]> git.proxmox.com Git - mirror_zfs.git/blame - lib/libefi/rdwr_efi.c
libefi: efi_type: fix unused, remove argsused
[mirror_zfs.git] / lib / libefi / rdwr_efi.c
CommitLineData
5c363129
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
572e2857 23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
fc803849 24 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
74d42600 25 * Copyright (c) 2018 by Delphix. All rights reserved.
5c363129
BB
26 */
27
28#include <stdio.h>
29#include <stdlib.h>
30#include <errno.h>
93ce2b4c 31#include <string.h>
5c363129
BB
32#include <strings.h>
33#include <unistd.h>
34#include <uuid/uuid.h>
d603ed6c 35#include <zlib.h>
5c363129
BB
36#include <libintl.h>
37#include <sys/types.h>
38#include <sys/dkio.h>
39#include <sys/vtoc.h>
40#include <sys/mhd.h>
41#include <sys/param.h>
42#include <sys/dktp/fdisk.h>
43#include <sys/efi_partition.h>
44#include <sys/byteorder.h>
475ebd76 45#include <sys/vdev_disk.h>
d603ed6c 46#include <linux/fs.h>
8e82ffba 47#include <linux/blkpg.h>
5c363129
BB
48
49static struct uuid_to_ptag {
50 struct uuid uuid;
51} conversion_array[] = {
52 { EFI_UNUSED },
53 { EFI_BOOT },
54 { EFI_ROOT },
55 { EFI_SWAP },
56 { EFI_USR },
57 { EFI_BACKUP },
d603ed6c 58 { EFI_UNUSED }, /* STAND is never used */
5c363129
BB
59 { EFI_VAR },
60 { EFI_HOME },
61 { EFI_ALTSCTR },
d603ed6c 62 { EFI_UNUSED }, /* CACHE (cachefs) is never used */
5c363129
BB
63 { EFI_RESERVED },
64 { EFI_SYSTEM },
65 { EFI_LEGACY_MBR },
572e2857
BB
66 { EFI_SYMC_PUB },
67 { EFI_SYMC_CDS },
5c363129
BB
68 { EFI_MSFT_RESV },
69 { EFI_DELL_BASIC },
70 { EFI_DELL_RAID },
71 { EFI_DELL_SWAP },
72 { EFI_DELL_LVM },
73 { EFI_DELL_RESV },
74 { EFI_AAPL_HFS },
fc803849
YP
75 { EFI_AAPL_UFS },
76 { EFI_FREEBSD_BOOT },
77 { EFI_FREEBSD_SWAP },
78 { EFI_FREEBSD_UFS },
79 { EFI_FREEBSD_VINUM },
917b8c5c 80 { EFI_FREEBSD_ZFS },
81 { EFI_BIOS_BOOT },
82 { EFI_INTC_RS },
83 { EFI_SNE_BOOT },
84 { EFI_LENOVO_BOOT },
85 { EFI_MSFT_LDMM },
86 { EFI_MSFT_LDMD },
87 { EFI_MSFT_RE },
88 { EFI_IBM_GPFS },
89 { EFI_MSFT_STORAGESPACES },
90 { EFI_HPQ_DATA },
91 { EFI_HPQ_SVC },
92 { EFI_RHT_DATA },
93 { EFI_RHT_HOME },
94 { EFI_RHT_SRV },
95 { EFI_RHT_DMCRYPT },
96 { EFI_RHT_LUKS },
97 { EFI_FREEBSD_DISKLABEL },
98 { EFI_AAPL_RAID },
99 { EFI_AAPL_RAIDOFFLINE },
100 { EFI_AAPL_BOOT },
101 { EFI_AAPL_LABEL },
102 { EFI_AAPL_TVRECOVERY },
103 { EFI_AAPL_CORESTORAGE },
104 { EFI_NETBSD_SWAP },
105 { EFI_NETBSD_FFS },
106 { EFI_NETBSD_LFS },
107 { EFI_NETBSD_RAID },
108 { EFI_NETBSD_CAT },
109 { EFI_NETBSD_CRYPT },
110 { EFI_GOOG_KERN },
111 { EFI_GOOG_ROOT },
112 { EFI_GOOG_RESV },
113 { EFI_HAIKU_BFS },
114 { EFI_MIDNIGHTBSD_BOOT },
115 { EFI_MIDNIGHTBSD_DATA },
116 { EFI_MIDNIGHTBSD_SWAP },
117 { EFI_MIDNIGHTBSD_UFS },
118 { EFI_MIDNIGHTBSD_VINUM },
119 { EFI_MIDNIGHTBSD_ZFS },
120 { EFI_CEPH_JOURNAL },
121 { EFI_CEPH_DMCRYPTJOURNAL },
122 { EFI_CEPH_OSD },
123 { EFI_CEPH_DMCRYPTOSD },
124 { EFI_CEPH_CREATE },
125 { EFI_CEPH_DMCRYPTCREATE },
126 { EFI_OPENBSD_DISKLABEL },
127 { EFI_BBRY_QNX },
128 { EFI_BELL_PLAN9 },
129 { EFI_VMW_KCORE },
130 { EFI_VMW_VMFS },
131 { EFI_VMW_RESV },
132 { EFI_RHT_ROOTX86 },
133 { EFI_RHT_ROOTAMD64 },
134 { EFI_RHT_ROOTARM },
135 { EFI_RHT_ROOTARM64 },
136 { EFI_ACRONIS_SECUREZONE },
137 { EFI_ONIE_BOOT },
138 { EFI_ONIE_CONFIG },
139 { EFI_IBM_PPRPBOOT },
140 { EFI_FREEDESKTOP_BOOT }
5c363129
BB
141};
142
5c363129 143int efi_debug = 0;
5c363129 144
d603ed6c
BB
145static int efi_read(int, struct dk_gpt *);
146
147/*
148 * Return a 32-bit CRC of the contents of the buffer. Pre-and-post
149 * one's conditioning will be handled by crc32() internally.
150 */
151static uint32_t
152efi_crc32(const unsigned char *buf, unsigned int size)
153{
154 uint32_t crc = crc32(0, Z_NULL, 0);
155
156 crc = crc32(crc, buf, size);
157
158 return (crc);
159}
5c363129
BB
160
161static int
162read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
163{
d603ed6c
BB
164 int sector_size;
165 unsigned long long capacity_size;
166
d1d7e268
MK
167 if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
168 return (-1);
d603ed6c
BB
169
170 if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
171 return (-1);
172
173 *lbsize = (uint_t)sector_size;
174 *capacity = (diskaddr_t)(capacity_size / sector_size);
175
176 return (0);
177}
5c363129 178
8e82ffba
GW
179/*
180 * Return back the device name associated with the file descriptor. The
181 * caller is responsible for freeing the memory associated with the
182 * returned string.
183 */
184static char *
185efi_get_devname(int fd)
186{
e00aae4b 187 char path[32];
8e82ffba
GW
188
189 /*
190 * The libefi API only provides the open fd and not the file path.
191 * To handle this realpath(3) is used to resolve the block device
192 * name from /proc/self/fd/<fd>.
193 */
e00aae4b
AZ
194 (void) snprintf(path, sizeof (path), "/proc/self/fd/%d", fd);
195 return (realpath(path, NULL));
8e82ffba
GW
196}
197
d603ed6c
BB
198static int
199efi_get_info(int fd, struct dk_cinfo *dki_info)
200{
d603ed6c
BB
201 char *dev_path;
202 int rval = 0;
203
d1d7e268 204 memset(dki_info, 0, sizeof (*dki_info));
d603ed6c 205
d603ed6c
BB
206 /*
207 * The simplest way to get the partition number under linux is
78595377 208 * to parse it out of the /dev/<disk><partition> block device name.
d603ed6c
BB
209 * The kernel creates this using the partition number when it
210 * populates /dev/ so it may be trusted. The tricky bit here is
211 * that the naming convention is based on the block device type.
212 * So we need to take this in to account when parsing out the
8e82ffba 213 * partition information. Aside from the partition number we collect
d603ed6c
BB
214 * some additional device info.
215 */
8e82ffba 216 dev_path = efi_get_devname(fd);
d603ed6c
BB
217 if (dev_path == NULL)
218 goto error;
219
220 if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
221 strcpy(dki_info->dki_cname, "sd");
222 dki_info->dki_ctype = DKC_SCSI_CCS;
223 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
d1d7e268
MK
224 dki_info->dki_dname,
225 &dki_info->dki_partition);
d603ed6c
BB
226 } else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
227 strcpy(dki_info->dki_cname, "hd");
228 dki_info->dki_ctype = DKC_DIRECT;
229 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
d1d7e268
MK
230 dki_info->dki_dname,
231 &dki_info->dki_partition);
d603ed6c
BB
232 } else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
233 strcpy(dki_info->dki_cname, "pseudo");
234 dki_info->dki_ctype = DKC_MD;
787c455e
RY
235 strcpy(dki_info->dki_dname, "md");
236 rval = sscanf(dev_path, "/dev/md%[0-9]p%hu",
237 dki_info->dki_dname + 2,
d1d7e268 238 &dki_info->dki_partition);
2932b6a8
RL
239 } else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
240 strcpy(dki_info->dki_cname, "vd");
241 dki_info->dki_ctype = DKC_MD;
242 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
d1d7e268
MK
243 dki_info->dki_dname,
244 &dki_info->dki_partition);
541da993
RY
245 } else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) {
246 strcpy(dki_info->dki_cname, "xvd");
247 dki_info->dki_ctype = DKC_MD;
248 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
249 dki_info->dki_dname,
250 &dki_info->dki_partition);
9f5ba90f
RY
251 } else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) {
252 strcpy(dki_info->dki_cname, "zd");
253 dki_info->dki_ctype = DKC_MD;
232dd8b9
BB
254 strcpy(dki_info->dki_dname, "zd");
255 rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu",
256 dki_info->dki_dname + 2,
9f5ba90f 257 &dki_info->dki_partition);
d603ed6c
BB
258 } else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
259 strcpy(dki_info->dki_cname, "pseudo");
260 dki_info->dki_ctype = DKC_VBD;
787c455e
RY
261 strcpy(dki_info->dki_dname, "dm-");
262 rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu",
263 dki_info->dki_dname + 3,
d1d7e268 264 &dki_info->dki_partition);
d603ed6c
BB
265 } else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
266 strcpy(dki_info->dki_cname, "pseudo");
267 dki_info->dki_ctype = DKC_PCMCIA_MEM;
787c455e
RY
268 strcpy(dki_info->dki_dname, "ram");
269 rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu",
270 dki_info->dki_dname + 3,
d1d7e268 271 &dki_info->dki_partition);
d603ed6c
BB
272 } else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
273 strcpy(dki_info->dki_cname, "pseudo");
274 dki_info->dki_ctype = DKC_VBD;
787c455e
RY
275 strcpy(dki_info->dki_dname, "loop");
276 rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu",
277 dki_info->dki_dname + 4,
d1d7e268 278 &dki_info->dki_partition);
c66e54e9 279 } else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) {
280 strcpy(dki_info->dki_cname, "nvme");
281 dki_info->dki_ctype = DKC_SCSI_CCS;
282 strcpy(dki_info->dki_dname, "nvme");
283 (void) sscanf(dev_path, "/dev/nvme%[0-9]",
284 dki_info->dki_dname + 4);
285 size_t controller_length = strlen(
286 dki_info->dki_dname);
287 strcpy(dki_info->dki_dname + controller_length,
288 "n");
289 rval = sscanf(dev_path,
290 "/dev/nvme%*[0-9]n%[0-9]p%hu",
291 dki_info->dki_dname + controller_length + 1,
292 &dki_info->dki_partition);
d603ed6c
BB
293 } else {
294 strcpy(dki_info->dki_dname, "unknown");
295 strcpy(dki_info->dki_cname, "unknown");
296 dki_info->dki_ctype = DKC_UNKNOWN;
297 }
298
299 switch (rval) {
300 case 0:
301 errno = EINVAL;
302 goto error;
303 case 1:
304 dki_info->dki_partition = 0;
305 }
306
307 free(dev_path);
7e0594a3 308
5c363129 309 return (0);
d603ed6c
BB
310error:
311 if (efi_debug)
312 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
313
314 switch (errno) {
315 case EIO:
316 return (VT_EIO);
317 case EINVAL:
318 return (VT_EINVAL);
319 default:
320 return (VT_ERROR);
321 }
5c363129
BB
322}
323
324/*
325 * the number of blocks the EFI label takes up (round up to nearest
326 * block)
327 */
328#define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
329 ((l) - 1)) / (l)))
330/* number of partitions -- limited by what we can malloc */
331#define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
332 sizeof (struct dk_part))
333
334int
335efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
336{
d603ed6c
BB
337 diskaddr_t capacity = 0;
338 uint_t lbsize = 0;
5c363129
BB
339 uint_t nblocks;
340 size_t length;
341 struct dk_gpt *vptr;
342 struct uuid uuid;
d603ed6c 343 struct dk_cinfo dki_info;
5c363129 344
b3b4f547 345 if (read_disk_info(fd, &capacity, &lbsize) != 0)
5c363129 346 return (-1);
b3b4f547 347
b3b4f547 348 if (efi_get_info(fd, &dki_info) != 0)
d603ed6c 349 return (-1);
d603ed6c
BB
350
351 if (dki_info.dki_partition != 0)
352 return (-1);
353
354 if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
355 (dki_info.dki_ctype == DKC_VBD) ||
356 (dki_info.dki_ctype == DKC_UNKNOWN))
357 return (-1);
5c363129
BB
358
359 nblocks = NBLOCKS(nparts, lbsize);
360 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
361 /* 16K plus one block for the GPT */
362 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
363 }
364
365 if (nparts > MAX_PARTS) {
366 if (efi_debug) {
367 (void) fprintf(stderr,
368 "the maximum number of partitions supported is %lu\n",
369 MAX_PARTS);
370 }
371 return (-1);
372 }
373
374 length = sizeof (struct dk_gpt) +
375 sizeof (struct dk_part) * (nparts - 1);
376
fe20400d
BB
377 vptr = calloc(1, length);
378 if (vptr == NULL)
5c363129
BB
379 return (-1);
380
fe20400d 381 *vtoc = vptr;
5c363129
BB
382
383 vptr->efi_version = EFI_VERSION_CURRENT;
384 vptr->efi_lbasize = lbsize;
385 vptr->efi_nparts = nparts;
386 /*
387 * add one block here for the PMBR; on disks with a 512 byte
388 * block size and 128 or fewer partitions, efi_first_u_lba
389 * should work out to "34"
390 */
391 vptr->efi_first_u_lba = nblocks + 1;
392 vptr->efi_last_lba = capacity - 1;
393 vptr->efi_altern_lba = capacity -1;
394 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
395
396 (void) uuid_generate((uchar_t *)&uuid);
397 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
398 return (0);
399}
400
401/*
402 * Read EFI - return partition number upon success.
403 */
404int
405efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
406{
407 int rval;
408 uint32_t nparts;
409 int length;
fe20400d 410 struct dk_gpt *vptr;
5c363129
BB
411
412 /* figure out the number of entries that would fit into 16K */
413 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
414 length = (int) sizeof (struct dk_gpt) +
415 (int) sizeof (struct dk_part) * (nparts - 1);
fe20400d
BB
416 vptr = calloc(1, length);
417
418 if (vptr == NULL)
5c363129
BB
419 return (VT_ERROR);
420
fe20400d
BB
421 vptr->efi_nparts = nparts;
422 rval = efi_read(fd, vptr);
5c363129 423
fe20400d 424 if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) {
5c363129
BB
425 void *tmp;
426 length = (int) sizeof (struct dk_gpt) +
fe20400d
BB
427 (int) sizeof (struct dk_part) * (vptr->efi_nparts - 1);
428 nparts = vptr->efi_nparts;
429 if ((tmp = realloc(vptr, length)) == NULL) {
6fc1ce07 430 /* cppcheck-suppress doubleFree */
fe20400d 431 free(vptr);
5c363129
BB
432 *vtoc = NULL;
433 return (VT_ERROR);
434 } else {
fe20400d
BB
435 vptr = tmp;
436 rval = efi_read(fd, vptr);
5c363129
BB
437 }
438 }
439
440 if (rval < 0) {
441 if (efi_debug) {
442 (void) fprintf(stderr,
443 "read of EFI table failed, rval=%d\n", rval);
444 }
fe20400d 445 free(vptr);
5c363129 446 *vtoc = NULL;
fe20400d
BB
447 } else {
448 *vtoc = vptr;
5c363129
BB
449 }
450
451 return (rval);
452}
453
454static int
455efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
456{
457 void *data = dk_ioc->dki_data;
458 int error;
d603ed6c
BB
459 diskaddr_t capacity;
460 uint_t lbsize;
461
462 /*
463 * When the IO is not being performed in kernel as an ioctl we need
464 * to know the sector size so we can seek to the proper byte offset.
465 */
466 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
467 if (efi_debug)
d1d7e268 468 fprintf(stderr, "unable to read disk info: %d", errno);
d603ed6c
BB
469
470 errno = EIO;
d1d7e268 471 return (-1);
d603ed6c
BB
472 }
473
474 switch (cmd) {
475 case DKIOCGETEFI:
476 if (lbsize == 0) {
477 if (efi_debug)
478 (void) fprintf(stderr, "DKIOCGETEFI assuming "
d1d7e268 479 "LBA %d bytes\n", DEV_BSIZE);
d603ed6c
BB
480
481 lbsize = DEV_BSIZE;
482 }
483
484 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
485 if (error == -1) {
486 if (efi_debug)
487 (void) fprintf(stderr, "DKIOCGETEFI lseek "
d1d7e268
MK
488 "error: %d\n", errno);
489 return (error);
d603ed6c
BB
490 }
491
492 error = read(fd, data, dk_ioc->dki_length);
493 if (error == -1) {
494 if (efi_debug)
495 (void) fprintf(stderr, "DKIOCGETEFI read "
d1d7e268
MK
496 "error: %d\n", errno);
497 return (error);
d603ed6c 498 }
5c363129 499
d603ed6c
BB
500 if (error != dk_ioc->dki_length) {
501 if (efi_debug)
502 (void) fprintf(stderr, "DKIOCGETEFI short "
d1d7e268 503 "read of %d bytes\n", error);
d603ed6c 504 errno = EIO;
d1d7e268 505 return (-1);
d603ed6c
BB
506 }
507 error = 0;
508 break;
509
510 case DKIOCSETEFI:
511 if (lbsize == 0) {
512 if (efi_debug)
513 (void) fprintf(stderr, "DKIOCSETEFI unknown "
d1d7e268 514 "LBA size\n");
d603ed6c 515 errno = EIO;
d1d7e268 516 return (-1);
d603ed6c
BB
517 }
518
519 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
520 if (error == -1) {
521 if (efi_debug)
522 (void) fprintf(stderr, "DKIOCSETEFI lseek "
d1d7e268
MK
523 "error: %d\n", errno);
524 return (error);
d603ed6c
BB
525 }
526
527 error = write(fd, data, dk_ioc->dki_length);
528 if (error == -1) {
529 if (efi_debug)
530 (void) fprintf(stderr, "DKIOCSETEFI write "
d1d7e268
MK
531 "error: %d\n", errno);
532 return (error);
d603ed6c
BB
533 }
534
535 if (error != dk_ioc->dki_length) {
536 if (efi_debug)
537 (void) fprintf(stderr, "DKIOCSETEFI short "
d1d7e268 538 "write of %d bytes\n", error);
d603ed6c 539 errno = EIO;
d1d7e268 540 return (-1);
d603ed6c
BB
541 }
542
543 /* Sync the new EFI table to disk */
544 error = fsync(fd);
545 if (error == -1)
d1d7e268 546 return (error);
d603ed6c
BB
547
548 /* Ensure any local disk cache is also flushed */
549 if (ioctl(fd, BLKFLSBUF, 0) == -1)
d1d7e268 550 return (error);
d603ed6c
BB
551
552 error = 0;
553 break;
554
555 default:
556 if (efi_debug)
557 (void) fprintf(stderr, "unsupported ioctl()\n");
558
559 errno = EIO;
d1d7e268 560 return (-1);
d603ed6c 561 }
7e0594a3 562
5c363129
BB
563 return (error);
564}
565
d1d7e268
MK
566int
567efi_rescan(int fd)
d603ed6c 568{
d09a99f9 569 int retry = 10;
d603ed6c
BB
570 int error;
571
572 /* Notify the kernel a devices partition table has been updated */
573 while ((error = ioctl(fd, BLKRRPART)) != 0) {
d09a99f9 574 if ((--retry == 0) || (errno != EBUSY)) {
d603ed6c 575 (void) fprintf(stderr, "the kernel failed to rescan "
d1d7e268 576 "the partition table: %d\n", errno);
d603ed6c
BB
577 return (-1);
578 }
d09a99f9 579 usleep(50000);
d603ed6c
BB
580 }
581
582 return (0);
583}
d603ed6c 584
5c363129
BB
585static int
586check_label(int fd, dk_efi_t *dk_ioc)
587{
588 efi_gpt_t *efi;
589 uint_t crc;
590
591 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
592 switch (errno) {
593 case EIO:
594 return (VT_EIO);
595 default:
596 return (VT_ERROR);
597 }
598 }
599 efi = dk_ioc->dki_data;
600 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
601 if (efi_debug)
602 (void) fprintf(stderr,
603 "Bad EFI signature: 0x%llx != 0x%llx\n",
604 (long long)efi->efi_gpt_Signature,
605 (long long)LE_64(EFI_SIGNATURE));
606 return (VT_EINVAL);
607 }
608
609 /*
610 * check CRC of the header; the size of the header should
611 * never be larger than one block
612 */
613 crc = efi->efi_gpt_HeaderCRC32;
614 efi->efi_gpt_HeaderCRC32 = 0;
7a023273 615 len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
5c363129 616
d1d7e268 617 if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
7a023273
ZB
618 if (efi_debug)
619 (void) fprintf(stderr,
25df831b 620 "Invalid EFI HeaderSize %llu. Assuming %d.\n",
621 headerSize, EFI_MIN_LABEL_SIZE);
7a023273
ZB
622 }
623
624 if ((headerSize > dk_ioc->dki_length) ||
625 crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
5c363129
BB
626 if (efi_debug)
627 (void) fprintf(stderr,
628 "Bad EFI CRC: 0x%x != 0x%x\n",
7a023273
ZB
629 crc, LE_32(efi_crc32((unsigned char *)efi,
630 headerSize)));
5c363129
BB
631 return (VT_EINVAL);
632 }
633
634 return (0);
635}
636
637static int
638efi_read(int fd, struct dk_gpt *vtoc)
639{
640 int i, j;
641 int label_len;
642 int rval = 0;
643 int md_flag = 0;
644 int vdc_flag = 0;
d603ed6c
BB
645 diskaddr_t capacity = 0;
646 uint_t lbsize = 0;
5c363129
BB
647 struct dk_minfo disk_info;
648 dk_efi_t dk_ioc;
649 efi_gpt_t *efi;
650 efi_gpe_t *efi_parts;
651 struct dk_cinfo dki_info;
652 uint32_t user_length;
653 boolean_t legacy_label = B_FALSE;
654
655 /*
656 * get the partition number for this file descriptor.
657 */
d603ed6c 658 if ((rval = efi_get_info(fd, &dki_info)) != 0)
d1d7e268 659 return (rval);
d603ed6c 660
5c363129
BB
661 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
662 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
663 md_flag++;
664 } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
665 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
666 /*
667 * The controller and drive name "vdc" (virtual disk client)
668 * indicates a LDoms virtual disk.
669 */
670 vdc_flag++;
671 }
672
673 /* get the LBA size */
d603ed6c 674 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
5c363129
BB
675 if (efi_debug) {
676 (void) fprintf(stderr,
d1d7e268
MK
677 "unable to read disk info: %d",
678 errno);
5c363129 679 }
d603ed6c 680 return (VT_EINVAL);
5c363129 681 }
d603ed6c
BB
682
683 disk_info.dki_lbsize = lbsize;
684 disk_info.dki_capacity = capacity;
685
5c363129
BB
686 if (disk_info.dki_lbsize == 0) {
687 if (efi_debug) {
688 (void) fprintf(stderr,
689 "efi_read: assuming LBA 512 bytes\n");
690 }
691 disk_info.dki_lbsize = DEV_BSIZE;
692 }
693 /*
694 * Read the EFI GPT to figure out how many partitions we need
695 * to deal with.
696 */
697 dk_ioc.dki_lba = 1;
698 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
699 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
700 } else {
701 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
702 disk_info.dki_lbsize;
703 if (label_len % disk_info.dki_lbsize) {
704 /* pad to physical sector size */
705 label_len += disk_info.dki_lbsize;
706 label_len &= ~(disk_info.dki_lbsize - 1);
707 }
708 }
709
d603ed6c 710 if (posix_memalign((void **)&dk_ioc.dki_data,
d1d7e268 711 disk_info.dki_lbsize, label_len))
5c363129
BB
712 return (VT_ERROR);
713
d603ed6c 714 memset(dk_ioc.dki_data, 0, label_len);
5c363129
BB
715 dk_ioc.dki_length = disk_info.dki_lbsize;
716 user_length = vtoc->efi_nparts;
717 efi = dk_ioc.dki_data;
718 if (md_flag) {
719 dk_ioc.dki_length = label_len;
720 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
721 switch (errno) {
722 case EIO:
723 return (VT_EIO);
724 default:
725 return (VT_ERROR);
726 }
727 }
728 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
729 /*
730 * No valid label here; try the alternate. Note that here
731 * we just read GPT header and save it into dk_ioc.data,
732 * Later, we will read GUID partition entry array if we
733 * can get valid GPT header.
734 */
735
736 /*
737 * This is a workaround for legacy systems. In the past, the
738 * last sector of SCSI disk was invisible on x86 platform. At
739 * that time, backup label was saved on the next to the last
740 * sector. It is possible for users to move a disk from previous
741 * solaris system to present system. Here, we attempt to search
742 * legacy backup EFI label first.
743 */
744 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
745 dk_ioc.dki_length = disk_info.dki_lbsize;
746 rval = check_label(fd, &dk_ioc);
747 if (rval == VT_EINVAL) {
748 /*
749 * we didn't find legacy backup EFI label, try to
750 * search backup EFI label in the last block.
751 */
752 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
753 dk_ioc.dki_length = disk_info.dki_lbsize;
754 rval = check_label(fd, &dk_ioc);
755 if (rval == 0) {
756 legacy_label = B_TRUE;
757 if (efi_debug)
758 (void) fprintf(stderr,
759 "efi_read: primary label corrupt; "
760 "using EFI backup label located on"
761 " the last block\n");
762 }
763 } else {
764 if ((efi_debug) && (rval == 0))
765 (void) fprintf(stderr, "efi_read: primary label"
766 " corrupt; using legacy EFI backup label "
767 " located on the next to last block\n");
768 }
769
770 if (rval == 0) {
771 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
772 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
773 vtoc->efi_nparts =
774 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
775 /*
776 * Partition tables are between backup GPT header
777 * table and ParitionEntryLBA (the starting LBA of
778 * the GUID partition entries array). Now that we
779 * already got valid GPT header and saved it in
780 * dk_ioc.dki_data, we try to get GUID partition
781 * entry array here.
782 */
783 /* LINTED */
784 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
785 + disk_info.dki_lbsize);
786 if (legacy_label)
787 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
788 dk_ioc.dki_lba;
789 else
790 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
791 dk_ioc.dki_lba;
792 dk_ioc.dki_length *= disk_info.dki_lbsize;
793 if (dk_ioc.dki_length >
794 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
795 rval = VT_EINVAL;
796 } else {
797 /*
798 * read GUID partition entry array
799 */
800 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
801 }
802 }
803
804 } else if (rval == 0) {
805
806 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
807 /* LINTED */
808 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
809 + disk_info.dki_lbsize);
810 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
811 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
812
813 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
814 /*
815 * When the device is a LDoms virtual disk, the DKIOCGETEFI
816 * ioctl can fail with EINVAL if the virtual disk backend
817 * is a ZFS volume serviced by a domain running an old version
818 * of Solaris. This is because the DKIOCGETEFI ioctl was
819 * initially incorrectly implemented for a ZFS volume and it
820 * expected the GPT and GPE to be retrieved with a single ioctl.
821 * So we try to read the GPT and the GPE using that old style
822 * ioctl.
823 */
824 dk_ioc.dki_lba = 1;
825 dk_ioc.dki_length = label_len;
826 rval = check_label(fd, &dk_ioc);
827 }
828
829 if (rval < 0) {
830 free(efi);
831 return (rval);
832 }
833
834 /* LINTED -- always longlong aligned */
835 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
836
837 /*
838 * Assemble this into a "dk_gpt" struct for easier
839 * digestibility by applications.
840 */
841 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
842 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
843 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
844 vtoc->efi_lbasize = disk_info.dki_lbsize;
845 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
846 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
847 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
848 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
849 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
850
851 /*
852 * If the array the user passed in is too small, set the length
853 * to what it needs to be and return
854 */
855 if (user_length < vtoc->efi_nparts) {
856 return (VT_EINVAL);
857 }
858
859 for (i = 0; i < vtoc->efi_nparts; i++) {
860
861 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
862 efi_parts[i].efi_gpe_PartitionTypeGUID);
863
864 for (j = 0;
865 j < sizeof (conversion_array)
866 / sizeof (struct uuid_to_ptag); j++) {
867
868 if (bcmp(&vtoc->efi_parts[i].p_guid,
869 &conversion_array[j].uuid,
870 sizeof (struct uuid)) == 0) {
871 vtoc->efi_parts[i].p_tag = j;
872 break;
873 }
874 }
875 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
876 continue;
877 vtoc->efi_parts[i].p_flag =
878 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
879 vtoc->efi_parts[i].p_start =
880 LE_64(efi_parts[i].efi_gpe_StartingLBA);
881 vtoc->efi_parts[i].p_size =
882 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
883 vtoc->efi_parts[i].p_start + 1;
884 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
885 vtoc->efi_parts[i].p_name[j] =
886 (uchar_t)LE_16(
887 efi_parts[i].efi_gpe_PartitionName[j]);
888 }
889
890 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
891 efi_parts[i].efi_gpe_UniquePartitionGUID);
892 }
893 free(efi);
894
895 return (dki_info.dki_partition);
896}
897
898/* writes a "protective" MBR */
899static int
900write_pmbr(int fd, struct dk_gpt *vtoc)
901{
902 dk_efi_t dk_ioc;
903 struct mboot mb;
904 uchar_t *cp;
905 diskaddr_t size_in_lba;
906 uchar_t *buf;
907 int len;
908
909 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
d603ed6c
BB
910 if (posix_memalign((void **)&buf, len, len))
911 return (VT_ERROR);
5c363129
BB
912
913 /*
914 * Preserve any boot code and disk signature if the first block is
915 * already an MBR.
916 */
d603ed6c 917 memset(buf, 0, len);
5c363129
BB
918 dk_ioc.dki_lba = 0;
919 dk_ioc.dki_length = len;
920 /* LINTED -- always longlong aligned */
921 dk_ioc.dki_data = (efi_gpt_t *)buf;
922 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
f9f431cd 923 (void) memcpy(&mb, buf, sizeof (mb));
5c363129
BB
924 bzero(&mb, sizeof (mb));
925 mb.signature = LE_16(MBB_MAGIC);
926 } else {
f9f431cd 927 (void) memcpy(&mb, buf, sizeof (mb));
5c363129
BB
928 if (mb.signature != LE_16(MBB_MAGIC)) {
929 bzero(&mb, sizeof (mb));
930 mb.signature = LE_16(MBB_MAGIC);
931 }
932 }
933
934 bzero(&mb.parts, sizeof (mb.parts));
935 cp = (uchar_t *)&mb.parts[0];
936 /* bootable or not */
937 *cp++ = 0;
938 /* beginning CHS; 0xffffff if not representable */
939 *cp++ = 0xff;
940 *cp++ = 0xff;
941 *cp++ = 0xff;
942 /* OS type */
943 *cp++ = EFI_PMBR;
944 /* ending CHS; 0xffffff if not representable */
945 *cp++ = 0xff;
946 *cp++ = 0xff;
947 *cp++ = 0xff;
948 /* starting LBA: 1 (little endian format) by EFI definition */
949 *cp++ = 0x01;
950 *cp++ = 0x00;
951 *cp++ = 0x00;
952 *cp++ = 0x00;
953 /* ending LBA: last block on the disk (little endian format) */
954 size_in_lba = vtoc->efi_last_lba;
955 if (size_in_lba < 0xffffffff) {
956 *cp++ = (size_in_lba & 0x000000ff);
957 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
958 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
959 *cp++ = (size_in_lba & 0xff000000) >> 24;
960 } else {
961 *cp++ = 0xff;
962 *cp++ = 0xff;
963 *cp++ = 0xff;
964 *cp++ = 0xff;
965 }
966
f9f431cd 967 (void) memcpy(buf, &mb, sizeof (mb));
5c363129
BB
968 /* LINTED -- always longlong aligned */
969 dk_ioc.dki_data = (efi_gpt_t *)buf;
970 dk_ioc.dki_lba = 0;
971 dk_ioc.dki_length = len;
972 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
973 free(buf);
974 switch (errno) {
975 case EIO:
976 return (VT_EIO);
977 case EINVAL:
978 return (VT_EINVAL);
979 default:
980 return (VT_ERROR);
981 }
982 }
983 free(buf);
984 return (0);
985}
986
987/* make sure the user specified something reasonable */
988static int
989check_input(struct dk_gpt *vtoc)
990{
991 int resv_part = -1;
992 int i, j;
993 diskaddr_t istart, jstart, isize, jsize, endsect;
994
995 /*
996 * Sanity-check the input (make sure no partitions overlap)
997 */
998 for (i = 0; i < vtoc->efi_nparts; i++) {
999 /* It can't be unassigned and have an actual size */
1000 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1001 (vtoc->efi_parts[i].p_size != 0)) {
1002 if (efi_debug) {
d603ed6c
BB
1003 (void) fprintf(stderr, "partition %d is "
1004 "\"unassigned\" but has a size of %llu",
1005 i, vtoc->efi_parts[i].p_size);
5c363129
BB
1006 }
1007 return (VT_EINVAL);
1008 }
1009 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1010 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
1011 continue;
1012 /* we have encountered an unknown uuid */
1013 vtoc->efi_parts[i].p_tag = 0xff;
1014 }
1015 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1016 if (resv_part != -1) {
1017 if (efi_debug) {
d603ed6c
BB
1018 (void) fprintf(stderr, "found "
1019 "duplicate reserved partition "
1020 "at %d\n", i);
5c363129
BB
1021 }
1022 return (VT_EINVAL);
1023 }
1024 resv_part = i;
1025 }
1026 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1027 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1028 if (efi_debug) {
1029 (void) fprintf(stderr,
1030 "Partition %d starts at %llu. ",
1031 i,
1032 vtoc->efi_parts[i].p_start);
1033 (void) fprintf(stderr,
1034 "It must be between %llu and %llu.\n",
1035 vtoc->efi_first_u_lba,
1036 vtoc->efi_last_u_lba);
1037 }
1038 return (VT_EINVAL);
1039 }
1040 if ((vtoc->efi_parts[i].p_start +
1041 vtoc->efi_parts[i].p_size <
1042 vtoc->efi_first_u_lba) ||
1043 (vtoc->efi_parts[i].p_start +
1044 vtoc->efi_parts[i].p_size >
1045 vtoc->efi_last_u_lba + 1)) {
1046 if (efi_debug) {
1047 (void) fprintf(stderr,
1048 "Partition %d ends at %llu. ",
1049 i,
1050 vtoc->efi_parts[i].p_start +
1051 vtoc->efi_parts[i].p_size);
1052 (void) fprintf(stderr,
1053 "It must be between %llu and %llu.\n",
1054 vtoc->efi_first_u_lba,
1055 vtoc->efi_last_u_lba);
1056 }
1057 return (VT_EINVAL);
1058 }
1059
1060 for (j = 0; j < vtoc->efi_nparts; j++) {
1061 isize = vtoc->efi_parts[i].p_size;
1062 jsize = vtoc->efi_parts[j].p_size;
1063 istart = vtoc->efi_parts[i].p_start;
1064 jstart = vtoc->efi_parts[j].p_start;
1065 if ((i != j) && (isize != 0) && (jsize != 0)) {
1066 endsect = jstart + jsize -1;
1067 if ((jstart <= istart) &&
1068 (istart <= endsect)) {
1069 if (efi_debug) {
1070 (void) fprintf(stderr,
d603ed6c
BB
1071 "Partition %d overlaps "
1072 "partition %d.", i, j);
5c363129
BB
1073 }
1074 return (VT_EINVAL);
1075 }
1076 }
1077 }
1078 }
1079 /* just a warning for now */
1080 if ((resv_part == -1) && efi_debug) {
1081 (void) fprintf(stderr,
1082 "no reserved partition found\n");
1083 }
1084 return (0);
1085}
1086
8e82ffba
GW
1087static int
1088call_blkpg_ioctl(int fd, int command, diskaddr_t start,
1089 diskaddr_t size, uint_t pno)
1090{
1091 struct blkpg_ioctl_arg ioctl_arg;
1092 struct blkpg_partition linux_part;
1093 memset(&linux_part, 0, sizeof (linux_part));
1094
1095 char *path = efi_get_devname(fd);
1096 if (path == NULL) {
1097 (void) fprintf(stderr, "failed to retrieve device name\n");
1098 return (VT_EINVAL);
1099 }
1100
1101 linux_part.start = start;
1102 linux_part.length = size;
1103 linux_part.pno = pno;
1104 snprintf(linux_part.devname, BLKPG_DEVNAMELTH - 1, "%s%u", path, pno);
1105 linux_part.devname[BLKPG_DEVNAMELTH - 1] = '\0';
1106 free(path);
1107
1108 ioctl_arg.op = command;
1109 ioctl_arg.flags = 0;
1110 ioctl_arg.datalen = sizeof (struct blkpg_partition);
1111 ioctl_arg.data = &linux_part;
1112
1113 return (ioctl(fd, BLKPG, &ioctl_arg));
1114}
1115
5c363129
BB
1116/*
1117 * add all the unallocated space to the current label
1118 */
1119int
1120efi_use_whole_disk(int fd)
1121{
8e82ffba
GW
1122 struct dk_gpt *efi_label = NULL;
1123 int rval;
1124 int i;
1125 uint_t resv_index = 0, data_index = 0;
1126 diskaddr_t resv_start = 0, data_start = 0;
1127 diskaddr_t data_size, limit, difference;
1128 boolean_t sync_needed = B_FALSE;
1129 uint_t nblocks;
5c363129
BB
1130
1131 rval = efi_alloc_and_read(fd, &efi_label);
1132 if (rval < 0) {
a64f903b
GN
1133 if (efi_label != NULL)
1134 efi_free(efi_label);
5c363129
BB
1135 return (rval);
1136 }
1137
475ebd76
PS
1138 /*
1139 * Find the last physically non-zero partition.
1140 * This should be the reserved partition.
1141 */
1142 for (i = 0; i < efi_label->efi_nparts; i ++) {
1143 if (resv_start < efi_label->efi_parts[i].p_start) {
1144 resv_start = efi_label->efi_parts[i].p_start;
1145 resv_index = i;
1146 }
1147 }
1148
1149 /*
1150 * Find the last physically non-zero partition before that.
1151 * This is the data partition.
1152 */
1153 for (i = 0; i < resv_index; i ++) {
1154 if (data_start < efi_label->efi_parts[i].p_start) {
1155 data_start = efi_label->efi_parts[i].p_start;
1156 data_index = i;
1157 }
1158 }
1159 data_size = efi_label->efi_parts[data_index].p_size;
1160
1161 /*
1162 * See the "efi_alloc_and_init" function for more information
1163 * about where this "nblocks" value comes from.
1164 */
1165 nblocks = efi_label->efi_first_u_lba - 1;
1166
1167 /*
1168 * Determine if the EFI label is out of sync. We check that:
1169 *
1170 * 1. the data partition ends at the limit we set, and
1171 * 2. the reserved partition starts at the limit we set.
1172 *
1173 * If either of these conditions is not met, then we need to
1174 * resync the EFI label.
1175 *
1176 * The limit is the last usable LBA, determined by the last LBA
1177 * and the first usable LBA fields on the EFI label of the disk
1178 * (see the lines directly above). Additionally, we factor in
1179 * EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and
1180 * P2ALIGN it to ensure the partition boundaries are aligned
1181 * (for performance reasons). The alignment should match the
1182 * alignment used by the "zpool_label_disk" function.
1183 */
1184 limit = P2ALIGN(efi_label->efi_last_lba - nblocks - EFI_MIN_RESV_SIZE,
1185 PARTITION_END_ALIGNMENT);
1186 if (data_start + data_size != limit || resv_start != limit)
1187 sync_needed = B_TRUE;
1188
1189 if (efi_debug && sync_needed)
1190 (void) fprintf(stderr, "efi_use_whole_disk: sync needed\n");
1191
5c363129
BB
1192 /*
1193 * If alter_lba is 1, we are using the backup label.
1194 * Since we can locate the backup label by disk capacity,
1195 * there must be no unallocated space.
1196 */
1197 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
475ebd76 1198 >= efi_label->efi_last_lba && !sync_needed)) {
5c363129
BB
1199 if (efi_debug) {
1200 (void) fprintf(stderr,
1201 "efi_use_whole_disk: requested space not found\n");
1202 }
1203 efi_free(efi_label);
1204 return (VT_ENOSPC);
1205 }
1206
74d42600
SH
1207 /*
1208 * Verify that we've found the reserved partition by checking
1209 * that it looks the way it did when we created it in zpool_label_disk.
1210 * If we've found the incorrect partition, then we know that this
78595377 1211 * device was reformatted and no longer is solely used by ZFS.
74d42600
SH
1212 */
1213 if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) ||
1214 (efi_label->efi_parts[resv_index].p_tag != V_RESERVED) ||
1215 (resv_index != 8)) {
1216 if (efi_debug) {
1217 (void) fprintf(stderr,
1218 "efi_use_whole_disk: wholedisk not available\n");
1219 }
1220 efi_free(efi_label);
1221 return (VT_ENOSPC);
1222 }
1223
475ebd76
PS
1224 if (data_start + data_size != resv_start) {
1225 if (efi_debug) {
1226 (void) fprintf(stderr,
1227 "efi_use_whole_disk: "
1228 "data_start (%lli) + "
1229 "data_size (%lli) != "
1230 "resv_start (%lli)\n",
1231 data_start, data_size, resv_start);
1232 }
1233
1234 return (VT_EINVAL);
1235 }
1236
1237 if (limit < resv_start) {
1238 if (efi_debug) {
1239 (void) fprintf(stderr,
1240 "efi_use_whole_disk: "
1241 "limit (%lli) < resv_start (%lli)\n",
1242 limit, resv_start);
cee43a74 1243 }
475ebd76
PS
1244
1245 return (VT_EINVAL);
5c363129
BB
1246 }
1247
475ebd76
PS
1248 difference = limit - resv_start;
1249
1250 if (efi_debug)
1251 (void) fprintf(stderr,
1252 "efi_use_whole_disk: difference is %lli\n", difference);
1253
5c363129
BB
1254 /*
1255 * Move the reserved partition. There is currently no data in
1256 * here except fabricated devids (which get generated via
1257 * efi_write()). So there is no need to copy data.
1258 */
cee43a74
ED
1259 efi_label->efi_parts[data_index].p_size += difference;
1260 efi_label->efi_parts[resv_index].p_start += difference;
475ebd76 1261 efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
5c363129 1262
8e82ffba
GW
1263 /*
1264 * Rescanning the partition table in the kernel can result
1265 * in the device links to be removed (see comment in vdev_disk_open).
1266 * If BLKPG_RESIZE_PARTITION is available, then we can resize
1267 * the partition table online and avoid having to remove the device
1268 * links used by the pool. This provides a very deterministic
1269 * approach to resizing devices and does not require any
1270 * loops waiting for devices to reappear.
1271 */
1272#ifdef BLKPG_RESIZE_PARTITION
1273 /*
1274 * Delete the reserved partition since we're about to expand
1275 * the data partition and it would overlap with the reserved
1276 * partition.
1277 * NOTE: The starting index for the ioctl is 1 while for the
1278 * EFI partitions it's 0. For that reason we have to add one
1279 * whenever we make an ioctl call.
1280 */
1281 rval = call_blkpg_ioctl(fd, BLKPG_DEL_PARTITION, 0, 0, resv_index + 1);
1282 if (rval != 0)
1283 goto out;
1284
1285 /*
1286 * Expand the data partition
1287 */
1288 rval = call_blkpg_ioctl(fd, BLKPG_RESIZE_PARTITION,
1289 efi_label->efi_parts[data_index].p_start * efi_label->efi_lbasize,
1290 efi_label->efi_parts[data_index].p_size * efi_label->efi_lbasize,
1291 data_index + 1);
1292 if (rval != 0) {
1293 (void) fprintf(stderr, "Unable to resize data "
1294 "partition: %d\n", rval);
1295 /*
1296 * Since we failed to resize, we need to reset the start
1297 * of the reserve partition and re-create it.
1298 */
1299 efi_label->efi_parts[resv_index].p_start -= difference;
1300 }
1301
1302 /*
1303 * Re-add the reserved partition. If we've expanded the data partition
1304 * then we'll move the reserve partition to the end of the data
1305 * partition. Otherwise, we'll recreate the partition in its original
1306 * location. Note that we do this as best-effort and ignore any
1307 * errors that may arise here. This will ensure that we finish writing
1308 * the EFI label.
1309 */
1310 (void) call_blkpg_ioctl(fd, BLKPG_ADD_PARTITION,
1311 efi_label->efi_parts[resv_index].p_start * efi_label->efi_lbasize,
1312 efi_label->efi_parts[resv_index].p_size * efi_label->efi_lbasize,
1313 resv_index + 1);
1314#endif
1315
1316 /*
1317 * We're now ready to write the EFI label.
1318 */
1319 if (rval == 0) {
1320 rval = efi_write(fd, efi_label);
1321 if (rval < 0 && efi_debug) {
1322 (void) fprintf(stderr, "efi_use_whole_disk:fail "
1323 "to write label, rval=%d\n", rval);
5c363129 1324 }
5c363129
BB
1325 }
1326
8e82ffba 1327out:
5c363129 1328 efi_free(efi_label);
8e82ffba 1329 return (rval);
5c363129
BB
1330}
1331
5c363129
BB
1332/*
1333 * write EFI label and backup label
1334 */
1335int
1336efi_write(int fd, struct dk_gpt *vtoc)
1337{
1338 dk_efi_t dk_ioc;
1339 efi_gpt_t *efi;
1340 efi_gpe_t *efi_parts;
1341 int i, j;
1342 struct dk_cinfo dki_info;
d603ed6c 1343 int rval;
5c363129
BB
1344 int md_flag = 0;
1345 int nblocks;
1346 diskaddr_t lba_backup_gpt_hdr;
1347
d603ed6c 1348 if ((rval = efi_get_info(fd, &dki_info)) != 0)
d1d7e268 1349 return (rval);
5c363129 1350
78595377 1351 /* check if we are dealing with a metadevice */
5c363129
BB
1352 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
1353 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
1354 md_flag = 1;
1355 }
1356
1357 if (check_input(vtoc)) {
1358 /*
1359 * not valid; if it's a metadevice just pass it down
1360 * because SVM will do its own checking
1361 */
1362 if (md_flag == 0) {
1363 return (VT_EINVAL);
1364 }
1365 }
1366
1367 dk_ioc.dki_lba = 1;
1368 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1369 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1370 } else {
1371 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1372 vtoc->efi_lbasize) *
1373 vtoc->efi_lbasize;
1374 }
1375
1376 /*
1377 * the number of blocks occupied by GUID partition entry array
1378 */
1379 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1380
1381 /*
1382 * Backup GPT header is located on the block after GUID
1383 * partition entry array. Here, we calculate the address
1384 * for backup GPT header.
1385 */
1386 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
d603ed6c 1387 if (posix_memalign((void **)&dk_ioc.dki_data,
d1d7e268 1388 vtoc->efi_lbasize, dk_ioc.dki_length))
5c363129
BB
1389 return (VT_ERROR);
1390
d603ed6c 1391 memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
5c363129
BB
1392 efi = dk_ioc.dki_data;
1393
1394 /* stuff user's input into EFI struct */
1395 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1396 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
7a023273 1397 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
5c363129
BB
1398 efi->efi_gpt_Reserved1 = 0;
1399 efi->efi_gpt_MyLBA = LE_64(1ULL);
1400 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1401 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1402 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1403 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1404 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1405 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1406 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1407
1408 /* LINTED -- always longlong aligned */
1409 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1410
1411 for (i = 0; i < vtoc->efi_nparts; i++) {
1412 for (j = 0;
1413 j < sizeof (conversion_array) /
1414 sizeof (struct uuid_to_ptag); j++) {
1415
1416 if (vtoc->efi_parts[i].p_tag == j) {
1417 UUID_LE_CONVERT(
1418 efi_parts[i].efi_gpe_PartitionTypeGUID,
1419 conversion_array[j].uuid);
1420 break;
1421 }
1422 }
1423
1424 if (j == sizeof (conversion_array) /
1425 sizeof (struct uuid_to_ptag)) {
1426 /*
1427 * If we didn't have a matching uuid match, bail here.
1428 * Don't write a label with unknown uuid.
1429 */
1430 if (efi_debug) {
1431 (void) fprintf(stderr,
1432 "Unknown uuid for p_tag %d\n",
1433 vtoc->efi_parts[i].p_tag);
1434 }
1435 return (VT_EINVAL);
1436 }
1437
d603ed6c
BB
1438 /* Zero's should be written for empty partitions */
1439 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
1440 continue;
1441
5c363129
BB
1442 efi_parts[i].efi_gpe_StartingLBA =
1443 LE_64(vtoc->efi_parts[i].p_start);
1444 efi_parts[i].efi_gpe_EndingLBA =
1445 LE_64(vtoc->efi_parts[i].p_start +
1446 vtoc->efi_parts[i].p_size - 1);
1447 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1448 LE_16(vtoc->efi_parts[i].p_flag);
1449 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1450 efi_parts[i].efi_gpe_PartitionName[j] =
1451 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1452 }
1453 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1454 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1455 (void) uuid_generate((uchar_t *)
1456 &vtoc->efi_parts[i].p_uguid);
1457 }
1458 bcopy(&vtoc->efi_parts[i].p_uguid,
1459 &efi_parts[i].efi_gpe_UniquePartitionGUID,
1460 sizeof (uuid_t));
1461 }
1462 efi->efi_gpt_PartitionEntryArrayCRC32 =
1463 LE_32(efi_crc32((unsigned char *)efi_parts,
1464 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1465 efi->efi_gpt_HeaderCRC32 =
7a023273
ZB
1466 LE_32(efi_crc32((unsigned char *)efi,
1467 LE_32(efi->efi_gpt_HeaderSize)));
5c363129
BB
1468
1469 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1470 free(dk_ioc.dki_data);
1471 switch (errno) {
1472 case EIO:
1473 return (VT_EIO);
1474 case EINVAL:
1475 return (VT_EINVAL);
1476 default:
1477 return (VT_ERROR);
1478 }
1479 }
1480 /* if it's a metadevice we're done */
1481 if (md_flag) {
1482 free(dk_ioc.dki_data);
1483 return (0);
1484 }
1485
1486 /* write backup partition array */
1487 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1488 dk_ioc.dki_length -= vtoc->efi_lbasize;
1489 /* LINTED */
1490 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1491 vtoc->efi_lbasize);
1492
1493 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1494 /*
1495 * we wrote the primary label okay, so don't fail
1496 */
1497 if (efi_debug) {
1498 (void) fprintf(stderr,
1499 "write of backup partitions to block %llu "
1500 "failed, errno %d\n",
1501 vtoc->efi_last_u_lba + 1,
1502 errno);
1503 }
1504 }
1505 /*
1506 * now swap MyLBA and AlternateLBA fields and write backup
1507 * partition table header
1508 */
1509 dk_ioc.dki_lba = lba_backup_gpt_hdr;
1510 dk_ioc.dki_length = vtoc->efi_lbasize;
1511 /* LINTED */
1512 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1513 vtoc->efi_lbasize);
1514 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1515 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1516 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1517 efi->efi_gpt_HeaderCRC32 = 0;
1518 efi->efi_gpt_HeaderCRC32 =
1519 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
7a023273 1520 LE_32(efi->efi_gpt_HeaderSize)));
5c363129
BB
1521
1522 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1523 if (efi_debug) {
1524 (void) fprintf(stderr,
1525 "write of backup header to block %llu failed, "
1526 "errno %d\n",
1527 lba_backup_gpt_hdr,
1528 errno);
1529 }
1530 }
1531 /* write the PMBR */
1532 (void) write_pmbr(fd, vtoc);
1533 free(dk_ioc.dki_data);
d603ed6c 1534
5c363129
BB
1535 return (0);
1536}
1537
1538void
1539efi_free(struct dk_gpt *ptr)
1540{
1541 free(ptr);
1542}
1543
1544/*
1545 * Input: File descriptor
1546 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1547 * Otherwise 0.
1548 */
1549int
1550efi_type(int fd)
1551{
d603ed6c 1552#if 0
5c363129
BB
1553 struct vtoc vtoc;
1554 struct extvtoc extvtoc;
1555
1556 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1557 if (errno == ENOTSUP)
1558 return (1);
1559 else if (errno == ENOTTY) {
1560 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1561 if (errno == ENOTSUP)
1562 return (1);
1563 }
1564 }
1565 return (0);
d603ed6c 1566#else
7fe47a23 1567 (void) fd;
d603ed6c
BB
1568 return (ENOSYS);
1569#endif
5c363129
BB
1570}
1571
1572void
1573efi_err_check(struct dk_gpt *vtoc)
1574{
1575 int resv_part = -1;
1576 int i, j;
1577 diskaddr_t istart, jstart, isize, jsize, endsect;
1578 int overlap = 0;
1579
1580 /*
1581 * make sure no partitions overlap
1582 */
1583 for (i = 0; i < vtoc->efi_nparts; i++) {
1584 /* It can't be unassigned and have an actual size */
1585 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1586 (vtoc->efi_parts[i].p_size != 0)) {
1587 (void) fprintf(stderr,
1588 "partition %d is \"unassigned\" but has a size "
1589 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1590 }
1591 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1592 continue;
1593 }
1594 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1595 if (resv_part != -1) {
1596 (void) fprintf(stderr,
1597 "found duplicate reserved partition at "
1598 "%d\n", i);
1599 }
1600 resv_part = i;
1601 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1602 (void) fprintf(stderr,
1603 "Warning: reserved partition size must "
1604 "be %d sectors\n", EFI_MIN_RESV_SIZE);
1605 }
1606 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1607 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1608 (void) fprintf(stderr,
1609 "Partition %d starts at %llu\n",
1610 i,
1611 vtoc->efi_parts[i].p_start);
1612 (void) fprintf(stderr,
1613 "It must be between %llu and %llu.\n",
1614 vtoc->efi_first_u_lba,
1615 vtoc->efi_last_u_lba);
1616 }
1617 if ((vtoc->efi_parts[i].p_start +
1618 vtoc->efi_parts[i].p_size <
1619 vtoc->efi_first_u_lba) ||
1620 (vtoc->efi_parts[i].p_start +
1621 vtoc->efi_parts[i].p_size >
1622 vtoc->efi_last_u_lba + 1)) {
1623 (void) fprintf(stderr,
1624 "Partition %d ends at %llu\n",
1625 i,
1626 vtoc->efi_parts[i].p_start +
1627 vtoc->efi_parts[i].p_size);
1628 (void) fprintf(stderr,
1629 "It must be between %llu and %llu.\n",
1630 vtoc->efi_first_u_lba,
1631 vtoc->efi_last_u_lba);
1632 }
1633
1634 for (j = 0; j < vtoc->efi_nparts; j++) {
1635 isize = vtoc->efi_parts[i].p_size;
1636 jsize = vtoc->efi_parts[j].p_size;
1637 istart = vtoc->efi_parts[i].p_start;
1638 jstart = vtoc->efi_parts[j].p_start;
1639 if ((i != j) && (isize != 0) && (jsize != 0)) {
1640 endsect = jstart + jsize -1;
1641 if ((jstart <= istart) &&
1642 (istart <= endsect)) {
1643 if (!overlap) {
1644 (void) fprintf(stderr,
1645 "label error: EFI Labels do not "
1646 "support overlapping partitions\n");
1647 }
1648 (void) fprintf(stderr,
1649 "Partition %d overlaps partition "
1650 "%d.\n", i, j);
1651 overlap = 1;
1652 }
1653 }
1654 }
1655 }
1656 /* make sure there is a reserved partition */
1657 if (resv_part == -1) {
1658 (void) fprintf(stderr,
1659 "no reserved partition found\n");
1660 }
1661}