]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/swiotlb.c
x86, IA64, powerpc: add phys_to_dma() and dma_to_phys()
[mirror_ubuntu-artful-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/module.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
1da177e4
LT
31
32#include <asm/io.h>
1da177e4 33#include <asm/dma.h>
17e5ad6c 34#include <asm/scatterlist.h>
1da177e4
LT
35
36#include <linux/init.h>
37#include <linux/bootmem.h>
a8522509 38#include <linux/iommu-helper.h>
1da177e4
LT
39
40#define OFFSET(val,align) ((unsigned long) \
41 ( (val) & ( (align) - 1)))
42
0b9afede
AW
43#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
44
45/*
46 * Minimum IO TLB size to bother booting with. Systems with mainly
47 * 64bit capable cards will only lightly use the swiotlb. If we can't
48 * allocate a contiguous 1MB, we're probably in trouble anyway.
49 */
50#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
51
de69e0f0
JL
52/*
53 * Enumeration for sync targets
54 */
55enum dma_sync_target {
56 SYNC_FOR_CPU = 0,
57 SYNC_FOR_DEVICE = 1,
58};
59
1da177e4
LT
60int swiotlb_force;
61
62/*
ceb5ac32
BB
63 * Used to do a quick range check in unmap_single and
64 * sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
65 * API.
66 */
67static char *io_tlb_start, *io_tlb_end;
68
69/*
70 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
72 */
73static unsigned long io_tlb_nslabs;
74
75/*
76 * When the IOMMU overflows we return a fallback buffer. This sets the size.
77 */
78static unsigned long io_tlb_overflow = 32*1024;
79
80void *io_tlb_overflow_buffer;
81
82/*
83 * This is a free list describing the number of free entries available from
84 * each index
85 */
86static unsigned int *io_tlb_list;
87static unsigned int io_tlb_index;
88
89/*
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
92 */
bc40ac66 93static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
94
95/*
96 * Protect the above data structures in the map and unmap calls
97 */
98static DEFINE_SPINLOCK(io_tlb_lock);
99
100static int __init
101setup_io_tlb_npages(char *str)
102{
103 if (isdigit(*str)) {
e8579e72 104 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
105 /* avoid tail segment of size < IO_TLB_SEGSIZE */
106 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
107 }
108 if (*str == ',')
109 ++str;
110 if (!strcmp(str, "force"))
111 swiotlb_force = 1;
112 return 1;
113}
114__setup("swiotlb=", setup_io_tlb_npages);
115/* make io_tlb_overflow tunable too? */
116
70a7d3cc 117dma_addr_t __weak swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
e08e1f7a
IC
118{
119 return paddr;
120}
121
42d7c5e3 122phys_addr_t __weak swiotlb_bus_to_phys(struct device *hwdev, dma_addr_t baddr)
e08e1f7a
IC
123{
124 return baddr;
125}
126
02ca646e 127/* Note that this doesn't work with highmem page */
70a7d3cc
JF
128static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
129 volatile void *address)
e08e1f7a 130{
70a7d3cc 131 return swiotlb_phys_to_bus(hwdev, virt_to_phys(address));
e08e1f7a
IC
132}
133
2e5b2b86
IC
134static void swiotlb_print_info(unsigned long bytes)
135{
136 phys_addr_t pstart, pend;
2e5b2b86
IC
137
138 pstart = virt_to_phys(io_tlb_start);
139 pend = virt_to_phys(io_tlb_end);
140
2e5b2b86
IC
141 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
142 bytes >> 20, io_tlb_start, io_tlb_end);
70a7d3cc
JF
143 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
144 (unsigned long long)pstart,
145 (unsigned long long)pend);
2e5b2b86
IC
146}
147
1da177e4
LT
148/*
149 * Statically reserve bounce buffer space and initialize bounce buffer data
17e5ad6c 150 * structures for the software IO TLB used to implement the DMA API.
1da177e4 151 */
563aaf06
JB
152void __init
153swiotlb_init_with_default_size(size_t default_size)
1da177e4 154{
563aaf06 155 unsigned long i, bytes;
1da177e4
LT
156
157 if (!io_tlb_nslabs) {
e8579e72 158 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
1da177e4
LT
159 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
160 }
161
563aaf06
JB
162 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
163
1da177e4
LT
164 /*
165 * Get IO TLB memory from the low pages
166 */
3885123d 167 io_tlb_start = alloc_bootmem_low_pages(bytes);
1da177e4
LT
168 if (!io_tlb_start)
169 panic("Cannot allocate SWIOTLB buffer");
563aaf06 170 io_tlb_end = io_tlb_start + bytes;
1da177e4
LT
171
172 /*
173 * Allocate and initialize the free list array. This array is used
174 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
175 * between io_tlb_start and io_tlb_end.
176 */
177 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
25667d67 178 for (i = 0; i < io_tlb_nslabs; i++)
1da177e4
LT
179 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
180 io_tlb_index = 0;
bc40ac66 181 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
1da177e4
LT
182
183 /*
184 * Get the overflow emergency buffer
185 */
186 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
563aaf06
JB
187 if (!io_tlb_overflow_buffer)
188 panic("Cannot allocate SWIOTLB overflow buffer!\n");
189
2e5b2b86 190 swiotlb_print_info(bytes);
1da177e4
LT
191}
192
563aaf06
JB
193void __init
194swiotlb_init(void)
1da177e4 195{
25667d67 196 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
1da177e4
LT
197}
198
0b9afede
AW
199/*
200 * Systems with larger DMA zones (those that don't support ISA) can
201 * initialize the swiotlb later using the slab allocator if needed.
202 * This should be just like above, but with some error catching.
203 */
204int
563aaf06 205swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 206{
563aaf06 207 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
0b9afede
AW
208 unsigned int order;
209
210 if (!io_tlb_nslabs) {
211 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
212 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
213 }
214
215 /*
216 * Get IO TLB memory from the low pages
217 */
563aaf06 218 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 219 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 220 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
221
222 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
bb52196b
FT
223 io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
224 order);
0b9afede
AW
225 if (io_tlb_start)
226 break;
227 order--;
228 }
229
230 if (!io_tlb_start)
231 goto cleanup1;
232
563aaf06 233 if (order != get_order(bytes)) {
0b9afede
AW
234 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
235 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
236 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 237 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede 238 }
563aaf06
JB
239 io_tlb_end = io_tlb_start + bytes;
240 memset(io_tlb_start, 0, bytes);
0b9afede
AW
241
242 /*
243 * Allocate and initialize the free list array. This array is used
244 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
245 * between io_tlb_start and io_tlb_end.
246 */
247 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
248 get_order(io_tlb_nslabs * sizeof(int)));
249 if (!io_tlb_list)
250 goto cleanup2;
251
252 for (i = 0; i < io_tlb_nslabs; i++)
253 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
254 io_tlb_index = 0;
255
bc40ac66
BB
256 io_tlb_orig_addr = (phys_addr_t *)
257 __get_free_pages(GFP_KERNEL,
258 get_order(io_tlb_nslabs *
259 sizeof(phys_addr_t)));
0b9afede
AW
260 if (!io_tlb_orig_addr)
261 goto cleanup3;
262
bc40ac66 263 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
0b9afede
AW
264
265 /*
266 * Get the overflow emergency buffer
267 */
268 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
269 get_order(io_tlb_overflow));
270 if (!io_tlb_overflow_buffer)
271 goto cleanup4;
272
2e5b2b86 273 swiotlb_print_info(bytes);
0b9afede
AW
274
275 return 0;
276
277cleanup4:
bc40ac66
BB
278 free_pages((unsigned long)io_tlb_orig_addr,
279 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
0b9afede
AW
280 io_tlb_orig_addr = NULL;
281cleanup3:
25667d67
TL
282 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
283 sizeof(int)));
0b9afede 284 io_tlb_list = NULL;
0b9afede 285cleanup2:
563aaf06 286 io_tlb_end = NULL;
0b9afede
AW
287 free_pages((unsigned long)io_tlb_start, order);
288 io_tlb_start = NULL;
289cleanup1:
290 io_tlb_nslabs = req_nslabs;
291 return -ENOMEM;
292}
293
02ca646e 294static int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 295{
02ca646e
FT
296 return paddr >= virt_to_phys(io_tlb_start) &&
297 paddr < virt_to_phys(io_tlb_end);
640aebfe
FT
298}
299
fb05a379
BB
300/*
301 * Bounce: copy the swiotlb buffer back to the original dma location
302 */
303static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
304 enum dma_data_direction dir)
305{
306 unsigned long pfn = PFN_DOWN(phys);
307
308 if (PageHighMem(pfn_to_page(pfn))) {
309 /* The buffer does not have a mapping. Map it in and copy */
310 unsigned int offset = phys & ~PAGE_MASK;
311 char *buffer;
312 unsigned int sz = 0;
313 unsigned long flags;
314
315 while (size) {
67131ad0 316 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
317
318 local_irq_save(flags);
319 buffer = kmap_atomic(pfn_to_page(pfn),
320 KM_BOUNCE_READ);
321 if (dir == DMA_TO_DEVICE)
322 memcpy(dma_addr, buffer + offset, sz);
ef9b1893 323 else
fb05a379
BB
324 memcpy(buffer + offset, dma_addr, sz);
325 kunmap_atomic(buffer, KM_BOUNCE_READ);
ef9b1893 326 local_irq_restore(flags);
fb05a379
BB
327
328 size -= sz;
329 pfn++;
330 dma_addr += sz;
331 offset = 0;
ef9b1893
JF
332 }
333 } else {
ef9b1893 334 if (dir == DMA_TO_DEVICE)
fb05a379 335 memcpy(dma_addr, phys_to_virt(phys), size);
ef9b1893 336 else
fb05a379 337 memcpy(phys_to_virt(phys), dma_addr, size);
ef9b1893 338 }
1b548f66
JF
339}
340
1da177e4
LT
341/*
342 * Allocates bounce buffer and returns its kernel virtual address.
343 */
344static void *
bc40ac66 345map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
1da177e4
LT
346{
347 unsigned long flags;
348 char *dma_addr;
349 unsigned int nslots, stride, index, wrap;
350 int i;
681cc5cd
FT
351 unsigned long start_dma_addr;
352 unsigned long mask;
353 unsigned long offset_slots;
354 unsigned long max_slots;
355
356 mask = dma_get_seg_boundary(hwdev);
70a7d3cc 357 start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
681cc5cd
FT
358
359 offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
360
361 /*
362 * Carefully handle integer overflow which can occur when mask == ~0UL.
363 */
b15a3891
JB
364 max_slots = mask + 1
365 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
366 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
367
368 /*
369 * For mappings greater than a page, we limit the stride (and
370 * hence alignment) to a page size.
371 */
372 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
373 if (size > PAGE_SIZE)
374 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
375 else
376 stride = 1;
377
34814545 378 BUG_ON(!nslots);
1da177e4
LT
379
380 /*
381 * Find suitable number of IO TLB entries size that will fit this
382 * request and allocate a buffer from that IO TLB pool.
383 */
384 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
385 index = ALIGN(io_tlb_index, stride);
386 if (index >= io_tlb_nslabs)
387 index = 0;
388 wrap = index;
389
390 do {
a8522509
FT
391 while (iommu_is_span_boundary(index, nslots, offset_slots,
392 max_slots)) {
b15a3891
JB
393 index += stride;
394 if (index >= io_tlb_nslabs)
395 index = 0;
a7133a15
AM
396 if (index == wrap)
397 goto not_found;
398 }
399
400 /*
401 * If we find a slot that indicates we have 'nslots' number of
402 * contiguous buffers, we allocate the buffers from that slot
403 * and mark the entries as '0' indicating unavailable.
404 */
405 if (io_tlb_list[index] >= nslots) {
406 int count = 0;
407
408 for (i = index; i < (int) (index + nslots); i++)
409 io_tlb_list[i] = 0;
410 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
411 io_tlb_list[i] = ++count;
412 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 413
a7133a15
AM
414 /*
415 * Update the indices to avoid searching in the next
416 * round.
417 */
418 io_tlb_index = ((index + nslots) < io_tlb_nslabs
419 ? (index + nslots) : 0);
420
421 goto found;
422 }
423 index += stride;
424 if (index >= io_tlb_nslabs)
425 index = 0;
426 } while (index != wrap);
427
428not_found:
429 spin_unlock_irqrestore(&io_tlb_lock, flags);
430 return NULL;
431found:
1da177e4
LT
432 spin_unlock_irqrestore(&io_tlb_lock, flags);
433
434 /*
435 * Save away the mapping from the original address to the DMA address.
436 * This is needed when we sync the memory. Then we sync the buffer if
437 * needed.
438 */
bc40ac66
BB
439 for (i = 0; i < nslots; i++)
440 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
1da177e4 441 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
fb05a379 442 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
1da177e4
LT
443
444 return dma_addr;
445}
446
447/*
448 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
449 */
450static void
7fcebbd2 451do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
1da177e4
LT
452{
453 unsigned long flags;
454 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
455 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
bc40ac66 456 phys_addr_t phys = io_tlb_orig_addr[index];
1da177e4
LT
457
458 /*
459 * First, sync the memory before unmapping the entry
460 */
bc40ac66 461 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
fb05a379 462 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
463
464 /*
465 * Return the buffer to the free list by setting the corresponding
466 * entries to indicate the number of contigous entries available.
467 * While returning the entries to the free list, we merge the entries
468 * with slots below and above the pool being returned.
469 */
470 spin_lock_irqsave(&io_tlb_lock, flags);
471 {
472 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
473 io_tlb_list[index + nslots] : 0);
474 /*
475 * Step 1: return the slots to the free list, merging the
476 * slots with superceeding slots
477 */
478 for (i = index + nslots - 1; i >= index; i--)
479 io_tlb_list[i] = ++count;
480 /*
481 * Step 2: merge the returned slots with the preceding slots,
482 * if available (non zero)
483 */
484 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
485 io_tlb_list[i] = ++count;
486 }
487 spin_unlock_irqrestore(&io_tlb_lock, flags);
488}
489
490static void
de69e0f0
JL
491sync_single(struct device *hwdev, char *dma_addr, size_t size,
492 int dir, int target)
1da177e4 493{
bc40ac66
BB
494 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
495 phys_addr_t phys = io_tlb_orig_addr[index];
496
497 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
df336d1c 498
de69e0f0
JL
499 switch (target) {
500 case SYNC_FOR_CPU:
501 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 502 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
34814545
ES
503 else
504 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
505 break;
506 case SYNC_FOR_DEVICE:
507 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
fb05a379 508 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
34814545
ES
509 else
510 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
511 break;
512 default:
1da177e4 513 BUG();
de69e0f0 514 }
1da177e4
LT
515}
516
517void *
518swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 519 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 520{
563aaf06 521 dma_addr_t dev_addr;
1da177e4
LT
522 void *ret;
523 int order = get_order(size);
284901a9 524 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
525
526 if (hwdev && hwdev->coherent_dma_mask)
527 dma_mask = hwdev->coherent_dma_mask;
1da177e4 528
25667d67 529 ret = (void *)__get_free_pages(flags, order);
b9394647 530 if (ret && swiotlb_virt_to_bus(hwdev, ret) + size > dma_mask) {
1da177e4
LT
531 /*
532 * The allocated memory isn't reachable by the device.
1da177e4
LT
533 */
534 free_pages((unsigned long) ret, order);
535 ret = NULL;
536 }
537 if (!ret) {
538 /*
539 * We are either out of memory or the device can't DMA
ceb5ac32
BB
540 * to GFP_DMA memory; fall back on map_single(), which
541 * will grab memory from the lowest available address range.
1da177e4 542 */
bc40ac66 543 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
9dfda12b 544 if (!ret)
1da177e4 545 return NULL;
1da177e4
LT
546 }
547
548 memset(ret, 0, size);
70a7d3cc 549 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
1da177e4
LT
550
551 /* Confirm address can be DMA'd by device */
b9394647 552 if (dev_addr + size > dma_mask) {
563aaf06 553 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
1e74f300 554 (unsigned long long)dma_mask,
563aaf06 555 (unsigned long long)dev_addr);
a2b89b59
FT
556
557 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
7fcebbd2 558 do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
a2b89b59 559 return NULL;
1da177e4
LT
560 }
561 *dma_handle = dev_addr;
562 return ret;
563}
874d6a95 564EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
565
566void
567swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 568 dma_addr_t dev_addr)
1da177e4 569{
02ca646e
FT
570 phys_addr_t paddr = swiotlb_bus_to_phys(hwdev, dev_addr);
571
aa24886e 572 WARN_ON(irqs_disabled());
02ca646e
FT
573 if (!is_swiotlb_buffer(paddr))
574 free_pages((unsigned long)vaddr, get_order(size));
1da177e4
LT
575 else
576 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
7fcebbd2 577 do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
1da177e4 578}
874d6a95 579EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
580
581static void
582swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
583{
584 /*
585 * Ran out of IOMMU space for this operation. This is very bad.
586 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 587 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
588 * When the mapping is small enough return a static buffer to limit
589 * the damage, or panic when the transfer is too big.
590 */
563aaf06 591 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
94b32486 592 "device %s\n", size, dev ? dev_name(dev) : "?");
1da177e4
LT
593
594 if (size > io_tlb_overflow && do_panic) {
17e5ad6c
TL
595 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
596 panic("DMA: Memory would be corrupted\n");
597 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
598 panic("DMA: Random memory would be DMAed\n");
1da177e4
LT
599 }
600}
601
602/*
603 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 604 * physical address to use is returned.
1da177e4
LT
605 *
606 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 607 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 608 */
f98eee8e
FT
609dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
610 unsigned long offset, size_t size,
611 enum dma_data_direction dir,
612 struct dma_attrs *attrs)
1da177e4 613{
f98eee8e 614 phys_addr_t phys = page_to_phys(page) + offset;
f98eee8e 615 dma_addr_t dev_addr = swiotlb_phys_to_bus(dev, phys);
1da177e4
LT
616 void *map;
617
34814545 618 BUG_ON(dir == DMA_NONE);
1da177e4 619 /*
ceb5ac32 620 * If the address happens to be in the device's DMA window,
1da177e4
LT
621 * we can safely return the device addr and not worry about bounce
622 * buffering it.
623 */
b9394647 624 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
1da177e4
LT
625 return dev_addr;
626
627 /*
628 * Oh well, have to allocate and map a bounce buffer.
629 */
f98eee8e 630 map = map_single(dev, phys, size, dir);
1da177e4 631 if (!map) {
f98eee8e 632 swiotlb_full(dev, size, dir, 1);
1da177e4
LT
633 map = io_tlb_overflow_buffer;
634 }
635
f98eee8e 636 dev_addr = swiotlb_virt_to_bus(dev, map);
1da177e4
LT
637
638 /*
639 * Ensure that the address returned is DMA'ble
640 */
b9394647 641 if (!dma_capable(dev, dev_addr, size))
1da177e4
LT
642 panic("map_single: bounce buffer is not DMA'ble");
643
644 return dev_addr;
645}
f98eee8e 646EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 647
1da177e4
LT
648/*
649 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 650 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
651 * other usages are undefined.
652 *
653 * After this call, reads by the cpu to the buffer are guaranteed to see
654 * whatever the device wrote there.
655 */
7fcebbd2
BB
656static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
657 size_t size, int dir)
1da177e4 658{
02ca646e 659 phys_addr_t paddr = swiotlb_bus_to_phys(hwdev, dev_addr);
1da177e4 660
34814545 661 BUG_ON(dir == DMA_NONE);
7fcebbd2 662
02ca646e
FT
663 if (is_swiotlb_buffer(paddr)) {
664 do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
7fcebbd2
BB
665 return;
666 }
667
668 if (dir != DMA_FROM_DEVICE)
669 return;
670
02ca646e
FT
671 /*
672 * phys_to_virt doesn't work with hihgmem page but we could
673 * call dma_mark_clean() with hihgmem page here. However, we
674 * are fine since dma_mark_clean() is null on POWERPC. We can
675 * make dma_mark_clean() take a physical address if necessary.
676 */
677 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
678}
679
680void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
681 size_t size, enum dma_data_direction dir,
682 struct dma_attrs *attrs)
683{
684 unmap_single(hwdev, dev_addr, size, dir);
1da177e4 685}
f98eee8e 686EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 687
1da177e4
LT
688/*
689 * Make physical memory consistent for a single streaming mode DMA translation
690 * after a transfer.
691 *
ceb5ac32 692 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
693 * using the cpu, yet do not wish to teardown the dma mapping, you must
694 * call this function before doing so. At the next point you give the dma
1da177e4
LT
695 * address back to the card, you must first perform a
696 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
697 */
be6b0267 698static void
8270f3f1 699swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
de69e0f0 700 size_t size, int dir, int target)
1da177e4 701{
02ca646e 702 phys_addr_t paddr = swiotlb_bus_to_phys(hwdev, dev_addr);
1da177e4 703
34814545 704 BUG_ON(dir == DMA_NONE);
380d6878 705
02ca646e
FT
706 if (is_swiotlb_buffer(paddr)) {
707 sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
380d6878
BB
708 return;
709 }
710
711 if (dir != DMA_FROM_DEVICE)
712 return;
713
02ca646e 714 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
715}
716
8270f3f1
JL
717void
718swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 719 size_t size, enum dma_data_direction dir)
8270f3f1 720{
de69e0f0 721 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 722}
874d6a95 723EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 724
1da177e4
LT
725void
726swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 727 size_t size, enum dma_data_direction dir)
1da177e4 728{
de69e0f0 729 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 730}
874d6a95 731EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4 732
878a97cf
JL
733/*
734 * Same as above, but for a sub-range of the mapping.
735 */
be6b0267 736static void
878a97cf 737swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
de69e0f0
JL
738 unsigned long offset, size_t size,
739 int dir, int target)
878a97cf 740{
380d6878 741 swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
878a97cf
JL
742}
743
744void
745swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e
FT
746 unsigned long offset, size_t size,
747 enum dma_data_direction dir)
878a97cf 748{
de69e0f0
JL
749 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
750 SYNC_FOR_CPU);
878a97cf 751}
874d6a95 752EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
878a97cf
JL
753
754void
755swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e
FT
756 unsigned long offset, size_t size,
757 enum dma_data_direction dir)
878a97cf 758{
de69e0f0
JL
759 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
760 SYNC_FOR_DEVICE);
878a97cf 761}
874d6a95 762EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
878a97cf 763
1da177e4
LT
764/*
765 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 766 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
767 * interface. Here the scatter gather list elements are each tagged with the
768 * appropriate dma address and length. They are obtained via
769 * sg_dma_{address,length}(SG).
770 *
771 * NOTE: An implementation may be able to use a smaller number of
772 * DMA address/length pairs than there are SG table elements.
773 * (for example via virtual mapping capabilities)
774 * The routine returns the number of addr/length pairs actually
775 * used, at most nents.
776 *
ceb5ac32 777 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
778 * same here.
779 */
780int
309df0c5 781swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
160c1d8e 782 enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 783{
dbfd49fe 784 struct scatterlist *sg;
1da177e4
LT
785 int i;
786
34814545 787 BUG_ON(dir == DMA_NONE);
1da177e4 788
dbfd49fe 789 for_each_sg(sgl, sg, nelems, i) {
961d7d0e
IC
790 phys_addr_t paddr = sg_phys(sg);
791 dma_addr_t dev_addr = swiotlb_phys_to_bus(hwdev, paddr);
bc40ac66 792
cf56e3f2 793 if (swiotlb_force ||
b9394647 794 !dma_capable(hwdev, dev_addr, sg->length)) {
bc40ac66
BB
795 void *map = map_single(hwdev, sg_phys(sg),
796 sg->length, dir);
7e870233 797 if (!map) {
1da177e4
LT
798 /* Don't panic here, we expect map_sg users
799 to do proper error handling. */
800 swiotlb_full(hwdev, sg->length, dir, 0);
309df0c5
AK
801 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
802 attrs);
dbfd49fe 803 sgl[0].dma_length = 0;
1da177e4
LT
804 return 0;
805 }
70a7d3cc 806 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
1da177e4
LT
807 } else
808 sg->dma_address = dev_addr;
809 sg->dma_length = sg->length;
810 }
811 return nelems;
812}
309df0c5
AK
813EXPORT_SYMBOL(swiotlb_map_sg_attrs);
814
815int
816swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
817 int dir)
818{
819 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
820}
874d6a95 821EXPORT_SYMBOL(swiotlb_map_sg);
1da177e4
LT
822
823/*
824 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 825 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
826 */
827void
309df0c5 828swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
160c1d8e 829 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
1da177e4 830{
dbfd49fe 831 struct scatterlist *sg;
1da177e4
LT
832 int i;
833
34814545 834 BUG_ON(dir == DMA_NONE);
1da177e4 835
7fcebbd2
BB
836 for_each_sg(sgl, sg, nelems, i)
837 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
838
1da177e4 839}
309df0c5
AK
840EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
841
842void
843swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
844 int dir)
845{
846 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
847}
874d6a95 848EXPORT_SYMBOL(swiotlb_unmap_sg);
1da177e4
LT
849
850/*
851 * Make physical memory consistent for a set of streaming mode DMA translations
852 * after a transfer.
853 *
854 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
855 * and usage.
856 */
be6b0267 857static void
dbfd49fe 858swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
de69e0f0 859 int nelems, int dir, int target)
1da177e4 860{
dbfd49fe 861 struct scatterlist *sg;
1da177e4
LT
862 int i;
863
380d6878
BB
864 for_each_sg(sgl, sg, nelems, i)
865 swiotlb_sync_single(hwdev, sg->dma_address,
de69e0f0 866 sg->dma_length, dir, target);
1da177e4
LT
867}
868
8270f3f1
JL
869void
870swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 871 int nelems, enum dma_data_direction dir)
8270f3f1 872{
de69e0f0 873 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 874}
874d6a95 875EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 876
1da177e4
LT
877void
878swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 879 int nelems, enum dma_data_direction dir)
1da177e4 880{
de69e0f0 881 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 882}
874d6a95 883EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
884
885int
8d8bb39b 886swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 887{
70a7d3cc 888 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
1da177e4 889}
874d6a95 890EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
891
892/*
17e5ad6c 893 * Return whether the given device DMA address mask can be supported
1da177e4 894 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 895 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
896 * this function.
897 */
898int
563aaf06 899swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 900{
70a7d3cc 901 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
1da177e4 902}
1da177e4 903EXPORT_SYMBOL(swiotlb_dma_supported);