]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/swiotlb.c
swiotlb: search and replace "int dir" with "enum dma_data_direction dir"
[mirror_ubuntu-artful-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/module.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
1da177e4
LT
32
33#include <asm/io.h>
1da177e4 34#include <asm/dma.h>
17e5ad6c 35#include <asm/scatterlist.h>
1da177e4
LT
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
a8522509 39#include <linux/iommu-helper.h>
1da177e4
LT
40
41#define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
43
0b9afede
AW
44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45
46/*
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 */
51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52
de69e0f0
JL
53/*
54 * Enumeration for sync targets
55 */
56enum dma_sync_target {
57 SYNC_FOR_CPU = 0,
58 SYNC_FOR_DEVICE = 1,
59};
60
1da177e4
LT
61int swiotlb_force;
62
63/*
bfc5501f
KRW
64 * Used to do a quick range check in swiotlb_tbl_unmap_single and
65 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
66 * API.
67 */
68static char *io_tlb_start, *io_tlb_end;
69
70/*
71 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
72 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
73 */
74static unsigned long io_tlb_nslabs;
75
76/*
77 * When the IOMMU overflows we return a fallback buffer. This sets the size.
78 */
79static unsigned long io_tlb_overflow = 32*1024;
80
81void *io_tlb_overflow_buffer;
82
83/*
84 * This is a free list describing the number of free entries available from
85 * each index
86 */
87static unsigned int *io_tlb_list;
88static unsigned int io_tlb_index;
89
90/*
91 * We need to save away the original address corresponding to a mapped entry
92 * for the sync operations.
93 */
bc40ac66 94static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
95
96/*
97 * Protect the above data structures in the map and unmap calls
98 */
99static DEFINE_SPINLOCK(io_tlb_lock);
100
5740afdb
FT
101static int late_alloc;
102
1da177e4
LT
103static int __init
104setup_io_tlb_npages(char *str)
105{
106 if (isdigit(*str)) {
e8579e72 107 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
108 /* avoid tail segment of size < IO_TLB_SEGSIZE */
109 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
110 }
111 if (*str == ',')
112 ++str;
b18485e7 113 if (!strcmp(str, "force"))
1da177e4 114 swiotlb_force = 1;
b18485e7 115
1da177e4
LT
116 return 1;
117}
118__setup("swiotlb=", setup_io_tlb_npages);
119/* make io_tlb_overflow tunable too? */
120
02ca646e 121/* Note that this doesn't work with highmem page */
70a7d3cc
JF
122static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
123 volatile void *address)
e08e1f7a 124{
862d196b 125 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
126}
127
ad32e8cb 128void swiotlb_print_info(void)
2e5b2b86 129{
ad32e8cb 130 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
2e5b2b86 131 phys_addr_t pstart, pend;
2e5b2b86
IC
132
133 pstart = virt_to_phys(io_tlb_start);
134 pend = virt_to_phys(io_tlb_end);
135
2e5b2b86
IC
136 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
137 bytes >> 20, io_tlb_start, io_tlb_end);
70a7d3cc
JF
138 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
139 (unsigned long long)pstart,
140 (unsigned long long)pend);
2e5b2b86
IC
141}
142
abbceff7 143void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 144{
563aaf06 145 unsigned long i, bytes;
1da177e4 146
abbceff7 147 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 148
abbceff7
FT
149 io_tlb_nslabs = nslabs;
150 io_tlb_start = tlb;
563aaf06 151 io_tlb_end = io_tlb_start + bytes;
1da177e4
LT
152
153 /*
154 * Allocate and initialize the free list array. This array is used
155 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
156 * between io_tlb_start and io_tlb_end.
157 */
158 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
25667d67 159 for (i = 0; i < io_tlb_nslabs; i++)
1da177e4
LT
160 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
161 io_tlb_index = 0;
bc40ac66 162 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
1da177e4
LT
163
164 /*
165 * Get the overflow emergency buffer
166 */
167 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
563aaf06
JB
168 if (!io_tlb_overflow_buffer)
169 panic("Cannot allocate SWIOTLB overflow buffer!\n");
ad32e8cb
FT
170 if (verbose)
171 swiotlb_print_info();
1da177e4
LT
172}
173
abbceff7
FT
174/*
175 * Statically reserve bounce buffer space and initialize bounce buffer data
176 * structures for the software IO TLB used to implement the DMA API.
177 */
178void __init
179swiotlb_init_with_default_size(size_t default_size, int verbose)
180{
181 unsigned long bytes;
182
183 if (!io_tlb_nslabs) {
184 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
185 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
186 }
187
188 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
189
190 /*
191 * Get IO TLB memory from the low pages
192 */
193 io_tlb_start = alloc_bootmem_low_pages(bytes);
194 if (!io_tlb_start)
195 panic("Cannot allocate SWIOTLB buffer");
196
197 swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
198}
199
563aaf06 200void __init
ad32e8cb 201swiotlb_init(int verbose)
1da177e4 202{
ad32e8cb 203 swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
1da177e4
LT
204}
205
0b9afede
AW
206/*
207 * Systems with larger DMA zones (those that don't support ISA) can
208 * initialize the swiotlb later using the slab allocator if needed.
209 * This should be just like above, but with some error catching.
210 */
211int
563aaf06 212swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 213{
563aaf06 214 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
0b9afede
AW
215 unsigned int order;
216
217 if (!io_tlb_nslabs) {
218 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
219 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
220 }
221
222 /*
223 * Get IO TLB memory from the low pages
224 */
563aaf06 225 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 226 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 227 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
228
229 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
bb52196b
FT
230 io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
231 order);
0b9afede
AW
232 if (io_tlb_start)
233 break;
234 order--;
235 }
236
237 if (!io_tlb_start)
238 goto cleanup1;
239
563aaf06 240 if (order != get_order(bytes)) {
0b9afede
AW
241 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
242 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
243 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 244 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede 245 }
563aaf06
JB
246 io_tlb_end = io_tlb_start + bytes;
247 memset(io_tlb_start, 0, bytes);
0b9afede
AW
248
249 /*
250 * Allocate and initialize the free list array. This array is used
251 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
252 * between io_tlb_start and io_tlb_end.
253 */
254 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
255 get_order(io_tlb_nslabs * sizeof(int)));
256 if (!io_tlb_list)
257 goto cleanup2;
258
259 for (i = 0; i < io_tlb_nslabs; i++)
260 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
261 io_tlb_index = 0;
262
bc40ac66
BB
263 io_tlb_orig_addr = (phys_addr_t *)
264 __get_free_pages(GFP_KERNEL,
265 get_order(io_tlb_nslabs *
266 sizeof(phys_addr_t)));
0b9afede
AW
267 if (!io_tlb_orig_addr)
268 goto cleanup3;
269
bc40ac66 270 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
0b9afede
AW
271
272 /*
273 * Get the overflow emergency buffer
274 */
275 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
276 get_order(io_tlb_overflow));
277 if (!io_tlb_overflow_buffer)
278 goto cleanup4;
279
ad32e8cb 280 swiotlb_print_info();
0b9afede 281
5740afdb
FT
282 late_alloc = 1;
283
0b9afede
AW
284 return 0;
285
286cleanup4:
bc40ac66
BB
287 free_pages((unsigned long)io_tlb_orig_addr,
288 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
0b9afede
AW
289 io_tlb_orig_addr = NULL;
290cleanup3:
25667d67
TL
291 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
292 sizeof(int)));
0b9afede 293 io_tlb_list = NULL;
0b9afede 294cleanup2:
563aaf06 295 io_tlb_end = NULL;
0b9afede
AW
296 free_pages((unsigned long)io_tlb_start, order);
297 io_tlb_start = NULL;
298cleanup1:
299 io_tlb_nslabs = req_nslabs;
300 return -ENOMEM;
301}
302
5740afdb
FT
303void __init swiotlb_free(void)
304{
305 if (!io_tlb_overflow_buffer)
306 return;
307
308 if (late_alloc) {
309 free_pages((unsigned long)io_tlb_overflow_buffer,
310 get_order(io_tlb_overflow));
311 free_pages((unsigned long)io_tlb_orig_addr,
312 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
313 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
314 sizeof(int)));
315 free_pages((unsigned long)io_tlb_start,
316 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
317 } else {
318 free_bootmem_late(__pa(io_tlb_overflow_buffer),
319 io_tlb_overflow);
320 free_bootmem_late(__pa(io_tlb_orig_addr),
321 io_tlb_nslabs * sizeof(phys_addr_t));
322 free_bootmem_late(__pa(io_tlb_list),
323 io_tlb_nslabs * sizeof(int));
324 free_bootmem_late(__pa(io_tlb_start),
325 io_tlb_nslabs << IO_TLB_SHIFT);
326 }
327}
328
02ca646e 329static int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 330{
02ca646e
FT
331 return paddr >= virt_to_phys(io_tlb_start) &&
332 paddr < virt_to_phys(io_tlb_end);
640aebfe
FT
333}
334
fb05a379
BB
335/*
336 * Bounce: copy the swiotlb buffer back to the original dma location
337 */
338static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
339 enum dma_data_direction dir)
340{
341 unsigned long pfn = PFN_DOWN(phys);
342
343 if (PageHighMem(pfn_to_page(pfn))) {
344 /* The buffer does not have a mapping. Map it in and copy */
345 unsigned int offset = phys & ~PAGE_MASK;
346 char *buffer;
347 unsigned int sz = 0;
348 unsigned long flags;
349
350 while (size) {
67131ad0 351 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
352
353 local_irq_save(flags);
354 buffer = kmap_atomic(pfn_to_page(pfn),
355 KM_BOUNCE_READ);
356 if (dir == DMA_TO_DEVICE)
357 memcpy(dma_addr, buffer + offset, sz);
ef9b1893 358 else
fb05a379
BB
359 memcpy(buffer + offset, dma_addr, sz);
360 kunmap_atomic(buffer, KM_BOUNCE_READ);
ef9b1893 361 local_irq_restore(flags);
fb05a379
BB
362
363 size -= sz;
364 pfn++;
365 dma_addr += sz;
366 offset = 0;
ef9b1893
JF
367 }
368 } else {
ef9b1893 369 if (dir == DMA_TO_DEVICE)
fb05a379 370 memcpy(dma_addr, phys_to_virt(phys), size);
ef9b1893 371 else
fb05a379 372 memcpy(phys_to_virt(phys), dma_addr, size);
ef9b1893 373 }
1b548f66
JF
374}
375
eb605a57 376void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
22d48269
KRW
377 phys_addr_t phys, size_t size,
378 enum dma_data_direction dir)
1da177e4
LT
379{
380 unsigned long flags;
381 char *dma_addr;
382 unsigned int nslots, stride, index, wrap;
383 int i;
681cc5cd
FT
384 unsigned long mask;
385 unsigned long offset_slots;
386 unsigned long max_slots;
387
388 mask = dma_get_seg_boundary(hwdev);
681cc5cd 389
eb605a57
FT
390 tbl_dma_addr &= mask;
391
392 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
393
394 /*
395 * Carefully handle integer overflow which can occur when mask == ~0UL.
396 */
b15a3891
JB
397 max_slots = mask + 1
398 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
399 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
400
401 /*
402 * For mappings greater than a page, we limit the stride (and
403 * hence alignment) to a page size.
404 */
405 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
406 if (size > PAGE_SIZE)
407 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
408 else
409 stride = 1;
410
34814545 411 BUG_ON(!nslots);
1da177e4
LT
412
413 /*
414 * Find suitable number of IO TLB entries size that will fit this
415 * request and allocate a buffer from that IO TLB pool.
416 */
417 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
418 index = ALIGN(io_tlb_index, stride);
419 if (index >= io_tlb_nslabs)
420 index = 0;
421 wrap = index;
422
423 do {
a8522509
FT
424 while (iommu_is_span_boundary(index, nslots, offset_slots,
425 max_slots)) {
b15a3891
JB
426 index += stride;
427 if (index >= io_tlb_nslabs)
428 index = 0;
a7133a15
AM
429 if (index == wrap)
430 goto not_found;
431 }
432
433 /*
434 * If we find a slot that indicates we have 'nslots' number of
435 * contiguous buffers, we allocate the buffers from that slot
436 * and mark the entries as '0' indicating unavailable.
437 */
438 if (io_tlb_list[index] >= nslots) {
439 int count = 0;
440
441 for (i = index; i < (int) (index + nslots); i++)
442 io_tlb_list[i] = 0;
443 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
444 io_tlb_list[i] = ++count;
445 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 446
a7133a15
AM
447 /*
448 * Update the indices to avoid searching in the next
449 * round.
450 */
451 io_tlb_index = ((index + nslots) < io_tlb_nslabs
452 ? (index + nslots) : 0);
453
454 goto found;
455 }
456 index += stride;
457 if (index >= io_tlb_nslabs)
458 index = 0;
459 } while (index != wrap);
460
461not_found:
462 spin_unlock_irqrestore(&io_tlb_lock, flags);
463 return NULL;
464found:
1da177e4
LT
465 spin_unlock_irqrestore(&io_tlb_lock, flags);
466
467 /*
468 * Save away the mapping from the original address to the DMA address.
469 * This is needed when we sync the memory. Then we sync the buffer if
470 * needed.
471 */
bc40ac66
BB
472 for (i = 0; i < nslots; i++)
473 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
1da177e4 474 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
fb05a379 475 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
1da177e4
LT
476
477 return dma_addr;
478}
479
eb605a57
FT
480/*
481 * Allocates bounce buffer and returns its kernel virtual address.
482 */
483
484static void *
22d48269
KRW
485map_single(struct device *hwdev, phys_addr_t phys, size_t size,
486 enum dma_data_direction dir)
eb605a57
FT
487{
488 dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
489
490 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
491}
492
1da177e4
LT
493/*
494 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
495 */
496static void
bfc5501f 497swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
22d48269 498 enum dma_data_direction dir)
1da177e4
LT
499{
500 unsigned long flags;
501 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
502 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
bc40ac66 503 phys_addr_t phys = io_tlb_orig_addr[index];
1da177e4
LT
504
505 /*
506 * First, sync the memory before unmapping the entry
507 */
bc40ac66 508 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
fb05a379 509 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
510
511 /*
512 * Return the buffer to the free list by setting the corresponding
af901ca1 513 * entries to indicate the number of contiguous entries available.
1da177e4
LT
514 * While returning the entries to the free list, we merge the entries
515 * with slots below and above the pool being returned.
516 */
517 spin_lock_irqsave(&io_tlb_lock, flags);
518 {
519 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
520 io_tlb_list[index + nslots] : 0);
521 /*
522 * Step 1: return the slots to the free list, merging the
523 * slots with superceeding slots
524 */
525 for (i = index + nslots - 1; i >= index; i--)
526 io_tlb_list[i] = ++count;
527 /*
528 * Step 2: merge the returned slots with the preceding slots,
529 * if available (non zero)
530 */
531 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
532 io_tlb_list[i] = ++count;
533 }
534 spin_unlock_irqrestore(&io_tlb_lock, flags);
535}
536
537static void
bfc5501f 538swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
22d48269 539 enum dma_data_direction dir, int target)
1da177e4 540{
bc40ac66
BB
541 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
542 phys_addr_t phys = io_tlb_orig_addr[index];
543
544 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
df336d1c 545
de69e0f0
JL
546 switch (target) {
547 case SYNC_FOR_CPU:
548 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 549 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
34814545
ES
550 else
551 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
552 break;
553 case SYNC_FOR_DEVICE:
554 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 555 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
34814545
ES
556 else
557 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
558 break;
559 default:
1da177e4 560 BUG();
de69e0f0 561 }
1da177e4
LT
562}
563
564void *
565swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 566 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 567{
563aaf06 568 dma_addr_t dev_addr;
1da177e4
LT
569 void *ret;
570 int order = get_order(size);
284901a9 571 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
572
573 if (hwdev && hwdev->coherent_dma_mask)
574 dma_mask = hwdev->coherent_dma_mask;
1da177e4 575
25667d67 576 ret = (void *)__get_free_pages(flags, order);
ac2b3e67 577 if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
1da177e4
LT
578 /*
579 * The allocated memory isn't reachable by the device.
1da177e4
LT
580 */
581 free_pages((unsigned long) ret, order);
582 ret = NULL;
583 }
584 if (!ret) {
585 /*
bfc5501f
KRW
586 * We are either out of memory or the device can't DMA to
587 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 588 * will grab memory from the lowest available address range.
1da177e4 589 */
bc40ac66 590 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
9dfda12b 591 if (!ret)
1da177e4 592 return NULL;
1da177e4
LT
593 }
594
595 memset(ret, 0, size);
70a7d3cc 596 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
1da177e4
LT
597
598 /* Confirm address can be DMA'd by device */
ac2b3e67 599 if (dev_addr + size - 1 > dma_mask) {
563aaf06 600 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
1e74f300 601 (unsigned long long)dma_mask,
563aaf06 602 (unsigned long long)dev_addr);
a2b89b59
FT
603
604 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
bfc5501f 605 swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
a2b89b59 606 return NULL;
1da177e4
LT
607 }
608 *dma_handle = dev_addr;
609 return ret;
610}
874d6a95 611EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
612
613void
614swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 615 dma_addr_t dev_addr)
1da177e4 616{
862d196b 617 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 618
aa24886e 619 WARN_ON(irqs_disabled());
02ca646e
FT
620 if (!is_swiotlb_buffer(paddr))
621 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 622 else
bfc5501f
KRW
623 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
624 swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
1da177e4 625}
874d6a95 626EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
627
628static void
22d48269
KRW
629swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
630 int do_panic)
1da177e4
LT
631{
632 /*
633 * Ran out of IOMMU space for this operation. This is very bad.
634 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 635 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
636 * When the mapping is small enough return a static buffer to limit
637 * the damage, or panic when the transfer is too big.
638 */
563aaf06 639 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
94b32486 640 "device %s\n", size, dev ? dev_name(dev) : "?");
1da177e4 641
c7084b35
CD
642 if (size <= io_tlb_overflow || !do_panic)
643 return;
644
645 if (dir == DMA_BIDIRECTIONAL)
646 panic("DMA: Random memory could be DMA accessed\n");
647 if (dir == DMA_FROM_DEVICE)
648 panic("DMA: Random memory could be DMA written\n");
649 if (dir == DMA_TO_DEVICE)
650 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
651}
652
653/*
654 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 655 * physical address to use is returned.
1da177e4
LT
656 *
657 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 658 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 659 */
f98eee8e
FT
660dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
661 unsigned long offset, size_t size,
662 enum dma_data_direction dir,
663 struct dma_attrs *attrs)
1da177e4 664{
f98eee8e 665 phys_addr_t phys = page_to_phys(page) + offset;
862d196b 666 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4
LT
667 void *map;
668
34814545 669 BUG_ON(dir == DMA_NONE);
1da177e4 670 /*
ceb5ac32 671 * If the address happens to be in the device's DMA window,
1da177e4
LT
672 * we can safely return the device addr and not worry about bounce
673 * buffering it.
674 */
b9394647 675 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
1da177e4
LT
676 return dev_addr;
677
678 /*
679 * Oh well, have to allocate and map a bounce buffer.
680 */
f98eee8e 681 map = map_single(dev, phys, size, dir);
1da177e4 682 if (!map) {
f98eee8e 683 swiotlb_full(dev, size, dir, 1);
1da177e4
LT
684 map = io_tlb_overflow_buffer;
685 }
686
f98eee8e 687 dev_addr = swiotlb_virt_to_bus(dev, map);
1da177e4
LT
688
689 /*
690 * Ensure that the address returned is DMA'ble
691 */
b9394647 692 if (!dma_capable(dev, dev_addr, size))
1da177e4
LT
693 panic("map_single: bounce buffer is not DMA'ble");
694
695 return dev_addr;
696}
f98eee8e 697EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 698
1da177e4
LT
699/*
700 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 701 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
702 * other usages are undefined.
703 *
704 * After this call, reads by the cpu to the buffer are guaranteed to see
705 * whatever the device wrote there.
706 */
7fcebbd2 707static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
22d48269 708 size_t size, enum dma_data_direction dir)
1da177e4 709{
862d196b 710 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 711
34814545 712 BUG_ON(dir == DMA_NONE);
7fcebbd2 713
02ca646e 714 if (is_swiotlb_buffer(paddr)) {
bfc5501f 715 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
7fcebbd2
BB
716 return;
717 }
718
719 if (dir != DMA_FROM_DEVICE)
720 return;
721
02ca646e
FT
722 /*
723 * phys_to_virt doesn't work with hihgmem page but we could
724 * call dma_mark_clean() with hihgmem page here. However, we
725 * are fine since dma_mark_clean() is null on POWERPC. We can
726 * make dma_mark_clean() take a physical address if necessary.
727 */
728 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
729}
730
731void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
732 size_t size, enum dma_data_direction dir,
733 struct dma_attrs *attrs)
734{
735 unmap_single(hwdev, dev_addr, size, dir);
1da177e4 736}
f98eee8e 737EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 738
1da177e4
LT
739/*
740 * Make physical memory consistent for a single streaming mode DMA translation
741 * after a transfer.
742 *
ceb5ac32 743 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
744 * using the cpu, yet do not wish to teardown the dma mapping, you must
745 * call this function before doing so. At the next point you give the dma
1da177e4
LT
746 * address back to the card, you must first perform a
747 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
748 */
be6b0267 749static void
8270f3f1 750swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
22d48269 751 size_t size, enum dma_data_direction dir, int target)
1da177e4 752{
862d196b 753 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 754
34814545 755 BUG_ON(dir == DMA_NONE);
380d6878 756
02ca646e 757 if (is_swiotlb_buffer(paddr)) {
bfc5501f
KRW
758 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
759 target);
380d6878
BB
760 return;
761 }
762
763 if (dir != DMA_FROM_DEVICE)
764 return;
765
02ca646e 766 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
767}
768
8270f3f1
JL
769void
770swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 771 size_t size, enum dma_data_direction dir)
8270f3f1 772{
de69e0f0 773 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 774}
874d6a95 775EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 776
1da177e4
LT
777void
778swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 779 size_t size, enum dma_data_direction dir)
1da177e4 780{
de69e0f0 781 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 782}
874d6a95 783EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
784
785/*
786 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 787 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
788 * interface. Here the scatter gather list elements are each tagged with the
789 * appropriate dma address and length. They are obtained via
790 * sg_dma_{address,length}(SG).
791 *
792 * NOTE: An implementation may be able to use a smaller number of
793 * DMA address/length pairs than there are SG table elements.
794 * (for example via virtual mapping capabilities)
795 * The routine returns the number of addr/length pairs actually
796 * used, at most nents.
797 *
ceb5ac32 798 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
799 * same here.
800 */
801int
309df0c5 802swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
160c1d8e 803 enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 804{
dbfd49fe 805 struct scatterlist *sg;
1da177e4
LT
806 int i;
807
34814545 808 BUG_ON(dir == DMA_NONE);
1da177e4 809
dbfd49fe 810 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 811 phys_addr_t paddr = sg_phys(sg);
862d196b 812 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 813
cf56e3f2 814 if (swiotlb_force ||
b9394647 815 !dma_capable(hwdev, dev_addr, sg->length)) {
bc40ac66
BB
816 void *map = map_single(hwdev, sg_phys(sg),
817 sg->length, dir);
7e870233 818 if (!map) {
1da177e4
LT
819 /* Don't panic here, we expect map_sg users
820 to do proper error handling. */
821 swiotlb_full(hwdev, sg->length, dir, 0);
309df0c5
AK
822 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
823 attrs);
dbfd49fe 824 sgl[0].dma_length = 0;
1da177e4
LT
825 return 0;
826 }
70a7d3cc 827 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
1da177e4
LT
828 } else
829 sg->dma_address = dev_addr;
830 sg->dma_length = sg->length;
831 }
832 return nelems;
833}
309df0c5
AK
834EXPORT_SYMBOL(swiotlb_map_sg_attrs);
835
836int
837swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
22d48269 838 enum dma_data_direction dir)
309df0c5
AK
839{
840 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
841}
874d6a95 842EXPORT_SYMBOL(swiotlb_map_sg);
1da177e4
LT
843
844/*
845 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 846 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
847 */
848void
309df0c5 849swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
160c1d8e 850 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 851{
dbfd49fe 852 struct scatterlist *sg;
1da177e4
LT
853 int i;
854
34814545 855 BUG_ON(dir == DMA_NONE);
1da177e4 856
7fcebbd2
BB
857 for_each_sg(sgl, sg, nelems, i)
858 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
859
1da177e4 860}
309df0c5
AK
861EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
862
863void
864swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
22d48269 865 enum dma_data_direction dir)
309df0c5
AK
866{
867 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
868}
874d6a95 869EXPORT_SYMBOL(swiotlb_unmap_sg);
1da177e4
LT
870
871/*
872 * Make physical memory consistent for a set of streaming mode DMA translations
873 * after a transfer.
874 *
875 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
876 * and usage.
877 */
be6b0267 878static void
dbfd49fe 879swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
22d48269 880 int nelems, enum dma_data_direction dir, int target)
1da177e4 881{
dbfd49fe 882 struct scatterlist *sg;
1da177e4
LT
883 int i;
884
380d6878
BB
885 for_each_sg(sgl, sg, nelems, i)
886 swiotlb_sync_single(hwdev, sg->dma_address,
de69e0f0 887 sg->dma_length, dir, target);
1da177e4
LT
888}
889
8270f3f1
JL
890void
891swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 892 int nelems, enum dma_data_direction dir)
8270f3f1 893{
de69e0f0 894 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 895}
874d6a95 896EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 897
1da177e4
LT
898void
899swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 900 int nelems, enum dma_data_direction dir)
1da177e4 901{
de69e0f0 902 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 903}
874d6a95 904EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
905
906int
8d8bb39b 907swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 908{
70a7d3cc 909 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
1da177e4 910}
874d6a95 911EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
912
913/*
17e5ad6c 914 * Return whether the given device DMA address mask can be supported
1da177e4 915 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 916 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
917 * this function.
918 */
919int
563aaf06 920swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 921{
70a7d3cc 922 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
1da177e4 923}
1da177e4 924EXPORT_SYMBOL(swiotlb_dma_supported);