]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/swiotlb.c
Merge tag 'xtensa-20161219' of git://github.com/jcmvbkbc/linux-xtensa
[mirror_ubuntu-artful-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4 22#include <linux/mm.h>
8bc3bcc9 23#include <linux/export.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
84be456f 32#include <linux/scatterlist.h>
1da177e4
LT
33
34#include <asm/io.h>
1da177e4
LT
35#include <asm/dma.h>
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
a8522509 39#include <linux/iommu-helper.h>
1da177e4 40
ce5be5a1 41#define CREATE_TRACE_POINTS
2b2b614d
ZK
42#include <trace/events/swiotlb.h>
43
1da177e4
LT
44#define OFFSET(val,align) ((unsigned long) \
45 ( (val) & ( (align) - 1)))
46
0b9afede
AW
47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
48
49/*
50 * Minimum IO TLB size to bother booting with. Systems with mainly
51 * 64bit capable cards will only lightly use the swiotlb. If we can't
52 * allocate a contiguous 1MB, we're probably in trouble anyway.
53 */
54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
55
1da177e4
LT
56int swiotlb_force;
57
58/*
bfc5501f
KRW
59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
61 * API.
62 */
ff7204a7 63static phys_addr_t io_tlb_start, io_tlb_end;
1da177e4
LT
64
65/*
b595076a 66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
1da177e4
LT
67 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
68 */
69static unsigned long io_tlb_nslabs;
70
71/*
72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
73 */
74static unsigned long io_tlb_overflow = 32*1024;
75
ee3f6ba8 76static phys_addr_t io_tlb_overflow_buffer;
1da177e4
LT
77
78/*
79 * This is a free list describing the number of free entries available from
80 * each index
81 */
82static unsigned int *io_tlb_list;
83static unsigned int io_tlb_index;
84
85/*
86 * We need to save away the original address corresponding to a mapped entry
87 * for the sync operations.
88 */
8e0629c1 89#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
bc40ac66 90static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
91
92/*
93 * Protect the above data structures in the map and unmap calls
94 */
95static DEFINE_SPINLOCK(io_tlb_lock);
96
5740afdb
FT
97static int late_alloc;
98
1da177e4
LT
99static int __init
100setup_io_tlb_npages(char *str)
101{
102 if (isdigit(*str)) {
e8579e72 103 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
104 /* avoid tail segment of size < IO_TLB_SEGSIZE */
105 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
106 }
107 if (*str == ',')
108 ++str;
b18485e7 109 if (!strcmp(str, "force"))
1da177e4 110 swiotlb_force = 1;
b18485e7 111
c729de8f 112 return 0;
1da177e4 113}
c729de8f 114early_param("swiotlb", setup_io_tlb_npages);
1da177e4
LT
115/* make io_tlb_overflow tunable too? */
116
f21ffe9f 117unsigned long swiotlb_nr_tbl(void)
5f98ecdb
FT
118{
119 return io_tlb_nslabs;
120}
f21ffe9f 121EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
c729de8f
YL
122
123/* default to 64MB */
124#define IO_TLB_DEFAULT_SIZE (64UL<<20)
125unsigned long swiotlb_size_or_default(void)
126{
127 unsigned long size;
128
129 size = io_tlb_nslabs << IO_TLB_SHIFT;
130
131 return size ? size : (IO_TLB_DEFAULT_SIZE);
132}
133
02ca646e 134/* Note that this doesn't work with highmem page */
70a7d3cc
JF
135static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
136 volatile void *address)
e08e1f7a 137{
862d196b 138 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
139}
140
ac2cbab2
YL
141static bool no_iotlb_memory;
142
ad32e8cb 143void swiotlb_print_info(void)
2e5b2b86 144{
ad32e8cb 145 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
ff7204a7 146 unsigned char *vstart, *vend;
2e5b2b86 147
ac2cbab2
YL
148 if (no_iotlb_memory) {
149 pr_warn("software IO TLB: No low mem\n");
150 return;
151 }
152
ff7204a7 153 vstart = phys_to_virt(io_tlb_start);
c40dba06 154 vend = phys_to_virt(io_tlb_end);
2e5b2b86 155
3af684c7 156 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
ff7204a7 157 (unsigned long long)io_tlb_start,
c40dba06 158 (unsigned long long)io_tlb_end,
ff7204a7 159 bytes >> 20, vstart, vend - 1);
2e5b2b86
IC
160}
161
ac2cbab2 162int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 163{
ee3f6ba8 164 void *v_overflow_buffer;
563aaf06 165 unsigned long i, bytes;
1da177e4 166
abbceff7 167 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 168
abbceff7 169 io_tlb_nslabs = nslabs;
ff7204a7
AD
170 io_tlb_start = __pa(tlb);
171 io_tlb_end = io_tlb_start + bytes;
1da177e4 172
ee3f6ba8
AD
173 /*
174 * Get the overflow emergency buffer
175 */
ad6492b8 176 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
457ff1de
SS
177 PAGE_ALIGN(io_tlb_overflow),
178 PAGE_SIZE);
ee3f6ba8 179 if (!v_overflow_buffer)
ac2cbab2 180 return -ENOMEM;
ee3f6ba8
AD
181
182 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
183
1da177e4
LT
184 /*
185 * Allocate and initialize the free list array. This array is used
186 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
187 * between io_tlb_start and io_tlb_end.
188 */
457ff1de
SS
189 io_tlb_list = memblock_virt_alloc(
190 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
191 PAGE_SIZE);
457ff1de
SS
192 io_tlb_orig_addr = memblock_virt_alloc(
193 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
194 PAGE_SIZE);
8e0629c1
JB
195 for (i = 0; i < io_tlb_nslabs; i++) {
196 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
197 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
198 }
199 io_tlb_index = 0;
1da177e4 200
ad32e8cb
FT
201 if (verbose)
202 swiotlb_print_info();
ac2cbab2
YL
203
204 return 0;
1da177e4
LT
205}
206
abbceff7
FT
207/*
208 * Statically reserve bounce buffer space and initialize bounce buffer data
209 * structures for the software IO TLB used to implement the DMA API.
210 */
ac2cbab2
YL
211void __init
212swiotlb_init(int verbose)
abbceff7 213{
c729de8f 214 size_t default_size = IO_TLB_DEFAULT_SIZE;
ff7204a7 215 unsigned char *vstart;
abbceff7
FT
216 unsigned long bytes;
217
218 if (!io_tlb_nslabs) {
219 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
220 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
221 }
222
223 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
224
ac2cbab2 225 /* Get IO TLB memory from the low pages */
ad6492b8 226 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
ac2cbab2
YL
227 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
228 return;
abbceff7 229
ac2cbab2 230 if (io_tlb_start)
457ff1de
SS
231 memblock_free_early(io_tlb_start,
232 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
ac2cbab2
YL
233 pr_warn("Cannot allocate SWIOTLB buffer");
234 no_iotlb_memory = true;
1da177e4
LT
235}
236
0b9afede
AW
237/*
238 * Systems with larger DMA zones (those that don't support ISA) can
239 * initialize the swiotlb later using the slab allocator if needed.
240 * This should be just like above, but with some error catching.
241 */
242int
563aaf06 243swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 244{
74838b75 245 unsigned long bytes, req_nslabs = io_tlb_nslabs;
ff7204a7 246 unsigned char *vstart = NULL;
0b9afede 247 unsigned int order;
74838b75 248 int rc = 0;
0b9afede
AW
249
250 if (!io_tlb_nslabs) {
251 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
252 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
253 }
254
255 /*
256 * Get IO TLB memory from the low pages
257 */
563aaf06 258 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 259 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 260 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
261
262 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
ff7204a7
AD
263 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
264 order);
265 if (vstart)
0b9afede
AW
266 break;
267 order--;
268 }
269
ff7204a7 270 if (!vstart) {
74838b75
KRW
271 io_tlb_nslabs = req_nslabs;
272 return -ENOMEM;
273 }
563aaf06 274 if (order != get_order(bytes)) {
0b9afede
AW
275 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
276 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
277 io_tlb_nslabs = SLABS_PER_PAGE << order;
278 }
ff7204a7 279 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
74838b75 280 if (rc)
ff7204a7 281 free_pages((unsigned long)vstart, order);
74838b75
KRW
282 return rc;
283}
284
285int
286swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
287{
288 unsigned long i, bytes;
ee3f6ba8 289 unsigned char *v_overflow_buffer;
74838b75
KRW
290
291 bytes = nslabs << IO_TLB_SHIFT;
292
293 io_tlb_nslabs = nslabs;
ff7204a7
AD
294 io_tlb_start = virt_to_phys(tlb);
295 io_tlb_end = io_tlb_start + bytes;
74838b75 296
ff7204a7 297 memset(tlb, 0, bytes);
0b9afede 298
ee3f6ba8
AD
299 /*
300 * Get the overflow emergency buffer
301 */
302 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
303 get_order(io_tlb_overflow));
304 if (!v_overflow_buffer)
305 goto cleanup2;
306
307 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
308
0b9afede
AW
309 /*
310 * Allocate and initialize the free list array. This array is used
311 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
312 * between io_tlb_start and io_tlb_end.
313 */
314 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
315 get_order(io_tlb_nslabs * sizeof(int)));
316 if (!io_tlb_list)
ee3f6ba8 317 goto cleanup3;
0b9afede 318
bc40ac66
BB
319 io_tlb_orig_addr = (phys_addr_t *)
320 __get_free_pages(GFP_KERNEL,
321 get_order(io_tlb_nslabs *
322 sizeof(phys_addr_t)));
0b9afede 323 if (!io_tlb_orig_addr)
ee3f6ba8 324 goto cleanup4;
0b9afede 325
8e0629c1
JB
326 for (i = 0; i < io_tlb_nslabs; i++) {
327 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
328 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
329 }
330 io_tlb_index = 0;
0b9afede 331
ad32e8cb 332 swiotlb_print_info();
0b9afede 333
5740afdb
FT
334 late_alloc = 1;
335
0b9afede
AW
336 return 0;
337
338cleanup4:
25667d67
TL
339 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
340 sizeof(int)));
0b9afede 341 io_tlb_list = NULL;
ee3f6ba8
AD
342cleanup3:
343 free_pages((unsigned long)v_overflow_buffer,
344 get_order(io_tlb_overflow));
345 io_tlb_overflow_buffer = 0;
0b9afede 346cleanup2:
c40dba06 347 io_tlb_end = 0;
ff7204a7 348 io_tlb_start = 0;
74838b75 349 io_tlb_nslabs = 0;
0b9afede
AW
350 return -ENOMEM;
351}
352
5740afdb
FT
353void __init swiotlb_free(void)
354{
ee3f6ba8 355 if (!io_tlb_orig_addr)
5740afdb
FT
356 return;
357
358 if (late_alloc) {
ee3f6ba8 359 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
5740afdb
FT
360 get_order(io_tlb_overflow));
361 free_pages((unsigned long)io_tlb_orig_addr,
362 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
363 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
364 sizeof(int)));
ff7204a7 365 free_pages((unsigned long)phys_to_virt(io_tlb_start),
5740afdb
FT
366 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
367 } else {
457ff1de
SS
368 memblock_free_late(io_tlb_overflow_buffer,
369 PAGE_ALIGN(io_tlb_overflow));
370 memblock_free_late(__pa(io_tlb_orig_addr),
371 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
372 memblock_free_late(__pa(io_tlb_list),
373 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
374 memblock_free_late(io_tlb_start,
375 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
5740afdb 376 }
f21ffe9f 377 io_tlb_nslabs = 0;
5740afdb
FT
378}
379
9c5a3621 380int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 381{
ff7204a7 382 return paddr >= io_tlb_start && paddr < io_tlb_end;
640aebfe
FT
383}
384
fb05a379
BB
385/*
386 * Bounce: copy the swiotlb buffer back to the original dma location
387 */
af51a9f1
AD
388static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
389 size_t size, enum dma_data_direction dir)
fb05a379 390{
af51a9f1
AD
391 unsigned long pfn = PFN_DOWN(orig_addr);
392 unsigned char *vaddr = phys_to_virt(tlb_addr);
fb05a379
BB
393
394 if (PageHighMem(pfn_to_page(pfn))) {
395 /* The buffer does not have a mapping. Map it in and copy */
af51a9f1 396 unsigned int offset = orig_addr & ~PAGE_MASK;
fb05a379
BB
397 char *buffer;
398 unsigned int sz = 0;
399 unsigned long flags;
400
401 while (size) {
67131ad0 402 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
403
404 local_irq_save(flags);
c3eede8e 405 buffer = kmap_atomic(pfn_to_page(pfn));
fb05a379 406 if (dir == DMA_TO_DEVICE)
af51a9f1 407 memcpy(vaddr, buffer + offset, sz);
ef9b1893 408 else
af51a9f1 409 memcpy(buffer + offset, vaddr, sz);
c3eede8e 410 kunmap_atomic(buffer);
ef9b1893 411 local_irq_restore(flags);
fb05a379
BB
412
413 size -= sz;
414 pfn++;
af51a9f1 415 vaddr += sz;
fb05a379 416 offset = 0;
ef9b1893 417 }
af51a9f1
AD
418 } else if (dir == DMA_TO_DEVICE) {
419 memcpy(vaddr, phys_to_virt(orig_addr), size);
ef9b1893 420 } else {
af51a9f1 421 memcpy(phys_to_virt(orig_addr), vaddr, size);
ef9b1893 422 }
1b548f66
JF
423}
424
e05ed4d1
AD
425phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
426 dma_addr_t tbl_dma_addr,
427 phys_addr_t orig_addr, size_t size,
0443fa00
AD
428 enum dma_data_direction dir,
429 unsigned long attrs)
1da177e4
LT
430{
431 unsigned long flags;
e05ed4d1 432 phys_addr_t tlb_addr;
1da177e4
LT
433 unsigned int nslots, stride, index, wrap;
434 int i;
681cc5cd
FT
435 unsigned long mask;
436 unsigned long offset_slots;
437 unsigned long max_slots;
438
ac2cbab2
YL
439 if (no_iotlb_memory)
440 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
441
681cc5cd 442 mask = dma_get_seg_boundary(hwdev);
681cc5cd 443
eb605a57
FT
444 tbl_dma_addr &= mask;
445
446 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
447
448 /*
449 * Carefully handle integer overflow which can occur when mask == ~0UL.
450 */
b15a3891
JB
451 max_slots = mask + 1
452 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
453 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
454
455 /*
456 * For mappings greater than a page, we limit the stride (and
457 * hence alignment) to a page size.
458 */
459 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
460 if (size > PAGE_SIZE)
461 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
462 else
463 stride = 1;
464
34814545 465 BUG_ON(!nslots);
1da177e4
LT
466
467 /*
468 * Find suitable number of IO TLB entries size that will fit this
469 * request and allocate a buffer from that IO TLB pool.
470 */
471 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
472 index = ALIGN(io_tlb_index, stride);
473 if (index >= io_tlb_nslabs)
474 index = 0;
475 wrap = index;
476
477 do {
a8522509
FT
478 while (iommu_is_span_boundary(index, nslots, offset_slots,
479 max_slots)) {
b15a3891
JB
480 index += stride;
481 if (index >= io_tlb_nslabs)
482 index = 0;
a7133a15
AM
483 if (index == wrap)
484 goto not_found;
485 }
486
487 /*
488 * If we find a slot that indicates we have 'nslots' number of
489 * contiguous buffers, we allocate the buffers from that slot
490 * and mark the entries as '0' indicating unavailable.
491 */
492 if (io_tlb_list[index] >= nslots) {
493 int count = 0;
494
495 for (i = index; i < (int) (index + nslots); i++)
496 io_tlb_list[i] = 0;
497 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
498 io_tlb_list[i] = ++count;
e05ed4d1 499 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 500
a7133a15
AM
501 /*
502 * Update the indices to avoid searching in the next
503 * round.
504 */
505 io_tlb_index = ((index + nslots) < io_tlb_nslabs
506 ? (index + nslots) : 0);
507
508 goto found;
509 }
510 index += stride;
511 if (index >= io_tlb_nslabs)
512 index = 0;
513 } while (index != wrap);
514
515not_found:
516 spin_unlock_irqrestore(&io_tlb_lock, flags);
0cb637bf
KRW
517 if (printk_ratelimit())
518 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
e05ed4d1 519 return SWIOTLB_MAP_ERROR;
a7133a15 520found:
1da177e4
LT
521 spin_unlock_irqrestore(&io_tlb_lock, flags);
522
523 /*
524 * Save away the mapping from the original address to the DMA address.
525 * This is needed when we sync the memory. Then we sync the buffer if
526 * needed.
527 */
bc40ac66 528 for (i = 0; i < nslots; i++)
e05ed4d1 529 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
0443fa00
AD
530 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
531 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 532 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
1da177e4 533
e05ed4d1 534 return tlb_addr;
1da177e4 535}
d7ef1533 536EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
1da177e4 537
eb605a57
FT
538/*
539 * Allocates bounce buffer and returns its kernel virtual address.
540 */
541
023600f1
AC
542static phys_addr_t
543map_single(struct device *hwdev, phys_addr_t phys, size_t size,
0443fa00 544 enum dma_data_direction dir, unsigned long attrs)
eb605a57 545{
ff7204a7 546 dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
eb605a57 547
0443fa00
AD
548 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
549 dir, attrs);
eb605a57
FT
550}
551
1da177e4
LT
552/*
553 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
554 */
61ca08c3 555void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
0443fa00
AD
556 size_t size, enum dma_data_direction dir,
557 unsigned long attrs)
1da177e4
LT
558{
559 unsigned long flags;
560 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
61ca08c3
AD
561 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
562 phys_addr_t orig_addr = io_tlb_orig_addr[index];
1da177e4
LT
563
564 /*
565 * First, sync the memory before unmapping the entry
566 */
8e0629c1 567 if (orig_addr != INVALID_PHYS_ADDR &&
0443fa00 568 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
8e0629c1 569 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
af51a9f1 570 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
571
572 /*
573 * Return the buffer to the free list by setting the corresponding
af901ca1 574 * entries to indicate the number of contiguous entries available.
1da177e4
LT
575 * While returning the entries to the free list, we merge the entries
576 * with slots below and above the pool being returned.
577 */
578 spin_lock_irqsave(&io_tlb_lock, flags);
579 {
580 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
581 io_tlb_list[index + nslots] : 0);
582 /*
583 * Step 1: return the slots to the free list, merging the
584 * slots with superceeding slots
585 */
8e0629c1 586 for (i = index + nslots - 1; i >= index; i--) {
1da177e4 587 io_tlb_list[i] = ++count;
8e0629c1
JB
588 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
589 }
1da177e4
LT
590 /*
591 * Step 2: merge the returned slots with the preceding slots,
592 * if available (non zero)
593 */
594 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
595 io_tlb_list[i] = ++count;
596 }
597 spin_unlock_irqrestore(&io_tlb_lock, flags);
598}
d7ef1533 599EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
1da177e4 600
fbfda893
AD
601void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
602 size_t size, enum dma_data_direction dir,
603 enum dma_sync_target target)
1da177e4 604{
fbfda893
AD
605 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
606 phys_addr_t orig_addr = io_tlb_orig_addr[index];
bc40ac66 607
8e0629c1
JB
608 if (orig_addr == INVALID_PHYS_ADDR)
609 return;
fbfda893 610 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
df336d1c 611
de69e0f0
JL
612 switch (target) {
613 case SYNC_FOR_CPU:
614 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 615 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 616 size, DMA_FROM_DEVICE);
34814545
ES
617 else
618 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
619 break;
620 case SYNC_FOR_DEVICE:
621 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 622 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 623 size, DMA_TO_DEVICE);
34814545
ES
624 else
625 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
626 break;
627 default:
1da177e4 628 BUG();
de69e0f0 629 }
1da177e4 630}
d7ef1533 631EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
1da177e4
LT
632
633void *
634swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 635 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 636{
563aaf06 637 dma_addr_t dev_addr;
1da177e4
LT
638 void *ret;
639 int order = get_order(size);
284901a9 640 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
641
642 if (hwdev && hwdev->coherent_dma_mask)
643 dma_mask = hwdev->coherent_dma_mask;
1da177e4 644
25667d67 645 ret = (void *)__get_free_pages(flags, order);
e05ed4d1
AD
646 if (ret) {
647 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
648 if (dev_addr + size - 1 > dma_mask) {
649 /*
650 * The allocated memory isn't reachable by the device.
651 */
652 free_pages((unsigned long) ret, order);
653 ret = NULL;
654 }
1da177e4
LT
655 }
656 if (!ret) {
657 /*
bfc5501f
KRW
658 * We are either out of memory or the device can't DMA to
659 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 660 * will grab memory from the lowest available address range.
1da177e4 661 */
0443fa00
AD
662 phys_addr_t paddr = map_single(hwdev, 0, size,
663 DMA_FROM_DEVICE, 0);
e05ed4d1 664 if (paddr == SWIOTLB_MAP_ERROR)
94cc81f9 665 goto err_warn;
1da177e4 666
e05ed4d1
AD
667 ret = phys_to_virt(paddr);
668 dev_addr = phys_to_dma(hwdev, paddr);
1da177e4 669
61ca08c3
AD
670 /* Confirm address can be DMA'd by device */
671 if (dev_addr + size - 1 > dma_mask) {
672 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
673 (unsigned long long)dma_mask,
674 (unsigned long long)dev_addr);
a2b89b59 675
0443fa00
AD
676 /*
677 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
678 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
679 */
61ca08c3 680 swiotlb_tbl_unmap_single(hwdev, paddr,
0443fa00
AD
681 size, DMA_TO_DEVICE,
682 DMA_ATTR_SKIP_CPU_SYNC);
94cc81f9 683 goto err_warn;
61ca08c3 684 }
1da177e4 685 }
e05ed4d1 686
1da177e4 687 *dma_handle = dev_addr;
e05ed4d1
AD
688 memset(ret, 0, size);
689
1da177e4 690 return ret;
94cc81f9
JR
691
692err_warn:
693 pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
694 dev_name(hwdev), size);
695 dump_stack();
696
697 return NULL;
1da177e4 698}
874d6a95 699EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
700
701void
702swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 703 dma_addr_t dev_addr)
1da177e4 704{
862d196b 705 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 706
aa24886e 707 WARN_ON(irqs_disabled());
02ca646e
FT
708 if (!is_swiotlb_buffer(paddr))
709 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 710 else
0443fa00
AD
711 /*
712 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
713 * DMA_ATTR_SKIP_CPU_SYNC is optional.
714 */
715 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
716 DMA_ATTR_SKIP_CPU_SYNC);
1da177e4 717}
874d6a95 718EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
719
720static void
22d48269
KRW
721swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
722 int do_panic)
1da177e4
LT
723{
724 /*
725 * Ran out of IOMMU space for this operation. This is very bad.
726 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 727 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
728 * When the mapping is small enough return a static buffer to limit
729 * the damage, or panic when the transfer is too big.
730 */
0d2e1898
GU
731 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
732 size);
1da177e4 733
c7084b35
CD
734 if (size <= io_tlb_overflow || !do_panic)
735 return;
736
737 if (dir == DMA_BIDIRECTIONAL)
738 panic("DMA: Random memory could be DMA accessed\n");
739 if (dir == DMA_FROM_DEVICE)
740 panic("DMA: Random memory could be DMA written\n");
741 if (dir == DMA_TO_DEVICE)
742 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
743}
744
745/*
746 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 747 * physical address to use is returned.
1da177e4
LT
748 *
749 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 750 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 751 */
f98eee8e
FT
752dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
753 unsigned long offset, size_t size,
754 enum dma_data_direction dir,
00085f1e 755 unsigned long attrs)
1da177e4 756{
e05ed4d1 757 phys_addr_t map, phys = page_to_phys(page) + offset;
862d196b 758 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4 759
34814545 760 BUG_ON(dir == DMA_NONE);
1da177e4 761 /*
ceb5ac32 762 * If the address happens to be in the device's DMA window,
1da177e4
LT
763 * we can safely return the device addr and not worry about bounce
764 * buffering it.
765 */
b9394647 766 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
1da177e4
LT
767 return dev_addr;
768
2b2b614d
ZK
769 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
770
e05ed4d1 771 /* Oh well, have to allocate and map a bounce buffer. */
0443fa00 772 map = map_single(dev, phys, size, dir, attrs);
e05ed4d1 773 if (map == SWIOTLB_MAP_ERROR) {
f98eee8e 774 swiotlb_full(dev, size, dir, 1);
ee3f6ba8 775 return phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4
LT
776 }
777
e05ed4d1 778 dev_addr = phys_to_dma(dev, map);
1da177e4 779
e05ed4d1 780 /* Ensure that the address returned is DMA'ble */
0443fa00
AD
781 if (dma_capable(dev, dev_addr, size))
782 return dev_addr;
783
d29fa0cb
AD
784 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
785 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
1da177e4 786
0443fa00 787 return phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4 788}
f98eee8e 789EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 790
1da177e4
LT
791/*
792 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 793 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
794 * other usages are undefined.
795 *
796 * After this call, reads by the cpu to the buffer are guaranteed to see
797 * whatever the device wrote there.
798 */
7fcebbd2 799static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
0443fa00
AD
800 size_t size, enum dma_data_direction dir,
801 unsigned long attrs)
1da177e4 802{
862d196b 803 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 804
34814545 805 BUG_ON(dir == DMA_NONE);
7fcebbd2 806
02ca646e 807 if (is_swiotlb_buffer(paddr)) {
0443fa00 808 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
7fcebbd2
BB
809 return;
810 }
811
812 if (dir != DMA_FROM_DEVICE)
813 return;
814
02ca646e
FT
815 /*
816 * phys_to_virt doesn't work with hihgmem page but we could
817 * call dma_mark_clean() with hihgmem page here. However, we
818 * are fine since dma_mark_clean() is null on POWERPC. We can
819 * make dma_mark_clean() take a physical address if necessary.
820 */
821 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
822}
823
824void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
825 size_t size, enum dma_data_direction dir,
00085f1e 826 unsigned long attrs)
7fcebbd2 827{
0443fa00 828 unmap_single(hwdev, dev_addr, size, dir, attrs);
1da177e4 829}
f98eee8e 830EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 831
1da177e4
LT
832/*
833 * Make physical memory consistent for a single streaming mode DMA translation
834 * after a transfer.
835 *
ceb5ac32 836 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
837 * using the cpu, yet do not wish to teardown the dma mapping, you must
838 * call this function before doing so. At the next point you give the dma
1da177e4
LT
839 * address back to the card, you must first perform a
840 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
841 */
be6b0267 842static void
8270f3f1 843swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
d7ef1533
KRW
844 size_t size, enum dma_data_direction dir,
845 enum dma_sync_target target)
1da177e4 846{
862d196b 847 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 848
34814545 849 BUG_ON(dir == DMA_NONE);
380d6878 850
02ca646e 851 if (is_swiotlb_buffer(paddr)) {
fbfda893 852 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
380d6878
BB
853 return;
854 }
855
856 if (dir != DMA_FROM_DEVICE)
857 return;
858
02ca646e 859 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
860}
861
8270f3f1
JL
862void
863swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 864 size_t size, enum dma_data_direction dir)
8270f3f1 865{
de69e0f0 866 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 867}
874d6a95 868EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 869
1da177e4
LT
870void
871swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 872 size_t size, enum dma_data_direction dir)
1da177e4 873{
de69e0f0 874 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 875}
874d6a95 876EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
877
878/*
879 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 880 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
881 * interface. Here the scatter gather list elements are each tagged with the
882 * appropriate dma address and length. They are obtained via
883 * sg_dma_{address,length}(SG).
884 *
885 * NOTE: An implementation may be able to use a smaller number of
886 * DMA address/length pairs than there are SG table elements.
887 * (for example via virtual mapping capabilities)
888 * The routine returns the number of addr/length pairs actually
889 * used, at most nents.
890 *
ceb5ac32 891 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
892 * same here.
893 */
894int
309df0c5 895swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
00085f1e 896 enum dma_data_direction dir, unsigned long attrs)
1da177e4 897{
dbfd49fe 898 struct scatterlist *sg;
1da177e4
LT
899 int i;
900
34814545 901 BUG_ON(dir == DMA_NONE);
1da177e4 902
dbfd49fe 903 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 904 phys_addr_t paddr = sg_phys(sg);
862d196b 905 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 906
cf56e3f2 907 if (swiotlb_force ||
b9394647 908 !dma_capable(hwdev, dev_addr, sg->length)) {
e05ed4d1 909 phys_addr_t map = map_single(hwdev, sg_phys(sg),
0443fa00 910 sg->length, dir, attrs);
e05ed4d1 911 if (map == SWIOTLB_MAP_ERROR) {
1da177e4
LT
912 /* Don't panic here, we expect map_sg users
913 to do proper error handling. */
914 swiotlb_full(hwdev, sg->length, dir, 0);
d29fa0cb 915 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
309df0c5
AK
916 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
917 attrs);
4d86ec7a 918 sg_dma_len(sgl) = 0;
1da177e4
LT
919 return 0;
920 }
e05ed4d1 921 sg->dma_address = phys_to_dma(hwdev, map);
1da177e4
LT
922 } else
923 sg->dma_address = dev_addr;
4d86ec7a 924 sg_dma_len(sg) = sg->length;
1da177e4
LT
925 }
926 return nelems;
927}
309df0c5
AK
928EXPORT_SYMBOL(swiotlb_map_sg_attrs);
929
1da177e4
LT
930/*
931 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 932 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
933 */
934void
309df0c5 935swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
00085f1e
KK
936 int nelems, enum dma_data_direction dir,
937 unsigned long attrs)
1da177e4 938{
dbfd49fe 939 struct scatterlist *sg;
1da177e4
LT
940 int i;
941
34814545 942 BUG_ON(dir == DMA_NONE);
1da177e4 943
7fcebbd2 944 for_each_sg(sgl, sg, nelems, i)
0443fa00
AD
945 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
946 attrs);
1da177e4 947}
309df0c5
AK
948EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
949
1da177e4
LT
950/*
951 * Make physical memory consistent for a set of streaming mode DMA translations
952 * after a transfer.
953 *
954 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
955 * and usage.
956 */
be6b0267 957static void
dbfd49fe 958swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
d7ef1533
KRW
959 int nelems, enum dma_data_direction dir,
960 enum dma_sync_target target)
1da177e4 961{
dbfd49fe 962 struct scatterlist *sg;
1da177e4
LT
963 int i;
964
380d6878
BB
965 for_each_sg(sgl, sg, nelems, i)
966 swiotlb_sync_single(hwdev, sg->dma_address,
4d86ec7a 967 sg_dma_len(sg), dir, target);
1da177e4
LT
968}
969
8270f3f1
JL
970void
971swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 972 int nelems, enum dma_data_direction dir)
8270f3f1 973{
de69e0f0 974 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 975}
874d6a95 976EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 977
1da177e4
LT
978void
979swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 980 int nelems, enum dma_data_direction dir)
1da177e4 981{
de69e0f0 982 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 983}
874d6a95 984EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
985
986int
8d8bb39b 987swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 988{
ee3f6ba8 989 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1da177e4 990}
874d6a95 991EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
992
993/*
17e5ad6c 994 * Return whether the given device DMA address mask can be supported
1da177e4 995 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 996 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
997 * this function.
998 */
999int
563aaf06 1000swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 1001{
c40dba06 1002 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1da177e4 1003}
1da177e4 1004EXPORT_SYMBOL(swiotlb_dma_supported);