUEST_DEBUG
1140struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1141 target_ulong pc)
1142{
1143 struct kvm_sw_breakpoint *bp;
1144
72cf2d4f 1145 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
a426e122 1146 if (bp->pc == pc) {
e22a25c9 1147 return bp;
a426e122 1148 }
e22a25c9
AL
1149 }
1150 return NULL;
1151}
1152
1153int kvm_sw_breakpoints_active(CPUState *env)
1154{
72cf2d4f 1155 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
e22a25c9
AL
1156}
1157
452e4751
GC
1158struct kvm_set_guest_debug_data {
1159 struct kvm_guest_debug dbg;
1160 CPUState *env;
1161 int err;
1162};
1163
1164static void kvm_invoke_set_guest_debug(void *data)
1165{
1166 struct kvm_set_guest_debug_data *dbg_data = data;
b3807725
JK
1167 CPUState *env = dbg_data->env;
1168
b3807725 1169 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
452e4751
GC
1170}
1171
e22a25c9
AL
1172int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1173{
452e4751 1174 struct kvm_set_guest_debug_data data;
e22a25c9 1175
b0b1d690 1176 data.dbg.control = reinject_trap;
e22a25c9 1177
b0b1d690
JK
1178 if (env->singlestep_enabled) {
1179 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1180 }
452e4751 1181 kvm_arch_update_guest_debug(env, &data.dbg);
452e4751 1182 data.env = env;
e22a25c9 1183
be41cbe0 1184 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
452e4751 1185 return data.err;
e22a25c9
AL
1186}
1187
1188int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1189 target_ulong len, int type)
1190{
1191 struct kvm_sw_breakpoint *bp;
1192 CPUState *env;
1193 int err;
1194
1195 if (type == GDB_BREAKPOINT_SW) {
1196 bp = kvm_find_sw_breakpoint(current_env, addr);
1197 if (bp) {
1198 bp->use_count++;
1199 return 0;
1200 }
1201
7267c094 1202 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
a426e122 1203 if (!bp) {
e22a25c9 1204 return -ENOMEM;
a426e122 1205 }
e22a25c9
AL
1206
1207 bp->pc = addr;
1208 bp->use_count = 1;
1209 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1210 if (err) {
7267c094 1211 g_free(bp);
e22a25c9
AL
1212 return err;
1213 }
1214
72cf2d4f 1215 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
e22a25c9
AL
1216 bp, entry);
1217 } else {
1218 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
a426e122 1219 if (err) {
e22a25c9 1220 return err;
a426e122 1221 }
e22a25c9
AL
1222 }
1223
1224 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1225 err = kvm_update_guest_debug(env, 0);
a426e122 1226 if (err) {
e22a25c9 1227 return err;
a426e122 1228 }
e22a25c9
AL
1229 }
1230 return 0;
1231}
1232
1233int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1234 target_ulong len, int type)
1235{
1236 struct kvm_sw_breakpoint *bp;
1237 CPUState *env;
1238 int err;
1239
1240 if (type == GDB_BREAKPOINT_SW) {
1241 bp = kvm_find_sw_breakpoint(current_env, addr);
a426e122 1242 if (!bp) {
e22a25c9 1243 return -ENOENT;
a426e122 1244 }
e22a25c9
AL
1245
1246 if (bp->use_count > 1) {
1247 bp->use_count--;
1248 return 0;
1249 }
1250
1251 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
a426e122 1252 if (err) {
e22a25c9 1253 return err;
a426e122 1254 }
e22a25c9 1255
72cf2d4f 1256 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
7267c094 1257 g_free(bp);
e22a25c9
AL
1258 } else {
1259 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
a426e122 1260 if (err) {
e22a25c9 1261 return err;
a426e122 1262 }
e22a25c9
AL
1263 }
1264
1265 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1266 err = kvm_update_guest_debug(env, 0);
a426e122 1267 if (err) {
e22a25c9 1268 return err;
a426e122 1269 }
e22a25c9
AL
1270 }
1271 return 0;
1272}
1273
1274void kvm_remove_all_breakpoints(CPUState *current_env)
1275{
1276 struct kvm_sw_breakpoint *bp, *next;
1277 KVMState *s = current_env->kvm_state;
1278 CPUState *env;
1279
72cf2d4f 1280 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
e22a25c9
AL
1281 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1282 /* Try harder to find a CPU that currently sees the breakpoint. */
1283 for (env = first_cpu; env != NULL; env = env->next_cpu) {
a426e122 1284 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
e22a25c9 1285 break;
a426e122 1286 }
e22a25c9
AL
1287 }
1288 }
1289 }
1290 kvm_arch_remove_all_hw_breakpoints();
1291
a426e122 1292 for (env = first_cpu; env != NULL; env = env->next_cpu) {
e22a25c9 1293 kvm_update_guest_debug(env, 0);
a426e122 1294 }
e22a25c9
AL
1295}
1296
1297#else /* !KVM_CAP_SET_GUEST_DEBUG */
1298
1299int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1300{
1301 return -EINVAL;
1302}
1303
1304int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1305 target_ulong len, int type)
1306{
1307 return -EINVAL;
1308}
1309
1310int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1311 target_ulong len, int type)
1312{
1313 return -EINVAL;
1314}
1315
1316void kvm_remove_all_breakpoints(CPUState *current_env)
1317{
1318}
1319#endif /* !KVM_CAP_SET_GUEST_DEBUG */
cc84de95
MT
1320
1321int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1322{
1323 struct kvm_signal_mask *sigmask;
1324 int r;
1325
a426e122 1326 if (!sigset) {
cc84de95 1327 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
a426e122 1328 }
cc84de95 1329
7267c094 1330 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
cc84de95
MT
1331
1332 sigmask->len = 8;
1333 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1334 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
7267c094 1335 g_free(sigmask);
cc84de95
MT
1336
1337 return r;
1338}
ca821806 1339
44f1a3d8
CM
1340int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1341{
44f1a3d8
CM
1342 int ret;
1343 struct kvm_ioeventfd iofd;
1344
1345 iofd.datamatch = val;
1346 iofd.addr = addr;
1347 iofd.len = 4;
1348 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1349 iofd.fd = fd;
1350
1351 if (!kvm_enabled()) {
1352 return -ENOSYS;
1353 }
1354
1355 if (!assign) {
1356 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1357 }
1358
1359 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1360
1361 if (ret < 0) {
1362 return -errno;
1363 }
1364
1365 return 0;
44f1a3d8
CM
1366}
1367
ca821806
MT
1368int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1369{
1370 struct kvm_ioeventfd kick = {
1371 .datamatch = val,
1372 .addr = addr,
1373 .len = 2,
1374 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1375 .fd = fd,
1376 };
1377 int r;
a426e122 1378 if (!kvm_enabled()) {
ca821806 1379 return -ENOSYS;
a426e122
JK
1380 }
1381 if (!assign) {
ca821806 1382 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
a426e122 1383 }
ca821806 1384 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
a426e122 1385 if (r < 0) {
ca821806 1386 return r;
a426e122 1387 }
ca821806 1388 return 0;
98c8573e 1389}
a1b87fe0
JK
1390
1391int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1392{
1393 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1394}
1395
1396int kvm_on_sigbus(int code, void *addr)
1397{
1398 return kvm_arch_on_sigbus(code, addr);
1399}